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ABSTRACT 

 

Genetic selection for animal health and disease resistance has been limited, likely due to 

the challenges of performing controlled studies with an industry relevant phenotype. 

Studies in large populations of animals of unknown relationship pose challenges for 

genome wide association studies of disease resistance. The aims of this project were to 

characterize variation in the bovine major histocompatibility complex (BoLA), a specific 

region of the bovine genome known be critical for development of immune response, 

and then investigate individual variation in host immunity to a specific viral pathogen of 

cattle, bovine viral diarrhea virus (BVDV).  

 

Cattle “homozygous” for BoLA were identified from approximately 2,000 head of 

Holstein calves in large genome wide association studies. Cattle were genotyped on the 

Illumina BovineHD SNP chip and PHASED for the characterization of BoLA 

haplotypes. Among 160 “homozygous” animals, we identified 38 different haplotype 

groups. The 38 haplotype groups maintained the structure predicted by earlier studies 

that identified 50K SNP haplotypes, but demonstrated that more diversity is present 

among these 38 BoLA haplotype groups than was indicated by the 50K haplotypes. 

Among the 1,221 SNPs genotyped on the HD chip were 230 SNPs with no calls in at 

least one of the 160 homozygous animals. The no call SNPs are located predominately in 

regions predicted to contain copy number variation, and no call SNPs appear to likely 

mark regions of polymorphic structural variation otherwise undetected in the SNP 
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defined haplotypes. This structural variation may be important for future genome 

association studies. 

 

Cattle diseases are often difficult to diagnose due to presentation with different disease 

phenotypes, ranging from subclinical to lethal. Likewise, immune response to 

vaccination is also variable and may be related to individual differences in disease 

susceptibilities. To evaluate individualized response to BVDV vaccination, we evaluated 

protection afforded by commercial vaccines against a BVDV challenge. The results from 

the BVDV challenge study indicate that measuring antibody titer as a response to BVDV 

vaccination may not be predictive of a protective immune response. Rectal temperature 

alone for health classification missed up to 50% of animals with subclinical disease.  

 

Variation in host immunity appears to underlie the response to pathogens and likely to 

vaccination as well. Host differences in immunity between Bos indicus and Bos taurus 

cattle were evaluated subsequent to BVDV vaccination. Differences in baseline immune 

cell counts were observed. Indicine cattle had higher white blood cell counts primarily 

influenced by the 2-fold higher neutrophil levels. Response to vaccination was primarily 

observed as an innate immune response with an increase in neutrophils. The largest 

change was in neutrophil response observed in the taurine calves. Immunosuppression 

from the modified live vaccination was greater in the indicine calves compared to taurine 

calves. However, a combination of vaccination protocols appear to mitigate the 

immunosuppression observed in the indicine cattle. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Animal agriculture currently faces many challenges related to animal health and disease 

(WAGNER 2000; SJEKLOCHA 2013; SMITH 2013; REED 2015) as the industry is forced to 

find alternatives to antibiotics, both feed grade and over-the-counter antibiotics for 

treatment (SJEKLOCHA 2013; BELKNAP 2015). Animal health and disease is an issue that 

impacts production, product quality, and the public perception of the livestock industries 

(WAGNER 2000; SMITH 2013; JAYNES 2015). The annual cost of disease to the beef 

industry is nearly impossible to estimate but is thought to range in the multi-billions of 

dollars annually. A single disease, Bovine respiratory disease (BRD), has been estimated 

to cost the U.S. cattle industry from 750 million dollars to upwards of 3 billion dollars 

annually (GRIFFIN 1997; SNOWDER et al. 2006; HOLLAND et al. 2010; VARGA 2015). 

Brucellosis cost the industry an estimated 400 million dollars in the early 1950s, but with 

implementation of eradication programs the estimated annual cost to the industry is now 

less than 1 million dollars (SELEEM et al. 2010). The annual economic loss to Johne’s 

disease in cattle is estimated at 200 to 250 million dollars (OTT et al. 1999).  

 

Public perception of disease outbreaks can devastate an industry and cost millions of 

dollars as was experienced with the bovine spongiform encephalopathy (BSE) outbreak. 

The 2004 outbreak of BSE has been estimated to cost the U.S. 3.2 to 4.7 billion dollars 

through loss of export markets and recalls on retail products (PENDELL et al. 2007). 
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Many of the challenges facing the beef industry can be addressed by cattle genetics 

(WAGNER 2000), but the role(s) of genetics in these complex phenotypes remains to be 

determined. Decisions about genetic selection are made in the cow-calf sector of the 

industry (WAGNER 2000), yet many of the major disease and health issues facing the 

industry occur in other sectors of the beef industry. Improving our understanding of the 

mechanisms that control disease susceptibility in cattle can enhance the use of genetic 

selection to improve animal health and to develop more effective preventatives, such as 

vaccination, for benefits at all levels of cattle production.  

 

The focus of the research presented in this dissertation was two-fold: (1) to elucidate 

genetic variation in the bovine major histocompatibility complex (MHC) that may 

underlie many disease and immune response phenotypes and (2) to evaluate variation in 

host immunity to commercial vaccinations and subsequent viral challenges that model 

respiratory disease. Genomic association studies with complex traits present with many 

challenges. In a recent genomic association study for bovine respiratory disease 

complex, the genetic association analysis did not reveal associations of clinical score 

with the MHC (NEIBERGS et al. 2014). This result is somewhat surprising as variation in 

the MHC is frequently associated with a variety of disease susceptibilities and immune 

phenotypes. The first goal was to investigate the ability of SNPs present in BoLA on the 

BovineHD SNP chip to capture variation among diverse BoLA haplotypes. The second 

half of the dissertation is focused on characterization of immune response and vaccine 

protection, which could be used to identify the genetic signatures that are predictive of 
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key pathways for immune protection (FURMAN AND DAVIS 2015). The second goal was a 

field trial to evaluate protection from commercial vaccinations against a bovine viral 

diarrhea virus (BVDV) challenge and to determine if current metrics for diagnostics of 

viral infections can identify diseased animals. The third goal was to compare variation in 

host immune responses between Bos taurus indicus and Bos taurus taurus calves 

vaccinated with commercial BVDV vaccines.  

 

Genetics of Cattle 

Cattle (bovines) have been used by humans for thousands of years as draft animals, for 

their resources (hides and fertilizer), and primarily as food sources of milk, blood, and 

meat (ELLIS AND HAMMOND 2014). Bovines are even-toed ungulates that belong to the 

order Cetartiodactyla (BURT 2009). Members of the Cetartiodactyla are estimated to 

have appeared nearly 60 million years ago, and domesticated cattle likely diverged from 

a common ancestor 250 thousand years ago (BURT 2009; CONSORTIUM 2009). Two 

extant sub-species, Bos taurus taurus and Bos taurus indicus, originated from the 

common ancestral aurochs, Bos taurus primigenius (BURT 2009; CONSORTIUM 2009; 

PORTO-NETO et al. 2013; DECKER et al. 2014). The two sub-species originally occupied 

geographically divergent regions, with indicine cattle found in the Indus Valley of India 

and taurine cattle in the Fertile Crescent of what is now Iraq (CONSORTIUM 2009; 

PORTO-NETO et al. 2013). A second domestication occurred within taurine cattle to 

produce the African taurine cattle (MCTAVISH et al. 2013; DECKER et al. 2014). Since 

the initial domestications, cattle derived from the two sub-species have undergone 
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various selection pressures to enhance specific production traits and generate almost 800 

different cattle breeds (BURT 2009; VILLA-ANGULO et al. 2009; PORTO-NETO et al. 

2013). Cattle breeds have been highly influenced by the challenges of the geographical 

regions of origin, as indicine cattle are notably known for drought and heat tolerance 

(MCTAVISH et al. 2013; RAMEY et al. 2013; DECKER et al. 2014). 

 

The phenotypic diversity observed among contemporary breeds of cattle come from 

unique evolutionary histories and geographical dispersal and isolation (DECKER et al. 

2014), leading to unique combinations of genes among breeds (BLOTT et al. 1998; 

RAMEY et al. 2013). The development of recognized breeds and the presence of strong 

artificial selection within breeds has caused some concern for preservation of original 

genetic diversity present in the ancestral aurochs (RAMEY et al. 2013). Conflicting 

reports exist in the scientific literature as to which of the contemporary bovine sub-

species is more genetically diverse (CONSORTIUM 2009; PORTO-NETO et al. 2013). This 

controversy may arise from breed biases on the SNP chips used to assess diversity, as 

SNPs have been selected from two predominate breeds, Angus and Holstein, and two 

Hereford reference sequences (RAMEY et al. 2013; DECKER et al. 2014), all of which are 

taurine breeds. Whether improvements in production traits will continue as genetic 

variation is reduced is a growing concern (VILLA-ANGULO et al. 2009). 

 

Genome wide association studies (GWAS) for improved feed efficiency, reproduction, 

growth and performance, and other traits are providing tools for enhanced selection for 
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improvement in quantitative traits (SAATCHI et al. 2014). Breed differences, especially 

differences between indicine and taurine breeds, affect stress response as well as the 

acute immune response (HUGHES et al. 2014). Other reported breed differences include 

susceptibility to BRD, where cross-bred calves have an advantage over purebreds 

(SNOWDER et al. 2006). Indicine breeds have the largest advantage with reduced 

incidence rates for BRD, resistance to ticks and parasites (MORAN et al. 1996; CUSACK 

et al. 2007). Little to no selection pressure has been implemented for animal health or 

disease resistance and susceptibility, primarily due to the lack of genetic-associations for 

selection in population studies. This may be partially due to the complexity of 

phenotypes, complications and expense of collecting quality data, and limitations to 

understanding the genetic mechanisms that underlie immune response and disease 

resistance.  

 

Results of GWAS for complex production traits like feed efficiency are population 

dependent and the identified SNPs often account for only a small proportion of the 

phenotypic variance (SAATCHI et al. 2014). Similar observations have been published for 

disease studies (SNOWDER et al. 2006; NEIBERGS et al. 2011; VAN EENENNAAM et al. 

2014). Some genetic regions identified in disease resistance/susceptibility were based on 

segregation in pedigreed families (UNTALAN et al. 2007) but such results are difficult to 

replicate in studies of unrelated populations (NEIBERGS et al. 2014; CASAS et al. 2015). 

One of these regions is the bovine major histocompatibility complex also known as the 

Bovine Leucocyte Antigen (BoLA) complex. GWAS is used to directly identify 
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genomic variants that are associated with phenotypic traits, especially those that are 

difficult and costly to measure. Gene markers have been associated with a number of 

traits, yet the region tagged by any one of these markers accounts for a very small 

proportion of the total phenotypic variance, suggesting that undiscovered variants 

account for the remaining phenotypic variance or that the traits are controlled by many 

more QTLs than originally thought (MANOLIO et al. 2009; SADEE 2012; ZAITLEN AND 

KRAFT 2012; ZUK et al. 2012; VINKHUYZEN et al. 2013; MONTE AND VONDRISKA 2014; 

SADEE et al. 2014). SNPs alone do not appear to be able to identify all of the genomic 

variation underling complex phenotypes, suggesting that gene-gene interactions or 

structural variants unmarked by SNPs may be responsible for some of the missing 

variance (ZUK et al. 2012). 

 

Major Histocompatibility Complex Structure 

The major histocompatibility complex (MHC) was first described in mice (GORER AND 

SCHUTZE 1938; SNELL 1948). It has since been described in many vertebrates and nearly 

all mammals in some detail (KELLEY et al. 2005; KAUFMAN 2011). The bovine MHC 

was described in the late 1970’s (AMORENA AND STONE 1978; SPOONER 1978) and was 

later renamed the bovine leukocyte antigen, BoLA (SPOONER 1979). The BoLA complex 

is a gene-dense region located on bovine chromosome 23, and composed primarily of 

genes associated with immune response or disease susceptibility (TAKESHIMA AND AIDA 

2006; MIYASAKA et al. 2011). BoLA is divided into three regions, classes I, II, and III, 

based on gene content and displays remarkable conserved synteny with the MHCs of 
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other mammalian species (KELLEY et al. 2005), as illustrated in Figure 1.1. The 

organization of BoLA differs from that of other mammals at the class II region. The 

BoLA class II region has apparently been disrupted by a large inversion to place a 

portion of the class II region, called IIb, near the centromere, separated from the main 

MHC region by approximately 20 Mb of non-MHC DNA (CHILDERS et al. 2006). The 

BoLA class IIa region contains the functionally expressed DQ and DR genes and is 

tightly linked to the class II and class I regions, creating a diverse cohort of MHC 

haplotypes composed of more than 230 translatable genes (DAVIES et al. 1997). The 

classical genes of BoLA class I and IIa are under diversifying selection and are the most 

polymorphic genes in mammalian genomes. A sizable portion of variation in BoLA class 

I and IIa regions has been attributed to deletions and duplications, CNV and segmental 

duplications, resulting in a number of different gene configurations (ELLIS et al. 1999; 

BABIUK et al. 2007; HOU et al. 2012a; SCHWARTZ AND HAMMOND 2015). Different gene 

configurations may result in varied immune responses that have not previously been 

detected by SNPs.  

 

Class IIa receptors are encoded by four pairs of genes: DQα and β, DRα and β, DNα and 

β, and DOα and β, (BECK AND TROWSDALE 1999; KELLEY et al. 2005; BAKER et al. 

2006). Class I and IIa genes have been the focus to understand the immune function of 

the MHC. MHC class IIa region, composed of functionally expressed DQ and DR genes, 

is tightly linked to the class I region creating a diverse cohort of MHC haplotypes 

(DAVIES et al. 1997). MHC class II alleles are redundant and highly polymorphic, 
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enhancing the repertoire of epitopes that an individual can recognize (NORIMINE AND 

BROWN 2005). Class II DQα and β and DRβ are the most polymorphic genes in the 

bovine MHC, similar to other species (ANDERSSON et al. 1986). Five different DQα and 

β loci and three DRβ loci have been identified, though the number of DQα loci is 

somewhat controversial (ANDERSSON et al. 1988; BALLINGALL et al. 1998; GELHAUS et 

al. 1999b). Most haplotypes express two DQα and β loci and one DRβ functionally 

expressed gene, the number of DQ genes is shown to vary with haplotype (ANDERSSON 

et al. 1988; GELHAUS et al. 1999a; GELHAUS et al. 1999b; TAKESHIMA AND AIDA 2006). 

To date, 106 DRβ3, 46 DQα, and 52 DQβ alleles have been reported (NORIMINE AND 

BROWN 2005; BAXTER et al. 2009).  Bovine MHC class I is composed of at least 10 

classical and non-classical genes and pseudogenes; four of these genes are transcribed 

but their expression is highly variable among individuals (BABIUK et al. 2007). The 

variation in the classical class I genes expressed in bovine are greater than those reported 

in other species (ELLIS AND HAMMOND 2014). At least 120 distinct class I sequences 

have now been identified and deposited into the Immuno Polymorphism Database for 

cattle (http://ebi.ac.uk/ipd/mhc/) (TAKESHIMA AND AIDA 2006; ROBINSON et al. 2010; 

ELLIS AND HAMMOND 2014). Allelic polymorphisms are associated with the antigen-

binding region which is used to define the specificity of the acquired immune response 

and for haplotype identification (BALLINGALL et al. 1998).  Polymorphic MHC genes 

and variation in the MHC haplotypes contributes to the diverse range of immune 

responses. 
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Figure 1.1 Comparative Map of BoLA from Radiation Hybrid Panel aligned to 
HLA. Figure from (BRINKMEYER-LANGFORD et al. 2009). 
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Polymorphisms  

The MHC contains some of the most polymorphic genes in mammalian genomes. High 

levels of polymorphisms expressed in the antigen presenting genes of the MHC 

contribute to the diverse immune responses developed to host pathogens and individual 

variation of expressed immune response (BABIUK et al. 2007). Polymorphisms in BoLA 

class I and II genes influence the adaptive immune response through peptide processing, 

transport and binding, antigen presentation, and cytokine networks to play a central role 

in the development of an effective immune response (TAKESHIMA AND AIDA 2006; 

MIYASAKA et al. 2011). SNPs associated with vaccine immunity and disease 

susceptibility in the HLA class II genes determine the specificity of the immune 

response and play a role in conferring disease susceptibility (ORANGE et al. 2011; 

MCKINNEY et al. 2013; WU et al. 2013). Similarly, SNPs and insertion/deletion 

polymorphisms have been associated with variation in individual cattle (SCHRIDER AND 

HAHN 2010). The frequencies of polymorphic alleles differ among breeds and might 

account for breed differences in the specificity, intensity or duration of the immune 

response, producing a diversity of immune phenotypes (BAXTER et al. 2009; MIYASAKA 

et al. 2011).  

 

Haplotype Structure 

The haplotype structure across the MHC is conserved in most mammals, however cattle 

and other ruminants are unique in the expression of multiple DQα and DQβ loci, which 

may contribute to the variation in the immune phenotypes (SCOTT et al. 1987; 
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ANDERSSON et al. 1988). At least four DQβ loci have been identified in cattle, and strong 

evidence exists for a fifth DQβ loci, but only two DQα and DQβ loci have been 

identified in any single haplotype (GELHAUS et al. 1999a; GELHAUS et al. 1999b; 

SCHWARTZ AND HAMMOND 2015). In haplotypes with single and duplicated versions of 

DQ loci, all genes appear to be functional (GELHAUS et al. 1999a; GELHAUS et al. 

1999b). The presence of a heterozygous DQ duplication may lead to increased diversity 

of immune phenotypes, and may explain some of the variation not previously identified 

by SNP-haplotypes. To support this idea, Gelhaus et al. suggested that in the 

polypeptides encoded by DQα5 and DQβ5 together in the same haplotype are able to 

form ”hybrid” DQ receptors with divergent immunological functions (GELHAUS et al. 

1999b). The presence of a duplication of DQ, increases the potential to amplify class II 

molecules expressed at the cell surface to produce inter- and intra-haplotype pairing of 

the alpha and beta chains (GLASS et al. 2000). Duplications of genes within given 

haplotypes might offer an advantage to the variation of the immune response mounted in 

cattle. In addition to the diversity of the DQ genes in BoLA class II region, there are six 

known class I classical MHC loci in bovine (ELLIS AND HAMMOND 2014; SCHWARTZ 

AND HAMMOND 2015). Between one and three class I genes are expressed in a haplotype, 

and the expression is not consistent from animal to animal (PARHAM 1999; TAKESHIMA 

AND AIDA 2006).  

 

Approximately 80 BoLA haplotypes have been identified using the 50K SNP genotyping 

platform in a diverse cohort of cattle breeds, primarily of taurine lineage (FRITZ 2009). 
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Individuals can have identical genotypes yet contain variants that are not identified by 

genotypes, such as sequence to sequence variation or possible copy number influences 

on gene expression, that allow for varied phenotypic specificities (USINGER et al. 1981). 

More than one copy of a gene may be expressed in some haplotypes and be unaccounted 

for by current SNP-based haplotype identification. Unmarked variation in copy number 

and gene expression might influence diversity in immune responses that are associated 

with a single haplotype (ELLIS et al. 1999). Absolute gene numbers have not yet been 

captured in the current haplotype identification system and polymorphisms in these 

genes may drive the variation that underlies association of BoLA haplotypes with 

immune phenotypes. 

 

Haplotype structure is more conserved between breeds within a subspecies group as 

opposed to breeds between subspecies groups (VILLA-ANGULO et al. 2009). However re-

sequencing of BoLA haplotypes to a depth sufficient for de novo assembly may be 

required to fully characterize the variation in the bovine MHC and document variation in 

gene content within haplotypes (BIRCH et al. 2006). Variation in BoLA class I 

haplotypes may indicate more variation is present than what has been captured by SNP-

defined haplotypes.  

 

Homozygous Animals 

Using DNA samples from individuals homozygous for the MHC greatly simplifies the 

studies of this highly complex region of the genome by removing the confounding 
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effects presented by high levels of polymorphisms and heterozygosity. This approach 

has been used in a number of studies in humans and cattle (COLLEN et al. 2002; 

NORMAN et al. 2015). Not only are samples from MHC homozygous individuals 

advantageous for understanding BoLA haplotypes, but they also simplify immunological 

studies. BoLA homozygous animals enable MHC allelic associations with epitope 

determinants to be studied (COLLEN et al. 2002). Identification of MHC alleles and 

haplotypes that display the largest repertoire of pathogen-derived epitopes, as well as 

those alleles that encode receptors that efficiently present antigens from the most 

prevalent strains of pathogens will optimize host immune response. In a study of 

homozygous animals, variation in the number of recognized epitopes was observed 

among individuals, but the immune response by animals within a DRβ3* haplotype was 

consistent (COLLEN et al. 2002). This suggest that the DRβ3* locus and haplotypes are 

important for the recognized haplotypes, but there are alternative genetic components 

that can affect the robustness of the epitope response. Understanding the MHC 

haplotypes that respond to an increased number of epitopes could serve as a genetic 

selection program for animals that have increased immunity to viral pathogens and 

strains for increased disease tolerance. In addition, identification of the most commonly 

recognized epitopes by individuals could be used to develop new vaccines and improve 

vaccine efficacy. 
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Structural Variation in the Genome 

The genome structure is constantly undergoing changes and rearrangements (ZHANG et 

al. 2009a; STANKIEWICZ AND LUPSKI 2010), however the phenotypic consequences of 

many structural changes are unknown. Genomic structural variation includes: CNVs, 

segmentation duplications, small insertions, duplications and deletions, inversions and 

translocations (FADISTA et al. 2010; STANKIEWICZ AND LUPSKI 2010). SNPs were 

originally thought to be the major source of individual phenotypic variation, but 

undefined structural variation contribute significantly to phenotypic diversity (REDON et 

al. 2006; FADISTA et al. 2010). CNVs account for more total sequence than SNPs and 

are large enough to encompass whole genes and sets of genes. Therefore, CNVs have a 

potential for more significant effects on evolution, fitness, and genetic diversity (REDON 

et al. 2006; ZHANG et al. 2009b; FADISTA et al. 2010; SCHRIDER AND HAHN 2010; HOU 

et al. 2012b). Characterization of genetic variation in livestock species is an important 

step towards linking genes or genomic regions with phenotypes (STOTHARD et al. 2011). 

Detection of CNVs in the immune specified region of the genome might explain 

variation in immune response. 

 

Copy Number Variation 

Redon et al. (2006) defined a CNV as 1 Kb or larger, however other studies have 

identified CNVs of smaller sizes (ZHANG et al. 2009a; CONRAD et al. 2010; DOAN et al. 

2012). Identified CNVs have included translatable genes, functional elements, and 

noncoding RNAs; many of which have not been associated with phenotypes (REDON et 
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al. 2006). The GC content associated with CNV regions has been shown to be slightly 

higher than the GC content of the whole genome, suggesting CNVs arise more 

frequently in gene-rich regions (FADISTA et al. 2010). The CNV detection resolution 

depends on the design of the array. This presents a challenge not only to detect CNVs 

but also to characterize expression and associate CNV changes with phenotypes. Now 

that arrays with higher resolution have been designed, smaller CNVs have been reported 

to be as frequent as large (>1 Kb) CNVs (FADISTA et al. 2010). Due to the design of 

SNP arrays, the smaller CNVs would not have likely been detected and therefore may 

not be accounted for in haplotype characterization. 

 

CNVs account for a significant source of variation in mammals (FADISTA et al. 2010). 

CNVs are associated with quantitative phenotypes and to be known causative for genetic 

disorders (FADISTA et al. 2010). However, little is known about CNV variation in 

relation to phenotypic diversity in the bovine immune response. The proportion of the 

genome with predicted CNVs varies between 2.3 and 4.2% among individual humans 

(TENNESSEN et al. 2012), suggesting that individual variation may be associated with 

differences in immune response (SCHRIDER AND HAHN 2010; HOU et al. 2012b; 

TENNESSEN et al. 2012). Pairwise comparisons of taurine and indicine cattle suggested 

that CNV differences between subspecies are greater than across breeds within a 

subspecies (BICKHART et al. 2012). Stothard et al. (2001) have shown that genomic 

regions enriched with CNVs are breed dependent, which may reveal regions under 

selection pressure. Breed specific CNVs may also be relevant to the unexplained 
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haplotype variation that exists between breeds. Disease resistance may be influencing 

selection pressure for the enriched immune function genes present in CNVs. CNV 

detection and variation may help interpret diverse expressed immune responses that have 

previously been associated with identical haplotypes. 

 

Association with Disease 

Variation in the MHC has been associated with individual differences in immune 

response and disease susceptibility in many species. At least 100 different diseases in 

humans have been associated with HLA (KULSKI et al. 2002; KELLEY et al. 2005). 

BoLA association may be more dependent on the type of immune response phenotype 

(humoral versus cell mediated or innate versus adaptive) used for the association 

analyses. Diversity of the MHC class I region may be more likely associated with 

intracellular immune response and disease resistance, while the class II region may be of 

increased importance for extracellular pathogen phenotypes and humoral immunity 

responses (ELLIS AND HAMMOND 2014). Disease association studies in cattle have shown 

large variability in BoLA genes associated with immune response. In cattle, alleles of 

class II are associated with animal-to-animal variation in susceptibility to hoof-and-

mouth disease, dematophilosis, mastitis, bovine leukemia virus, and tick resistance 

(LEWIN AND BERNOCO 1986; XU et al. 1993; DIETZ et al. 1997a; DIETZ et al. 1997b; 

SHARIF et al. 1998; UNTALAN et al. 2007; FADISTA et al. 2010; MIYASAKA et al. 2011). 

An indirect relationship between health and production traits was shown to depend upon 

which DRβ3 allele was present for mastitis resistance (OPRZADEK et al. 2012). BoLA 
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class II alleles DRβ3*2002 and DRβ3*0701 have been associated with BVDV-specific 

epitope responses in CD4+ T-cells (COLLEN et al. 2002). In some diseases, affected 

individuals share a common haplotype at a higher frequency than would be expected by 

chance, suggesting a haplotype association with disease susceptibility (TODD et al. 

1988). BoLA heterozygotes have an advantage of enhanced resistance and increased 

diversity of antigens presented and recognized (TAKESHIMA et al. 2008). Genetic 

variants of IFN-γ gene were reported to affect tick resistance in cattle (MARYAM et al. 

2012).  

 

Gene-by-Gene Interactions 

SNP-based genetic association tests primarily seek single SNP genetic association; 

however complex traits are not likely controlled by a single gene or even a few genes. In 

many species, including both humans and bovine, immune related paralogous gene 

regions are located on at least 3 other chromosomes in addition to the MHC (PARHAM 

1999). Evidence has been shown in human for an interaction between killer inhibitor 

receptors (KIR) and MHC haplotypes and associations with disease and immune 

regulation of viral infections (CAMPILLO et al. 2013; CARRILLO-BUSTAMANTE et al. 

2013; NEMAT-GORGANI et al. 2014). Similarly, cattle natural killer cell diversity is 

influenced by the MHC, indicating interaction between the natural killer receptors (KIR 

and killer cell lectin-like receptors (KLR)) with MHC class I haplotypes (ALLAN et al. 

2015). The interactions between KIR, KLR and the MHC class I haplotypes were 

reported to be independent of individual variation (ALLAN et al. 2015), suggesting that 
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epistatic variant interactions might not only account for unexplained variation but might 

also identify associations in phenotypes with large individual variation. Studying the 

interaction of immune related genomic variants may identify more variance associated 

with complex disease traits (ZUK et al. 2012). 

 

Bovine Respiratory Disease 

The second major objective of my dissertation research is the investigation of the 

variability in immune response of individual cattle exposed to BVDV and receiving 

BVDV vaccinations. Bovine respiratory disease (BRD) is the leading cause of mortality 

in cattle feedlots responsible for the single largest financial loss in the U.S. cattle 

industry for more than 20 years (SNOWDER et al. 2006; VARGA 2015). BRD is present in 

97% of large feedlots in the U.S. (DUFF AND GALYEAN 2007a), making it one of the 

most important diseases facing the U.S. beef industry, with an estimated annual 

economic impact of 750 million to 3 billion dollars (SNOWDER et al. 2006; DUFF AND 

GALYEAN 2007a; RICHESON et al. 2013b; VARGA 2015). Approximately 24.3% of 

weaned and mature cattle die from BRD, and 28.7% of all cattle deaths are associated 

with BRD (National Agriculture Statistics Service 2006). BRD accounts for 60-85% of 

the morbidity and up to 45-60% of mortality in feedlot cattle (FULTON et al. 2002; 

SNOWDER et al. 2006; RICHESON et al. 2013b; VARGA 2015).  

 

BRD is a multifactorial disease influenced by environmental effects and stressors, host 

response, and various bacterial and viral pathogens (DUFF AND GALYEAN 2007a; 
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SRIKUMARAN et al. 2007; MOSIER 2014). Stresses related to management, such as 

comingling, transportation, and processing of cattle, are associated with increased risks 

for BRD in calves (DUFF AND GALYEAN 2007a; RICHESON et al. 2013a; MOSIER 2014). 

Chronic stress, defined as stress that persists for days to weeks or longer (DHABHAR 

2008), suppresses the immune response (DHABHAR 2009; HUGHES et al. 2014) and 

detrimentally affects performance (CARROLL AND BURDICK SANCHEZ 2013). Stress can 

affect the host immune response and can increase disease if cattle are chronically 

stressed at critical times (HUGHES et al. 2014). High stress periods associated with 

feedlot operations often occur simultaneously with exposure to pathogens or vaccination, 

potentially suppressing the immune response. 

 

A causative pathogen associated with BRD has yet to be identified, due in part to a 

variety of pathogens detected in individual BRD cases (KLIMA et al. 2014). Multiple 

pathogens are often isolated during analysis of BRD cases (FULTON et al. 2006), 

complicating the identification of causative pathogens and the understanding of host-

pathogen interactions. Analysis of BRD lung and nasopharynx samples has shown that 

as many as 97% of cases have multiple candidate pathogens present at clinical diagnosis, 

suggesting that identification of a single pathogen associated with BRD may be an 

unrealistic objective (KLIMA et al. 2014). BRD has been associated with 5 or more viral 

and 3 or more bacterial pathogens. Viral pathogens identified as possible causative 

agents of BRD include: bovine herpesvirus-1, bovine respiratory syncytial virus, bovine 

viral diarrhea virus, parainfluenza-3 virus, and possibly bovine coronavirus (FULTON et 
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al. 2002; SRIKUMARAN et al. 2007; MOSIER 2014). Candidate bacterial pathogens 

associated with BRD include: Manheimia haemolytica, Pasturella multocida, 

Histophilus somni, and Mycoplasma bovis (SRIKUMARAN et al. 2007; MOSIER 2014). 

These viral and bacterial pathogens are also found in unaffected, healthy animals, 

suggesting that pathology resulting from exposure to pathogens or increased pathogen 

burden may be secondary and a consequence of some other predisposing factor(s). The 

most common viral pathogen found associated with bacterial pathogens in feedlot BRD 

is bovine viral diarrhea virus (BVDV) and BVDV exposure may be an early 

predisposing event in BRD (FULTON et al. 2002; KLIMA et al. 2014).  

 

Another challenge in the diagnosis and study of BRD is the range of clinical phenotypes 

observed among infected animals, the presence of subclinical phenotypes, and the 

excessive cost of well-defined phenotypes in animals for research. BRD is associated 

with changes in blood leukocyte profiles, in red blood cells and eosinophils (RICHESON 

et al. 2013b). The depletion of CD4 and CD8 T-cells by BVDV infections may create 

high at-risk individuals due to immunosuppression from the BVDV infection (RHODES 

et al. 1999; COLLEN AND MORRISON 2000; SRIKUMARAN et al. 2007).  

