
SKETCHSEEKER : FINDING SIMILAR SKETCHES

A Thesis

by

JAIDEEP RAY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tracy Hammond 
Co-Chair of Committee,  Aakash Tyagi   
Committee Member, Hye-Chung Kum 
Head of Department, Dilma Da Silva

May 2016

Major Subject: Computer Science

Copyright 2016 Jaideep Ray

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/79652652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

Searching is an important tool for managing and navigating the massive amounts

of data available in today’s information age. While new searching methods have be-

come increasingly popular and reliable in recent years, such as image-based search-

ing, these methods are more limited than text-based means in that they don’t allow

generic user input. Sketch-based searching is a method that allows users to draw

generic search queries and return similar drawn images, giving more user control

over their search content. In this thesis, we present Sketchseeker, a system for index-

ing and searching across a large number of sketches quickly based on their similarity.

The system includes several stages. First, sketches are indexed according to efficient

and compact sketch descriptors. Second, the query retrieval subsystem considers

sketches based on shape and structure similarity. Finally, a trained support vector

machine classifier provides semantic filtering, which is then combined with median fil-

tering to return the ranked results. SketchSeeker was tested on a large set of sketches

against existing sketch similarity metrics, and it shows significant improvements in

both speed and accuracy when compared to existing known techniques. The focus

of this thesis is to outline the general components of a sketch retrieval system to find

near similar sketches in real time.
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1. INTRODUCTION

Sketching is a universal form of expression. Humans can render any object on

any kind of surface using sketching, and with touch devices becoming an increasingly

integral form of communication, it is important that sketch-based systems be applied

to more domains. Searching is one domain where sketching is a relatively new form

of input. The amount of data to search through increases every day, and while

text-based querying is fast and flexible, image-based searching can be a bit limiting.

Using sketch similarity, we can search across large numbers of drawings while still

allowing the user maximum flexibility over their query.

In this thesis, we describe a sketch retrieval engine, SketchSeeker, for querying

by sketch content. Efficient sketch indexing and querying is an important aspect

of sketch-based image searching, but it is still a difficult problem to solve despite

recent interest in this area by multiple search engines. This work focuses specifically

on sketch indexing and querying as it relates to sketch retrieval. Sketch retrieval

is a relatively new field, but it has widespread applications and can enable more

sketch-based interactions. For instance, in addition to its potential applications in

sketch-based image searching, it can also be used for finding clip art or indexing an

enormous number of sketches in a database.

SketchSeeker is a single system which combines three distinct subsystems. The

first such subsystem is the sketch-indexing stage. In this stage, we describe a method

for optimizing storage of sketches in a database using a highly-compressed, search-

able representation. The sketch descriptors, which consider both shape and structure,

along with the compression, performed using a deep auto-encoder architecture, make

retrieval significantly better in terms of time and space complexity when compared
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to other known methods. The second subsystem is query retrieval. Similar sketches

are returned based on their shape and structure according to their distance from the

query shape in a kD-tree, as bound by an empirical threshold. The final component

is a ranker, which sorts retrieved sketches based on two layers of filtering. First,

semantic filtering is performed on the search results using a Support Vector Machine

(SVM) classifier which returns the most likely label for each sketch. After the fil-

tering based on most likely semantic meaning is complete, a median filter is used to

eliminate any outliers before returning the final result set.

The remainder of this thesis is laid out as follows. First, we discuss the related

works to SketchSeeker. Since sketch retrieval is similar to many other searching

problems, and this solution relies upon many different components for portions such

as sketch descriptor, semantic filtering, and ranking, there are a multitude of related

works from varying domains. An additional section on sketch similarity itself follows

previous works in order to motive SketchSeeker more clearly and set it apart from

existing methods. Next is a more detailed description of the system and its com-

ponents, divided into the three primary subsystems previously discussed. Results

and a discussion are then provided to compare SketchSeeker against other similarity

metrics and evaluate its retrieval performance. The thesis closes by considering fu-

ture work and conclusions. There are three appendices to the thesis detailing a brief

introduction and theory to SIFT, SVM based classification and Autoencoders. There

are figures in the thesis which represent query retrieval results from sketchseeker. In

these figures, the first sketch should be assumed to be the query and the rest are

retrieved results. Figure 1.1 shows us several different classes of human drawn object

sketches.

2



Figure 1.1: Human drawn object sketches. The dataset consists of 250 such classes
of object sketches each having 80 sketch. This collection of sketches has classes
airplanes, alarm clock, bell, angel, axe, book, bowl and candle.

3



2. RELATED WORKS

Sketch retrieval overlaps with a number of other areas. In addition to the con-

nection with searching and classification, it relies heavily on sketch compression and

representation, as well as similarity metrics. Most previous work in the area of sketch

searching has been based on approximate matching using a sketch descriptor. The

focus of these papers was the accuracy of the descriptor in capturing sketch fea-

tures. To name just a few, these descriptors include shape context, Scale-Invariant

Feature Transform (SIFT) descriptors, Hausdorff metric, and Fisher vectors. The

next section provides a more directed discussion of similarity metrics and shape de-

scriptors, but much of the relevant work related to sketch recognition, classification,

categorization, and retrieval is mentioned below.

