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ABSTRACT 

 

This dissertation presents mathematical and analytical models for real-time queue 

length estimation and platoon recognition using the connected vehicle technology 

(CVT). Information on queue length and platoon is a crucial part of traffic signal control 

and is difficult to obtain accurately with traditional technologies such as loop detectors. 

The past studies are either limited to fixed-time signal control or lacked verification on 

the applicable range or evaluation of the performance of algorithms. 

The proposed algorithms focused on estimating the queue length for adaptive signal 

control and platoon characteristics for signal coordination and adaptive signal control. 

For queue length detection, an algorithm was developed to determine the estimated value 

between the last stopped vehicle and the first moving vehicle for different market 

penetration ratios. Discrete wavelet transform is applied to the estimated queue lengths 

to improve accuracy and consistency.  

The platoon recognition model is developed based on time headway so that the 

arrival times can be computed directly from the estimated platoon data. First, the 

detected platoon is identified by a modified critical time-headway. Then, platoon size 

and starting and ending times are estimated. Lastly, a filtering process for “qualified” 

detected platoon is proposed to optimize detectability. The results show that the 

proposed algorithms can estimate well in various traffic conditions and under both fixed-

time and actuated signal control without relying on inputs that are hard to obtain in 

practice. Furthermore, an analytical model to estimate the platoon detection rate is 
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proposed and shown to be close to the numerical results.  Therefore, Traffic engineers 

can use the analytical model to estimate the required market penetration ratio for the 

application without field experiments or microscopic simulation. Accordingly, the 

proposed algorithms can be an important part of adaptive signal control focusing on real-

time coordination. 
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NOMENCLATURE 

 

CV Connected vehicle 

CVT Connected vehicle technology 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW* 

 

Introduction 

Traffic congestion in urban area has been a critical problem in transportation for a 

long time (1). Traffic signal is very important for traffic management. A good traffic 

signal can reduce delay, travel time, gas emissions and incidents. Though traffic has 

similar daily patterns, it still varies from hour to hour. Pre-timed signal cannot handle 

such an unpredictable change so traffic signal that can adapt to real-time incoming 

demand certainly will provide more effective control. Thus, adaptive signal control has 

recently gained attentions from traffic engineers as one of the solutions with a great 

potential. Adaptive signal control can cope with traffic bursts by estimation and 

prediction from traffic sensors and select the best signal timing based on such 

information.  

Aside from signal control, traffic detector is important as well. The most common 

type of detector is loop detector. Although it is a very accurate fix-location detector, 

expensive construction and maintenance cost prevents it from implementing at every 

necessary location. It is also costly to tracks queue length effectively, especially when  

queue size has very high variation. With the emerging of wireless technology, connected  

 
*©2015 IEEE. Part of the data reported in this chapter is reprinted, with permission, 

from Tiaprasert et al, Queue length Estimation Using Connected Vehicle Technology for 

Adaptive Signal Control, in Intelligent Transportation Systems, IEEE Transactions on, 

August 2015 
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vehicle technology (CVT) (2-8) is very promising as a probe vehicle. Probe vehicle can 

collect vehicle data at any location with potentially lower cost than the conventional loop 

detector. However, a new algorithm and adaptive signal logic are needed to develop for 

such a new and different detector. Moreover, a low penetration ratio of probe vehicles 

can lower the performance so the effect of penetration ratio needs to be studied before 

employing in the real world.  

The current challenge of adaptive signal control using CV is to find the one which 

works best with low penetration ratios and maximize the potential of spatial information 

of CV. The other challenge is how to estimate traffic state, queue length and platoon as 

inputs for adaptive signal control without relying on other detectors or basic inputs 

which are hard to obtain in practice. Most queue length estimation relies on signal 

timing, duration of red time and assumed arrival distribution. However, such signal data 

and assumption is not practical especially for adaptive signal control at multiple 

intersections. Thus, the real-time queue length estimation without relying on signal and 

arrival data needs to be developed. For platoon recognition, only a few studies were 

conducted, and none of them had a full analysis on the impact of penetration ratio and 

performance consistency.  

This research aims to develop queue estimation and platoon recognition algorithms 

for adaptive signal control. The two developed algorithms are verified and validated with 

microscopic simulation, VISSIM (9; 10), in various traffic conditions and signal 

settings. 
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Finally, the performance of queue length estimation and platoon recognition using 

CV is evaluated. The applicability range of the algorithm is identified from numerical 

results in chapter IV and V. 

Literature Review 

Studies similar to the dissertation and related topics have been discussed in this 

chapter. First, advantages and disadvantages of loop detectors and CV are compared.  

Second, adaptive signal control are reviewed. Lastly, queue length and platoon 

estimation methods from CV and their limitations are discussed. 

Traffic Detectors 

Traffic data are essential for signal control. Without accurate and sufficient traffic 

data, one cannot time traffic signal effectively. A loop detector is the most common 

detector in the US. It can provide an accurate traffic count in real time. However, the 

downsides are cost and fix-location detection. Construction and maintenance costs for 

loop detectors are expensive to be deployed in a large scale. Moreover, the loop detector 

can only collect traffic data in only one location per unit, taking the cost into account, 

making it impractical to get traffic data in all necessary locations. The location of 

detector can affect the performance of queue estimation and needs adjustment based on 

traffic condition. The detector near a stop line is not affected by measurement error from 

platoon dispersion effect but cannot identify a long queue. On the other hand, the 

detector far from a stop line can detect long queue but cannot effectively detector a short 

queue. It is also affected by platoon dispersion. There are two kinds of techniques to 
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estimate queue length from loop detectors with fixed-time signal, input–output models 

(11-14) and shockwave models (15-19).  

To solve the aforementioned problems, many alternatives methods have been 

considered for a long time. Connected Vehicle has been getting attentions as the 

alternative traffic detector recently. Traffic data are collected through probe vehicles, 

vehicles equipped with GPS and wireless communication devices. Location and speed of 

probe vehicles can be gathered to estimate travel time, speed and queue length. 

However, even though the penetration ratio of probe vehicles is expected to increase 

in the future, the penetration ratio is still relatively small. The penetration ratio heavily 

affects the estimation error of traffic state. How probe vehicle collects data is also 

different from a loop detector. For loop detector, all vehicles are detected only at specific 

locations where loop detectors are installed. On the other hand, CV can collect traffic 

data at every location by “sampling” from all vehicles. In other word, only probe 

vehicles are detected. Thus, traffic state algorithms of these two kinds of detectors are 

not the same. The new traffic estimation algorithms need to be developed which are 

discussed in chapter II.  

Adaptive Signal Control 

The examples of adaptive signal control systems using loop detector are Split, Cycle 

and Offset Optimization Technique (SCOOT) (20), Sydney Coordinated Adaptive 

Traffic System (SCATS) (21), Optimized Policies for Adaptive Control (OPAC) (22), 

Real-time Hierarchical Optimizing Distributed Effective System (RHODES) (23) and 

InSync (24). RHODES and InSync find the optimal signal by decomposing optimization 
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algorithm into sequences. For RHODES, they are “dynamic network loading”, “Network 

flow control” and “intersection control”. InSync uses two level optimization, Global and 

Local optimization to allow continuous movement for main arterial and allocate green 

time to minor streets respectively. Most of them have a problem when it is in 

oversaturate condition since the queue length is longer than the placement of loop 

detectors. Thus queue detections are failed to detect the actual demand and the systems 

cannot find a good signal setting for such a situation. The other problem is the loop 

detectors cannot distinguish between a normal queue and a queue due to spill back from 

the downstream intersection. As a result, it is ineffective to solve such a situation. 

There are a few literatures related to adaptive signal control with CV. Cai et al (25) 

used travel time from CV. They stated that queue length is not suitable index for 

adaptive signal control as it misses some information. PAMSCOD, Platoon-based 

arterial multi-modal signal control with online data, is proposed by He et al (26). The 

other studies on adaptive signal control from CVT can be seen in (27-29) 

Queue Length Estimation 

For delay minimization-based signal control, queue length is one of the most 

common indicators that can be directly related to delay of an approach and overall delay. 

Not only that, queue length is also used to be an input for signal control for queue 

control or minimization. It is, therefore, essential to obtain queue information. For queue 

length estimation by only CV or probe vehicle, there are two major methods. The first 

one is proposed by Cormert et al. (30-33). By using the location of the last probe vehicle 

in the queue and the probability function of the queue, the expectation of queue length is 
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then obtained. The relationship and analytical model between penetration ratio and the 

performance of queue length estimation are exploited. However, the practical limitation 

of this method is: the probability function of total queue must be obtained. The total 

queue is an arrival queue plus overflow queue. The arrival queue is a queue from new 

arrivals during a red signal. Overflow queue is a remaining queue from the previous 

cycle. Both vary with traffic volume, flow rate and, most importantly, traffic signal. As 

mentioned by the authors, traffic signal must be pre-timed and the duration of red time 

must be known in order to apply the algorithm. In addition, only queue length during the 

red time can be estimated. Finally, the algorithm has been proposed for isolated 

intersections with undersaturated conditions only. Equation (1) shows the queue 

estimation proposed by Cormert et al.. 
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  (1)               

Where N  is the actual total queue length 

pL
 
is the location of the last probe vehicle in the queue 

p is penetration ratio 

( )P N  is the probability function of the total actual queue length 

The second method is probe trajectory (34-41). By using shockwave theory (18; 19; 

42), queue length can be estimated directly from probe trajectory. Unlike Cormert's 

method, this method does not require the assumption of knowing the penetration ratio. In 

general, knowing signal timing and arrival rate are still required. In (36; 38), with 
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queuing delay pattern model, real-time queue length estimation was obtained from 

traveling time data from mobile phone. To account for stochastic characteristic of traffic 

flow, vehicle index estimation was proposed by Hao et al. in (39). The obtained vehicle 

index can be used to estimate queue length. In (35; 37), Cheng et al. attempted to 

overcome these limitations by defining and using critical points to detect signal timing. 

The red signal detection using critical points and queue estimation are tested in a two-

intersection network in normal and coordinated mode with simulation program and GPS 

from field data. However, the aforementioned researches with the second method are 

still limited to pre-timed signals and the performance of queue estimation heavily relies 

on how accurate signal timing detection is. In large and complicate adaptive signal 

intersections, this method has not been tested yet. 

Aside from two mentioned methods for queue, the maximum likelihood method is 

proposed by Neumann (43). However, it relies on historical traffic profile so it is only 

applicable for offline applications. Not only relying on CV, IntelliFusion utilized both 

loop detectors and CV (44). Like the second method, it used shockwave theory to 

estimate queue length. The other queue length estimation research based on fused data 

from loop detector and CV was proposed by Li et al. (45). Shockwave-theory-based 

algorithm was also developed to detect queue spillback on arterial road (46). Cormert 

also extended his works from using only CV to queue length estimation using both loop 

detectors at the stop line and CV to improve the accuracy (30; 31). He et al. proposed 

queue length estimation by using linear regression model to estimate all parameters 

necessary for queue estimation (26). 
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To be applicable for adaptive signal control, the desired properties of a queue length 

algorithm should 

1. provide real-time estimation, 

2. does not require signal timing, traffic volume and queue characteristic as basic 

inputs, 

3. can apply to non pre-timed signal, 

4. is robust to low penetration ratio and the availability of CV and gives 

consistent and accurate queue estimation, and 

5. can be applied to not only isolated intersections but multiple coordinated 

intersections. 