 

Bovine Viral Diarrhea Virus (BVDV) 

Bovine viral diarrhea virus (BVDV) is a positive-sense single-stranded RNA virus with 

a genome of ~12.5 KB and is a pestivirus of the Flaviridae family, first described in 

1946 (RIDPATH et al. 1994; CHARLESTON et al. 2002; LIANG et al. 2008; NEILL 2013). 
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BVDV has been characterized as highly heterogeneous based on phenotypic and 

genotypic differences in the virus (RIDPATH et al. 1994; RIDPATH 2005). BVDV exists as 

two biotypes, cytopathic and noncytopathic, established by infection status in cultured 

cells (RIDPATH et al. 1994; PETERHANS et al. 2003; CHASE 2013). The BVDV 

noncytopathic biotypes are most prevalent in livestock herds, and establish chronic 

infections that can result in persistently infected cattle (NEILL 2013). The presence of 

noncytopathic strains increases the challenge of identifying the viral pathogen in fetal 

bovine serum, as well as infected animals.  

 

Based on the 5’ untranslated region of its genome, the virus has two genotypes, type 1 

and type 2 (RIDPATH et al. 1994). Seventeen different BVDV type 1 isolates have been 

described worldwide, while 1a and 1b are the only isolates that have been reported in the 

U.S. (RIDPATH 2005; VILCEK et al. 2005; GIAMMARIOLI et al. 2015). Type 1b has been 

the predominant BVDV isolate isolated from infected cattle in the U.S., found at 45.8% 

of laboratory diagnostics (FULTON et al. 2002; FULTON et al. 2003; FULTON et al. 2005; 

RICHESON et al. 2013a). BVDV type 2 has fewer reported strains than type 1, with 2a 

and 2b isolates found in the U.S. (RIDPATH 2005). BVDV 2b is rarely isolated, while the 

other three (1a, 1b, and 2a) are found commonly in the field (RIDPATH 2005; VILCEK et 

al. 2005).  

 

BVDV is the most financially significant viral disease of cattle worldwide (ENDSLEY et 

al. 2004; LONERAGAN et al. 2005; JAYNES 2015). BVDV can present as an acute 
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infection or as persistently infected (PI). Noncytopathic BVDV can evade the innate and 

adaptive immune responses if transferred to the fetus during the first trimester of 

pregnancy to tolerize a calf to BVDV (COLLEN AND MORRISON 2000; BRODERSEN 

2014). If viral infection occurs within the first 120-day of pregnancy, it can lead to the 

birth of a PI calf, because the virus is able to permeate the placenta before any immune 

function has developed (BRUSCHKE et al. 1998a; PETERHANS AND SCHWEIZER 2013). PI 

calves will shed the virus throughout their lives and serve as viral reservoirs to infect 

other cattle. PI calves have often infected other cattle before being detected and removed 

from a herd.  

 

BVDV infections can produce diverse clinical and subclinical symptoms depending on 

the virulence of the BVDV strain, the reproductive and immune status of an individual, 

and the age of the animal (MARTIN et al. 1980; LIEBLER-TENORIO et al. 2003b; RIDPATH 

et al. 2006; RIDPATH et al. 2007; RIDPATH 2015). Classic signs of BVDV infection in 

addition to respiratory disease include: pyrexia, diarrhea, defects of the nervous, skeletal, 

and immune systems, reproductive failures and gastrointestinal disease (LONERAGAN et 

al. 2005; PALOMARES et al. 2014b; FULTON 2015; RIDPATH 2015). However, most acute 

BVDV infections are subclinical (CORAPI et al. 1989; PALOMARES et al. 2014a; RIDPATH 

2015), increasing the likelihood that BVDV outbreaks will go unnoticed unless 

combined with an environmental trigger or continual association with a PI animal. 

BVDV outbreaks impact the productivity and economic status of cattle populations 

(GLEW et al. 2003) and can arise from persistent or acute transient infection. Infection 
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caused by BVDV has been associated with host susceptibility, through 

immunosuppression and has been linked to secondary infections that ultimately lead to 

BRD (PETERHANS et al. 2003; PALOMARES et al. 2014b). The role of BVDV in BRD has 

not only been attributed to pathogen infection (often not observed), but also to the 

immunosuppression caused by BVDV, which increases susceptibility to other pathogens 

leading to BRD onset (CAMPBELL 2004; FULTON et al. 2006; RIDPATH et al. 2007). 

 

BVDV has been implicated in the development of BRD both serologically and by viral 

isolation in cattle diagnosed with BRD (FULTON et al. 2002). The probability of isolating 

BVDV from sick calves is significantly greater than the probability of isolating BVDV 

from healthy calves (FULTON et al. 2002). In addition, BVDV is commonly isolated 

from cattle with lung lesions or diagnosed with BRD (FULTON et al. 2000). Calves 

diagnosed with BRD in the presence of BVDV have required longer treatment times 

than cattle infected with other pathogens (FULTON et al. 2002). BVDV associations with 

BRD were demonstrated through experimental infection, isolation of virus or 

identification of pathogen in respiratory tissues, and active infection observed through 

seroconversion in BRD diagnosed cattle (FULTON et al. 2002).  

 

BVDV is known to affect both the innate and adaptive immune responses, but the 

specific effects have not been well characterized in virally-infected antigen presenting 

cells (LEE et al. 2009). Immunosuppression from BVDV infection is associated with 

reduced lymphocytes, increased leukopenia, decreased chemokine production, and 
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altered immune function (PETERHANS et al. 2003; LIANG et al. 2006; PALOMARES et al. 

2014b) and appears to be driven by loss of an effective T-cell response in infected 

animals (CHARLESTON et al. 2002; GLEW et al. 2003). One hypothesis for 

immunosuppression post BVDV infection may be the altered protein expression in 

infected cells, specifically antigen presenting cells, that may affect cell processes such as 

apoptosis, and antigen uptake, processing, and presentation (LEE et al. 2009). 

Differences in the effects of BVDV on imune cells and cytokine production is correlated 

with the biotype of the infective pathogen. Certain strains of BVDV utilize mechanisms, 

primarily the down regulation of TLR-receptors to prevent antiviral IFN production and 

induce immunotolerance (PETERHANS et al. 2003; PETERHANS AND SCHWEIZER 2013). 

The viral Erns protein acts as a decoy receptor, and the Npro (N-terminal protease) inhibits 

IFN expression, as part of the mechanisms to evade the host immune response 

(PETERHANS AND SCHWEIZER 2013). BVDV infects numerous cell types, lymphoid and 

myeloid cells but specifically attacks T-cells, B-cells, and antigen-presenting cells 

(BRUSCHKE et al. 1998b; PETERHANS AND SCHWEIZER 2013), through the bovine cellular 

receptor CD46 (MAURER et al. 2004). CD46 is a complement regulator that protects host 

cells from complement and has been associated with a number of other diseases, 

including BVDV (MAURER et al. 2004; LISZEWSKI AND ATKINSON 2015). Certain 

BVDV strains suppress MHC class II expression (GLEW et al. 2003; CHASE 2013) and 

down-regulate MHC class I proteins in BVDV infected monocytes, leading to decreased 

antigen presentation to helper T-cells and reduced phagocytosis activity (LEE et al. 

2009). Virulence of the BVDV infective strain can alter the Th1/Th2 response observed 
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post BVDV challenge (LIEBLER-TENORIO et al. 2002; PALOMARES et al. 2014a). CD4 T-

cells appear to be more important than cytotoxic CD8 T-cells in the clearance of BVDV, 

as depletion of CD4+ T-cells resulted in increased viremia (COLLEN AND MORRISON 

2000; COLLEN et al. 2002; LIEBLER-TENORIO et al. 2003a).  

 

High levels of BVDV immunity prior to entering the feedlot is frequently associated 

with protection against viral disease, improved productivity and greater economic 

benefits (FULTON et al. 2006); however the methodology necessary to achieve an 

effective immune response to BVDV is not well-defined and remain a significant issue 

for the feedlot industry. Both humoral and cell-mediated immune responses are capable 

of providing protection against respiratory infection (BAUERMANN et al. 2013; RIDPATH 

2013), although associations between vaccine induced T-cell protection are poorly 

correlated with protection against the pathogen (FURMAN AND DAVIS 2015). The 

presence of detectable humoral and/or cell-mediated immune responses does not 

guarantee protection against respiratory infections. Both humoral and cell-mediated 

immune responses can be detected in animals vaccinated with either killed or modified 

live vaccine products, but the level of protection afforded by the two different 

immunizations varies as does the ratio of B- to T-cell activation (SANDBULTE AND ROTH 

2003; STEVENS et al. 2009).  The most effective means to mitigate BVDV infection 

requires implementation of a whole herd health program including: removal of 

persistently infected calves and maintaining BVDV protection by optimizing 
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immunization programs at all phases of cattle production (KELLING et al. 2007; FULTON 

2015).  

 

Disease Prevention 

Disease prevention and treatment of feedlot cattle can be costly and in some cases 

vaccinations and treatments of some diseases, may be ineffective. Consumer concern 

about the use of antibiotics and hormones in food livestock production has become a 

significant component of management decisions of livestock production (BELKNAP 

2015; KEYES 2015; REED 2015). Currently, vaccination is one of the most commonly 

used methods for disease prevention. However, variation in immune response and 

protection achieved by vaccinations has been observed among animals (GLASS 2004; 

DUFF AND GALYEAN 2007b; SALAK-JOHNSON 2007; SMITH-THOMAS 2015), and 

contributes to the challenges associated with studying disease and immune response in 

cattle.  

 

Vaccination has been used as a prevention method to lessen the impact of BVDV 

infection (REBER et al. 2006; KELLING et al. 2007; FULTON 2015). In addition to 

immunization for prevention of BRD, antimicrobials are often used in feedlots to 

minimize BRD incidence (KLIMA et al. 2014). However, improved protection from 

immunization will be vital for BRD prevention to reduce the need for antimicrobials in 

feedlots and be in compliance with new laws and regulations. Neutralization of BVDV 

antigens has been well characterized, however, cross-protection between strains has been 
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shown to be variable and not well studied (CHASE 2013). Antigenic cross reaction has 

been observed between type 1 and type 2, however cross-protection within a genotype 

has typically been stronger than across genotypes (RIDPATH 2005). Protective immune 

response to BVDV pathogens has not been thoroughly characterized, to develop more 

complete vaccines it is crucial to understand both the immune response to the 

vaccination as well as the host-pathogen immune interaction. 

 

Despite the numerous immune responses that have been measured to assess effective 

immunity induced by vaccination, no robust T- or B-cell assays are predictive of 

vaccine-induced protection (FURMAN AND DAVIS 2015). The relationship between 

activation of cell-mediated immunity and clinical protection produced by vaccination 

needs further characterization and improved assay development for the quantitation of 

cell-mediated responses (CORTESE et al. 1998). 

 

The prevalence of BVDV observed in the field demonstrates the inadequacy of current 

vaccines to control the pathogen (REBER et al. 2006). Vaccines should contain antigens 

from both type 1 and type 2 BVDV strains to provide optimal protection against the 

variety of genotypes present in the field (LIANG et al. 2008). Conflicting results of the 

most prevalent BVDV strain have been reported, with some studies showing higher 

prevalence of BVDV 1b at 2:1 ratio and other studies indicating no difference in the 

prevalence of BVDV 1a to 1b (FULTON et al. 2000; FULTON et al. 2003; FULTON et al. 

2006). However, based on the conflicting data and knowledge that both type 1a and 1b 
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strains have the potential to infect cattle, protection against both strains is needed for 

BRD prevention from BVDV. More than 150 vaccines have been licensed in the U.S. for 

BVDV prevention, the majority of commercially available vaccines are composed of 

various BVDV 1a and BVDV type 2 strains (FULTON AND BURGE 2000). Most USDA-

licensed vaccines contain either a modified live virus or inactivated type 1a strain with 

different antigenic properties when compared with other type 1 and 2 strains (LIANG et 

al. 2008). The lack of BVDV 1b isolates found in vaccines creates a need for cross-

protection from 1a strains is critical for prevention of disease. 

 

Vaccination of cattle with either a killed or modified live virus (MLV) product has been 

a major part of BVDV prevention programs, both for prevention of persistently infected 

individuals and those with acute infection most often associated with BRD (FULTON et 

al. 2003). The immune response to BVDV requires both innate and adaptive immune 

responses (SRIKUMARAN et al. 2007). Antigen recognition, lymphocyte proliferation, and 

immune accessory cells are key to developing a protective immune response to viral 

pathogens (SRIKUMARAN et al. 2007). Activation of humoral, CD4+ lymphocytes, and 

activation of gamma-delta T-cells were observed in calves vaccinated with the BVDV 

MLV vaccine even in the presence of maternal antibodies; calves receiving the killed 

vaccine product did not activate a T-cell response specific to BVDV (ENDSLEY et al. 

2003). Stimulation of CD4+ T-cells by vaccination is important for developing a 

protective immune response against a BVDV infection, and in vivo experiments have 

shown that depletion of CD4+ prolong the BVDV viremia infection (COLLEN AND 
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MORRISON 2000; LIEBLER-TENORIO et al. 2003a). The immune response developed after 

CD4+ T-cell stimulation was reported to be cross-reactive and stimulated by a larger 

antigen repertoire for increased epitope recognition in subsequent exposures (COLLEN 

AND MORRISON 2000). 

 

The efficacy and optimization of BVDV immunization programs can be limited: by 

stressors that cattle endure in the transport and processing procedures, by the 

heterogeneity of BVDV strains to which cattle are exposed, and the timing of 

vaccination. Immunosuppression can result from a combination of prolonged stress and 

the presence of replicating BVDV from vaccines (GROOMS et al. 2013), this presents 

challenges for developing protection from vaccines (RIDPATH 2013). These challenges 

are due to the nature of the virus and the heterogeneity of the virus, resulting in a unique 

interaction between the virus and the host immune system (RIDPATH 2013). Effective 

BVDV vaccines should protect against viremia and minimize immunosuppression 

(KELLING et al. 2005). The optimal response to vaccination is a tradeoff to achieve the 

maximal immune response at the lowest physiological expense to avoid reduced 

performance (WAGNER 2000; RIDPATH et al. 2010).  

 

BVDV vaccines are less than 100% effective, in part, because some animals do not 

respond to immunizations. Failure to account for animal-to-animal variation in vaccine 

response may be very costly due to increased disease outbreaks (GLASS et al. 2012). 

Anecdotally, Bos indicus cattle are less likely to become ill in the feedlot than Bos 
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taurus cattle (CUSACK et al. 2007), however few studies have characterized differences 

in the immune response between the subspecies. Environmental factors such as immune 

status, infection from secondary pathogens, stress and the virulence of infecting BVDV 

pathogen interacting with the host’s genetics influence the immune response of the host 

to vaccination and BVDV infection (LOERCH AND FLUHARTY 1999; RIDPATH et al. 

2013). Host variation plays a critical role in antigen recognition and lymphocyte 

proliferation, which are critical steps to stimulate an effective immune response 

(SRIKUMARAN et al. 2007) and antigenic differences among BVDV strains create 

challenges for accurate diagnostic testing with implications for vaccine strategies to 

prevent disease (FULTON et al. 2003). Improved understanding of the host immune 

response to pathogens and current vaccines will be critical to development of vaccines 

with increased efficacy and adequate protection in production environments (REBER et 

al. 2006). 

 

Immune Response 

Immune response is determined by a complex system composed of organs, specific cells, 

cytokines, chemokines, physical barriers, and genes networks that work together to 

develop the correct response to protect the host from a foreign antigen and infection 

(ABBAS et al. 2011; FURMAN AND DAVIS 2015). An effective immune response depends 

on both innate and adaptive immunity.  
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Innate Immune Response 

The innate immune response is defined as the non-specific immune response and serves 

as the first line of defense against pathogens (PETERHANS et al. 2003; ABBAS et al. 2011; 

CARROLL AND BURDICK SANCHEZ 2013; HUGHES et al. 2014). The first line of defense is 

the physical barriers, these include skin, mucus and mucosal secretions, and flushing 

activation such as saliva and tears (ABBAS et al. 2011). Innate and adaptive immunity are 

immature in newborn calves, putting them at higher risk for disease (ENDSLEY et al. 

2003). 

 

The innate immune system recognizes foreign substances though pathogen-associated 

molecular patterns (PAMP) detected by pattern recognition receptors (PRR) (ABBAS et 

al. 2011; PETERHANS AND SCHWEIZER 2013). Toll-like receptors are one example of 

PRRs on the surface of immune cells such as monocytes, macrophages, and dendritic 

cells (ABBAS et al. 2011). These play an important role in the stimulation of immune 

response to BVDV pathogens (PETERHANS AND SCHWEIZER 2013). The PRR response 

initiates inflammation to activate the innate immune response and is important for early 

detection of infectious microbes (CHASE et al. 2003).  

 

Chemokines and cytokines play an important role in stimulating the immune response to 

infectious pathogens. Chemokines and cytokines are proteins that are secreted by 

immune cells that are important for cell activation, growth, migration, and differentiation 

which are necessary to stimulate the immune system (FURMAN AND DAVIS 2015). Type-I 
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interferons are released when APCs are stimulated by various PRRs that detect viral 

infections (ABBAS et al. 2011; PETERHANS AND SCHWEIZER 2013). Viruses use evasion 

mechanisms to prevent the activation of the IFN system or are insensitive to the IFN 

response and thereby evade detection (PETERHANS AND SCHWEIZER 2013). 

 

Adaptive Immune Response 

Antigen recognition and processing by the innate immune system is a pre-requisite for 

activating the adaptive immune response (PETERHANS AND SCHWEIZER 2013). The 

adaptive immune response is composed of humoral and cell-mediated immunity and 

both are important for protection and clearance of viral microbes (BROCK et al. 2007; 

ROOD AND STOTT 2011; CHASE 2013). Humoral and cell-mediated immune responses to 

BVDV target different proteins to induce the two different types of the immune response 

(COLLEN AND MORRISON 2000; COLLEN et al. 2002). Leukopenia induced by BVDV 

causes a reduction in CD8+ and CD4+ cells, reducing the adaptive immunity cell 

population that is available to response to the infectious microbe (SRIKUMARAN et al. 

2007). 

 

Antibodies can be passed from the dam to the offspring through passive transfer in 

colostrum and those maternal antibodies, if present above threshold levels will protect 

the calf from BVDV infection (ENDSLEY et al. 2003). However, the presence of maternal 

antibodies, at given levels, can also prevent immune response to vaccination (ELLIS et al. 

2001; ZIMMERMAN et al. 2006; DOWNEY et al. 2013). The transfer of these maternal 
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antibodies is critical for protection against pathogens when the immune system is 

immature, as immunity in young calves takes up to several weeks to months to mature 

and begin to develop acquired immunity (ROOD AND STOTT 2011; STEVENS et al. 2011) 

 

Humoral response to vaccination has typically been used to measure the acquired 

immune response to vaccinations (ENDSLEY et al. 2003). The humoral response is linked 

to CD4+ T-helper cells, as these cells initiate stimulation of the humoral response 

(COLLEN et al. 2002; ABBAS et al. 2011). MHC class II receptors present antigens to 

activate CD4+ T-cells that stimulate B-lymphocytes to differentiate into antibody-

secreting plasma cells (SRIKUMARAN et al. 2007). T-cells respond to cytopathic BVDV 

strains occurs more rapidly than to non-cytopathic strains and the strain cross-reactivity 

appears to be MHC-restricted (COLLEN AND MORRISON 2000; COLLEN et al. 2002). 

CD4+ T cells are also important in the development of memory T cells. The memory 

response that is achieved by the adaptive immune response is critical for an amnestic 

response when challenged with pathogen exposure at a later time in life (ROOD AND 

STOTT 2011).  

 

Stress 

Stress has been described as a general term for the response of an individual to external 

influences (ROTH 1985). Response to stress is individualized and varies based on 

perception of the external influence, and previous experiences (SAPOLSKY et al. 2000). 

Stress can be classified as acute or chronic stress (DHABHAR 2009). Acute is stress that is 
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of short duration, often referred to as the fight-or-flight response (DHABHAR 2009). 

Acute stress typically lasts for minutes to a few hours. Chronic is long-term stress, 

lasting for days to weeks or longer (DHABHAR AND MCEWEN 1997). Acute stress events 

are suggested to prime the immune response (DHABHAR 2009; CARROLL AND BURDICK 

SANCHEZ 2013).  

 

Stress has often been measured as the concentration of glucocorticoids, especially 

cortisol, in circulation (SAPOLSKY et al. 2000; CARROLL AND BURDICK SANCHEZ 2013). 

Acute stress can prime the immune response; where as chronic stress shifts the stress 

response from preparatory to suppressive (DHABHAR 2009; HUGHES et al. 2014). The 

defining point between acute and chronic stress is individually variable, and can be 

dependent upon the animal’s perception of stress and the duration of the stress, as well 

as previous exposure to a stressor, the gender, genetics, and temperament (HUGHES et al. 

2014).   

 

Just as in humans, livestock undergo many stressful events, yet it is unclear how these 

stressors affect the response in cattle (HUGHES et al. 2014). Elevated stress hormones 

have been linked to decreased performance, reduced reproduction rates, and increased 

risk for disease (LOERCH AND FLUHARTY 1999; CARROLL AND BURDICK SANCHEZ 2013) 

but the literature is equivocal regarding the effects of stress on the immune response. As 

early as 1940, acute stress was known to enhance the immune response (SAPOLSKY et al. 

2000) although this observation did not fit the established paradigm that stress was 
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immunosuppressive (SAPOLSKY et al. 2000; DHABHAR 2009; HUGHES et al. 2014). The 

interaction of stress and immune response is highly variable from individual to 

individual and influenced by the individual’s perception of stress (HUGHES et al. 2014). 

Therefore, stress appears to have two modes of action on the immune response. In acute 

stress, the immune response is enhanced to prepare the body for an impending incident. 

Alternatively chronic stress suppresses the immune system and restores homeostasis to 

prevent a destructive hyperimmune response (SAPOLSKY et al. 2000). 

 

The function of peripheral leukocytes are also negatively affected by glucocorticoid 

levels, which lower the number of leukocytes in circulation (SAPOLSKY et al. 2000). T-

lymphocytes, specifically CD4+ helper T-cells, are also affected, more than other 

lymphocytes (SAPOLSKY et al. 2000). However, neutrophils levels are increased with 

glucocorticoids (SAPOLSKY et al. 2000). In previous experiments, acute stress 

immediately before exposure to an antigen increased cell-mediated immune response, 

suggesting that the stress response recruits the leukocytes to the infection site and 

stimulates an enhanced cell-mediated response to the specific antigen presented 

(DHABHAR AND MCEWEN 1996). Chronic stress reverses this response and suppresses an 

immune response to the exposed antigen (DHABHAR AND MCEWEN 1997). Improved 

understanding of the interactions between the stress and immune response has the 

potential to improve management practices for livestock producers and to increase the 

performance of animals while decreasing disease risk (CARROLL AND BURDICK SANCHEZ 

2013). 
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Justification 

Genetic technologies have made large-scale, high-throughput genotyping a reality and 

the cattle industry has taken advantage of the new technologies to improve selection for 

production traits. Such advances in technology have not yet enabled improvements in 

disease resistance in animals, readily available alternative is improved prevention 

utilizing vaccination (ELLIS AND HAMMOND 2014). However, effectiveness of 

vaccination will require both an understanding of the genetic response of the host and 

more effectively characterized protective responses. The possibility of using modern 

tools to enhance genetic selection for improved immune response to vaccination may be 

more effective than selecting for disease resistant animals. Therefore the focus of this 

dissertation was to characterize undefined variation in BoLA genotypes, to interrogate 

unconventional methods of disease phenotyping following a BVDV challenge, 

determine the protective levels of vaccination in a BVDV challenge, and investigate 

subspecies differences in immune response to commercial vaccines.  
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CHAPTER II  

CHARACTERIZATION OF THE BOVINE MAJOR HISTOCOMPATIBILITY 

COMPLEX 

 

Introduction 

The major histocompatibility complex (MHC) found in all jawed vertebrates is highly 

conserved among vertebrates (PARHAM 1999; KELLEY et al. 2005), and variation in the 

genes of the MHC is important for determining disease resistance and susceptibility 

(PRICE et al. 1999; TROWSDALE 2005). The MHC is one of the most dynamic and 

polymorphic regions of the vertebrate genome and is a target for continued study and 

research. The bovine MHC, called the bovine leucocyte antigen (BoLA) complex was 

discovered in the 1970’s (AMORENA AND STONE 1978; SPOONER 1978).  

 

Many of the genes in the MHC function in innate and/or adaptive immunity (PARHAM 

1999; KULSKI et al. 2002), specifically genes are involved with antigen presentation, 

cytokine production, inflammation, and responses to infectious diseases (KELLEY et al. 

2005; TROWSDALE 2005; SANTOS et al. 2010). The MHC contains many gene families, 

which evolved by gene duplication, gene conversion and recombination during 

vertebrate evolution (XU et al. 1994; AMILLS et al. 1998; RUSSELL 2000; GOSZCZYNSKI 

et al. 2014). Studying the MHC is performed for a number of reasons: to understand 

evolution of the MHC and conservation of genomic regions, to gain a better 

understanding of the role of olfactory receptors in mate selection, the role of natural 
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selection on diversity of MHC haplotypes, and improved disease resistance and vaccine 

efficacy (ELLIS AND HAMMOND 2014). 

 

The MHC has been associated with susceptibility to various diseases in many species. 

The human MHC (HLA) is associated with more than 100 different diseases (PRICE et 

al. 1999; HALDER et al. 2000; HORTON et al. 2004; TROWSDALE 2005; ORANGE et al. 

2011; PARHAM AND MOFFETT 2013; TROWSDALE AND KNIGHT 2013) and reproduction 

and mate selection (YAMAZAKI et al. 1976; SOMMER 2005; ZIEGLER et al. 2005; 

EIZAGUIRRE et al. 2009; ZIEGLER et al. 2010). In humans, the most important role that 

genotyping of the HLA has played is in transplantation and recently, avoidance of drug 

specific sensitivities (ILLING et al. 2013; PETERSDORF 2013; NORMAN et al. 2015). 

BoLA is of particular interest in animal agriculture for it’s potential to improve animal 

health (TAKESHIMA AND AIDA 2006; ELLIS AND HAMMOND 2014). In cattle, BoLA has 

been associated with a number of diseases, including lymphoma, mastitis, bovine 

leukemia virus, somatic cell count, and tick resistance (LEWIN AND BERNOCO 1986; XU 

et al. 1993; SHARIF et al. 1998; PARK et al. 2004; UNTALAN et al. 2007; TAKESHIMA et 

al. 2008; YOSHIDA et al. 2009; MIYASAKA et al. 2011; CHU et al. 2012; THOMPSON-

CRISPI et al. 2014). Additionally, BoLA is important for genetic selection and 

improvement of milk yield, growth, and reproduction (HINES et al. 1986; BATRA et al. 

1989; STEAR et al. 1989; BEEVER et al. 1990; WEIGEL et al. 1990; MEJDELL et al. 1994; 

TAKESHIMA AND AIDA 2006). 
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The architecture of the MHC is composed of 3 regions designated, in order, as class II, 

III and I (PARHAM 1999; KELLEY et al. 2005; TROWSDALE 2005; TAKESHIMA AND AIDA 

2006). These three regions are defined by gene content and are highly conserved among 

mammalian species (PARHAM 1999; KELLEY et al. 2005; TAKESHIMA AND AIDA 2006). 

BoLA maps to chromosome 23 (FRIES et al. 1993). Definitive genes in the class IIa 

region, including DRα, DRβ, DQα, and DQβ, are involved in processing and 

presentation of extracellular antigenic peptides to CD4+ T-helper lymphocytes to initiate 

the humoral immune response. (TAKESHIMA AND AIDA 2006; SANTOS et al. 2010) 

Multiple DRβ, DQα, and DQβ genes have been identified with copy number 

polymorphisms (GROENEN et al. 1990; XU et al. 1994; GELHAUS et al. 1999a; GELHAUS 

et al. 1999b; RUSSELL 2000; TAKESHIMA AND AIDA 2006).  

 

Definitive genes of Class I region of BoLA include up to 6 classical class I genes 

encoding highly polymorphic, ubiquitously expressed, cell-surface receptors that present 

intracellular peptides to CD8+ T lymphocytes for interrogation of cellular health (ELLIS 

et al. 1999; TAKESHIMA AND AIDA 2006; SCHWARTZ AND HAMMOND 2015). But it is 

unclear if these 6 genes map to 6 different loci or map to fewer, i.e. the three known loci. 

The 6 classical class I genes in cattle are highly variable in the expression between 

haplotypes and all known haplotypes present with between 1 to 3 of the classical class I 

genes (PARHAM 1999; TAKESHIMA AND AIDA 2006; SCHWARTZ AND HAMMOND 2015). 

Haplotypes with two classical class I genes are most commonly observed in the Holstein 

population (CODNER et al. 2012).  
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 The class III region is located between the class II and class I regions and contains a 

dense collection of genes with diverse functions including innate immunity and cytokine 

production (TAKESHIMA AND AIDA 2006). The class III region is the most conserved 

region of the MHC (TROWSDALE 1995), and the most gene dense region of the human 

genome (KULSKI et al. 2002; XIE et al. 2003). Definitive immune related genes in the 

class III region include: complement, tumor necrosis factors (TNF), lymphocyte antigen 

cluster, and heat shock protein genes (HORTON et al. 2004), many of which are involved 

in inflammatory response, innate immune response, regulation of immunity and cytokine 

production (KULSKI et al. 2002; WALLIN et al. 2002; KELLEY et al. 2005). In addition, 

BoLA class III region includes a cluster of the largest known gene family, highly 

conserved olfactory receptors (SANTOS et al. 2010).  

 

Rapidly evolving pathogens have been suggested to be one of the primary drivers for the 

evolving MHC (KELLEY et al. 2005; SCHWARTZ AND HAMMOND 2015). While the MHC 

is highly polymorphic, the evolution of the MHC has not occurred more rapidly than 

other regions of the genome and perhaps evolution of the MHC proceeds more slowly 

than in other genes (KLEIN 1987). Trans-species evolution of MHC loci was observed in 

many species (MAYER et al. 1992) and cattle share a number of trans-species 

polymorphisms with buffalo (SENA et al. 2011). Revealing that many genes in the MHC 

are old, predating divergence from a common ancestor. Yet diversity within the MHC 

continues to be maintained through variable gene content and expression in haplotypes 

(BIRCH et al. 2006).  
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A better understanding of the organization and diversity of the BoLA complex is 

important to realize the potential of genomics for the improvement of animal health 

(TAKESHIMA AND AIDA 2006). In the large USDA funded Bovine Respiratory Disease 

Complex (BRD) Coordinated Agriculture Project, no association of BRD with BoLA 

was found (NEIBERGS et al. 2014), yet BoLA has been associated with a number of 

diseases and immune phenotypes in other studies (LEWIN AND BERNOCO 1986; XU et al. 

1993; UNTALAN et al. 2007; YOSHIDA et al. 2009; MIYASAKA et al. 2011; CHU et al. 

2012; LEACH et al. 2012; THOMPSON-CRISPI et al. 2014). These studies predominately 

used family or shallow pedigreed animal resources rather than population resources, to 

take advantage of strong linkage to overcome the uncertainties and breed bias of 

populations genotyped with SNP chips. 

 

The bovine genome sequencing project was completed in 2009 and, like the predecessor 

human genome project, was predicted to revolutionize the cattle industry through the use 

of marker assisted selection and improved genetic predictions. But few genes with large 

impacts for controlling complex traits have been identified in humans or cattle (EICHLER 

et al. 2010; SAATCHI et al. 2014; SADEE et al. 2014) leading to a search for causes of 

“missing heritability” (ZUK et al. 2012). It is speculated by some that the missing 

heritability (i.e. the missing genetic variance) might be captured by rare variants with 

low minor allele frequency that are often removed from GWAS studies (MANOLIO et al. 