2.1 Sketch Recognition

Sketch Recognition is the algorithmic recognition of hand drawn sketches. It

consists of many different algorithms, some designed for specific domains and oth-

ers designed for general recognition. It is primarily feature-based recognition, but

features extracted from a sketch may be visually, geometrically, or modality based.

Rubine [21] features are the most well known geometric sketch features. Rubine

features have been extended for sketch recognition algorithms in multiple domains.

The One Dollar recognizer can detect multiple geometric shapes using corner detec-

tion algorithms and Rubine features [34]. Topological information about sketches

have also been used for recognition. This approach works well with sketches having

multiple spatial components like chemical bonds or complex electrical circuits [17].

Ladder [12] is a language to describe how sketched diagrams in a domain are drawn,

displayed and how recognition algorithms can be written for that domain [12].
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2.2 Template Matching

Template matching aims at finding similarities between a given sketched figure

and the query. While template matching has very broad applications, in sketch-

related domains, it has primarily been applied to geometrical shapes and engineering

drawings [1],[28],[27]. While template matching can be very effective at identifying

if two sketches are similar geometrically and have a set structure, it is important

to remember that human object sketching is highly varied. As a result, template

matching methods that work well with geometric shapes may fail in the case of free

hand sketches.

2.3 Classification for Sketching

Multiple techniques for image classification have been applied to hand drawn

sketches with some success. SIFT, Fisher vectors, and such descriptors have been

used for sketch classification [7],[6],[10],[8],[9]. SIFT, short for Scale-Invariant Feature

Transform, and Fisher vectors are techniques for encoding an image according to its

gradient. Blocks of the image are described by the direction of change relative to

the cardinal and intermediate directions, eight orientations in total. There have

also been some attempts to do a classification-driven analysis which can predict the

semantic aspects of sketch [23].

2.4 Multi-modal Search

Here, multi-modal search refers to searching by sketching across different domains.

The sketched lines are taken as the input query and used to retrieve media files,

images, or 3D shapes [18] [11]. While there has been some interest in multi-modal

searching, sketch retrieval has not been as explored [25].
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2.5 Sketch Retrieval

Sketch-to-sketch retrieval is a known problem but has not been well-explored.

The popularity of stylus-based and touch devices have made sketching an impor-

tant means of digital communication, further emphasizing the importance of sketch

understanding in domains like search. Sketch matching and retrieval has various ap-

plications such as trademark logo matching [22], handwriting recognition, or general

searching on sketch-based interfaces or general stylus-based surfaces. Sketch retrieval

according to shape topic has been employed in Mindfinder [26] [33].

2.6 Sketch Representation

Also relevant to sketch retrieval is the representation method of a sketch. Sketches

can be very large to store and search through when considering all of the raw point

data, so for retrieval, it is important to have a representation that balances compres-

sion with the complexity needed to accurately represent a sketch. Methods like SIFT

descriptors [14] and Fisher vectors [24] are forms of representing sketches according

to different kernels. Further, shape context descriptors, introduced in [2], have been

shown to capture the shape information of a sketch effectively. While all of these

generate a searchable representation of sketches, such descriptors are huge matrices,

and it is difficult to work with them in their original form. An approach to compress

shape context descriptors for efficient shape matching has been discussed in [2]. In

[16], Oltmans introduces a new vision-inspired feature for representing sketches. This

”Bullseye” feature uses a sliding window algorithm to generate a circular histogram

of an image which may be used for match finding.
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3. SKETCH SIMILARITY

A sketch retrieval system must have an indexing and a matching framework.

Indexing involves generating a compressed sketch representation, while matching

relies on some similarity metric to find the nearest sketches. In this section, we

provide a more detailed discussion of some of the indexing and matching methods

relevant to SketchSeeker.

Ideally, the indexing framework of a retrieval system will allow for a very com-

pressed representation of a sketch, while still maintaining the ability to effectively

match. The matching framework defines similarity between two sketches and should

be symmetric.

dist(A,B) = dist(B,A)

dist(A,A) = 0

3.1 Hausdorff Distance

One common method for evaluating how well sketch A matches sketch B is Haus-

dorff distance [15], a cost metric defined by the following two equations:

DA = min
b∈PB

(|a− b|), a ∈ Pa

Hd(A,B) = max(max(Da),max(Db))

Hausdorff distance measures how far the shapes are from being isometric. Here

PA&PB represent the cloud of points for sketch A and sketch B. DA represents the

min distance from a point in PA to a point in PB. Hausdorff metric tries to capture

the similarity between shapes of two cloud of points. It considers each sketch as a

7



cloud of points, which we achieve by obtaining about 100 samples of points randomly

from the sketched drawings. Unfortunately, Hausdorff is a pairwise match evaluator,

so to use it within a retrieval system’s matching framework, it must scan through

all the sketches to find the best match. This is computationally expensive, time

consuming, and inefficient in terms of storage. Furthermore, Hausdorff distance is

not very stable regarding outliers or noise. This is an important factor since we are

dealing with user drawn sketches of natural objects.

