
ALGORITHMS FOR ROUTING UNMANNED VEHICLES WITH MOTIONS,

RESOURCE, AND COMMUNICATION CONSTRAINTS

A Dissertation

by

KAARTHIK SUNDAR

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Chair of Committee, Sivakumar Rathinam
Committee Members, Swaroop Darbha

Reza Langari
Sergiy Butenko

Head of Department, Andreas A. Polycarpou

May 2016

Major Subject: Mechanical Engineering

Copyright 2016 Kaarthik Sundar

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/79652682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

Multiple small autonomous or unmanned aerial and ground vehicles are being

used together with stationary sensing devices for a wide variety of data gathering,

monitoring and surveillance applications in military, civilian, and agricultural appli-

cations, to name a few. Even though there are several advantages due to the small

platforms for these vehicles, they pose a variety of challenges. This dissertation aims

to address the following challenges to routing multiple small autonomous aerial or

ground vehicles: (i) limited communication capabilities of the stationary sensing de-

vices, (ii) dynamics of the vehicles, (iii) varying sensing capabilities of all the vehicles,

and (iv) resource constraints in the form of fuel restrictions on each vehicle. The dis-

sertation formulates four different routing problems for multiple unmanned vehicles,

one for each of the aforementioned constraints, as mixed-integer linear programs and

develops numerically efficient algorithms based on the branch-and-cut paradigm to

compute optimal solutions for practically reasonable size of test instances.
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NOMENCLATURE

MDRSP Multiple Depot Ring-Star Problem

MILP Mixed-Integer Linear Program

RSP Ring-Star Problem

MDTSP Multiple Depot Traveling Salesmen Problem

TSP Traveling Salesman Problem

SSP Stable Set Polytope

LP Linear Program

HMDMTSP Heterogeneous, Multiple Depot, Multiple Traveling Salesmen Problem

MTSP Single Depot, Multiple Traveling Salesmen Problem

MDVRP Multiple Depot, Vehicle Routing Problem

VRP Vehicle Routing Problem

LKH Lin-Kernighan-Helsgaun

TSPLIB Traveling Salesman Problem Library

FCMDVRP Fuel-Constrained, Multiple Depot, Vehicle Routing Problem

UAV Unmanned Aerial Vehicle

AFV Alternate-Fuel Vehicle

MTZ Miller-Tucker-Zemlin

GMDTSP Generalized Multiple Depot Traveling Salesmen Problem

GTSP Generalized Traveling Salesmen Problem

GVRP Generalized Vehicle Routing Problem

GSEC Generalized Sub-tour Elimination Constraints

GPEC Generalized Path Elimination Constraints
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1. INTRODUCTION

Data gathering and monitoring using autonomous aerial, ground or underwater

vehicles has garnered a lot of attention from the scientific community in the last

decade (see [86, 24, 14, 15, 74]). These vehicles come with the advantages of being

cheap and terrain independent (ground vehicles), can be deployed easily, and can

fly at low altitudes (for aerial vehicles), to name a few. Even though these vehicles

come with several advantages, they also pose other major challenges to the users

in developing cost-efficient plans or routes to perform the assigned mission. Here,

cost could imply anything ranging from travel cost to communication cost or sensor

battery life. In this thesis, we isolate four different challenges involved in developing

cost-efficient plans or routes to accomplish a specific type of data gathering or mon-

itoring mission. As much as possible, we try to make very little assumptions on the

type or kind of mission in view of broad applicability. The challenges that we isolate

and address separately are as follows:

1. limited communication capabilities of stationary sensing devices when they

are used in tandem with autonomous vehicles on a cooperative data gathering

mission,

2. routing multiple vehicles with varying sensing capabilities for a monitoring

application,

3. resource constraints, in particular, fuel restrictions imposed by the vehicles in

a generic data collection or monitoring application, and

4. the constraints imposed by the dynamics of the vehicles in motion planning for

a generic data gathering mission with multiple vehicles.
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Each of the above challenges has a combinatorial nature and in this thesis, we

make that notion clear and formulate each problem as a combinatorial optimization

problem. In particular, we formulate each problem as a mixed-integer linear pro-

gram and develop algorithms to obtain an optimal solution for any given instance of

the problem. In the next few sections, we will detail the actual mission, the objec-

tives of the mission, and formally define the problem for each of the aforementioned

challenges in the given order.

1.1 Communication capabilities

We consider a cooperative data gather mission using sensing devices together

with autonomous vehicles. In particular, we assume that each vehicle is stationed

at a distinct location (each location can correspond to a base station) and all the

vehicles together have to collect data from a set of sensing devices. A sensing device

can communicate its sensed information either to the autonomous vehicles or to

its neighbouring sensors. The vehicles have to collect all the sensed information and

return to its corresponding location so that the information can be processed further.

This approach of using both stationary sensors and autonomous vehicles to collect

data is advantageous for several reasons. Firstly, direct communication from the

sensed sites to the base station may require a high-power transmitter and may not

be suitable for environments with obstructions or non-line-of-sight communications.

Simulations/experiments [60, 80] have shown that this type of transmission is also

inefficient in terms of energy consumption. Secondly, even if the sensors communicate

with the base station through a series of relays (a relay is any device that can receive

data from the sensors and transmit it; a sensor can also perform the role of a relay),

power consumption may be high as environmental applications require sensing and

communicating over thousands of hectares of land. Relays may also have to only

2



depend on battery power for communication as they may be stationed in areas where

direct power from the grid is not available. An autonomous vehicle can travel to the

monitoring sites and download the sensed data from the sensors, thus reducing the

power expended by the sensors in relaying large amounts of data. This process can

directly help in increasing the life span of the sensors. Also, by using aerial vehicles

to collect data, the sensors are not required to form a connected network and can

be spatially distributed depending on the constraints of the application. A natural

problem that arises in this context is as follows: “Given the locations of a set of

sensors and a set of depots, with one vehicle stationed at each depot, the goal is to

(i) find a set of routes, one for each vehicle starting at its depot, visiting a subset of

sensors and terminating at its depot, (ii) assign each non-visited sensors to a visited

sensor or a depot, and (iii) minimize the sum of the routing costs, i.e., the cost of

the routes of the vehicles and the assignments.”

We refer to the above problem as the multiple depot ring-star problem (MDRSP).

The problem arises naturally in other fields including telecommunications. In a

generic telecommunication application, the sensing devices can correspond to termi-

nals or customers in access networks that are connected to switches or multiplexers,

and vehicles’ routes can correspond to a series of backbone networks that intercon-

nect these multiplexers to its corresponding hub. All the hubs are assumed to be

connected via a fixed internal wired network allowing for inter-hub communication.

Assuming that this wired network is fixed a priori, the problem of synthesising the

backbone network for each hub and the access networks for each multiplexer in an

hub reduces to a MDRSP. In chapter 2, this problem is formulated as a mixed-integer

linear program on general graphs and algorithms to compute an optimal solution for

any instance of the problem is developed. Numerical results are also presented. In

the next section, we formally define a problem to address the challenge involved

3



routing multiple heterogeneous vehicles with varying sensing capabilities.

1.2 Routing heterogeneous vehicles

Unmanned aerial vehicles, ground vehicles and underwater vehicles are being used

routinely in military applications such as border patrol, reconnaissance, surveillance

expeditions. The missions employing these vehicles operate with constraints on time

and resource. Often, a heterogeneous fleet of vehicles differing in either structure

or function or both is employed for the completion of a mission. This article ad-

dresses a commonly encountered routing problem for such missions. We classify the

heterogeneity of these vehicles into two categories: structural and functional hetero-

geneity. Vehicles are said to be structurally heterogeneous if they differ in design

and dynamics. This can lead to differences in fuel consumption, maximum speed at

which they can travel, payload capacity, etc. This is a realistic assumption as some

structural differences are always present between any pair of vehicles. A collection

of vehicles is said to be functionally heterogeneous if not all vehicles may be able to

visit a target. Functional heterogeneity results because vehicles may occasionally be

equipped with disparate sensors due to the respective payload restrictions. In this

case, we partition the set of targets into disjoint subsets: (i) targets to be visited by

specific vehicles and (ii) targets that any of the vehicles can visit. In particular, we

define the following problem: “Given a set of targets and a fleet of heterogeneous

vehicles located at distinct depots, find a tour for each vehicle that starts and ends

at its depot such that each target is visited by at least one vehicle, the vehicle–target

constraints are satisfied and the total cost of the tours traveled by all the vehicles in

a minimum. ” (See Fig. 1.1 for an illustration of a feasible solution to the problem)

We refer to this problem as the heterogeneous multiple depot, multiple vehicle

traveling salesmen problem. The related literature, formulation, algorithms and

4
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Figure 1.1: Example of a feasible HMDMTSP solution

computational results for the problem is discussed in chapter 3.

1.3 Fuel constraints

Any data gathering mission using multiple vehicles has to account for the vehicles’

fuel capacity when planning routes. We define the following problem to address this

challenge: “We are given a set of targets, a set of depots and a set of homogeneous

vehicles, one for each depot. The depots are also allowed to act as refueling stations.

The vehicles are allowed to refuel at any depot, and our objective is to determine

a route for each vehicle with a minimum total cost such that each target is visited

at least once by some vehicle, and the vehicles never run out fuel as it traverses its

route.”

We refer to this problem as the fuel-constrained, multiple depot, multiple vehicle

routing problem. We note that, for the purpose of addressing the challenge posed by

fuel capacity of the vehicles, we assume that the vehicles are homogeneous, unlike

the problem defined in Sec. 1.2. The chapter 4 develops four mixed-integer linear

5



programming formulations for the problem and compares them analytically and em-

pirically. We then use the best of the four formulations to obtain an optimal solution

to any instance of the problem.

1.4 Vehicle dynamics

Finally, in this section, we formally define a problem to address the challenge

of incorporating the dynamics of the vehicles in motion planning for a generic data

gathering mission with multiple vehicles. We will assume that the data gathering is

performed by a set of homogeneous Reeds-Shepp vehicles [68]. A Reeds-Shepp vehicle

is a car that travels with a constant speed, can instantaneously change its direction

of motion and has a lower bound on its turn radius. Car-like vehicles are archetypal

nonholonomic systems; their motion is restricted to the direction perpendicular to

their rear axle and their turn radius is lower bounded due to the mechanical limits

on the steering angle. Here, we are given the locations of a set of targets and a set

of depots; each depot is equipped with a Reeds-Shepp vehicle and all the vehicles

are similar. The objective of the problem is to find a path for each vehicle such that

every target is visited by some vehicle, the angle of approach of any vehicle at any

target is equal to the angle of departure of the vehicle at that target and the total

travel cost for all the vehicles is a minimum. Unlike the problem in Sec. 1.2 where

we assumed that the route that any vehicle should take to travel from one target to

the other is known a priori, here the route taken by any vehicle to travel from one

target to another is a function of the angle of departure and the angle of approach

of the vehicle at the corresponding targets. To get around this difficulty, at each

target we discretize the angle of approach (departure) i.e., we assume that the angle

of approach (departure) of the vehicles in any target is restricted to a discrete set

of angles. The basic problem of finding a shortest path for such a vehicle to travel

6



from an oriented initial point (xi, yi, αi) to an oriented final point (xf , yf , αf ) was

solved by [68] geometrically. We use this result to compute the travel cost for the

vehicle to travel from a target i to target j with angle of departure, αi and angle of

arrival, αj. Now, we restate the discretized version of the problem as follows: “We

are given the locations of a set of depots and a set of targets with a Reeds-Sheep

vehicle stationed at each depot. We are also given a discrete set of angles for each

target. The objective of the problem is to find a set of routes for all the vehicles such

that the route for each vehicle starts and ends at its corresponding depot, all the

targets are visited by some vehicle, the angle of approach of any vehicle at a target

is equal to the angle of departure of the vehicle at that target, and the total cost of

travel for all the vehicles is a minimum.”

We refer to this problem as the multiple depot one-in-a-set traveling salesmen

problem. A generalization of this problem called the generalized multiple depot

traveling salesmen problem is presented in chapter 5. We consider a generalization

because of its use to wider variety of applications. A mentioned previously, we

formulate the problem as a mixed-integer linear program and develop an algorithm

to compute an optimal solution to any instance of the problem.

1.5 Organization of the thesis

Each for the four chapters (chapters 2 – 5) is organized as follows: each problem

has a concise introduction followed by a detailed literature review. We then introduce

notations and formulate the problem. The choice of a particular type of formulation

is justified at the appropriate sections. This is followed by either a polyhedral study

or as in the case of the fuel-constrained, multiple depot, multiple vehicle routing

problem - a theoretical comparison of the various proposed formulations. The details

of the branch-and-cut algorithm and extensive computational studies follow. Each

7



chapter is concluded by identifying aspects of the problem that has scope for future

work.
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2. MULTIPLE DEPOT RING-STAR PROBLEM

In the present chapter, we develop exact algorithms for the MDRSP, a com-

binatorial optimization problem that arises in optical fibre network design and in

applications that collect data using stationary sensing devices and autonomous ve-

hicles. Given the locations of a set of customers and a set of depots, the goal is to

(i) find a set of simple cycles such that each cycle (ring) passes through a subset of

customers and exactly one depot, (ii) assign each non-visited customer to a visited

customer or a depot, and (iii) minimize the sum of the routing costs, i.e., the cost of

the cycles and the assignment costs. We present a MILP formulation for the MDRSP

and propose valid inequalities to strengthen the linear programming relaxation. Fur-

thermore, we present a polyhedral analysis and derive facet-inducing results for the

MDRSP. All these results are then used to develop a branch-and-cut algorithm to

obtain optimal solutions to the MDRSP. The performance of the branch-and-cut al-

gorithm is evaluated through extensive computational experiments on several classes

of test instances.

2.1 Introduction

The MDRSP is an important combinatorial optimization problem arising in the

context of optical fibre network design [3, 40] and in applications pertaining to col-

lecting data using stationary sensing devices and autonomous vehicles [72, 78].

Given the locations of a set of customers (sensors or terminals) and a set of

depots (base stations or hubs), (i) find a set of simple cycles such that each cycle

(ring) passes through a subset of customers and exactly one depot, (ii) assign each

non-visited customer to a visited customer or a depot, and (iii) minimize the sum

of the routing costs, i.e., the cost of the cycles and the assignment costs. Fig. 2.1
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Depot

Customer

Routing edge

Assignment edge

Figure 2.1: Example of a feasible MDRSP solution

shows an example of a feasible solution to the MDRSP. The MDRSP consists of two

underlying sub-problems, namely the MDTSP and the assignment problem. The two

sub-problems are coupled in the sense that the subset of customers that are present

in each cycle is not known a priori. If the assignment costs are very large compared

to the routing costs, the MDRSP reduces to the MDTSP [11] and is NP-hard.

This is the first work in the literature that analyzes the facial structure of the

MDRSP polytope and derives additional facet-defining inequalities for the polytope

of feasible solutions. This chapter develops a MILP formulation using a two-index

formulation similar to [40] and also develops non-trivial constraints that eliminate

paths between depots for the MDRSP. This work generalizes the results of two related

problems namely, the RSP (single depot variant of the MDRSP) in [40] and the

MDTSP in [11].
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2.2 Related work

The single depot variant of the MDRSP, the RSP, has been well studied in the

literature. The RSP was first introduced in the context of communication networks

in [57], where the authors develop variable neighborhood tabu-search algorithms to

find feasible solutions. In [40, 38], the authors present a polyhedral analysis and

branch-and-cut algorithms for computing optimal solutions to the RSP. [41] consider

a related problem called the median-cycle problem that consists of finding a simple

cycle that minimizes the routing cost subject to an upper bound on the total as-

signment cost. [41] propose integer linear programming models, introduce additional

valid inequalities and implement the model in a branch-and-cut framework.

Several authors have also considered graph structures (other than a cycle) such as

a path or a tree [42]. [51] address a related single-depot problem called the Steiner

ring-star problem; it consists of finding a minimum cost ring-star in the presence

of Steiner vertices. This problem arises frequently in the context of digital data

service network design where the objective is to connect terminals to concentrators

using point-to-point links (star topology) and to then interconnect the concentrators

through a ring structure. The authors develop a branch-and-cut algorithm to solve

the problem to optimality. A tabu search algorithm was also proposed for the Steiner

ring-star problem in [85].

The capacitated version of the RSP is also well studied in the literature. Heuris-

tics and exact algorithms based on a branch-and-cut approach are available for a

capacitated multiple ring-star problem [4]. Heuristics and lower bounds were pre-

sented for a capacitated variant of the MDRSP in [3]. A branch-and-cut algorithm

to solve the capacitated variant of the MDRSP to optimality was presented in [33].

[33] also developed a meta-heuristic to obtain feasible solutions. The computational
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results in [33] indicate that their meta-heuristic outperforms the heuristic proposed

by [3] for most of the instances considered.

Another closely related variant of the MDTSP and hence of MDRSP is the hamil-

tonian p-median problem [28]. This problem seeks p disjoint cycles which cover all

the nodes with minimum cost. One of the main differences between the hamiltonian

p-median problem and the MDTSP is that in the hamiltonian p-median problem one

seeks exactly p cycles and each cycle need not necessarily contain a depot, which is

not the case for the MDTSP or the MDRSP.

2.3 Problem description

Let D := {r1, r2, . . . , rn} denote the set of depots. Let T represent the set of

customers. Consider a mixed graph G = (V,E ∪ A) where V = D ∪ T , E is a set

of undirected edges joining any two distinct vertices in V , and A is a set of directed

arcs that includes self-loops (i.e., A = {[i, j] : i, j ∈ V }). Edges in E refer to the

undirected routing edges, and the arcs in A refer to the directed assignment edges.

For each edge (i, j) = e ∈ E, we associate a non-negative routing cost ce = cij, and

for each arc [i, j] ∈ A, we associate a non-negative assignment cost dij. Given a

subset E ′ ⊂ E, let V(E ′) denote the set of vertices incident to at least one edge in

E ′. Note that we allow the degenerate case where a cycle can only consist of depot

and a customer. A ring-star R is denoted by (V,E ′ ∪ A′) where E ′ ⊂ E is a simple

cycle (ring) containing exactly one depot from D, and A′ ⊆ A is a set of assignment

edges (star) between a subset of T \ V(E ′) and the vertices of V(E ′). We say that

a customer i is assigned to a ring-star R if it is either visited by the simple cycle

(i.e., i ∈ V(E ′)) or it is connected to a vertex present in a cycle using an assignment

edge (i.e., a vertex j exists such that [i, j] ∈ A′). The cost of the ring star R is the

sum of the routing cost of edges in E ′ and the communication cost of the arcs in A′.

12



The objective of the MDRSP is to design at most n ring-stars so that each customer

is assigned to exactly one ring-star and the sum of the cost of all the ring-stars is

minimal.

2.4 Mathematical formulation

This section presents a mathematical formulation for the MDRSP inspired by the

models for the standard routing problems [11, 40, 81].

We propose a two-index formulation for the MDRSP. We associate to each feasible

solution F , a vector x ∈ R|E| (a real vector indexed by the elements of E) such that

the value of the component xe associated with edge e is the number of times e

appears in the feasible solution F . Note that for some edges e ∈ E, xe ∈ {0, 1, 2}.

If e connects two vertices i and j, then (i, j) and e will be used interchangeably to

denote the same edge. Similarly, associated with F , is a vector y ∈ R|A|, i.e., a real

vector indexed by the elements of A. The value of the component yij associated with

a directed arc [i, j] ∈ A is equal to 1 if the customer i is assigned to customer j and

0 otherwise. Furthermore, we require that a customer i be present in a cycle if it is

assigned to itself, i.e., yii = 1.

For any S ⊂ V , we define γ(S) = {(i, j) ∈ E : i, j ∈ S} and δ(S) = {(i, j) ∈

E : i ∈ S, j /∈ S}. If S = {i}, we simply write δ(i) instead of δ({i}). Finally, for

any Ê ⊆ E, we define x(Ê) =
∑

(i,j)∈Ê xij, and for any disjoint subsets A,B ⊆ V ,

x(A : B) =
∑

i∈A,j∈B xij. Using the above notations, the MDRSP is formulated as a
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mixed integer linear program as follows:

Minimize
∑

e∈E

cexe +
∑

[i,j]∈A

dijyij (2.1)

subject to

x(δ(i)) = 2yii ∀i ∈ T, (2.2)

∑

j∈V

yij = 1 ∀i ∈ T, (2.3)

x(δ(S)) ≥ 2
∑

j∈S

yij ∀S ⊆ T, i ∈ S, (2.4)

x(D′ : {j}) + 3xjk + x({k} : D \D′) ≤ 2(yjj + ykk)

∀j, k ∈ T ; j 6= k;D′ ⊂ D, (2.5)

x(D′ : {j}) + 2x(γ(S̄)) + x({k} : D \D′) ≤
∑

v∈S̄

2 yvv −
∑

b∈S

yab

∀a ∈ S; j, k ∈ T ;S ⊆ T \ {j, k}, S 6= ∅; S̄ = S ∪ {j, k};D′ ⊂ D, (2.6)

yii = 1 ∀i ∈ D, (2.7)

yij = 0 ∀i ∈ D; j ∈ T, (2.8)

xij ∈ {0, 1} ∀(i, j) ∈ E; i, j ∈ T, (2.9)

xij ∈ {0, 1, 2} ∀(i, j) ∈ E; i ∈ D; j ∈ T, (2.10)

yij ∈ {0, 1} ∀[i, j] ∈ A. (2.11)

In the above formulation, the constraints in (2.2) ensure the number of undirected

(routing) edges incident on any vertex i ∈ T is equal to 2 if and only if target i is

assigned to itself (yii = 1). The constraints in (2.3) enforce the condition that a

vertex i ∈ T is either in a cycle (yii = 1) or assigned to a vertex j in a cycle (i.e.,

yij = 1 for some j ∈ V, j 6= i). The constraints in (2.4) are the connectivity or sub-

tour elimination constraints. They ensure a feasible solution has no sub-tours of any
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subset of customers in T . The constraints in (2.5) and (2.6) are the path elimination

constraints. They do not allow for any cycle in a feasible solution to consist of more

than one depot. The validity of these constraints is discussed in subsection 2.4.1.

Constraints in Eq. (2.7) and (2.8) are the assignment constraints for the depots.

Finally, the constraints (2.9)-(2.11) are the integrality restrictions on the x and y

vectors.

2.4.1 Path elimination constraints

To the best of our knowledge, the first version of any kind of path elimination

constraints was developed for the location routing problem [44]. These constraints

were facet-inducing for the version of location routing problem considered in [44]. [44]

first develop a path elimination constraint from first principles for paths of length 3

(length refers to number of edges in the path) such that it is a facet and extend that

approach to develop tight path elimination constraints for paths of length at least

4. Ever since, this approach has been used successfully for developing tight path

elimination constraints for a variety of problems [11, 10]. The second approach that

is taken in the literature for developing path elimination constraints is to consider

a single constraint to eliminate all paths. This is achieved by a single constraint as

follows: for any path P = {(d1, t2), (t2, t3), . . . , (tp−1, d2)} that starts at depot d1 and

terminates at depot d2, x(P ) ≤ |P |−1 eliminates P [22, 28]). This type of constraints

will remove paths of any length starting and terminating at distinct depots. Usually

this inequality is not used as is, and it is lifted to higher dimensions to make the

constraint tighter. For the MDRSP, we chose the former approach because it was

more suited for proving the inequality is facet-inducing.