2009) or in epistatic interactions of identified variants that separately account for a low 

proportion of variance (ZUK et al. 2012; MACKAY 2014). Improved understanding of 
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BoLA haplotypes and evolution will aid our understanding of cattle genetic diversity in 

general and disease resistance in particular (SCHWARTZ AND HAMMOND 2015). In this 

study, we used BoLA homozygotes to efficiently investigate haplotype diversity in 

bovine.  

 

Material and Methods 

DNA Samples 

The Bovine Respiratory Disease (BRD) Complex Coordinated Agricultural Project 

Research Team provided DNA samples for the 770K SNP haplotype analyses 

(NEIBERGS et al. 2014; VAN EENENNAAM et al. 2014). DNA samples for this study were 

selected from 2,014 total DNA samples of Holstein calves, from California and New 

Mexico Holstein populations, that genotyped at 95% or greater homozygous for the 

1,221 SNPs in BoLA. DNA samples were purified from 3 mL of whole blood using a 

Puregene DNA extraction kit (Gentra, Minneapolis, MN) and quality checked with a 

NanoDrop® as described (NEIBERGS et al. 2014). Genotypes were determined on the 

Illumina BovineHD Genotyping Beadchip by GeneSeek (Lincoln, NE) for 777,962 

SNPs (NEIBERGS et al. 2014). The SNPs lie in the interval 24,642,893 - 28,679,974 on 

chromosome 23 based on the UMD 3.1 assembly. Names and coordinates of the 1,221 

SNPs are listed in Appendix 1. Animals in the BRD research project were monitored for 

symptoms of BRD and assigned clinical scores based on the McGuirk scoring system 

(MCGUIRK 2008), using rectal temperature, cough, nasal discharge, eye discharge, and 

ear tilt as described by (NEIBERGS et al. 2014). Calves with clinical score equal to or 
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below 3 were classified as controls and calves with clinical scores above 3 were 

designated as cases (NEIBERGS et al. 2014). One hundred and sixty Holstein calves were 

identified as ≥ 95% homozygous for 1,221 SNPs in BoLA. The samples were from 62 

females and 98 males, representing 90 cases and 70 controls.  

 

BoLA haplotypes from 50K SNP chip Genotypes 

We previously obtained samples for 143 homozygous BoLA haplotypes defined by 53 

SNPs genotyped on the Illumina Bovine 50K Genotyping Chip and graciously 

contributed by Drs. Robert Schnabel and Jerry Taylor, Department of Animal Science, 

University of Missouri (FRITZ 2009). These 143 homozygous haplotypes were identified 

among animals of 26 different breeds but were over-represented for Angus and Holstein 

breeds. Names and coordinates of the 53 SNPs used to identify the 50K homozygous 

haplotypes are listed in Appendix 2. Preliminary analysis of 50K haplotypes identified 7 

common Holstein haplotypes (FRITZ 2009) which were used as the framework for 

additional analysis of haplotypes identified from the 770K BovineHD SNP chip. 

 

Data Analysis 

SNP call frequencies were analyzed for each of the 160 “homozygous” Holstein calves 

using PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) (PURCELL et al. 2007). 

SNPs that were located in repeat elements were identified using the UCSC Genome 

Browser (http://genome.ucsc.edu) Bos taurus UMD 3.1 assembly (KENT et al. 2002). 

Coordinates for CNVs in BoLA identified by aCGH and/or NGS (LIU et al. 2008; 
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FADISTA et al. 2010; LIU et al. 2010; KIJAS et al. 2011; STOTHARD et al. 2011; ZHAN et 

al. 2011; BICKHART et al. 2012; CHOI et al. 2013; SHIN et al. 2014) were converted to 

the UMD 3.1 coordinates using the liftover function in the USCS Genome browser 

CNVs, and no call SNPs were visualized with the USCS genome data tracks (RANEY et 

al. 2014).  

 

Haplotype analyses from genotype data for the 160 “homozygous” Holstein calves were 

performed using PHASE and fastPHASE (University of Washington, Seattle, WA) 

(STEPHENS AND DONNELLY 2003; STEPHENS AND SCHEET 2005; SCHEET AND STEPHENS 

2006). Haplotypes were phased for the entire BoLA complex. Two hundred and thirty of 

the 1,221 SNPs in the data set were genotyped as having a no call SNP in at least one 

animal. All SNPs with at least one no call genotype were removed prior to haplotype 

analysis by PHASE. Genotypes were subsequently phased based on 991 genotype calls 

among 160 “homozygous” individuals. In examining the data for animals that were 

homozygous at 95% or greater of the 1,221 SNPs it became apparent that almost all 

“homozygous” animals had a small number of heterozygous genotype calls (Appendix 

6). Such highly similar haplotypes were subsequently organized in haplotype groups. 

Haplotype frequencies were based on the haplotype groups identified in PHASE with 

991 SNPs.  

 

Phylogenetic analysis of predicted haplotypes derived from analysis of both the 770K 

and the shared 50K haplotype analysis was performed in MEGA 6.0.6 
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(http://www.megasoftware.net) (TAMURA et al. 2013) to evaluate the ability to identify 

haplotypes predicted by the 50K SNP haplotypes and predict relationships among the 

770K haplotype groups. The 991 SNP haplotypes from PHASE were used to create an 

alignment in ClustalW and phylogenetic analysis was performed with UPGMA method 

with 1000 bootstrap iterations. The 50K haplotypes were then compared with the 770K 

haplotypes, using the 30 shared SNPs present on both platforms (Appendix 3). 

Haplotypes were aligned with the 30 shared SNPs in MEGA using the same method as 

for the 770K haplotypes. 

 

Assessment of No Call SNPs by PCR 

SNP no calls result from failed clustering of data points into homozygote and 

heterozygote genotypes and can arise from cryptic polymorphisms, insertions and 

deletions, CNVs, low quality SNP design, or locations of SNPs in repetitive DNA. No 

call SNPs due to indels or CNVs might obscure genetic variation important for 

contributing to phenotype associations. As a means to identify structural variation as a 

source of no call SNPs, I used PCR to test whether the sequences in the regions of no 

call SNPs were amplifiable and of the expected lengths. Primers were designed using 

Primer3Plus (UNTERGASSER et al. 2007) in a region approximately 500 bp up and down 

stream of each of 18 selected no call SNPs (Table 2.1). Primers were tested for 

uniqueness using UCSC In-Silico PCR (KENT et al. 2002) and NCBI GenBank Blastn to 

the UMD 3.1 reference assembly (ALTSCHUL et al. 1990). PCR reactions were 

performed in a total volume of 10 µL. The PCR reaction contained 0.5 units SIGMA 
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JumpStartTM Taq DNA Polymerase (Sigma-Aldrich, Saint Louis, MO), dNTPs at 800 

µM, primers at 0.2 µM each, and SIGMA 10X PCR buffer with MgCl2 at 1X 

concentration (Sigma-Aldrich, Saint Louis, MO). The PCR program had the following 

cycling parameters: initial denaturation of 95° C for 3 minutes, then 40 cycles for 95° C 

for 45 seconds, the annealing temperature ranged between 55 to 60°, adjusted for 

specific primer pairs, for 45 seconds, and 72° C for 2 minutes, followed by a 10 minute 

final extension at 72°C. Amplification products were visualized by electrophoresis in a 

1.0% agarose gel containing 5 µg ethidium bromide. 
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Golden Gate Assay 

In an attempt to expand the number of SNP genotypes in the haplotypes identified on the 

50K SNP chip, we developed a targeted genotype assay using the custom Golden Gate 

platform to reanalyze the DNA samples from the Missouri homozygote samples (FRITZ 

2009). The Golden Gate genotyping assay was designed in collaboration with Dr. Clare 

Gill (Department of Animal Science, Texas A&M University), and consisted of 445 

SNPs on chromosome 23 selected from among the 1221 SNPs and the 777K SNP chip. 

SNP genotyping was performed at the Texas A&M AgriLife Genomics and 

Bioinformatics Services facility. Approximately 560 individuals were genotyped on the 

Golden Gate assay to identify BoLA genotypes for haplotype association analysis, and 

for genome-specific GWAS analyses (not this study). Among these 560 individuals were 

96 samples that genotyped as BoLA homozygotes based on the 50K SNP chip (FRITZ 

2009). SNPs were clustered using the Illumina GenomeStudio software v1.0 based on all 

560 animals to provide relatively equal numbers of homozygotes and heterozygotes for 

accurate clustering and SNPs were removed based on failed accurate clustered SNP 

calls. Manual SNP cluster filtering removed 77 SNPs from chromosome 23. Names, 

coordinates, and chip index number of removed SNPs are listed in Appendix 4. The 

remaining 368 SNPs in BoLA were distributed across chromosome 23 from positions 

26,101,031-29,483,983 (BTA 4.2 assembly).   
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Results 

BovineHD 770K BoLA SNP Distribution 

The Bovine HD 770K SNP chip contains 1,221 SNPs present but unequally distributed 

across BoLA (Figure 2.1). The class IIa region is approximately 2 megabases in length, 

spanning positions 24,642,893 - 26,861,195 on chromosome 23 and is defined by the 

boundary genes TRAM2 and BoLAII-DQβ. Approximately 1 megabase of DNA in the 

class II region, extending from BoLA-DQβ to Notch 4 (Class III region), is remarkably 

devoid of genes, containing only 8 butyrophin-like predicted genes sequences. The class 

II region is marked by 494 SNPs on the 770K chip. The first megabase of the class IIa 

region from positions 24,642,893 - 25,863,045 contains all of the functional genes 

mapped to BoLA class IIa and is marked by approximately 450 SNPs. The second 

megabase (25,863,046 - 26,861,195) with DQβ and the predicted butyrophilin-like 

sequences is marked by only 40 SNP (Figures 2.1 and 2.2). The class IIa region contains 

2 regions poorly marked by SNPs, one of approximately 200 Kb at 25,268,437 - 

25,425,442 and a second of approximately one megabase at positions 25,642,674 - 

26,663,258. Both of these poorly marked regions are within identified CNVs.  
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The class III region contains 316 SNP on the 770K chip and spans positions 26,866,572 

- 27,598,351 (positions of the first and last SNP in the class III region). One small area 

in class III, located at 26,925,552 - 26,952,136, is unmarked by SNPs and contains no 

SNPs (Figures2.1 and 2.3). A second region, located at 27,133,733 - 27,184,947, is 

poorly marked by SNPs and SNPs present in this region have a high frequency of no 

calls. 

 

The BoLA class I region is marked by 413 SNPs distributed over approximately 1 

megabase at positions, 27,600,197 - 28,679,974 (the first and last SNP in the class I 

region) (Figures 2.1 and 2.4). The class I region has 4 poorly-marked areas. The first is 

110 Kb (27,650,286 - 27,759,950) and, is associated with a CNV that is marked by only 

3 SNPs (Figures 2.1 and 2.4). The second and third poorly-marked class I regions are 

each approximately 30 Kb long and located at positions 27,853,209 - 27,880,661 (with 1 

common no call SNP (n = 44)) and at positions 28,328,861 - 28,380,703 (4 SNP, 1 rare 

no call (n = 3)) (Figure 2.4). A fourth poorly-marked SNP region in class I is 

approximately 120 Kb long (28,440,539 - 28,561,217) and contains 6 SNPs, 3 of which 

are predicted to be located in a CNV region with no call frequencies of approximately 

50% (Figure 2.4). These 6 SNPs are located in the first half of the fourth poorly-marked 

region leaving another 60 Kb (28,494,394 - 28,561,217) of the class I region completely 

unmarked by SNPs (Figure 2.4). 
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Frequency and distribution of No Call SNPs on the 770K SNP chip  

SNP call rates were determined for each of the 1,221 SNPs across BoLA. Tabulation of 

no call SNPs identified a total of 230 SNPs with at least one no call genotype among the 

160 animals (Figure 2.1). The remaining 991 SNPs had call rates of 100% in the 160 

tested individuals. Therefore, 18.84% of all the SNPs present in BoLA had at least one 

no call genotype. Approximately 32% of SNPs (73 SNPs) with no call genotypes were 

commonly observed among the 160 animals at frequencies greater than 5% (n ≥ 8 

animals) and are designated as “common no call SNPs”. The remaining 68% (n=157 

SNPs) of total no call SNPs were present in less than 5% of the 160 animal cohort and 

are designated as “rare no call SNPs”. Most (142 SNPs) of the rare no call SNPs were 

observed in only one of two animals and may represent rare haplotypes or be caused by 

experimental errors. Surprisingly, a sample from a single individual, animal 3443, 

contained 19 common and 54 rare no call SNPs. Among the 54 rare no calls in this 

sample, 39 were observed only in this animal and referred to hereafter as singlet no call 

SNP (Appendix 5). Of the singlet no call SNPs, 15.73% (n = 14) were adjacent to at 

least one other no call SNP in the same individual (Appendix 5).  

 

The distribution of no call SNPs across BoLA might provide an indication of underlying 

structural variation.  I determined that the proportions of no call SNPs were found at 

relatively equal proportions of SNPs localized to the three BoLA regions, at 19%, 20%, 

and 18% for classes II, III, and I, respectively (Tables 2.2 and 2.3).   
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Table 2.2. Called SNPs Distributed in Repeat Elements. Breakdown of called SNPs 
on the Bovine HD 770K SNP chip across the MHC by regions: class II, III, and I and the 
proportion of SNPs that lie in one of 7 different classes of repeat elements 
 

  

Class II Class III Class I 

# of SNPs 494 315 412 

Repeat Elements 35.63% 21.90% 33.25% 

CNV 57 4 29 

DNA 14 6 9 

LINE 47 23 52 

Low Complexity 2 2 0 

LTR 20 11 18 

Simple 3 0 0 

SINE 33 23 29 
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Table 2.3. No Call SNPs in Repeat Elements. Breakdown of no call SNPs present in 
class II, III, and I and the proportion of SNPs that lie in the repeat elements and the 
number of SNPs that fall into the 7 different repeat element classes. 
 
 

 
 
  

Class II Class III Class I 

# of No Calls 94 63 73 

No Call Repeat Elements 45.74% 26.89% 41.10% 

CNV 22 1 10 

DNA 3 1 1 

LINE 4 6 9 

Low Complexity 0 0 0 

LTR 6 2 6 

Simple 1 0 0 

SINE 7 7 4 
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However, the occurrence of no call SNPs was more frequent in class III and I regions at 

1 SNP per 11.6 Kb and 14.8 Kb, respectively, compared to class IIa with a no call SNP 

at 1 per 23.5 Kb. The class IIa region contained the greatest number of common no call 

SNPs (n= 32) and rare no call SNPs (n= 62). BoLA class III region had nearly 3 times (n 

=47) as many rare no call SNPs as common no call SNPs (n = 16). Interestingly, a single 

no call SNP in the class III region was observed in 117 animals (73%) and the only 

common no call SNP observed in more than 25% of the animals in the class III region. 

The position of this no call SNP is near the duplicated CYP21 loci (SKOW et al. 1988) 

and may be associated with structural variation in the duplicated region. The no call 

SNPs in the class IIa region clustered into the two poorly-marked regions associated 

with known CNVs (Figures 2.2 and 2.5). Common no call SNPs in class I also clustered 

into the poorly-marked regions in proximity to CNVs and SINEs (Figures 2.4 and 2.6). 

 

The number of no call SNPs within individuals ranged from a low of 11 no call SNPs in 

a single individual with no singlet SNPs to a high of 73 no call SNPs in animal number 

3443, 54% (n=39) of which were singlets (Table 2.4). Approximately half of the 160 

animals genotyped had 16 to 18 no call SNPs on the 770K BovineHD chip; however, 

these 16 to 18 no calls were at different SNP locations in different individuals (Table 

2.4). The number of no call SNPs was highly variable within each haplotype group 

suggesting that different structural polymorphism may contribute to the no call  
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Table 2.4. Frequency of No Call SNP Counts. The total number of no calls per 
individual were counted and the frequency of the number of no calls was calculated for 
the population. 
 

 

  

No Call Count Population Frequency 

11 0.63% 
13 1.25% 
14 5.00% 
15 8.75% 
16 13.75% 
17 20.00% 
18 15.63% 
19 7.50% 
20 5.00% 
21 4.38% 
22 1.88% 
23 2.50% 
24 3.13% 
25 1.88% 
26 1.25% 
27 2.50% 
29 1.88% 
30 0.63% 
31 0.63% 
34 0.63% 
35 0.63% 
73 0.63% 
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Figure 2.8. No Call SNPs UMD 3.1 Genomic Relationship. No calls SNPs overlay 
onto CNVs, genes, and repeat elements in the MHC based on the UMD 3.1 assembly. 
Blue bars represent the no calls that were observed at a frequency > 8 (5%) in the 
population of 159. Purple bars represent CNVs previously described in the literature by 
sequencing detection. Orange bars represent CNVs previously described in the literature 
by aCGH detection. The annotated genes at their described location are show and 
various repeat elements that span the MHC. 
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genotypes. Singlet no call SNPs tended to cluster in CNV regions and were more 

commonly observed in the class III region than in classes IIa or I regions (Figure 2.7). 

 

Distribution of SNPs in Repeat Elements 

SNPs in all three BoLA regions associated with several different types of repeat 

elements (Table 2.2). Repeat elements found in BoLA are unevenly dispersed among all 

3 regions (Figures 2.8, 2.5, 2.9, and 2.6). Analysis of the distribution of SNPs and repeat 

elements is complicated by differences in the two assemblies of the bovine reference 

genome. Examination the BTA 4.0 assembly reveal three distinct gaps in the distribution 

repeat elements and the presence of significantly more RNA repeats (RNA regulators 

and Piwi RNAs) than identified in the UMD 3.1 assembly (Figures 2.8 and 2.10). Near 

equal proportion of all SNPs in classes IIa and I were found in various repeat elements, 

while 12-15% fewer SNPs were found in repeat elements in class III (Table 2.2). The 

reduced number of repeats associated SNPS in the class III may be due to the presence 

of fewer repeat elements in the class III region overall when compared to the class IIa 

and I regions (Figure 2.8). Among the no call SNPs, more than 40% of those no call 

SNPs in BoLA regions IIa and I were in repeat elements, while only 26% of the no calls 

in the class III region were in repeat elements (Table 2.3).  
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Figure 2.10. CNV Distribution on the BTA 4.0 Assembly. CNVs, genes, and repeat 
elements in the MHC based on the BTA 4.0 assemby. Purple bars represent CNVs 
previously described based on the BTA 4.0 assembly in the literature by sequencing 
detection. Orange bars represent CNVs previously described based on the BTA 4.0 
assembly in the literature by aCGH detection. The annotated genes at their described 
location are show and various repeat elements that span the MHC. 
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In general, the largest proportions of total SNPs found in repeat elements were localized 

to CNVs, LINEs, and SINEs (Table 2.2). CNVs are most prominent in the class IIa 

region, containing 12% of the total SNPs, and approximately 50% of the SNPs within 

CNVs in the class IIa region contained common no call genotypes (n = 21) (Tables 2.2 

and 2.3; Figure 2.2). Comparatively, 7% of the total SNPs were found in CNVs in the 

class I region and one third of the SNPs in CNVs were no call SNPs (Tables 2.2 and 2.3; 

Figure 2.5). The Class I region is enriched for LINE repeats and 40% of class I SNPs in 

repeat elements localized to LINEs, however only about 20% of the LINES in class I 

contained no call SNPs (Figure 2.4 and 2.6; Tables 2.2 and 2.3). CNVs and SINEs each 

accounted for 21% of the SNPs found to localize to repeat elements for class I region 

(Figure 2.4; Table 2.2). SNPs localized to LINEs and SINEs were observed equally in 

class III region, but significantly fewer SNPs present in LINEs were observed in class III 

compared to classes II and I (Table 2.2; Figure 2.9). No call SNPs in class III were 

equally distributed between LINE and SINE elements and CNVs were much less 

frequent in Class III (Table 2.3).  

 

No Call SNPs and Relationship to Genes and CNVs 

The locations of no call SNPs were compared to genes and previously identified CNVs 

in BoLA (LIU et al. 2008; FADISTA et al. 2010; LIU et al. 2010; KIJAS et al. 2011; 

STOTHARD et al. 2011; ZHAN et al. 2011; BICKHART et al. 2012; CHOI et al. 2013; SHIN 

et al. 2014) using both the UMD 3.1 assembly (Figure 2.8) and the BTA 4.0 assembly 

(Figure 2.10). CNVs in the UMD 3.1 assembly were most abundant in the class IIa 
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region (Figure 2.8).  While the majority of CNVs called in the BTA 4.0 assembly were 

in the class I region. Variation in CNV size was less between the aCGH and NGS 

methods in the BTA 4.0 assembly (Figure 2.10). In both assemblies the class III region 

was relatively devoid of CNVs; this study also identified the class III region as having 

the fewest common no call SNPs (Figures 2.3 and 2.8). Of the no call SNPs present in 

the class III region, the majority were singlets (n = 31) (Figure 2.7). 

 

Common no call SNPs also tended to cluster in or near previously identified CNVs 

(Figures 2.8 and 2.5). The largest identified CNV in BoLA is in the class IIa region and 

was identified by aCGH. This CNV encompasses the BoLA-DQβ gene family (Figures 

2.8 and 2.5). In contrast, a CNV in the similar region in the BTA 4.0 assembly is broken 

into 3 parts, with the smallest of the three segments including the BoLA-DQβ (Figure 

2.10). The largest of these three CNV segments is between the class IIa and class III 

genes, precisely where the poorly-marked butyrophilin gene family is located (Figures 

2.1 and 2.10). Of the 40 total SNPs found in this region, 14 no call SNPs were found in 

the class IIa region that included the large CNV and the BoLA-DQβ genes (Figure 2.5) 

and contained the 2 most common no called SNPs (BovineHD2300007216 and 

BovineHD4100016081). Similarly, a CNV at the end of the first poorly marked segment 

in the class IIa region contains 11 no call SNPs and 4 class II genes (Figures 2.8 and 

2.5). No call SNPs in CNVs identified by next generation sequencing flank the CNVs, 

rather than being located in the aCGH CNV region (Figure 2.5).  
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Similar associations of no call SNPs and CNVs were observed for the class I region. The 

largest number of no calls are present within a large CNV that includes a classical BoLA 

class I gene (Figure 2.6). Less than 10% of the no calls within the class I region are not 

outside a CNV region (Figure 2.6). Many of these no call SNPs that map outside of 

CNVs are located in regions of large gene families (Figure 2.6). Many singlet no calls 

were similarly found to flank CNVs in the class I region (Figure 2.7).  

 

Evaluation of No Call SNPs 

Eighteen no call SNPs were tested by PCR to determine whether the no call genotypes 

were due to deletions or genotyping errors. Tested no call SNPs and the PCR results are 

listed in Table 2.1. Five of the 14 SNPs tested produced no amplicon in either the no call 

or the positive control samples, likely due to poor primer design. Five of the 18 no call 

SNPs appear to be located in a deletion as no amplicon products were observed in the no 

call samples and the expected amplicon was observed in the positive control samples. 

Seven of the 18 no call samples had amplifiable product in both the no call and positive 

control samples. One SNP in the class I region had both amplifiable and non-amplifiable 

no call samples. BovineHD2300007650 was one of four adjacent no call SNPs in MIC 

genes of class I region, in 4 no call samples tested, 1 appears deleted while the other 3 

were positive. A second no call SNP, BovineHD2300008005, produced two different 

size bands. In the no call animal the sample was about 1.5x the size of the positive 

control and no conclusion was made as to the reason for the no call genotype in this 

SNP. Results from the PCR testing were inconclusive and require further investigation to 
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confirm the reason for the no call genotype. Results of PCR analysis for two no call 

SNPs, BovineHD2300007668 and BovneHD2300007040, are discussed in detail.  

 

No call SNP Bovine2300007668 (UMD 3.1 chr23: 27,700,720) was tested by PCR to 

determine whether the no call was due to deletion or other structural variation (Figure 

2.11). This SNP is located in BoLA class I region, embedded in a region with 4 other 

adjacent no call SNPs (Figure 2.11b) and was observed as a no call in 93 individuals. 

The 4 adjacent SNPs are located in a known CNV region that includes the non-classical 

class I MIC genes (Figure 2.11c). The 4 individuals with no calls for this SNP represent 

3 different no call SNP patterns (Figure 2.11b) perhaps indicating some level of 

complexity in the CNV. PCR produced amplifiable DNA in the region for the 4 control 

individuals and no amplification was observed in the 4 no call individuals (Figure 2.11a) 

consistent with an absence of this sequence in the genomes of the no call animals.   
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Figure 2.11. PCR Validation of No Call SNP BovineHD2300007668. (a) DNAs from 
cattle with no call genotypes at SNP marker BovineHD2300007668 (UMD3.1 
chr23:27,700,720). DNAs were tested for deletions by PCR on samples from four cattle 
with called genotypes (lanes 2-5) and four animals with no call genotypes (lanes 6-9). A 
predicted PCR product of 652bp was observed in four animals with called genotypes and 
no PCR product in four no call animals, consistent with a deletion polymorphism at this 
position. (b) No call SNP pattern for 4 adjacent SNPs in the individuals tested for the no 
call. (c) Genomic location of adjacent SNPs relative to known CNV region and MIC 
genes. 
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A second no call SNP, BovineHD23000007040 (UMD 3.1 chr23: 25,335,659) was 

investigated for amplification with PCR (Figure 2.12). This SNP has a no call frequency 

of 4% (Appendix 5) and is one of 10 adjacent no call SNPs in the class IIa region. This 

SNP had the lowest frequency of any of the 10 SNPs in this region (Appendix 5). The 10 

no call SNP cluster is located in a large CNV region of BoLA class IIs region (Figure 

2.5) and contains class II genes BoLA-DQα2, BoLA-DβB, and BoLA-DQα5. Both of the 

no call animals, 3175 and 3327, had amplifiable regions (Figure 2.12).  

 

Phenotype Association with No Call SNPs 

Approximately 20% of the BoLA SNPs on the BovineHD 770K SNP chip had a no call 

genotype in one or more individuals and would have been eliminated from the GWAS 

analysis of susceptibility for BRD. It is possible that the BoLA no call SNP genotypes 

mark additional polymorphic regions of the bovine genome that might contribute to 

animal-to-animal variation in susceptibility to BRD. To test this hypothesis, I compared 

the distribution of BRD case and control animals among the 160 BoLA homozygotes 

used for this study. The proportion of cases to controls was compared for each of the 230 

no call SNPs (Figure 2.13). No association between clinical phenotype and no call SNPs 

was observed in the case/control phenotypes. Additionally, a similar analysis was 

performed with the homozygous haplotype groups and demonstrated no association of 

BoLA haplotype with case or control was observed (data not shown).  
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Figure 2.12. PCR Validation of No Call SNP BovineHD2300007040. (a) DNAs from 
cattle with no call genotypes at SNP marker BovineHD2300007040 (UMD3.1 
chr23:25,335,659). DNAs were tested for deletions by PCR on samples from two cattle 
with no called genotypes (lanes 2-3) and a single animal with called genotype (lane 4). A 
predicted PCR product of 5170 bp was expected in the animal with the called genotype 
and no PCR product in two no call animals, consistent with a deletion polymorphism at 
this position. A PCR product of approximately 900 bp was observed in all animals. (b) 
No call SNP pattern for 10 adjacent SNPs in the individuals tested for the no call.  (c) 
Genomic location of adjacent SNPs relative to known CNV region and BoLA-DQ genes. 
The PCR expected product is shown as the last bar under the repeats. 
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Frequencies of and Diversity within 770K Haplotypes 

Thirty-eight different haplotype groups were identified among the 160 Holstein calves 

homozygous for BoLA. The frequency of individual haplotype groups in this cohort 

ranged from 26% for the most common haplotype, observed 83 times (320 total), to <1% 

(a haplotype in one animal paired with a highly similar second haplotype) for each of 18 

rare haplotypes (21-38) (Table 2.5). Haplotype groups 1 and 2 were most common and 

together accounted for 46% of the haplotypes observed in the population. Due to the 

95% homozygosity threshold, high frequency haplotypes were most often paired with a 

low frequency, highly similar, haplotypes or a highly similar common haplotype, i.e. 3 

and 4 (Table 2.5). The six most frequent haplotype groups account for 71% of the 

haplotype variation observed within this Holstein population (Table 2.5).  

 

770K Haplotypes and Relationship 

Analysis by PHASE identified 38 unique haplotype groups among 160 homozygous 

individuals when the 230 no call SNP genotypes were removed. Among the 991 SNPs 

used to define the haplotype groups, 866 of those SNPs were found to be informative in 

this population. The two most frequent haplotype groups, 1 and 2 were 99.9% similar, 

differing at only a single SNP (Figure 2.14). As was seen with other highly similar 

haplotype groups including: 3 and 4, 5 and 6, 7 and 15, 8 and 12, 9 and 13, 10 and 16, 11 

and 28, 14 and 17, 28 and 31, 18 and 19, also differed by a single SNP. The BoLA 

haplotypes groups segregate into three major clades within the phylogenetic tree (Figure 

2.14).   
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Table 2.5. Haplotype Group Frequency. The frequency of a haplotype was observed 
among 160 Holstein individuals at 95% homozygosity for 1,221 SNPs in the MHC 
region of the Bovine HD 770K SNP chip. The 20 haplotype groups with a presence in 2 
or more animals are listed. Haplotypes 21 to 38 were only observed 1 time in the 
population. 

 

  

MHC Haplotype 
Group 

Population 
Frequency 

1 26% 
2 20% 
3 7% 
4 7% 
5 6% 
6 5% 
7 3% 
8 3% 
9 3% 
10 2% 
11 2% 
12 2% 
13 2% 
14 2% 
15 1% 
16 1% 
17 1% 
18 1% 
19 1% 
20 1% 
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Figure 2.14. Phylogenetic Tree of BRD 770K SNP Haplotypes. Tree of 38 haplotype 
groups defined from 991 SNPs from the Bovine HD 770K SNP chip. Nodes are color 
coded based on BRD haplotypes that cluster with previously defined Holstein haplotypes 
from the 50K SNP chip. 
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Figure 2.15. Phylogenetic Tree of Holstein Haplotypes. Haplotypes are composed of 
the 30 SNPs that were concordant between the 50K and 770K Illumina SNP platforms 
for the 7 previously defined haplotypes from the 50K SNP haplotype analysis 
(highlighted in gold) and the 38 haplotypes groups identified from the haplotype analysis 
from the BRD Holstein homozygotes.   
  



 

 79 

Closely related haplotypes were often observed in the same individual, at 95% or greater 

homozygosity, and were treed to the same clade (Figure 2.14). The 991 SNPs used from 

the 770K SNP chip identify the same underlying haplotypes as were was defined by the 

50K SNP identification of homozygous Holstein haplotypes (Figure 2.15).  

 

Correlations between 50K and 770K Haplotypes  

The 38 BRD Holstein 770K haplotypes were compared to the previously identified 143 

haplotypes present in a large collection of BoLA homozygotes from 26 different breeds 

of cattle genotyped using the 50K SNP chip (Robert Schnabel and Jerry Taylor, 

Department of Animal Science, University of Missouri, Personal Communication) 

(FRITZ 2009) (Figure 2.15). Thirty SNPs are shared between the two platforms and are 

shown with chromosomal positions in the UMD 3.1 assembly (Figure 2.16). Fewer 

shared SNPs were present in the Class IIa region since this region contains few SNPs on 

the 50K SNP chip.  The class IIa contains the greatest number of SNPs on the 770K SNP 

(Figure 2.16, Table 2.2). Among the shared SNPs, none were present in the large CNV 

that includes DQβ (Figure 2.16).  

 

Comparison of the shared SNPs from the 7 most common Holstein haplotypes defined 

with the 50K SNP chip (FRITZ 2009) with the 38 BRD haplotype groups identified with 

the 770K SNP chip reduced the number of haplotype groups to eight (Figure 2.15). 