Thus, it was the goal of this research to develop the proposed queue estimation algorithm 

with the above properties or attributes. 

Platoon Recognition 

To realize the full potential of adaptive signal control, instead of being responsive and 

acting on input estimation, adaptive signal control should be proactive and include traffic 

state prediction as inputs into their control logic. One of these predicted inputs is the 

arrival of a platoon, which calls for methods of platoon recognition and prediction. 

The most relevant work on the topic of platoon identification is published by (26). He 

et al. proposed a modified critical distance-headway to identify platoon from CVT. A 

probability that two adjacent two CVs are in a platoon is formulated as geometric 

distribution with a probability of success as the penetration ratio. The modified distance-

headway is equal to a mean plus three times standard deviation of the geometric 
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distribution. After a detected platoon is formed by modified distance-headway, three 

parameters of the platoon, beginning and ending times and platoon size, are estimated 

from CV data by using linear regression equations. While the concept is interesting, the 

value and impact of modified distance-headway has not yet been fully studied. While the 

results in this study presented the estimation error in term of root-mean-square error 

(RMSE), detection and misdetection rates were left unmentioned. Thus, the consistency 

of platoon detection was not verified yet as RMSE' results rarely reflected fully the 

detectability of the algorithm. 

The second approach, the car-following method, which is related to estimating 

platoons from CVT was studied by Goodall et al. (47; 48) and Feng et al. (29). The 

assumption is that most, if not all, vehicles behave according to some car-following 

model. Then an undetected vehicle is deducted from the microscopic behavior of any 

nearby CV. For any pair of adjacent CV, relative speed and acceleration and distance of 

the pair are factors to consider for inserting a non-CV in a gap between the pair. If the 

vehicle fits to the car-following model, then the vehicle is inserted into a gap between 

two CVs. As pointed out by Feng et al., one major limitation of this method is: it cannot 

estimate non-CVs in free-flow region where an interaction between vehicles are almost 

non-existing (29). A boundary between each region may need to be adjusted in real-time 

according to the traffic signal control states and traffic conditions. In particular, a 

boundary between slow-down and free-flow regions is difficult to justify with only CVT. 

Moreover, this method emphasizes on the number of actual vehicles rather than platoon 

resolution in time and space such as a platoon's beginning and ending time. For a signal 
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coordination system, detecting the beginning time of a platoon is arguably one of the 

most important aspects. One other platoon recognition algorithm was proposed by Smith 

et al. by using k-mean clustering, but had technical difficulty removing outliers (27). 

In summary, there are a few studies attempting to estimate platoons from CVT, 

however, they all had their limitations. The detection rate of a given actual platoon size 

and penetration ratio is often not provided. As the threshold of platoon size differs from 

one application to another, such knowledge could be used to identify the limitations of 

CVT for platoon estimation. In addition, all of the algorithms were based on distance 

headway. While a distance-based platoon can be physically visualized, an arrival time 

has to be converted from distance and speed, and the latter is varied from one arterial to 

others. The objective of the research is to develop the platoon recognition algorithm and 

analytical model that can 

1. identify platoon from time headway 

2. provide real-time estimation 

3. estimate platoon based on CVT as the only input 

4. be applicable not only to fixed time signal control. 

This dissertation also proposes a method to measure the effectiveness of the platoon 

estimation algorithm. The proposed algorithm can serve as a foundation for platoon 

prediction in the future for adaptive signal control from CVT. 
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CHAPTER II 

QUEUE LENGTH ESTIMATION FROM CONNECTED VEHICLE* 

 

Methodology 

Unlike the loop detector, Connected Vehicle technology can track  trajectories of 

probe vehicles so it can be used to predict long queue length without additional 

installation cost. The proposed algorithm(49) assumes distance and instantaneous speed 

of equipped individual vehicles can be obtained from Connected Vehicle data. A 

penetration ratio is known and is an input though it might be estimated from CVT. The 

algorithm is also developed without cooperating data from other sources such as loop 

detectors, signal timing and vehicle arrival assumption. In the proposed algorithm, There 

are four assumptions. 

1. The penetration ratio is known. 

2. A vehicle is always operating at a speed faster than the stopping speed when it is 

not in the queue. 

3. The probability of a vehicle being a connected vehicle follows Bernoulli 

distribution. 

4. The individual location and speed of a connected vehicle can be collected. 

 

 

 
*©2015 IEEE. Reprinted, with permission, from Tiaprasert et al, Queue length 

Estimation Using Connected Vehicle Technology for Adaptive Signal Control, in 

Intelligent Transportation Systems, IEEE Transactions on, August 2015 
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The first assumption can be justified by historical data or approximation. This also 

allows the accuracy of queue estimation versus penetration ratio to be evaluated later. 

The second assumption might not be justifiable in case of incident or illogical driver. 

However, our work aims to apply to signalized intersections in normal circumstances. 

When a vehicle arrives towards the end of a queue, a stopping speed is used to determine 

whether the vehicle is slow enough to be  considered a part of the queue or is still a 

moving vehicle. The third assumption is the same one proposed by Comert and Cetin in 

(32). Every vehicle is assumed to have equal probability of being detected or being a 

connected vehicle. In the last assumption, it is quite common for CV to have the location 

information available. In contrast, speed may or may not be available or accurate 

depending on specific connected vehicle technology. However, our proposed algorithm 

does not require speed data with very high precision since it is used only to determine 

whether the connected vehicle is stopping or still moving. The accuracy of speed 

measurement is, therefore, not an issue of concern in this work. 

Based on the assumptions, the queue length estimation has three steps as follows: 

1. collecting the data from connected vehicles, 

2. determining whether a connected vehicle is a stopping or moving, 

3. estimating queue length based on two main cases: no stopped vehicle is detected 

and stopped vehicle is detected. 

A flowchart of the proposed queue estimation  algorithm is shown in Figure 1.  

In the second step, individual speed is used to determine whether the detected 

vehicle is stopping or moving as shown in Figure 2. Following the second assumption, 
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stopping speed is used to determine whether an incoming vehicle is slow enough to be 

considered to be in a queue. It depends on the definition of the queue. If the individual 

speed is greater than the stopping speed, then it is a moving vehicle; otherwise, it is a 

stopped vehicle. With the stopped and moving vehicle data from the second step, queue 

estimation is divided into two cases: 

 

 

Figure 1 Flowchart of the proposed queue estimation algorithm 

   (1) 

1. No stopped vehicle is detected at all. 

In this case, the estimated queue is zero. 

 ˆ 0Q    (2) 
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It is noteworthy that there is a chance that the queue does exist but cannot be detected 

since there is no connected vehicle in the queue. This problem is frequently found where 

the queue and penetration are small. It is problematic to the method of the last probe 

vehicle in the queue as well. To overcome it, other works attempt to incorporate other 

kinds of traffic detector such as a loop detector at the stop line (30; 31). However, this 

issue is beyond the scope of this dissertation; however, it is worthy of future work. 

  

 

Figure 2 Illustration of moving and stopped vehicles 

 

2. At least one stopped vehicle is detected. 

In this case, the minimum queue length can be calculated from 
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 max( ), i stopI i v v    (3) 

 min( ) Is
Q

l

 
  
 

  (4) 

I  is an index of the last or farthest stopped connected vehicle 

(4) calculates the minimum queue length from the last stopped vehicle. By ordering 

distances and speeds of individual connected vehicle from closest to farthest from a stop 

line. 

1 2 3, , ...s s s  are distances of connected vehicle from a stop line in the unit of vehicle 

length 

1 2 3, , ,...v v v  are speeds of connected vehicles corresponding to 1 2 3, , ...s s s  

stopv  is the stopping speed 

The calculation is further divided into two subcases: 

a) No moving vehicle is detected at all. 

In this case, the estimated queue length equals to the minimum queue length 

 ˆ min( )Q Q   (5) 

b) At least one moving vehicle is detected. 

       In this case, the maximum queue length can be found by; 

 min( ), j stopJ j v v    (6) 

 max( ) Js
Q

l

 
  
 

  (7) 
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 ˆmin( ) max( )Q Q Q    (8) 

where J  is an index of the closest moving connected vehicle. 

After the minimum and maximum queue length are determined, with the first and 

third assumptions, the calculation of estimated queue length begins with joint probability 

function of a total number of vehicles and connected vehicles hence 

 ( , ) (1 )k n k
n

P N n x k p p
k

 
    

 
  (9) 

where ( , )P N n x k   is joint probability function of total number of vehicles in the 

queue and connected vehicle in the queue equal to n  and k , respectively; 

n  is a number of total vehicle in the queue, which equals to I  multiplying with a 

number of lanes, 

k  is a number of connected vehicle in the queue, which equals to Q  multiplying 

with a number of lanes, and 

p  is the penetration ratio of connected vehicles. 

In (9), the probability function is binomial distribution due to the third assumption of 

probability of connected vehicle being Bernoulli distribution. Then the conditional 

probability function can be obtained as 

 

max

min

max

min

( , )
( | )

( , )

(1 )

(1 )

n

n n

k n k

n
k n k

n n

P N n x k
P N n x k

P N n x k

n
p p

k

n
p p

k









 
  

 

 
 

 
 

 
 





  (10) 
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The estimated total vehicles in the queue can be obtained by least-mean-square-error 

method 

 

  

 
max

min

max

min

2

ˆ

2

ˆ

ˆ ˆarg min

ˆ( , )

arg min

( , )

LMSE
n

n

n n

n
n

n n

n E n n

P N n x k n n

P N n x k





  
 

 
      

  
  
  





  (11) 

Since the denominator of (11) is constant, the estimation equation is reduced to 

  
max

min

2

ˆ

ˆ ˆarg min ( , )
n

LMSE
n n n

n P N n x k n n


    
    (12) 

Finally, the estimated queue length can be obtained from (13) 

 
ˆˆ LMSEn

Q
m

 
  
 

  (13) 

where m  is the number of lanes 

In (11)-(13), least-mean-square-error method is applied to find the estimated queue 

length because there is no probability function of a queue available. If the probability 

function is obtained, the estimated queue length can be obtained directly from (1). 

However, the probability function is difficult to obtain in case of non fixed-time signal 

control. The examples of how probability function is obtained for queue length 

estimation using connected vehicle data can be seen in the works done by Comert and 

Cetin (30-33). 
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Note that the estimated queue length in case a) tends to underestimate the actual 

queue length. If the maximum queue length can be implied (no blockage at the upstream 

intersection) and not too large then (6)-(13) can be used to find the estimated queue 

length instead of using (5) 

            

 

Discrete Wavelet Transform and its Application in Queue Estimation Using CV 

One of the major problems of CV is a low penetration ratio which leads to uncertain 

and inconsistent estimation. There are four major types of error when the queue exists. 