3.2 Feature Descriptors

A more feasible approach to indexing and matching is based on feature descrip-

tors. Such descriptors are widely used in computer vision problems and image match-

ing, so we should consider them when matching sketches. Feature descriptors encode

certain features about a sketch like topological information of the sketch (connect-

edness amongst components), geometry (shape), or local features like corners or

curvature.

It is a challenging task to detect what kinds of features will work best for match-

ing sketches. Certain feature descriptors are invariant to scale, rotation or affine

transformations and may work really well for matching human sketches of everyday

objects. The key issues are detecting the feature points, encoding them effectively,

and matching them, which may not correspond directly with techniques used for

images. Much work has been done recently on content-based image retrieval [5], but

images have rich description, color, texture, and shape whereas sketches have shape,

temporal, and spatial stroke information only. We use adapted feature descriptors

for SketchSeeker.

Image feature descriptors can be broadly classified into three categories:

1. Geometric Geometric feature descriptors try to capture the shape related in-

8



formation of an image, e.g. corners and sharp curves. There are well known

feature descriptors in this area like Histogram of Gradient (HOG), SIFT, etc.

Geometric feature descriptors have often been used in object categorization.

2. Hash-based This is also known as geometric hashing where small image patches

from different parts of the image are hashed into numbers. If there is a

high match between such local patches of images determined by matching the

hashes, then they must have similar visual content.

3. Semantic-based Semantic hashing builds feature descriptors based on the data.

It uses deep neural network to encode similar images to a similar compressed

representation. Small images are compressed to short binary codes using deep

auto-encoding.

Feature descriptors can also be classified according to whether they are global or

locally. Local features describe a localized region of a sketch whereas global features

describe something about the entire sketch.

3.3 Shape Context Descriptors

Shape context is a geometric, global feature descriptor. Shapes are very discrim-

inative features of sketches, making this a useful descriptor in terms of indexing and

matching sketches. Shape context feature descriptors are constructed using a radial-

based window which constructs a histogram based on which regions of the sketch are

in the radial bins [2] [16]. This method of construction is largely resistant to noise

and outliers.

SketchSeeker uses shape context descriptors as just one component of sketch

matching. Because these feature descriptors can also consume a lot of space when

stored for a large number of sketches, we also work with a highly-compressed version
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of shape context. Figure 3.1 shows the shape context description of two sketches,

and Figures 3.2 and 3.3 show the calculated costs and similarity of matching the

sketches.

Figure 3.1: Shape context descriptors extraction; figure shows how a sketch is sam-
pled into a cloud of points before feature extraction.

3.4 SIFT Feature Descriptors

For reliable description or for tasks like recognition or retrieval, it is important

that the features extracted from an input are invariant to scale change, small noise,

or small affine transformations. SIFT is one such algorithm from computer vision

which has been widely used for object recognition [19]. SIFT is geometric and local

and attempts to extract key points of an input, for instance, corners in a sketch.

Figure 3.4 shows the SIFT key-point descriptor matching.
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Figure 3.2: Shape context matching cost as described in [3]

One of the successful uses of SIFT features for sketch recognition has been done

by Eitz et al [6]. They extracted SIFT features from sketches and trained a support

vector machine (SVM) classifier to categorize sketches. SketchSeeker has a similar

approach, using SIFT as one portion of the indexing stage and an SVM classifier

for semantic understanding during the ranking stage. SIFT is highly compressed for

SketchSeeker and paired with shape context to give more information about the input

sketch; by splitting SVM classification into a single stage of the ranker, ranking can

be performed considering other metrics. Figure 3.5 shows us the inter class similarity

on object sketch category legs and arms. Figure 3.6 depicts the intra class similarity

in airplanes.
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Figure 3.3: Sketch similarity by shape context matching as described in [3]

Figure 3.4: SIFT key-point descriptor matching. The blue regions have matched
keypoints.
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Figure 3.5: Inter-class similarity on legs and arms. Top - Legs and feet, Bottom -
Arms and hands

Figure 3.6: Intra-class variation in airplanes
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4. METHODOLOGY

4.1 Problem Formulation

The problem is that, given an input query sketch, we must retrieve a collection of

very similar sketches from the database. Similarity is defined according to both shape

and semantic meaning, what the object is intended to represent. Queries should be

resolved quickly, and the database representation should be as storage-efficient as

possible.

4.2 Sketch Dataset

SketchSeeker uses a dataset consisting of 20,000 human drawn sketches of every-

day objects. The dataset consists of 250 classes each having 80 sketches. As seen in

Figure 3.5, there is some ambiguity introduced by the similarity of the objects being

represented, referred to as interclass similarity. Futhermore, humans draw diversely

while drawing the same object which causes intraclass variation; see Figure 3.6 for

an examples with the airplane class. Sketches can also be noisy. We use a dataset

of 20,000 sketches to capture as much variance, similarity, and noise as possible so

that SketchSeeker can be made invariant to scale and noise while still maintaining

discriminative capabilities between objects.
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5. IMPLEMENTATION DETAILS

SketchSeeker accepts an input query and returns a set of nearest similar sketches

from the database. It splits the task into three primary components - Indexing,

Retrieval, and Ranking. Each stage is addressed in greater detail in this section.