Any path that originates from a depot and visits exactly two customers before

terminating at another depot is removed by the constraint in (2.5). The validity
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of the constraint (2.5) can be easily verified [44]. Any other path d1, t1, · · · , tp, d2,

where d1, d2 ∈ D, t1, · · · , tp ∈ T and p ≥ 3, violates inequality (2.6) with D′ = {d1},

S = {t2, · · · , tp−1}, j = t1, k = tp and a = tr where 2 ≤ r ≤ p− 1. We now state and

prove a result concerning inequality (2.4) that will aid in the verifying the validity

of the constraint in Eq. (2.6).

Lemma 2.1. The connectivity constraints in Eq. (2.4) is equivalent to x(γ(S)) ≤
∑

v∈S yvv −
∑

j∈S yij for all i ∈ S, S ⊆ T .

Proof. Consider a set S with ∅ 6= S ⊆ T . Then, for any feasible solution to the

MDRSP, we have the following equality,

∑

v∈S

x(δ(v)) = 2x(γ(S)) + x(δ(S))

∑

v∈S

2yvv = 2x(γ(S)) + x(δ(S)) (2.12)

∑

v∈S

2yvv ≥ 2x(γ(S)) + 2
∑

j∈S

yij ∀i ∈ S (from Eq.(2.4))

x(γ(S)) ≤
∑

v∈S

yvv −
∑

j∈S

yij ∀i ∈ S (from Eq.(2.2)) (2.13)

Hence proved.

The above lemma states that inequalities (2.4) and (2.13) are equivalent and

any feasible solution to the MDRSP satisfies both these constraints. We use this

equivalence to prove the validity of (2.6) for the MDRSP in the following proposition.

Proposition 2.1. Any feasible solution to the MDRSP is not eliminated by the path

elimination constraint in (2.6).
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Proof. Using the lemma 2.1, we first reduce the constraint in (2.6) to

x(D′ : {j}) + 2 x({j} : S) + 2 x({k} : S) + x({k} : D \D′) + 2xjk ≤

2 (yjj + ykk) +
∑

b∈S

yab +

(
x(δ(S))− 2

∑

b∈S

yab

)
. (2.14)

Any feasible solution to the MDRSP will satisfy the sub-tour elimination constraints

in Eq. (2.4). Hence, any feasible solution to the MDRSP will either satisfy x(δ(S)) =

2
∑

b∈S yab or x(δ(S)) > 2
∑

b∈S yab.

Case: x(δ(S)) = 2
∑

b∈S yab

Consider any feasible solution F that satisfies x(δ(S)) = 2
∑

b∈S yab. Then, either
∑

b∈S yab = 1 or
∑

b∈S yab = 0.

If
∑

b∈S yab = 0 in the feasible solution, the inequality in (2.14) reduces to

x(D′ : {j}) + x({k} : D \D′) + 2xjk ≤ 2 (yjj + ykk)

which is trivially satisfied by the solution.

If
∑

b∈S yab = 1 in the solution, the inequality in (2.14) reduces to

x(D′ : {j}) + 2x({j} : S) + 2x({k} : S) + x({k} : D \D′) + 2xjk ≤

2 (yjj + ykk) + 1. (2.15)

The proof that the feasible solution satisfies the above equation is as follows:
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1. Let yjj = 0. In this subcase, the degree constraints indicate that x(D′ : {j}) =

x({j} : S) = xjk = 0. Hence, the constraint (2.15) reduces to 2x({k} : S) +

x({k} : D \ D′) ≤ 2ykk + 1, which is satisfied by the feasible solution (since

x(δ(S)) = 2). A similar argument holds for the subcase when ykk = 0.

2. For yjj = ykk = 1, the right-hand-side (RHS) of constraint (2.15) takes the value

5. It is not difficult to observe that for any feasible solution with x(δ(S)) = 2,

the maximum value that the left-hand-side (LHS) of the constraint (2.15) can

take is also 5.

Case: x(δ(S)) > 2
∑

b∈S yab

Consider any feasible solution F that satisfies x(δ(S)) > 2
∑

b∈S yab.

1. Consider the subcase where yjj = 0. Then, the constraint reduces to 2x({k} :

S)+x({k} : D\D′) ≤ 2ykk+
∑

b∈S yab+(x(δ(S))−2
∑

b∈S yab). This constraint is

trivially satisfied by F when ykk = 0. When ykk = 1, observe that the minimum

value of the RHS and the maximum value of the LHS of the constraint are both

4 (since F has x(δ(S)) > 2
∑

b∈S yab, the minimum value of x(δ(S))−2
∑

b∈S yab

is 2). Hence, F satisfies Eq. (2.14) when yjj = 0. A similar argument holds

for the subcase when ykk = 0.

2. Consider the subcase where yjj = ykk = 1. First, we observe that the minimum

value taken by the RHS of the constraint is 6. Hence, we need only to look

at the instances when the LHS of the constraint takes a value greater than 6.

This occurs when x({j} : S) = x({k} : S) = 2 and the LHS of the constraint

would take a value 8. In such a case, x(δ(S)) ≥ 6, for else F would not be

feasible. Then, the RHS of the constraint would take a minimum value of 9.
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Hence, any feasible solution to the the MDRSP is not eliminated by the path elimi-

nation constraint in (2.6).

We note that our formulation allows for a feasible solution with paths connect-

ing two depots and visiting exactly one customer. In the literature, such paths are

referred to as 2-paths. As the formulation allows for two copies of an edge between

a depot and a target, 2-paths will be eliminated since there always exists an op-

timal solution which does not contain any 2-path. In the following subsection, we

shall strengthen the linear programming relaxation of the model (2.2)-(2.11) by the

introduction of additional valid inequalities.

2.4.2 Additional valid inequalities

In this section, we develop four classes of valid inequalities for the MDRSP.

Consider the constraints in Eq. (2.4). For any S = {i, j} where i, j ∈ T and i 6= j,

the equation reduces to x(δ(i)) + x(δ(j))− 2xij ≥ 2yii + 2yij. Further simplification

using the degree constraints yields

xij ≤ yjj − yij. (2.16)

Another set of useful constraints similar to (2.16) is given by

xij ≤ 2yjj for all i ∈ D, j ∈ T. (2.17)

Inequalities valid for a TSP polytope are also valid for the MDRSP. We particularly

examine the 2-matching inequalities available for the TSP polytope [29]. Specifically,
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we consider the following inequality:

x(γ(H)) + x(T ) ≤
∑

i∈H

yii +
|T | − 1

2
(2.18)

for all H ⊆ T and T ⊂ δ(H). Here H is called the handle, and T the teeth. H and

T satisfy the following conditions:

• the edges in the teeth are not incident to any depots in the set D,

• no two edges in the teeth are incident on the same customer,

• |T | ≥ 3 and odd.

The 2-matching inequality is also valid for the RSP [40] and hence, they are also valid

for the MDRSP. The constraints in Eq. (2.18) are also equivalent to the blossom’s

inequality for the 2-matching problem and a special case of the comb inequality for

the symmetric TSP [2]. Eq. (2.18) is a comb inequality where the cardinality of every

tooth is two and both the handle and the teeth contain only vertices from set T . The

next set of valid inequalities is derived using the valid inequalities for the SSP. In any

feasible solution to the MDRSP, for any triplet of vertices i, j, k ∈ T , the assignments

yij and yik are incompatible when j 6= k. The stable set problem associated with

these incompatible assignments is a relaxation of the MDRSP polytope. A similar

observation was made for the RSP in [40]. This property leads to the following

odd-hole inequalities for the MDRSP:

yij + yjk + yki ≤ 1 for all i, j, k ∈ T and i 6= j 6= k. (2.19)

x(δ(S)) ≥ 2(yij + yjk + yki) for all i, j, k ∈ T, i 6= j 6= k

and S ⊆ T such that i, j, k ∈ S. (2.20)
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Eq. (2.20) is the valid inequality obtained from the two previously mentioned relax-

ations of the MDRSP, i.e., the SSP and TSP relaxations.

We will next develop a few valid inequalities that are specific to the MDRSP.

In particular, we will examine a special type of 2-matching inequality with multiple

depots. We will call these inequalities depot-2-matching inequalities. Consider the

following inequality:

x(γ(H)) + x(T ) ≤
∑

i∈H

yii + |T | (2.21)

for all H ⊆ T and T ⊂ δ(H); H is the handle, and T is the teeth. H and T satisfy

the following conditions:

• every edge in the teeth must be incident on a depot,

• no two edges in the teeth are incident on the same depot,

• number of edges is T is greater than equal to one, and

• there exists at least one customer and one depot outside the handle and teeth.

Proposition 2.2. The depot-2-matching inequality in Eq. (2.21) is valid for any

feasible solution to the MDRSP.

Proof. For any H ⊆ T and T ⊂ δ(H) satisfying the conditions stated previously, we

have the following equality:

2x(γ(H)) + x(δ(H)) =
∑

v∈H

x(δ(v))

⇒ 2x(γ(H)) + x(T ) + x(δ(H) \ T ) = 2
∑

v∈H

yvv (from Eq. (2.2)).
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We also have x(T ) ≤ 2|T | for the set T (since the edges in the teeth are incident on

the depots). Adding this inequality to the above equality, we obtain,

2x(γ(H)) + 2x(T ) + x(δ(H) \ T ) ≤ 2
∑

v∈H

yvv + 2|T |

⇒ 2x(γ(H)) + 2x(T ) ≤ 2
∑

v∈H

yvv + 2|T |.

The last inequality follows because x(δ(H) \ T ) ≥ 0. Further simplification yields

x(γ(H)) + x(T ) ≤
∑

v∈H

yvv + |T |.

Hence the 2-depot-matching inequality is valid for the MDRSP.

Observe that the depot-2-matching inequality also allows for the number of edges

in the teeth to be even and that a 2-depot-matching inequality with more that two

edges in the teeth can also eliminate depot-depot paths.

In the following section, we develop some polyhedral results and facet-inducing

properties for the valid inequalities discussed thus far.

2.5 Polyhedral analysis

We will show the polyhedral results for the MDRSP while leveraging on the

results already known for a MDTSP. MDTSP is a special case of the MDRSP when

each customer must be visited by one of the vehicles. Let P denote the polytope

that represents the convex hull of feasible solutions to the MDRSP (i.e., satisfies

(2.2)-(2.11)) and Q denote the corresponding MDTSP polytope [11].

If u denotes the number of customers, we observe that there are u equalities in

(2.2), u equalities in (2.3), n equalities in (2.7) and nu equalities in (2.8). Therefore,

the system (2.2), (2.3), (2.7) and (2.8) has 2u+n+nu equalities. We also note that
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this system of equality constraints are linearly independent.

The number of xe variables in the formulation is
(
u
2

)
+ nu (

(
u
2

)
is the number

of edges between customers and nu is the number of edges between depots and

customers). Similarly, the number of yij variables in the formulation is u2 + n+ 2nu

(u2 is the number of customer to customer arcs, n is the number of arcs that assigns

a depot to itself and 2nu is the number of arcs that assigns a depot to a customer

and vice versa). Let m denote the total number of variables used in the problem

formulation i.e., m =
(
u
2

)
+ u2 + n+ 3nu.

Let χ(x,y) ∈ Rm denote the incidence vector of a solution (x,y) to the MDRSP

in the graph G. Now we have,

P := conv{χ(x,y) : (x,y) is a feasible MDRSP solution} (2.22)

Q := {(x,y) ∈ P : yii = 1 for all i ∈ T} (2.23)

The dimension of the polytope Q was shown to be
(
u
2

)
+ u(n − 1) [11]. Let F ⊆ T

denote a subset of customers. To relate P and Q, we define an intermediate polytope

P (F ) as follows:

P (F ) := {(x,y) ∈ P : yii = 1 for all i /∈ F}. (2.24)

We observe that, P (∅) = Q and P (T ) = P . Also, for any (α, β) ∈ Rm and γ ∈ R,

define the hyperplane

H(α, β, γ) := {(x,y) ∈ Rm : αx + βy = γ} (2.25)

Lemma 2.2. Let v1, · · · , vu be an ordering of the customers in the set T and Fk =

{v1, · · · , vk} for all k ∈ {1, · · · , u}. If for each k = 1, . . . , u and each vl ∈ V \ {vk},
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there exists a feasible solution to the MDRSP, such that

1. yvjvj = 1 for all j > k i.e., every customer in the set T \ Fk is in some cycle,

2. yvjvj +
∑

r∈D yvjr = 1 for all j < k i.e., every vertex in the set Fk must be either

in a cycle or assigned to a depot,

3. yvkvl=1 i.e., the vertex vk must be assigned to the vertex vl, and

4. αx + βy = γ,

then, dim(P ∩H(α, β, γ)) ≥ dim(Q ∩H(α, β, γ)) + u(u+ n− 1).

Proof. We prove by induction on |Fk| that dim(P (Fk) ∩ H(α, β, γ)) ≥ dim(Q ∩

H(α, β, γ)) + |Fk|(u+ n− 1). This in turn proves the lemma because when Fk = T ,

we have P (Fk) = P and |Fk| = u. Let Nk := dim(Q ∩H(α, β, γ)) + |Fk|(u+ n− 1).

The base case for induction holds since k = 0 implies Fk = ∅ and P (Fk) = Q. Now,

suppose k > 0. Then by induction hypothesis, we have dim(P (Fk−1)∩H(α, β, γ)) ≥

Nk−1. Hence, there are at least Nk−1 + 1 affine independent points in the polytope

P (Fk−1) ∩ H(α, β, γ). All these affine independent points satisfy yvkvk = 1 (since

vk /∈ Fk−1). From the definition of P (F ) in Eq. (2.24), we have P (Fk)∩H(α, β, γ) ⊃

P (Fk−1)∩H(α, β, γ). Therefore, these Nk−1 + 1 affine independent points satisfying

yvkvk = 1 lie in P (Fk) ∩ H(α, β, γ). The assumptions of the lemma provide for

additional (u + n − 1) affine independent points in P (Fk) ∩ H(α, β, γ) that satisfy

yvkvk = 0. Therefore, dim(P (Fk) ∩ H(α, β, γ)) ≥ Nk−1 + (u + n − 1) = dim(Q ∩

H(α, β, γ)) + |Fk|(u+ n− 1). Hence proved.

The Lemma 2.2’s hypothesis provides a family of feasible solutions to the MDRSP

that are guaranteed to be linearly independent. The dimension of the MDRSP

polytope P is computed in the following corollary of Lemma 2.2.
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Corollary 2.1. dim(P ) =
(
u
2

)
+ u2 + 2u(n− 1).

Proof. The number of variables used in formulation of MDRSP is
(
u
2

)
+u2 +n+ 3nu

and all the solutions of the MDRSP satisfy the 2u + n + nu linearly independent

equality constraints in the system (2.2, 2.3, 2.7, 2.8). Hence, dim(P ) ≤
(
u
2

)
+ u2 +

n+ 3nu− (2u+ n+ nu) =
(
u
2

)
+ u2 + 2u(n− 1). Also, we have,

dim(P ) = dim(P ∩H(0, 0, 0))

≥ dim(Q ∩H(0, 0, 0)) + u(u+ n− 1) (using Lemma 2.2)

= dim(Q) + u2 + u(n− 1)

=

(
u

2

)
+ u(n− 1) + u2 + u(n− 1)

=

(
u

2

)
+ u2 + 2u(n− 1)

Hence, dim(P ) =
(
u
2

)
+ u2 + 2u(n− 1).

An important consequence of Lemma 2.2 is that any valid inequality αx+βy ≤ γ

that is facet-inducing to the MDTSP polytope Q and satisfying the conditions (1)–(4)

of the lemma is valid and facet-inducing to the MDRSP polytope P . This observation

will be used in all of the subsequent results concerning the polyhedral analysis of P .

Proposition 2.3. If |T | ≥ 4, the inequality xe ≥ 0 is facet-inducing for P for every

e ∈ E.

Proof. For any ordering of the customers in T , it is trivial to construct feasible

solutions satisfying the conditions 1–4 of Lemma 2.2 (xe = 0 is the hyperplane

here) for a fixed e = (i, j) ∈ E. To construct such feasible solutions satisfying the

assumptions of the Lemma, we require the condition |T | ≥ 4 (in Fig. 2.2, when

|T | < 4 in Prop. (2.3), a feasible solution to the MDRSP with customers 2,3 in the
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Figure 2.2: Counter-example for the case when |T | < 4 in Prop. 2.3

cycle associated with depot r such that xr3 = 0 and y12 = 1 cannot be constructed).

The proposition follows by noting that xe = 0 is a facet to the MDTSP polytope Q

if |T | ≥ 4 (see [11]).

Remark. We also note that the inequality xij ≤ 1 for all (i, j) ∈ E and i, j ∈ T is not

facet-inducing for P since it is dominated by the constraint in Eq. (2.16). Similarly,

the inequality xij ≤ 2 for all (i, j) ∈ E, i ∈ D and j ∈ T is not facet-inducing for the

polytope P as it is dominated by the corresponding constraint in Eq. (2.17).

Proposition 2.4. The sub-tour elimination constraint given by Eq. (2.4), i.e.,

x(δ(S)) ≥ 2
∑

j∈S yij is facet-inducing for the MDRSP polytope for each S ⊆ T,

i ∈ S, |S| ≥ 2.

Proof. Consider any ordering of the customers in set T such that the customer i ∈ T

is in the last position of the ordering. We will prove the proposition by constructing

feasible solutions satisfying assumptions of Lemma 2.2 ( x(δ(S)) = 2
∑

j∈S yij is the

hyperplane here) for the considered ordering.

Choose an arbitrary customer k ∈ T \ {i}. Given k, we construct (u + n − 1)

feasible solutions satisfying the assumptions of the Lemma 2.2 as follows: construct

a cycle spanning all the customers in T \ {k} and some depot r with exactly 2 edges

in δ(S) and customer k assigned to any vertex in the set V \ {k} (illustrated in
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Figure 2.3: Feasible solutions described in Prop. 2.4

Fig. 2.3-(a)). The cardinality of the set V \ {k} is (u+ n− 1) and hence we obtain

(u+ n− 1) feasible solutions satisfying the assumptions of the Lemma.

We now detail the procedure for constructing another (u+n−1) feasible solutions

for the last customer i ∈ T . Construct a cycle spanning depot r and all the customers

in S \ {i} with exactly two edges in δ(S) while assigning i to any vertex in S \ {i}.

This provides for |S|−1 feasible solutions that satisfy the assumptions of the Lemma

2.2. Another set of |V \ S| feasible solutions is obtained as follows: construct a

cycle spanning the depot r and the vertex set T \ S, and assign the customers in

S \ {i} to one of the depots and the customer i to any vertex in the set V \ S

(illustrated in Fig. 2.3-(b)). This final set of feasible solutions ensure x(δ(S)) = 0

and 2
∑

j∈S yij = 0. The proposition then follows because x(δ(S)) ≥ 2
∑

j∈S yij

reduces to a facet-inducing inequality x(δ(S)) ≥ 2 for the polytope Q of the MDTSP

(see [11]).

Remark. The Prop. 2.4 does not hold for |S| = 1, since the degree constraint in Eq.

(2.2) dominates the corresponding constraint with |S| = 1. Similarly, when i /∈ S,
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[40] showed that Prop. 2.4 is not valid for the RSP because of the inequality

x(δ(S ∪ {i})) = x(δ(S)) + x(δ(i))− 2
∑

j∈S

xij ≥ 2
∑

j∈S∪i

yij = 2(yii +
∑

j∈S

yij).

The above inequality implies x(δ(S)) ≥ 2
∑

j∈S(yij + xij) which dominates the cor-

responding constraint in Eq. (2.4) when i /∈ S. The same argument holds for the

MDRSP.

Proposition 2.5. The constraint given by Eq. (2.5), x(D′ : {j}) + 3xjk + x({k} :

D\D′) ≤ 2(yjj+ykk), is facet-inducing for the MDRSP polytope P for every j, k ∈ T ,

j 6= k, |T | ≥ 2, D′ ⊂ D, and D′ 6= ∅.

Proof. We shall again use Lemma 2.2 to prove the proposition. Given j, k ∈ T

and D′ ⊂ D, consider any ordering of the vertices in T where j and k appear in

the last two positions. We also assume r1 ∈ D′ and r2 ∈ D \ D′. We claim there

is a feasible solution for every vertex i ∈ T and for each vertex v ∈ V \ {i} that

satisfy the assumptions 1–3 of Lemma 2.2 and the equation x(D′ : {j}) + 3xjk +

x({k} : D \ D′) = 2(yjj + ykk). This claim combined with the known result that

x(D′ : {j}) + 3xjk + x({k} : D \D′) ≤ 4 is facet-inducing for the MDTSP polytope

Q (see [11]) proves the proposition. We shall now prove our claim.

For any arbitrary customer i ∈ T \ {j, k}, consider the following solutions to the

MDRSP: a cycle spanning the depot r1 and all the customers in T \{i} such that the

customer j is adjacent to the depot r1 and customer k with the customer i assigned

to any vertex in the set V \ {i}. Each of these solutions is feasible to the MDRSP

and satisfy the equation x(D′ : {j}) + 3xjk + x({k} : D \ D′) = 2(yjj + ykk) =

4 (since x(D′ : {j}) = 1 and xjk = 1). For the customer j, consider feasible

solutions where j is assigned to a vertex in V \ {j}, the vertex k is the lone vertex
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spanned the cycle associated with depot r2 and all the customers in T \ {j, k} are

spanned by cycle associated with depot r1. These solutions satisfy the equation

x(D′ : {j}) + 3xjk + x({k} : D \D′) = 2(yjj + ykk) = 2 (since x({k} : D \D′) = 2).

A similar construction can also be done for the vertex k. Therefore the claim, and

as a result, the proposition is true.

Proposition 2.6. The constraint given by Eq. (2.6), x(D′ : {j})+2x(γ(S∪{j, k})+

x({k} : D \ D′) ≤ ∑
v∈S∪{j,k} 2 yvv −

∑
b∈S yab, is facet-inducing for the MDRSP

polytope P for every j, k ∈ T , j 6= k, S ⊆ T \ {j, k}, D′ ⊂ D, D′ 6= ∅, and a ∈ S.

Proof. Consider any ordering of the customers in T such that the j, k, and a appear

(in that order) in the last three positions in the ordering. We assume r1 ∈ D′ and

r2 ∈ D \D′. We claim there exists a feasible MDRSP solution for every vertex i ∈ T

and for each vertex v ∈ V \{i} that satisfy the assumptions 1–3 of Lemma 2.2 and the

equation x(D′ : {j})+2x(γ(S∪{j, k})+x({k} : D\D′) =
∑

v∈S∪{j,k} 2 yvv−
∑

b∈S yab.