1. no stopped connected vehicle, 

2. have a stopped connected vehicle (s) but no moving connected vehicle, 

3. have both stopped and moving connected vehicles but the distance between them 

is too far away, 

4. have moving vehicles in a queue. 

The shortcoming in the first type could be addressed by incorporating with an other 

kind of detector such as a loop detector at the stop line. However, as this work focuses 

on only CV as a detector, this kind of estimation error will not be the main focus of our 

work. The second type causes the proposed algorithm to underestimate the actual queue 

length. The third type makes overestimates. To solve the second and especially the third 

case, discrete wavelet transform (DWT) (50) can alleviate inconsistencies in such a case 

by assuming that the queue build or discharge is slower than the abrupt change from the 

second and third types. A random spike is considered to be a noise. In other words, when 

plotting in time series, most of the actual queue length is a low frequency component of 

the estimate queue length. On the other hand, most of the estimation error is a high 
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frequency component of the estimated queue length. DWT can be applied to a real-time 

application and its multi-resolution property (51) is useful in filtering noise at different 

penetration ratios which is shown in chapter IV. In the last type, some vehicles in middle 

of a long queue may move with "crawling speed" due to shockwave propagation. Then, 

it might contradict the second assumption and lead to underestimating of queue length. 

This issue could be solved by two methods. The first one is by setting stopping speed in 

the proposed algorithm to be higher than crawling speed. The second method is to use 

moving speed to determine if a vehicle leaves a queue. Moving speed is a minimum 

speed in which a vehicle is considered to leave a queue. Both stopping speed and 

moving speed are used to define queue definition in most simulation including VISSIM. 

In chapter IV, the last issue was observed in microscopic simulation, however, the 

proposed algorithm still estimated queue length reasonably well without calibration of 

stopping speed or applying moving speed. Nonetheless, an effect of stopping and 

moving speed to the proposed algorithm is still worthy of future work. 

For denoising, DWT applies either a soft or hard threshold to obtain the thresholding 

wavelet coefficients. However, it needs a knowledge about the nature of the actual queue 

and the noise which may be affected by the type of traffic signal setting and penetration 

ratio. The scope is the dissertation is to be the first to demonstrate the contribution of

 
DWT to queue estimation using CV. Therefore, a simple method, high-pass component 

complete elimination (detail component) was adopted in the numerical results. DWT is 

input with the estimated queue length obtained from the basic proposed algorithm to 

obtain the approximation coefficients Level 1-3 as shown in Figure 3. Then the denoised 
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estimated queue lengths Level 1-3 (DWT Level 1-3) are obtained by applying inverse 

discrete wavelet transform to the approximation coefficients Level 1-3 CA1, CA2, and 

CA3. Even though the chosen method is simple, the results in a chapter IV show that it 

can improve the accuracy and robustness of the proposed queue length estimation 

algorithm. To investigate the suitable strategy or threshold is beyond the scope of the 

dissertation but is worthy of future work. In addition, how the level of DWT and the 

penetration ratio affects the RMSE minimization is exploited; that is, the level of DWT, 

which performs the best is directly related to the penetration ratio. 

 

Figure 3 3-level decomposition using discrete wavelet transform in the proposed 

algorithm 
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CHAPTER III  

PLATOON RECOGNITION FROM CONNECTED VEHICLE 

 

In this chapter, the platoon is recognized by the time headways between two adjacent 

CVs at a chosen location on an arterial. When CV passes the location, the time stamp is 

collected. The differences of consecutive time stamps are the time headways between 

CVs, which are used to identify and then estimate the platoon parameters. The platoon 

recognition algorithm is divided into 4 steps of 

1. platoon identification, 

2. platoon size estimation, 

3. platoon starting and ending time estimation, and 

4. platoon filtering. 

Platoon Identification 

With CVT inputs alone, only CVs are observed, and non-CVs are undetectable. The 

lower the penetration ratio, the more missing vehicle data and the larger headway 

between two adjacent connected vehicles in the same platoon. Therefore, to identify a 

platoon using CV, a conventional platoon recognition method by critical distance or 

time-headway is rendered ineffective. A new algorithm is required to detect a platoon. In 

this research, follow (26), the platoon identification begins with formulating a modified 

critical time-headway by assuming a geometry distribution. A probability that two 

adjacent CVs are in a platoon is formulated as geometric distribution with the 
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penetration ratio as the probability of success. To avoid confusion, it is noteworthy to 

mention that a modified critical headway in (26) is a modified critical distance-headway. 

However, the modified critical headway proposed in our study is a modified critical 

headway in time domain. 

Here, the modified critical time-headway with a penetration ratio of p , pT , is treated 

as a calibrated parameter to better suit the application of platoon detection and traffic 

operation. The range of pT  is between 1T

p
 and 11

3 1T pT

p p


 . Where 1T  denotes a 

critical time-headway with a 100% penetration ratio. The lower bound 1T

p
 is obtained 

from the mean of geometric distribution with a probability of success p . The upper 

bound is obtained from the mean plus three times standard deviation of the geometric 

distribution. 

He et al. proposed modified distance-headway to be equal to the upper bound 

regardless of platoon arrival, penetration ratio or traffic condition. A larger modified 

critical headway is better for capturing a small-sized platoon in a long term as the total 

number of vehicles converses to total number of CVs divided by p . On the other hand, 

a smaller modified critical headway is better at platoon clustering and starting and 

ending time identification of the platoon. The smaller modified critical headway tends to 

miss a small-sized platoon. Despite the flaw, some traffic operation, such as signal 

coordination in this case, does not give the right of way to or consider a small group of  
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Figure 4 The flowchart of the proposed platoon identification algorithm 
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vehicles as a platoon, so undetectable small-sized platoon is less critical in this case. In 

addition, while a larger modified critical headway is more suitable for random arrival 

with time-independent arrival rate, a smaller modified critical headway is better for 

signalized platoon. Thus, Tp is set to be obtained through a calibration process. 

After Tp is obtained, it is applied to detect a platoon from individual detected 

vehicle's time stamps. The methodology to identify a platoon is further enhanced from 

(26). Two adjacent vehicles are considered to be in the same platoon if their headway is 

less than 1T . If their headway is more than 1T  but less than  pT , they are in the same 

platoon, if and only if, there are no other CV with headway greater than 1T  before. The 

proposed platoon identifying algorithm is demonstrated in Figure 4 where i  is CV index 

in chronological order, ( )PI i  is platoon index of i  th CV, R  is the number of times 

that PT  is used to form the platoon being considered. 

Platoon Size Estimation 

After a platoon is detected, maximum and minimum time stamps can be obtained 

from the last and the first CVs in the platoon as in Equation (14) and (15). 

 min ( )it min t   (14) 

 max max( )it t   (15) 

Then the maximum and minimum platoon sizes can be calculated from Equation (16) 

and (17) 

 max min

1

min( ) max ,
t t

n x
T

  
    

  
  (16) 
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 max min

1 1

max( )
t t

n m
f T

 
  
 

  (17) 

where 
it  is the time stamp of CV i  in the platoon 

mint  is the time stamp of the first CV in the platoon 

maxt  is the time stamp of the last CV in the platoon 

x  is the number of CVs in the platoon 

n  is the platoon size in vehicle unit 

m  is the number of lanes 

1f  is the minimum actual time-headway factor and is a calibrated parameter 

minT  is the minimum time-headway for safety purpose. 

The minimum platoon size in Equation (16) is obtained from assuming platoon vehicles 

in one lane with maximum time-headway, 1T . However, minimum platoon size must not 

be less than the number of CVs in platoon. For maximum platoon size, platoon vehicles 

are assumed to be as dense as possible. Thus, a minimum actual time-headway and 

vehicles in all lanes are considered in this case. 1 1f T  is ranged between minimum time-

headway for the safety purpose, minT , and 1T . If 1f m , then max( ) min( )n n , which is 

the highest possible value of 1f . As a result, the range of 1f  is min
1

1

T
f m

T
  . 

Then the estimated platoon size can be obtained by least-mean-square error method 

(LMSE). First, assume probability of a vehicle being detected as CV is the Bernoulli 

distribution. Unlike a queue, the platoon is sparse and have a density fluctuation, so a 
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probability of finding CV at any time is a function of the probability to have an actual 

vehicle at any given time and the penetration ratio. We make the second assumption that 

the probability to have an actual vehicle at any time between the start and ending time of 

platoon is time-invariant and independent from the penetration ratio. So, the probability 

of finding CV at any time is obtained as in Equation (18). 

 2p f p    (18) 

where 2f  is a vehicle factor and is also a calibrated parameter and p  is the probability 

to find an actual vehicle at a given location in the platoon. The range of 2f  is between 0 

and 1. Then, the probability of the number of total vehicles in a platoon is derived as 

binomial distribution in Equation (19).  

 ( , ) (1 )x n x
n

P N n X x p p
x

 
    

 
  (19) 

A conditional probability of the total number of vehicles given the number of CVs in a 

platoon can be formulated as in Equation (20) and (21). 

 
max( )

min( )

( , )
( | )

( , )
n

n n

P N n X x
P N n X x

P N n X x


 
  

 
  (20) 

 

 

 
max( )

min( )

1

( | )

1

n xx

n
n xx

n n

n
p p

x
P N n X x

n
p p

x







 
 

   
 

 
 


  (21) 
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The formula for least-mean-square error calculation is shown in Equation (22). By 

substituting the condition probability function from Equation (21), Equation (23) is 

obtained 

   
max( )

2

ˆ min( )

ˆ ˆargmin |
n

LMSE
n n n

n P N n X x n n


    
    (22) 

 

   

 

max( )
2

min( )

max( )
ˆ

min( )

ˆ1

ˆ arg min

1

n
n xx

n n

LMSE n
n n xx

n n

n
p p n n

x
n

n
p p

x









  
   

  
 

 
 




  (23) 

where ˆ
LMSEn  is the estimated platoon size from LMSE. Since the denominator in 

Equation (23) is a constant term over n̂ , Equation (23) is reduced to Equation (24) 

    
max( )

2

ˆ min( )

ˆ ˆargmin 1
n

n xx

LMSE
n n n

n
n p p n n

x





  
    

  
   (24) 

Platoon Starting and Ending Time Estimation  

After the estimated platoon size is calculated by Equation (24), the starting time of 

the platoon is estimated. Due to the penetration ratio, a first CV may not be the head of 

the platoon. The starting time of the platoon is estimated to be between the time stamp of 

the first CV in the platoon and the last CV in the previous platoon. A gap between an 

estimated starting time and the ending time of the previous platoon should not be less 

than 1T , else two platoons are merged into one platoon. The main factor to consider 

whether to extend the starting time or not is the average platoon flow rate. The starting 

time estimated from the average platoon flow rate and the last time stamp in the platoon 

are shown in Equation (25); 
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 max

3

ˆ
ˆ LMSE
Bg

n
t t

f
    (25) 

where 
3f  is the average platoon vehicle flow rate per second and 

B̂gt  is the estimated 

starting time of the platoon. The physical meaning of 3f  is the average of total number 

of vehicles divided by total time span of vehicle in platoon, and is obtained by 

calibration. The lower and upper bounds of 3f  are 
1

1

T
 and 

min

m

T
, respectively. Then if the 

estimated starting time in Equation(25) is greater than the starting time from the 

minimum time stamp, the later should be used instead, hence the estimated starting time 

from the minimum and maximum time stamps of connected vehicles and the estimated 

platoon size is shown as below; 

 min max

3

ˆ
ˆ min , LMSE
Bg

n
t t t

f

 
  

 
  (26) 

As mentioned before, the difference between the estimated starting and the ending time 

of the previous platoon should not be smaller than 1T . Finally, the estimation equation 

that takes all factors into account is shown in Equation (27); 

 2 1 min max

3

ˆ
ˆ ˆmax ,min , LMSE
Bg E

n
t t T t t

f

  
     

  
  (27) 

where 2Êt  is an estimated ending time of the last connected vehicle in the previous 

platoon. If the current platoon is the first platoon then 2 1Êt T  . 

