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ABSTRACT 

 

Crash modification factors (CMFs) can be used to capture the safety effects of 

countermeasures and play significant roles in traffic safety management. The before-

after study has been one of the most popular methods for developing CMFs. However, 

several drawbacks have limited its use for estimating high-quality CMFs. As an 

alternative, cross-sectional studies, specifically regression models, have been proposed 

and widely used for developing CMFs. However, the use of regression models for 

estimating CMFs has never been fully investigated. This study consequently sought to 

examine the conditions in which regression models could be used for such purpose. 

CMFs for several variables and their dependence were assumed and used for 

generating random crash counts. CMFs were derived from regression models using the 

simulated data for various scenarios. The CMFs were then compared with the assumed 

true values. The findings of this study are summarized as follows: (1) The CMFs derived 

from regression models should be unbiased when the premise of cross-sectional studies 

were met (i.e., all segments were similar, proper functional forms, variables were 

independent, enough sample size, etc.). (2) Functional forms played important roles in 

developing reliable CMFs. When improper forms for some variables were used, the 

CMFs for these variables were biased, and the quality of CMFs for other variables could 

also be affected. Meanwhile, this might produce biased estimates for other parameters. 

In addition, variable correlation and distribution might potentially influence the CMFs 

and parameter estimates when improper functional forms were used. (3) Regression 
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models did suffer from the omitted-variable bias. If some factors having minor safety 

effects were omitted, the accuracy of estimated CMFs might still be acceptable. 

However, if some factors already known to have significant effects on crash risk were 

omitted, the estimated CMFs were generally unreliable. (4) When the influence on safety 

of considered variables were not independent, the CMFs produced from the commonly 

used regression models were biased. The bias was significantly correlated with the 

degree of their dependence.  
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1. INTRODUCTION 

 

A crash modification factor (CMF) is a multiplicative factor that can be used to 

reflect or capture changes in the expected number of crashes when a given 

countermeasure or a modification in geometric and operational characteristics of a 

specific site is implemented (FHWA 2010; Gross et al. 2010; Wu et al. 2015). CMFs 

play a significant role in roadway safety management, including in safety effect 

evaluation, crash prediction, hotspot identification, countermeasure selection, and the 

evaluation of design exemptions. Several methods have been proposed for developing 

CMFs, such as the before-after (e.g., naïve or simple before-after, before-after with 

comparison group and empirical Bayes (EB) before-after), the cross-sectional (e.g., 

regression models and case-control), and expert panel studies among others (Gross et al. 

2010). Amid these methods, before-after and cross-sectional studies are the most popular 

approaches (Shen and Gan 2003). 

CMFs derived from before-after studies are based on the comparison of safety 

performance before and after the implementation of one or several treatments (or 

changes in the characteristics of the site(s)). Those derived from cross-sectional studies 

are based on the comparison in the safety performance of sites that have a specific 

feature with those that do not or are analyzed simultaneously based on datasets that 

contain a mixture of sites with different characteristics. 

Over the last 15 years or so, the before-after study has been considered to be the 

best approach for developing CMFs (Gross and Donnell 2011; Gross et al. 2010). The 
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CMFs derived from before-after studies are usually believed to be more reliable than 

those produced from cross-sectional studies because it can directly account for changes 

that occurred at the sites investigated (Hauer 1997). However, although the before-after 

analysis is considered superior, high-quality CMFs derived from this approach is 

dependent on the availability of data (e.g., data availability for the before period, etc.) 

and the sample size (e.g., number of sites where the treatment of interest has been 

implemented, etc.). Furthermore, the estimated CMF can be biased if the 

regression-to-the-mean (RTM) and site selection effects are not properly accounted for 

in the before-after study (Davis 2000; Hauer 1997; Lord and Kuo 2012). Lord and Kuo 

(2012) even noted that the EB method can still be plagued by significant biases if the 

data collected for the treatment and control groups do not share the exact same 

characteristics. 

Given the limitations of before-after studies described above, researchers have 

proposed that cross-sectional studies could be used for developing CMFs (Bonneson and 

Pratt 2010; Noland 2003; Tarko et al. 1999). Although different types of cross-sectional 

studies have been proposed over the years, the regression model (also known as safety 

performance function or SPF) remains the method of choice for estimating CMFs, as 

reflected by the large number of CMFs documented in the Highway Safety Manual 

(HSM) (AASHTO 2010) and Federal Highway Administration (FHWA) CMF 

Clearinghouse (FHWA 2010) that are derived from regression models. 