First, sketch images are indexed in the database. This process involves comput-

ing feature descriptors and substantially compressing the representation for storage.

Second, retrieval is performed by finding the nearest neighbors to a query sketch in

a searchable, multi-dimensional map of the sketches in the form of a kD-tree. Third,

the ranker considers the results based on their shape context and SIFT matches, along

with semantic meaning as determined by an SVM classifier. Finally, the ranked re-

sult set is provided as output to the user. Figure 5.1 shows the sketch seeker design.

5.1 Indexing

5.1.1 Introduction

During indexing, we compute compact codes to represent a sketch. Making sketch

representations, also called sketch signatures, heavily compressed while still main-

taining enough complexity to be searched effectively is the most significant aspect of

indexing. Compression speeds up the matching process, yielding faster queries, and

saves storage space, but because we try to match the sketch signature of a query

sketch to the sketch signatures of sketches in the database, severe compression can

reduce accuracy. The similarity between two such codes or sketch signatures should

represent the similarity between sketch descriptors of the corresponding sketches.

SketchSeeker attains massive compression levels by combining both and shape con-

text and SIFT information into the signature, which is compacted with minimal data
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Figure 5.1: Sketch seeker design

loss by a deep auto-encoder.

5.1.2 Feature Extraction

A sketch is made up of multiple strokes. To describe a sketch completely we should

consider both its appearance, e.g. shape, and the important stroke features which

are captured in key-points like corners. SketchSeeker uses shape context descriptors

to represent the overall shape of a sketch. To represent stroke features, we use

SIFT descriptors. During the indexing process, these features are extracted from

each sketch in the database, which can be done in parallel to boost efficiency of the

system.

5.1.3 Pre-processing

We pre-process the sketch descriptors by vector quantization. We first sample

the sketches to 100 points. Shape context descriptors are 60 dimensional vectors,
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and since each sketch has 100 such descriptors, it becomes a 100 x 60 matrix. SIFT

descriptors are 128 dimensional vectors, and each sketch has a different number of

SIFT key-points depending on the strokes. So, SIFT descriptors are (number of key-

points) x 128 matrix. We consider around 5,000 randomly-chosen SIFT key-point

descriptors as the candidate set to build a vocabulary, discussed in the next step.

SIFT features are extracted using the VLfeat library [32]. We vertically concatenate

the descriptors from all the sketches to form a composite shape context matrix and

SIFT context matrix.

5.1.4 Vocabulary Building and Binning

To compress the sketch descriptors we build a separate vocabulary for each kind

of descriptor and express the descriptors in terms of this vocabulary. Vocabulary

building involves clustering all the descriptors and forming a vocabulary of all chosen

cluster centers. The next step involves assigning the descriptor to an index of the

cluster center to which they belong; we use approximate nearest neighbor k-means to

cluster the descriptors. After vocabulary building, we need to encode the descriptors

with respect to this vocabulary. In the case of SIFT, where the number of key-points

varies from sketch to sketch, we need to bin the sketch descriptor to get uniform

size representation. Figure 5.2 outlines the steps involved in descriptor quantization

and encoding. The detailed algorithm to determine the descriptor vocabulary is as

follows:

1. Sample s points from the sketch.

2. Determine the feature descriptors of the sketch using these s points. Each shape

context descriptor is a n dimensional vector (n = 60). Each SIFT descriptor is

an m dimensional vector (m = 128). Binning is performed to make the number

17



of descriptors equal for each sketch. The sketch is represented as a collection

of all feature descriptors.

3. Now, we perform an Approximate Nearest Neighbor (ANN) k-means clustering

to determine cluster centers and cluster formations of the shape context vectors.

4. The number of cluster centers C determines the size of the vocabulary. The

shape context vectors are assigned the index of the closest cluster center.

5. We now represent each sketch as a collection of shape context descriptors which

are just labels of cluster centers (integers from 1, 2, .., C).

6. The shape context descriptor becomes just a single histogram of cluster label

frequencies. These frequency histograms have length |C|.

Figure 5.2: Descriptor quantization and encoding
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We used a value of C = 600, for our experiment. A value of 600 makes the

representation space-intensive and a large data-set of sketches cannot be stored in-

memory with this representation.

5.1.5 Auto-encoding

We use a deep auto-encoder from the Dimensionality Reduction Toolbox [29]

to learn compressed representations of the quantized shape contexts. A deep auto-

encoder is a composition of two symmetrical neural networks, where the first half

represents the encoding layer and the second half represents the decoding layer. The

layers are restricted Boltzmann machines. In our case, the input to the deep auto-

encoder is a C-length vector, and C = 600 for SketchSeeker. A sample encoding

layer would look like:

600 → 780 → 450 → 200 → 10

The auto-encoder learns a vector of 10 numbers from a 600 length shape context

descriptor. This vector is the encoded version of input. The second part is performing

the opposite of this network and decodes the input from this encoded version of 10

numbers.

The detailed encoder steps are listed below.

1. The deep auto-encoders compress the shape context descriptors (size C) into a

vector of p floating numbers where p << C. We have tested our implementation

with p = 10, 16.