After that, the ending time is obtained directly from the last CV in the platoon as in 

Equation (28) 
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 maxÊt t   (28) 

where Êt   the estimated ending time of the platoon.  

It should be noted that the starting time of the platoon is adjusted from the time 

stamp of the first CV in the platoon. Such an adjustment is important because a platoon 

that arrives earlier than predicted would likely have to stop and incur significant delay, 

hence deteriorating the quality of coordination. The ending time of the platoon on the 

other hand is not adjusted from the time stamp of the last CV in the platoon here, 

because the impact on coordination is not significant in general. Adjustments of both the 

starting and ending times at the same time is possible, but we choose to only adjust the 

starting time in this research as we focus on continuous movement of the arriving 

platoon. 

Platoon Filtering 

This part is optional for platoon recognition. In coordinated signal systems, signal 

control is set to give the right of way to the through movement on the major arterial 

when there is an arrival of a platoon with the number of vehicles more than a threshold. 

There is no clear cut number for the threshold and it depends on the application. This 

process of identifying a „‟qualified‟‟ platoon is referred as platoon filtering in the 

dissertation. A platoon with lower number than a threshold is ignored.  

 Due to the uncertainty in the platoon size estimation, the threshold from the case 

with 100% penetration ratio cannot apply directly to the other cases with lower 

penetration ratio and needs to be modified. The modified threshold needs to be adjusted 

to maximize the detection rate while minimizing the false detection rate. The filtering 
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process relates the threshold in the case with actual vehicle or with 100% penetration 

ratio, 
1y  to its counterpart, the modified threshold with the penetration ratio p , py . py  

is used to determine whether the detected platoon size is large enough to be considered a 

platoon. A detected platoon size which is smaller than ŷ  would not trigger a signal 

coordination and is filtered out from the platoon list. 

yp is set to be a calibration parameter with its lower bound corresponding to the 

penetration ratio. The upper bound is set to be 1y  regardless of the penetration ratio. 

However, when the penetration ratio is equal to or greater than 90%, a lower bound is set 

to be a constant with 10.8 y  so the bound is not too tight. The benefit of setting the 

lower bound of py  depending on the penetration ratio is to prevent the calibration 

parameters to fit so well with the training data that they cannot be used to estimate 

platoon with different platoon profiles or under traffic signal control settings. In 

summary, the lower and upper bounds of py  are 1 min(0.8, )y p  and 1y , respectively. 

The numerical results in the chapter V attempt to validate the performance of applying 

calibrated parameter values to other test cases without recalibrating. 

Platoon Detection Rate Analysis 

In this subchapter, the platoon detection rate is estimated by an analytical approach. 

First, we begin with a simplification that pT  is assumed to be large enough that a platoon 

of any size can be detected with only two CVs. Generally, to ensure that two CVs in the 

platoon are sufficient enough for platoon detection, pT  must be larger than the time-

stamp difference between the first and the large vehicles in the platoon. For a large-sized 
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platoon, because of its large time span, it is not 100% possible as it depends on a number 

of lanes and pT . However, with a proper calibration, pT  is assumed to be large enough 

to detect any platoon with at least two connected vehicles with a probability close to 

100%. In addition, a chance of only two connected vehicles found in a large-sized 

platoon is significantly lower than a chance of finding more than two connected vehicles 

so such a case can be approximated as mentioned. The next assumption is the actual and 

detected platoons are matched one to one. In other word, we assume there is no merging 

or diverging issues, particularly under a low penetration ratio situation. 

As the probability of a vehicle being CV follows a Bernoulli distribution, the 

conditional probability of having x  CVs given a platoon size n  is; 

  ( | ) 1
n xx

n
P X x N n p p

x

 
    

 
  (29) 

and since the probability of having CVs is independent from a threshold of interest when 

1n y , 

        ,| { } |  _1       P X x N n Y y P X x N n        (30) 

The probability of platoon detected given a platoon size n  and the threshold 1y  is equal 

to a summation of probability of having connected vehicle equals or greater than 2 as 

below; 

 

 
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1
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



         

    


  (31) 



 

32 

 

A marginal probability of platoon detected given the threshold 
1y  is obtained by 

summation over platoon size n  from 
1y  to infinity as follow; 

 1

1

1

2

( ) ( | , )

( 2)

( )

n

n y x

n y

P N n P X x N n Y y

P X

P N n



 





 
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 
 



 


  (32) 

When a platoon profile is obtained, a detection rate can be estimated from Equation (32). 

However, the probability function of platoon size ( )P N n  may not be available. 

Hence, a lower bound of detection rate is derived further. 

Since 1 1

2 2

( | , ) ( | , )
b a

x x

P X x N b Y y P X x N a Y y
 

         for all 1, ,a b y  that 

12 y a b   , Equation (33) is obtained from Equation (32) 

 

 

1

1 1

1 1

2

1

1

( 2) ( | , )

( 2) 1 1 (1 )
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x
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P X P X x N y Y y

P X p y p p





    

     


  (33) 

Equation (33) is applied to find a lower bound of the probability to detect a platoon 

when the platoon profile is unavailable. On the other hand, if the platoon profile is 

obtained, Equation (32) can be applied to get a more accurate estimation. 

Figure 5 shows the detection rates obtained from the lower bound calculated by 

Equation (33). The implication from the figure is, for instance, if the penetration ratio 

and the minimum required platoon size is 30% and 10 vehicles, a platoon detection rate 

is no less than 80%. The figure also implies that; the smaller the platoon size, the less 

chance to detect, due to a smaller sampling size. 
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Figure 5 The estimated detection rate from analytical approach 2 

Parameter Calibration 

There are 5 unknown parameters that need to be calibrated before the proposed 

algorithm can accurately estimate a platoon. First, we define an objective function as a 

function of weight and error vectors as follows: 

 
1

I
T

i

i

fitness W Z


   (34) 

where W  and iZ  are weight and error vectors, respectively. The error vector contains 

five error measurements. ( ), ( ), ( ), ( )Size Bg ERMSE i RMSE i RMSE i DR i  and ( )MR i  are root-
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mean-square errors (RMSE) of platoon size, beginning and ending times, and detection 

and misdetection rates after a filtering process of iteration i , respectively. Weight vector 

is defined as a vector of weights to each error measurement. The higher the weight 

value, the more focus on minimizing the respective error measurement. I  is the total 

number of iterations. For each iteration, a vehicle is randomly selected to be CV with a 

probability equals to p . RMSE calculation, therefore, computes with an actual and 

detected platoon after the filtering. 

To compute RMSEs, one needs to identify the pair of estimated and actual platoon 

data. However, the proposed algorithm forms a different set of platoons depends on the 

penetration ratio and randomness in each iteration. Actual platoons can be either or both 

overlapped, merged or diverged to one or more detected platoons. As a result, a detected 

platoon cannot straightforwardly match one-to-one with an actual platoon. Before 

computing RMSEs, a matching matrix between actual and detected platoons has to be 

created. 

A matching matrix is defined as M N  matrix, [ ]ijA a , whose members is either 1 

or 0, where M  and N  are a number of detected and actual platoons respectively. 1ija   

if a detected platoon i  is overlapped with an actual platoon j . The calculation of a 

matching matrix is shown in Equation (35). 

 
ˆ ˆ1 ,if ( ) ( ) and ( ) ( )

0 ,otherwise

Bg E E Bg

ij

t i t j t i t j
a

  
 


  (35) 

where ( )Bgt j  and ( )Et j  are beginning and ending times of the actual platoon j . 
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There are two issues after the matching matrix is found: merging and diverging of 

detected platoons. First, we solve merging issue, then solve the diverging issue. An 

merging issue occurs when there are multiple actual platoons overlapped with a detected 

platoon. A merged platoon can be observed from the matching matrix by the sum of the 

row, 
1

n

ijj
a

 . For any i  th row with 
1

1
n

ijj
a


 , i  th detected platoon has a merging 

issue. To solve this problem, the detected platoon is demerged to smaller detected 

platoons with the number equals to the number of associated actual platoons. The 

beginning and ending time of the new broken-down platoons are determined by a 

breaking point. A breaking point is defined as a time in the middle between two 

mentioned actual platoons. Mathematically speaking, breaking point is the average of the 

ending time of the preceded actual platoon and beginning of the following actual 

platoon. The size of each broken-down detected platoon is proportional to its time span. 

After all merged detected platoons are broken down to one-to-one match with the 

actual platoons, the next issue is the diverged detected platoon. A diverged platoon is 

defined as a single actual platoon being paired to multiple detected platoons. It can be 

observed by the sum of the column, 
1

m

iji
a

 . For any j  th column with 
1

1
m

iji
a


 , 

j  th actual platoon is determined to be a diverging platoon. In this case, the detected 

platoons overlapped with the respective actual platoon are combined into one detected 

platoons for a comparison. Without loss of generality, let diverged detected platoon 

index is a member of set I . The platoon size, beginning and ending time for the merged 

detected platoon for matching with the actual platoon j  are obtained as follow; 
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 ˆ ,j ii
N N i I     (36) 

 
, ,

ˆmin( ),Bg j Bg it t i I     (37) 

 , ,
ˆmax( ),E j E it t i I     (38) 

To give an example of how demerging and remerging rematching actual and 

detected platoon one-to-one, Figure 6 demonstrates two actual and three detected 

platoons which are overlapped with each other and have both merging and diverging 

issues. As shown in the figure, 1 10,...,t t  are beginning and ending times of actual and 

detected platoons. 1 4,...,t t  and 5 10,...,t t  are in chronological order. 1 5,...,s s  are sizes of 

actual platoons 1 and 2, and initial detected platoons 3-5. First, demerging detected 

platoon 3 into two smaller platoons according to the middle time between actual 

platoons 1 and 2. Then, remerging detected platoon 1,2 and 6 into a new platoon which 

can match one-to-one with the actual platoon 1. The beginning and ending times, and 

platoon sizes are shown in Figure 6 

After transforming with merged and diverged platoons, RMSE can be computed one-

to-one for any pair ij . Unpaired actual and detected platoon are excluded from RMSE 

calculation, but are taken into account for detection and misdetection rate, respectively. 