This claim together with the known result that x(D′ : {j})+2x(γ(S∪{j, k})+x({k} :

D \D′) ≤ 2|S|+ 3 is facet-inducing for the MDTSP polytope Q (see [11]) proves the

proposition. We shall now prove our claim.

Choose an arbitrary customer i ∈ T \{j, k, a}. Given i, we now construct (u+n−

1) feasible MDRSP solution satisfying the assumptions of the Lemma 2.2 as follows:

construct a cycle spanning the customers j, t ∈ S \{i}, k, t ∈ T \(S∪{j, k, i}) in that

order and depot r1, with the customer i assigned to any vertex in V \{i} (illustrated

in Fig. 2.4-(a)). For all the above (u + n − 1) solutions, the LHS and the RHS of

the constraint (2.6) takes the value 2|S \ {i}| + 3 i.e., the feasible solutions satisfy

the constraint (2.6) at equality.

Now, we construct 2(u + n − 1) feasible solutions for the customer j and k re-

spectively. We will construct the solutions for j and the same procedure can be
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Figure 2.4: Feasible solutions described in Prop. 2.6

followed to construct solutions for the customer k. For the customer j, construct

a cycle spanning the customers k, t ∈ S, and t ∈ T \ (S ∪ {j, k} in that order and

the depot r2, with j assigned to any vertex in V \ {j} (illustrated in Fig. 2.4-(b)).

A similar procedure for constructing feasible MDRSP solutions for the customer k

yields another (u+ n− 1) solutions.

We finally detail the procedure to construct the (u + n − 1) feasible MDRSP

solutions for the last customer in the ordering, a. Construct a cycle spanning r1, j, t ∈

S \ {a}, k and t ∈ T \ (S ∪ {i, j}) in that order with the customer a assigned to

one of the customers in S \ {a}. This provides for |S| − 1 feasible solutions that

satisfy the assumptions of the Lemma 2.2 (see Fig. 2.4-(c)). The remaining set of

|V \ S| feasible solutions is obtained as follows: construct two cycles one with the

vertices j and r1 and the other with k and r2 (i.e., xjr1 = xkr2 = 2.), assign all the

customers in T \ {j, k, a} to r1 and the customer a to any vertex in V \ S. This
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set of feasible solutions have x(D′ : {j}) + 2x(γ(S ∪ {j, k}) + x({k} : D \ D′) = 4

and
∑

v∈S∪{j,k} 2 yvv −
∑

b∈S yab = 4 (see Fig. 2.4-(d)). Now, the proposition follows

because Eq. (2.6) reduces to a facet-defining inequality x(D′ : {j}) + 2x(γ(S ∪

{j, k}) + x({k} : D \D′) ≤ 2|S|+ 3 for the polytope Q.

Proposition 2.7. The 2-matching inequality in Eq. (2.18) for all H ⊆ T and

T ⊂ δ(H), satisfying the conditions:

1. the edges in the teeth are not incident to any depots in the set D,

2. no two edges in the teeth are incident on the same customer,

3. |T | ≥ 3 and odd.

is facet-inducing for the MDRSP polytope P when |T | ≥ 6.

Proof. The proof proceeds by constructing feasible solutions that satisfy conditions

1–3 of the Lemma 2.2 and the hyperplane x(γ(H)) + x(T ) =
∑

i∈H yii + |T |−1
2

. For

a fixed H and T satisfying the conditions stated in the proposition, and for each

k ∈ T , it is straightforward to construct a cycle spanning some depot r ∈ D and

all the customers in T \ {k} such that x(γ(H)) + x(T ) =
∑

i∈H yii + |T |−1
2

(refer

to Fig. 2.5). Each of these cycles can be converted to a feasible solution by the

addition of an assignment from customer k to a vertex in the set V \ {k}. The

figures show portions of the cycle when k ∈ T is in the handle and teeth respectively.

In Fig. 2.5–(a), the vertex k is in the handle H and in Fig. 2.5–(b), k is in a tooth.

We also note that the valid inequality x(γ(H)) + x(T ) ≤ ∑i∈H yii + |T |−1
2

reduces

to x(γ(H)) + x(T ) ≤ |H| + |T |−1
2

for a MDTSP. The proposition follows since the

hyperplane defined by x(γ(H)) + x(T ) ≤ |H| + |T |−1
2

is a facet for the MDTSP

polytope Q when |T | ≥ 6 (see [11]).
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Figure 2.5: Feasible solutions described in Prop. 2.7

2.6 Separation algorithms

In this section, we discuss the algorithms that are used to find violated families

of constraints described in Sec. 2.4. We denote by G∗ = (V ∗, E∗) the support graph

associated with a given fractional solution (x∗,y∗) i.e., V ∗ := {i ∈ V : y∗ii > 0} and

E∗ := {(i, j) ∈ E : x∗ij > 0}. We also define A∗ := {[i, j] ∈ A : y∗ij > 0}.

2.6.1 Separation of sub-tour elimination constraints

As shown previously, the inequalities in Eq. (2.4) reduce to Eq. (2.16) when

|S| = 2. The violation of the inequality in Eq. (2.16) can be verified by examining the

inequality for every pair of customers in the set T . Next, we examine the connected

components in G∗. Each connected component C such that D ∩ C = ∅ generates a

violated sub-tour elimination constraint for S = C and for each i ∈ S. If a connected

component C has D ∩ C 6= ∅, the following procedure is used to find the largest

violated sub-tour elimination constraint in x(δ(S)) ≥ 2
∑

j∈S yij . For any S ⊆ T ,

given any i ∈ S, we can rewrite the constraint in Eq. (2.4) as

x(δ(S)) + 2
∑

j /∈S

yij ≥ 2 ∀S ⊆ T, i ∈ S. (2.26)
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Given a connected component C such that D ∩ C 6= ∅, i ∈ C ∩ T , and a fractional

solution (x∗,y∗), the most violated constraint (2.26) can be obtained by computing

a minimum s-t cut on a capacitated undirected graph Ḡ = (V̄ , Ē), with V̄ = (V ∗ ∩

T ) ∪ {s}. The vertex s denotes the source vertex and is formed by contracting all

the depots into a single vertex. The vertex t denotes the sink vertex and t = i. The

edge set Ē = E∗ ∪ {(s, j) : j ∈ V ∗ ∩ T}. Every edge (s, j) where j ∈ (V ∗ ∩ T ) \ {i}

is assigned a capacity
∑

d∈D x
∗
dj. The edge (i, j) where j ∈ V̄ \ {i} is assigned a

capacity equal to x∗ij + 2y∗ij and any remaining edge e is assigned a capacity x∗e.

We now compute the minimum s-t cut (S, V̄ \ S) with t ∈ V̄ \ S. The vertex set

S ′ = V̄ \ S defines the most violated inequality if the capacity of the cut is strictly

less than two. A similar separation procedure is also used to separate the sub-tour

elimination constraints in [40, 4].

2.6.2 Separation of path elimination constraints

We first discuss the procedure used to separate violated constraints in Eq. (2.5).

Consider every pair of targets j, k ∈ T ∩ V ∗. We rewrite the constraint in (2.5)

as x(D′ : {j}) + x({k} : D \ D′) ≤ 2(ykk + yjj) − 3xjk. Given j, k and fractional

solution (x∗,y∗), the RHS of the above inequality is a constant and is equal to

2(y∗kk+y∗jj)−3x∗jk. We observe that the LHS of the inequality, x∗(D′ : {j})+x∗({k} :

D \D′), is maximum when D′ = {d ∈ D : x∗jd ≥ x∗kd}. Furthermore, when D′ = ∅,

no path constraint in Eq. (2.5) is violated for the given pair of vertices j and k.

With D′ = {d ∈ D : x∗jd ≥ x∗kd}, if x∗(D′ : {j}) + x∗({k} : D \D′) is strictly greater

than 2(y∗kk + y∗jj) − 3x∗jk, the path constraint in Eq. (2.5) is violated for the pair of

vertices j, k and the subset of depots D′.

We now discuss the separation procedure for the the constraint in Eq. (2.6). We

note that this path constraint is determined by a pair of vertices j, k ∈ T , a subset of
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vertices S ⊆ T \{j, k}, a vertex a ∈ S and a subset of depots D′ ⊂ D. In what follows

we develop a procedure that is applied to every pair of clients {j, k}. It is obvious

that (2.6) will never be violated if j and k belong to different connected components

of the support graph G∗; hence, we only consider pairs of those {j, k} belonging

to the same connected component in G∗. We denote S̄ = S ∪ {j, k}. Using this

notation, we reformulate the constraint in Eq. (2.6) to Eq. (2.27), whose violation

can be deduced using a minimum s-t cut algorithm. The reduction is shown below:

x(D′ : {j}) + x({k} : D \D′) + 2x(γ(S̄)) ≤
∑

v∈S̄

2 yvv −
∑

b∈S

yab,

x(D′ : {j}) + x({k} : D \D′) ≤ x(δ(S̄))−
∑

b∈S

yab,

x(D′ : {j}) + x({k} : D \D′) + 1 ≤ x(δ(S̄)) +
∑

b/∈S̄

yab + yaj + yak,

x(D′ : {j}) + x({k} : D \D′) + 1− yaj − yak ≤ x(δ(S̄)) +
∑

b/∈S̄

yab. (2.27)

The second inequality follows by applying Eq. (2.12) in Lemma 2.1 to the set S̄.

Eq. (2.27) is an equivalent representation of the path constraint in Eq. (2.6). Now,

given a fractional solution (x∗,y∗), the pair {j, k} in the same connected component

C, and an a ∈ (C \ {j, k}) ∩ T , the LHS of (2.27) attains a maximum value for

D′ = {d ∈ D : x∗jd ≥ x∗kd} (when D′ = ∅, the corresponding path constraint (2.6) is

not violated). Let L = x∗(D′ : {j}) + x∗({k} : D \ D′) + 1 − y∗aj − y∗ak. Now, the

most violated constraint (2.6) can be found by computing a minimum s-t cut on a

capacitated undirected graph Ḡ = (V̄ , Ē) with V̄ = V ∗∪{s, t}. The vertex s denotes

the source. The vertex t denotes the sink and is formed by contracting all the depots

to a single vertex. We add edges with very large capacity from the source vertex s

to vertices j, k and a. Every edge (i, a) where i ∈ V ∗ \ {a} is assigned a capacity
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x∗ai + y∗ai and any remaining edge e is assigned a capacity x∗e. The minimum s-t cut

(S ′, T ′) on Ḡ would have j, k, a, s ∈ S ′ and t, r ∈ T ′ for every r ∈ D. The pair j, k,

the vertex set S = S ′ \ {s} and the vertex a ∈ S defines the most violated inequality

if the capacity of the cut is strictly less than L.

2.6.3 Separation of 2-matching and depot-2-matching constraints

We discuss exact and heuristic separation procedures for the 2-matching con-

straints. Using a construction similar to the one proposed by [66] for the b-matching

problem, the separation problem for 2-matching inequalities can be transformed into

a minimum capacity odd cut problem; hence this separation problem is exactly solv-

able in polynomial time. This procedure is computationally intensive, and so we use

the following simple heuristic proposed by [23]. We consider an undirected graph

Ḡ = (V̄ , Ē) with V̄ = V ∗ ∩ T and Ē = {e : 0 < x∗e < 1}. Then, we consider each

connected component H of Ḡ as a handle of a possibly violated 2-matching inequal-

ity whose two-node teeth correspond to the edges e ∈ δ(H) with x∗e = 1. We reject

the inequality if the number of teeth is even. The procedure can be implemented in

O(|V̄ |+ |Ē|) time. A similar procedure is used for separating the depot-2-matching

constraints. In this case, we consider two-node teeth corresponding to edges incident

on the depots i.e., e ∈ δ(H) with x∗e = 1 and e = (t, d), where t ∈ T ∩H and d ∈ D.

This procedure also eliminates paths between the depots.

2.6.4 Separation of odd-hole and clique inequalities

For the constraints in Eq. (2.19) and Eq. (2.20), we use the separation procedures

discussed in [40]. The inequalities in Eq. (2.19) can be separated by a complete

enumeration of i, j, k ∈ T such that y∗ij > 0, y∗jk > 0 and y∗ki > 0. Similarly, for

each i, j, k ∈ T such that y∗ij > 0, y∗jk > 0 and y∗ki > 0, a min-cut separating D from

{i, j, k} in G∗ would detect the most violated constraint in Eq. (2.20), if any.
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2.7 Branch-and-cut algorithm

In this section, we describe important implementation details of the branch-

and-cut algorithm for the MDRSP. The algorithm is implemented within a CPLEX

12.6.1 framework using the CPLEX callback functions [34]. The callback functions

in CPLEX enable the user to completely customize the branch-and-cut algorithm

embedded into CPLEX including, the choice of node to explore in the enumeration

tree, the choice of branching variable, the separation and the addition of user-defined

cutting planes and the application of heuristic methods.

The lower bound at the root node of the enumeration tree is computed by solving

the LP relaxation of the formulation in Sec. 2.4 that is further strengthened using

the cutting planes described in Sec. 2.4.2. The initial linear program consisted of all

constraints in (2.1)-(2.11) and (2.17), except (2.4), (2.5) and (2.6). Several numer-

ical experiments indicated that the inequalities in Eq. (2.19) and Eq. (2.20) were

not computationally helpful for the branch-and-cut procedure, and so they were not

used in the final implementation of the algorithm. For a given LP solution, we iden-

tify violated inequalities using the separation procedures in the following order: (i)

sub-tour elimination constraints in Eq. (2.16), (ii) sub-tour elimination constraints

in Eq. (2.4) (iii) path elimination constraints in Eq. (2.5) and Eq. (2.6) (iv) 2-

matching and depot-2-matching constraints in Eq. (2.18) and (2.21), respectively.

Furthermore, we disabled the separation of all the cuts embedded into the CPLEX

framework because enabling these cuts increased the average computation time for

the instances. Once the new cuts generated using these separation procedures were

added to the linear program, the tighter linear program was resolved. This proce-

dure was iterated until either of the following conditions was satisfied: (i) no violated

constraints could be generated by the separation procedures, (ii) the current lower
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bound of the enumeration tree was greater or equal to the current upper bound.

If no constraints are generated in the separation phase, we create sub-problems by

branching on a fractional variable. First, we select a fractional yii variable, based

on the strong branching rule [1]. If all these variables are integer, then we select a

fractional xe variable using the same rule. As for the node-selection rule, we used

the best-first policy for all our computations, i.e., select the sub-problem with the

lowest objective value.

2.7.1 Heuristics

We discuss a greedy algorithm called LP-heuristic, that aides in speeding up

the convergence of the branch-and-cut algorithm. The LP-heuristic constructs a

feasible solution from a given fractional LP solution. It is used only at the root node

of the enumeration tree, once in every three iterations. LP-heuristic is based on a

transformation method [63]. Given y∗, the vector of fractional LP assignment values,

the heuristic greedily assigns every customer in the set T to some vertex in the set

V . We call this procedure the greedy assignment procedure; a pseudo-code of the

algorithm is shown in Fig 2.6. Once we have the assignment, we can compute the

set of vertices that are spanned by some cycle (the set of vertices that are assigned

to itself). We then solve the MDTSP on these vertices and D. A heuristic based on

the transformation method [63] and LKH heuristic [31] is used to solve the MDTSP.

2.8 Computational results

In this section, we discuss the computational results of the branch-and-cut al-

gorithm. The algorithm was implemented in C++ (GCC version 4.6.3), using the

elements of Standard Template Library (STL) and CPLEX 12.4 framework. As men-

tioned in Sec. 2.7, the internal CPLEX cut generation was disabled and, CPLEX was

used only to manage the enumeration tree. All the simulations were performed on
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Procedure - Greedy Assignment
Input: y∗;
Output: assignments σ, set P of vertices that are spanned by some cycle;
comment: initialization
for each i ∈ T do σ(i) := −1;
T̄ := T ; comment: customers to be assigned
P := V ; comment: vertices that are spanned by some cycle
comment: customer assignment
while T̄ 6= ∅ do

Select a customer i ∈ T̄ randomly; T̄ = T̄ \ {i};
σ(i) = argmax{y∗ik : k ∈ P};
if σ(i) 6= i then P = P \ {i};

endwhile

Figure 2.6: The greedy assignment procedure

a Dell Precision T5500 workstation (Intel Xeon E5630 processor @2.53 GHz, 12 GB

RAM). The computation times reported were expressed in seconds and we imposed

a time limit of 7200 seconds for each run of the algorithm. The performance of the

algorithm was tested on different classes of test instances, all generated using the

traveling salesman problem library [69].

Instance generation: We generated two classes of test instances (I and II) having

the same underlying graph, but with a different assignment cost structure (similar to

[4, 40]). For each of the two classes and for each value of |T | ∈ {29, 51, 76, 101}, we

generated 12 MDRSP instances using four TSPLIB instances [69] namely, bays29,

eil51, eil76 and eil101. We performed a computational study on these instances with

|D| ∈ {3, 4, 5}. The depot locations were randomly generated. The routing costs

and assignment costs were generated as follows:

Class I: The routing and assignment cost for a pair of vertices i, j is equal to the

Euclidean distance lij between the two vertices.

Class II: For each pair of vertices i, j, the routing cost cij = αlij and the as-
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signment cost dij = (10 − α)lij where α ∈ {3, 5, 7, 9}. We refer to α as the scale

factor.

Tables 2.1–2.3 summarize the computational behavior of the branch-and-cut al-

gorithm on the two classes of instances. The column headings are defined as follows:

Name: instance name (for Classes I and II);

|D|: number of depots (for Classes I and II);

α: scale factor (for Class II);

%-LB: percentage LB/opt, where LB is the objective value of the LP relaxation

computed at the root node of the enumeration tree (for Classes I and II);

%-LB0: percentage LB/opt, where LB is the objective value of the LP relaxation

computed at the root node of the enumeration tree without adding the additional

valid inequalities for the MDRSP (for Class II);

Pair: number of constraints (2.16) generated (for Classes I and II);

SEC: number of constraints (2.4) with |S| > 2 generated (for Classes I and II);

2mat: number of constraints (2.18) generated (for Classes I and II);

PEC: number of constraints (2.5) and (2.6) generated (for Classes I and II);

Nodes: total number of nodes examined in the enumeration tree (for Classes I and

II);

Time: total computation time in seconds (for Classes I and II).

%Ring: total percentage of customers in present in the ring for the optimal MDRSP

solution (for Class II)
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Name |D| %-LB Pair SEC 2mat PEC Nodes Time

bays29 3 94.81 133 2939 17 618 119 4.52
bays29 4 99.30 46 676 8 1107 21 5.46
bays29 5 100.00 42 374 1 282 0 0.69

eil51 3 100.00 76 739 5 24 0 1.59
eil51 4 100.00 74 1182 6 83 0 6.76
eil51 5 100.00 78 1251 2 614 0 10.18

eil76 3 99.83 129 2615 23 1519 44 105.19
eil76 4 99.74 130 2483 10 2835 34 39.04
eil76 5 99.54 148 3738 70 7182 353 260.42

eil101 3 99.93 176 5441 8 1328 5 261.57
eil101 4 99.92 178 4551 9 1954 4 252.69
eil101 5 99.96 174 4118 8 3135 3 277.35

Averages 99.42 121.88 2508.92 13.92 1723.42 48.85 102.12

Table 2.1: Computational results for Class I instances
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The results tabulated in Tables 2.1–2.3 indicate that the proposed branch-and-cut

algorithm can solve instances involving up to 101 customers with modest computa-

tion times. All the instances were solved by the branch-and-cut algorithm within

an hour. For a scale factor value of 3, we observe that the MDTSP solution is the

optimal solution to the MDRSP. As the scale factor value is increased, this is clearly

not the case because the percentage of customers present in the cycles decreases

considerably. Furthermore, we observe that the Class II instances are more difficult,

on an average, especially for a scale factor equal to 7. For the scale factor value of

7, the average percentage of customers present in the cycle in the optimal solution

is 68%. These are the instances that take the maximum average computation time

of 1007 seconds. Hence, the difficult instances tend to be those with relatively few

assignment edges in the optimal solution. This is in contrast to the RSP [40], where

the difficult instances tend to be those where the optimal cycle consists of about

20% of the customers. This major variation in the trade-off between the cycle costs

and the assignment costs is due to the presence of the path elimination constraints

in the MDRSP and the inherent challenges involved in solving multiple depot vari-

ants. The %-LB column in both the tables indicate that the lower bound obtained

at the root node of the enumeration tree is very tight, typically within 0.5% of the

optimum. The %-LB0 column in the Tables 2.2 and 2.3 is the ratio of the lower

bound obtained at the root node of the enumeration tree to the optimal solution;

here the lower bound is obtained by not using any of the additional valid inequalities

developed for the MDRSP. This average %-LB0 is observed to be within 1.2% of the

optimal solution for all the instances in Class II. Hence, we conclude that proposed

mixed-integer linear programming formulation for the MDRSP is by itself very tight.

But a numerically observed advantage of the depot-2-matching inequalities was that

for the instances where the number of violated depot-2-matching inequalities were
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large, the number of path-elimination constraints added to the enumeration tree

was reduced leading to an overall reduction in the computation time. This is be-

cause these inequalities can themselves eliminate depot to depot paths. Overall, we

were able to solve all the 60 test instances within an hour, with the largest instance

involving 101 customers and 5 depots.

2.9 Conclusion

In this chapter, we have presented an exact algorithm for the MDRSP, a problem

that arises in designing an optical fiber network in telecommunications and allo-

cating resources in monitoring applications. A mixed integer linear programming

formulation including several classes of valid inequalities was proposed and a com-

plete polyhedral analysis with facet-inducing results was investigated together with

a branch-and-cut algorithm. The algorithm was tested on a wide class of bench-

mark instances from a standard library. The largest solved instance involved 101

vertices. Future work can be directed towards development of branch-and-cut ap-

proaches accompanied with a polyhedral study to solve capacitated versions of the

problem.
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3. HETEROGENEOUS, MULTIPLE DEPOT, MULTIPLE TRAVELING

SALESMAN PROBLEM*

In this chapter, we formally define the HMDMTSP and present an exact algo-

rithm based on the branch-and-cut paradigm to compute an optimal solution to the

problem. Unmanned aerial vehicles are being used in several monitoring applica-

tions to collect data from a set of targets. These vehicles are heterogeneous in the

sense that they can differ either in their motion constraints or sensing capabilities.

Furthermore, not all vehicles may be able to visit a given target because vehicles

may occasionally be equipped with disparate sensors due to the respective payload

restrictions. This chapter addresses a problem where a group of heterogeneous vehi-

cles located at distinct depots visit a set of targets. The targets are partitioned into

disjoint subsets: targets to be visited by specific vehicles and targets that any of the

vehicles can visit. The objective is to find an optimal tour for each vehicle starting

at its respective depot such that each target is visited at least once by some vehicle,

the vehicle–target constraints are satisfied and the sum of the costs of the tours for

all the vehicles is minimized. We formulate the problem as a MILP and develop a

branch-and-cut algorithm to compute an optimal solution to the problem. Compu-

tational results show that optimal solutions for problems involving 100 targets and

5 vehicles can be obtained within 300 seconds on average, further corroborating the

effectiveness of the proposed approach. This chapter is published as a conference

article in [76].