2. The deep neural network is stored to be used in the query retrieval stage.

3. After encoding, each sketch is represented by a vector of p floating point num-

bers. This representation serves as the signature/index to the sketch.
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4. We store all such signatures in another kD-tree for efficient look-ups of nearest

neighbors.

Figure 5.3: Indexing

The main idea behind learning these codes is that similar codes correspond to

similar sketches. Figure 5.3 shows the entire indexing pipeline including the autoen-

coding.

5.1.6 Efficiency

The data structure used to store the signatures should be efficient in time and

space for the retrieval of nearest neighbors to a given query. We use a kD-tree to

store all the sketch signatures.

In terms of timing complexity, indexing is essentially an offline process, so it does

not affect real time retrieval latencies. Still, indexing performance is vital for large
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sketch databases. The major steps contributing to time complexity are the vocab-

ulary building and auto-encoder training. The vocabulary building is dependent on

the runtime of the approximate nearest neighbor k-means clustering algorithm. It

is also dependent on the vocabulary size and max number of iterations allowed for

convergence, which is 600 in SketchSeeker’s case.

Regarding storage space, we need space proportional to the number of sketches.

Because each sketch is represented by 10 numbers, SketchSeeker makes it possible

to store very large sketch databases completely in-memory. Without this level of

compression, the database could require an enormous amount of storage space. The

Hausdorff metric must store all the stroke points. Shape context requires the number

of stroke points multiplied by 60 descriptors per sketch, and as mentioned before,

SIFT varies in size based on the number of key-points. Each key-point will require

128 numbers. Clearly, SketchSeeker’s method makes significant gains in terms of

storage efficiency through its multi-layered indexing approach.

5.1.7 Sketch Clustering Visualization

Before final evaluation, we also performed a visual analysis of our sketch descrip-

tors to ensure their validity. We used clustering by plotting the descriptors on a 2D

plane and visually checking if similar sketches are clustered together and dissimilar

ones are plotted far apart. This can be done by reducing the dimensionality of the

sketch descriptors using t-SNE [30] to only two dimensions and plotting the points.

This exercise was performed for both sketch descriptors, and Figure 5.4 displays the

results of clustering the cup dataset.
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Figure 5.4: Sketch clustering - a few representative sketches from each cluster are
shown.

5.2 Query Formulation and Retrieval

5.2.1 Introduction

The next major stage of SketchSeeker is query retrieval. This requires indexing

the queried sketch according to the indexing stage so that similar matches can be

found in the kD-tree.

5.2.2 Pre-processing

We compute the shape context descriptor and SIFT descriptor for the query

sketch. We use the same pre-processing steps to quantize the query sketch as before

so that it becomes a sketch signature that may be compared with the stored sketches.
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5.2.3 Query-formulation

We form two queries, one based on shape context descriptor and another based

on SIFT descriptors. The first tries to seek out sketches which are similar in outer

shape and the second one searches sketches which have similar internal structure.

These two queries can be fired in parallel.

5.2.4 Retrieval

We use the queries to search for the nearest neighbors in the kD-tree containing

all sketch signatures based on shape context descriptor and SIFT descriptor. Now,

we have two sets of retrieved sketches based on the descriptors.

Figure 5.5: Query retrieval

The detailed steps are below.
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1. Extract the shape descriptors and SIFT descriptors from the input sketch and

quantize it using the method mentioned in the indexing section. It will be a

constant time one-time look-up operation since we already have the kD-tree

with all cluster centers in memory.

2. Use the trained auto-encoder to get the compressed representation of the quan-

tized shape descriptor.

3. This compressed representation will serve as the signature of the sketch and

our query.

4. We search for n nearest neighbors of the query sketch in the shape context

kD-tree and SIFT kD-tree. This number n’ is defined empirically. We experi-

mented with n = 25.

5. We use both these result sets as input to the ranker to form our final result

set.

The nearest neighbors are sketches which are structurally similar to the query

sketch as the descriptors cover both outer shape and internal key-points. But struc-

ture cannot be the only parameter for retrieving sketches. User hand drawn sketches

have a semantic meaning associated with them. They may be sketches of commonly

used objects, animate or inanimate entities. Apart from searching by shape, we need

to factor in the semantic meaning of sketches to have better precision. We pass on

the retrieved results to the ranker in order to get the final merged resultant set. The

query results also have some meta-data information – the descriptor name and cor-

responding distance to the query sketch based on that descriptor. Figure 5.5 shows

the retrieval steps.
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5.3 Ranker

5.3.1 Introduction

We designed our ranker system to rank and filter the nearest neighbor sketches

to the query. We filter the result set by determining the object category of the query

sketch, which is determined by a trained SVM classifier. This is paired with median

filtering on the shape context and SIFT result sets based on matching distance to

generate the final results. The ranking parameters for a result are below.

1. Semantic meaning of query sketch.

2. Shape context distance from query sketch s

3. SIFT distance from query sketch d

5.3.2 SVM Sketch Classifier

We have tweaked the open-source Caltech 101 classifier for classifying sketches.

The classifier uses dense SIFT descriptors and spatial histograms, and in our case, it

was trained on the sketch dataset provided by TU Berlin. As mentioned previously,

this dataset has 250 categories each having 80 sketches in them. We use 15 sketches

per category to train the classifier and 15 for testing. Figure 5.6 shows the training

phase for svm sketch classifier. The trained model is stored in memory to use during

the ranking phase.