Let ( )k u  and ( )q u  be u -th pair index of actual platoon and its matched detected 

platoon. RMSEs, detection and misdetection rates for one-to-one pair are shown in the 

following equations; 

  
2

( ) ( )
ˆ

Size q u k u

u U

RMSE N N


    (39) 
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Figure 6 The example of remathcing detected platoons into one-to-one 
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  (43) 

Here, 5 performance indicators are obtained through the process mentioned above. 

RMSEs of platoon size, beginning and ending time indicate the accuracy of platoon 

estimation in case an actual platoon is being detected. When the actual platoon is 



 

38 

 

undetected, RMSE is not computed, but the case is considered in computing the 

detection rate. The more actual platoons are undetected, the lower the detection rate. 

Equation (42) shows the detection rate is equal to the number of columns with the sum 

of the row greater than 0 divided by the number of total columns. Misdetection rate is an 

indicator how often the proposed algorithm falsely detects a platoon. It is defined as the 

number of detected platoons that is not overlapped with any actual platoon at all divided 

by the total number of detected platoons. Equation (43) shows misdetection rate is equal 

to the number of rows with the sum of the column greater than 0 divided by the total 

number of rows. 
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CHAPTER IV  

NUMERICAL RESULTS FOR QUEUE LENGTH ESTIMATION* 

 

To test queue length estimation from Connected Vehicle data, microscopic 

simulation, VISSIM 5.40 (10), was selected as a test bed to generate individual vehicle‟s 

information and observe queue length. For the proposed algorithm, the basic inputs 

extracted from VISSIM are individual vehicle data, which are instantaneous speed and 

distance from the approaching intersection. 

The two-second-average queue length data from VISSIM are collected to compare 

with the average queue length estimated from the proposed algorithm. Individual vehicle 

data are collected every 0.5 second. The estimated queue length is calculated when the 

next-step individual data are available, which is every 0.5 second. However, the average 

queue length data from VISSIM is set to be obtained every 2 seconds. As a result, the 2-

second average estimated queue length is computed to compare with the 2-second 

average queue length from VISSIM. Stopping speed was set to 0 km/h in the calculation 

of the proposed algorithm. 

To demonstrate a penetration ratio, a part of individual data was randomly removed 

from queue length estimation corresponding to the penetration ratio. For example, if the 

ratio were 30%, there was a 30% chance that individual vehicle data were used in the 

estimation algorithms; that is, the greater the penetration ratio, the less missing data. 

 
*©2015 IEEE. Reprinted, with permission, from Tiaprasert et al, Queue length 

Estimation Using Connected Vehicle Technology for Adaptive Signal Control, in 

Intelligent Transportation Systems, IEEE Transactions on, August 2015 
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To account for the effect of randomness, the availability of vehicle data was randomized 

100 times; then the root-mean-square error from 100 randomizations was averaged as in 

the following equations: 

 

 
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1

ˆ( ) ( )

( )

T
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t

q t q t

RMSE i
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  (45) 

where ( )q t  is the actual average queue length from VISSIM at time step t ; 

ˆ ( )iq t  is the estimated average queue length from the proposed algorithm at time step 

t  and i -th randomization; 

T  is total number of time steps being computed 

( )RMSE i  is root-mean-square error of i -th randomization; 

_AVG RMSE  is average root mean square error of total randomization, and 

I  is total number of randomization being computed. 

 

Figure 7 An isolated intersection used in the experiment 



 

41 

 

The test network is an isolated intersection as shown in Figure 7. East and west 

bound approaches have one left-turn lane and two through lanes. The right lane is shared 

between through and right-turn traffic. For north and south bound approaches, there is 

one left-turn lane, two through lanes and one right-turn lanes. The left-turn for all 

approaches is protected. Simulation time is 2,000 seconds. Each approach is a 270 

meter-long road. The volume for each approach and the signal control are varied from 

case to case. The experiments are divided into 4 cases: pre-timed signal and actuated 

signal control under undersaturated and saturated conditions. For an undersaturated 

condition, the Poisson arrival rate assumption is valid. On the other hand, the Poisson 

assumption is no longer valid when traffic volume increases to saturated condition. The 

objective of having two traffic conditions is to compare the performance of both 

algorithms where the Poisson assumption is valid and invalid. The actuated control is 

included in the experiments to verify the applicability range of the proposed algorithm 

with non-fixed signal settings. In both a pre-timed signal control situation and actuated 

cases, the comparison between queue length from the proposed algorithm and VISSIM 

and RMSE are given. 

Pre-timed Signal Control with Undersaturated Condition 

In this case, the signal control is set to be pre-timed with a 100-second cycle length. 

The green time for all left turn and through movement is 15 and 35 seconds, 

respectively. The volume for all approaches for undersaturated condition is 1,000 vehicle 

per hour (vph). Figure 8- Figure 10 shows the results of queue length estimation for a 

penetration ratio equaling 10%, 50% and 80%. 
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Figure 8 Case A: The estimated queue length when penetration ratio = 10% 

 

Figure 9 Case A: The estimated queue length when penetration ratio = 50% 
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Figure 10 Case A: The estimated queue length when penetration ratio = 80% 

 

From Figure 8, the maximum of 2-second average queue length and _AVG RMSE  

are 20.87 and 5.7 vehicles. Thus, the proposed algorithm is able to estimate the actual 

queue length, with RMSE less than 30% of maximum queue length. The RMSE of Case 

A-D can be seen in the last subchapter. When a detected moving vehicle is far away 

from the last stopped vehicle, peaks or random high spikes occur which cause high error 

and inconsistency in queue estimation. This problem is improved in the later subchapter 

with DWT. It is noteworthy that the proposed algorithm is unable to track the queue 

when there is no connected vehicle in queue, in particular, at the beginning of queue 

forming up. As a result, the proposed algorithm cannot detect at the beginning of the 

queue at some cycles, for instance, at time 900 and 1,600 seconds. However, such a 
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problem is less likely when the penetration ratio increases as shown in Figure 9 and 

Figure 10. The other solution is to have other kinds of detectors at the stop line to detect 

a small queue; however, it is out of the scope of the dissertation. 

Pre-timed Signal Control with Saturated Condition 

Everything is similar to Case A but with volume 1,400 vph for EB and WB 

approaches. NB and SB remain 1,000 vph as in case A. Assuming a 1900 vphpl 

saturation flow rate, the degree of saturation for the through movement is 1.0. Figure 11-

Figure 13 show the results of queue length estimation for a penetration ratio equal to 10, 

30 and 80%, respectively. 

 

Figure 11 Case B: The estimated queue length when penetration ratio = 10% 
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Figure 12 Case B: The estimated queue length when penetration ratio = 30% 

 

Figure 13 Case B: The estimated queue length when penetration ratio = 80% 
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With increasing volume from Case A, the Poisson arrival assumption is weaker; 

nonetheless, the proposed algorithm still reasonably estimates the actual queue length. It 

implies that the proposed algorithm is capable of estimating queue with non-Poisson 

arrivals and without arrival and overflow queue data as basic inputs. This property is 

crucial for multiple intersections and coordinate systems as volume may change from 

undersaturated to a congested condition, and vehicles may not arrive in Poisson 

distribution but in platoons. Like in Case A, there are random spikes and misdetection of 

queue estimation. However, since there are more vehicles and, therefore, more 

connected vehicles in the network, random spikes appearing in Case B is less compared 

to Case A. 

Actuated Signal with Undersaturated Condition 

The traffic signal is an actuated control in this case. Actuated control is used to 

demonstrate how the proposed algorithm can work with time-varying traffic signal 

without signal timing information. The volume is the same as in Case A. Actuated signal 

control has min and max green time 6 and 26 seconds for left turn and 10 and 36 seconds 

for through movements. All phrases have 2 seconds of vehicle extension. Figure 14-

Figure 16 show the results of queue length estimation for penetration ratios equaling to 

10, 30, and 50% respectively. 

Since the signal timing becomes time-varying, the cycle length and green time are 

not constant. The trend of maximum queue length in each cycle becomes less monotonic 

than in Case A. Overall, the actual queue length in this case is shorter than in Case A 



 

47 

 

 

Figure 14 Case C: The estimated queue length when penetration ratio = 10% 

 

Figure 15 Case C: The estimated queue length when penetration ratio = 30% 
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Figure 16 Case C: The estimated queue length when penetration ratio = 50% 

 

since actuated control can adjust green time according to the presence of vehicles. The 

accuracy of estimated queue length, measured by _AVG RMSE , is about the same as in 

Case A. For penetration ratio = 10%, the maximum of 2-second average queue length 

and _AVG RMSE  are 17.13 and 4.8 vehicles. Even though signal timing and duration of 

red stop time are not used as basic input in the proposed algorithm, the estimated queue 

length is able to estimate queue length with RMSE less than 30% of maximum queue 

length and is about the same as in Case A. The only remaining problem is inconsistency 

from random spikes. 

Actuated Signal with Saturated Condition 



 

49 

 

In this case, traffic has an actuated signal of volume 1,400 vph. It is also 

approximately at the point of saturation. This was confirmed in VISSIM animation. 

Figure 17-Figure 19 shows the results of queue length estimation for penetration ratios 

of 30, 50, and 80%, respective 

In this case, actuated control can manage traffic better than pre-timed signaling in 

Case B so the queues are generally shorter. Like in Case B, the misdetection of estimated 

queue length is almost nonexistence even with a low penetration ratio. It is a result of 

more vehicles in the road network. The performance of the proposed algorithm in case B 

and D are not much different. 

 

Figure 17 Case D: The estimated queue length when penetration ratio = 30% 
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Figure 18 Case D: The estimated queue length when penetration ratio = 50%

 

Figure 19 Case D: The estimated queue length when penetration ratio = 80% 
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To further verify the impact of stopping speed, extensive analysis and results on 

different threshold values for multiple scenarios of signal control and volume levels, 

such as 5km/h were carried on. The RMSE of the predicted queue length does not 

change much with the increase of the threshold value. As a result, the stopping speed 

does not change the overall performance of the prediction accuracy. 

Enhanced Queue Estimation with Discrete Wavelet Transform 

The numerical results from Case A to D in the previous subchapter show that the 

proposed algorithm can estimate queue length quite well. The only common problem is 

the fluctuation or random spikes which may cause instability to adaptive signal control 

when the queue is overestimated. This subchapter demonstrates the numerical results 

after applying discrete wavelet transform to all four cases. 

Figure 20-Figure 23 show the root-mean-square error of estimated queue length 

before and after applying Haar DWT Level 1-3 to the proposed algorithm. 

In all four cases, the RMSE decreases as the penetration ratio increases. The RMSE 

is also proportional to the total average queue length. In actuated control cases, the total 

average queue length is lower than the pre-timed control with the same traffic condition. 