Analysis of the seven 50K Holstein haplotypes using only shared SNPs collapsed two 

50K haplotypes, HOL_5 and HOL_7, into one (Figure 2.15). Six out of the seven 50K 
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haplotypes clustered into one of the eight 770K haplotype groups (Figure 2.15). Eight of 

the 38 770K haplotype groups, which composed three minor clades in the shared SNP 

tree analysis that did not cluster with 50K shared haplotypes (Figure 2.15). However, 

haplotype groups 11 and 28 collapsed to a single haplotype group and were treed to the 

same major clade as 50K haplotype HOL 2 (Figure 2.15). Highly similar haplotype 

groups 18 and 19 collapsed into a single haplotype group based on share SNP, as did 

highly similar haplotype groups 9, 13, 33, and 34 (Figure 2.15). These two minor clades 

treed to the same major clade as 50K haplotypes HOL 5 and 7 (Figure 2.15).  

 

Validation of Illumina Golden Gate Assay 

A custom Golden Gate assay was designed to independently test the predictive power of 

the 50K SNP chip to identify homozygous BoLA haplotypes and to determine whether a 

smaller SNP panel could be designed to identify the genomic variation present in BoLA. 

To validate the Golden Gate assay 96 individuals with 50K homozygous haplotypes 

were genotyped on the Golden Gate assay. Twenty-two SNPs were shared between the 

two platforms (Table 2.5). Of the 22 shared SNPs, only 1, ARS-BFGL-NGS-4240, 

accurately called the homozygous genotypes for all 96 individuals (Figure 2.17a). The 

other 21 markers were either unclusterable or had high heterozygous calls for individuals 

that previously genotyped as homozygous with the 50K platform (Figure 2.17 b-d). SNP 

ARS-BFGL-NGS-4203 clustered with 97% accuracy, but approximately 33% of the 

individuals were observed to have no call genotypes at that position; no call genotypes  
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Figure 2.16. Diagram of the Compatible SNPs Between the 50K and 770K Illumina 
SNP Platforms. Blue bars indicate the 30 SNPs that were used to compare 50K 
haplotypes to 770K haplotypes. Purple bars indicate NGS CNVs from the literature. 
Orange bars indicate aCGH CNV regions from literature. The locations of genes are 
based on the UMD 3.1 assembly.  
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Table 2.6. Common SNPs of 50K Illumina SNP chip and Golden Gate chip. The 22 
SNP that were found concordant between the 50K and Golden Gate platform used to 
validate the Golden Gate assay. 
 

 

  

Common SNPs of 50K Illumina 
SNP Chip & Golden Gate 

ARS-BFGL-NGS-4203 

ARS-BFGL-NGS-109142 

BTA-27247-no-rs 

ARS-BFGL-BAC-28338 

Hapmap47328-BTA-56087 

BovineHD4100016085 

ARS-BFGL-NGS-72442 

Hapmap57616-rs29026690 

ARS-BFGL-NGS-104658 

ARS-BFGL-2116 

ARS-BFGL-NGS-43021 

ARS-BFGL-NGS-97747 

BTA-55821-no-rs 

BTA-55853-no-rs 

BTA-55867-no-rs 

UA-IFASA-5823 

ARS-BFGL-NGS-60100 

BovineHD4100016109 

ARS-BFGL-NGS-96241 

ARS-BFGL-NGS-95687 

ARS-BFGL-BAC-35219 
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Figure 2.17. Cluster Images for Golden Gate Validated SNP. Common SNPs found 
on both the 50K SNP chip and the Golden Gate chip were used to validate the Golden 
Gate SNPs in 96 individuals previously genotyped as homozygous on the 50K SNP chip. 
(a) The single SNP that validated in all 96 animals. (b-d) Images of clusters for 3 SNPs 
that were not validated as homozygous in all 96 previously defined homozygous 
animals. (e) Cluster image for validate SNP with no calls for 33% of the individuals.   

(a) (b) 

(c) (d) 

(e) 
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were observed when this SNP was genotyped on a different platform, i.e. Bovine50K 

chip (Figure 2.17e). 

 

Discussion 

The major histocompatibility complex is known for its structural complexities. The 

MHC contains many genes responsible for immunological function that likely interact 

with genes in other genomic regions to regulate and control diverse immune responses 

(TROWSDALE 1995; ZUK et al. 2012; AUGUSTO AND PETZL-ERLER 2015). A wide array 

of disease phenotypes have been observed, yet no strong single gene or variant 

association has been made to the MHC (ZAITLEN AND KRAFT 2012; ZUK et al. 2012; 

CAMPILLO et al. 2013; ELLIS AND HAMMOND 2014). Diversity of the MHC may be 

important for more than immune response and disease status, it may also play an 

important role in production and performance traits (NIKBAKHT AND ESMAILNEJAD 

2015). Diversity in the MHC also appears important for many complex production traits, 

including reproduction, disease resistance, and immune response, olfaction and mate 

selection (BIRCH et al. 2006; EIZAGUIRRE et al. 2009; SANTOS et al. 2010; ZIEGLER et al. 

2010; CODNER et al. 2012; NIKBAKHT AND ESMAILNEJAD 2015). However finding 

associations with the MHC may prove to be challenging in cattle due to the inadequate 

or spotty SNP coverage on the BovineHD SNP chip.  

 

The lack of associations of BoLA with BRD in a large Holstein population in the Bovine 

Respiratory Disease (BRD) Complex CAP study (NEIBERGS et al. 2014), sparked our 
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interest characterizing in the BovineHD SNP coverage of BoLA. The SNP density in 

BoLA on the BovineHD chip is less than that of the average genome and has large SNP 

deserts which may prevent finding associations with the largest known immune related 

region of the genome. BoLA presents with its own challenges for designing quality 

probes for SNPs of interest, as BoLA has a large number of repeats (ADELSON et al. 

2009). Nearly one third of the SNPs in BoLA are present in repeat elements and 7% of 

the total SNPs are associated with reported CNVs. The largest SNP desert in BoLA is 

located between classes IIa and III; this region is predominantly devoid of SNPs. For 

convenience, this region was labeled as class IIa region. It contains nearly 1 Mb of DNA 

with only eight predicted genes and few SNPs. A similar region in observed in HLA and 

ELA and the class II region in porcine is separated from classes I and III regions by the 

centromere (KULSKI et al. 2002). The SNPs that are present in BoLA in this region are in 

a CNV region that encompasses BoLA-DQβ, a gene with known copy number variation 

(GROENEN et al. 1990; XU et al. 1994; MARELLO et al. 1995; GELHAUS et al. 1999b; 

RUSSELL 2000), or other repeat elements. Illumina reports that 29,968 loci are adjacent 

to known polymorphisms or deletions (ILLUMINA 2015). Yet most GWAS analysis does 

not take this into consideration when analyzing the genotyping data. The lack of 

associations with BoLA in complex disease studies may be the result of more variation 

present in BoLA than can be captured in a traditional SNP-based GWAS. Clearly, future 

studies of BoLA associations warrant consideration of gene-gene interactions within 

BoLA or in other genomic regions and of structural variation together with SNPs to 

better characterize BoLA variation.  
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Differences in identification of CNVs between the two assemblies of the bovine genome 

may be due to the accuracy of the builds at the two different regions. While the two 

assemblies, BTA 4.0 and UMD 3.1 are mostly similar for class I, some discrepancies 

exist in the numbers and sizes of pseudo genes (SCHWARTZ AND HAMMOND 2015), as 

well as the sizes of intergenic sequences between genes and the sizes of the CNV 

regions. Assembly and annotation errors may be due to incorporating sequence data of 

more than two homologous chromosomes into the assembly (SCHWARTZ AND HAMMOND 

2015). The presence of highly repetitive regions increases the challenge to correctly 

assemble the genome sequence.  

 

Nearly a third of the SNPs present in BoLA were observed to have no call genotypes for 

1 to 125 haplotype homozygous individuals. These SNPs had quality genotype calls in 

the full population and were retained in the GWAS study; however, many of the no call 

SNPs appear to be flanking or located in CNV regions and may be marking genomic 

structural variation that is otherwise not observed on the SNP chip or in GWAS. No call 

genotypes are excluded from typical GWAS analyses. It has been speculated that the 

missing heritability, especially for complex traits, may be found in the low frequency 

variants that are often disregarded in GWAS studies (MANOLIO et al. 2009). Such is also 

done with no call genotypes. Structural genomic variants have been associated with 

specific HLA alleles (NORMAN et al. 2015). If some of the singlet no calls mark specific 

genomic structural variants in BoLA then no call SNPs may be helpful in identifying 

structural variation present in BoLA that is important for understanding the genetic 
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relationship to complex traits, especially those for disease or immune response. 

However, no call SNPs warrants further investigation to validate the reason of the no 

call.  

 

A common problem with the analysis of large genomes is the presence of repeat 

elements, found to compose nearly 50% of the genome (LIU et al. 2006; ADELSON et al. 

2009; BURT 2009) Repeats are shown to play an important role in genome evolution, 

creating unstable areas that allow for the evolution of new genes (CNVs) or regulatory 

elements, and promote recombination events (DEININGER et al. 2003; LIU et al. 2006).  

 

Examination of no calls by PCR suggests that a proportion of the no call SNPs are likely 

due to deletion polymorphisms present in CNV regions. The distribution of many no call 

SNPs in CNVs indicates that many of the CNVs in BoLA likely are compound and 

composed of combinations of several smaller CNVs. For example, the PCR analysis of 

no call SNPs BovineHD2300007650 and BovineHD2300007668 suggests that more than 

one deletion may be present in samples with no call genotypes. These SNPs maps to a 

known CNV region and the variation in the no call SNP patterns indicates that the CNV 

can exist in numerous length variants. The deletion appears to be larger than the 

predicted 652 bp in the four individuals tested by PCR. The four adjacent no call SNPs 

in this region, 27,652,500 - 27,700,720, are located in the non-classical class I MIC 

genes. MIC genes in other species have undergone extreme selective pressure (KULSKI et 

al. 2002) and it has been suggested that deletions and fragmentation of MIC genes may 
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be due to expansion of other class I genes that may be replacing the function of MIC 

genes (KULSKI et al. 2002). This would further suggest that no call SNPs in this region 

are more likely due to deletions and fragmentation of MIC genes due to structural 

variation, than to experimental error. Further investigations are required to fully 

determine the nature of the structural variation in this region. 

 

DNA was successfully amplified from the two animals with no call SNP 

BovineHD2300007040, and the PCR products that were detected in these two animals 

were smaller than expected. This SNP is also associated with a large CNV region, 

encompassing the BoLA-DQ genes, which are known to have undergone gene 

duplications and exist as CNVs (GROENEN et al. 1990; XU et al. 1994; MARELLO et al. 

1995; GELHAUS et al. 1999b; RUSSELL 2000). The smaller than predicted PCR product 

might suggest that the primers were poorly designed or that all individuals tested have a 

small, approximately 4 Kb deletion in that region or that there is an assembly error and 

the region of interest is smaller than indicated in the reference genome. This SNP, along 

with the others, warrant further investigation to determine the basis of the no call 

genotypes  

 

GWAS studies using SNP-based platforms to seek associations with complex traits are 

questionable when the tested population is other than the population from which the chip 

was designed and on which the bioinformatics analysis was trained. GWAS studies have 

been unsuccessful in identifying the causative mutation or variants that account for large 
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proportions of the variance for complex traits, yet these are often the most economically 

important and therefore of most interest in production agriculture (ZAITLEN AND KRAFT 

2012; ZUK et al. 2012; SAATCHI et al. 2014; ZHANG et al. 2014). As livestock industries 

seek to reduce the use of antibiotics, marker-assisted selection may be one way to realize 

improved animal health, by minimizing disease susceptibility and enhancing vaccine 

response (TAKESHIMA AND AIDA 2006; ELLIS AND HAMMOND 2014). A more thoroughly 

characterized BoLA region will be needed, as will improved technologies and analyses 

for gene-gene interactions (MANOLIO et al. 2009; ZUK et al. 2012; MACKAY 2014; 

BESSONOV et al. 2015). 

 

The homozygous individuals used in this study serve as a unique resource to study the 

evolution, polymorphisms, structural diversity, and highly repetitive sequences that 

underlie haplotype diversity in BoLA. Such highly dynamic regions of the genome are 

refractory to contemporary sequencing methodologies unless the template can be 

simplified by homozygosity (NORMAN et al. 2015). There is evidence that haplotype 

structure has been conserved across mammals (VILLA-ANGULO et al. 2009). 

Conservation of trans-species polymorphisms might be due to olfactory receptor genes 

in MHC and their role in mate selection, to indirectly preserve diversity for immune 

response (SANTOS et al. 2010). Genotyping of homozygous or nearly homozygous 

individuals allows for unambiguous phasing of haplotypes when parental information is 

not available and the use of homozygous individuals simplifies the analysis of highly 

polymorphic genomic regions (NORMAN et al. 2015).  
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Comparison of homozygous haplotypes predicted from the 50K SNP chip to haplotypes 

identified with a 20-fold greater SNP density, revealed that the essential haplotype 

structure identified with the 50K chip was retained but that additional diversity was 

revealed within the 50K haplotypes. The haplotype diversity revealed by the 770K SNP 

chip still missed large amounts of uncharacterized structural variation segregating within 

the 38 haplotype groups. This result suggests that unidentified diversity is present within 

the Holstein breed and will only be catalogued by deep re-sequencing.  

 

The haplotype phylogeny suggests that the Holstein calves in this study possibly 

originate from 2 major lineages, including one lineage with two significant sub-lineages 

within it. One sub-lineage groups has a shared HOL/ANG 50K (HOL_2/ANG_7) 

haplotype present. The diversity within haplotypes can give insights onto selection 

pressures for traits or from artificial insemination, exposure to various pathogens, and 

evolutionary changes for environmental effects (ELLIS AND HAMMOND 2014). Little is 

known about the full sequence diversity and the underlying structural variation of BoLA 

haplotypes (SCHWARTZ AND HAMMOND 2015) but it is evident that more variation exists 

among Holstein haplotypes than was described in the 50K haplotype analysis (FRITZ 

2009). Therefore the haplotype structure defined for the linages present in the samples in 

this study may not represent all lineages of the Holstein breed.  

 

The most frequent 770K haplotype groups (haplotypes 1 and 2) were most closely 

related to the most frequent haplotype, HOL 1, identified by the 50K SNP platform 
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(FRITZ 2009), suggesting that this is likely the most common haplotype in the Holstein 

breed or that the two populations from which these samples were drawn were of the 

same lineage. Additionally, the three 770K haplotype group clusters that were not found 

to match previously defined 50K haplotypes might either be one of the six low 

frequency haplotypes from 50K study (FRITZ 2009) or new haplotypes discovered in 

lineages of Holsteins not previously investigated. The frequencies of the haplotypes are 

population dependent, and while the HOL 1 and the BRD_HG 1 and 2 were found to be 

in the higher frequencies in both populations. The HOL 2 (second most frequent 50K 

haplotype) shared haplotype structure with the 3rd and 4th most frequent haplotypes from 

the BRD homozygotes. Two 50K Holstein haplotypes (2 and 7) were in the same 

predicted lineage, but did not tree to the same clade. Similar conserved haplotype 

structure has been observed in HLA haplotypes (PARHAM 1999). 

 

The observed variability in the frequency of no call genotypes and dispersed positions of 

the no call SNPs within haplotype groups would suggest that structural variation is a 

feature of the haplotype structure and that haplotypes need to be characterized by more 

than SNPs. The presence of no call SNPs in CNVs and the variance in the no call 

genotypes fixed in single haplotype groups indicates that alternative structural variation 

is further defining the haplotypes within a group. It has been shown that CNVs arise 

more frequently that SNPs (FADISTA et al. 2010), and structural variation may serve to 

maintain and enrich diversity in BoLA, as has been suggested though variable gene 

content in haplotypes (BIRCH et al. 2006). 
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Identification of homozygous haplotypes can improve the genetic association testing 

done in disease-related studies (NORMAN et al. 2015) and it has been suggested that 

haplotype frequencies observed in cattle could be used to predict disease susceptibility 

(CODNER et al. 2012). While we did not find associations between BRD susceptibility 

among the haplotype groups or the no call SNPs, we did identify genotype variation that 

appears to correlate with genomic structural variations and repetitive DNA that are 

currently missed by the commercial SNP chips as currently used. The failure to detect 

associations in this study may be due to an insufficient population size. We also 

observed more variation in the haplotype groups that suggest the 1,221 SNPs that mark 

BoLA do not likely have enough coverage to identify all immune related variants that 

may be controlling genetics for complex traits.  

 

Diversity of the MHC class I region haplotypes is largely breed specific with only a few 

class I haplotypes shared among breeds (ELLIS AND HAMMOND 2014) and the same 

condition appears to be true for haplotypes across the entire BoLA complex (FRITZ 

2009). Only two of the 50K haplotypes were shared between the two most prominent 

breeds, Angus and Holstein. Analysis on the 770K Chip confirmed that the structure of 

these two haplotype groups is also shared at higher SNP densities  

 

In conclusion, this study demonstrated that more diversity was present among 

“homozygous” Holstein haplotypes than was predicted from the 50K SNP chip. 

However, the underlying haplotype structure was consistent between the two tested 
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Holstein populations, suggesting that the 50K chip can predict haplotype structures 

within a breed but will miss some of the diversity within the breed. No call SNPs may 

indicate additional variation, specifically structural variation, but may also be of 

importance to explain some of the missing heritability for associations with complex 

traits. No call SNPs need further characterization to confirm that structural variation is 

causal or that the no calls arise from experimental error.  
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CHAPTER III  

ANTIBODY TITERS TO VACCINATION DO NOT PREDICT LEVEL OF 

PROTECTION AGAINST A BVDV TYPE 1B CHALLENGE IN BOS INDICUS - BOS 

TAURUS STEERS 

 
 

Synopsis 

Subclinical illness associated with infection is thought to reduce performance and 

increase production costs in feedlot cattle, but underlying components remain largely 

unidentified. Vaccination is frequently used in feedlot settings but producers lack 

metrics that evaluate the effectiveness of vaccination programs.  The goal of this study 

was to determine if serum neutralizing titers were predictive of vaccine protection in a 

commercial setting. Angus-Nellore steers housed in a production feedlot setting were 

assigned to one of three vaccine treatments: killed vaccine (KV), modified live virus 

(MLV) vaccine, or no vaccine, and were challenged with a noncytopathic 1b field strain 

of bovine viral diarrhea virus. Rectal temperature and levels of circulating lymphocytes 

and platelets were monitored following challenge. While no animals were diagnosed as 

clinically ill with respiratory disease, indicators of disease (pyrexia, lymphopenia, and 

thrombocytopenia) were observed. The MLV treatment elicited higher antibody titers to 

the vaccination than the KV, and calves in the MLV treatment had higher mean titers  at 

challenge. The year that elicited the highest response to the vaccination and the year with 

the lowest frequency of phenotypic responses to the challenge were not concurrent. The 

MLV treatment had the highest proportion, 34.68%, of animals that were protected 
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against the challenge regardless of the pre-challenge antibody titer and had the fewest 

number of lymphopenia cases in response to the challenge. Both vaccine treatments 

mitigated thrombocytopenia when compared to the control treatment, and the MLV 

treatment reduced lymphopenia; however, these symptoms were not completely 

eliminated in vaccinated animals.  Pyrexia was present in 40.11% of the animals, but no 

difference in the frequency of cases between treatments was observed. Pre-challenge 

vaccination response was not indicative of the level of protection nor was anamnestic 

antibody response correlated with healthy or sick status. 

 

Introduction 

Cattle infected with bovine viral diarrhea virus (BVDV) present with a variety of clinical 

and subclinical symptoms determined by the virulence of the BVDV strain and the 

immune status of the animal (MARTIN et al. 1980; LIEBLER-TENORIO et al. 2003b; 

RIDPATH et al. 2006; RIDPATH et al. 2007).  BVDV has been associated with respiratory 

disease, reproductive failure and gastrointestinal disease (FULTON et al. 2006; 

PALOMARES et al. 2014b), and outbreaks reduce the productivity and economic viability 

of cattle populations (ENDSLEY et al. 2003; GLEW et al. 2003; PLATT et al. 2009). 

BVDV infection results in immunosuppression, predisposing cattle to secondary 

infections that may lead to bovine respiratory disease (BRD) (PETERHANS et al. 2003; 

SILFLOW et al. 2005; FULTON et al. 2006; RIDPATH et al. 2007; PALOMARES et al. 

2014b). Some animals with acute BVDV infections have subclinical symptoms making 
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it challenging to identify and to determine necessary protection for disease prevention 

(BROCK et al. 2007; PALOMARES et al. 2014a). 

 

High levels of BVDV immunity are associated with protection from disease, improved 

productivity, and economic benefits in pre-feedlot animals (FULTON et al. 2006). Both 

humoral and cell-mediated immune responses provide protection against respiratory 

infection (SILFLOW et al. 2005; BAUERMANN et al. 2013; RIDPATH 2013), but detectable 

levels of humoral and/or cell-mediated immunity do not assure protection against 

infections (CORTESE et al. 1998; FULTON et al. 2000; DESCÔTEAUX et al. 2003). While 

the presence of neutralizing antibodies is frequently used as a measurement of immune 

response to vaccination, the threshold of neutralizing antibodies required for protection 

against BVDV infection is unknown (BAUERMANN et al. 2013).  

 

The incomplete effectiveness of BVDV vaccines is likely due to the heterogeneity 

among different viral strains and the unique interaction of the virus with the host 

immune system (GLASS et al. 2012; RIDPATH 2013), along with genetic and individual 

variation of the host (GLASS 2004; GLASS et al. 2012). Vaccination with either a killed 

or modified life virus (MLV) product is a major component of prevention programs for 

both persistent and acute BVDV infections (FULTON et al. 2003; ZIMMERMAN et al. 

2006). It is desirable to achieve maximal response to vaccination at minimal 

physiological expense to avoid reduced performance (RIDPATH et al. 2010). 
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Numerous vaccine and challenge studies have been performed with differences in 

immune responses observed, but few have been performed in production settings to 

evaluate the efficacy of vaccinations in a commercial operation (LONERAGAN et al. 

2005; HUGHES et al. 2014; FULTON 2015). This is important for feedlot producers to 

improve vaccine efficacies. This study was conducted in commercial production setting 

over a four-year time frame and utilized F2 and F3 Bos indicus - Bos taurus steers. The 

goals were to determine whether (1) differences existed in immune protection between 

killed and MLV vaccines at the same titer; (2) serum neutralizing antibody levels 

following vaccination were predictive of protection; and (3) current industry metrics are 

adequate for identification of sick animals post-pathogen exposure.  

 

Materials and Methods 

This project was reviewed and approved by the Texas A&M University Institutional 

Animal Care and Use Committee and the Texas A&M University Institutional Biosafety 

Committee. Low-stress cattle handling methods were used for this study during 

transportation, processing, and data collection. 

 

Animal Population 

Angus-Nellore F2 and F3 yearling steers were used for the study. Calves were spring-

born in 2009, 2010, 2011, and 2012 and were castrated prior to weaning. Steers were 

weaned at approximately 7 months of age and received three clostridial vaccinations 

with Clostri Shield 7 (Novartis Animal Health US, Inc., Greensboro, NC) at 
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approximately 70 days of age, 3 weeks prior to weaning, and at weaning.  Calves did not 

receive any vaccines against respiratory pathogens. Steers were tested for persistent 

BVDV infection at the Texas Veterinary Medical Diagnostics Laboratory (TVMDL; 

Amarillo, TX) prior to enrollment using an immunohistochemistry or antigen-capture 

ELISA assay on ear notch samples. All animals in this study tested negative for BVDV 

persistent infection and were sero-negative for antibodies against BVDV types la, 1b, 

and 2 prior to enrollment.  

 

Vaccination Treatments 

Steers were classified by sire and randomly assigned to one of three vaccine treatments: 

killed vaccine (KV; n = 119), MLV vaccine (n = 124), or control (n = 116). Animals 

assigned to the KV treatment received Novartis Vira-shield®, according to label 

directions, receiving an initial dose on day -56 or -49, and a second dose 21 days later. 

Steers in the MLV treatment received a single administration of Novartis Arsenal® 4.1, 

according to label directions, on the same day the second dose was applied to the KV 

treatment group. Control treatment steers received no vaccination or sham injection. The 

MLV vaccinated steers were housed in isolation from the other treatment groups for 

seven to 10 days following vaccination. Steers were assigned to one of four pens with 

treatment-sire groups balanced across pens. 
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Challenge 

All steers were challenged intranasally with 5 mL of 1x105 TCID50 BVDV CA401186a 

(2.5 mL of inoculum per nasal passage) 25 to 35 days after booster vaccination. BVDV 

CA401186a was obtained from USDA-ARS National Animal Disease Center, Ames, IA 

(BLANCHARD et al. 2010). 

 

Sample and Data Collection 

 Rectal temperatures were recorded on days 0, 3, 7, 10, 14, 28, and 42 post-challenge 

(PC).  

 

Sera were prepared from whole blood collected on vaccination days, and days 0, 14, 28, 

and 42 PC and stored at –20° C until used. Serum neutralizations against cytopathic 

BVDV strains 1a, 1b, and 2 were performed in duplicate on serially diluted (1:4 to 

1:4096) sera by TVMDL. The end titer was determined as base 2 log of the highest 

dilution that showed no cytopathic effect.  

 

Whole blood was collected in EDTA vacutainers (Becton, Dickinson and Company, 

Franklinlakes, NJ) on days 0, 7, 14, 28, and 42 PC. Samples were shipped overnight and 

differential WBC counts, platelets, and red blood cell characteristics were determined on 

blood samples using a CELL-DYN 3700 blood analyzer (Abbott Laboratories, Abbott 

Park, IL) at the University of Arkansas Nutrition Laboratory (Fayetteville, AR).  
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Steers were observed for clinical symptoms twice daily for the first 14 days PC, and then 

once daily through day 42 PC. Clinical symptoms were recorded on a 6-point scale for 

each symptom: cough, ocular and nasal secretion, depression, diarrhea, and anorexia 

(STEVENS et al. 2011). Criteria for clinical diagnosis was a score >3 for a single 

symptom or a combined score ≥3 for two or more symptoms. Animals with rectal 

temperatures over 40.0° C, regardless of clinical scores, were treated once with 

tulathromycin (Zoetis, Kalamazoo, MI) according to label directions. 

 

Calculations and Statistical Analyses 

Declines in lymphocytes and platelets were calculated as the difference between the 

lowest circulating lymphocyte/platelet count PC and day 0 count divided by the count on 

day 0 PC and multiplied by 100 to generate the percent decline (RIDPATH et al. 2007). 

Anamnestic antibody response was defined as area under the curve (AUC) of the log 

base 2 titers from days 0 to 42 PC, using the trapezoidal summation method (BAXTER et 

al. 2009).  

 

Disease phenotypes were analyzed as 2-level categorization (healthy and sick). Pyrexia 

defined as an elevated rectal temperature of 1 SD greater than day 0 PC temperature for 

2 or more consecutive collection days within 14 days PC. Lymphopenia and 

thrombocytopenia, defined as >40% maximum decline. Clinical presentation was 

defined by presentation of pyrexia, lymphopenia, and thrombocytopenia. Subclinical 

presentation was lymphopenia and thrombocytopenia with no pyrexia. 
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Response to vaccination was analyzed as antibody titers in four categories (no, low, mid, 

and high). No titer included animals with no detectable titers post-vaccination (n = 153). 

Low titers were ≥2 and <4 (n = 87).  Mid titers were ≥4 and <6 (n = 87). High titers 

were ≥6 (n = 32). 

 

Statistical analyses were performed in SAS 9.3 (SAS Institute Inc., Cary, NC). Mixed 

model analysis was used for daily rectal temperature, maximum lymphocyte and platelet 

decline, BVDV 1b titer post-vaccination, and daily anamnestic antibody response 

differences with fixed effects of treatment, year and the interaction tested. Glimmix 

analysis was used for binary disease symptom phenotypes of: no disease symptoms, 

pyrexia, lymphopenia, thrombocytopenia, and clinical/subclinical presentation. Fixed 

effects of pre-challenge titers or BVDV 1b AUC, treatment, year, and appropriate 

interactions were fit into the model. Effects were considered significant at an alpha of 

0.05. 

 

Results 

Response to Vaccine Treatments 

Response to vaccination was measured by neutralizing antibodies on day 0, prior to the 

BVDV 1b challenge. The steers in the MLV treatment had higher BVDV 1b mean titers 

for three out of the four years compared to the KV and control treatments (Table 3.1). 

Highest BVDV 1b mean titers for both the KV and MLV treatments were observed in 

2010 (Table 3.1). The lowest mean titer for the KV was observed in 2012, while the 
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lowest MLV treatment titer was observed in 2011 (Table 3.1). The peak BVDV type 2 

titers were observed in 2012 for both MLV and KV treatments. BVDV 1a vaccine titers 

were highest in 2012 for the MLV treatment, while 2011 had the numeric peak in the 

KV treatment with no statistical significance between 2011 and 2012 (Table 3.1). No 

differences were observed in the control treatment for all BVDV genotypes as no 

detectable titers  were measured in steers in the control treatment (Table 3.1).  Year 

effects were observed in all BVDV antibody titers post- vaccination, however the year 

effects were different for the two vaccine treatments (Table 3.1). BVDV 1b antibody 

titers were higher for the MLV treatment than for the KV or control treatments, while 

the mean BVDV type 2 titers were higher in the KV treatment pre-challenge (Table 3.1).  
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Table 3.1. BVDV Vaccination Treatment Means Antibody Titer. BVDV 1b average 
neutralizing antibody titers by challenge year to the vaccination at day 0.  
 
 

 
Superscripts indicate difference across years within a treatment and across treatments at 
P < 0.05 within a column (BVDV genotype). 
  

N BVDV 1b 
Titer (SD) 

BVDV 1a 
Titer (SD) 

BVDV 2 
Titer (SD) 

KV 

2010 28 3.29 (1.67)a 0.96 (1.53)a 2.14 (1.74)a 

2011 33 2.73 (2.10)a,c 2.85 (2.24)b,c 3.27 (2.13)b 

2012 30 1.63 (1.35)b 2.43 (1.57)b,d 3.57 (2.16)b 

2013 28 2.29 (1.88)b,c 1.14 (1.63)a 2.18 (2.04)a 

MLV 

2010 25 5.64 (1.38)d 2.32 (1.77)b,e 1.20 (1.26)c 

2011 34 3.00 (1.48)a 2.03 (1.34)d,e 0.91 (1.26)c 

2012 33 4.45 (1.23)e 3.33 (1.22)c 2.52 (1.42)a 

2013 32 4.16 (1.53)e 1.34 (1.62)a 1.09 (1.44)c 

Control  

2010 23 0.00 (0.00)f 0.00 (0.00)f 0.00 (0.00)d 

2011 33 0.00 (0.00)f 0.00 (0.00)f 0.06 (0.35)d 

2012 32 0.00 (0.00)f 0.09 (0.53)f 0.00 (0.00)d 

2013 28 0.00 (0.00)f 0.07 (0.38)f 0.00 (0.00)d 
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The distributions of antibody titers between the two vaccine treatments were different 

(Figure 3.1; Figure 3.2). Responses to the vaccines showed a bell-shaped curve in 

response to the KV for all years, while in 2010 more animals in the MLV treatment 

exhibited high titers than no or low titers (Figure 3.1). The KV treatment elicited more 

no and low titer responses than mid and high responses (Figure 3.1a). Alternatively, the 

MLV treatment elicited mid and high titers with fewer no titer responses (Figure 3.1b). 