The SVM classifier takes the sketch as input and returns the likely object cat-

egories with associated scores; we select the top three classes and filter the results

based on these classes. Sketches in the database have already been given a label.

Either it has been provided as a pre-determined one, or the sketch is given the label

which the majority of its nearest neighbors have. Then, using the labels with the
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Figure 5.6: SVM classifier training

database sketches, if none of the labels output by the SVM match against a partic-

ular sketch, it is discarded from the result set. Predicting multiple-labels instead of

one improves our overall retrieval quality as the classifier gets the correct semantic

meaning in the top three labels with much higher accuracy than it would given only

one label (which averages about 65% accuracy).

5.3.3 Median Filtering

Ranking is done in three steps. After the first stage, the semantic filtering using

the SVM classifier described above, we examine the distances of the SIFT and shape

context descriptors. These distances are stored in the metadata of each sketch in the

result set. By taking the median distance, we remove all sketches in that result set

(SIFT or shape context) that are outside the bound defined by that distance. This

trims the result set to a much closer group of nearest neighbors. In the final step,
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these result sets are merged by a union operator which yields the final set of results

presented to the user. Figure 5.7 outlines the ranking pipeline.

Figure 5.7: Ranker stage overview
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6. RESULTS AND DISCUSSIONS

To measure the performance of our system, we evaluated in terms of both effi-

ciency and sketch retrieval accuracy.

6.1 Efficiency

A sketch retrieval system working in real-time must have a low-latency sketch

matching system. The basic unit of a sketch matching system is the average time

taken to compute similarity between two sketches. We consider the latency of our

system against those for three of the most popular matching methods used today:

Hausdorff distance comparison, shape descriptor matching, and sift descriptor match-

ing. Table 6.1 shows the average matching latency for all four of the methods tested.

Search Method Median Average Std Dev

SketchSeeker 1.8 1.9 0.43
Hausdorff Retrieval 192.5 195 16
Uncompressed Shape Descriptors 290.2 297 18

Table 6.1: Latencies of each sketch matching metric. Note that Hausdorff and shape
context descriptors must search through the entire database pairwise. Here we see
the improvements provided by SketchSeeker over the pairwise-based matching.

The latency was computed as the average time across 100 sketch queries, including

both simple and complex shapes. Note that while SketchSeeker can match against

all sketches in the database in a single query, the other metrics match against each

sketch in the database, leading to dramatically slower query times that are unsuitable

for real-time systems.
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A more interesting metric is comparing the latency of SketchSeeker for a complete

database search against a single matching operation in the other metrics. Again, we

compute the latency for the three other popular matching methods, but we only

consider the time taken for determining one match. The results, shown in Table 6.2,

Method Median Average Std Dev

Hausdorff Retrieval 502 514 15
Uncompressed Shape Descriptors 913 923 115
Uncompressed SIFT Descriptors 80 83 6

Table 6.2: Latencies of each sketch matching metric but only considering a single
sketch match in the case of every method other than SketchSeeker.

show how SketchSeeker scales to an enormous database of sketches by performing a

database-wide search in nearly the time other metrics take to consider a single pair.

These results show significant speed advantages to searching through large sketch

databases using SketchSeeker, but there are also storage advantages. As mentioned

before, SketchSeeker requires only a few numbers to represent a sketch along with a

trained autoencoder network. The other methods require more storage space, or as

in the case of Hausdorff, the entire sketch.

6.2 Retrieval Accuracy

We compare the results of a SketchSeeker retrieval against those generated by

the Hausdorff distance metric and shape descriptors. To do this, we perform a query

in SketchSeeker which will return a set of K nearest neighbors based on a threshold.

We then use the same query sketch and scan through the entire database of sketches

calculating the top K sketches based on Hausdorff distance and shape descriptors.

This is a time-consuming process, as seen in the previous section on latencies, but
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it approximates the output of SketchSeeker by finding nearest neighbors using only

the Hausdorff or shape descriptor metrics.

The precision metric computed is based on the similarity of the result set to

the input query and the associated class labels. Similar sketches of one of the three

potential classes are considered as true positives, while sketches which are not similar

and do not match the actual query sketch’s label are considered as false positives.

This enables us to generate a precision metric, although it is worth noting that we

are not performing classification in this case, meaning other classification metrics

will not be applicable.

As seen in Table 6.3, SketchSeeker attains a higher precision than the other

metrics, especially Hausdorff. Hausdorff metric may work reasonably well on simple-

shaped sketches, but the precision drastically goes down with complex sketches.

Shape descriptor works well on sketches where outer shape is the most distinctive

feature; it falters considerably in sketches where internal structure is important.

SketchSeeker performs the best of all three in every case. This indicates the usefulness

of considering both the outer shape and internal structure of the sketches when

matching.

Search Method Median Average Std Dev

SketchSeeker 87.5% 80% 25%
Hausdorff Retrieval 20% 25% 18%
SketchSeeker without SIFT keypoints matching 85% 74% 30%

Table 6.3: Precision of the result set for multiple metrics, including SketchSeeker.