As a result, Case B has the highest RMSE and Case C has the lowest RMSE among all 

cases. From RMSE plots, DWT can reduce RMSE, but the performance depends on 

penetration ratio. At the low penetration ratio, the proposed algorithm contains more 

error so DWT Level 3 can perform the best by filtering out most of high frequency 

component. On the other hand, DWT Level 1 can filter noise less than 
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Figure 20 Root-mean-square error of queue length estimation in Case A 

 

Figure 21 Root-mean-square error of queue length estimation in Case B 
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Figure 22 Root-mean-square error of queue length estimation in Case C 

 

Figure 23 Root-mean-square error of queue length estimation in Case D 
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DWT Level 3 so the error reduction is less. At high penetration ratios, high-frequency 

component of the proposed algorithm contains less noise or error. Moreover, most of the 

high-frequency components are dynamic part of the queue length. Filtering out high-

frequency components disables the estimated queue length to capture the dynamics of 

the actual queue length. Consequently, DWT Level 3 increases the RMSE of the 

estimation of queue length. On the other hand, DWT Level 1 can retain the dynamic 

component better than DWT Level 1 while eliminating part of errors so DWT Level 1 

perform the best at high penetration ratio. For all ranges of penetration, DWT level 2 

consistently reduce RMSE the best regardless of penetration ratio. 

 

Figure 24 Case A: The estimated queue length when penetration ratio = 30% 
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Figure 25 Case A: DWT level 3 when penetration ratio = 30% 

 

Figure 26 Case B: The estimated queue length when penetration ratio = 50% 
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Figure 27 Case B: DWT Level 2 when penetration ratio = 50% 

 

Figure 28 Case C: The estimated queue length when penetration ratio = 80% 
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Figure 29 Case C: DWT Level 1 when penetration ratio = 80% 

 

Figure 30 Case D: The estimated queue length when penetration ratio = 10% 
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Figure 31 Case D: DWT Level 3 when penetration ratio = 10% 

However, the most important contribution of applying DWT is to reduce random 

spikes and improve consistency of queue estimation. Figure 24-Figure 31 show the 

examples of time history of the proposed algorithm before and after applying with the 

best DWT at specific penetration ratios. The random spikes are reduced from before 

applying DWT in Figure 25, Figure 27, Figure 29, and Figure 31. The time series of 

queue estimation are smoothened by DWT. 

Summary 

Since most existing queue estimations from connected vehicle technology are only 

applied to pre-timed signals, a new algorithm aiming for adaptive signal control is 

proposed in this dissertation. To be applicable for adaptive signal control, the proposed 

algorithm can estimate queue length without the assumption of pre-timed signal, signal 
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interval, and specific arrival distribution. In addition, the volume, queue characteristic 

and signal timing data are not required as basic inputs. More importantly, the algorithm 

can work in both undersaturated and saturated conditions, which is necessary for 

adaptive signal control as it has to deal with a wide range of traffic condition. The 

proposed algorithm also focuses on the consistency of estimation when penetration ratio 

is low. Thus, discrete wavelet transform was originally applied to enhance the 

consistency of queue estimation in this work. Even though the simple frequency filter is 

used rather than using a soft or hard threshold, the results show that DWT can improve 

by both decreasing RMSE and making the estimation more consistent by reducing 

random spikes. Because the proposed queue estimation algorithm is able to estimate 

queue length under various traffic conditions and non pre-timed signals, it is expected 

that it will contribute significantly to adaptive signal control using connected vehicle 

technology. There are several ongoing efforts. The first one is to develop adaptive signal 

control strategies with queue estimation. The second one is to improve threshold scheme 

of DWT for better denoising performance. 
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CHAPTER V  

NUMERICAL RESULTS FOR PLATOON RECOGNITION 

 

In this chapter, there are two main parts. The first one is a calibration step to obtain 

calibrated parameters' value. After that, the obtained parameters are used to test the 

proposed algorithm with the same data as the training data. The second part is to use 

calibrated parameter values from the first part to test with other four data sets from 

different signal control, traffic volume, or data collection location. The second part 

intends to validate the applicability range of the proposed algorithm when traffic 

condition and/or signal control are changed without recalibrating the parameters. 

A microscopic simulation, VISSIM 5.10 (9), is selected to be the test-bed for 

generating individual vehicle data. All testing is based on the network shown in Figure 

32. The test network is an isolated intersection with two lanes for east and west bound 

and three lanes for north and south bound. All approaches are 270 meter-long with one 

left-turn bay. In the calibration process, traffic signal control is pre-timed signal with 

protected-left turn. The green time for left turn and through movement are 15 and 35 

seconds for all approaches. Traffic volumes for EB and WB, and NB and SB are 1,400 

and 1,000 vph, respectively. The platoons are observed from vehicles outbound from the 

intersection in the eastbound direction. Speed and distance of each vehicle are collected 

every 0.5 seconds at a location 30 meters from the intersection to calculate actual 

platoon data. The data collected at a distance 120 meters downstream in Figure 32 is 

used for validating the proposed algorithm for a different location without recalibration 
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in the second part of this chapter. The simulation time is 2,000 seconds. To demonstrate 

the penetration ratio affect, CVs are randomly selected corresponding to a penetration 

ratio value to obtain CV data. 

Calibration Results 

The calibration process is implemented to obtain calibrated parameter values via the 

minimization of the fitness function. The genetic algorithm (GA) is selected for 

executing the optimization process. The GA fitness function is defined as in Equation 

(34). In the experiment, [1 1 1 0.1 0.1]T TW  . 100 randomization are carried out in 

this chapter to get reasonable steady values for fitness function, hence, 100I  . The GA 

population vector contains five calibration parameters, 1 2 2

T

p pT f f f y   . The parameters, 

1T , minT , m , and 1y , are set to be 5 and 2 seconds, 2 lanes, and 15 vehicles, respectively. 

The correspondent upper and lower bounds are shown in Table 1. The platoon data 

computed directly from VISSIM's vehicle data with penetration ratio 100%, no missing 

data, is considered as the ground truth. The error measurements are computed by 

comparing the estimated platoon data from the proposed algorithm from various 

penetration ratios with the ground truth (100% penetration ratio). With MATLAB's 

optimization toolbox, the GA setting is set to be the same as the default setting in 

MATLAB R2012A, except for the number of generations, which is set to be 50. 
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Figure 32 The topology of tested network 

 

Table 2 shows resulting calibrated parameters. After obtaining calibrated parameters, 

the proposed algorithm then applies CV data and the calibrated parameter values to 

recognize platoons. The estimated platoon size, beginning and ending time are obtained, 

along with the estimation error measurements, RMSEs of the size and beginning and 

ending times, and the detection and false detection rates. The examples of estimated 

platoon history, before and after filtering, for penetration ratio 30%, 50% and 70% are 

shown in Figure 33-Figure 38. 

 

 



 

63 

 

Table 1 Lower and upper bounds of calibrated parameters 

calibrated parameter lower bound upper bound 

pT  
5 15 1 p

p

 
 

5

p
 

1f  0.4 2 

2f  0 1 

3f  0.2 1 

py  15 min( ,0.8)p  15 

 

Table 2 Resultant calibrated parameters 

penetration ratio pT  
1f  2f  3f  py  

10% 50.3 0.51 0.94 0.59 2 

20% 26.8 0.43 0.22 0.75 3 

30% 17.0 0.43 0.89 0.81 5 

40% 13.1 0.43 0.98 0.95 6 

50% 10.4 0.44 0.99 0.69 8 

60% 8.4 0.41 0.99 0.75 10 

70% 7.2 0.41 0.98 0.96 11 

80% 6.4 0.40 0.97 0.70 12 

90% 5.7 0.43 0.97 0.57 12 
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Figure 33 The pre-filtering estimated platoon when penetration ratio = 30% 

 

Figure 34 The post-filtering estimated platoon when penetration ratio = 30% 
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Figure 35 The pre-filtering estimated platoon when penetration ratio = 50% 

 

Figure 36 The post-filtering estimated platoon when penetration ratio = 50% 
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Figure 37 The pre-filtering estimated platoon when penetration ratio = 70% 

 

Figure 38 The post-filtering estimated platoon when penetration ratio = 70% 
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To avoid confusion, it should be noted that the platoon size is not equal to the area of 

Figure 33-Figure 38 but the y-axis value. In addition, the lower penetration ratio, the 

more frequent occurrence of merging and diverging. When merging occurs, two or more 

consecutive platoons are detected as one long platoon, for instance, at time between 400-

500 seconds in Figure 35-Figure 36. The two actual-platoon sizes are 32 and 5 vehicles, 

while the detected-platoon size is 35 vehicles. The merged actual platoon then has 32+5 

= 37 vehicles. The difference of platoon size is, therefore, 2 vehicles. Nonetheless, signal 

coordination yields a green time to the two actual platoons almost the same way it does 

for the single detected platoon because the time gap between the two actual platoon is 

too small to discard either one of them. Merging from platoons when their time gap(s) 

are too large rarely occurs because of the relative small pT  compared to the one used in 

(26). In addition, the platoon identification in Figure 4 is purposely developed to prevent 

such a case.  

The diverging case can be observed in the same figures at time between 700-800 

seconds. In this case, the diverged detected platoon occurs because of small pT , as a 

tradeoff to prevent merging of platoons with large time gap(s). However, as in the 

merging case, signal coordination tends to allocate sufficient green time to closely 

spaced platoons without premature gap out. Hence, in most cases, even though merging 

and diverging can cause the estimation errors, the traffic operation may still perform 

well without significant problems due to consistent detectability, which is shown in the 

later subchapter. It is also noteworthy to mention the importance of py . The well fine-
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tuned py  is important to keep detected platoon in diverging cases. From the Figure 33-

Figure 34, the diverged detected platoons are kept to allow to mimic the real platoon 

because py  is low enough to let it pass through the filtering process. If 1y  is used in 

filtering process instead, most diverging detected platoons are excluded and signal 

coordination can neither detect or let a platoon move without stops. On the other hand, a 

too small py  can increase false detection rate as „„unqualified‟‟ platoons are not filtered 

out properly, resulting in an ineffective green time. Thus, a proper calibration of py  can 

lessen the negative effects of merging and diverging, enhance detectability, and is varied 

with the penetration ratio and the platoon profile. 

Validation Results 

The calibrated parameters in Table 1 are further applied to estimate platoons with 

other four scenarios in this subchapter. The purpose is to validate the performance of the 

proposed algorithm when traffic condition and signal control change without 

recalibration. The base case in the first part is referred as case 1. The other four cases are  

 case 2: pre-timed signal control with 1,000 vph on eastbound and westbound 

approaches 

 case 3: actuated signal control with 1,400 vph on eastbound and westbound 

approaches 

 case 4: actuated signal control with 1,000 vph on eastbound and westbound 

approaches 
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 case 5: same as the base case but the location of platoon detection is 120 meters 

away from the intersection  

For both pre-timed and actuated signal controls, volumes 1,000 and 1,400 vph are 

approximately undersatured and saturated conditions, respectively. The actuated signal 

control in case 3 and 4 has min and max green time 6 and 26 seconds for left turn and 10 

and 36 seconds for through movements. All phases have 2 seconds of vehicle extension. 