The distributions of raw titer values for the two vaccine treatments are presented in 

Figure 3.2. The titers produced by the MLV treatment were evenly distributed with a 

titer of 3 at the peak of 2011 and 2013 challenge years and a peak titer of 4 in 2010 and 

2012 (Figure 3.2b). The 2010 response to the KV was a bell curve similar to the 

response observed for the MLV treatment, however higher numbers of no responders 

were observed in 2011 to 2013 with the greatest proportion of the animals in those years 

in the no and low response groups (Figure 3.2a).  
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Figure 3.1. Antibody Titers by Year. Distribution of BVDV 1b antibody titers in steers 
at day 0 (No: titer = 0; Low: 2 ≤ Titer < 4; Mid: 4 ≤ Titer < 6; and High: Titer ≥ 6) to (a) 
Killed Vaccine (KV) and (b) MLV vaccine by year. 
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Figure 3.2. Raw Antibody Titers by Year. Distribution of antibody titers in response 
to vaccine treatments at day 0 (a) Killed vaccine (KV) and (b) MLV vaccine prior to 
challenge across 4 years. 
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Response to the BVDV 1b Challenge 

The maximum platelet decline observed was –93.6%, while maximum lymphocyte 

decline was –80.6%.  Animals in the control treatment group had the greatest decline in 

circulating lymphocytes and platelets. Lymphocyte counts in animals receiving MLV 

treatment declined less  (P < 0.05) than in animals receiving either the KV or control 

treatments (Figure 3.3a). The average maximum platelet decline in the MLV treatment 

was less than in the control treatment (P < 0.05); the platelet decline in the KV treatment 

was intermediate to MLV and control, and not statistically different from either (Figure 

3.3b).  

 

The highest individual recorded temperature in the first 14 days PC was 41.8°C, in the 

control treatment. Mean day 0 temperatures were not different among treatments; steers 

receiving the MLV vaccine had lower mean rectal temperatures through day 7 PC 

compared to the other treatments (P < 0.001) (Figure 3.3b). No differences were 

observed among treatments for mean rectal temperatures by day 10 PC. In addition to 

rectal temperature collections, animals were observed daily for additional clinical 

respiratory symptoms. No animal met the threshold for clinical illness or warranted 

additional rectal temperature measurements for therapeutic treatment based on clinical 

symptoms. 
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Figure 3.3. Lymphocyte and Platelet Decline and Rectal Temperature Response to 
BVDV Challenge. (a) Greatest decline (%) in circulating lymphocytes and platelets by 
treatment (killed vaccine (KV), modified live virus (MLV) vaccine, or control (non-
vaccinated)) post-challenge with BVDV 1b CA0401186. Data displayed as means 
±SEM. Superscriptsa,b represent significant differences (P < 0.001) between treatment 
groups for lymphocyte decline. Superscriptsy,z represent significant differences (P < 
0.05) between treatment groups for platelet decline. (b) Mean rectal temperature by 
treatment (killed vaccine (KV), modified live virus (MLV) vaccine, or control (CON; 
non-vaccinated)) across the first 14 days post-challenge. Significant treatment 
differences within day are denoted by a P < 0.001 between MLV and KV/Control 
treatments, and b P < 0.05 between MLV and KV/Control treatments.   
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When challenged, 20.89% of the animals did not present with pyrexia or subclinical 

signs. Lymphopenia was the most frequent sign of subclinical disease (55.15%) PC. 

Thrombocytopenia was observed in 40.67% of the animals and 40.11% of the animals 

presented with pyrexia PC. These responses varied by treatment and year (Table 3.2). 

 

Vaccine Effects on Response to BVDV 1b Challenge 

Vaccine treatment affected the response to the challenge for most phenotypes. The MLV 

treatment had the greatest proportion of animals (34.68%) without pyrexia and 

subclinical signs PC (Table 3.2). No difference was observed in protection from the KV 

treatment compared to the control treatment for prevention of lymphopenia or no 

symptoms (Table 3.2). The MLV treatment significantly reduced (P < 0.05) the number 

of animals that presented with lymphopenia to approximately half of the KV and control 

treatments (Table 3.2). Thrombocytopenia was observed in significantly fewer 

individuals (P < 0.05) receiving vaccines compared to controls (Table 3.2). No treatment 

differences were observed in the percentage of animals that presented with pyrexia.  
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Table 3.2. Disease Symptoms by Treatment. Percentage of animals with (1) no disease 
signs (2) clinical sign of pyrexia (2 or more consecutive time points of rectal temperature 
> 1 SD from baseline temperature), (3) lymphopenia (>40% decline in lymphocyte 
counts), and (4) thrombocytopenia (>40 % reduction in platelet counts) following 
BVDV 1b challenge by treatment and year. 

 

a,b,c Superscripts indicate significant differences (P < 0.05) between treatment or year 
within a column. 
  

  

N No Disease 
Signs Pyrexia Lymphopenia Thrombocytopenia 

Treatment 

KV 119 16.81b 40.34 64.71b 37.82a 

MLV 124 34.68a 34.68 33.87a 31.45a 

Control 116 10.34b 45.69 68.10b 53.45b 

Year 

2010 76 10.53a 36.84b,c 71.05a 72.37a 

2011 100 32.00b 25.00c 52.00b 29.00b 

2012 95 20.00a 54.74a 52.63b 28.42b 

2013 88 18.18a 44.32a,b 47.73b 39.77b 
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Year Effects of Response Phenotypes to BVDV 1b Challenge 

Year effects on response phenotypes were highly variable. The year effect trended 

similarly for lymphopenia and thrombocytopenia (Table 3.2). Lymphopenia and 

thrombocytopenia were most prevalent in 2010 (P < 0.05); approximately 70% of the 

animals in that year presented with reduced cell counts in response to the challenge 

(Table 3.2). No differences were observed in lymphopenia and thrombocytopenia 

prevalence in 2011, 2012, or 2013 (Table 3.2). The greatest proportion of animals to 

present with no disease signs was in 2011, and that same year showed the lowest number 

of steers presenting with pyrexia in response to the challenge but not significantly 

different from 2010 levels (Table 3.2). The year with the highest proportion of pyrexia 

presentation was not the same year with the greatest proportion of steers with 

lymphopenia and thrombocytopenia (Table 3.2).  

 

Titers and Protection from of Disease  

Detectable titers were found in 70.70% of the individuals without symptoms PC (Figure 

3.4a). The MLV treatment group included significantly more individuals with detectable 

titers and no disease signs (P < 0.05), accounting for 53% of the healthy animals (Figure 

3.4a). No difference in pyrexia frequency was observed between vaccine titers (P > 

0.05) (Figure 3.4b). Animals with no detectable titers presented with lymphopenia and 

thrombocytopenia at a higher frequency than animals with detectable levels (Figure 3.4c 

and 3.4d). Lymphopenia was more frequent at high titers in the MLV treatment, but was 

more frequent at low titer in the KV  
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Figure 3.4. Prevalence of Symptoms by Vaccine Titer. Proportion of animals with no, 
low, mid, or high BVDV 1b vaccine titers (day 0) that present with (a) No disease 
symptoms, (b) Pyrexia, (c) Lymphopenia, and (d) Thrombocytopenia post BVDV 1b 
challenge. (No: titer = 0; Low: 2 ≤ Titer < 4; Mid: 4 ≤ Titer < 6; and High: Titer ≥ 6) that 
present with. a,b,cAlphabetic scripts represent significant (P < 0.05) differences between 
titers. (a) and (c) Had significant interactions for titers by treatment.  
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treatment (Figure 3.4c). When vaccine titers were in the low to mid range, the frequency 

of thrombocytopenia presented less frequently than when no titers were detectable 

(Figure 3.4d). No treatment interaction was observed between antibody titers post- 

vaccination and pyrexia or thrombocytopenia (P > 0.05).  

 

Clinical versus Subclinical Response  

The frequency of lymphopenia and thrombocytopenia with pyrexia (clinical) and 

without pyrexia (subclinical) were compared (Figure 3.5). The subclinical presentation 

occurred at 1.24 times as often as clinical presentation. Subclinical disease symptoms 

occurred more frequently in steers with mid to high titers. No differences in numbers of 

clinical vs subclinical cases were observed in steers with no to low titers (Figure 3.5).  
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Figure 3.5. Clinical versus Subclinical Disease by Vaccine Titer. Frequency of 
animals that presented with clinical (pyrexia, lymphopenia, and thrombocytopenia) 
symptoms versus the subclinical (lymphopenia and thrombocytopenia) signs of disease 
across the four vaccine titer categories (no, low, mid, and high). 
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Anamnestic Antibody Response to BVDV Challenge 

The greatest anamnestic antibody response was observed in the KV treatment group, by 

day 14 PC (Figure 3.6a). Year differences in the anamnestic response to vaccination 

were similar to those described for response to vaccination (data not shown). The MLV 

treatment had higher titers on day 0 in response to vaccination, but demonstrated lower 

anamnestic antibody response to the challenge than the KV treatment (Figure 3.6a). By 

day 42, no difference was observed between the MLV and control treatment (Figure 

3.6a). Anamnestic antibody response PC was not different for healthy versus sick 

animals that presented with pyrexia, lymphopenia, or thrombocytopenia or the 

combination (P > 0.05) (Figure 3.6b).  
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Figure 3.6. Anamnestic Antibody Response. (a) Mean antibody titer (base 2 log) for 
BVDV type 1b at days 0, 14, 28, and 42 with area under the curve (AUC) shaded for 
each vaccine treatment (killed vaccine (KV), modified live virus (MLV) vaccine, or 
control (non-vaccinated)). Means reported for each treatment at days 0, 14, 28 and 42 
post-challenge with SEM. a Significant (P < 0.05) differences between KV, MLV, and 
control treatments. b Significant (P < 0.05) difference between KV and MLV/Control 
treatments. (b) Mean BVDV 1b antibody titers for healthy (animals not presenting with 
phenotypes of interest: pyrexia, lymphocytopenia, or thrombocytopenia) and sick 
(animals that present with one or more phenotypes: pyrexia, >40% reduction in 
circulating lymphocytes and platelets), displayed as AUC with SEMs.  
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Discussion 

No or low detectable levels of neutralizing antibodies do not indicate lack of protection 

as animals with primed immune responses can be protected against pathogens as we 

observed in the BVDV challenge in steers with no detectable antibody (ENDSLEY et al. 

2004; REBER et al. 2006). We observed that the MLV treatment elicited higher antibody 

titers compared to the KV treatment, although previously killed vaccines have been 

reported to generate higher titers (CHASE et al. 2003). Conversely, in anamnestic 

antibody response the paradigm remained true, the KV treatment elicited higher 

anamnestic response compared to the MLV treatment PC. But MLV vaccines are known 

to elicit more robust and longer lasting immune responses compared to killed vaccines, 

suggesting why the vaccine titers were higher for the MLV treatment (RIDPATH 2005; 

RIDPATH et al. 2010; RIDPATH 2013). Animals that were vaccinated with an MLV 

vaccine were better protected against the challenge, especially steers in the no, low and 

mid titers. Similar to our findings, vaccinated animals were reported to have protection 

even in the absence of titers from vaccination (STEVENS et al. 2011). Conversely, calves 

with lower serum neutralizing antibody levels at entry to the feedlot have been reported 

to be at increased risk for BRD treatment, illness, and reduced net value to the owner 

(FULTON 2015). Our results suggest that the immune response elicited by the MLV 

vaccine stimulated more than a humoral antibody response, as animals with no and low 

titers were better protected than the KV treatment animals at the same titers. 

Furthermore, protection against a BVDV challenge can occur in the absence of 

detectable post-vaccination antibody titers (RIDPATH 2003; PLATT et al. 2009), and 
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several studies have shown little correlation between increased antibody titers and 

disease prevention (REBER et al. 2006). Our results correspond with others’ suggesting 

that the type of immune response may be more important for protection against viral 

pathogens than increased titers of neutralizing antibodies (CHASE et al. 2003; SILFLOW et 

al. 2005; CHASE 2013): both a primed T- and B-cell response may be required to offer 

optimal protection against the challenge.  

 

The year effects observed were inconsistent and not identical across all treatments and 

phenotypes. The years with lowest antibody titers for either vaccine treatment were not 

those with greatest numbers of individuals with lymphopenia or thrombocytopenia. 

Similarly, BRD prevalence was reported to vary by year, as was observed with the 

prevalence and robustness of the BVDV phenotypes in these studies (SNOWDER et al. 

2006; NEIBERGS et al. 2011). This may suggest that there may be a cyclical pattern in 

disease that is not related to the protective response from the vaccination, or it may 

reflect some year-to-year variation in the genetic background of the steers. The host 

genetic background may help explain some of the year effects (COLLEN et al. 2002), but 

further investigations are required to understand the genetic component that might 

influence year-to-year variation in vaccine protection. Alternatively, the year-to-year 

variation may be explained by unmeasured environmental exposures. 

 

Respiratory infection in feedlots is typically diagnosed through observed clinical 

symptoms, and affected animals are treated based on elevated rectal temperature (DUFF 
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AND GALYEAN 2007a).  However, multiple studies have documented no observable 

clinical symptoms post BVDV challenge, although leukopenia and pyrexia were 

reported shortly following challenge (BEER et al. 1997; LIEBLER-TENORIO et al. 2003a; 

RIDPATH 2003; KELLING et al. 2007; LIANG et al. 2008). These findings suggest that not 

all BVDV infections present with visible symptoms.  

 

Rectal temperatures were recorded on pre-determined days rather than as a final clinical 

threshold following initial observation of clinical symptoms, as would be the case in a 

field protocol. Observations of pyrexia were observed in cattle with leukopenia similar 

to previous studies (CORTESE et al. 1998; LIEBLER-TENORIO et al. 2003a; ZIMMERMAN et 

al. 2006; KELLING et al. 2007; LIANG et al. 2008), but not all cattle with 

lymphocytopenia and thrombocytopenia experienced pyrexia. Based on our data, rectal 

temperature is not a reliable indicator of morbidity, and utilization of rectal temperature 

to identify sick cattle may miss a portion of sub-clinically ill cattle. The presence of sub-

clinically ill, undiagnosed cattle in a population may have large financial impacts, which 

are difficult for operators to directly assess (MARTIN et al. 1980; MARTIN et al. 1981). 

Assessment of disease presentation by leukopenia and thrombocytopenia may increase 

the detection of “sick” animals compared to traditional observational diagnoses. 

 

Lymphocytopenia and thrombocytopenia are subclinical indicators of BVDV infection. 

Lymphopenia was observed in both vaccinated and unvaccinated calves post-challenge, 

with an average reduction of 39.4% in lymphocytes following the challenge, similar to 
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other reports (CORAPI et al. 1989; LIEBLER-TENORIO et al. 2003b; LIEBLER-TENORIO et 

al. 2003a; RIDPATH et al. 2007; CHASE 2013; PALOMARES et al. 2014a). Large variations 

in circulating lymphocyte counts among steers were observed, including calves with 

lymphocytes elevated by 40% from baseline to calves with severe lymphopenia of 80% 

reductions, suggesting that individual variation exists within the population and that 

some calves develop a more robust immunity for protection against the BVDV challenge 

than others. Results from this study and others suggest that a protective response from 

vaccination should prevent leukopenia and thrombocytopenia during pathogen exposure 

(BROCK et al. 2007; PLATT et al. 2009). 

 

Vaccination reduced the subclinical effects from the BVDV challenge. Calves that 

received MLV were less susceptible to lymphopenia and thrombocytopenia than non-

vaccinated animals, similar to other studies (LIANG et al. 2006; KELLING et al. 2007; 

RIDPATH et al. 2010). The MLV treatment appeared to elicit a more robust 

immunological response to protect against lymphopenia compared to the KV treatment, 

although unmeasured. Vaccinated steers displayed less severe lymphocytopenia and 

thrombocytopenia following the challenge than unvaccinated steers, and this concept is 

likely important in production environments. The lower antibody titers observed in the 

anamnestic response indicated that the MLV treatment had greater protection from 

vaccination, which resulted in less viral replication PC. This suggests that the MLV 

vaccine likely stimulated both a humoral and cell-mediated immune response. Titers 



 

 121 

following pathogen exposure cannot be used to gauge the level of protection within a 

population. 

 

In conclusion, this study suggests that antibody titer may not be a reliable metric of 

protective immune response against a BVDV 1b challenge or of disease status. Reber et 

al. (REBER et al. 2006) similarly reported weak to no correlations between humoral and 

cellular immune responses, and Ridpath (RIDPATH 2003) previously suggested that 

antibody titers may not be a reliable indicator of protection. The titer threshold for 

protection may be dependent on more than detectable humoral immune response. Based 

on these results the titer threshold for protection is variable and is dependent on the other 

immune components that have been primed by the vaccination. To find the protection 

titer threshold it may be critical to understand the type of vaccination and the humoral 

immune response stimulated, as well as animal-to-animal variation, i.e. genetics.  More 

steers in this experiment had lymphocytopenia and thrombocytopenia than pyrexia, 

suggesting that rectal temperature does not identify all animals with infection. 

Additionally, rectal temperature used alone as a predictor for morbidity likely misses a 

substantial proportion of cattle with BVDV infection. These results show a benefit from 

BVDV vaccination even in the presence of low detectable titers, and that the MLV 

vaccine provided better protection against BVDV 1b challenge in a production setting. 

Undiagnosed, sub-clinically ill animals in commercial feedlots likely present significant 

health management obstacles as viral reservoirs and potential sources of reduced 

production efficiency. Vaccine efficacy for commercial use needs to be evaluated on the 
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prevention of subclinical disease presentation and the stimulation of both humoral and 

cell-mediated arms of the immune response. Antibodies titers alone do not appear to be 

indicative of the level of protection offered by a vaccination. 
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CHAPTER IV 

VARIATION IN HOST IMMUNE RESPONSE TO BVDV VACCINATION ACROSS 

BOVINE SUBSPECIES 

 

Synopsis  

Vaccination is used as an industry-wide practice for control of bovine respiratory disease 

complex, with mixed results. The roots of vaccine failure are many with one being 

genetic predisposition to immune responsiveness.  Differences between host immunity to 

vaccination in Bos indicus and Bos taurus could impact vaccine efficacy. This study 

aimed to identify differences between indicine and taurine cattle in immune responses to 

commercially available vaccines for respiratory disease, using bovine viral diarrhea as 

an indicator for measurement of response. Calves in a classic production setting were 

immunized with either killed or modified live virus (MLV) vaccinations. Blood 

leukocyte profiles and humoral and cell-mediated immune responses were evaluated for 

changes in response to vaccination. Indicine cattle were found to have larger baseline 

leukocyte populations of total white blood cells, which were highly influenced by the 2-

fold difference in neutrophils found in Brahman calves. A unique platelet response was 

observed in indicine cattle, with a 50% reduction of platelets 3 days post-vaccination 

followed by a baseline level recovery. While indicine cattle had more total neutrophils, 

the taurine cattle had approximately 50% greater neutrophil responses to the vaccines 

that were faster, by day 3, compared to the steady neutrophil levels observed in indicine 

cattle. The indicine cattle appear to be more susceptible to immunosuppression in 
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response to the MLV vaccine, but when vaccinated with a killed virus and boosted with 

an MLV, the immunosuppression was mitigated. 

 

Introduction 

Infection with viral and/or bacterial pathogens has been associated with the development 

of bovine respiratory disease complex (BRDC).  In particular, infection with bovine viral 

diarrhea virus (BVDV) is often suspected as an initiating event for BRDC (KELLING et 

al. 2007). Consequently, resistance to BVDV might translate into relative resistance to 

BRDC (RIDPATH 2013) and for this reason most of the commercially available vaccines 

against BRDC contain a BVDV component. 

 

BVDV is a pestivirus (Flaviridae) with a positive-sense single-stranded RNA genome of 

~12.5 Kb (RIDPATH et al. 1994; CHARLESTON et al. 2002; LIANG et al. 2008). BVDV 

isolates are highly heterogeneous (RIDPATH 2005) and exist as cytopathic and 

noncytopathic biotypes (RIDPATH et al. 1994; PETERHANS et al. 2003; CHASE 2013). 

Variation in the 5’ untranslated region of the viral genome generates two genotypes, 

BVDV types 1 and 2 (RIDPATH et al. 1994). Pestiviruses infect both beef and dairy 

cattle, resulting in economic losses for operations, and risks to other ruminant livestock 

and wildlife (RIDPATH 2015).  

 

Vaccination is a valuable practice used by the industry to promote animal health at all 

ages through prevention and control against viral and bacterial pathogen outbreaks 
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(DUFF AND GALYEAN 2007a) and has been used as the primary prevention method for 

BVDV infections. However, widespread vaccination has not significantly reduced the 

incidence of BRDC (GLASS 2004). Host variation in immune response (CORTESE et al. 

1998; GLASS 2004; FULTON 2005) and evasion mechanisms of the pathogen can reduce 

the effectiveness of vaccination (SRIKUMARAN et al. 2007; RIDPATH 2013). Most vaccine 

efficacy studies have been done in taurine cattle while many cattle raised in the southern 

regions of the United States are crosses of indicine and taurine cattle.  In this study, we 

asked whether variation exists between indicine and taurine cattle in response to BVDV 

killed and modified live vaccines. 

 

Host variation is known to play a critical role in antigen recognition and lymphocyte 

proliferation (BROCK et al. 2007; SRIKUMARAN et al. 2007; ABBAS et al. 2011). Several 

studies conducted primarily in taurine breeds demonstrate variation in vaccination 

response among individuals (RIDPATH et al. 2010; BAUERMANN et al. 2013; RICHESON et 

al. 2013a); however, vaccine effectiveness and individual variation in immunization 

against BVDV have not been well studied in indicine cattle.  

 

Both humoral and cell-mediated immunity afford protection against respiratory infection 

(BROCK et al. 2007; MACEDO et al. 2013; RIDPATH 2013), and the evaluation of 

efficacious vaccination needs to interrogate both cell-mediated and humoral responses 

(REBER et al. 2006). Typically, humoral response is most often used to measure the 

response to vaccination due to the relative ease in measuring humoral response 
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compared to cell-mediated response. However, both humoral and cell-mediated 

responses have been studied in animals vaccinated with either killed or MLV products.  

The level of humoral protection produced by the two different types of vaccines varies, 

along with the ratio of B:T-cell activation (SANDBULTE AND ROTH 2003; STEVENS et al. 

2009). Furthermore, protective immunity can be established in the absence of detectable 

antibody levels (CORTESE et al. 1998; FULTON et al. 2000; DESCÔTEAUX et al. 2003) 

and, conversely, protection against viral challenges has been shown in the absence of 

detectable proliferating T-cells (CORTESE et al. 1998; FULTON et al. 2000; ELLIS et al. 

2001; ENDSLEY et al. 2003).  

 

Differences in cellular and humoral immunity between Bos indicus and Bos taurus cattle 

may extend to individualized disease resistance (MACEDO et al. 2013). BVDV has been 

shown to affect both the function of the innate immunity and the stimulation of the 

adaptive immune response (PETERHANS et al. 2003). BVDV causes immunosuppression 

of the adaptive immune system (CHASE 2013; RIDPATH 2013), but few studies have 

examined the differences in the immunosuppression between indicine and taurine 

breeds.  

 

The objectives of this study were to test for differences in response to vaccination based 

on leukocyte profiles and cell-mediated and humoral immune responses between Bos 

indicus (Brahman) and Bos taurus (Charolais) calves in response to commercially 

available vaccines in a production setting.  
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Material and Methods 

This project was reviewed and approved by the Texas A&M University Institutional 

Animal Care and Use Committee and the Texas A&M University Institutional Biosafety 

Committee.  

 

Animal Population and Treatment 

Fifteen purebred Brahman (Bos indicus) and 15 purebred Charolais (Bos taurus) calves, 

3 to 6 months of age, with no previous vaccination history, were used for this trial. 

Calves were bulls or heifers and housed on a local ranch in eastern central Texas. Calves 

were tested for BVDV persistent infection at the Texas Veterinary Medical Diagnostics 

Laboratory (TVMDL; Amarillo, TX) prior to enrollment using antigen-capture ELISA 

assay on ear notch samples. All calves were confirmed free of persistent infection before 

enrollment in the study. Calves were randomly assigned to 1 of 5 vaccine treatments, 

with 3 calves of each breed per treatment for a total of 6 calves per treatment. Two-shot 

protocols were followed for all treatments: initial vaccination was given on day 0 

followed by a booster vaccination on day 21, administered subcutaneously according to 

label directions. The five treatments were: (1) control - no vaccination or sham 

injection; (2) Adjuvant control (ADJ) - Notavaris ReproSTAR® VL5HB (Novartis 

Animal Health US, Inc., Greensboro, NC), which contains the adjuvant Xtend®SP and 

protects against Camplobacter fetus, Leptospira canicola, L. grippotyphosa, L. hardjo-

bovis, L. icterohaemorrhagiae, and L. pomona but does not have a BVDV component; 

(3) modified live virus (MLV) vaccine – Novartis BRD ShieldTM, licensed for the 
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prevention of infectious bovine rhinotracheitis, BVDV types 1 and 2, parainfluenza type 

3, and bovine respiratory syncytial virus; (4) killed vaccine (KV) - Novartis Vira Shield 

® 6, which contains the adjuvant Xtend®SP and is licensed for prevention of the same 

pathogens as the MLV product; and (5) a single dose of Vira Shield ® 6, followed by a 

single dose of BRD ShieldTM (MIX). New, sterile needles and syringes were used for 

each calf. 

 

Peripheral Mononuclear Blood Cell (PMBC) 

Forty milliliters of whole blood for PBMC isolation was collected at the initial 

vaccination (day 0, baseline), then on days 7, 14, 21 (booster vaccination), 28, 35, and 

42 post first vaccination. Jugular blood was collected in 60 mL syringes with 8 mL acid 

citrate dextrose. PBMCs were isolated by separation over Ficoll-PaqueTM Plus (GE 

Healthcare, Marlborough, MA), washed in Alsievers to remove platelets, and cell pellets 

were resuspended in RPMI 1640 with 10% fetal bovine serum, 1% glutamax, 0.025% 

Hepes, 0.01% gentimycin, and 0.01% beta-mercaptoethanol (RPMI 1640 Complete).  

 

IFN-γ EliSpot Assay 

MultiScreen-IP filter plates (EMD Millipore, Darmstadt, Germany) were coated 

overnight with mouse anti-bovine IFN-γ monoclonal antibody at 4°C. Plates were 

washed with PBS and blocked with 2% bovine serum albumin-PBS for 2 hours at 37°C. 

PBMCs were dispensed at 2.5 x 105 cells per well in triplicate complete RPMI 1640 

media, 5 µg/mL Con-A control, or 2.5 µg/mL BVDV peptide mix (COLLEN et al. 2002) 
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and incubated at 37°C for 12 hours overnight. IFN-γ-secreting cells were detected with 

biotinylated antibody (5 µg/mL in 2% BSA-PBS) as spots on the membrane and 

visualized with a Vectastain PBC peroxidase substrate (Vector Labs, Burlingame, CA). 

Plates were dried overnight and spots were counted on plate reader with Elispot 3.4 

software (AID GmbH, Strassberg, Germany). The number of cells secreting IFN-γ was 

expressed as the difference between the average number of spots in the BVDV peptide 

stimulated wells and the average of the media control wells (both done in triplicate). 

 

T-Cell Proliferation 

BVDV-specific T-cell proliferation was measured in PBMCs using a thymidine-uptake 

assay. PMBCs were added at a concentration of 2.5 x 105 cells per well in triplicate and 

were stimulated in vitro with either complete RMPI 1640 media alone or with 5 µg/mL 

BVDV peptide mix (COLLEN et al. 2002). Cells were cultured for 48 hours at 37°C with 

5% CO2, then pulsed with 0.25 µCi thymidine per well and harvested 18 hours later with 

a Tomtec Harvester, MACH III M (Triad Scientific, Manasquan, NJ). Thymidine uptake 

was measured on a Microbeta Trilux, 1450 LSC & luminescence counter (Perkin Elmer, 

Waltham, MA). Proliferation response was measured as the average of the triplicate 

wells and expressed as the difference between the BVDV stimulated proliferation to the 

media proliferation.  
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Serum Collection 

Jugular blood was collected in BD Vacutainer® serum tubes (Becton Dickinson, 

Franklin Lakes, NJ) on days 0, 3, 7, 14, 21, 24, 28, 35 and 42 post first vaccination. 

Samples were kept at 4°C overnight, brought to room temperature, centrifuged, sera 

removed and stored at -20°C until assayed.  

 

Viral Neutralization Assays 

Viral neutralization assays were performed on sera collected on days 0, 7, 14, 21, 28, 35, 

and 42 post first vaccination. Viral neutralizations of BVDV type 1a Singer and BVDV 

type 2 296c were performed in 5 replicates as described (DOWNEY et al. 2013). 

Neutralizing antibody titers were reported as the base 2 log of the highest dilution that 

showed no cytopathic effect. 

 

Hematology  

Differential white blood cell counts (WBC), platelets, and red blood cell (RBC) counts 

were determined on a CELL-DYN 3700 blood analyzer (Abbott Laboratories, Abbott 

Park, IL) at the University of Arkansas Nutrition Laboratory (Fayetteville, AR) on whole 

blood collected in 0.2 µM EDTA tubes on days 0, 3, 7, 14, 21, 24, 28, 35, and 42 post-

vaccination.  
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Cortisol 

Cortisol concentrations were determined using a single antibody radioimmunoassay (MP 

Biomedicals, LLC Diagnostic Division, Orangeburg, NY) on serum samples from days 

0, 3, 7, 14, 21, 24, 28, 35, and 42 days post first vaccination. The antibody 

radioimmunoassay utilized rabbit anti-cortisol antiserum coated tubes according to 

manufacturer’s instruction. The lowest detectable serum concentration was 0.25 ng/mL. 

A standard curve was generated by plotting the results generated from standard samples 

with know cortisol concentrations. Cortisol concentrations (ng/mL) were determined by 

comparison to a standard curve that was generated each time samples were analyzed. 

 

Data Analysis 

Blood leukocyte data analysis was performed using the percent change relative to the 

day of first or second vaccination. The response to the first vaccination (vaccination first 

dose V1D) was defined as the difference between values on day 0 (prevaccination 

baseline) and values on days between day 0 and day 21, and the response to the second 

vaccination (vaccination second dose or V2D) was defined as the difference between 

values on day 21 (day of booster vaccination) and values on days after day 21. 

Percentage change for both responses was calculated as the difference from days 3, 7, 

and 14 post-vaccination (days 3, 7 and 14 for first vaccination and days 24, 28 and 35 for 

second vaccination), relative to the day of vaccination (day 0 for first vaccination or 21 

for second vaccination). Treatment means were an average of the 3 individuals per breed 

within a treatment. Treatment effects were evaluated using a 2-tailed t-test with equal 
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variance, comparing the mean of the treatment percent change to the mean of the control 

treatment percent change for all compared cell types. Breed differences in percent 

change on a specific day were evaluated using a 2-tailed t-test with equal variance. We 

used a 2-tailed paired t-test to analyze differences between the V1D and V2D responses 

measured within calves of the same treatment at days 3, 7, and 14 post initial and booster 

vaccination. Two-way ANOVAs with repeated measures when necessary were 

performed in GraphPad Prism 6.0 (San Diego, CA) on triplicate means for treatment 

groups for EliSpot and proliferation assays. 