*Reprinted with permission from “An exact algorithm for a heterogeneous multiple depot,
multiple traveling salesman problem” by Kaarthik Sundar and Sivakumar Rathinam. International
Conference on Unmanned Aircraft Systems (ICUAS), pages 366371. Copyright [2015] by IEEE.
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3.1 Introduction

The HMDMTSP is a generalization of the MDTSP which is known to be NP-

Hard [11]. We formulate the HMDMTSP as a MILP and develop a branch-and-cut

algorithm to compute optimal solutions for the same. The reminder of the chapter

is organized as follows. In Sec. 3.2, we discuss the relevant literature. In Sec. 3.3,

we formulate the HMDMTSP as a MILP and present additional valid inequalities

to strengthen the linear programming relaxation. A branch-and-cut algorithm based

on the formulation for the HMDMTSP is described in Sec. 3.4, and Sec. 3.5 presents

computational results on several classes of test instances.

3.2 Related work

The single vehicle variant of the HMDMTSP is the TSP. Over the past two

decades, several methods including exact algorithms, heuristics, and approximation

algorithms have been developed to address the TSP [50]. The HMDMTSP reduces to

the MDTSP when all the vehicles are homogeneous. [11] present an exact algorithm

to solve the MDMTSP. Another variant of the MDMTSP that has received consider-

able attention in the literature is the MTSP. In the MTSP, there are m homogeneous

vehicles that have to visit a set of customers from a single depot, and every vehicle

must at least visit one target. For a homogeneous MTSP and its variations, [37]

present some integer linear programming formulations. [8] reviews the applications,

exact and heuristic solution procedures and transformations of MTSP to the TSP.

A branch-and-bound-based method for large-scale MTSP may be found in [25].

The HMDMTSP can also be considered as a special case of MDVRP. The MD-

VRP consists of finding a set of routes based on a set of given depots to serve the

demand of a set of customers with multiple homogeneous vehicles of limited capacity.

[49] study variants of this problem with asymmetric costs and propose branch-and-
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bound algorithms to optimally solve the problem. More recently, [6] have developed

an exact solution framework to solve different vehicle routing problems that can be

applied to the MDVRP as well. [79] introduced and developed a column generation

heuristic for the VRP using an heterogeneous fleet. [79] assumed the fleet of vehicles

to be structurally heterogeneous. Since then, a wide range of heuristics, exact algo-

rithms and approximation algorithms have been developed for routing problems with

structurally heterogeneous fleet of vehicles. To our knowledge, there is no exact algo-

rithm available in the literature to solve any variant of heterogeneous VRPs. [5] give

an overview of approaches to solve heterogeneous VRPs. In particular, they classify

the variants described in the literature, review the lower bounds and the heuristics

and compare the performance of the different algorithms on benchmark instances.

Routing problems with functionally heterogeneous vehicles have also been addressed

in the vehicle routing literature. They are often referred to as site-dependent ve-

hicle routing problems. The site-dependent vehicle routing problem generalizes the

classical VRP in order to represent the compatibility relationship between customer

sites and vehicle types. In this problem, we have a functionally heterogeneous fleet

of vehicles with vehicle–target constraints. A variety of heuristics based on local

search methods, tabu search etc. are available in the literature for solving the site

dependent VRP and some of its variants [58, 12].

[17] present an approximation algorithm for the 2-depot heterogeneous hamil-

tonian path problem. This is the first paper that considers both functional and

structural heterogeneous vehicles. Apart from [17], we are not aware of any litera-

ture that addresses multiple depot routing problem with a functional and structural

heterogeneous fleet of vehicles and develops exact algorithms for the same. The main

focus of this chapter is the development of an exact algorithm based on branch-and-

cut method [61, 40] for the HMDMTSP. We also present a computational study for
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the algorithm in order to evaluate its performance.

3.3 Mathematical formulation

Let T denote the set of targets. We have a heterogeneous fleet of n vehicles

initially stationed at a distinct depot. Let D = {d1, d2, . . . , dn} represent the set of

depots. Consider an undirected graph G = (V,E), where V = T ∪D and E is a set of

edges joining any two vertices1 in V . We assume G does not have any self-loops. Let

the cost of traversing an edge (i, j) = e ∈ E for a vehicle v ∈ {1, . . . , n} be cve . We

will assume that for each vehicle v, the costs satisfy triangle inequality, i.e., for every

i, j, k ∈ V , e1 := (i, j), e2 := (j, k) and e3 := (i, k), cve1 + cve2 ≥ cve3 . Furthermore, we

also assume that there are vehicle–target constraints where each vehicle v is required

to visit a subset of targets Rv ⊆ T with ∩iRi = ∅. We refer to these targets as

functional heterogeneous targets. Note that the sets R1, . . . , Rn are specified a priori

and only a common target present in T \ (∪iRi) can be visited by any vehicle.

We now present a mathematical formulation for the HMDMTSP, inspired by the

models for the standard routing problems [81, 50]. For each vehicle v ∈ {1, . . . , n},

we associate with each edge e a variable xve , whose value is the number of times e

appears in a the feasible solution. Note that for some edges e ∈ E, xve ∈ {0, 1, 2}

i.e., we permit the degenerate case where a tour for vehicle v can consist of just

its depot and a target. If e connects two vertices i and j, then (i, j) and e will be

used interchangeably to denote the same edge. We also remark that for a vehicle v,

we do not have any decision variables xve for edges connecting depot dv′ such that

v 6= v′. Similarly, for each vehicle v ∈ {1, . . . , n}, we associate with each target i ∈ T

a binary variable yvi , which takes a value 1 when the target i is visited by vehicle k

and 0 otherwise.

1We remark that an edge between any pair of depots is not present in the edge set E.

48



For any S ⊂ V , we define δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S} and γ(S) = {(i, j) ∈

E : i, j ∈ S}. If S = {i}, we simply write δ(i) instead of δ({i}). Finally, for any

Ē ⊆ E, we define xk(Ē) =
∑

(i,j)∈Ē x
k
ij. Using the above notations, the HMDMTSP

is formulated as an integer linear program as follows:

min
n∑

k=1

∑

e∈E

ckex
k
e subject to: (3.1)

xk(δ(i)) = 2yki ∀i ∈ T, k ∈ {1, . . . , n}, (3.2)

xk(δ(S)) ≥ 2yki ∀i ∈ S, S ⊆ T, k ∈ {1, . . . , n}, (3.3)

n∑

k=1

yki = 1 ∀i ∈ T, (3.4)

yki = 1 ∀k ∈ {1, . . . , n}, i ∈ Rk, (3.5)

xke ∈ {0, 1, 2} ∀e ∈ {(dk, j) : j ∈ T}, k ∈ {1, . . . , n}, (3.6)

xke ∈ {0, 1} ∀e ∈ {(i, j) : i ∈ T, j ∈ T}, k ∈ {1, . . . , n}, (3.7)

yki ∈ {0, 1} ∀i ∈ T, k ∈ {1, . . . , n}. (3.8)

In the above formulation, the constraints in Eq. (3.2) ensure the number of edges

of vehicle k, incident on a target i ∈ T is equal to 2 if and only if target i is visited

by the vehicle k. The constraints in Eq. (3.4) ensure that each target i ∈ T is

visited by some vehicle. The constraints in Eq. (3.3) are the connectivity or sub-

tour elimination constraints. They ensure a feasible solution has no sub-tours of any

subset of targets in T . The constraints in Eq. (3.5) are the vehicle–target assignment

constraints for the functional heterogeneous targets. Constraints in Eq. (3.6), (3.7)

and (3.8) are the integrality restrictions on the decision variables. If the integrality
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restrictions in constraints (3.6), (3.7) and (3.8) are relaxed, then we call that model

a linear programming relaxation. In the following subsection, we shall strengthen

the linear programming relaxation of the model (3.1)–(3.8) by introducing additional

valid inequalities.

3.3.1 Additional valid inequalities

In this section, we develop two classes of valid inequalities for the HMDMTSP.

Consider the constraints in Eq. (3.3). For any vehicle k ∈ {1, . . . , n} and S =

{i, j} where i, j ∈ T , Eq. (3.3) reduces to xk(δ(i)) + xk(δ(j)) − 2xkij ≥ 2yki and

xk(δ(i)) + xk(δ(j))− 2xkij ≥ 2ykj . Further simplification using Eq. (3.2) yields

xkij ≤ ykj and xkij ≤ yki . (3.9)

The inequalities that are valid for a MDTSP are also valid for the HMDMTSP.

We particularly examine the 2-matching inequalities available for the MDTSP, TSP,

and MDRSP [11, 50]. Specifically, we consider the following inequality for every

vehicle k:

xk(γ(H)) + xk(T ) ≤
∑

i∈H

yki +
|T | − 1

2
(3.10)

for all H ⊆ T and T ⊂ δ(H). Here H is called the handle, and T the teeth. H and

T satisfy the following conditions:

• the edges in the teeth are not incident to any depots in the set D,

• no two edges in the teeth are incident on the same target,

• |T | ≥ 3 and odd.

The proof of validity of the above inequality is given by the following proposition:
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Proposition 3.1. The 2-matching inequality in Eq. (3.10) is valid for any feasible

solution to the HMDMTSP.

Proof. See 2.2

3.4 Branch-and-cut algorithm

We now outline the main components of our branch-and-cut algorithm to compute

optimal solutions for the HMDMTSP. Let τ̄ denote the optimal solution to the

problem.

Step 1 (Initialization). Set the iteration count t← 1 and the initial upper bound ᾱ

on the optimal objective as +∞. The initial linear sub-problem is then defined as

min
n∑

k=1

∑

e∈E

ckex
k
e subject to:

xk(δ(i)) = 2yki ∀i ∈ T, k ∈ {1, . . . , n},
n∑

k=1

yki = 1 ∀i ∈ T,

yki = 1 ∀k ∈ {1, . . . , n}, i ∈ Rk,

xke ≥ 0 ∀k ∈ {1, . . . , n}, e ∈ E and

yki ≥ 0 ∀i ∈ T, k ∈ {1, . . . , n}.

The initial sub-problem is solved and inserted in a list L.

Step 2 (Termination check and sub-problem selection). If the list L is empty, then

stop. Otherwise, select a sub-problem from the list with the lowest objective value.

This choice of sub-problem is called best-first policy [61].

Step 3 (Sub-problem solution). Set t← t+ 1. Let α be the solution objective value.
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If α ≥ ᾱ, then go to Step 2. Otherwise, if the solution is feasible for the HMDMTSP,

set ᾱ← α, update τ̄ and go to Step 2.

Step 4 (LP-rounding heuristic). If the solution is fractional, ᾱ = +∞ and t is a

multiple of 3, apply the following heuristic: Given a fractional solution (x,y), we par-

tition the set T into n subsets, one for each vehicle. We assign target i ∈ T \ (∪kRk)

to a vehicle k that has the maximum yki value in the fractional solution. The targets

in the set Rk are assigned to vehicle k. We now have n disjoint subsets of the set

T . We then solve a traveling salesman problem for each vehicle k on its partition

and its depot dk, using the LKH heuristic [31]. Let us denote the resulting feasible

solution by τ ∗ and let α∗ be the objective value of the solution τ ∗. If α∗ ≤ ᾱ, set

ᾱ← α∗ and update τ̄ with τ ∗.

Step 5 (Constraint separation and generation). Introduce violated sub-tour elim-

ination constraints (3.3), connectivity constraints (3.9) and 2-matching constraints

(3.10). If no constraints can be generated using the current fractional solution, then

go to Step 6, else go to Step 3.

Step 6 (Branching.) Create two sub-problems by branching on a fractional yki or xke

variable. First, select a fractional yki variable, based on the strong branching rule [1].

If all these variables are integer, then select a fractional xke variable using the same

rule. Then insert both the sub-problems in the list L and go to Step 2.

In the following paragraphs we detail the separation algorithms used to generate

violated constraints in Step 5. For every vehicle k, we denote by G∗k = (V ∗k , E
∗
k) the

support graph associated with a given fractional solution (x∗,y∗) i.e., V ∗k := {i ∈
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T : yk∗i > 0} ∪ {dk} and E∗k := {e ∈ E : xk∗e > 0}.

Separation of constraints (3.3) and (3.9)

As shown previously Sec. 3.3.1, the inequalities in Eq. (3.3) reduce to Eq. (3.9)

when |S| = 2. For every vehicle k, the violation of the inequality in Eq. (3.9) can

be verified by examining the inequality for every pair of targets in the set V ∗k . Next,

we examine the connected components in G∗k. Each connected component C that

does not contain the depot dk generates a violated sub-tour elimination constraint

for S = C and for each i ∈ S. If a connected component C contains the depot

dk the following procedure is used to find the largest violated sub-tour elimination

constraint in xk(δ(S)) ≥ 2yki . Given a connected component C that contains a depot

dk, i ∈ C \ {dk}, and a fractional solution (x∗,y∗), the most violated constraint of

the form xk(δ(S)) ≥ 2yki can be obtained by computing a minimum s − t cut on a

capacitated undirected graph Ḡk = (V̄k, Ēk), with V̄k = V ∗k . The vertex s denotes the

source vertex and s = dk. The vertex t denotes the sink vertex and t = i. The edge

set Ēk = E∗k . Every edge e ∈ Ēk is assigned a capacity xk∗e . We now compute the

minimum s− t cut (S, V̄k \S) with t ∈ V̄k \S. The vertex set S ′ = V̄k \S defines the

most violated inequality if the capacity of the cut is strictly less than 2yk∗i . Clearly,

the targets i with yk∗i need not be considered. This algorithm can be repeated for

every vehicle to generate violated sub-tour elimination constraints.

Separation of 2-matching constraints (3.10)

We use a separation procedure similar to the one used for the MDRSP to separate

out the 2-matching constraints. We consider each connected component H of G∗k as a

handle of a possibly violated 2-matching inequality whose two-node teeth correspond

to the edges e ∈ δ(H) with xk∗e = 1. We reject the inequality if the number of teeth is
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even. The procedure can be implemented in O(|V ∗k |+ |E∗k |) time and can be repeated

for each vehicle k.

3.5 Computational results

In this section, we discuss the computational results of the branch-and-cut al-

gorithm. The algorithm was implemented in C++ (GCC version 4.6.3), using the

elements of Standard Template Library (STL) and CPLEX 12.4 framework. The

internal CPLEX cut generation was disabled and hence, CPLEX was used only to

manage the enumeration tree. All the simulations were performed on a Dell Preci-

sion T5500 workstation (Intel Xeon E5630 processor @2.53 GHz, 12 GB RAM). The

computation times reported are expressed in seconds, and we imposed a time limit

of 500 seconds for each run of the algorithm. The performance of the algorithm was

tested on instances generated using TSPLIB [69].

3.5.1 Instance generation

We generated 36 HMDMTSP instances using four TSPLIB instances [69] namely,

bays29, eil51, eil76 and eil101. These instances have |T | = 29, 51, 76 and 101 respec-

tively. We performed a computational study on these instances with the number of

vehicles n ∈ {3, 4, 5}. The depot locations for the vehicles were randomly generated.

For a given instance, we had the same cardinality for all the functional heterogeneous

target sets Ri. The cardinality of each Ri was chosen from the set {1, 3, 5}. Hence,

for each TSPLIB instance we generated 9 HMDMTSP instances with all possible

combinations of n and |Ri| which resulted in a total for 36 instances. The travel cost

of each edge for all the vehicles was generated according to the following procedure:

for each edge e = (i, j) the cost of traversing the edge e for vehicle k ∈ {1, . . . , n}

was chosen to be cke = 0.1 × Le(2k − 1), where Le is the euclidean distance be-
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n |R| %-LB Nodes Time

3 1 100.00 1 0.32
3 3 99.99 2 0.42
3 5 99.98 2 0.21
4 1 100.00 1 0.72
4 3 100.00 2 0.99
4 5 100.00 1 0.11
5 1 100.00 1 0.84
5 3 100.00 2 0.42
5 5 100.00 1 0.05

Table 3.1: Computational results for the instance bays29

tween the two vertices. Tables 3.1–3.4 summarize the computational behaviour of

the branch-and-cut algorithm for all the 36 instances. The column headings are

defined as follows:

n: number of vehicles;

|R|: number of functional heterogeneous targets per vehicle;

%-LB: percentage LB/opt, where LB is the objective value of the linear program-

ming relaxation computed at the root node of the enumeration tree and opt is the

cost of the optimal solution to the instance;

Nodes: total number of nodes examined in the enumeration tree;

Time: time taken to compute the optimal solution in seconds.

The results show that the proposed branch-and-cut algorithm can solve instances

involving up to 101 targets with modest computation times. The %-LB column

in both the tables indicate that the lower bound obtained at the root node of the

enumeration tree is very tight, typically within 0.5% of the optimum. Hence the

proposed integer linear programming formulation for the HMDMTSP is by itself

very tight. The maximum computation time over all the 36 instances was 309.04

seconds. Overall, we were able to solve all the 36 TSPLIB based instances, with
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n |R| %-LB Nodes Time

3 1 99.74 6 1.22
3 3 99.94 3 3.63
3 5 99.86 7 2.59
4 1 99.94 3 1.95
4 3 99.90 6 5.34
4 5 100.00 1 3.67
5 1 99.94 6 4.75
5 3 99.93 7 9.28
5 5 99.99 2 2.97

Table 3.2: Computational results for the instance eil51

n |R| %-LB Nodes Time

3 1 99.61 12 48.44
3 3 99.50 6 30.47
3 5 99.89 4 10.32
4 1 99.81 11 50.39
4 3 99.52 46 50.02
4 5 99.93 4 18.6
5 1 99.86 8 48.52
5 3 99.82 7 36.18
5 5 99.96 2 99.97

Table 3.3: Computational results for the instance eil76

n |R| %-LB Nodes Time

3 1 99.92 4 11.18
3 3 100.00 1 31.44
3 5 99.56 135 168.91
4 1 99.97 8 97.69
4 3 99.88 104 229.17
4 5 99.90 23 108.19
5 1 99.85 16 56.06
5 3 100.00 1 222.56
5 5 99.91 58 309.04

Table 3.4: Computational results for the instance eil101
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the largest instance involving 101 targets, 5 vehicles and 5 functional heterogeneous

targets per vehicle.

3.6 Conclusion

In this chapter, we have presented an exact algorithm for the HMDMTSP that

arises in the context of monitoring a set of targets and collect relevant data. An

integer linear programming formulation including two classes of valid inequalities

was proposed. A customized branch-and-cut algorithm was also developed using

the proposed formulation. The algorithm was tested on a wide class of benchmark

instances from a standard library. The largest solved instance involved 101 targets.

Future work can be directed towards development of branch-and-cut approaches

accompanied with a polyhedral study to solve the problem with asymmetric costs.
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4. FUEL-CONSTRAINED, MULTIPLE DEPOT, VEHICLE ROUTING

PROBLEM

In this chapter, we consider a multiple depot, multiple vehicle routing problem

with fuel constraints. We are given a set of targets, a set of depots and a set of

homogeneous vehicles, one for each depot. The depots are also allowed to act as

refueling stations. The vehicles are allowed to refuel at any depot, and our objective

is to determine a route for each vehicle with a minimum total cost such that each

target is visited at least once by some vehicle, and the vehicles never run out fuel as

it traverses its route. We refer this problem as FCMDVRP. This paper presents four

new mixed integer linear programming formulations to compute an optimal solution

for the problem. Extensive computational results for a large set of instances are also

presented.

4.1 Introduction

We extend the classic MDVRP to include fuel constraints for the vehicles. We

are given sets of targets, a set of depots, and a set of vehicles, with each vehicle

initially stationed at a distinct depot. The depots also perform the role of refueling

stations, and it is reasonable to assume that whenever a vehicle visits a depot, it

refuels to its full capacity. The objective of FCMDVRP is to determine a route

for each vehicle starting and ending at its corresponding depot such that (i) each

target is visited at least once by some vehicle, (ii) no vehicle runs out of fuel as it

traverses its path, and (iii) the total cost of the routes for the vehicles is minimized.

Some of the applications for the FCMDVRP are path-planning for UAVs [73, 75, 52],

routing for electric vehicles based on the locations of recharging stations [70, 32], and

routing for green vehicles [18]. Some of these application domains are elaborated on
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the following sections.

4.1.1 Path-planning for UAVs

Small UAVs are being used routinely in military applications such as border

patrol, reconnaissance, and surveillance expeditions, and civilian applications like

remote sensing, traffic monitoring, and weather and hurricane monitoring [24, 15, 86].

Even though there are several advantages due to small platforms for UAVs, there are

resource constraints due to their size and limited payload. It may not be possible for

a small UAV to complete a surveillance mission before refueling at one of the depots

due to the fuel constraints. For example, consider a typical surveillance mission

involving multiple vehicles monitoring a set of targets. To complete this mission, the

vehicles might have to start at their respective depot, visit a subset of targets and

reach one of the depots for refueling before starting a new route for the rest of the

targets. This can be modeled as a FCMDVRP with the depots acting as refueling

stations.

4.1.2 Routing problem for green and electric vehicles

Green vehicle routing problem is a variant of the VRP and was introduced by

[18] to account for the challenges associated with operating a fleet of AFVs. The

US transportation sector accounts for 28% of national greenhouse gas emissions [83].

Several efforts over many decades focusing towards the introduction of cleaner fuels

(e.g. ultra low sulphur diesel) and efficient engine technologies have lead to reduced

emissions and greater mileage per gallon of fuel used. Government organizations,

municipalities, and private companies are converting their fleet of vehicles to AFVs

either voluntarily to alleviate the environmental impact of fossil based fuels or to

meet environmental regulations. For instance, FedEx, in its overseas operations,

employs AFVs that run on biodiesel, liquid natural gas, or compressed natural gas.
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A major challenge that hinders the increase in usage of AFVs is the number of

alternate-fuel stations available for refueling. The FCMDVRP is a natural problem

that arises in this application. An algorithm to compute an optimal solution to the

FCMDVRP would generate low cost routes for the vehicles, while respecting their

fuel constraints.

Increasing concerns about climate changes and rising green house gas emissions

drive the research in sustainable and energy efficient mobility. One such example is

the introduction of electrically-powered vehicles. One of the main operational chal-

lenges for electric vehicles in transport applications is their limited range and the

availability of recharging stations. The number of electric stations in the US is a

mere 9,571 with a total of 24,631 charging outlets [82]. Fig. 4.1 shows a map with

the locations of the electric stations in Texas, USA; observe that the distribution of

the electric stations is very sparse except in the four major cities Dallas, Houston,

Austin, and San Antonio. Successful adoption of electric vehicles will strongly de-

pend on the methods to alleviate the range and recharging limitations. If we consider

the range and the recharging stations for the electric vehicles as analogues to the fuel

capacity and refueling stations of vehicles that run on fossil-based or alternate fuels

respectively, then the problem of electric vehicle routing subject to the range con-

straints and limited availability of electric stations can be modeled as an FCMDVRP.

Clearly, any feasible solution to the FCMDVRP can be used to implement a feasible

route for an electric vehicle.