Also, from Table 6.3, we see that the results suffer from a high standard deviation.

This is due to the varying complexity of sketches. By looking at the entropy of the
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sketches in this dataset, we see that some are very simple, perhaps needing only

outer shape to identify them, while others are highly complex with a lot of internal

structure. However, we see that the median precision is higher than the average

for SketchSeeker. This indicates that while complex sketches may account for a lot

of variation and be difficult to match, most of the time, sketches will be midway

between simple and complex, and in these cases, SketchSeeker performs quite well.

This analysis of the standard deviation is only interesting in regards to precision;

we did not see the effects of complexity in the latency evaluation since the lookups

require the same amount of time no matter the sketch content.

Further, consider the case of overtracing, which may often be the case for novice

sketches. In Figure 6.2 we see the sensitivity of the shape descriptor to overtracing.

Even though the general shape is fairly accurate around the edges, the extra strokes

lead to sketches with more complexity. When the shape is relatively simple with no

overtracing, Hausdorff and shape can be fairly accurate, although Hausdorff is not as

sensitive to overtracing as seen in Figure 6.1. SketchSeeker performs well regardless,

being largely insensitive to the limits of the other metrics like scale, outliers, and

overtracing; see Figure 6.3. More results show that in the case of noisy sketches our

approach works much better than both the other distance metrics as well. Note that

in all query retrieval figures, the first sketch shown is always the query sketch.

In sketches having a rich inner structure, both Hausdorff and shape context de-

scriptors fare poorly, whereas SketchSeeker again outperforms. See Figures 6.4, 6.5,

6.6, 6.7, and 6.14 for examples.

A complicated sketch category is ’arm’. It does not have a fixed shape and has

features like muscles, fingers, and an elbow. Shape query retrieval precision for ’arm’

sketches are low, but the SIFT query retrieval precision is high. Figure 6.8 shows

a query with an arm. The predicted labels for this category are ’arm’ and ’foot’,
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Figure 6.1: Apple sketch matched by Hausdorff metric.

again reminding us of interclass similarity. SketchSeeker also performs well in this

category, showing it handles the interclass and intraclass complications better than

the other methods. Figure 6.9 shows a query with a foot.
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Figure 6.2: Apple sketch query retrieval by SketchSeeker using shape context de-
scriptor alone; note the false positives due to shape context descriptor matching of
overtraced strokes
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Figure 6.3: Apple sketch query retrieval by SketchSeeker.

Figure 6.4: Results of pumpkin retrieval by SketchSeeker based on shape descriptors
alone; note the false positives due to inner structure of pumpkins.
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Figure 6.5: Results of pumpkin retrieval by SketchSeeker.

Figure 6.6: Results of bag sketch retrieval based on uncompressed shape descriptor
matching alone
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Figure 6.7: Results of bag sketch query retrieval by SketchSeeker; compare the results
with uncompressed shape descriptor matching in Figure 6.6.

Figure 6.8: Arms sketch retrieval by SketchSeeker.
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Figure 6.9: Foot sketch retrieval by SketchSeeker.

Figure 6.10: Ant sketch retrieval by SketchSeeker, another complicated category.
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Figure 6.11: Angels sketch retrieval by SketchSeeker.

Figure 6.12: Bags sketch retrieval by SketchSeeker.
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Figure 6.13: Airplanes sketch retrieval by SketchSeeker. Here we do see false positives
in the result set, likely owing to the multiple components of the query sketch. For
instance the rotor element of the sketch could introduce similarity to a shape like
the antenna.

Figure 6.14: Alarm clock sketch retrieval by SketchSeeker.
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7. FUTURE WORK

There are several interesting areas of research related to SketchSeeker which we

would like to develop further. The first one is whether we can combine the global

shape descriptor and local SIFT descriptor to come up with an entirely new descriptor

for the index structure. The current indexing process is time consuming due to the

long deep auto-encoder training phase. We would like to investigate some parallel

approaches to speed it up. Also, we would like to investigate giving sketches a better

semantic meaning than the one described in this thesis, since the SVM classifier is

somewhat limited in its capabilities. Finally, we would like to better our confidence

parameters by focusing more on the semantic meaning of sketches. In consideration

of the broader field of sketch recognition, it is important to note that we have not

explored the temporal information of a sketch’s strokes in this thesis. Temporal

information is widely used in sketch recognition application, and classification based

temporally on strokes might lead to a feature in the matching framework in the

future.
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8. CONCLUSION

In this thesis, we described SketchSeeker, a sketch retrieval system for finding

sketches similar to a given query sketch. We use both shape context descriptor and

SIFT key-point descriptor in the matching framework. These sketch representations

are then heavily compressed using deep auto-encoding and stored in a kD-tree for

enormous improvements in storage and speed efficiency. Finally, we rank the result

set retrieved for an input sketch by the semantic meaning of the query paired with

median filtering on the distance of the matches to the query sketch.