 

Results  

Breed Differences in Response to Vaccination 

Indicine calves had higher WBC, neutrophil, RBC, and platelet counts than taurine 

calves prior to vaccination (Figure 4.1). Mean total white blood cell count prior to 

vaccination was 41% greater (P < 0.05) in indicine than in taurine calves (Table 4.1; 

Figure 4.1a). A 2-fold greater abundance of neutrophils was the major contributor to the 

increased number of WBC in indicine compared to taurine calves (Table 4.1; Figure 

4.1c). The indicine calves also had approximately 10% more RBCs compared to the 

taurine calves (Table 4.1). The increased blood leukocyte profile extended to platelet 

counts as well; the indicine calves had 80% more platelets on day 0 (Table 4.1; Figure 

4.1h).  Serum cortisol concentrations on day 0 were significantly higher in indicine than 

in taurine calves (Table 4.1; Figure 4.2a) and remained higher though day 35; by day 42 

no difference was observed between the breeds (Figure 4.2b). More individual variation 
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for eosinophils, basophils, RBC, platelets, and cortisol concentrations was observed in 

baseline counts for the indicine cattle than for taurine cattle. 

 

A breed difference in response was observed for the platelet profile 3 days post VD1 and 

VD2; the platelet response was breed-specific, not treatment-specific. Changes in 

platelets in the first 3 days following the vaccinations (day 3 and 24) were the only breed 

differences observed in the ADJ treatment (Table 4.2). Indicine calves had marked 

reduction in platelets: 56% and 68% reduction at 3 days after V1D and V2D, 

respectively. The taurine calves exhibited minor changes, a 3% increase or a 3 % 

decrease respectively, following first and second vaccinations (Figure 4.3). A similar 

breed affect was observed, with varying degrees of changes, in all treatments (Figure 

4.4). 
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Figure 4.1. Baseline Leukocyte Profiles. Baseline (day 0) leukocyte absolute cell 
counts for Indicine (Blue; n = 15) and Taurine (Red; n = 15) cattle. (a) White blood cells 
(WBC); (b) Lymphocytes; (c) Neutrophils; (d) Eosinophils; (e) Monocytes; (f) 
Basophils; (g) Red blood cells (RBC); and (h) Platelets. Differences in baseline levels 
are noted by ** = P < 0.05 and **** = P < 0.0001. 
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Figure 4.2. Baseline Cortisol Concentrations. (a) Baseline (day 0) cortisol 
concentrations and (b) Day 42 cortisol concentrations for Indicine (Blue; n = 15) and 
Taurine (Red; n = 15) cattle. Differences in baseline concentrations are noted by **** = 
P < 0.0001. 
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Table 4.1. Baseline Leukocyte Profile. Differences in baseline levels of blood 
leukocyte populations and serum cortisol concentrations between Indicine cattle (n = 15) 
and Taurine cattle (n = 15). 

 

1 Significant difference of P < 0.05 between Indicine cattle and Taurine cattle cell counts 
on day 0  
2 Breed difference notates direction of the significant difference, the breed with the 
larger baseline level 
3 Proportion of difference between the two breeds at baseline (day 0) when significantly 
difference at P < 0.05 
  

Phenotype 
Significant Breed 

Difference1 

(P < 0.05) 

Direction of Breed 
Difference2 

Proportion of 
Difference3 

White Blood Cells Yes Indicine > Taurine 0.41 Fold Greater 

Lymphocytes No Indicine = Taurine 

Neutrophils Yes Indicine > Taurine 1.10 Fold Greater 

Eosinophils No Indicine = Taurine 

Monocytes No Indicine = Taurine 

Basophils No Indicine = Taurine 

Red Blood Cells Yes Indicine > Taurine 0.08 Fold Greater 

Platelets Yes Indicine > Taurine 0.81 Fold Greater 

Cortisol Yes Indicine > Taurine 3.41 Fold Greater 
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A breed difference in neutrophil response was observed in all 3 vaccine treatments: KV, 

MLV, and MIX (Tables 4.3, 4.4, and 4.5). Pre-vaccination neutrophil counts were higher 

and generally remained more stable in Indicine calves than in Taurine calves for all 

vaccine treatments. At 14 days after V1D with a MLV, taurine cattle had a 13% 

reduction in neutrophils, compared to a 45% reduction in neutrophils for indicine cattle 

(Figure 4.5a). At 3 days after V1D with a KV, an indirect relationship in neutrophil 

response was observed between Taurine and Indicine cattle, with a 100% increase in 

neutrophils in taurine calves compared to a 13% decrease in neutrophils in indicine 

calves (Figure 4.5c). A similar response was observed in the single dose of a KV in the 

MIX treatment (Figure 4.5e).  

 

Trends in neutrophil change following the V2D were different between breeds and were 

dependent on the type of initial vaccination received.  The trend in the V2D neutrophil 

response to the MLV booster vaccination was higher by approximately 50% in the MIX 

treatment for both breeds at day 35 compared to the V2D MLV response (Figure 4.5f). 

Taurine calves had a sustained 50% increase in neutrophils V2D following a MLV 

booster in the MIX treatment (P < 0.05); the neutrophil change at day 3 in taurine calves 

was similar to the V2D response observed in the KV treatment but was sustained for 14 

days longer (Figures 4.5d and 4.5f). The Indicine calves had comparable neutrophil 

changes in the MLV and MIX treatment through day 28 but had lower neutrophil change 

by approximately 55% in the MIX treatment through day 14 compared to the Taurine 
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calves (P < 0.05) (Figure 4.5f). At day 35, V2D in the MIX treatment breed differences 

in neutrophil response disappeared (Figure 4.5f). 

 

The taurine calves had approximately 25% less reduction in monocytes at day 3 after 

V2D than the Indicine calves in the MLV treatment (Table 4.3; Figure 4.6b). Similar 

breed effects were observed for lymphocyte changes in the KV and MLV treatments 

(Tables 4.3 and 4.4). Indicine cattle had a 5-fold increase in lymphocytes at 14 days post 

V1D for both KV and MLV treatments (Figures 4.7a and 4.7c). Taurine calves had a 

20% greater increase of WBCs within 3 days of the V2D (day 24) with the MLV booster 

compared to taurine calves in the MIX treatment (Table 4.5; Figure 4.8f). 
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Table 4.2. Adjuvant Treatment Response Effects on Leukocyte Profile. Effects of 
adjuvant on percentage change in blood leukocytes in Indicine (n = 3) and Taurine (n = 
3) at vaccination first dose (V1D; day 0-3) and vaccination second dose (V2D; day 21-
24). 
 

 
1 Significant difference (P < 0.05) in percentage change in cell profile between adjuvant 
treatment and the control treatment  
2 Significant difference in percentage change in blood cells between Indicine and Taurine 
cattle at vaccination first dose (V1D) and vaccination second dose (V2D), P-value 
shown when approaching (P < 0.1) or significant (P < 0.05). 
3 Percentage change by breed, for cell profiles with significant differences in percentage 
change between the breeds. Response to vaccination first dose (V1D) percentage change 
listed first followed by percentage change in the response to the vaccination second dose 
(V2D). 
  

Phenotype Treatment Difference1 
(P < 0.05) 

Breed Difference2 Proportion of 
Difference3 

V1D V2D Indicine Taurine 

White Blood Cells No No No 

Lymphocytes No No No 

Neutrophils No No No 

Eosinophils No No No 

Monocytes No No No 

Basophils No No No 

Red Blood Cells No No No 

Platelets No 0.07 0.03 -56.4% 
-68.5%  

3.74% 
-3.04% 
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Figure 4.3. Leukocyte Profile Response to Adjuvant. Adjuvant-induced changes in 
blood leukocytes. Percentage change for the vaccination first dose response (V1D; day 
0-3) and vaccination second dose response (V2D; day 21-24) is shown for the adjuvant 
treatment Indicine (blue, n = 3) and Taurine (red, n = 3) and for the Indicine control 
(blue shaded, n = 3) and Taurine control (red shaded, n = 3). Date are displayed as breed 
mean percent change with SEM. Significant differences are noted * P < 0.1 and ** P < 
0.05.   
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Figure 4.4. Platelet Response to Vaccination Treatment. Percent change in Platelets 
for vaccination first dose (V1D; days 0-14) and vaccination second dose (V2D; days 21-
35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) MLV V1D; (b) 
MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. Percentage change 
is calculated from day 0 for the V1D response and from day 21 in the V2D response. 
Data are displayed as mean percentage change with SEM for Indicine (blue, n = 3) and 
Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; Red/Blue * = 
Difference between V1D and V2D responses within a breed.  
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Table 4.3. MLV Treatment Effects. Effects of modified live virus (MLV) vaccinations  
on percentage change in leukocyte cell profiles in Indicine (n = 3) and Taurine (n = 3) 
calves at vaccination first dose (V1D; day 0-14) and vaccination second dose (V2D; day 
21-35) responses. 
 

 
 
1 Significant difference (P < 0.05) or * approaching significance (P < 0.10) between 
percentage change in leukocyte cell type between MLV treatment and control treatment 
for Indicine and Taurine cattle, significant treatment effects are noted by the direction of 
percentage change in the MLV treatment for each breed respective to the control 
treatment. 
2 Significant difference (P < 0.05) in percentage change between Indicine and Taurine 
cattle at any time point. Cell types with significant differences are noted with direction 
of difference between breeds. 
3 V1D versus V2D is differences (P < 0.05) in the percentage change between the 
vaccination first dose (V1D; days 0-14) and the vaccination second dose (V2D; days 21-
35) responses within a breed. Significant differences between V1D and V2D responses 
are noted with the direction of difference between the two time points.  
  

Phenotype 
Treatment Effect1 Breed Difference2 V1D vs V2D3 

Indicine Taurine Significant 
Effect Indicine Taurine 

White Blood Cells Increase No No No No 

Lymphocytes Increase No Indicine > Taurine No No 

Neutrophils Decrease* Decrease* Indicine < Taurine* No 1 < 2 

Eosinophils No Decrease* No No No 

Monocytes Decrease Decrease Indicine < Taurine No No 

Basophils Decrease No No No No 

Red Blood Cells No No No No 1 > 2 

Platelets No No No No No 
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Table 4.4. Killed Vaccine Treatment Effects. Effects of killed vaccine (KV) treatment 
effects on percentage change in blood leukocyte cell profiles in Indicine (n = 3) and 
Taurine (n = 3) calves at vaccination first dose (V1D; day 0-14) and vaccination second 
dose (V2D; day 21-35) responses. 
 

 
 
1 Significant difference (P < 0.05) or differences * approaching significance (P < 0.10) 
between percentage change in leukocyte cell type between KV treatment and control 
treatment for Indicine and Taurine, significant treatment effects are noted by the 
direction of percentage change in the KV treatment for each breed respective to the 
control treatment. 
2 Significant difference (P < 0.05) in percentage change between Indicine and Taurine 
cattle at any time point. Cell types with significant differences are noted with direction 
of difference between breeds. 
3 V1D versus V2D is a significant difference (P < 0.05) in the percentage change 
between the vaccination first dose (V1D; days 0-14) and the vaccination second dose 
(V2D; days 21-35) responses within a breed. Significant differences between V1D and 
V2D responses are noted with the direction of difference between the two time points.  
  

Phenotype 
Treatment Effect1 Breed Difference2 V1D vs V2D3 

Indicine Taurine Significant 
Effect Indicine Taurine 

White Blood Cells Increase No No 1 < 2 No 

Lymphocytes Increase* No Indicine > Taurine* No No 

Neutrophils Increase Increase* Indicine < Taurine* 1 < 2 1  > 2  

Eosinophils No No No No No 

Monocytes Decrease* No No No No 

Basophils No No No 1 < 2* No 

Red Blood Cells No Decrease No 1 < 2 1 < 2 

Platelets Increase No No No No 
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Table 4.5. MIX Treatment Effects. Effects of MIX treatment on percentage change in 
blood leukocyte cell profiles in Indicine (n = 3) and Taurine (n = 3) calves at vaccination 
first dose (V1D; day 0-14) and vaccination second dose (V2D; day 21-35) responses. 
 

 
 
1 Significant difference (P < 0.05) or * approaching significance (P < 0.10) between 
percentage change in leukocyte cell type between MIX treatment and control treatment 
for Indicine and Taurine, significant treatment effects are noted by the direction of 
percentage change in the MIX treatment for each breed respective to the control 
treatment. 
2 Significant difference (P < 0.05) in percentage change between Indicine and Taurine at 
any time point. Cell types with significant differences are noted with direction of 
difference between breeds. 
3 V1D versus V2D is a significant difference (P < 0.05) in the percentage change 
between the vaccination first dose (V1D; days 0-14) and the vaccination second dose 
(V2D; days 21-35) responses within a breed. Significant differences between V1D and 
V2D responses are noted with the direction of difference between the two time points.  
  

Phenotype 
Treatment Effect1 Breed Difference2 V1D vs V2D3 

Indicine Taurine Significant 
Effect Indicine Taurine 

White Blood Cells Increase No Indicine < Taurine* 1 < 2 No 

Lymphocytes No No No 1 < 2 No 

Neutrophils No Increase Indicine < Taurine 1 > 2 1 < 2 

Eosinophils No No No No No 

Monocytes No Decrease No No No 

Basophils Increase* Decrease No No No 

Red Blood Cells No Increase* Indicine > Taurine No No 

Platelets No Increase*/
Decrease No No No 
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Figure 4.5. Neutrophil Response to Vaccination Treatment. Neutrophil percent 
change for vaccination first dose (V1D; days 0-14) and vaccination second dose (V2D; 
days 21-35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) MLV 
V1D; (b) MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. 
Percentage change is calculated from day 0 for the V1D response and from day 21 in the 
V2D response. Data are displayed as mean percentage change with SEM for Indicine 
(blue, n = 3) and Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; 
Red/Blue * = Difference between V1D and V2D responses within a breed.  
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Vaccine Treatment and Dose Affects 

The adjuvant (ADJ) did not affect the leukocyte profiles (Table 4.2). The treatment and 

vaccine dose affected the neutrophil change in the 3 vaccine treatments (Tables 4.3, 4.4, 

and 4.5).  The MLV treatment decreased neutrophils by 40% in indicine cattle at 14 days 

following the V1D, compared to 7% decrease in taurine cattle at 14 days V2D. The 

taurine cattle had a 15% higher neutrophil change at 14 days following V2D compared 

to the V1D change in the MLV treatment (Figure 4.5a and 4.5b). In contrast, the KV 

increased the neutrophil change at day 28 to the V2D by 22% in indicine cattle and 26% 

in taurine cattle (Table 4.4). In the MIX treatment the decrease in neutrophils from the 

MLV vaccine was mitigated (Table 4.5). In the taurine cattle, the neutrophil changes 

were 3-fold greater than the V2D MLV responses at days 28 and 35 following the 

booster vaccination (Table 4.5).  
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Figure 4.6. Monocyte Response to Vaccination Treatment. Percent change in 
Monocytes for vaccination first dose (V1D; days 0-14) and vaccination second dose 
(V2D; days 21-35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) 
MLV V1D; (b) MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. 
Percentage change is calculated from day 0 for the V1D response and from day 21 in the 
V2D response. Data are displayed as mean percentage change with SEM for Indicine 
(blue, n = 3) and Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; 
Red/Blue * = Difference between V1D and V2D responses within a breed.  
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Figure 4.7. Lymphocyte Response to Vaccination Treatment. Percent change in 
Lymphocytes for vaccination first dose (V1D; days 0-14) and vaccination second dose 
(V2D; days 21-35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) 
MLV V1D; (b) MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. 
Percentage change is calculated from day 0 for the V1D response and from day 21 in the 
V2D response. Data are displayed as mean percentage change with SEM for Indicine 
(blue, n = 3) and Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; 
Red/Blue * = Difference between V1D and V2D responses within a breed.  
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Figure 4.8. WBC Response to Vaccination Treatment. Percent change in White blood 
cells (WBCs) for vaccination first dose (V1D; days 0-14) and vaccination second dose 
(V2D; days 21-35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) 
MLV V1D; (b) MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. 
Percentage change is calculated from day 0 for the V1D response and from day 21 in the 
V2D response. Data are displayed as mean percentage change with SEM for Indicine 
(blue, n = 3) and Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; 
Red/Blue * = Difference between V1D and V2D responses within a breed.  
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The V2D KV elicited approximately 20% higher response levels of lymphocytes, 

neutrophils, and basophils in the indicine calves (Figures 4.7c, 4.7d, 4.5c, 4.5d, 4.9c, and 

4.9d) compared to the taurine calves, which had 50% higher changes in neutrophils only 

to the V1D KV at day 3 (Figures 4.5b and 4.5c). The MIX treatment neutrophil change 

was reversed compared to that in the KV treatment. The indicine cattle had 20% higher 

neutrophil response at 3 days V1D in the MIX treatment compared to the V2D response, 

but had a 60% increase in neutrophils at day 35 V2D (Figures 4.5e and 4.5f). Taurine 

cattle had 50% less change in neutrophils at day 3 to the V1D than the V2D and an 

increase of 60 to 70% at days 28 and 35 in the V2D response. Indicine cattle had 

changes in WBC and lymphocytes that were greater by 18% and 30%, respectively, in 

the V2D compared to V1D. Eosinophil response was decreased in taurine calves 

following the MLV vaccination, but the individual variation was too large to detect 

breed differences (Figure 4.10). RBC change was measured over the course of the study, 

however changes in RBC were small and more likely due to dehydration than a 

reflection in adverse response to vaccinations (Figure 4.11). 
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Figure 4.9. Basophil Response to Vaccination Treatment. Basophil percent change 
for vaccination first dose (V1D; days 0-14) and vaccination second dose (V2D; days 21-
35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) MLV V1D; (b) 
MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. Percentage change 
is calculated from day 0 for the V1D response and from day 21 in the V2D response. 
Data are displayed as mean percentage change with SEM for Indicine (blue, n = 3) and 
Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; Red/Blue * = 
Difference between V1D and V2D responses within a breed.  
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Humoral and Cell-mediate Immune Response 

Antibody titers for BVDV type 2 exceeded type 1a titers for all treatments. The BVDV 

type 1a response was detected by day 14 in Charolais calves for KV and MIX treatments 

(Table 4.6). More Charolais calves had detectable titers to BVDV type 2 than the 

Brahman calves (Table 4.6). Both breeds had increased numbers of animals with 

detectable BVDV type 2-specific antibody titers than BVDV type 1a-specific antibody 

titers in all treatments (Table 4.6). The MLV treatment elicited the greatest number of 

animals with detectable BVDV type 2-specific antibody titers regardless of breed, while 

the MIX treatment elicited the largest number of responders for the BVDV 1a-specific 

antibody titers (Table 4.6).  
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Figure 4.10. Eosinophil Response to Vaccination Treatment. Eosinophil percent 
change for vaccination first dose (V1D; days 0-14) and vaccination second dose (V2D; 
days 21-35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) MLV 
V1D; (b) MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. 
Percentage change is calculated from day 0 for the V1D response and from day 21 in the 
V2D response. Data are displayed as mean percentage change with SEM for Indicine 
(blue, n = 3) and Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; 
Red/Blue * = Difference between V1D and V2D responses within a breed.  
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Figure 4.11. RBC Response to Vaccination Treatment. Red blood cell (RBC) percent 
change for vaccination first dose (V1D; days 0-14) and vaccination second dose (V2D; 
days 21-35) responses for MLV, killed vaccine (KV), and MIX treatments: (a) MLV 
V1D; (b) MLV V2D; (c) KV V1D; (d) KV V1D; (e) MIX V1D; (f) MIX V2D. 
Percentage change is calculated from day 0 for the V1D response and from day 21 in the 
V2D response. Data are displayed as mean percentage change with SEM for Indicine 
(blue, n = 3) and Taurine (red, n = 3). Black * = significant (P < 0.05) breed difference; 
Red/Blue * = Difference between V1D and V2D responses within a breed.  
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Table 4.6. Breed Variation in Antibody Titer. Counts of animals with detectable 
serum neutralization titers for modified live virus (MLV) vaccine, killed vaccine (KV), 
and the MIX treatments within breed for BVDV types 1a and 2 at days 14, 21, and 42 
post first vaccination. 
 

 

  

Indicine Taurine 

Treatment 14 21 42 14 21 42 

BVDV 
1a 

MLV 1/3 1/3 1/3 1/3 0/3 0/3 

KV 1/3 1/3 1/3 3/3 0/3 0/3 

MIX 0/3 1/3 2/3 3/3 2/3 1/3 

BVDV 2 

MLV 2/3 3/3 3/3 3/3 3/3 3/3 

KV 2/3 2/3 1/3 3/3 1/3 1/3 

MIX 2/3 2/3 3/3 2/3 2/3 3/3 
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The baseline BVDV response was compared between the breeds at day 0, prior to 

vaccination (Figure 4.12). Taurine calves had significantly more IFN-γ-secreting T-cells 

prior to vaccination than indicine calves and more individual variation was observed 

within the taurine calves (Figure 4.12a). No differences were observed between breeds 

in the number of BVDV specific proliferating T-cells (Figure 4.12b). The BVDV-

specific T-cell response measured IFN-γ-secreting T-cells and no differences were 

observed between breeds or treatments due to the large variation among samples (Figure 

4.13). T-cell response was also measured by T-cell proliferation, similar to the EliSpot 

assay, but again variation among individual samples was too large to identify significant 

differences between breeds or among treatments (Figure 4.14).  
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Figure 4.12. Baseline Cell-Mediated Breed Responses. Differences in T-cell responses 
for (a) number of IFN-γ-secreting cells per 1 million PBMCs and (b) number of 
proliferating T-cells when stimulated by BVDV peptides per 2.5 x 105 PBMCs on day 0, 
prior to vaccination, in Brahman (Blue) versus Charolais (Red). Data are displayed as means 
+ SEM (n = 15) for each breed. *  = Significant (P < 0.05) breed difference. 
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Figure 4.13. IFN-γ-Secreting T-cells Response to Vaccination. Cellular immune response 
following vaccination in Brahman and Charolais calves from days 0 to 42, measured weekly. 
Calves were immunized on days 0 and boosted on day 21. The number of IFN-γ-secreting 
cells per 1 million PBMCs in Brahman (blue) versus Charolais (red) displayed by treatment: 
(a) Control, (b) adjuvant, (c) MLV, (d) killed vaccine, and (e) MIX. Data are displayed with 
means + SEM for 3 calves per Breed-treatment group.   
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Figure 4.14.  T-cell Proliferation in Response to Vaccination. Cellular immune response 
following vaccination in Brahman and Charolais calves from days 0 to 42, measured weekly. 
Calves were immunized on days 0 and boosted on day 21. The number of proliferating T-
cells when stimulated by BVDV peptides per 2.5 x 105 million PBMCs in Brahman (blue) 
versus Charolais (red) by treatment: (a) Control, (b) adjuvant, (c) MLV, (d) killed vaccine, 
and (e) MIX. Data are displayed with means + SEM (n=3) calves per Breed-treatment 
group.   
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Discussion 

Differences were present in the leukocyte profiles prior to vaccination, which may affect 

the responses to vaccination that can be achieved. Neutrophil changes were different 

between the two sub-species hosts, with taurine cattle having the largest change in 

circulating neutrophils. The animal-to-animal variation was too large to identify 

differences in cell-mediated responses between breeds, but indicated that variation 

among individuals affects immune responses to vaccination. Not only was variation in 

immune response observed, but also significant breed variations were detected in 

circulating leukocyte profiles that may be important in determining the response to 

vaccination or infection.  

 

Leukocyte profiles differed between the two sub-species, similar to those reported 

(MACEDO et al. 2013), and lymphocyte percentages were similar to those previously 

reported between the two breeds (MACEDO et al. 2013). However, lymphocytes 

increased in the indicine calves in response to vaccination while no change was observed 

in the taurine calves after vaccination. Baseline neutrophil differences were significantly 

different from those previously reported (MACEDO et al. 2013); the Brahman calves had 

approximately 2-fold increase in neutrophils compared to those reported in other 

indicine breeds (MACEDO et al. 2013). Differences in leukocyte profiles between 

indicine and taurine breeds may influence the immune response to vaccinations, and may 

be an important consideration for improved vaccine efficacy.  

 



 

 161 

In indicine cattle, we observed a generalized, non-specific and transitory drop in 

platelets, regardless of treatment or exposure. The biological significance of this unique 

response is unknown, although it has been documented that platelets can be carriers of 

BVDV but do not act as a replication reservoir (CORAPI et al. 1989). Taurine platelet 

levels were similar to levels reported in the literature (KNOWLES et al. 2000; RIDPATH 

2003). Platelet levels significantly changed from day 0 at vaccination to 3 days post-

vaccination in indicine cattle but remained constant in the taurine cattle. Platelets have 

historically been associated with homeostasis, however due to the early appearance of 

platelets at sites of injury and infection, it has been proposed that platelets may play an 

important role in innate immune response (ASSINGER 2014; HERTER et al. 2014; 

ROSSAINT AND ZARBOCK 2015; YADAV AND KOR 2015). Platelets release chemokines 

and cytokines, specifically P-selectin and CD40L, which are important for recruitment of 

neutrophils, antigen presenting cells, and lymphocytes (HERTER et al. 2014; YADAV AND 

KOR 2015) and may play a role in recruiting lymphocytes and neutrophils in the innate 

immune response. The variation we observed in platelet response may be partially 

responsible for the increased numbers of lymphocytes observed in indicine calves.  

 

Neutrophils are the most common type of WBC circulating in the blood stream, and the 

most abundant WBC type observed in indicine calves. Neutrophils are first responder 

cells that release cytokines and chemokines to alert and recruit antigen presenting cells 

to sites of infection (SRIKUMARAN et al. 2007; LYNCH et al. 2010; ISOBE et al. 2012; 

HAMPTON et al. 2015; LIM et al. 2015). The more abundant neutrophil cell population in 
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indicine calves may promote more efficient antigen presentation of the virus from the 

vaccination. Neutrophil recruitment and depletion have been associated with respiratory 

disease in other species, and the abundance of neutrophils may contribute to disease 

resistance in indicine cattle (MARUFU et al. 2014; MCQUEEN et al. 2014). The 

Brahman’s ability to maintain higher cell populations might play a role in eliciting a 

faster and more robust innate immune response, which allows for quick detection and 

potentially reduced risk of disease (SRIKUMARAN et al. 2007; MACEDO et al. 2013). 

Little is known about how neutrophils recruit T-cells, but it was recently shown that 

neutrophils are important for T-cell recruitment (HAMPTON et al. 2015; LIM et al. 2015). 

 

Adjuvants are used to enhance immune response to killed vaccines (RIDPATH et al. 

2010) and we used an adjuvant control without the viral pathogens. No treatment 

response to the adjuvant was observed, nor did we observe any leukocyte differences in 

breed response to the adjuvant except in platelets. These results indicate that the viral 

antigens, and not a response to the adjuvant, drove any response observed from the KV 

treatment. 

 

Cortisol is often used as a stress indicator and cortisol levels are known to play a role in 

acute phase immune response and inflammation (CARROLL AND BURDICK SANCHEZ 

2013; HUGHES et al. 2014; CARROLL et al. 2015). Elevated cortisol concentrations in 

indicine cattle did not appear to increase immunosuppression of WBCs associated with 

vaccine-induced immunosuppression. If cortisol concentrations were 
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immunosuppressive in indicine calves, we would have expected to see suppression 

equally across the three treatments, not limited to just the MLV treatment.  

 

Decreases in neutrophils, basophils, monocytes, and eosinophils in response to the MLV 

treatment suggest that the MLV treatment has immunosuppressive effects on innate 

immunity. The decrease in taurine cattle neutrophils was 3-fold less than that observed 

in the indicine calves, suggesting that the taurine cattle might be better able to mitigate 

the immunosuppression than indicine cattle. The immunosuppression in indicine calves 

might also be confounded with the increased serum cortisol concentrations but these 

effects could not be separately analyzed in this study. Similar immunosuppression 

effects from MLV vaccines have been previously reported (LIANG et al. 2006; KELLING 

et al. 2007; FULTON 2015) but not compared between subspecies. The observed 

responses to the MIX treatment suggest that an initial vaccination with a KV product 

may help mitigate some immunosuppression effects from the MLV vaccine. The large 

amount of individual variation observed precluded the analysis of the T-cell response 

and therefore it was not possible to compare immunosuppression effects on adaptive 

immune response. 

 

RBCs do not have a known immunological function for response to vaccination. 

Changes that were observed in RBCs, while significant, were small in comparison to the 

changes observed in blood leukocytes. RBC changes may be an indication of 

dehydration in animals at various time points in the study versus a response to the 
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vaccination. While there is no evidence for the role of RBCs in response to vaccination, 

they serve as indicators for BRD at-risk animals (RICHESON et al. 2013b).  

 

Our results did not indicate a difference in T-cell response between indicine and taurine 

breeds. To date, a T-cell measurement has not been identified that can correlate vaccine 

induced T-cell response with protection derived from the vaccination (CORTESE et al. 

1998; FURMAN AND DAVIS 2015). The viral strains present in the vaccines used may not 

have been virulent enough or administered at high enough doses to elicit a T-cell 

response (COLLEN AND MORRISON 2000; ENDSLEY et al. 2003; REBER et al. 2006; LIANG 

et al. 2008; PLATT et al. 2009; CHASE 2013). In addition, the cell-mediated assays may 

have been more informative on cell-sorted lymphocytes. The ratios of CD8+, CD4+, and 

gamma-delta T-cells may differ between the breeds and sub-populations may change 

differently depending on the vaccine type received. However, these changes were 

unobservable due to the total lymphocyte population that was used for the experiment. 

Subspecies PBMC proliferation differences may be more detectable following a 

challenge, as no breed differences were detected for vaccine response. In the cell-

mediated and humoral immune response, a large amount of animal-to-animal variation 

was detected, as has been reported by other groups (RIDPATH 2005; GLASS et al. 2012; 

HUGHES et al. 2014). A portion of the variation may be attributed to T-cell responses to 

environmental pathogens unrelated to the vaccination (FURMAN AND DAVIS 2015). 

Animal-to-animal variation has often been ignored due to the challenge and expense of 

phenotype collection; however, the results observed here and the breed variation 
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observed by (GLASS et al. 2012) suggest that the animal-to-animal variation may be 

critical to understanding host/pathogen interactions and for improved vaccine design, 

and therefore warrants further investigation. 

 

In summary, our results indicate that differences in blood leukocyte profiles between the 

two subspecies may influence the immune response developed to vaccination and 

pathogen exposures. The indicine cattle had more total leukocytes in the blood, but also 

had greater reductions in leukocytes in response to the vaccination, especially in the 

MLV treatment. The neutrophil loss in response to the MLV treatment suggests that 

indicine cattle were more sensitive to immunosuppression. The MIX treatment mitigated 

more of the immunosuppression in the indicine cattle than in the taurine cattle, 

suggesting that if the MIX protocol is as protective as an MLV vaccination protocol, the 

MIX protocol may reduce some of immunosuppressive effects of the two-shot MLV 

vaccination strategy. Differences in cell-mediated immunity were not detectable due to 

the large amounts of individual variation. For improved vaccine efficacy, optimizing 

vaccine response to overcome individual variation may be critical for improved vaccine 

efficacy as well as improved techniques for measuring cell-mediated responses. 

Variations observed in breed differences in responses to vaccination and the 

immunosuppression effects may indicate that management strategies may need to be 

different for indicine and taurine breeds to optimize disease prevention and reduce 

production losses.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 
The MHC is a key determinant for disease resistance and susceptibility (PRICE et al. 

1999), and is of interest to animal breeders as a target for genetic selection of disease 

resistance and improved immune response (AMILLS et al. 1998). Some population-based 

GWAS have failed to detect associations of disease phenotypes with variants in BoLA 

although such associations are often made using pedigreed animal resources. BoLA 

remains incompletely characterized, raising the possibility that SNPs on commercially 

available microarrays may not capture all of the diversity present in the MHC as 

observed in this study and by others (CODNER et al. 2012; SCHWARTZ AND HAMMOND 

2015).  