4.2 Related work

The FCMDVRP is NP-hard because it contains the VRP as a special case. The

existing literature on the FCMDVRP is quite scarce. The multiple depot, single

vehicle variant of the FCMDVRP was first introduced in [39]. When the travel costs
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Figure 4.1: Electric station locations in Texas, USA

are symmetric and satisfy the triangle inequality, [39] provide an approximation al-

gorithm for this variant. They assume that the minimum fuel required to travel

from any target to its nearest depot is at most equal to Fα/2 units, where α is a

constant in the interval [0, 1) and F is the fuel capacity of the vehicle. This is a

reasonable assumption as, in any case, one cannot have a feasible tour if there is a

target that cannot be visited from any of the depots. Using these assumptions, [39]

present a (3(1 + α))/(2(1 − α)) approximation algorithm for the problem. [73] for-

mulate this multiple depot single vehicle variant as a MILP and present k-opt based

exchange heuristics to obtain feasible solutions within 7% of the optimal, on an aver-

age. Later, [75] extend the approximation algorithm in [39] to the asymmetric case

and also present heuristics to solve the asymmetric version of this variant. Further-

more, variable neighborhood search heuristics for FCMDVRP with heterogeneous

vehicles, i.e., vehicles with different fuel capacities, are presented in [52]. More re-

cently, an approximation algorithm and heuristics are developed for the FCMDVRP

in [56].

Variants of the classic VRP that are closely related to the FCMDVRP include the

distance constrained VRP [47, 53, 35, 36, 59], the orienteering problem [21, 84], and

the capacitated version of the arc-routing problem [26, 67]. The distance-constrained
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VRP is a special case of the FCMDVRP with a single vehicle and single depot that

can be considered as a fuel station. The FCMDVRP is also quite different and more

general compared to orienteering problem where one is interested in maximizing the

number of targets visited by the vehicle subject to its fuel constraints. Lastly, the arc

routing problem is a single depot VRP given a set of intermediate facilities, and the

vehicle has to cover a subset of edges along which targets are present. The vehicle is

required to collect goods from the targets as it traverses the given set of edges and

unloads the goods at the intermediate facilities. The goal of this problem is to find

a tour of minimum length that starts and ends at the depot such that the vehicle

visits the given subset of edges, and the total amount of goods carried by the vehicle

does not exceed the capacity of the vehicle along the tour. One of the key differences

between the arc routing problem and the FCMDVRP is that there is no requirement

that any subset of edges must be visited in the FCMDVRP.

The aim of this paper is to introduce and compare four different formulations for

the FCMDVRP and present branch-and-cut algorithms for the formulations. The

first two formulations are arc-based, and the rest are node-based formulations that

use the MTZ constraints [55]. The major contributions of this paper are as follows:

(1) present four new formulations for the FCMDVRP, (2) compare the formulations

both analytically and empirically, and (3) through extensive computational experi-

ments, show that instances with maximum of 40 targets are within the computational

reach of a branch-and-cut algorithm based on the best of the four formulations.

The rest of the paper is organized as follows. Sec. 4.3 states the formal definition

of the problem and introduces notations. In Sec. 4.4, we develop the four mixed

integer linear programming formulations. The first two formulations are arc-based

and the rest are node-based formulations i.e., decision variables for enforcing the fuel

constraints are introduced for each edge and each target for the arc-based and the
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node-based formulations, respectively. The linear programming relaxations of the

formulations are analytically compared in this section. In Sec. 4.5, we present the

computational results followed by conclusions and possible extensions.

4.3 Problem definition

Let T denote the set of targets {t1, . . . , tn} . Let D denote the set of depots

or refueling stations {d1, . . . , dk}; each depot dk is equipped with a vehicle vk. The

FCMDVRP is defined on a directed graph G = (V,E) where V = T ∪D and E is the

set of edges joining any two vertices in V . We assume that G does not contain any

self-loops. Each edge (i, j) ∈ E is associated with a non-negative cost cij required to

travel from vertex i to vertex j and fij, the fuel spent by traveling from i to j. It is

assumed that the cost of traveling from vertex i to vertex j is directly proportional

to the fuel spent in traversing the edge (i, j) i.e., cij = K · fij (cij and cji may

be different, but for the purpose of this paper, we assume cij = cji). It is also

assumed that travel costs satisfy the triangle inequality i.e., for every i, j, k ∈ V ,

cij + cjk ≥ cik. Furthermore, let F denote the fuel capacity of all the vehicles. The

FCMDVRP consists of finding a route for each vehicle such that the vehicle vk starts

and ends its route at its depot dk, each target is visited at least once by some vehicle,

the fuel required by any vehicle to travel any segment of the route which joins two

consecutive depots in the route must be at most equal to F , and the sum of the cost

of all the edges present in the routes is a minimum.

4.4 Mathematical formulations

This section presents four formulations for the FCMDVRP. The first two for-

mulations are arc based, and the remaining formulations are node based. The arc

based and edge based formulations have additional decision variables for each edge

and vertex respectively, to impose the fuel constraints. For any given formulation
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F , let FL denote its linear programming relaxation obtained by allowing the integer

variables to take continuous values within the lower and upper integer bounds, and

opt(F) denote the cost of its optimal solution.

4.4.1 Arc-based formulations

We first present an arc based formulation F1 for the FCMDVRP, inspired by the

models for standard routing problems [81, 36]. Each edge (i, j) ∈ E is associated

with a variable xij, which equals 1 if the edge (i, j) is traversed by the vehicle, and 0

otherwise. Also, associated with each edge (i, j) is a flow variable zij which denotes

the total fuel consumed by any vehicle as it starts from a depot to the vertex j, when

the predecessor of j is i. Using the above variables, the formulation F1 is given as

follows:

(F1) Minimize
∑

(i,j)∈E

cijxij

subject to:

∑

i∈V

xdi =
∑

i∈V

xid ∀ d ∈ D, (4.1)

∑

i∈V

xij = 1 and
∑

i∈V

xji = 1 ∀ j ∈ T, (4.2)

∑

j∈V

zij −
∑

j∈V

zji =
∑

j∈V

fijxij ∀ i ∈ T, (4.3)

0 ≤ zij ≤ Fxij ∀ (i, j) ∈ E, (4.4)

zdi = fdixdi ∀ i ∈ T, d ∈ D, and (4.5)

xij ∈ {0, 1} ∀ (i, j) ∈ E. (4.6)

In the above formulation the Eqs. (4.1) – (4.2) impose the degree constraints on

the depots and the targets. The constraints in Eqs. (4.3) are the connectivity

64



constraints; they eliminate sub tours of the targets. Eqs. (4.4) and (4.5) together

impose 0 ≤ zij ≤ F and they ensure that the fuel consumed by the vehicle to travel

up to a depot does not exceed the fuel capacity F . Finally, the constraints in Eqs.

(4.6) impose the binary restrictions on the variables.

Next, we present another arc-based formulation F2 which is a strengthened ver-

sion of F1. To strengthen the formulation F1, we use a well-known general principle,

called lifting.

The following proposition is a modified version of the Proposition 1 presented in

[36] for the distance constrained vehicle routing problem; it strengthens the bounds

given by the constraints in (4.4).

Proposition 4.1. The inequalities in (4.4) can be strengthened as follows:

zij ≤ (F − tj)xij ∀j ∈ T, (i, j) ∈ E, (4.7)

zid ≤ Fxid ∀i ∈ T and d ∈ D, (4.8)

zij ≥ (si + fij)xij ∀i ∈ T, (i, j) ∈ E, (4.9)

where, ti = mind∈D fid and si = mind∈D fdi.

Proof. When j is a depot, the constraints in (4.8) and (4.4) coincide. We now discuss

the case when both i and j are targets. When xij = 1, any vehicle that traverses this

edge (i, j) consumes at least (si + fij) amount of fuel. As a result, the constraint in

(4.9) strengthens the lower bound of zij in (4.4). Similarly, the total fuel consumed

by any vehicle that traverses the edge (i, j) cannot be greater that (F − tj), where tj

is the minimum amount of fuel required by any vehicle to reach a depot from target

j. Therefore, the constraint in (4.7) strengthens the upper bound of zij in (4.4).
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Hence, the second arc-based formulation is as follows:

(F2) Minimize
∑

(i,j)∈E

cijxij

subject to: (4.1) – (4.3), (4.5) – (4.6), and (4.7) – (4.9).

Corollary 4.1. opt(FL2 ) ≥ opt(FL1 ).

4.4.2 Node-based formulations

In this section, we present a node-based formulation for the FCMDVRP based

on the models for the distance constrained VRP [16, 35]. For the node based for-

mulation, apart from the binary variable xij for each edge (i, j) ∈ E, we have an

auxiliary variable ui for each vertex i, that indicates the amount of fuel spent by a

vehicle when it reaches the vertex i. We assume ud = 0 as the vehicles are refueled

to their capacity when they reach a depot. In addition, we will also use the following

two parameters: ti = mind∈D fid and si = mind∈D fdi for every vertex i ∈ V . For any

d ∈ D, td = 0 and sd = 0. Using the above notations, the formulation F3 is given as

follows:

(F3) Minimize
∑

(i,j)∈E

cijxij

subject to: (4.1), (4.2), and (4.6),

ui − uj +Mxij ≤M − fij ∀i ∈ V, j ∈ T, (4.10)

ui ≥ si +
∑

d∈D

(fdi − si)xdi ∀i ∈ T, and (4.11)

ui ≤ F − ti −
∑

d∈D

(fid − ti)xid ∀i ∈ T. (4.12)
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The constraints in Eq. (4.10) serve both as sub-tour elimination and fuel constraints.

It eliminates sub tours of the targets and ensures any route that starts and ends

at a depot consumes at most F amount of fuel. This can be easily observed by

aggregating the constraints for any sub tour of the targets and for any route starting

and ending at a depot [16]. The value of M in the constraint is given by M =

max(i,j)∈E{F − sj − ti + fij}. The constraints in Eqs. (4.11) and (4.12) specify

the upper and lower bounds on ui, for every vertex i. The following proposition

strengthens the fuel constraints and the bounds on ui.

Proposition 4.2. The inequalities in (4.10), (4.11), and (4.12) can be strengthened

as follows:

ui − uj +Mxij + (M − fij − fji)xji ≤M − fij ∀i, j ∈ T, (4.13)

ui ≥
∑

j∈V

(sj + fji)xji ∀i ∈ T, (4.14)

ui ≤ F −
∑

j∈V

(tj + fij)xij ∀i ∈ T, and (4.15)

ui ≤ F − ti −
∑

d∈D

(F − ti − fdi)xdi ∀i ∈ T, (4.16)

where, xii = 0 and xij = 0 whenever si + fij + tj > F .

Proof. The constraint in Eq. (4.13) can be obtained by lifting the variable xji in Eq.

(4.10). We compute the value of the coefficient α that makes the following constraint

valid:

ui − uj +Mxij + αxji ≤M − fij.

The equation is valid when xji = 0, as it reduces to (4.10). When xji = 1, we have

xij = 0 and uj + fji = ui. Hence, the best value of α that makes the equation valid

is given by M − fij − fji.
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Similarly, Eq. (4.14) can be obtained by lifting every xji variable for j ∈ T in

any order. We will illustrate the lifting procedure for one of the xji variables. This

involves computing the coefficient α that makes the following constraint valid:

ui ≥ si +
∑

d∈D

(fdi − si)xdi + αxji.

The above equation is valid when xji = 0, and when xji = 1, we have xdi = 0 and

α ≤ ui − si. The best value of α that does not remove any feasible solution is hence

given by sj + fji − si. Similarly, the coefficients of the other xji variables can be

computed. The resulting constraint is given by

ui ≥ si +
∑

j∈V

(sj + fji − si)xji ∀i ∈ V.

In the above equation, sj = 0 for j ∈ D. The above equation reduces to Eq. (4.14)

due to the degree constraints in (4.2). The constraints in Eq. (4.15) are similarly

obtained from (4.12) by lifting the xij variable for every j ∈ T . The proof is omitted

as it is similar to the previous ones in the proposition. The constraints in Eq.

(4.16) are valid bounding constraints for the FCMDVRP when the target i is the

first target that is visited by any vehicle as it leaves the depot. In this case, the

Eq. (4.12) reduces to ui ≤ F − ti. We further strengthen this constraint by lifting

the variable xdi for every d ∈ D. The lifting coefficient α for xdi takes the value

−(F − ti − fdi) and the resulting constraint is given by Eq. (4.16).
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Hence, the second node-based formulation is as follows:

(F4) Minimize
∑

(i,j)∈E

cijxij

subject to: (4.1), (4.2), (4.6), and (4.13) – (4.16).

Corollary 4.2. opt(FL4 ) ≥ opt(FL3 ).

4.5 Computational results

In this section, we discuss the computational performance of the four formula-

tions presented in the previous section. The mixed integer linear programs were

implemented in Java, using the traditional branch-and-cut framework of CPLEX

version 12.4. All the simulations were performed on a Dell Precision T5500 worksta-

tion (Intel Xeon E5630 processor @2.53 GHz, 12 GB RAM). The computation times

reported are expressed in seconds, and we imposed a time limit of 3,600 seconds

for each run of the algorithm. The performance of the algorithm was tested with

randomly generated test instances.

4.5.1 Instance generation

The problem instances were randomly generated in a square grid of size [100,100]

with 5 fixed depot locations. The number of targets varies from 10 to 40 in steps

of five, while their locations were uniformly distributed in the square grid; for each

|T | ∈ {10, 15, 20, 25, 30, 25, 40}, we generated five random instances. Each depot

contains a vehicle. The travel costs and the fuel consumed to travel between any

pair of vertices are assumed to be directly proportional to the Euclidean distances

between the pair. For each of these problems, we generate four possible fuel capac-

ities F as a function of the the distance to the farthest target from any depot, λ.
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The fuel capacity F of the vehicles gets the values 2.25λ, 2.5λ, 2.75λ and 3λ. In

total, we generated 140 instances, and ran the branch-and-cut algorithm for all the

formulations.

Tables 4.1 and 4.2, and Fig. 4.2–4.3 summarize the computational behavior of the

algorithms for all the 140 instances. The following nomenclature is used throughout

the rest of the paper:

#: instance number;

opt(FLi ): linear programming relaxation solution for formulation i;

n: instance size i.e., number of targets in the instance;

%-LB: percentage LB/opt, where LB is the objective value of the linear programming

relaxation computed at the root node of the branch and bound tree and opt is the

cost of the optimal solution to the instance;

total: total number of test instances of a given size;

succ: number of instances for which optimal solutions were computed within a time

limit of 3,600 seconds.

Table 4.1 compares the cost of the LP relaxations of the four formulations presented

in Sec. 4.4 for the 40 target instances. The results in table 4.1 provide an empirical

comparison of the formulations presented in 4.4; the observed behavior is expected

because the formulations F2 and F4 are strengthened versions of F1 and F3, respec-

tively (see corollaries 4.1 and 4.2). As for the LP relaxations of formulations F2 and

F4, it is difficult to conclude that one is better than the other since F4 produces

better relaxation values than F2 only for 60% of the instances. Hence, the rest of

the computational results compares the formulations F2 and F4.
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# opt(FL
1 ) opt(FL

2 ) opt(FL
3 ) opt(FL

4 )

1 496.42 509.24 426.17 518.00
2 487.31 496.39 426.17 518.00
3 480.55 487.40 426.17 518.00
4 475.23 480.33 426.17 518.00
5 444.35 458.01 389.08 434.00
6 435.45 445.70 389.08 434.00
7 428.44 436.47 389.08 434.00
8 423.06 429.97 389.08 434.00
9 396.10 403.96 367.11 452.00
10 392.87 398.72 367.11 452.00
11 390.42 394.66 367.11 452.00
12 388.40 391.85 367.11 452.00
13 481.22 493.64 427.04 461.00
14 469.76 479.81 427.04 461.00
15 461.16 469.20 427.04 461.00
16 454.80 461.47 427.04 461.00
17 503.19 516.58 461.07 523.00
18 494.98 504.84 461.07 523.00
19 489.64 496.31 461.07 523.00
20 485.92 489.99 461.07 523.00

Table 4.1: Cost of the LP relaxation for the 40 target instances

Table 4.2 shows the number of instances of different sizes solved to optimality

by the formulations F2 and F4 within the time limit of 3600 seconds. The plot

in Fig. 4.2 shows the average time taken by the two formulations to compute the

optimal solution. The table 4.2 and Fig. 4.2 indicate that the arc-based formulation

F2 outperforms the node-based formulation F4 for the larger instances. For the

smaller sized instances, it is difficult to differentiate between the two formulations.

The plot in Fig. 4.3 shows the percentage LB/opt for both the formulations (LB

is the objective value of the linear programming relaxation computed at the root

node of the branch and bound tree and opt is the cost of the optimal solution to

the instance; for the instances not solved to optimality, opt represents the cost of

the best feasible solution obtained at the end of 3,600 seconds). We observe that

the %LB is consistently better for formulation F2. This plot also provides empirical
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F2 F4

n total succ succ

10 20 20 20
15 20 20 20
20 20 20 20
25 20 20 14
30 20 20 5
35 20 20 15
40 20 19 1

Table 4.2: Comparison of formulations F2 and F4
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Figure 4.2: Average computation time

evidence to the claim that the arc based formulation F2 outperforms the node based

formulation F4.

4.6 Conclusion

In this chapter, we have presented four different MILP formulations for the mul-

tiple depot fuel constrained multiple vehicle routing problem. The problem arises

frequently in the context of path planning for UAVs, green vehicle routing and rout-
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ing electric vehicles. The formulations have been compared both analytically and

empirically, and it is observed that a strengthened arc-based formulation (F2) per-

forms better in terms of computing optimal solutions to the problem. Computational

experiments on a large number of test instances corroborate this observation. Future

work can be directed towards developing similar MILP formulations and branch-and-

cut algorithms to solve a heterogeneous variant of the problem i.e., with vehicles

having different fuel capacities.
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5. GENERALIZED MULTIPLE DEPOT TRAVELING SALESMEN

PROBLEM*

In this chapter, we present the GMDTSP is a variant of the MDTSP, where each

salesman starts at a distinct depot, the targets are partitioned into clusters and

at least one target in each cluster is visited by some salesman. The GMDTSP is

an NP-hard problem as it generalizes the MDTSP and has practical applications

in design of ring networks, vehicle routing, flexible manufacturing scheduling and

postal routing. We present an integer programming formulation for the GMDTSP

and valid inequalities to strengthen the linear programming relaxation. Further-

more, we present a polyhedral analysis of the convex hull of feasible solutions to

the GMDTSP and derive facet-defining inequalities that strengthen the linear pro-

gramming relaxation of the GMDTSP. All these results are then used to develop a

branch-and-cut algorithm to obtain optimal solutions to the problem. The perfor-

mance of the algorithm is evaluated through extensive computational experiments

on several benchmark instances.

5.1 Introduction

The GMDTSP is an important combinatorial optimization problem that has

several practical applications including but not limited to maritime transportation,

health-care logistics, survivable telecommunication network design [9], material flow

system design, postbox collection [46], and routing unmanned vehicles [54, 64]. The

GMDTSP is formally defined as follows: let D := {d1, . . . , dk} denote the set of de-

*Reprinted with permission from “Generalized multiple depot traveling salesmen problem -
polyhedral study and exact algorithm” by Kaarthik Sundar and Sivakumar Rathinam. Computers
& Operations Research, 70:39 55, Copyright [2016] by Elsevier Ltd.
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pots and T , the set of targets. We are given a complete undirected graph G = (V,E)

with vertex set V := T ∪ D and edge set E := {(i, j) : i ∈ V, j ∈ T}. In addition,

a proper partition C1, . . . , Cm of T is given; these partitions are called clusters. For

each edge (i, j) = e ∈ E, we associate a non-negative cost ce = cij. The GMDTSP

consists of determining a set of at most k simple cycles such that each cycle starts

an ends at a distinct depot, at least one target from each cluster is visited by some

cycle and the total cost of the set of cycles is a minimum. The GMDTSP reduces

to a MDTSP [11] when every cluster is a singleton set. The GMDTSP involves two

related decisions:

1. choosing a subset of targets S ⊆ T , such that |S ∩ Ch| ≥ 1 for h = 1, . . . ,m;

2. solving a MDTSP on the subgraph of G induced by S ∪D.

The GMDTSP can be considered either as a generalization of the MDTSP in [11]

where the targets are partitioned into clusters and at least one target in each cluster

has to be visited by some salesman or as a multiple salesmen variant of the symmetric

GTSP [20, 23]. [11] and [20] present a polyhedral study of the MDTSP and GTSP

polytope respectively, and develop a branch-and-cut algorithm to compute optimal

solutions for the respective problem.

This is the first work in the literature that analyzes the facial structure and

derives additional valid and facet-defining inequalities for the convex hull of feasible

solutions to the GMDTSP. This chapter presents a MILP formulation and develops a

branch-and-cut algorithm to solve the problem to optimality. This work generalizes

the results of the two aforementioned problems namely the MDTSP [11] and the

GTSP [20].
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5.1.1 Related work

A special case of the GMDTSP with one salesman, the symmetric GTSP, was

first introduced by [43] and [71] in relation to record balancing problems arising in

computer design and to the routing of clients through agencies providing various

services respectively. Since then, the GTSP has attracted considerable attention in

the literature as several variants of the classical traveling salesman problem can be

modeled as a GTSP [46, 19, 63, 54]. [62] developed a procedure to transform a GTSP

to an asymmetric traveling salesman problem and [48] investigated the asymmetric

counterpart of the GTSP. Despite most of the aforementioned applications of the

GTSP [46] extending naturally to their multiple depot variant, there are no exact

algorithms in the literature to address the GMDTSP.

A related generalization of the GMDTSP can be found in the VRP literature.

VRPs are capacitated counterparts for the TSPs where the vehicles have a limited

capacity and each target is associated with a demand that has to be met by the

vehicle visiting that target. The multiple VRPs can be classified based on whether

the vehicles start from a single depot or from multiple depots. The GVRP is a capac-

itated version of the GMDTSP with all the vehicles starting from a single depot. [9]

present four formulations for the GVRP, compare the linear relaxation solutions for

them, and develop a branch-and-cut to optimally solve the problem. [45] models the

GVRP as a location-routing problem. On the contrary, [27] develop an algorithm to

transform the GVRP into a capacitated arc routing problem, which therefore enables

one to utilize the available algorithms for the latter to solve the former. In a more

recent paper, [7] study a special case of the GVRP derived from a waste collection

application where each cluster contains at most two vertices. The authors describe a

number of heuristic solution procedures, including two constructive heuristics, a local
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search method and an ant colony heuristic to solve several practical instances. To

our knowledge, there are no algorithms in the literature to compute optimal solutions

to the generalized multiple depot vehicle routing problem or the GMDTSP.

The objective of this paper is to develop an integer programming formulation

for the GMDTSP, study the facial structure of the GMDTSP polytope and develop

a branch-and-cut algorithm to solve the problem to optimality. The rest of the

paper is organized as follows: in Sec. 5.2 we introduce notation and present the

integer programming formulation. In Sec. 5.3, the facial structure of the GMDTSP

polytope is studied and its relation to the MDTSP polytope [11] is established.