The platoon detecting location in case 5 is shown in Figure 32. The performance 

indicators for all 5 cases are shown in Figure 39-Figure 44. 

 

Figure 39 Average RMSE of platoon size 
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Figure 40 Average RMSE of platoon size per average actual platoon size 

 

Figure 41 Average RMSE of beginning time 
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Figure 42 Average RMSE of ending time 

 

Figure 43 Average detection rate 
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Figure 44 Average false detection rate 

 

From Figure 39-Figure 42, all three RMSE decrease as the penetration ratio 

increases. It should be noted that, Figure 39 shows that while the RMSE for platoon size 

is smaller in cases 2 and 3, the average platoon sizes are significantly lower in both cases 

due to actuated signal control. In Figure 40, the ratio of RMSE of platoon size and the 

average platoon size is lower in the base case. The reason is RMSE of platoon size is 

proportional to average platoon size, and the selected value of calibration parameters fits 

better with the base case. Figure 41-Figure 42 show that the estimation of starting time is 

more accurate than the ending time by 2 seconds in average. These results imply that the 

adjustment applied to the estimation of starting time in Equation (27) can improve the 

accuracy of the estimation. Moreover, the improvement is obtained without the expense 
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of the other error measurements. Average false detection rate in Figure 44 decreases 

after the penetration ratio is lower than 30% because estimated platoons need to be 

merged to a larger one due to a rapid increase of pT after the penetration ratio lower than 

30%. Merging cases are not considered as misdetection or false detection in the 

simulation. However, they are considered in computing RMSEs of the size, and 

beginning and ending times as all three RMSEs increases significantly after the 

penetration ratio is lower than 30%. 

In case 4, the false detection rate is abnormally high because of the platoon profile 

and the effect of the filtering. This is an actuated signal control with undersaturated 

condition that does not produce long platoons. In the experiment, 1y  is set to 15 

vehicles. When an actual platoon with a size a bit smaller than 15 vehicles is detected, it 

can often lead to false detection. Because the actual platoon are filtered out by 1y , while 

the detected platoon is not filtered by py . Moreover, there are only 12 platoons out of 

101 that have a platoon size greater than 15 vehicles. As a result, 89 actual platoons are 

filtered out and cause the detected platoons to be classified as false detection. The 

resultant false detection rate is, therefore, higher than it should be. It is noteworthy that a 

smaller platoon is harder to detect. As evidenced by Figure 43, the average detection rate 

is the lowest of 5 cases. Detecting more of them will increase false detection rate. By 

giving more weight to the error measurement of false detection in the fitness function, 

the calibration process can reduce false detection rate at the expense of the other error 

measurements. 
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A comparison of detection rate from simulation and two analytical approaches is 

shown in Figure 45-Figure 49. Two analytical approaches are given. The first one is 

when a platoon size profile is known and estimated by Equation (32). The second one is 

when a platoon size profile is unknown and a lower bound of detection rate is instead 

estimated by Equation (33). For a penetration ratio higher than 30%, analytical approach 

1 and 2 tend to overestimate the detection rate because both analytical approaches do not 

take into account the effect of platoon filtering. A few detected platoons, that should 

match with the filtered actual platoon, are filtered out because their sizes are smaller than 

py , while the analytical approaches assume that all detected platoon are kept and 

matched with the actual platoons. In contrast, at a penetration lower than 30%, both 

analytical approaches tend to underestimate the detection rate because of the merging 

affect. As more detected platoons are merged at the lower penetration ratio, it can 

increase detection rate by covering more time span and detecting more platoons. The 

assumption is the analytical approaches do not take into account merging issue, so they 

ignore the increased detection rate from merged detected platoons. Nonetheless, 

analytical approach 1 still estimates the detection rate accurately with less than 5% error 

in most cases. As expected, analytical approach 2 is less accurate than the first one due 

to the lack of platoon profile as input. However, analytical approach 2 still yields the 

acceptable estimation when the penetration ratio is higher than 30%. It also does give a 

lower bound for detection rate at the penetration lower than 30%. The obtained lower 

bound is useful to roughly determine whether platoon recognition from CVT is 

applicable for the desire application. 
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Out of the 5 cases, the estimated detection rate from the analytical approach 2 is the 

most accurate in case 4. This is because the average platoon size post filtering is very 

close to 1y . As analytical approach 2 estimates the detection rate by assuming a filtered 

platoon size is equal to 1y , the smaller the average filtered platoon size, the more 

accurate the detection rate from analytical approach 2. 

 

Figure 45 Average detection rate for case 1 
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Figure 46 Average detection rate for case 2 

 

Figure 47 Average detection rate for case 3 
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Figure 48 Average detection rate for case 4 

 

Figure 49 Average detection rate for case 5 
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Summary 

There are a few existing platoon recognition algorithms using connected vehicle 

technology (CVT). However, none of them gave a thorough investigation with analysis 

on the performance, and the applicable range. The dissertation proposed a platoon 

recognition algorithm from CVT. The detected platoon is identified from time-stamp 

difference between two consecutive connected vehicles (CV) with a modified critical 

time-headway. In addition, the analytical approaches for estimating detection rate are 

proposed to estimate the required penetration ratio to obtain the detection rate based on 

the threshold and platoon profile. The new evaluation method is proposed to obtain 

performance separately: estimation error when platoon is detected, and detection and 

false detection rates when the platoon is undetected. Numerical results from VISSIM 

show that the proposed algorithm can detect platoons effectively in various traffic 

conditions, especially at a penetration higher than 30%, even without recalibration. The 

detection rate obtained from the analytical approaches corresponds to the detection rate 

from the numerical results, so it can be useful to determine the required penetration ratio 

for any application from CVT. The platoons are recognized without basic inputs that are 

hard to obtain from CVT, such as traffic volume and signal timing. Therefore, the 

proposed algorithm is expected to be well applicable to adaptive signal control. The 

future work is to develop platoon prediction from the platoon recognition and adaptive 

signal control logic. 
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CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 

 

Contributions 

This dissertation proposed queue length estimation and platoon recognition using 

connected vehicle technology. New algorithms were developed so that they can work 

with adaptive signal control. Both algorithms were evaluated in both pre-timed and 

actuated signal controls, and undersaturated and saturated traffic conditions. The 

contributions from this research are: 

1. While there were some existing studies on queue length estimation, most of 

them were evaluated with pre-timed signal control only. This research is 

among the first to propose and verify queue length estimation from CVT with 

actuated signal control. 

2. A few, if any, of existing queue length estimation considered consistency of 

the estimation results, for instance, random spikes in the estimation. Discrete 

wavelet transform was first purposed to enhance the accuracy and, more 

importantly, the consistency of the queue length estimation algorithm in this 

research. 

3. Most queue length estimation algorithms relied on inputs that are hard to 

obtain in practice with CVT alone. The proposed algorithm can estimate 

queue length without relying on other detectors and inputs that are hard to 
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obtain in practice such as signal timing and traffic volume with reasonable 

accuracy and consistency. 

4. To the best of our knowledge, we are the first to propose and full analysis on 

platoon recognition using CVT. The mathematic model as well as analysis on 

the impact of its parameters such as a modified critical time-headway was 

fully investigated and evaluated in separate scenarios, rather than a 

compound scenario. 

5. We also believe to be the first to propose the analytical model on platoon 

detection rate using CVT. The evaluation of platoon recognition algorithm by 

two distinct measurements; the estimation error when platoons are detected 

and detection and false detection rates when platoon are undetected or falsely 

detected was included to give better insight into the numerical results. With 

the estimated detection rate and the new evaluation method, the applicable 

range of the platoon recognition can be perceived in more details by traffic 

engineers. 

Future Research 

Even though the numerical results verified and validated queue length estimation and 

platoon recognition algorithms in various cases, there are some investigations that is 

worth investigation in the future. The further extension to obtain inputs for adaptive 

signal control can be carried out in the future as new research topics. 

1. In the queue length estimation, discrete wavelet transform with simple 

method, high-pass component complete elimination (detail component) was 
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chosen. In the future, a new threshold scheme to obtain wavelet coefficients 

should be developed for the proposed algorithm as it can improve the 

algorithm further. 

2. Platoon recognition algorithm was verified with signalized platoons only. 

Verification with a random platoon arrival should be done. 

3. The proposed queue length estimation and platoon recognition algorithms can 

be a foundation for the prediction algorithms for queue length and platoon 

arrival. As adaptive signal control should be proactive and include traffic 

prediction in a decision making, the two prediction algorithms are important 

for true adaptive signal control. 

4. The adaptive signal control logic based on the estimated queue length and 

platoon recognition should be developed to verify the applicable range of 

CVT as traffic detector for adaptive signal control. 



 

82 

 

REFERENCES 

 

1 Schrank, D., B. Eisele, and T. Lomax. TTI‟s 2012 urban mobility report. Texas A&M 

Transportation Institute. The Texas A&M University System, 2012. 

 

2 Briesemeister, L., L. Schäfers, and G. Hommel. Disseminating messages among highly 

mobile hosts based on inter-vehicle communication.In Intelligent Vehicles Symposium, 

2000. IV 2000. Proceedings of the IEEE, IEEE, 2000. pp. 522-527. 

 

3 Ott, J., and D. Kutscher. Drive-thru Internet: IEEE 802.11 b for" automobile" users.In 

INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and 

Communications Societies, No. 1, IEEE, 2004. 

 

4 Consortium, C. V. S. C. Vehicle safety communications project: task 3 final report: 

identify intelligent vehicle safety applications enabled by DSRC. National Highway 

Traffic Safety Administration, US Department of Transportation, Washington DC, 2005. 

 

5 Costa, P., D. Frey, M. Migliavacca, and L. Mottola. Towards lightweight information 

dissemination in inter-vehicular networks.In Proceedings of the 3rd international 

workshop on Vehicular ad hoc networks, ACM, 2006. pp. 20-29. 

 

6 Andrews, S., and M. Cops. Final report: Vehicle infrastructure integration proof of 

concept executive summary–Vehicle. US DOT, IntelliDrive (sm) Report FHWA-JPO-

09-003, 2009. 

 

7 Morgan, Y. L. Managing DSRC and WAVE standards operations in a V2V scenario. 

International Journal of Vehicular Technology, Vol. 2010, 2010. 

 

8 Zhang, J., F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen. Data-driven 

intelligent transportation systems: A survey. Intelligent Transportation Systems, IEEE 

Transactions on, Vol. 12, No. 4, 2011, pp. 1624-1639. 

 

9 Vissim, P. 5.10 User Manual. PTV, Karlsruhe, Germany, 2008. 

 

10 PTV, A. VISSIM 5.40 User Manual. Karlsruhe, Germany, 2011. 

 

11 Vigos, G., M. Papageorgiou, and Y. Wang. Real-time estimation of vehicle-count 

within signalized links. Transportation Research Part C: Emerging Technologies, Vol. 