 

Results from the characterization of BoLA in this study revealed that more diversity is 

present in the BoLA region of Holsteins than was predicted from analysis of 

homozygotes using a 50K SNP chip. The underlying haplotype structure was consistent 

with the predicted 50K homozygous haplotypes. The no call SNPs found in 

“homozygous” animals suggests that other genomic variation may further define BoLA 

haplotypes. The frequency of no calls at any one SNP position varied from rare singlets, 

observed in only one animal to common no calls observed in many animals. The singlets 

are of particular interest because of their abundance, but they need to be independently 

confirmed to exclude experimental error as the source of no call. The BovineHD 

genotyping data revealed 3 times the number of haplotypes, arranged into 38 haplotype 
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groups, compared to the 13 haplotypes observed on the 50K SNP chip. Due to the highly 

heterogeneous nature of the MHC, studying “homozygous” samples is preferable, but 

selecting animals at 95% homozygosity failed to resolve clean haplotypes, revealing 

apparently low levels of diversity that may indicate recent divergence from an ancestral 

haplotype to generate haplotype groups or be due to genotyping errors. Additional 

studies will be needed to resolve this question.  

 

Variation in host immune response detected as animal-to-animal variation is commonly 

reported, but addressing this variation at the population level to understand the 

individual host immune response requires expensive, often inappropriate studies. The 

second aim was to characterize host immune response through a BVDV challenge study 

and to search for variation in immune response to vaccination between Bos taurus 

indicus and Bos taurus taurus. 

 

Antibody titer is the industry gold standard for testing vaccine efficacy, yet it is 

uncertain what titer threshold is needed for protection against a given pathogen. Results 

from the BVDV challenge study suggest that antibody titer may not be a reliable metric 

for measuring protective immunity against a BVDV 1b challenge. Finding a protective 

threshold may be dependent on additional immune responses, especially cell mediated 

immunity that has not been measured. Visual diagnosis is traditionally used to diagnose 

respiratory disease in the field. Results from our study indicate that subclinical 

symptoms of lymphopenia and thrombocytopenia revealed by differential cell counts are 
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more predictive than is elevated rectal temperature and other visual signs such as nasal 

discharge, coughing, or behavioral changes. Blood cell counts are not measured in the 

field and are challenging for diagnosis in traditional practice. The use of rectal 

temperature alone failed to identify a substantial proportion of ill animals, indicating that 

current metrics used for diagnostics are not adequate to prevent disease. The MLV 

vaccine treatment was the most effective in preventing disease at all titers, especially 

lymphopenia. Higher titers were not indicative of greater protection.  

 

Variation in host immune response to commercial vaccinations was observed between 

Bos taurus indicus and Bos taurus taurus calves. The results from this project indicate 

that the innate immune system is important for initial response to vaccination and 

differed between the subspecies. Indicine calves have higher baseline leukocyte profiles 

that may be related to their ability to respond to immune challenges more quickly and 

robustly. Neutrophils had the largest contribution to the increased leukocyte populations, 

at 2-fold greater neutrophil population in indicine cattle compared to taurine cattle. 

Taurine cattle had a 50% greater recruitment of neutrophils following both doses of the 

vaccination. Immunosuppression was observed from the MLV vaccine, and larger 

immunosuppressive effects were observed in the indicine cattle than taurine cattle. 

However, when the indicine calves were vaccinated with a killed vaccine and boosted 

with a MLV vaccine, the immunosuppressive effects of the MLV vaccine were 

mitigated. Further studies are needed to test whether the same level of protection is 

achieved from the two vaccine protocols. No differences in cell-mediated immune 
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response were observed between the two groups of calves. This observation may reflect 

the immunosuppression induced in the indicine calves, but more studies will be needed 

to validate the observation that the two groups did not differ for cell-mediated response. 

Specifically, cell sorting of lymphocytes (flow cytometric analysis) would provide a 

cleaner cell population for analysis and provide a more informative picture of the 

differences in host immunity responses relative to immunity against pathogens. In 

addition, measuring cytokine expressions in defined cell types may also identify 

pathways that differ in immune response between the two subspecies. 
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APPENDIX 1 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300006703 24630009 
23 BovineHD4100016071 24632821 
23 BovineHD2300006704 24633842 
23 BovineHD2300006705 24634849 
23 BovineHD2300006706 24635697 
23 BovineHD4100016072 24637354 
23 BovineHD2300006707 24638064 
23 BovineHD2300006708 24639688 
23 ARS-BFGL-NGS-70327 24640422 
23 BovineHD2300006709 24642182 
23 BovineHD2300006710 24642893 
23 BovineHD2300006711 24643655 
23 BovineHD2300006712 24644705 
23 BovineHD2300006713 24645895 
23 BovineHD2300006714 24646591 
23 BovineHD2300006715 24647834 
23 BovineHD2300006716 24648638 
23 BovineHD2300006717 24649496 
23 BovineHD2300006718 24651047 
23 BovineHD2300006720 24654783 
23 BovineHD2300006721 24655440 
23 BovineHD2300006723 24657821 
23 BovineHD2300006724 24658806 
23 BovineHD2300006725 24660220 
23 BovineHD2300006726 24661105 
23 BovineHD4100016073 24661981 
23 BovineHD2300006727 24662804 
23 BovineHD2300006728 24663609 
23 BovineHD2300006729 24664810 
23 BovineHD2300006730 24665722 
23 ARS-BFGL-NGS-16284 24667121 
23 BovineHD2300006732 24668667 
23 BovineHD2300006733 24669690 
23 BovineHD4100016074 24671650 
23 BovineHD2300006734 24673038 
23 BovineHD2300006735 24673947 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300006736 24678292 
23 BovineHD2300006737 24679678 
23 BovineHD2300006738 24681174 
23 BovineHD2300006740 24684608 
23 BovineHD2300006741 24685618 
23 BovineHD2300006742 24691420 
23 BovineHD2300006743 24692423 
23 BovineHD2300006744 24693344 
23 BovineHD2300006745 24695042 
23 BovineHD2300006746 24696543 
23 BovineHD2300006747 24698245 
23 ARS-BFGL-NGS-16080 24699202 
23 BovineHD2300006748 24700163 
23 BovineHD2300006749 24701295 
23 BovineHD2300006750 24702011 
23 BovineHD2300006751 24704325 
23 BovineHD2300006753 24709821 
23 BovineHD2300006754 24712057 
23 BovineHD2300006755 24714307 
23 BovineHD2300006756 24717057 
23 BovineHD2300006757 24719098 
23 BovineHD2300006758 24720595 
23 BovineHD2300006759 24721536 
23 BovineHD2300006761 24725205 
23 BovineHD2300006762 24726507 
23 ARS-BFGL-NGS-118217 24727613 
23 BovineHD2300006763 24731056 
23 BovineHD2300006764 24732244 
23 BovineHD2300006765 24733772 
23 BovineHD2300006766 24735095 
23 BovineHD2300006768 24737567 
23 BovineHD2300006769 24738878 
23 BovineHD2300006770 24740729 
23 BovineHD2300006771 24742229 
23 BovineHD2300006772 24744378 
23 BovineHD2300006773 24752444 
23 BovineHD2300006774 24753998 
23 BovineHD2300006775 24755350 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300006776 24756932 
23 BovineHD2300006777 24758248 
23 BovineHD2300006778 24761176 
23 BovineHD2300006779 24762740 
23 BovineHD2300006780 24763765 
23 BovineHD2300006781 24765131 
23 BovineHD2300006782 24766984 
23 BovineHD2300006783 24768289 
23 BovineHD2300006784 24769761 
23 BovineHD2300006785 24771290 
23 BovineHD2300006786 24773699 
23 BovineHD2300006787 24775092 
23 BovineHD2300006788 24777898 
23 BovineHD2300006789 24781080 
23 BovineHD2300006790 24782553 
23 BovineHD2300006791 24788503 
23 BovineHD2300006792 24789851 
23 BovineHD2300006793 24790726 
23 BovineHD2300006794 24791564 
23 BovineHD2300006795 24794634 
23 BovineHD2300006796 24795642 
23 BovineHD2300006797 24796756 
23 BovineHD2300006798 24799064 
23 BovineHD2300006799 24800183 
23 BovineHD2300006800 24801233 
23 ARS-BFGL-NGS-31623 24803563 
23 BovineHD2300006801 24804696 
23 BovineHD2300006802 24807136 
23 BovineHD2300006803 24808801 
23 BovineHD2300006805 24814679 
23 BovineHD2300006806 24820046 
23 BovineHD2300006807 24821821 
23 BovineHD2300006808 24824269 
23 BovineHD2300006810 24826678 
23 BovineHD2300006811 24827684 
23 BovineHD2300006812 24829021 
23 BovineHD2300006813 24830023 
23 BovineHD2300006814 24830762 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300006815 24831595 
23 BovineHD2300006816 24832785 
23 BovineHD2300006817 24834115 
23 BovineHD2300006818 24835993 
23 BovineHD2300006819 24837280 
23 BovineHD2300006820 24838732 
23 BovineHD2300006821 24839580 
23 BovineHD2300006822 24851815 
23 BovineHD2300006823 24853573 
23 BovineHD2300006824 24855042 
23 BovineHD2300006825 24856453 
23 BovineHD2300006826 24858203 
23 BovineHD2300006827 24861935 
23 BovineHD2300006828 24863491 
23 BovineHD2300006829 24864848 
23 BovineHD2300006830 24867304 
23 ARS-BFGL-NGS-17549 24873758 
23 BovineHD2300006832 24875159 
23 BovineHD2300006834 24878900 
23 BovineHD2300006836 24882591 
23 BovineHD2300006837 24883720 
23 BovineHD2300006838 24885451 
23 BovineHD2300006842 24894468 
23 BovineHD2300006843 24895470 
23 BovineHD2300006844 24897157 
23 BovineHD2300006845 24898238 
23 BovineHD2300006846 24899379 
23 BovineHD2300006847 24905962 
23 BovineHD2300006848 24909322 
23 BovineHD2300006849 24915043 
23 BovineHD2300006850 24917668 
23 BovineHD2300006852 24920066 
23 BovineHD2300006853 24921775 
23 BovineHD2300006854 24923423 
23 BovineHD2300006855 24925134 
23 BovineHD2300006856 24926303 
23 BovineHD2300006857 24928502 
23 Hapmap41584-BTA-56031 24939249 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300006862 24948412 
23 BovineHD2300006863 24949588 
23 BovineHD2300006864 24950266 
23 BovineHD2300006865 24951744 
23 BovineHD2300006866 24953073 
23 BovineHD2300006867 24953991 
23 BovineHD2300006868 24954802 
23 BovineHD2300006869 24957378 
23 BovineHD2300006870 24958143 
23 BovineHD2300006871 24959233 
23 ARS-BFGL-NGS-96246 24961006 
23 BovineHD2300006872 24961958 
23 BovineHD2300006873 24965919 
23 BovineHD2300006874 24966617 
23 BovineHD2300006875 24968160 
23 BovineHD2300006876 24968839 
23 BovineHD2300006877 24970079 
23 BovineHD2300006878 24971907 
23 BovineHD2300006879 24972808 
23 BovineHD2300006880 24973441 
23 BovineHD2300006882 24975768 
23 BovineHD2300006883 24980510 
23 BovineHD2300006884 24982522 
23 BovineHD2300006885 24986300 
23 BovineHD2300006887 24988461 
23 ARS-BFGL-NGS-44911 24989231 
23 BovineHD2300006888 24990037 
23 BovineHD2300006890 24991667 
23 BovineHD2300006891 24992660 
23 BovineHD2300006892 24996699 
23 BovineHD2300006893 24998305 
23 BovineHD2300006894 24999318 
23 BovineHD4100016076 25002374 
23 BovineHD2300006895 25003117 
23 BovineHD2300006896 25004001 
23 BovineHD2300006897 25005097 
23 BovineHD2300006898 25006381 
23 BovineHD2300006900 25010197 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300006901 25012233 
23 BovineHD2300006902 25013490 
23 BovineHD2300006903 25015090 
23 BovineHD2300006904 25016031 
23 BovineHD2300006905 25018708 
23 BovineHD4100016077 25019854 
23 BovineHD2300006906 25022172 
23 BovineHD2300006907 25022917 
23 BovineHD2300006908 25023838 
23 BovineHD2300006909 25024681 
23 BovineHD2300006910 25026030 
23 BovineHD2300006911 25027499 
23 BovineHD2300006912 25029399 
23 BovineHD2300006913 25031476 
23 BovineHD2300006914 25032803 
23 BovineHD2300006915 25034720 
23 BovineHD2300006916 25035810 
23 Hapmap28130-BTA-137222 25038202 
23 BovineHD2300006917 25039510 
23 BovineHD2300006918 25042152 
23 BovineHD2300006919 25043430 
23 BovineHD4100016078 25044241 
23 BovineHD2300006920 25045082 
23 BovineHD2300006921 25046288 
23 BovineHD2300006922 25048120 
23 BovineHD2300006923 25049320 
23 BovineHD2300006924 25050387 
23 BovineHD2300006925 25053742 
23 BovineHD2300006926 25055903 
23 BovineHD2300006927 25057162 
23 BovineHD2300006928 25058352 
23 BovineHD2300006929 25059682 
23 BovineHD2300006930 25061435 
23 ARS-BFGL-NGS-14941 25062520 
23 BovineHD2300006931 25063361 
23 BovineHD2300006932 25065432 
23 BovineHD2300006933 25067536 
23 BovineHD2300006934 25068712 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300006935 25069804 
23 BovineHD2300006936 25072931 
23 BovineHD2300006937 25073727 
23 BovineHD2300006938 25074632 
23 BovineHD2300006940 25078318 
23 BovineHD4100016079 25080347 
23 BovineHD2300006941 25081657 
23 BovineHD2300006942 25084314 
23 BovineHD2300006943 25084989 
23 BovineHD2300006944 25086476 
23 BovineHD2300006945 25087827 
23 BovineHD2300006946 25088780 
23 BovineHD2300006947 25089544 
23 BovineHD2300006948 25090571 
23 BovineHD2300006949 25096460 
23 BovineHD2300006950 25098255 
23 BovineHD2300006951 25099203 
23 BovineHD2300006952 25100589 
23 BovineHD2300006953 25101894 
23 BovineHD2300006954 25103192 
23 BovineHD2300006955 25105371 
23 ARS-BFGL-NGS-111879 25109188 
23 BovineHD2300006957 25110527 
23 BovineHD2300006958 25111891 
23 BovineHD2300006959 25113791 
23 BovineHD2300006960 25115476 
23 BovineHD2300006961 25117061 
23 BovineHD2300006962 25118001 
23 BovineHD2300006963 25119525 
23 BovineHD2300006964 25121258 
23 BovineHD2300006965 25122643 
23 BovineHD2300006966 25124835 
23 BovineHD2300006967 25127094 
23 BovineHD2300006968 25128938 
23 BovineHD2300006969 25130342 
23 BovineHD2300006970 25133409 
23 BovineHD2300006971 25134832 
23 BovineHD2300006972 25136120 
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Chromosome SNP Name UMD 3.1 Position 
23 ARS-BFGL-NGS-119768 25137017 
23 BovineHD2300006973 25137471 
23 BovineHD2300006974 25143943 
23 BovineHD2300006975 25150217 
23 BovineHD2300006976 25152367 
23 BovineHD2300006977 25153746 
23 BovineHD2300006978 25154615 
23 BovineHD2300006979 25155638 
23 BovineHD2300006980 25156692 
23 BovineHD2300006981 25157840 
23 BovineHD2300006982 25158615 
23 BovineHD2300006983 25159504 
23 BovineHD2300006984 25160407 
23 BovineHD2300006985 25161824 
23 BovineHD2300006986 25162639 
23 BovineHD2300006987 25163348 
23 BovineHD2300006989 25165091 
23 BovineHD2300006990 25165848 
23 BovineHD2300006992 25167753 
23 BovineHD2300006993 25168530 
23 BovineHD2300006994 25169530 
23 BovineHD2300006995 25171173 
23 BovineHD2300006996 25171927 
23 BovineHD2300006997 25172989 
23 BovineHD2300006998 25177690 
23 Hapmap44002-BTA-110636 25178791 
23 BovineHD2300006999 25179729 
23 BovineHD2300007000 25180801 
23 BovineHD2300007001 25182719 
23 BovineHD2300007002 25184508 
23 BovineHD2300007003 25185451 
23 BovineHD2300007004 25187635 
23 BovineHD2300007005 25188742 
23 BovineHD2300007006 25189883 
23 Hapmap32120-BTA-155825 25194666 
23 BovineHD2300007007 25202537 
23 BovineHD2300007008 25203581 
23 BovineHD2300007009 25208222 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007010 25209585 
23 BovineHD2300007011 25215395 
23 BovineHD2300007012 25217535 
23 BovineHD2300007013 25218350 
23 BovineHD2300007014 25219315 
23 BovineHD2300007015 25220421 
23 BovineHD2300007016 25221779 
23 ARS-BFGL-NGS-117031 25222914 
23 BovineHD2300007017 25224449 
23 BovineHD2300007018 25226162 
23 BovineHD2300007019 25229107 
23 BovineHD2300007020 25232601 
23 BovineHD2300007021 25236187 
23 BovineHD4100016080 25238852 
23 BovineHD2300007022 25241197 
23 BovineHD2300007024 25244423 
23 BovineHD2300007025 25246301 
23 BovineHD2300007026 25248392 
23 BovineHD2300007027 25252898 
23 BovineHD2300007028 25255521 
23 BovineHD2300007029 25256604 
23 BovineHD2300007030 25263573 
23 BovineHD2300007031 25268437 
23 BovineHD2300007032 25315725 
23 BovineHD2300007034 25323186 
23 BovineHD2300007035 25325230 
23 BovineHD2300007037 25329895 
23 BovineHD2300007040 25335659 
23 BovineHD2300007043 25341782 
23 BovineHD2300007044 25343174 
23 BovineHD2300007048 25349535 
23 BovineHD2300007049 25350763 
23 BovineHD2300007050 25351819 
23 BovineHD2300007051 25353488 
23 BovineHD2300007052 25354853 
23 BovineHD2300007053 25361041 
23 BovineHD2300007057 25417035 
23 BovineHD2300007058 25425442 
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Chromosome SNP Name UMD 3.1 Position 
23 ARS-BFGL-NGS-54047 25426985 
23 BovineHD2300007059 25428298 
23 BovineHD2300007060 25429469 
23 BovineHD2300007061 25431568 
23 BovineHD2300007062 25433133 
23 BovineHD2300007063 25434194 
23 BovineHD2300007064 25438003 
23 BovineHD2300007065 25439352 
23 BovineHD2300007066 25440853 
23 BovineHD2300007067 25442124 
23 BovineHD2300007068 25443589 
23 BovineHD2300007069 25445295 
23 BovineHD2300007070 25446685 
23 BovineHD2300007071 25447954 
23 BovineHD2300007072 25449663 
23 BovineHD2300007073 25450746 
23 BovineHD2300007074 25452180 
23 BovineHD2300007076 25465450 
23 ARS-BFGL-NGS-12818 25472436 
23 BovineHD2300007077 25475120 
23 BovineHD2300007078 25475831 
23 BovineHD2300007079 25476950 
23 BovineHD2300007080 25478637 
23 BovineHD2300007081 25479794 
23 BovineHD2300007082 25481868 
23 Hapmap49222-BTA-55895 25486358 
23 BovineHD2300007083 25497178 
23 BovineHD2300007085 25499127 
23 BovineHD2300007086 25500330 
23 BovineHD2300007088 25502202 
23 BovineHD2300007089 25504409 
23 BovineHD2300007090 25506208 
23 ARS-BFGL-NGS-4203 25507676 
23 BovineHD2300007091 25508883 
23 BovineHD2300007092 25513202 
23 BovineHD2300007093 25516596 
23 BovineHD2300007095 25521621 
23 BovineHD2300007096 25522681 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007098 25529192 
23 BovineHD2300007099 25530841 
23 BovineHD2300007100 25535263 
23 BovineHD2300007101 25537419 
23 BovineHD2300007102 25539699 
23 BovineHD2300007103 25541686 
23 BovineHD2300007104 25544975 
23 BovineHD2300007105 25545687 
23 BovineHD2300007106 25546632 
23 BovineHD2300007107 25549498 
23 BovineHD2300007108 25551614 
23 ARS-BFGL-NGS-109142 25552635 
23 BovineHD2300007109 25554714 
23 BovineHD2300007110 25555847 
23 BovineHD2300007111 25557554 
23 BovineHD2300007112 25558348 
23 BovineHD2300007113 25562202 
23 BovineHD2300007114 25563969 
23 BovineHD2300007115 25565003 
23 BovineHD2300007116 25566123 
23 BovineHD2300007117 25567290 
23 BovineHD2300007118 25568583 
23 BovineHD2300007119 25569895 
23 BovineHD2300007120 25571002 
23 BovineHD2300007121 25571718 
23 BovineHD2300007123 25574353 
23 BovineHD2300007124 25576881 
23 BovineHD2300007126 25578363 
23 BovineHD2300007127 25579823 
23 BovineHD2300007128 25583529 
23 BovineHD2300007129 25587771 
23 BovineHD2300007130 25588922 
23 BovineHD2300007131 25589707 
23 BTA-56042-no-rs 25590646 
23 BovineHD2300007132 25591536 
23 BovineHD2300007133 25594106 
23 BovineHD2300007134 25626467 
23 BovineHD2300007135 25632620 



 

 218 

Chromosome SNP Name UMD 3.1 Position 
23 BTA-118887-no-rs 25642674 
23 BovineHD2300007136 25669376 
23 BovineHD2300007148 25747610 
23 BovineHD2300007162 25846520 
23 BovineHD4100016081 25856289 
23 BovineHD2300007168 25859762 
23 BovineHD2300007169 25860822 
23 BovineHD2300007171 25863611 
23 BovineHD2300007173 25866835 
23 BovineHD2300007174 25869447 
23 BovineHD2300015298 25875898 
23 BovineHD2300007177 25881173 
23 BovineHD2300007194 26287961 
23 BovineHD2300007196 26297751 
23 BovineHD2300007199 26337243 
23 BovineHD2300007201 26361697 
23 BovineHD2300007202 26369699 
23 BovineHD2300007204 26447194 
23 BovineHD2300007216 26583740 
23 BovineHD2300007219 26663258 
23 BovineHD2300007221 26685681 
23 BovineHD2300007222 26688149 
23 BovineHD2300007223 26689114 
23 BovineHD2300007224 26690095 
23 BovineHD2300007225 26692183 
23 BovineHD2300007227 26711242 
23 BovineHD2300007228 26723063 
23 BovineHD2300007229 26725494 
23 BovineHD2300007230 26727349 
23 BovineHD2300007231 26728505 
23 BovineHD2300007232 26729844 
23 BovineHD2300007233 26732472 
23 BovineHD2300007234 26735115 
23 BTA-27247-no-rs 26736263 
23 BovineHD2300007235 26737241 
23 BovineHD2300007236 26740102 
23 BovineHD2300007237 26741107 
23 BovineHD2300007238 26742222 



 

 219 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007239 26744351 
23 BovineHD2300007240 26745815 
23 BovineHD2300007241 26748865 
23 BovineHD2300007242 26749849 
23 BovineHD2300007243 26750784 
23 BovineHD2300007244 26753248 
23 BovineHD2300007245 26754246 
23 BovineHD2300007247 26760034 
23 BovineHD2300007249 26762449 
23 BovineHD2300007250 26763157 
23 BovineHD2300007251 26771426 
23 BovineHD2300007252 26774915 
23 BovineHD2300007253 26779513 
23 BovineHD2300007254 26780394 
23 BovineHD2300007255 26784050 
23 BovineHD2300007256 26786177 
23 BovineHD2300007257 26787873 
23 BovineHD2300007258 26789529 
23 BovineHD2300007260 26795622 
23 BovineHD2300007261 26799991 
23 BovineHD2300007262 26803751 
23 BovineHD2300007263 26805639 
23 BovineHD2300007264 26808474 
23 ARS-BFGL-NGS-85480 26812296 
23 BovineHD2300007265 26815135 
23 BovineHD2300007268 26822064 
23 BovineHD2300007269 26826341 
23 BovineHD2300007270 26827418 
23 BovineHD2300007271 26836195 
23 BovineHD2300007272 26837639 
23 BovineHD2300007273 26838966 
23 BovineHD2300007274 26839964 
23 BovineHD2300007275 26841834 
23 BovineHD2300007277 26845341 
23 BovineHD2300007278 26847193 
23 BovineHD2300007279 26850625 
23 BovineHD2300007280 26853861 
23 BovineHD2300007281 26855288 



 

 220 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007282 26856460 
23 BovineHD2300007283 26861195 
23 BovineHD2300007284 26866547 
23 BovineHD2300007285 26868929 
23 BovineHD2300007286 26873233 
23 BovineHD2300007287 26874713 
23 BovineHD2300007289 26877833 
23 BovineHD2300007291 26891901 
23 BovineHD2300007292 26892972 
23 BovineHD2300007293 26894115 
23 BovineHD2300007294 26895106 
23 BovineHD2300007295 26897142 
23 BovineHD2300007297 26899362 
23 BovineHD2300007298 26901293 
23 BovineHD2300007299 26902904 
23 BovineHD2300007300 26904144 
23 BovineHD2300007301 26905056 
23 BovineHD2300007303 26907964 
23 BovineHD2300007304 26913683 
23 BovineHD2300007305 26915139 
23 BovineHD2300007308 26918397 
23 BovineHD2300007309 26919318 
23 BovineHD2300007310 26920473 
23 BovineHD2300007311 26921610 
23 BovineHD2300007314 26924877 
23 BovineHD2300007315 26925552 
23 BovineHD2300007316 26926532 
23 BovineHD2300007317 26927646 
23 BovineHD2300007318 26928623 
23 BovineHD2300007319 26929522 
23 BovineHD2300007342 26952136 
23 BovineHD2300007343 26953748 
23 BovineHD2300007344 26954890 
23 BovineHD2300007346 26957120 
23 BovineHD2300007347 26958140 
23 BovineHD2300007348 26959389 
23 BovineHD2300007349 26960696 
23 BovineHD2300007350 26962122 



 

 221 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007351 26965097 
23 BovineHD2300007352 26968410 
23 BovineHD2300007353 26969747 
23 BovineHD2300007354 26970648 
23 BovineHD2300007355 26972152 
23 BovineHD2300007356 26973749 
23 BovineHD2300007357 26974704 
23 BovineHD2300007358 26975583 
23 BovineHD2300007359 26976778 
23 BovineHD2300007360 26978033 
23 BovineHD2300007361 26979851 
23 BovineHD2300007362 26981831 
23 BovineHD2300007363 26983311 
23 BovineHD2300007364 26985409 
23 BovineHD2300007366 26989889 
23 BovineHD2300007367 26991816 
23 BovineHD2300007368 26993631 
23 ARS-BFGL-NGS-96349 26995067 
23 BovineHD2300007369 26996541 
23 BovineHD2300007371 27002117 
23 BovineHD2300007372 27003561 
23 BovineHD2300007373 27004578 
23 BovineHD2300007374 27005424 
23 BovineHD2300007375 27006149 
23 BovineHD2300007376 27007738 
23 BovineHD2300007377 27009252 
23 BovineHD2300007378 27010815 
23 BovineHD2300007379 27012000 
23 BovineHD2300007380 27013524 
23 BovineHD2300007381 27014708 
23 ARS-BFGL-NGS-24349 27018207 
23 BovineHD2300007382 27022099 
23 BovineHD2300007383 27026670 
23 BovineHD2300007384 27030821 
23 BovineHD2300007385 27032818 
23 BovineHD2300007386 27034574 
23 BovineHD2300007387 27035766 
23 BovineHD2300007388 27041670 



 

 222 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007389 27045558 
23 BovineHD2300007390 27050988 
23 BovineHD2300007391 27055000 
23 BovineHD2300007392 27057476 
23 ARS-BFGL-BAC-28338 27058749 
23 BovineHD2300007393 27059651 
23 BovineHD2300007395 27064496 
23 BovineHD2300007396 27065334 
23 BovineHD2300007397 27066522 
23 BovineHD2300007398 27067492 
23 BovineHD2300007399 27068748 
23 BovineHD2300007400 27071539 
23 BovineHD4100016083 27074289 
23 BovineHD2300007401 27075222 
23 BovineHD2300007403 27085848 
23 BovineHD2300007404 27087252 
23 ARS-BFGL-NGS-38776 27088825 
23 BovineHD2300007405 27091723 
23 BovineHD2300007406 27093423 
23 BovineHD2300007408 27095495 
23 BovineHD2300007409 27096381 
23 BovineHD2300007411 27099758 
23 BovineHD2300007412 27100953 
23 BovineHD2300007413 27101740 
23 BovineHD2300007415 27104697 
23 BovineHD2300007416 27105520 
23 BovineHD2300007417 27108992 
23 BovineHD2300007418 27111525 
23 BovineHD2300007419 27113231 
23 BovineHD2300007421 27117779 
23 BovineHD2300007422 27118533 
23 BovineHD2300007423 27119259 
23 BovineHD2300007424 27119953 
23 BovineHD4100016084 27123974 
23 BovineHD2300007426 27125428 
23 BovineHD2300007427 27129500 
23 BovineHD2300007428 27133733 
23 BovineHD2300007430 27148192 



 

 223 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007432 27153283 
23 BovineHD2300007433 27154412 
23 BovineHD2300007434 27155608 
23 BovineHD2300007436 27159594 
23 BovineHD2300007437 27162050 
23 BovineHD2300007438 27164120 
23 BovineHD2300007439 27184978 
23 BovineHD2300007441 27195210 
23 BovineHD2300007442 27197646 
23 BovineHD2300007443 27200345 
23 BovineHD2300007444 27205595 
23 BovineHD2300007445 27207819 
23 Hapmap47328-BTA-56087 27215001 
23 BovineHD2300007447 27216072 
23 BovineHD2300007448 27217994 
23 BovineHD2300007449 27219241 
23 BovineHD2300007450 27220211 
23 BovineHD2300007451 27222004 
23 BovineHD2300007452 27223341 
23 BovineHD2300007453 27224507 
23 BovineHD2300007454 27226548 
23 BovineHD2300007455 27227600 
23 BovineHD2300007457 27232684 
23 BovineHD2300007458 27233847 
23 BovineHD2300007459 27235099 
23 BovineHD2300007460 27236505 
23 BovineHD2300007461 27237731 
23 BovineHD2300007462 27238530 
23 BovineHD2300007463 27239487 
23 BovineHD2300007464 27240576 
23 BovineHD2300007465 27241906 
23 BovineHD2300007466 27245044 
23 BovineHD2300007467 27247752 
23 BovineHD2300007468 27252412 
23 ARS-BFGL-NGS-113623 27254728 
23 BovineHD2300007469 27256554 
23 BovineHD2300007470 27257734 
23 BovineHD2300007471 27260109 



 

 224 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007472 27264413 
23 BovineHD2300007473 27265348 
23 BovineHD2300007474 27266507 
23 BovineHD2300007475 27270902 
23 BovineHD2300007476 27272126 
23 BovineHD2300007477 27273920 
23 BovineHD2300007478 27277149 
23 BovineHD2300007479 27279196 
23 BovineHD2300007480 27280328 
23 BovineHD2300007481 27282072 
23 BovineHD2300007482 27284754 
23 BovineHD2300007483 27287932 
23 BovineHD2300007484 27292820 
23 BovineHD2300007485 27296029 
23 BovineHD2300007486 27298470 
23 BovineHD2300007487 27303309 
23 BovineHD2300007488 27304195 
23 BovineHD2300007489 27306151 

23 
ARS-USMARC-Parent-AY937242-

rs17872223 27306795 
23 BovineHD2300007490 27307136 
23 BovineHD2300007491 27308305 
23 BovineHD4100016085 27309436 
23 BovineHD2300007492 27310764 
23 BovineHD2300007493 27312648 
23 BovineHD2300007494 27314277 
23 BovineHD2300007495 27315400 
23 BovineHD2300007496 27316320 
23 BovineHD2300007497 27319081 
23 BovineHD2300007498 27320243 
23 BovineHD2300007499 27321410 
23 BovineHD2300007500 27322716 
23 BovineHD2300007501 27323622 
23 BovineHD2300007502 27324830 
23 BovineHD2300007503 27325996 
23 BovineHD2300007504 27328522 
23 BovineHD2300007505 27330337 
23 BovineHD2300007506 27331719 