We also introduce a general theorem that allows one to lift any facet of the MDTSP

polytope into a facet of the GMDTSP polytope. We further use this result to develop

several classes of facet-defining inequalities for the GMDTSP. In the subsequent

sections, the formulation is used to develop a branch-and-cut algorithm to obtain

optimal solutions. The performance of the algorithm is evaluated through extensive

computational experiments on 116 benchmark instances from the GTSP library [30].

5.2 Problem formulation

We now present a mathematical formulation for the GMDTSP inspired by models

in [11] and [20]. We propose a two-index formulation for the GMDTSP. We associate

to each feasible solution F , a vector x ∈ R|E| (a real vector indexed by the elements

of E) such that the value of the component xe associated with edge e is the number

of times e appears in the feasible solution F . Note that for some edges e ∈ E,

xe ∈ {0, 1, 2} i.e, we allow the degenerate case where a cycle can only consist of

a depot and a target. If e connects two vertices i and j, then (i, j) and e will be

used interchangeably to denote the same edge. Similarly, associated to F , is also a

vector y ∈ R|T |, i.e., a real vector indexed by the elements of T . The value of the
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component yi associated with a target i ∈ T is equal to one if the target i is visited

by a cycle and zero otherwise.

For any S ⊂ V , we define γ(S) = {(i, j) ∈ E : i, j ∈ S} and δ(S) = {(i, j) ∈ E :

i ∈ S, j /∈ S}. If S = {i}, we simply write δ(i) instead of δ({i}). We also denote

by Ch(v) the cluster containing the target v and define W := {v ∈ T : |Ch(v)| = 1}.

Finally, for any Ê ⊆ E, we define x(Ē) =
∑

(i,j)∈Ē xij, and for any disjoint subsets

A,B ⊆ V , (A : B) = {(i, j) ∈ E : i ∈ A, j ∈ B} and x(A : B) =
∑

e∈(A:B) xij. Using

the above notations, the GMDTSP is formulated as a mixed integer linear program

as follows:

Minimize
∑

e∈E

cexe (5.1)

subject to

x(δ(i)) = 2yi ∀i ∈ T, (5.2)

∑

i∈Ch

yi ≥ 1 ∀h ∈ {1, . . . ,m}, (5.3)

x(δ(S)) ≥ 2yi ∀S ⊆ T, i ∈ S, (5.4)

x(D′ : {j}) + 3xjk + x({k} : D \D′) ≤ 2(yj + yk) ∀j, k ∈ T ;D′ ⊂ D, (5.5)

x(D′ : {j}) + 2x(γ(S̄)) + x({k} : D \D′) ≤
∑

v∈S̄

2 yv − yi

∀i ∈ S; j, k ∈ T ;S ⊆ T \ {j, k}, S 6= ∅; S̄ = S ∪ {j, k};D′ ⊂ D, (5.6)

xe ∈ {0, 1} ∀e ∈ γ(T ), (5.7)

xe ∈ {0, 1, 2} ∀e ∈ (D : T ), (5.8)

yi ∈ {0, 1} ∀i ∈ T. (5.9)

In the above formulation, the constraints in (5.2) ensure the number edges incident
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on any vertex i ∈ T is equal to 2 if and only if target i is visited by a cycle (yi = 1).

The constraints in (5.3) force at least one target in each cluster to be visited. The

constraints in (5.4) are the connectivity or sub-tour elimination constraints. They

ensure a feasible solution has no sub-tours of any subset of customers in T . The

constraints in (5.5) and (5.6) are the path elimination constraints. They do not allow

for any cycle in a feasible solution to consist of more than one depot. The validity

of these constraints is discussed in the subsection 5.2.1. Finally, the constraints

(5.7)-(5.9) are the integrality restrictions on the x and y vectors.

5.2.1 Path elimination constraints

The first version of the path elimination constraints was developed in the context

of location routing problems [44]. [10] and [11] use similar path elimination con-

straints for the location routing and the multiple depot traveling salesmen problems.

The version of path elimination constraints presented in this chapter is adapted from

2.4.1. Any path that originates from a depot and visits exactly two customers before

terminating at another depot is removed by the constraint in (5.5). The validity of

the constraint (5.5) can be easily verified as in [44]. Any other path d1, t1, · · · , tp, d2,

where d1, d2 ∈ D, t1, · · · , tp ∈ T and p ≥ 3, violates inequality (5.6) with D′ = {d1},

S = {t2, · · · , tp−1}, j = t1, k = tp and i = tr where 2 ≤ r ≤ p − 1. The proof

of validity of the constraint in Eq. (5.6) is discussed as a part of the polyhedral

analysis of the polytope of feasible solutions to the GMDTSP in the next section

(see proposition 5.5).

We note that our formulation allows for a feasible solution with paths connecting

two depots and visiting exactly one customer. We refer to such paths as 2-paths. As

the formulation allows for two copies of an edge between a depot and a target, 2-

paths can be eliminated and therefore there always exists an optimal solution which
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does not contain any 2-path. In the following subsection, we prove polyhedral results

and derive classes of facet-defining inequalities for the model in (5.2)-(5.9).

5.3 Polyhedral analysis

In this section we analyse the facial structure of the GMDTSP polytope while

leveraging the results already known for the MDTSP.

If the number of targets |T | = n and the number of depots |D| = k, then the

number of xe variables is |E| =
(
n
2

)
+ nk (

(
n
2

)
is the number of edges between the

targets and nk is the number of edges between targets and depots). Also the number

of yi variables is |T | = n and hence, the total number of variables used in the problem

formulation is |E| + |T | =
(
n
2

)
+ nk + n. Let P and Q denote the GMDTSP and

MDTSP as follows:

P := conv{(x,y) ∈ R|E|+|T | : (x,y) is a feasible GMDTSP solution}, (5.10)

Q := {(x,y) ∈ P : yv = 1 for all v ∈ T}. (5.11)

The dimension of the polytope Q was shown to be
(
n
2

)
+ n(k − 1) in [11]. To relate

the polytopes P and Q, we define an intermediate polytope P (F ) as follows:

P (F ) := {(x,y) ∈ P : yv = 1 for all v ∈ F}, (5.12)

where ∅ ⊆ F ⊆ T . Observe that P (∅) = P and P (T ) = Q. Now, we determine the

dimension of the polytope P (F ). The number of variables in the equation system for

P (F ) is |E|+|T | =
(
n
2

)
+nk+n. The system also includes |T | = n linear independent

equations in (5.2) and variable fixing equations given by

yv = 1 for all v ∈ F ∪W
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where, W is the set of targets that lie in clusters that are singletons (defined in Sec.

5.2). The following lemma gives the dimension of P (F ).

Lemma 5.1. For all F ⊆ T , dim(P (F )) =
(
n
2

)
+ nk − |F ∪W |.

Proof. Since the equation system for P (F ) has
(
n
2

)
+nk+n variables and n+ |F ∪W |

linear independent equality constraints, the dim(P (F )) ≤
(
n
2

)
+ nk − |F ∪W |. We

claim that P (F ) contains
(
n
2

)
+ nk − |F ∪W | + 1 affine independent points. The

claim proves dim(P (F )) ≥
(
n
2

)
+nk− |F ∪W |. Hence, the lemma follows. We prove

the claim by induction on the cardinality of the set F .

For the base case, we have F = T and P (T ) = Q where Q is the the MDTSP

polytope. Since dim(Q) =
(
n
2

)
+ nk − n [11], there are

(
n
2

)
+ nk − n + 1 affine

independent points in Q. Assume that the claim holds for a set Fi with |Fi| = i

and i > 0, and consider a subset of targets Fi−1 such that |Fi−1| = i − 1. Let v

be any target not in Fi−1, and define Fi := Fi−1 ∪ {v}. The induction hypothesis

provides
(
n
2

)
+ nk − |Fi ∪W | + 1 affine independent points belonging to P (Fi) and

hence, to P (Fi−1) (since P (Fi) ⊆ P (Fi−1)). If v ∈ W , then |Fi−1 ∪W | = |Fi ∪W |

and we are done. Otherwise, |Fi−1 ∪W | = |Fi ∪W | − 1 and we need an additional

point on the polytope P (Fi−1) that is affine independent with the rest of the L =
(
n
2

)
+ nk − |Fi ∪W | + 1 points. All these L points satisfy the equation yv = 1. An

additional point that is affine independent with the L points always exists and is

given by any feasible MDTSP solution in the subgraph induced by the set of vertices

(T∪D)\{v} because, any feasible MDTSP solution on the set of vertices (T∪D)\{v}

satisfies yv = 0.

Corollary 5.1. dim(P ) =
(
n
2

)
+ nk − |W |.

Lemma 5.1 indicates that for any given subset F ⊆ T and v ∈ F , either dim(P (F \

{v})) = dim(P (F )) (if v ∈ W ) or dim(P (F \ {v})) = dim(P (F )) + 1 (when v /∈ W )
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i.e., the dimension of the polytope P (F ) increases by at most one unit when a target

is removed from F . Hence, we can lift any facet-defining valid inequality for P (F )

to be facet-defining for P (F \{v}). In the ensuing proposition, we introduce a result

based on the sequential lifting for zero-one programs [65] which we will use to lift

facets of Q into facets of P . The proposition generalizes a similar result in [20] used

to lift facets of the travelling salesman problem to facets of GTSP.

Proposition 5.1. Suppose that for any F ⊆ T and u ∈ F ,

∑

e∈E

αexe +
∑

v∈T

βv(1− yv) ≥ η

is any facet-defining inequality for P (F ). Then the lifted inequality

∑

e∈E

αexe +
∑

v∈T\{u}

βv(1− yv) + β̄u(1− yu) ≥ η

is valid and facet-defining for P (F \ {u}), where β̄u takes an arbitrary value when

u ∈ W and

β̄u = η −min




∑

e∈E

αexe +
∑

v∈T\{u}

βv(1− yv) : (x,y) ∈ P (F \ {u}), yu = 0





when u /∈ W . Note that the statement can be trivially modified to deal with “≤”

inequalities.

Proof. The proof follows from the sequential lifting theorem in [65].

Proposition 5.1 is used to derive facet-defining inequalities for the GMDTSP

polytope P by lifting the facet-defining inequalities for the MDTSP polytope Q

in [11]. For a given lifting sequence of the set of targets T , say {v1, . . . , vn}, the
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procedure is iteratively applied to derive a facet of P ({vt+1, . . . , vn}) from a facet of

P ({vt, . . . , vn}) for t = 1, . . . , n. Different lifting sequences produce different facets;

hence the name, sequence dependent lifting. In the rest of the section, we use the

lifting procedure to check if the constraints in (5.2)-(5.9) are facet-defining and derive

additional facet-defining inequalities for the GMDTSP polytope.

Proposition 5.2. The following results hold for the GMDTSP polytope P :

1. xe ≥ 0 defines a facet for every e ∈ E if |T | ≥ 4,

2. xe ≤ 1 defines a facet if and only if e ∈ γ(W ) and |T | ≥ 3,

3. xe ≤ 2 does not define a facet for any e ∈ (D : T ),

4. yi ≥ 0 does not define a facet for any i ∈ T ,

5. yi ≤ 1 defines a facet if and only if i /∈ W , and

6.
∑

i∈Ch
yi ≥ 1 does not define a facet for any h ∈ {1, . . . ,m}.

Proof. We use the facet-defining results of the MDTSP polytope [11] in conjunction

with Proposition 5.1 to prove (1)–(3).

1. Observe that for every e ∈ E, xe ≥ 0 defines a facet of the MDTSP polytope

Q if |T | ≥ 4. Now for any lifting sequence, Proposition 5.1 produces β̄v = 0 for

all v ∈ T and the result follows.

2. Suppose that e = (i, j). If i, j ∈ W and |T | ≥ 3, then the claim follows

from the forthcoming Proposition 5.3 by choosing S = {i, j}. Otherwise if

e = (i, j) ∈ γ(T ), then xe ≤ 1 is dominated by xe ≤ yi if i /∈ W and xe ≤ yj if

j /∈ W .
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3. Let e = (d, i) where d ∈ D, i ∈ T . xe ≤ 2 defines a face of the MDTSP polytope

Q. Hence neither of the lifted versions of the inequality i.e., xe ≤ 2 (if i ∈ W )

or xe ≤ 2yi (if i /∈ W ) defines a facet of P .

4. The inequality yi ≥ 1
2
xe for e ∈ δ(i) dominates yi ≥ 0. Hence, yi ≥ 0 does not

define a facet for any i ∈ T .

5. Observe that the valid inequality yi ≤ 1 induces a face, P ({i}) = {(x,y) ∈ P :

yi = 1} of P . From the Lemma 5.1, dim(P ({i})) = dim(P ) − 1 if and only if

i /∈ W . Hence, yi ≤ 1 is facet-defining for P if and only if i /∈ W . When i ∈ W ,

the inequality defines an improper face.

6. The constraint
∑

i∈Ch
yi ≥ 1 can be reduced, using the degree constraints in

(5.2), to
∑

e∈δ(Ch) xe + 2
∑

e∈γ(Ch) xe ≥ 2. When γ(Ch) 6= ∅, the constraint
∑

e∈δ(Ch) xe + 2
∑

e∈γ(Ch) xe ≥ 2 is dominated by
∑

e∈δ(Ch) xe ≥ 2. When

γ(Ch) = ∅ (i.e., |Ch| = 1), the constraint
∑

e∈δ(Ch) xe = 2 is satisfied by any

feasible solution in P and hence in this case, it is an improper face. Therefore,
∑

i∈Ch
yi ≥ 1 does not define a facet for any h ∈ {1, . . . ,m}.

In the next proposition, we prove that the sub-tour elimination constraints in Eq.

(5.4) define facets of P . To do so, we apply the lifting procedure in Proposition 5.1

to the MDTSP sub-tour elimination constraints

x(δ(S)) ≥ 2 for all S ⊆ T.

In the process, we derive alternate versions of the sub-tour elimination constraints

in Eq. (5.4) which we will refer to as the GSEC. To begin with, we observe that
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sub-tour elimination constraints given above define facets of the MDTSP poytope Q

when |T | ≥ 3 (see [11]).

Proposition 5.3. Let S ⊆ T and |T | ≥ 3. Then the following GSEC is valid and

facet-defining for P :

x(δ(S)) + β̄i(1− yi) ≥ 2 for i ∈ S,

where

β̄i =





2 if µ(S) = 0,

0 otherwise;

µ(S) is defined as µ(S) = |{h : Ch ⊆ S}|.

Proof. We first observe that the inequality x(δ(S)) ≥ 2 with S ⊆ T and |T | ≥ 3

defines a facet for the MDTSP polytope. We lift this inequality using the lifting

procedure in Proposition 5.1. Let {v1, . . . , vn} be any lifting sequence of the set of

targets such that vn = i. The lifting coefficients β̄vt are computed iteratively for

t = 1, . . . , n. For t = 1, . . . , n−1, it is trivial to see that β̄vt = 0. Hence, x(δ(S)) ≥ 2

defines a facet of P ({vn}). As to β̄vn , we compute its value by performing the lifting

procedure again and obtain a facet of P . We have

β̄vn = 2−min {x(δ(S)) : (x,y) ∈ P, and yvn = 0} .

Solving for β̄vn using the above equation, we obtain β̄vn = 2 if a feasible GMDTSP

solution visiting no target in S exists (i.e., no Ch ⊆ S exists) and β̄vn = 0 otherwise.

In summary, the Proposition 5.3 results in the following facet-defining inequalities

85



of P : suppose S ⊆ T with |T | ≥ 3. Then,

x(δ(S)) ≥ 2 for µ(S) 6= 0 and (5.13)

x(δ(S)) ≥ 2yi for µ(S) = 0, i ∈ S. (5.14)

Note that the inequality x(δ(S)) ≥ 2yi is valid for any S ⊆ T . It is facet-defining

for P only when µ(S) == 0. When µ(S) 6= 0 it does not define a facet of P as it

is dominated by Eq. (5.13). Using the degree constraints in Eq. (5.2), the above

GSEC can rewritten as

x(γ(S)) ≤
∑

v∈S

yv − 1 for µ(S) 6= 0 and (5.15)

x(γ(S)) ≤
∑

v∈S\{i}

yv for µ(S) = 0, i ∈ S. (5.16)

In the forthcoming two propositions, we prove that the path elimination constraints

in Eq. (5.5) and (5.6) are facet-defining of P using Proposition 5.1. The correspond-

ing path elimination constraints for the MDTSP polytope Q are as follows: suppose

that j, k ∈ T , D′ ⊂ D with D′ 6= ∅, then

x(D′ : {j}) + 3xjk + x({k} : D \D′) ≤ 4 (5.17)

x(D′ : {j}) + 2x(γ(S ∪ {j, k})) + x({k} : D \D′) ≤ 2|S|+ 3

for S ⊆ T \ {j, k}, S 6= ∅ (5.18)

We remark that Eq. (5.17) and (5.18) define facets for the MDTSP polytope Q (see

[11]).

Proposition 5.4. Suppose j, k ∈ T and D′ ⊂ D with D′ 6= ∅. Then the following
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Figure 5.1: Tight feasible solutions for proof of Prop. 5.4

path elimination constraint is valid and facet-defining for P :

x(D′ : {j}) + 3xjk + x({k} : D \D′) + β̄j(1− yj) + β̄k(1− yk) ≤ 4

where β̄j = β̄k = 2.

Proof. Let {v1, . . . , vn} be any lifting sequence of the set of targets such that vn−1 = j

and vn = k. The lifting coefficients are iteratively computed for t = 1, 2, . . . , n.

Coefficients β̄v for v ∈ {v1, . . . , vn−2} are easily computed (tight GMDTSP solution

is depicted in Fig. 5.1(a), showing that the value of β̄v cannot be increased without

producing a violated inequality). Similarly for t = n− 1 i.e., vt = j, the correctness

of the coefficient β̄j = 2 can be checked with the help of Fig. 5.1(b). Analogously,

we obtain β̄k = 2.

The inequality in Proposition 5.4 can be rewritten as x(D′ : {j}) + 3xjk +x({k} :

D \D′) ≤ 2(yj + yk) which is the path elimination constraint in Eq. (5.5). We have

proved that this inequality is valid and defines a facet of P .

Proposition 5.5. Let j, k ∈ T , D′ ⊂ D, S ⊆ T \ {j, k} and i ∈ S such that

D′ 6= ∅ and S 6= ∅. Also let S̄ = S ∪ {j, k}. Then the following GPEC is valid and

87



v

d1 d2

j k
i

S

(a) β̄v = 0

v
d1 d2

j k
i

S

(b) β̄v = 2

d1 d2

j k
i

S

(c) β̄j = 2

d1 d2

j k
i

S

(d) β̄k = 2

d1 d2

j k
i

S;µ(S) = 0

(e) β̄i = 1

d1 d2

j k
i

S;µ(S) 6= 0

(f) β̄i = 2

Figure 5.2: Tight feasible solutions for proof of Prop. 5.5
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facet-defining for P :

x(D′ : {j}) + 2x(γ(S̄)) + x({k} : D \D′) +
∑

v∈T

β̄v(1− yv) ≤ 2|S|+ 3

where

β̄v =





0 if v ∈ T \ S̄,

2 if v ∈ S̄ \ {i},

1 if v = i and µ(S) = 0,

2 if v = i and µ(S) 6= 0;

µ(S) is defined as µ(S) = |{h : Ch ⊆ S}|.

Proof. Consider any lifting sequence of the the set of targets {v1, . . . , vn} such that

each target in the set S \ {i} follows all the targets in the set |T \ S̄| and vn−2 = j,

vn−1 = k and vn = i. The coefficients β̄v = 0 for v ∈ T \ S̄ and β̄v = 2 for v ∈ S \ {i}

are trivial to compute (tight GMDTSP solution is depicted in Fig. 5.2(a) and 5.2(b)

respectively, showing that the value of β̄v cannot be increased without producing a

violated inequality). The correctness of coefficients β̄j = 2 and β̄k = 2 can be checked

with the help of Fig. 5.2(c) and 5.2(d), respectively.

It remains to compute the value of coefficient β̄i. For computing β̄i, we have to

take into account for the possibility of a GMDTSP solution not visiting any target

in the set S. This can happen when µ(S) = 0. In this case, we obtain β̄i = 1; see

Fig. 5.2(e). Likewise, when µ(S) 6= 0, any GMDTSP solution has to have at least

two edges in δ(S). This leads to β̄i = 2; tight GMDTSP solution is shown in Fig.

5.2(f).

In summary, the Proposition 5.5 results in the following facet-defining inequalities

of P : suppose j, k ∈ T , D′ ⊂ D, S ⊆ T \ {j, k}, S̄ = S ∪ {j, k} and i ∈ S such that
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D′ 6= ∅ and S 6= ∅, then

x(D′ : {j}) + 2x(γ(S̄)) + x({k} : D \D′) ≤
∑

v∈S̄

2yv − yi for µ(S) = 0 and (5.19)

x(D′ : {j}) + 2x(γ(S̄)) + x({k} : D \D′) ≤
∑

v∈S̄

2yv − 1 for µ(S) 6= 0. (5.20)

We note that the above GPEC can be rewritten in cut-set form as

x(δ(S̄)) ≥ x(D′ : {j}) + x({k} : D \D′) + yi for µ(S) = 0 and (5.21)

x(δ(S̄)) ≥ x(D′ : {j}) + x({k} : D \D′) + 1 for µ(S) 6= 0. (5.22)

As we will see in the forthcoming section, the GPEC in the above form are more am-

icable for developing separation algorithms. Next, we examine the comb inequalities

that are valid and facet-defining for the MDTSP polytope. These inequalities were

initially introduced for the TSP in [13]. These inequalities were extended and proved

to be facet-defining for the MDTSP polytope in [11]. We define a comb inequality

using a comb, which is a family C = (H, T1, T2, . . . , Tt) of t+ 1 subsets of the targets;

t is an odd number and t ≥ 3. The subset H is called the handle and the subsets

T1, . . . , Tt are called teeth. The handle and teeth satisfy the following conditions:

i H ∩ Ti 6= ∅ ∀i = 1, . . . , t,

ii Ti \H 6= ∅ ∀i = 1, . . . , t,

iii Ti ∩ Tj = ∅ 1 ≤ i ≤ j ≤ t.

The conditions i. and ii. indicate that every tooth Ti intersects the handle H and

the condition iii. indicates that no two teeth intersect. We define the size of C as

σ(C) := |H|+∑t
i=1 |Ti|− 3t+1

2
. Then the comb inequality associated with C is given
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by

x(γ(H)) +
t∑

i=1

x(γ(Ti)) ≤ σ(C) (5.23)

The inequality in Eq. 5.23 is valid and facet-defining for the MDTSP (see [11]). A

special case of the comb inequality, called 2-matching inequality is obtained when

|Ti| = 2 for i = 1, . . . , t. In the case of a 2-matching inequality, the size of the

comb is σ(C) = |H| + t+1
2

. We apply the lifting procedure in Proposition 5.1 to

the inequality in (5.23) and obtain facet-defining inequality for the GMDTSP. The

following proposition is adapted from [20]; the proof of the proposition is omitted as

it is similar to the proof of the corresponding theorem for GTSP in [20].