16, No. 1, 2008, pp. 18-35. 

 

12 Sharma, A., D. Bullock, and J. Bonneson. Input-output and hybrid techniques for 

real-time prediction of delay and maximum queue length at signalized intersections. 



 

83 

 

Transportation Research Record: Journal of the Transportation Research Board, No. 

2035, 2007, pp. 69-80. 

 

13 Akçelik, R. A queue model for HCM 2000. ARRB Transportation Research Ltd., 

Vermont South, Australia, 1999. 

 

14 Webster, F. V. Traffic signal settings.In, 1958. 

 

15 Liu, H. X., X. Wu, W. Ma, and H. Hu. Real-time queue length estimation for 

congested signalized intersections. Transportation Research Part C: Emerging 

Technologies, Vol. 17, No. 4, 2009, pp. 412-427. 

 

16 Stephanopoulos, G., P. G. Michalopoulos, and G. Stephanopoulos. Modelling and 

analysis of traffic queue dynamics at signalized intersections. Transportation Research 

Part A: General, Vol. 13, No. 5, 1979, pp. 295-307. 

 

17 Richards, P. I. Shock waves on the highway. Operations research, Vol. 4, No. 1, 

1956, pp. 42-51. 

 

18 Lighthill, M. J., and G. B. Whitham. On kinematic waves. II. A theory of traffic flow 

on long crowded roads.In Proceedings of the Royal Society of London A: Mathematical, 

Physical and Engineering Sciences, No. 229, The Royal Society, 1955. pp. 317-345. 

 

19 Lighthill, M., and G. Whitham. On kinematic waves. I. Flood movement in long 

rivers.In Proceedings of the Royal Society of London A: Mathematical, Physical and 

Engineering Sciences, No. 229, The Royal Society, 1955. pp. 281-316. 

 

20 Martin, P. T., and S. L. Hockaday. SCOOT--AN UPDATE. ITE Journal, Vol. 65, 

No. 1, 1995. 

 

21 Sims, A. G., and K. W. Dobinson. The Sydney coordinated adaptive traffic (SCAT) 

system philosophy and benefits. Vehicular Technology, IEEE Transactions on, Vol. 29, 

No. 2, 1980, pp. 130-137. 

 

22 Gartner, N. H. OPAC: A demand-responsive strategy for traffic signal control. 1983. 

 

23 Head, K. L., P. B. Mirchandanai, and S. Shelby. The RHODES prototype: a 

description and some results. Transportation Research Board, 1998. 

 

24 Siromaskul, S., and M. Selinger. InSync: The Next Generation of Adaptive Signal 

Systems.In ITE annual meeting (westernite. org/annualmeetings), 2010. 

 

25 Cai, C., Y. Wang, and G. Geers. Adaptive traffic signal control using wireless 

communications.In Transportation Research Board 91st Annual Meeting, 2012. 



 

84 

 

26 He, Q., K. L. Head, and J. Ding. PAMSCOD: Platoon-based arterial multi-modal 

signal control with online data. Transportation Research Part C: Emerging 

Technologies, Vol. 20, No. 1, 2012, pp. 164-184. 

 

27 Smith, B. L., R. Venkatanarayana, H. Park, N. Goodall, J. Datesh, and C. Skerrit. 

IntelliDriveSM Traffic Signal Control Algorithms. University of Virginia, 2010. 

 

28 Jin, Q., G. Wu, K. Boriboonsomsin, and M. Barth. Platoon-based multi-agent 

intersection management for connected vehicle.In Intelligent Transportation Systems-

(ITSC), 2013 16th International IEEE Conference on, IEEE, 2013. pp. 1462-1467. 

 

29 Feng, Y., K. L. Head, S. Khoshmagham, and M. Zamanipour. A real-time adaptive 

signal control in a connected vehicle environment. Transportation Research Part C: 

Emerging Technologies, Vol. 55, 2015, pp. 460-473. 

 

30 Comert, G. Effect of stop line detection in queue length estimation at traffic signals 

from probe vehicles data. European Journal of Operational Research, Vol. 226, No. 1, 

2013, pp. 67-76. 

 

31 Comert, G. Simple analytical models for estimating the queue lengths from probe 

vehicles at traffic signals. Transportation Research Part B: Methodological, Vol. 55, 

2013, pp. 59-74. 

 

32 Comert, G., and M. Cetin. Queue length estimation from probe vehicle location and 

the impacts of sample size. European Journal of Operational Research, Vol. 197, No. 1, 

2009, pp. 196-202. 

 

33 Comert, G., and M. Cetin. Analytical evaluation of the error in queue length 

estimation at traffic signals from probe vehicle data. Intelligent Transportation Systems, 

IEEE Transactions on, Vol. 12, No. 2, 2011, pp. 563-573. 

 

34 Izadpanah, P., B. Hellinga, and L. Fu. Automatic traffic shockwave identification 

using vehicles‟ trajectories.In Proceedings of the 88th Annual Meeting of the 

Transportation Research Board (CD-ROM), 2009. 

 

35 Cheng, Y., X. Qin, J. Jin, and B. Ran. An exploratory shockwave approach for 

signalized intersection performance measurements using probe trajectories.In 89th 

Annual Meeting of Transportation Research Board, 2010. 

 

36 Ban, X. J., P. Hao, and Z. Sun. Real time queue length estimation for signalized 

intersections using travel times from mobile sensors. Transportation Research Part C: 

Emerging Technologies, Vol. 19, No. 6, 2011, pp. 1133-1156. 

 



 

85 

 

37 Cheng, Y., X. Qin, J. Jin, B. Ran, and J. Anderson. Cycle-by-cycle queue length 

estimation for signalized intersections using sampled trajectory data. Transportation 

Research Record: Journal of the Transportation Research Board, No. 2257, 2011, pp. 

87-94. 

 

38 Hao, P., and X. Ban. Vehicle queue location estimation for signalized intersections 

using sample travel times from mobile sensors.In Transportation Research Board 90th 

Annual Meeting, 2011. 

 

39 Hao, P., Z. Sun, X. J. Ban, D. Guo, and Q. Ji. Vehicle index estimation for signalized 

intersections using sample travel times. Transportation Research Part C: Emerging 

Technologies, Vol. 36, 2013, pp. 513-529. 

 

40 Sun, Z., and X. J. Ban. Vehicle trajectory reconstruction for signalized intersections 

using mobile traffic sensors. Transportation Research Part C: Emerging Technologies, 

Vol. 36, 2013, pp. 268-283. 

 

41 Lee, S., S. Wong, and Y. Li. Real-time estimation of lane-based queue lengths at 

isolated signalized junctions. Transportation Research Part C: Emerging Technologies, 

Vol. 56, 2015, pp. 1-17. 

 

42 May, A. D. Traffic flow fundamentals. 1990. 

 

43 Neumann, T. A cost-effective Method for the Detection of Queue Lengths at Traffic 

Lights.In Traffic Data Collection and its Standardization, Springer, 2010. pp. 151-160. 

 

44 Badillo, B. E., H. Rakha, T. W. Rioux, and M. Abrams. Queue length estimation 

using conventional vehicle detector and probe vehicle data.In Intelligent Transportation 

Systems (ITSC), 2012 15th International IEEE Conference on, IEEE, 2012. pp. 1674-

1681. 

 

45 Li, J.-Q., K. Zhou, S. Shladover, and A. Skabardonis. Estimating Queue Length 

Under Connected Vehicle Technology: Using Probe Vehicle, Loop Detector, and Fused 

Data. Transportation Research Record: Journal of the Transportation Research Board, 

No. 2356, 2013, pp. 17-22. 

 

46 Christofa, E., J. Argote, and A. Skabardonis. Arterial queue spillback detection and 

signal control based on connected vehicle technology. Transportation Research Record: 

Journal of the Transportation Research Board, No. 2356, 2013, pp. 61-70. 

 

47 Goodall, N. J., B. Park, and B. L. Smith. Microscopic Estimation of Arterial Vehicle 

Positions in a Low-Penetration-Rate Connected Vehicle Environment. Journal of 

Transportation Engineering, Vol. 140, No. 10, 2014, p. 04014047. 



 

86 

 

48 Goodall, N. J., B. L. Smith, and B. B. Park. Microscopic estimation of freeway 

vehicle positions from the behavior of connected vehicles. Journal of Intelligent 

Transportation Systems, No. ahead-of-print, 2014, pp. 1-10. 

 

49 Tiaprasert, K., Z. Yunlong, X. B. Wang, and Z. Xiaosi. Queue Length Estimation 

Using Connected Vehicle Technology for Adaptive Signal Control. Intelligent 

Transportation Systems, IEEE Transactions on, Vol. 16, No. 4, 2015, pp. 2129-2140. 

 

50 Chui, C. K. An introduction to wavelets. Academic press, 2014. 

 

51 Akansu, A. N., and R. A. Haddad. Multiresolution signal decomposition: transforms, 

subbands, and wavelets. Academic Press, 2001. 

 

  



 

87 

 

APPENDIX 

 

This part contains additional numerical results for queue length estimation that are 

not included in chapter IV. 

The RMSE of Pre-timed signal with oversaturated condition is shown in Figure 50. 

The examples of time history results and the results with the best fit DWT levels are 

shown in Figure 51-Figure 56. 

 

Figure 50 Root-mean-square error of queue length estimation in pre-timed with 

oversaturated condition case 
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Figure 51 The estimated queue length when penetration ratio = 10% 

 

Figure 52 DWT level 3 when penetration ratio = 10% 
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Figure 53 The estimated queue length when penetration ratio = 30% 

  

Figure 54 DWT level 2 when penetration ratio = 30% 
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Figure 55 The estimated queue length when penetration ratio = 50% 

 

Figure 56 DWT level 2 when penetration ratio = 50% 



 

91 

 

The RMSE of Actuated signal with oversaturated condition is shown in Figure 57. 

The examples of time history results and the results with the best fit DWT levels are 

shown in Figure 58-Figure 64.  

 

Figure 57 Root-mean-square error of queue length estimation in pre-timed with 

oversaturated condition case 
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Figure 58 The estimated queue length when penetration ratio = 10% 

 

Figure 59 DWT level 3 when penetration ratio = 10% 
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Figure 60 The estimated queue length when penetration ratio = 30% 

  

Figure 61 DWT level 2 when penetration ratio = 30% 
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Figure 62 The estimated queue length when penetration ratio = 50% 

 

Figure 63 DWT level 2 when penetration ratio = 50% 
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The numerical results for Case C with two different stopping speed implemented by 

both VISSIM and the proposed algorithm are shown below 

 

Figure 64 RMSE for Case C with two different stopping speeds 

 

Average queue length for speed 0 km/h and 1000 vph,  speed 0 km/h and 1400 vph,  

speed 5 km/h and 1000 vph and  speed 5 km/h and 1400 vph are 3.7258, 6.5740, 3.9817 

and 7.2057 vehicles. The performance of the algorithm did not change much with the 

change of the threshold.  The RMSE of the predicted queue length does not change 

much with the increase of the threshold value. 

 