 

 225 

Chromosome SNP Name UMD 3.1 Position 
23 ARS-BFGL-NGS-60524 27333007 
23 BovineHD2300007507 27334855 
23 BovineHD2300007508 27335628 
23 BovineHD2300007509 27340413 
23 BovineHD2300007510 27343018 
23 BovineHD2300007511 27343928 
23 BovineHD2300007512 27345117 
23 BovineHD2300007513 27347252 
23 BovineHD2300007514 27348488 
23 BovineHD2300007515 27353887 
23 BovineHD2300007516 27356419 
23 BovineHD2300007517 27358154 
23 BovineHD2300007518 27359646 
23 BovineHD2300007519 27361230 
23 BovineHD2300007520 27362154 
23 BovineHD2300007521 27362992 
23 BovineHD2300007522 27364549 
23 BovineHD2300007523 27367039 
23 BovineHD2300007524 27368531 
23 BovineHD2300007525 27371363 
23 BovineHD2300007526 27372146 
23 BovineHD2300007527 27375669 
23 BovineHD2300007528 27377348 
23 BovineHD2300007529 27379438 
23 BovineHD2300007530 27380362 
23 ARS-BFGL-NGS-72442 27383176 
23 BovineHD2300007531 27384391 
23 BovineHD4100016086 27388628 
23 BovineHD2300007532 27389604 
23 BovineHD2300007533 27392997 
23 BovineHD2300007534 27398872 
23 BovineHD2300007535 27399609 
23 BovineHD2300007536 27403791 
23 BovineHD2300007537 27405801 
23 BovineHD2300007538 27407958 
23 BovineHD2300007539 27411352 
23 BovineHD2300007540 27413323 
23 BovineHD2300007541 27414929 



 

 226 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007542 27416286 
23 BovineHD2300007543 27417142 
23 BovineHD2300007544 27418137 
23 BovineHD2300007545 27419614 
23 Hapmap57616-rs29026690 27421348 
23 BovineHD2300007546 27425803 
23 BovineHD2300007547 27426954 
23 BovineHD2300007548 27427745 
23 BovineHD2300007549 27428525 
23 BovineHD2300007550 27429810 
23 BovineHD2300007551 27431101 
23 BovineHD2300007552 27432460 
23 BovineHD2300007553 27433438 
23 BovineHD2300007554 27434384 
23 BovineHD2300007555 27435444 
23 BovineHD2300007556 27436681 
23 BovineHD2300007558 27440681 
23 BovineHD2300007559 27441874 
23 ARS-BFGL-NGS-104658 27444064 
23 BovineHD2300007561 27446997 
23 BovineHD2300007562 27448196 
23 BovineHD2300007563 27449732 
23 BovineHD2300007564 27453148 
23 BovineHD2300007565 27453893 
23 BovineHD2300007566 27455333 
23 BovineHD2300007567 27457212 
23 BovineHD2300007568 27460294 
23 BovineHD2300007569 27461040 
23 BovineHD2300007570 27466031 
23 BovineHD2300007571 27466779 
23 BovineHD2300007572 27468057 
23 BovineHD2300007573 27468743 
23 BovineHD2300007574 27471312 
23 BovineHD2300007575 27473851 
23 BovineHD2300007576 27475326 
23 BovineHD2300007578 27478366 
23 BovineHD2300007579 27479260 
23 BovineHD2300007580 27483000 



 

 227 

Chromosome SNP Name UMD 3.1 Position 
23 ARS-BFGL-NGS-2116 27485467 
23 BovineHD2300007581 27489373 
23 BovineHD2300007582 27491945 
23 BovineHD2300007583 27502853 
23 BovineHD2300007584 27505572 
23 BovineHD2300007585 27507844 
23 BovineHD2300007586 27511777 
23 BovineHD2300007587 27514690 
23 BovineHD2300007588 27515479 
23 BovineHD2300007589 27516240 
23 BovineHD2300007590 27519462 
23 BovineHD2300007591 27521712 
23 BovineHD2300007592 27522842 
23 BovineHD2300007593 27523519 
23 BovineHD2300007594 27524960 
23 BovineHD2300007595 27526010 
23 BovineHD2300007596 27527199 
23 BovineHD2300007597 27528355 
23 BovineHD2300007598 27531038 
23 BovineHD2300007599 27531933 
23 BovineHD2300007600 27533074 
23 BovineHD2300007601 27534831 
23 BovineHD2300007602 27535678 
23 BovineHD2300007603 27537976 
23 BovineHD2300007604 27541174 
23 BovineHD2300007605 27542680 
23 BovineHD2300007606 27543750 
23 ARS-BFGL-NGS-105633 27545231 
23 BovineHD2300007607 27547345 
23 BovineHD2300007608 27548598 
23 BovineHD2300007609 27549721 
23 BovineHD2300007610 27551472 
23 BovineHD2300007611 27552647 
23 BovineHD2300007613 27558777 
23 BovineHD2300007614 27559688 
23 BovineHD2300007615 27561342 
23 BovineHD2300007616 27563184 
23 BovineHD2300007617 27564388 



 

 228 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007618 27565313 
23 BovineHD2300007620 27567835 
23 BovineHD2300007621 27569381 
23 BovineHD2300007622 27570033 
23 BovineHD2300007623 27575149 
23 BovineHD4100016088 27575852 
23 BovineHD2300007624 27577284 
23 BovineHD2300007625 27578386 
23 BovineHD2300007626 27581503 
23 ARS-BFGL-NGS-43021 27583474 
23 BovineHD2300007628 27591615 
23 BovineHD2300007629 27592539 
23 BovineHD2300007630 27593703 
23 BovineHD2300007631 27598352 
23 BovineHD2300007632 27600197 
23 BovineHD2300007633 27601403 
23 BovineHD2300007634 27602122 
23 BovineHD2300007635 27612902 
23 BovineHD2300007636 27614084 
23 BovineHD2300007637 27617926 
23 BovineHD2300007638 27627775 
23 BovineHD2300007639 27628683 
23 BovineHD2300007640 27632381 
23 BovineHD2300007642 27634659 
23 BovineHD2300007643 27636385 
23 BovineHD2300007644 27640249 
23 BovineHD2300007645 27641058 
23 BovineHD2300007646 27641714 
23 BovineHD2300007647 27642362 
23 ARS-BFGL-NGS-99242 27644218 
23 BovineHD2300007648 27647007 
23 BovineHD2300007649 27650286 
23 BovineHD2300007650 27652500 
23 BovineHD2300007654 27665155 
23 BovineHD2300007662 27685577 
23 BovineHD2300007668 27700720 
23 BovineHD4100016089 27759950 
23 BovineHD2300007683 27761424 



 

 229 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007684 27762666 
23 BovineHD2300007685 27763861 
23 BovineHD2300007686 27765779 
23 BovineHD2300007687 27768031 
23 BovineHD2300007688 27770884 
23 BovineHD2300007689 27772156 
23 BovineHD2300007690 27773293 
23 BovineHD2300007691 27774225 
23 BovineHD2300007692 27775248 
23 ARS-BFGL-NGS-11887 27776075 
23 BovineHD2300007693 27776739 
23 BovineHD4100016090 27777923 
23 BovineHD2300007694 27779566 
23 BovineHD2300007695 27780571 
23 BovineHD2300007696 27781790 
23 BovineHD2300007697 27782568 
23 BovineHD2300007698 27783309 
23 BovineHD2300007699 27784888 
23 BovineHD4100016091 27785749 
23 BovineHD2300007700 27786582 
23 BovineHD2300007701 27787261 
23 BovineHD2300007702 27788723 
23 BovineHD2300007704 27790745 
23 BovineHD2300007705 27791863 
23 BovineHD2300007706 27793691 
23 BovineHD2300007707 27796803 
23 BovineHD2300007708 27798254 
23 BovineHD2300007709 27799841 
23 BovineHD2300007710 27800971 
23 BovineHD2300007711 27801978 
23 BovineHD2300007712 27802812 
23 ARS-BFGL-NGS-97747 27804037 
23 BovineHD2300007713 27804767 
23 BovineHD2300007714 27805404 
23 BovineHD2300007715 27806531 
23 BovineHD2300007717 27809089 
23 BovineHD2300007718 27810230 
23 BovineHD2300007719 27811394 



 

 230 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007720 27813222 
23 BovineHD2300007722 27817320 
23 BovineHD2300007723 27818856 
23 BovineHD2300007724 27819560 
23 BovineHD2300007725 27820535 
23 BovineHD2300007726 27821489 
23 BovineHD2300007727 27822754 
23 BovineHD2300007728 27824286 
23 BovineHD2300007729 27825771 
23 BovineHD2300007730 27826838 
23 BovineHD2300007731 27827644 
23 BovineHD2300007732 27829379 
23 BovineHD2300007733 27830182 
23 BovineHD2300007734 27831407 
23 BovineHD2300007735 27834473 
23 BovineHD2300007737 27838172 
23 BovineHD2300007738 27839366 
23 ARS-BFGL-NGS-32979 27841983 
23 BovineHD2300007741 27845424 
23 BovineHD2300007742 27846802 
23 BovineHD2300007743 27849149 
23 BovineHD2300007744 27850893 
23 BovineHD2300007745 27852114 
23 BovineHD2300007746 27853209 
23 ARS-BFGL-NGS-1222 27865384 
23 BovineHD2300007750 27880661 
23 BovineHD2300007751 27882099 
23 BovineHD2300007752 27883444 
23 BovineHD2300007753 27885887 
23 BovineHD2300007754 27891593 
23 BovineHD2300007755 27892922 
23 BovineHD2300007756 27896008 
23 BovineHD2300007757 27897569 
23 BovineHD2300007758 27898835 
23 BovineHD2300007759 27901813 
23 BovineHD2300007760 27907740 
23 BovineHD2300007761 27909622 
23 Hapmap46836-BTA-55820 27923154 



 

 231 

Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007763 27927837 
23 BovineHD2300007765 27930626 
23 BovineHD2300007766 27931339 
23 BovineHD2300007767 27933138 
23 BovineHD2300007768 27936796 
23 BovineHD2300007769 27938049 
23 BovineHD2300007770 27938956 
23 BovineHD2300007771 27940432 
23 BovineHD2300007772 27941262 
23 BTA-55821-no-rs 27944066 
23 BovineHD2300007773 27944980 
23 BovineHD2300007774 27945751 
23 BovineHD2300007775 27946647 
23 BovineHD4100016092 27947741 
23 BovineHD2300007776 27949898 
23 BovineHD2300007777 27950777 
23 BovineHD2300007778 27951516 
23 BovineHD2300007779 27955163 
23 BovineHD2300007780 27956201 
23 BovineHD4100016093 27957438 
23 BovineHD4100016094 27960902 
23 BovineHD2300007781 27963661 
23 ARS-BFGL-NGS-67719 27965340 
23 BovineHD2300007782 27972458 
23 BovineHD2300007783 27974568 
23 BovineHD2300007784 27975533 
23 BovineHD2300007785 27977768 
23 BovineHD2300007786 27978526 
23 BovineHD4100016095 27979819 
23 BovineHD2300007787 27980733 
23 BovineHD4100016096 27981857 
23 BovineHD2300007788 27983157 
23 BovineHD2300007789 27986085 
23 BovineHD2300007790 27988741 
23 BovineHD2300007791 27990852 
23 BTA-55853-no-rs 27992880 
23 BovineHD2300007792 27994640 
23 BovineHD2300007793 27996706 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007794 27998431 
23 BovineHD2300007795 27999936 
23 BovineHD2300007796 28001216 
23 BovineHD2300007797 28002159 
23 BovineHD2300007798 28003213 
23 BovineHD2300007799 28004218 
23 BovineHD2300007800 28005696 
23 BovineHD2300007801 28006677 
23 BovineHD2300007802 28009506 
23 BovineHD2300007803 28010500 
23 BovineHD2300007804 28011554 
23 BovineHD4100016097 28013242 
23 BovineHD2300007805 28014950 
23 BovineHD2300007806 28016282 
23 BovineHD2300007807 28017605 
23 BovineHD2300007808 28019214 
23 ARS-BFGL-NGS-90570 28021047 
23 BovineHD2300007810 28023160 
23 BovineHD2300007811 28024603 
23 BovineHD2300007812 28025573 
23 BovineHD4100016098 28026634 
23 BovineHD2300007813 28028219 
23 BovineHD2300007814 28029991 
23 BovineHD2300007815 28030990 
23 BovineHD2300007816 28035349 
23 BovineHD2300007819 28042557 
23 BTA-55867-no-rs 28046330 
23 BovineHD2300007821 28050702 
23 BovineHD2300007822 28051757 
23 BovineHD2300007823 28052917 
23 BovineHD2300007824 28054444 
23 BovineHD2300007825 28055819 
23 BovineHD2300007826 28059521 
23 BovineHD2300007827 28060999 
23 BovineHD2300007828 28062298 
23 BovineHD2300007829 28063685 
23 BovineHD2300007830 28065113 
23 BovineHD2300007831 28069648 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007832 28070558 
23 BovineHD2300007833 28073080 
23 BovineHD2300007834 28076030 
23 BovineHD2300007835 28078379 
23 BovineHD2300007836 28081519 
23 BovineHD2300007837 28082954 
23 BovineHD2300007838 28085159 
23 ARS-BFGL-NGS-4240 28087630 
23 BovineHD2300007839 28091160 
23 BovineHD2300007840 28092704 
23 BovineHD2300007841 28095010 
23 BovineHD2300007842 28096736 
23 BovineHD2300007843 28100841 
23 BovineHD2300007845 28103362 
23 BovineHD2300007846 28109619 
23 BovineHD2300007847 28113240 
23 BovineHD2300007848 28114866 
23 BovineHD2300007849 28116117 
23 BovineHD2300007850 28118083 
23 BovineHD2300007851 28119317 
23 BovineHD2300007852 28120329 
23 BovineHD2300007853 28121586 
23 BovineHD2300007854 28122679 
23 BovineHD2300007855 28123643 
23 BovineHD2300007856 28125274 
23 BovineHD2300007857 28130236 
23 BovineHD2300007858 28131399 
23 BovineHD2300007859 28132260 
23 BovineHD2300007860 28132973 
23 BovineHD2300007861 28133833 
23 BovineHD2300007862 28136947 
23 BovineHD2300007863 28138125 
23 BovineHD2300007864 28138976 
23 BovineHD2300007865 28140515 
23 BovineHD2300007867 28143866 
23 BovineHD2300007868 28146155 
23 BovineHD2300007869 28147995 
23 BovineHD4100016099 28150627 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007870 28154333 
23 BovineHD2300007871 28155284 
23 BovineHD2300007872 28157824 
23 BovineHD2300007873 28162474 
23 BovineHD2300007874 28163721 
23 BovineHD2300007875 28165674 
23 BovineHD2300007876 28171185 
23 BovineHD2300007877 28174203 
23 BovineHD2300007878 28180181 
23 BovineHD2300007879 28181331 
23 BovineHD2300007880 28185008 
23 BovineHD2300007881 28185806 
23 BovineHD4100016100 28188301 
23 BovineHD2300007882 28189121 
23 BovineHD2300007883 28190859 
23 BovineHD2300007884 28192824 
23 UA-IFASA-5823 28193501 
23 BovineHD2300007885 28195057 
23 BovineHD4100016101 28197255 
23 BovineHD2300007886 28198327 
23 BovineHD2300007887 28200450 
23 BovineHD2300007888 28202487 
23 BovineHD2300007890 28206185 
23 BovineHD2300007891 28207353 
23 BovineHD2300007892 28208600 
23 BovineHD2300007893 28209499 
23 BovineHD2300007894 28210603 
23 BovineHD2300007895 28211855 
23 BovineHD2300007896 28213347 
23 BovineHD2300007897 28215160 
23 BovineHD2300007898 28217018 
23 BovineHD4100016102 28219172 
23 BovineHD2300007900 28221157 
23 ARS-BFGL-NGS-113235 28223274 
23 BovineHD2300007901 28224143 
23 BovineHD2300007902 28226485 
23 BovineHD2300007903 28228193 
23 BovineHD2300007904 28229677 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007905 28230561 
23 BovineHD2300007906 28231327 
23 BovineHD2300007907 28236399 
23 BovineHD2300007908 28238171 
23 BovineHD2300007909 28240434 
23 BovineHD2300007910 28242968 
23 BovineHD2300007911 28245665 
23 BovineHD2300007912 28246767 
23 BovineHD2300007913 28248104 
23 BovineHD2300007914 28250023 
23 BovineHD2300007915 28251058 
23 BovineHD2300007916 28253974 
23 BovineHD2300007917 28255814 
23 BovineHD2300007918 28257816 
23 BovineHD2300007919 28258614 
23 BovineHD2300007920 28259298 
23 BovineHD2300007921 28260420 
23 BovineHD2300007922 28261754 
23 BovineHD2300007923 28262651 
23 BovineHD2300007924 28263639 
23 BovineHD2300007925 28264569 
23 BovineHD2300007926 28266616 
23 BovineHD2300007927 28267943 
23 BovineHD2300007928 28271070 
23 BovineHD2300007929 28273077 
23 BovineHD2300007930 28274445 
23 BovineHD2300007931 28276482 
23 BovineHD2300007932 28278115 
23 BovineHD2300007933 28280606 
23 BTA-55886-no-rs 28281915 
23 BovineHD2300007934 28283075 
23 BovineHD2300007935 28288210 
23 BovineHD2300007936 28290987 
23 BovineHD2300007937 28292297 
23 BovineHD2300007938 28293679 
23 BovineHD2300007939 28296493 
23 BovineHD2300007940 28299628 
23 BovineHD2300007941 28301056 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300007942 28302999 
23 BovineHD2300007943 28304198 
23 BovineHD2300007944 28305652 
23 BovineHD2300007945 28306879 
23 BovineHD2300007946 28309160 
23 UA-IFASA-7712 28311070 
23 BovineHD2300007947 28316734 
23 BovineHD4100016103 28317753 
23 BovineHD2300007949 28322702 
23 BovineHD2300007951 28328861 
23 BovineHD2300007952 28330316 
23 BovineHD2300007953 28332494 
23 BovineHD2300007963 28360190 
23 BovineHD2300007965 28366219 
23 BovineHD2300007971 28380703 
23 BovineHD2300007972 28382993 
23 BovineHD2300007973 28385445 
23 BovineHD2300007977 28393677 
23 BovineHD2300007978 28395288 
23 BovineHD2300007979 28396815 
23 BovineHD2300007980 28398335 
23 BovineHD2300007981 28400087 
23 BovineHD2300007982 28401762 
23 BovineHD2300007983 28402867 
23 BovineHD2300007985 28406839 
23 BovineHD2300007986 28408890 
23 BovineHD2300007987 28410171 
23 BovineHD2300007988 28411127 
23 BovineHD2300007989 28412195 
23 ARS-BFGL-NGS-28555 28413350 
23 BovineHD2300007993 28420236 
23 BovineHD2300007994 28422804 
23 BovineHD2300007996 28431174 
23 BovineHD2300007998 28434257 
23 BovineHD2300007999 28435313 
23 BovineHD2300008001 28439058 
23 BovineHD2300008002 28440539 
23 BovineHD2300008003 28442281 
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Chromosome SNP Name UMD 3.1 Position 
23 BTA-111017-no-rs 28444435 
23 BovineHD2300008005 28448873 
23 BovineHD2300008006 28450670 
23 BovineHD2300008012 28469826 
23 BovineHD2300008019 28486281 
23 BovineHD2300008020 28487275 
23 BovineHD2300015634 28494393 
23 BovineHD2300008043 28561217 
23 ARS-BFGL-NGS-39 28563533 
23 BovineHD2300008044 28564920 
23 BovineHD2300008045 28565821 
23 BovineHD2300008046 28566758 
23 BovineHD2300008047 28567640 
23 BovineHD2300008048 28568611 
23 BovineHD2300008049 28569684 
23 BovineHD2300008050 28570767 
23 BovineHD2300008051 28571770 
23 BovineHD2300008052 28573214 
23 BovineHD2300008053 28574162 
23 BovineHD2300008054 28576280 
23 BovineHD2300008056 28578501 
23 BovineHD2300008057 28579375 
23 BovineHD2300008058 28581361 
23 BovineHD2300015638 28588990 
23 BovineHD2300008060 28594947 
23 BovineHD2300008061 28596093 
23 ARS-BFGL-NGS-60100 28598059 
23 BovineHD2300008062 28599086 
23 BovineHD2300008063 28600222 
23 BovineHD2300008064 28602332 
23 BovineHD2300008065 28603103 
23 BovineHD4100016104 28604139 
23 BovineHD2300008066 28605081 
23 BovineHD2300008067 28606252 
23 BovineHD2300008068 28607959 
23 BovineHD2300008069 28608693 
23 BovineHD2300008070 28609602 
23 BovineHD2300008071 28610641 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300008072 28611759 
23 BovineHD2300008073 28613377 
23 BovineHD2300008074 28614313 
23 BovineHD2300008075 28615196 
23 BovineHD2300008076 28616151 
23 BovineHD4100016105 28617272 
23 BovineHD2300008078 28619649 
23 BovineHD4100016106 28620444 
23 BovineHD2300008079 28621623 
23 BovineHD2300008080 28622263 
23 BovineHD2300008081 28622986 
23 BovineHD2300008082 28625666 
23 BovineHD2300008083 28626894 
23 BovineHD2300008084 28628871 
23 BovineHD2300008086 28630914 
23 BovineHD2300008087 28631696 
23 BovineHD2300008088 28632619 
23 BovineHD2300008089 28633429 
23 BovineHD4100016107 28634603 
23 BovineHD2300008090 28635439 
23 BovineHD2300008091 28636396 
23 BovineHD2300008092 28637409 
23 BovineHD2300008093 28638238 
23 BovineHD2300008095 28642554 
23 BovineHD2300008096 28643641 
23 BovineHD2300008097 28645014 
23 BovineHD2300008098 28647232 
23 ARS-BFGL-NGS-83284 28649349 
23 BovineHD2300008099 28650456 
23 BovineHD2300008100 28651339 
23 BovineHD2300008101 28653356 
23 BovineHD2300008103 28656912 
23 BovineHD2300008104 28658571 
23 BovineHD2300008106 28661313 
23 BovineHD2300008107 28662996 
23 BovineHD2300008108 28664175 
23 BovineHD2300008109 28666233 
23 BovineHD2300008110 28667972 
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Chromosome SNP Name UMD 3.1 Position 
23 BovineHD2300008112 28671240 
23 BovineHD2300008113 28671895 
23 BovineHD2300008114 28673324 
23 UA-IFASA-9236 28674580 
23 BovineHD2300008115 28675656 
23 BovineHD4100016108 28676726 
23 BovineHD2300008117 28679096 
23 BovineHD2300008118 28679974 
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APPENDIX 2 

Mizzu SNP # SNP Name BTA  4.0 Position 
5421 ARS-BFGL-NGS-12818 26336469 

14019 ARS-BFGL-NGS-4203 26359831 
4731 ARS-BFGL-NGS-109142 26404894 

29923 BTA-27247-no-rs 26797818 
20685 ARS-BFGL-NGS-85480 26873151 
22219 ARS-BFGL-NGS-96349 27014916 

716 ARS-BFGL-BAC-28338 27078160 
13051 ARS-BFGL-NGS-38776 27114828 
19742 ARS-BFGL-NGS-79310 27162533 
52187 Hapmap47328-BTA-56087 27196973 
55051 Hapmap53349-ss46526376 27285019 

22795 
ARS-USMARC-Parent-AY937242-

rs1 27286587 
20171 ARS-BFGL-NGS-82024 27330080 
18687 ARS-BFGL-NGS-72442 27368932 
3329 ARS-BFGL-NGS-104658 27429820 
7892 ARS-BFGL-NGS-2116 27471183 
3656 ARS-BFGL-NGS-105633 27542578 

14296 ARS-BFGL-NGS-43021 27580795 
14285 ARS-BFGL-NGS-42980 27719069 
22636 ARS-BFGL-NGS-99242 27745730 
5149 ARS-BFGL-NGS-11887 27911886 

22400 ARS-BFGL-NGS-97747 27939837 
11374 ARS-BFGL-NGS-32979 27977781 
6543 ARS-BFGL-NGS-16619 28007939 

51974 Hapmap46836-BTA-55820 28043179 
31416 BTA-55821-no-rs 28064091 
31417 BTA-55853-no-rs 28112250 
21417 ARS-BFGL-NGS-90570 28140134 
31418 BTA-55867-no-rs 28165417 
14116 ARS-BFGL-NGS-4240 28206725 
1706 ARS-BFGL-NGS-100422 28268180 

57703 UA-IFASA-5823 28312087 
24423 ARS-BFGL-NGS-113235 28341860 
51675 Hapmap44774-BTA-55887 28436700 
10069 ARS-BFGL-NGS-28555 28542478 
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Mizzu SNP # SNP Name BTA  4.0 Position 
16683 ARS-BFGL-NGS-60100 28752297 
14385 ARS-BFGL-NGS-43333 28782231 
20362 ARS-BFGL-NGS-83284 28803585 
58252 UA-IFASA-9236 28828816 
10970 ARS-BFGL-NGS-31638 28890490 
19968 ARS-BFGL-NGS-80691 28943537 
3751 ARS-BFGL-NGS-105966 29058544 

49550 Hapmap40502-BTA-17475 29094169 
23361 ARS-BFGL-NGS-110774 29305663 
22205 ARS-BFGL-NGS-96241 29347180 
22122 ARS-BFGL-NGS-95687 29368535 
16662 ARS-BFGL-NGS-59981 29395930 
12974 ARS-BFGL-NGS-38483 29440989 
1094 ARS-BFGL-BAC-35219 29471875 
4879 ARS-BFGL-NGS-109612 29745302 
3224 ARS-BFGL-NGS-104394 30066821 

57355 INRA-655 30091550 
26457 ARS-BFGL-NGS-117913 30117027 
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APPENDIX 3 

Common SNP List 50K BTA 4.0 Position 770K UMD 3.1 Position 
ARS-BFGL-NGS-12818 26336469 25472436 
ARS-BFGL-NGS-4203 26359831 25507676 

ARS-BFGL-NGS-
109142 26404894 25552635 

BTA-27247-no-rs 26797818 26736263 
ARS-BFGL-NGS-85480 26873151 26812296 
ARS-BFGL-NGS-96349 27014916 26995067 
ARS-BFGL-BAC-28338 27078160 27058749 
ARS-BFGL-NGS-38776 27114828 27088825 

Hapmap47328-BTA-
56087 27196973 27215001 

ARS-BFGL-NGS-72442 27368932 27383176 
ARS-BFGL-NGS-

104658 27429820 27444064 
ARS-BFGL-NGS-2116 27471183 27485467 

ARS-BFGL-NGS-
105633 27542578 27545231 

ARS-BFGL-NGS-43021 27580795 27583474 
ARS-BFGL-NGS-99242 27745730 27644218 
ARS-BFGL-NGS-11887 27911886 27776075 
ARS-BFGL-NGS-97747 27939837 27804037 
ARS-BFGL-NGS-32979 27977781 27841983 

Hapmap46836-BTA-
55820 28043179 27923154 

BTA-55821-no-rs 28064091 27944066 
BTA-55853-no-rs 28112250 27992880 

ARS-BFGL-NGS-90570 28140134 28021047 
BTA-55867-no-rs 28165417 28046330 

ARS-BFGL-NGS-4240 28206725 28087630 
UA-IFASA-5823 28312087 28193501 

ARS-BFGL-NGS-
113235 28341860 28223274 

ARS-BFGL-NGS-28555 28542478 28413350 
ARS-BFGL-NGS-60100 28752297 28598059 
ARS-BFGL-NGS-83284 28803585 28649349 

UA-IFASA-9236 28828816 28674580 
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APPENDIX 4 

Index ID SNP Identifier Reason for Removal 
5 HD2300008159 Unclusterable 
19 HD2300008191 Unclusterable 
30 HD2300008061 Unclusterable 
42 HD2300007272 Unclusterable 
50 HD2300007628 Unclusterable 
56 HD2300007096 Unclusterable 
71 HD2300007119 Unclusterable 
73 HD2300007754 Unclusterable 
86 HD2300007245 Unclusterable 
87 HD2300008141 Unclusterable 
108 HD2300007485 Unclusterable 
114 HD2300007068 Unclusterable 
119 HD2300007776 Unclusterable 
126 HD2300007816 Unclusterable 
134 HD2300007683 Unclusterable 
146 HD2300008193 Unclusterable 
147 HD2300008272 Unclusterable 
156 HD2300016099 Unclusterable 
179 HD2300007935 Unclusterable 
180 HD2300008126 Unclusterable 
212 HD2300008086 Unclusterable 
220 HD4100016109 Unclusterable 
241 HD2300007791 Unclusterable 
257 HD2300007409 Unclusterable 
265 HD2300007089 Unclusterable 
267 HD2300008239 Unclusterable 
293 HD2300007222 Unclusterable 
307 HD2300007849 No Calls 
312 HD2300007050 Unclusterable 
353 HD2300007526 Unclusterable 
355 HD2300008219 Unclusterable 
367 HD2300007412 Unclusterable 
388 HD2300007620 Unclusterable 
403 HD2300007308 Unclusterable 
413 HD2300007295 Unclusterable 
427 HD2300007649 Unclusterable 
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Index ID SNP Identifier Reason for Removal 
431 HD2300007392 Unclusterable 
440 HD2300007718 Unclusterable 
444 HD2300007982 Low Frequency 
449 HD2300015634 Unclusterable 
514 HD2300007720 Unclusterable 
520 ARS-BFGL-NGS-43021 Unclusterable 
535 HD2300007300 Unclusterable 
536 HD2300007867 Unclusterable 
547 ARS-BFGL-NGS-2116 Unclusterable 
549 HD2300007709 Unclusterable 
555 HD2300007529 Unclusterable 
557 HD2300008153 No Calls 
566 HD2300007484 Unclusterable 
584 HD2300007522 Unclusterable 
593 HD2300007115 Unclusterable 
598 HD2300007789 Unclusterable 
606 HD2300007398 Unclusterable 
613 HD2300008197 Unclusterable 
638 HD2300007309 Unclusterable 
643 HD2300007241 Unclusterable 
665 HD2300008175 Unclusterable 
674 ARS-BFGL-BAC-35219 Unclusterable 
680 HD2300001810 Unclusterable 
681 HD2300007131 Unclusterable 
684 HD2300007737 Unclusterable 
691 HD2300007596 Unclusterable 
696 HD2300007980 Unclusterable 
702 HD2300007810 Unclusterable 
714 HD2300007918 Unclusterable 
723 HD2300007258 Unclusterable 
735 HD2300007575 Unclusterable 
774 HD2300007977 Unclusterable 
776 HD2300007686 Unclusterable 
796 HD2300007461 Unclusterable 
817 HD2300008078 Unclusterable 
818 HD2300008117 Unclusterable 
827 HD2300008210 Unclusterable 
844 HD2300007263 Unclusterable 
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Index ID SNP Identifier Reason for Removal 
853 HD2300007504 Unclusterable 
860 HD2300007868 Unclusterable 
864 HD2300008064 No Calls 
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APPENDIX 5 

Attached file. 
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APPENDIX 6 

(a) 

  

(b) 

 

Appendix 6. (a) Numbers of animals homozygous at greater than 95% of SNPs in 
BoLA. (b) Genomic location containing 230 SNPs in the class IIa region, that contained 
the majority of heterozygous SNPs from paired highly similar paired haplotypes in 
animals that were less than 95% homozygous. 
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