Proposition 5.6. Suppose µ(S) = |{h : Ch ⊆ S}| for S ⊆ T and let C =

(H, T1, . . . , Tt) be a comb. For i = 1, . . . , t, let ai be any target in Ti∩H if µ(Ti∩H) =

0; ai = 0 (a dummy value) otherwise; and let bi be any target in Ti\H if µ(Ti\H) = 0;

bi = 0 otherwise. Then the following comb inequality is valid and facet-defining for

the GMDTSP polytope P :

x(γ(H)) +
t∑

i=1

x(γ(Ti)) +
∑

v∈T

β̄v(1− yv) ≤ σ(C), (5.24)

where β̄v = 0 for all v ∈ T \ (H ∪ T1 ∪ · · · ∪ Tt), β̄v = 1 for all v ∈ H \ (T1 ∪ · · · ∪ Tt)
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and for i = 1, . . . , t:

β̄v = 2 for v ∈ Ti ∩H, v 6= ai;

β̄ai = 1 if ai 6= 0;

β̄v = 1 for v ∈ Ti \H, v 6= bi;

β̄bi = 0 if bi 6= 0.

Proof. See [20].

5.3.1 Additional valid inequalities specific to multiple depot problems

In this section, we will examine a special type of comb inequality called the T-

comb inequalities. The T-comb inequalities were introduced in [11] and proved to

be valid and facet-defining for the MDTSP polytope. These inequalities are specific

to problems involving multiple depots and hence, are important for the GMDTSP.

A T-comb inequality C is defined by an handle H and teeth T1, . . . , Tt such that the

following conditions are satisfied:

i. H ∩ Ti 6= ∅ ∀i = 1, . . . , t,

ii. Ti \H 6= ∅ ∀i = 1, . . . , t,

iii. Ti ∩ Tj = ∅ 1 ≤ i ≤ j ≤ t,

iv. Ti ∩D 6= ∅ ∀i = 1, . . . , t,

v. H ⊂ T,

vi. H \ ∪ti=1Ti 6= ∅,

vii. D \ ∪ti=1Ti 6= ∅.
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The difference between the T-comb inequalities and the comb inequalities defined

in Eq. (5.23) is that, the number of teeth are allowed to be even (t ≥ 1) and

each teeth must contain a depot. The comb size in this case is given by σ(C) =

|H|+∑t
i=1 |Ti|− (t+1). In this paper, we will only examine the T-comb inequalities

with |Ti| = 2 for every i ∈ {1, . . . , t}; the size of the comb in this case reduces to

σ(C) = |H|+ t− 1 and the corresponding T-comb inequality is given by

x(γ(H)) +
t∑

i=1

x(γ(Ti)) ≤ |H|+ t− 1, (5.25)

The inequality in Eq. (5.25) is valid and facet-defining for the MDTSP when t ≥ 2.

Again, we apply the lifting procedure in Proposition 5.1 to the inequality in (5.25)

and obtain facet-defining inequality for the GMDTSP.

Proposition 5.7. Let C = (H, T1, . . . , Tt) be a T-comb with |Ti| = 2 for every

i ∈ {1, . . . , t} and t ≥ 2. Also suppose |H \∪iTi| > 1 (the proposition can be trivially

extended to the case where |H \∪iTi| = 1). Let ā be any target in H \∪iTi. Then the

following T-comb inequality is valid and facet-defining for the GMDTSP polytope P :

x(γ(H)) +
t∑

i=1

x(γ(Ti)) +
∑

v∈T

β̄v(1− yv) ≤ |H|+ t− 1, (5.26)

where β̄v = 0 for all v ∈ T \(H∪T1∪· · ·∪Tt), β̄v = 1 for all v ∈ H\(T1∪· · ·∪Tt∪{ā}),

β̄ā = 0, and β̄v = 2 for all v ∈ Ti ∩H, i = 1, . . . , t.

Proof. Consider any lifting sequence for the set of targets T in the following order:

(i) targets in the set T \(H∪T1∪· · ·∪Tt), (ii) v ∈ H \(T1∪· · ·∪Tt∪{ā}), (iii) ā, and

(iv) v ∈ Ti ∩H, i = 1, . . . , t. The lifting coefficients β̄v = 0 and β̄v = 1 for the sets in

(i) and (ii) respectively, are trivial to compute (tight feasible GMDTSP solutions are

depicted in Fig. 5.3(a) and 5.3(b), respectively). Similarly, tight feasible GMDTSP
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Figure 5.3: Tight feasible solutions for proof of Prop. 5.7

solutions for the cases where β̄ā = 0 and β̄v = 2 (cases (iii) and (iv)) are shown in

Fig. 5.3(c) and 5.3(d), respectively.

In the above proposition, for the case when |H \ ∪iTi| = 1, the facet-defining

inequality is given by

x(γ(H)) +
t∑

i=1

x(γ(Ti)) ≤
t∑

i=1

∑

v∈H∩Ti

2yv. (5.27)

5.4 Separation algorithms

In this section, we discuss the algorithms that are used to find violated families

of all the valid inequalities introduced in Sec. 5.3. We denote by G∗ = (V ∗, E∗) the

support graph associated with a given fractional solution (x∗,y∗) ∈ R|E|∪|T | i.e., G∗

is a capacitated undirected graph with vertex set V ∗ := {i ∈ T : y∗i > 0} ∪ D and

E∗ := {e ∈ E : x∗e > 0} with edge capacities x∗e for each edge e ∈ E∗.
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5.4.1 Separation of generalized sub-tour elimination constraints

We first develop a separation algorithm for constraints in Eq. (5.14): x(δ(S)) ≥

2yi for µ(S) = 0, i ∈ S and S ⊆ T . Given a fractional solution (x∗,y∗), the most

violated constraint of the form (5.14) can be obtained by computing a minimum

capacity cut (S, V ∗ \ S) with i ∈ S and D ⊆ V ∗ \ S on the graph G∗. The minimum

capacity cut can be obtained by computing a maximum flow from i to t, where t is

an additional vertex connected with each depot in the set D through an edge having

very large capacity. The algorithm is repeated for every target i ∈ T ∩ V ∗ and the

target set S obtained during each run of the algorithm defines a violated inequality if

the capacity of the cut is strictly less than 2y∗i . This procedure can be implemented

in O(|T |4) time.

Now we consider the constraint in Eq. (5.13): x(δ(S)) ≥ 2 for µ(S) 6= 0 and

S ⊆ T . Given a fractional solution (x∗,y∗), the most violated inequality (5.13) in

this case is obtained by computing a minimum capacity cut (S, V ∗ \S) with a cluster

Ch ⊆ S and D ⊆ V ∗ \ S on the graph G∗. This is in turn achieved by computing

a maximum s − t flow on G∗, where s and t are additional vertices connected with

each j ∈ Ch and each d ∈ D respectively through an edge having very large capacity.

The algorithm is repeated for every cluster Ch and the set S obtained on each run

of the algorithm defines a violated inequality if the capacity of the cut is strictly less

than 2. The time complexity of this procedure is O(m|T |3), where m is the number

of clusters.

We remark that the violated inequality of the form (5.14) using the above algo-

rithm, is not necessarily facet-defining as the set S computed using the algorithm

might have µ(S) 6= 0. When this happens, we reject the inequality in favour of its

dominating and facet-defining inequality in Eq. (5.13).
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5.4.2 Separation of path elimination constraints

We first discuss the procedure to separate violated constraints in Eq. (5.5).

Consider every pair of targets j, k ∈ V ∗ ∩ T . We rewrite the constraint in (5.5)

as x(D′ : {j}) + x({k} : D \ D′) ≤ 2(yk + yj) − 3xjk. Given j, k and a fractional

solution (x∗,y∗), the RHS of the above inequality is a constant and is equal to

2(y∗k + y∗j ) − 3x∗jk. We observe that the LHS of the inequality is maximized when

D′ = {d ∈ D : x∗jd ≥ x∗kd}. Furthermore, when D′ = ∅ or D′ = D, no path constraint

in Eq. (5.5) is violated for the given pair of vertices. With D′ = {d ∈ D : x∗jd ≥ x∗kd},

if x∗(D′ : {j}) + x∗({k} : D \D′) is strictly greater than 2(y∗k + y∗j )− 3x∗jk, the path

constraint in Eq. (5.5) is violated for the pair of vertices j, k and the subset of depots

D′. This procedure can be implemented in O(|T |2).

For constraints in Eq. (5.19) and (5.20), we present two separation algorithms

that are very similar to the algorithms presented in Sec. 5.4.1. We will use the

equivalent constraints in Eq. (5.21) and (5.22) to develop the algorithms. We first

consider the path elimination constraint in Eq. (5.22). Given j, k and a fractional

solution (x∗,y∗), we first compute D′ to maximize x∗(D′ : {j}) + x∗({k} : D \

D′) := L. Now, the most violated constraint of the form (5.22) can be obtained by

computing a minimum capacity cut (S̄, V ∗\S̄) with j, k ∈ S̄, a cluster Ch ⊆ S̄\{j, k}

and D ⊆ V ∗ \ S̄. This algorithm is repeated for every target j, k ∈ T and cluster Ch

such that j, k /∈ Ch and the target set S = S̄ \ {j, k} obtained during each run of

the algorithm defines a violated inequality if the capacity of the cut is strictly less

than L+ 1. The time complexity of this algorithm is O(m|T |4). Similarly, the most

violated constraint of the form (5.21) can be obtained by computing a minimum

capacity cut (S̄, V ∗ \ S̄), with i, j, k ∈ S̄ and D ⊆ V ∗ \ S̄ on the graph G∗. This

algorithm is repeated for very triplet of targets in V ∗ and the set S = S̄ \ {j, k}
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defines a violated inequality if the capacity of the cut is strictly less than L + y∗i .

The time complexity of the algorithm is O(|T |5).

Similar to the separation of the sub-tour elimination constraints, we remark that

the violated inequality of the form (5.21), computed using the above algorithm is not

necessarily facet-defining as the set S might have µ(S) 6= 0. When this happens, we

reject the inequality in favour of its dominating and facet-defining inequality in Eq.

(5.22).

5.4.3 Separation of comb inequalities

For the comb-inequalities in Eq. (5.24), we use the separation procedures dis-

cussed in [23]. We first consider the special case of the comb inequalities with |Ti| = 2

for i = 1, . . . , t i.e., the 2-matching inequalities. Using a construction similar to the

one proposed in [66] for the b-matching problem, the separation problem for the

2-matching inequalities can be transformed into a minimum capacity off cut prob-

lem; hence this separation problem is exactly solvable in polynomial time. But this

procedure is computationally intensive, and so we use the following heuristic pro-

posed by [29]. Given a fractional solution (x∗,y∗), the heuristic considers a graph

Ḡ = (V̄ , Ē) where V̄ = V ∗ ∩ T and Ē = {e : 0 < x∗e < 1}. Then, we consider each

connected component H of Ḡ as a handle of a possibly violated 2-matching inequal-

ity whose two-vertex teeth correspond to edges e ∈ δ(H) with x∗e = 1. We reject

the inequality if the number of teeth is even. The time complexity of this algorithm

is O(|V̄ | + |Ē|). As for the comb inequalities, we apply the same procedure after

shrinking each cluster into a single supernode.

5.4.4 Separation of T-comb inequalities

We present a separation heuristic similar to the one used in [11] to identify vi-

olated T-comb inequalities of the form Eq. (5.26) and (5.27). We first build a set
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of teeth, each containing a distinct depot according to the following procedure: a

tooth Ti is built by starting with a set containing a depot d ∈ D; a target v ∈ T

is added to Ti such that x(δ(Ti)) is a minimum. Then, for every subset of this set

of teeth such that: (i) they are pairwise disjoint, (ii) belong to the same connected

component of the support graph G∗ = (V ∗, E∗), and (iii) do not together contain all

the targets of that connected component, an appropriate handle H is built as follows:

assume H is the set of all the targets in the connected component and remove the

targets in H \ (Ti∪· · ·∪Tt) sequentially. Every time a target is removed, the T-comb

inequality of the appropriate form is checked for violation. The time complexity of

this algorithm is O(|T |).

5.5 Branch-and-cut algorithm

In this section, we describe important implementation details of the branch-and-

cut algorithm for the GMDTSP. The algorithm is implemented within a CPLEX

12.4 framework using the CPLEX callback functions [34]. The callback functions

in CPLEX enable the user to completely customize the branch-and-cut algorithm

embedded into CPLEX, including the choice of node to explore in the enumeration

tree, the choice of branching variable, the separation and the addition of user-defined

cutting planes and the application of heuristic methods.

The lower bound at the root node of the enumeration tree is computed by solving

the LP relaxation of the formulation in Sec. 5.2 that is further strengthened using

the cutting planes described in Sec. 5.3. The initial linear program consisted of all

constraints in (5.1)-(5.9), except (5.4), (5.5) and (5.6). For a given LP solution, we

identify violated inequalities using the separation procedures detailed in Sec. 5.4

in the following order: (i) sub-tour elimination constraints in Eq. (5.13), (ii) sub-

tour elimination constraints in Eq. (5.14) (iii) path elimination constraints in Eq.
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(5.5), (5.19) and, (5.20), (iv) generalized comb constraints in Eq. (5.24), and (v)

T-comb constraints in Eq. (5.26) and (5.27). This order of adding the constraints to

the formulation was chosen after performing extensive computational experiments.

Furthermore, we disabled the separation of all the cuts embedded into the CPLEX

framework because enabling these cuts increased the average computation time for

the instances. Once the new cuts generated using these separation procedures were

added to the linear program, the tighter linear program was resolved. This procedure

was iterated until either of the following conditions was satisfied: (i) no violated

constraints could be generated by the separation procedures, (ii) the current lower

bound of the enumeration tree was greater or equal to the current upper bound.

If no constraints are generated in the separation phase, we create subproblems by

branching on a fractional variable. First, we select a fractional yi variable, based

on the strong branching rule [1]. If all these variables are integers, then we select a

fractional xe variable using the same rule. As for the node-selection rule, we used the

best-first policy for all our computations,i.e., select the subproblem with the lowest

objective value.

5.5.1 Preprocessing

In this section, we detail a preprocessing algorithm that enables the reduction of

size of the GMDTSP instances whose edge costs satisfy the triangle inequality i.e.,

for distinct i, j, k ∈ T , cij + cjk ≥ cik. A similar algorithm is presented in [48, 9]

for the asymmetric generalized traveling salesman problem and generalized vehicle

routing problem respectively. In a GMDTSP instance where the edge costs satisfy

the triangle inequality, the optimal solution would visit exactly one target in each

cluster. We utilize this structure of the optimal solution and reduce the size of a

given GMDTSP instance, if possible. To that end, we define a target i ∈ T to be
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dominated if there exits a target j ∈ Ch(i), j 6= i such that

1. cpi + ciq ≥ cpj + cjq for any p, q ∈ T \ Ch(i),

2. cdi ≥ cdj for all d ∈ D, and

3. cdi + cip ≥ cdj + cjp for any d ∈ D, p ∈ T \ Ch(i).

Proposition 5.8. If a dominated target is removed from a GMDTSP instance sat-

isfying triangle inequality, then the optimal cost to the instance does not change.

Proof. Let i ∈ T be a dominated vertex. If the target i is not visited in the optimal

solution, then its removal does not change the optimal cost. So, assume that i ∈

T is visited by the optimal solution. Since the edge costs of the instance satisfy

the triangle inequality, exactly one target in each cluster is visited by the optimal

solution. We now claim that it is possible to exchange the target i with a target

j ∈ Ch(i) without increasing the cost of the optimal solution. This follows from the

definition of a dominated target.

The preprocessing checks if a target is dominated and removes the target if it is

found so. Then the other targets are checked for dominance relative to the reduced

instance. The time complexity of the algorithm is O(|T |5).

5.5.2 LP rounding heuristic

We discuss an LP-rounding heuristic that aides to generate feasible solutions at

the root node and to speed up the convergence of the branch-and-cut algorithm. The

heuristic constructs a feasible GMDTSP solution from a given fractional LP solution.

It is used only at the root node of the enumeration tree. The heuristic is based on

a transformation method in [63]. We are given y∗, the vector of fractional yi values

(denoted by yfi ) for each target i. The algorithm proceeds as follows: for each cluster
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Ck and every target i ∈ Ck, the heuristic sets the value of yi to 0 or 1 according to the

condition yfi ≥ 0.5 or yfi < 0.5 respectively. If every target i ∈ Ck has yfi < 0.5, then

we set the value of yj = 1 where j = argmax{yfi : i ∈ Ck}. Once we have assigned

the yi value for each target i, we define the set Π := {i ∈ T : yi = 1}. We then solve

a MDTSP on the set of vertices Π ∪ D. A heuristic based on the transformation

method in [63] and LKH heuristic [31] is used to solve the MDTSP.

5.6 Computational results

In this section, we discuss the computational results of the branch-and-cut al-

gorithm. The algorithm was implemented in C++ (gcc version 4.6.3), using the

elements of Standard Template Library (STL) in the CPLEX 12.4 framework. As

mentioned in Sec. 5.5, the internal CPLEX cut generation was disabled, and CPLEX

was used only to mange the enumeration tree. All the simulations were performed on

a Dell Precision T5500 workstation (Intel Xeon E5360 processor @2.53 GHz, 12 GB

RAM). The computation times reported are expressed in seconds, and we imposed

a time limit of 7200 seconds for each run of the algorithm. The performance of the

algorithm was tested on a total of 116 instances, all of which were generated using

the generalized traveling salesman problem library [23, 30].

5.6.1 Problem instances

All the computational experiments were conducted on a class of 116 test instances

generated from 29 GTSP instances. The GTSP instances are taken directly from the

GTSP Instances Library [30]. For each of the 29 instances, GMDTSP instances with

|D| ∈ {2, 3, 4, 5} were generated by assuming the first |D| targets in a GTSP instance

to be the set of depots; these depots were then removed from the target clusters.

The number of targets in the instances varied from 14 to 105, and the maximum

number of target clusters was 21. Hence we had 4 GMDTSP instances for each of
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the 29 GTSP instances totalling to 116 test instances. We also note that for 64/116

instances, the edge costs do not satisfy the triangle inequality and for the remaining

52 instances, the edge costs satisfy the triangle inequality. The name of the generated

instances are the same but for a small modification to spell out the number of depots

in the instances. The naming conforms to the format GTSPinstancename-D, where

GTSPinstancename corresponds to the GTSP instance name from the library (the

first and the last integer in the name corresponds to the number of clusters and the

number of targets in the GTSP instance respectively) and D corresponds the number

of depots in the instance.

The results are tabulated in Tables 5.1 and 5.2. For more detailed computational

results, the readers are refered to [77]. The following nomenclature is used in the

Table 5.1

name: problem instance name (format: GTSPinstancename-D);

%LB: percentage LB/opt, where objective value of the LP relaxation computed at

the root node of the enumeration tree;

%UB: percentage UB/opt, where cost of the best feasible solution generated by the

LP-rounding heuristic generated at the root node of the enumeration tree;

sec1: total number of constraints (5.13) generated;

sec2: total number of constraints (5.14) generated;

4pec: total number of constraints (5.5) generated;

pec: total number of constraints (5.19) and (5.20) generated;

comb: total number of constraints (5.24), (5.26), and (5.27) generated;

nodes: total number of nodes examined in the enumeration tree.

The Table 5.2 gives the computational time for each separation routine and the

overall the branch-and-cut algorithm. The nomenclature used in Table 5.2 are as
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follows:

name: problem instance name (format: GTSPinstancename-D);

total-t: CPU time, in seconds, for the overall execution of the branch-and-cut algo-

rithm;

sep-t: overall CPU time, in seconds, spent for separation;

sec-t: CPU time, in seconds, spent for the separation of constraints (5.13) and

(5.14);

4pec-t: CPU time, in seconds, spent for the separation of constraints (5.5);

pec-t: CPU time, in seconds, spent for the separation of constraints (5.19) and

(5.20);

comb-t: CPU time, in seconds, spent for the separation of constraints (5.24), (5.26),

and (5.27);

%pec: percentage of separation time spent for the separation of path elimination

constraints (5.19) and (5.20).