Our approach towards sketch retrieval closely follows the design for any generic

text or image retrieval system. The three subsystems described in our work – in-

dexing, retrieval, and ranking – can be extended to design a domain-specific sketch

recognition system which can be used for specific tasks like logo/trademark retrieval,

engineering drawing retrieval, clipart finding, or multi-modal searching systems. Fur-

thermore, the nearest neighbor search technique could be used to provide real-time

suggestions for stroke completion to a user of a sketch-based interface. Overall, we

show that SketchSeeker is a highly efficient sketch retrieval system in terms of time

and space which obtains excellent similarity results for general input query sketches.

With its compression, speed, and accuracy, it has many potential extensions for

further application in specific sketch domains.
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APPENDIX A

SIFT DESCRIPTOR

A SIFT feature [31] is a selected image region (also called keypoint) with an asso-

ciated descriptor. Keypoints are extracted by the SIFT detector and their descriptors

are computed by the SIFT descriptor. It is also common to use independently the

SIFT detector (i.e. computing the keypoints without descriptors) or the SIFT de-

scriptor (i.e. computing descriptors of custom keypoints). A SIFT descriptor is a

of the image gradients in characterizing the appearance of a keypoint. The gradient

at each pixel is regarded as a sample of a three-dimensional elementary feature vec-

tor, formed by the pixel location and the gradient orientation. Samples are weighed

by the gradient norm and accumulated in a 3-D histogram h, which (up to nor-

malization and clamping) forms the SIFT descriptor of the region. An additional

Gaussian weighting function is applied to give less importance to gradients farther

away from the keypoint center. Orientations are quantized into eight bins and the

spatial coordinates into four each, as follows : Fig A.1

Figure A.1: SIFT bins [31]
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APPENDIX B

SUPPORT VECTOR MACHINES

B.1 SVMs for classification

SVMs are well suited for general purpose pattern recognition. Given a set of

points which can be linearly classified, a linear support vector machine finds the

hyperplane leaving the largest possible fraction of points of the same class on the

same side of plane while maximizing the distance of either class from hyperplane.

SVM is thus called a maximal margin classifier. As a maximal margin classifier it

is well suited for computer vision based recognition [20] [4] as the maximal margin

minimizes the risk of misclassifying the instances in the training set but also the

not yet seen instances of the test set. The high dimensionality of the problem space

makes SVMs especially well suited for the problems.

B.2 SVM kernel trick

As wikipedia says, Kernel methods owe their name to the use of kernel functions,

which enable them to operate in a high-dimensional, implicit feature space without

ever computing the coordinates of the data in that space, but rather by simply

computing the inner products between all pairs of data in the feature space. This

operation is often computationally cheaper than the explicit computation of the

coordinates. This approach is called the ”kernel trick”. Kernel functions have been

introduced for sequence data, graphs, text, images, as well as vectors.

B.3 Feature Extraction

We use SIFT features extracted from the sketches as the feature set for each

training sketch.
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APPENDIX C

DEEP AUTOENCODER

An autoencoder takes an input xϵ[0, 1]d and first maps it to a hidden representa-

tion yϵ[0, 1]d. This is done through the help of an encoder. This latent representation

y is now decoded back to a reconstruction z which is of the same shape as x. z is a

reconstruction of x given a hidden representation y. The reconstruction error can be

computed as mean squared error. The the code y is a distributed representation that

captures the coordinates along the main factors of variation in the data x. If there is

one linear hidden layer (the code) and the mean squared error is used as the recon-

struction error and this criterion is used to train the network, then the k hidden units

learn to project the input in the span of the first k principal components of the data.

If the hidden layer is non-linear, the auto-encoder behaves differently from PCA, with

the ability to capture multi-modal aspects of the input distribution. This property of

capturing multi modal aspects make autoencoders far more powerful than PCA and

this effect becomes pronounced when we consider stacking multiple encoders (and

their corresponding decoders) when building a deep auto-encoder [13]. y the hidden

layer representation of x is considered to be a lossy compression of x. A denoising

autoencoder forces hidden layer to discover more robust hidden features by trying

to learn and reconstruct the input from a corrupted version of it. The denoising

auto-encoder is a stochastic version of the auto-encoder. A denoising auto-encoder

does two things, encode the input and try to undo the effect of a corruption process

stochastically applied to the input of the auto-encoder.

49



C.1 Introduction

A deep autoencoder is a multilayer neural network which is typically composed

of two symmetrical deep belief networks that have a few layers representing the

encoding half of the net, and the second set of layers making up the decoding half.

The layers are restricted Boltzmann machines, the building blocks of deep belief

networks.

C.2 Architecture

C.2.1 Encoding

An encoder in a deep auto-encoder will have multiple layers. The compressed

feature vector y represents the distributed representation of input x.

C.3 Decoding

The second symmetrical deep belief network is that of a decoder. It is the part

that learns to reconstruct the input. It does so with a second feed-forward net which

also conducts back propagation. The back propagation happens through reconstruc-

tion error.

C.4 Hashing and Compression

Let the compressed feature vector y be of size n i.e the net produces a vector if n

numbers after encoding. This n-number vector is the last layer of the first half of the

deep autoencoder, the pre-training half, and it is the product of a normal Restricted

Boltzmann machine. These n numbers are the compressed representation of input

data. It can also be used as similarity preserving hash code. The similarity between

hash codes gives the similarity between input data they represent.
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