Table 5.1: Branch-and-cut statistics.

name opt LB %LB UB %UB sec1 sec2 4pec pec comb nodes

3burma14-2 1939 1939.00 100.00 1939 100.00 51 8 0 2 0 0

3burma14-3 1664 1664.00 100.00 1664 100.00 11 15 0 2 0 0

3burma14-4 1296 1296.00 100.00 1296 100.00 8 14 0 0 0 0

3burma14-5 562 562.00 100.00 562 100.00 1 20 0 0 0 0

4br17-2 31 31.00 100.00 54 174.19 7 4 0 0 1 3

4br17-3 31 31.00 100.00 31 100.00 7 7 0 0 0 0

4br17-4 19 19.00 100.00 19 100.00 5 14 0 0 0 0

4br17-5 19 19.00 100.00 19 100.00 5 20 0 4 0 0

4gr17-2 958 846.33 88.34 965 100.73 22 187 8 335 0 97

4gr17-3 738 722.88 97.95 794 107.59 3 43 1 53 4 6

4gr17-4 611 611.00 100.00 611 100.00 2 14 0 3 0 0

4gr17-5 513 513.00 100.00 513 100.00 1 25 0 0 0 0

4ulysses16-2 4695 4695.00 100.00 4695 100.00 36 18 0 0 0 0
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Table 5.1 – continued from previous page

name opt LB %LB UB %UB sec1 sec2 4pec pec comb nodes

4ulysses16-3 4695 4695.00 100.00 4695 100.00 53 20 0 0 0 0

4ulysses16-4 4695 4695.00 100.00 4695 100.00 50 27 0 0 0 0

4ulysses16-5 3914 3884.00 99.23 4188 107.00 22 27 0 7 0 3

5gr21-2 1679 1531.67 91.22 1985 118.23 419 367 12 2158 0 449

5gr21-3 1024 1024.00 100.00 1024 100.00 6 32 0 2 0 0

5gr21-4 953 953.00 100.00 953 100.00 9 20 0 1 0 0

5gr21-5 780 780.00 100.00 780 100.00 4 9 0 2 0 0

5gr24-2 377 340.53 90.33 828 219.63 25 169 0 366 0 13

5gr24-3 377 318.00 84.35 569 150.93 37 181 0 524 32 42

5gr24-4 371 325.17 87.65 753 202.96 39 157 8 303 6 26

5gr24-5 362 308.17 85.13 739 204.14 12 99 7 222 0 87

5ulysses22-2 5199 5199.00 100.00 5199 100.00 70 71 2 126 1 0

5ulysses22-3 5311 5310.50 99.99 5442 102.47 45 82 0 1 0 3

5ulysses22-4 5021 5021.00 100.00 5021 100.00 45 39 0 0 0 0

5ulysses22-5 3913 3913.00 100.00 3913 100.00 37 27 0 1 0 0

6bayg29-2 711 624.50 87.83 905 127.29 82 312 0 1526 0 148

6bayg29-3 684 582.50 85.16 841 122.95 70 809 3 3489 28 301

6bayg29-4 583 527.50 90.48 811 139.11 25 91 0 171 7 24

6bayg29-5 565 520.79 92.17 1888 334.16 40 103 0 360 6 21

6bays29-2 849 761.46 89.69 1194 140.64 123 178 0 1466 0 296

6bays29-3 830 777.68 93.70 1092 131.57 80 145 1 959 17 48

6bays29-4 691 650.60 94.15 847 122.58 30 92 3 238 20 6

6bays29-5 622 591.55 95.10 1052 169.13 30 99 1 258 3 10

6fri26-2 480 471.50 98.23 541 112.71 54 184 1 519 0 15

6fri26-3 486 466.00 95.88 510 104.94 167 166 0 1923 3 388

6fri26-4 440 414.57 94.22 446 101.36 92 128 0 355 9 38

6fri26-5 436 411.56 94.39 473 108.49 66 91 2 520 2 41

9dantzig42-2 413 413.00 100.00 413 100.00 114 300 0 0 0 0

9dantzig42-3 351 351.00 100.00 358 101.99 82 328 0 10 1 3

9dantzig42-4 350 345.75 98.79 396 113.14 81 272 1 442 33 6

9dantzig42-5 348 344.29 98.93 348 100.00 82 203 2 346 45 12

10att48-2 4924 4284.05 87.00 5510 111.90 456 945 0 7563 0 268

10att48-3 4913 4539.33 92.39 6054 123.22 177 880 8 10115 154 1406

10att48-4 4428 3980.11 89.89 5685 128.39 197 738 2 8555 138 879

10att48-5 4204 3897.97 92.72 5515 131.18 87 690 9 12826 1077 594

10gr48-2 1708 1707.00 99.94 1708 100.00 88 186 1 259 0 2
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Table 5.1 – continued from previous page

name opt LB %LB UB %UB sec1 sec2 4pec pec comb nodes

10gr48-3 1638 1628.14 99.40 2345 143.16 74 220 4 1011 0 14

10gr48-4 1645 1629.23 99.04 2197 133.56 86 185 0 958 1 33

10gr48-5 1638 1471.48 89.83 2243 136.94 108 405 5 2163 30 179

10hk48-2 6401 6209.83 97.01 6753 105.50 357 418 7 3018 0 82

10hk48-3 5872 5567.49 94.81 6211 105.77 234 364 1 2549 0 75

10hk48-4 5642 5044.00 89.40 6359 112.71 269 474 1 2370 3 69

10hk48-5 5641 5145.17 91.21 6702 118.81 282 399 0 3455 14 27

11berlin52-2 3500 3425.00 97.86 4010 114.57 121 288 0 1 1 17

11berlin52-3 3500 3376.17 96.46 3963 113.23 142 311 1 753 66 20

11berlin52-4 3500 3280.00 93.71 3699 105.69 88 241 1 426 3 25

11berlin52-5 3500 3273.92 93.54 4169 119.11 131 160 0 599 26 26

11eil51-2 175 174.50 99.71 175 100.00 148 522 2 1071 0 3

11eil51-3 174 168.83 97.03 174 100.00 138 269 3 1160 54 11

11eil51-4 175 165.24 94.42 183 104.57 175 273 11 1837 18 74

11eil51-5 170 166.44 97.91 170 100.00 71 214 2 479 6 8

12brazil58-2 14939 14939.00 100.00 14939 100.00 141 278 3 834 0 0

12brazil58-3 14930 14840.50 99.40 15240 102.08 140 298 1 967 57 18

12brazil58-4 13082 12680.46 96.93 16148 123.44 147 397 1 1447 126 40

12brazil58-5 12613 11958.93 94.81 15546 123.25 153 1049 1 583 50 98

14st70-2 304 288.01 94.74 307 100.99 392 576 2 3147 3 81

14st70-3 301 292.57 97.20 312 103.65 313 600 6 2846 12 17

14st70-4 298 287.25 96.39 298 100.00 182 372 4 1404 4 19

14st70-5 298 282.28 94.73 325 109.06 313 670 9 3883 5 163

16eil76-2 198 198.00 100.00 198 100.00 223 436 0 945 0 0

16eil76-3 197 197.00 100.00 197 100.00 174 258 3 727 6 0

16eil76-4 197 197.00 100.00 197 100.00 147 360 4 941 20 0

16eil76-5 188 180.42 95.97 196 104.26 233 386 5 1132 25 27

20gr96-2† 29966 28357.03 94.63 30821 102.85 823 1220 1 3540 0 62

20gr96-3† 29621 29263.93 98.79 30768 103.87 876 1326 2 3382 529 50

20gr96-4 28705 27650.63 96.33 30121 104.93 866 1754 6 4268 7 144

20gr96-5 28598 27768.50 97.10 29976 104.82 676 1269 1 2087 1 52

20kroA100-2 9630 9265.75 96.22 9769 101.44 746 1080 5 3481 0 66

20kroA100-3 9334 8935.25 95.73 9535 102.15 532 915 0 2801 0 92

20kroA100-4 8897 8539.03 95.98 10243 115.13 935 1241 2 4490 0 126

20kroA100-5 8827 8477.39 96.04 9020 102.19 520 1028 4 2480 0 47

20kroB100-2 9800 9492.00 96.86 10382 105.94 510 955 4 3025 0 30
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Table 5.1 – continued from previous page

name opt LB %LB UB %UB sec1 sec2 4pec pec comb nodes

20kroB100-3† 10218 9197.41 90.01 10300 100.80 903 1120 1 5373 0 130

20kroB100-4 9564 9293.31 97.17 9637 100.76 361 714 0 2323 0 20

20kroB100-5 9226 8525.71 92.41 11708 126.90 739 1058 10 7225 0 119

20kroC100-2† 10089 9548.13 94.64 10089 100.00 420 974 0 1551 0 3

20kroC100-3 9244 9130.82 98.78 9346 101.10 494 1006 0 1940 1 8

20kroC100-4 9292 9061.20 97.52 9342 100.54 307 707 2 1132 3 10

20kroC100-5 9252 8991.89 97.19 10437 112.81 380 956 3 2181 0 19

20kroD100-2† 9353 8497.63 90.85 9381 100.30 886 1525 4 3221 6 65

20kroD100-3 8813 8130.12 92.25 11404 129.40 1284 1664 5 11642 24 212

20kroD100-4 8772 8283.74 94.43 8823 100.58 577 1067 11 3230 3 67

20kroD100-5 8677 8233.85 94.89 9247 106.57 478 732 1 3277 0 45

20kroE100-2 9526 9290.65 97.53 10207 107.15 599 1098 7 4461 0 45

20kroE100-3 9262 9153.61 98.83 9854 106.39 612 1048 7 3974 19 26

20kroE100-4 9262 9147.56 98.76 11046 119.26 513 1032 3 3410 4 21

20kroE100-5 9081 8900.07 98.01 9707 106.89 391 925 3 2802 0 32

20rat99-2 505 504.33 99.87 521 103.17 507 951 0 0 0 7

20rat99-3 504 498.23 98.85 543 107.74 528 977 4 1582 1 20

20rat99-4 501 490.67 97.94 515 102.79 958 1259 5 10214 0 2383

20rat99-5 487 477.67 98.08 506 103.90 688 967 4 4320 0 376

20rd100-2† 3459 3380.39 97.73 3714 107.37 742 1406 0 4119 0 42

20rd100-3 3383 3218.89 95.15 3384 100.03 657 1456 2 4238 1 55

20rd100-4 3298 3167.38 96.04 3398 103.03 530 889 2 2651 0 29

20rd100-5 3234 3109.99 96.17 3327 102.88 559 1056 6 4114 1 64

21eil101-2 248 245.41 98.96 255 102.82 387 812 0 1476 0 20

21eil101-3 248 243.04 98.00 267 107.66 570 982 4 2371 6 37

21eil101-4 233 230.2759 98.83 251 107.73 432 629 3 2586 0 15

21eil101-5 232 226.33 97.56 257 110.78 275 527 0 1483 2 16

21lin105-2 8358 8316.43 99.50 8726 104.40 652 1122 0 0 0 16

21lin105-3† 8304 8164.21 98.32 8619 103.79 870 1298 3 25572 22 7103

21lin105-4 7827 7695.17 98.32 8365 106.87 619 941 2 888 12 89

21lin105-5† 8052 7568.64 94.00 8110 100.72 745 1166 1 2419 6 145

†optimality was not verified within a time-limit of 7200 seconds.
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Table 5.2: Algorithm computation times.

name total-t sep-t sec-t 4pec-t pec-t comb-t %pec

3burma14-2 0.07 0.00 0.00 0.00 0.00 0.00 3.13

3burma14-3 0.02 0.00 0.00 0.00 0.00 0.00 2.68

3burma14-4 0.02 0.00 0.00 0.00 0.00 0.00 1.97

3burma14-5 0.02 0.00 0.00 0.00 0.00 0.00 3.50

4br17-2 0.03 0.00 0.00 0.00 0.00 0.00 1.14

4br17-3 0.01 0.00 0.00 0.00 0.00 0.00 0.00

4br17-4 0.02 0.00 0.00 0.00 0.00 0.00 0.00

4br17-5 0.04 0.01 0.00 0.00 0.00 0.00 68.52

4gr17-2 1.16 0.33 0.10 0.00 0.22 0.01 65.71

4gr17-3 0.23 0.05 0.01 0.00 0.04 0.00 74.03

4gr17-4 0.02 0.00 0.00 0.00 0.00 0.00 0.00

4gr17-5 0.01 0.00 0.00 0.00 0.00 0.00 0.00

4ulysses16-2 0.05 0.00 0.00 0.00 0.00 0.00 1.71

4ulysses16-3 0.05 0.00 0.00 0.00 0.00 0.00 2.04

4ulysses16-4 0.08 0.00 0.00 0.00 0.00 0.00 1.93

4ulysses16-5 0.13 0.02 0.01 0.00 0.02 0.00 72.63

5gr21-2 12.89 3.63 1.00 0.00 2.54 0.09 69.98

5gr21-3 0.04 0.00 0.00 0.00 0.00 0.00 2.28

5gr21-4 0.02 0.00 0.00 0.00 0.00 0.00 2.86

5gr21-5 0.07 0.00 0.00 0.00 0.00 0.00 2.81

5gr24-2 1.81 0.45 0.07 0.00 0.38 0.00 84.82

5gr24-3 3.51 0.92 0.18 0.00 0.73 0.01 79.17

5gr24-4 2.89 0.76 0.11 0.00 0.64 0.01 83.80

5gr24-5 1.63 0.38 0.12 0.00 0.25 0.01 65.26

5ulysses22-2 0.77 0.18 0.04 0.00 0.13 0.00 74.26

5ulysses22-3 0.43 0.03 0.03 0.00 0.00 0.00 0.64

5ulysses22-4 0.18 0.02 0.02 0.00 0.00 0.00 0.75

5ulysses22-5 0.06 0.01 0.01 0.00 0.00 0.00 1.82

6bayg29-2 18.69 4.97 0.73 0.00 4.17 0.08 83.79

6bayg29-3 20.50 5.66 1.31 0.00 4.19 0.15 74.10

6bayg29-4 1.26 0.31 0.06 0.00 0.24 0.01 77.32

6bayg29-5 1.19 0.27 0.08 0.00 0.18 0.01 68.11

6bays29-2 21.40 6.19 0.96 0.00 5.14 0.08 83.16

6bays29-3 10.60 2.78 0.33 0.00 2.43 0.02 87.50

6bays29-4 1.22 0.30 0.05 0.00 0.24 0.01 80.74
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Table 5.2 – continued from previous page

name total-t sep-t sec-t 4pec-t pec-t comb-t %pec

6bays29-5 0.97 0.22 0.04 0.00 0.18 0.00 79.98

6fri26-2 5.55 1.34 0.12 0.00 1.22 0.01 90.53

6fri26-3 18.32 5.55 1.11 0.00 4.31 0.13 77.68

6fri26-4 3.75 0.92 0.12 0.00 0.78 0.01 85.23

6fri26-5 3.26 0.83 0.12 0.00 0.70 0.01 84.67

9dantzig42-2 1.07 0.28 0.27 0.00 0.00 0.01 0.38

9dantzig42-3 1.26 0.34 0.16 0.00 0.18 0.00 51.77

9dantzig42-4 5.15 1.29 0.22 0.00 1.05 0.01 81.81

9dantzig42-5 7.97 1.93 0.20 0.00 1.71 0.01 88.71

10att48-2 280.75 80.02 6.73 0.00 72.88 0.41 91.08

10att48-3 243.27 71.62 9.29 0.00 60.66 1.67 84.70

10att48-4 203.20 59.39 7.56 0.00 50.63 1.19 85.26

10att48-5 130.36 38.93 5.95 0.00 31.74 1.23 81.55

10gr48-2 9.25 2.26 0.21 0.00 2.04 0.01 90.50

10gr48-3 31.81 7.87 0.54 0.00 7.30 0.03 92.72

10gr48-4 39.36 9.62 0.60 0.00 8.96 0.06 93.10

10gr48-5 43.79 11.76 1.39 0.00 10.17 0.20 86.48

10hk48-2 273.81 69.58 3.29 0.00 66.15 0.14 95.07

10hk48-3 170.99 43.05 1.76 0.00 41.19 0.10 95.66

10hk48-4 35.98 9.64 1.04 0.00 8.51 0.09 88.28

10hk48-5 92.75 24.49 1.57 0.00 22.84 0.08 93.27

11berlin52-2 2.28 1.06 1.03 0.00 0.00 0.02 0.37

11berlin52-3 67.95 16.48 0.95 0.00 15.48 0.05 93.91

11berlin52-4 27.96 7.19 0.44 0.00 6.72 0.04 93.41

11berlin52-5 19.57 5.17 0.46 0.00 4.66 0.05 90.16

11eil51-2 200.63 48.72 1.39 0.00 47.29 0.03 97.08

11eil51-3 100.95 24.48 0.98 0.00 23.47 0.03 95.85

11eil51-4 142.50 37.00 1.94 0.00 34.95 0.11 94.45

11eil51-5 33.19 8.25 0.36 0.00 7.87 0.02 95.42

12brazil58-2 33.00 7.94 0.96 0.00 6.95 0.03 87.51

12brazil58-3 56.51 13.29 0.93 0.00 12.31 0.06 92.60

12brazil58-4 32.61 8.62 1.00 0.00 7.53 0.09 87.35

12brazil58-5 3.48 1.06 0.52 0.00 0.44 0.10 41.55

14st70-2 876.36 222.60 6.73 0.00 215.47 0.39 96.80

14st70-3 1071.01 264.38 4.16 0.00 260.10 0.12 98.38

14st70-4 354.16 87.56 1.86 0.00 85.61 0.08 97.78
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Table 5.2 – continued from previous page

name total-t sep-t sec-t 4pec-t pec-t comb-t %pec

14st70-5 429.46 113.03 5.51 0.00 106.96 0.57 94.63

16eil76-2 160.97 38.04 1.72 0.00 36.27 0.04 95.36

16eil76-3 71.48 17.47 0.80 0.00 16.64 0.03 95.24

16eil76-4 173.67 43.19 1.11 0.00 42.03 0.05 97.31

16eil76-5 274.12 69.50 1.87 0.00 67.52 0.12 97.15

20gr96-2† 7200.00 1901.87 44.02 0.00 1857.29 0.56 97.66

20gr96-3† 7200.00 1862.37 38.38 0.00 1823.22 0.77 97.90

20gr96-4 5467.42 1428.08 48.45 0.00 1378.35 1.28 96.52

20gr96-5 6495.00 1643.50 35.00 0.00 1607.79 0.71 97.83

20kroA100-2 4291.87 1091.52 22.62 0.00 1068.47 0.42 97.89

20kroA100-3 4225.89 1060.29 14.82 0.00 1044.91 0.56 98.55

20kroA100-4 5057.47 1300.82 28.19 0.00 1271.60 1.04 97.75

20kroA100-5 6368.98 1606.81 20.13 0.00 1585.98 0.70 98.70

20kroB100-2 3389.43 841.28 12.24 0.00 828.79 0.25 98.52

20kroB100-3† 7200.04 1838.03 33.81 0.00 1803.14 1.08 98.10

20kroB100-4 3120.43 778.88 9.44 0.00 769.15 0.29 98.75

20kroB100-5 3397.49 883.26 24.75 0.00 857.50 1.01 97.08

20kroC100-2† 7200.00 1821.34 15.18 0.00 1805.91 0.25 99.15

20kroC100-3 3052.62 747.14 10.82 0.00 736.09 0.23 98.52

20kroC100-4 1009.37 250.86 4.82 0.00 245.88 0.16 98.01

20kroC100-5 2839.31 713.70 11.93 0.00 701.39 0.38 98.28

20kroD100-2† 7200.00 1852.91 33.91 0.00 1818.46 0.54 98.14

20kroD100-3 6287.9 1671.43 50.47 0.00 1619.66 1.30 96.90

20kroD100-4 4716.98 1190.26 18.79 0.00 1170.92 0.55 98.38

20kroD100-5 2669.25 671.32 13.10 0.00 657.78 0.44 97.98

20kroE100-2 4718.14 1204.19 24.14 0.00 1179.63 0.41 97.96

20kroE100-3 4737.91 1147.37 24.29 0.00 1122.59 0.49 97.84

20kroE100-4 2624.53 641.08 17.04 0.00 623.69 0.35 97.29

20kroE100-5 1892.52 476.91 10.32 0.00 466.24 0.35 97.76

20rat99-2 65.57 12.65 12.55 0.00 0.02 0.09 0.15

20rat99-3 2416.98 583.46 14.15 0.00 569.01 0.30 97.52

20rat99-4 6091.56 1414.13 140.03 0.00 1245.85 28.26 88.10

20rat99-5 3165.79 747.76 46.84 0.00 693.47 7.45 92.74

20rd100-2† 7200.00 1846.05 37.12 0.00 1808.40 0.52 97.96

20rd100-3 3815.24 969.42 23.26 0.00 945.69 0.47 97.55

20rd100-4 3273.97 826.82 16.76 0.00 809.60 0.46 97.92

109



Table 5.2 – continued from previous page

name total-t sep-t sec-t 4pec-t pec-t comb-t %pec

20rd100-5 2513.41 643.81 15.04 0.00 628.22 0.55 97.58

21eil101-2 2100.39 519.56 10.63 0.00 508.75 0.19 97.92

21eil101-3 4245.95 1069.99 18.31 0.00 1051.25 0.43 98.25

21eil101-4 906.82 227.88 7.48 0.00 220.15 0.25 96.61

21eil101-5 682.82 172.40 4.07 0.00 168.13 0.19 97.52

21lin105-2 86.33 21.14 20.93 0.00 0.03 0.18 0.15

21lin105-3† 7200.00 2047.88 380.14 0.00 1566.72 101.02 76.50

21lin105-4 3609.22 903.74 19.51 0.00 883.49 0.74 97.76

21lin105-5† 7200.00 1890.67 45.87 0.00 1843.24 1.56 97.49

†optimality was not verified within a time-limit of 7200 seconds.

The results indicate that the proposed branch-and-cut algorithm can solve in-

stances involving up to 105 targets with modest computation times. The preprocess-

ing algorithm in Sec. 5.5.1 was applied to 53/116 instances. The time taken by the

preprocessing algorithm is not included in the overall computation time. The pre-

processing algorithm reduced the size of these instances by 6 targets on average and

the maximum reduction obtained was 14 targets. We observe that the instances that

have a larger number of violated path elimination constraints take considerably large

amount of computation time. The last column in table 5.2, whose average is 73%,

indicates the percentage of separation time spent for finding violated path elimina-

tion constraints. This is not surprising because the time complexity for identifying

violated path elimination constraints in (5.19) and (5.20) given a fractional solution,

is O(|T |5) and O(m|T |4) respectively. The average number of T-comb inequalities

that were generated in the enumeration tree were larger for some of the bigger in-

stances (see table 5.1). They were effective, especially in tightening the lower bound

for the instances that were not solved to optimality; for the instances where violated

T-comb inequalities were separated out, the average linear programming relaxation
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gap improvement was 18%. They were also useful in reducing the computation times

for larger instances despite increasing the computation times for smaller instances.

Overall, we were able to solve 108/116 instances to the optimality with the largest

instance involving 105 targets, 21 clusters and 5 depots. For the instances not solved

to optimality within the time limit of 7200 seconds, the LP-rounding heuristic was

effective in generating feasible solutions within 2.1% of the best feasible solution, on

average.

5.7 Conclusion

In summary, we have presented an exact algorithm for the GMDTSP, a problem

that has several practical applications including maritime transportation, health-

care logistics, survivable telecommunication network design, and routing unmanned

vehicles to name a few. A mixed-integer linear programming formulation including

several classes of valid inequalities was proposed the facial structure of the polytope

of feasible solutions was studied in detail. All the results were used to develop a

branch-and-cut algorithm whose performance was corroborated through extensive

numerical experiments on a wide range of benchmark instances from the standard

library. The largest solved instance involved 105 targets, 21 clusters and 4 depots.

Future work can be directed towards development of branch-and-cut approaches

accompanied with a polyhedral study to solve the asymmetric counterpart of the

problem.
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6. CONCLUSION AND FUTURE WORK

In conclusion, this thesis has tried and succeeded to an extent to address a few

challenges, combinatorial in nature, that arise in using multiple small unmanned and

autonomous vehicles for monitoring and data gathering applications. In particular,

we identified four distinct challenges namely, communication capabilities, dynam-

ics, different sensing capabilities, and fuel restrictions of each of the vehicles and

formulate combinatorial optimization problems, one for each challenge. We have

developed numerically efficient algorithms to compute an optimal solution to each

problem using a general branch-and-cut paradigm that has been used to solve combi-

natorial optimization problems, more specifically, mixed-integer linear programming

problems. We note that this paradigm has been successfully used in the literature

for over a decade to solve mixed-integer linear programs that frequent in other fields.

The problems considered in this thesis are formulated in a way to make them suitable

for applying this framework directly. Furthermore, some theoretical results devel-

oped in this work generalize some that are already available and can be adapted and

used to solve variety of other problems of similar nature.

We have managed to just scrape the surface in addressing a few issues standalone

that occur in these applications, let alone considering these challenges together. Fu-

ture work can be focussed towards combining these challenges, formulating similar

problems and studying the scalability of the developed algorithms. Some immedi-

ate generalizations that can be addressed in the framework presented in this thesis

include:

i introducing capacitated and asymmetric versions of the MDRSP,

ii extending the approach to include vehicles with different dynamics in the HMDMTSP
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and the GMDTSP,

iii considering vehicles with different fuel capacities in the FCMDVRP,

iv imposing a global connectivity constraints for the FCMDVRP, and

v combining the HMDMTSP and the FCMDVRP to a single problem.
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[9] Tolga Bektas, Günes Erdogan, and Stefan Røpke. Formulations and branch-

and-cut algorithms for the generalized vehicle routing problem. Transportation

Science, 45(3):299–316, 2011.
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José Salazar González. The ring star problem: Polyhedral analysis and exact

algorithm. Networks, 43(3):177–189, 2004.
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