Even though regression models are popular for developing CMFs, some 

researchers have criticized their use for such purpose because they may not properly 
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capture the relationships between crashes and variables influencing safety (Hauer 2005b, 

2010, 2014). There are several assumptions with using regression models. For example, 

the primary premise of a cross-sectional study is that all locations are similar to each 

other for all factors affecting crash risk except those of interest (Gross et al. 2010). 

However, this requirement can hardly be satisfied in practice. In addition, some other 

problems (e.g., sample size, omitted variables, functional forms, independence 

assumption, etc.) also influence the modeling result, and hence the quality of CMFs 

produced from the regression analyses. Under such conditions, the CMFs derived from 

regression models may potentially be biased. In this context, so far, nobody has 

examined the statistical performance of CMFs that are developed using regression 

models. Thus, the primary objective of this study was to comprehensively investigate the 

robustness and accuracy of the CMFs derived from regression models. A secondary 

objective was to describe the conditions when the CMFs developed from regression 

models became unreliable and potentially biased. Note that, there has been some issues 

raised about whether or not cross-sectional studies are able to derive reliable cause-effect 

results, not only in traffic safety study, but also in other fields where this kind of 

statistical method has been used, such as psychology, epidemiology, etc. (Hauer 2015). 

The objective of this study was not to prove that the cross-sectional analyses are able to 

reveal the cause and effect of traffic collisions. Rather, the aim was to raise the potential 

problems associated with the commonly used regression models (i.e., generalized linear 

models or GLMs) for developing CMFs. 
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To accomplish the objectives, the following four tasks were conducted in this 

study: 

Task 1 – Validation of CMFs derived from regression models 

This task evaluated the accuracy of CMFs derived from regression models 

considering the most common and simple form (i.e., the linear relationship) and 

assuming all the assumptions of cross-sectional studies were satisfied. The purpose of 

this task was to validate whether or not the CMFs produced from regression models 

were reliable under ideal conditions. 

Task 2 – Omitted variables and the accuracy of CMFs 

In task 1, all factors that influenced crash risk were assumed to be known. But 

this requirement can hardly be met in reality. In this task, some factors affecting crash 

risk were assumed to be unknown or unable to be captured by the models. The purpose 

of this task was to investigate how the omitted-variable problem influenced the CMFs 

derived from regression models. More specifically, it was to quantify the problem. 

Task 3 – Nonlinear relationships and the accuracy of CMFs 

In tasks 1 and 2, the variables were assumed to have linear relationships (in the 

logarithmic form) with crash risk. This was consistent with the commonly used GLMs. 

However, some studies indicated that this may not be the case. Some variables had been 

shown to have nonlinear and/or non-monotonic relationships with crash risk (Gross et al. 

2009; Hauer 2004). Under such conditions, the commonly used GLM method might not 

be applicable, and the CMFs produced from these models could be biased, especially 
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around the boundary areas. The purpose of this task was to evaluate the CMFs derived 

from regression models when some variables had nonlinear relationships with crash risk.  

Task 4 – Combined safety effects and the accuracy of CMFs 

Factors influencing safety are always assumed to be independent of each other 

when modeling crashes using the common methods. However, this may not be realistic 

in practice (Gross et al. 2010). It is common that multiple treatments were implemented 

at a problematic entity (e.g., a hotspot) simultaneously, and these treatments might have 

overlap effects on reducing crashes especially when the target collision types were the 

same. The CMFs derived from regression models might be biased if the variables were 

actually not independent. The purpose of this task was to investigate how this 

independence assumption influenced the accuracy of CMFs. This task is not about 

investigating the statistical correlation between variables, but the practical relationship 

and effects when multiple changes are applied simultaneously. 

Each task contains one or multiple scenarios to assess the CMFs derived from 

regression models under various conditions. 

This dissertation is divided into six chapters: 

Chapter 2 documents the background about the commonly used approaches for 

developing CMFs, nonlinear relationships between variables and crash risk, and 

combined safety effects of multiple treatments. 

Chapter 3 describes the methodologies used for estimating the quality of CMFs 

derived using regression models. 

Chapter 4 provides detailed results of the simulation analyses. 
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Chapter 5 validates the findings based on observed data. 

And finally, Chapter 6 summarizes the key findings of this study and provides 

avenues for further research. 
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2. BACKGROUND 

 

This chapter provides relevant background pertaining to CMFs in three aspects: 

(1) the commonly used CMF estimating methods; (2) nonlinear relationships between 

variables and crash risk; and (3) the combined safety effects of multiple treatments. 

2.1 Approaches for Estimating CMFs and Their Limitations 

This section briefly describes the commonly used methods that have been 

proposed for estimating CMFs. The description mainly focuses on their advantages and 

limitations.  

As mentioned above, before-after and cross-sectional studies are the two main 

approaches used to estimate CMFs. The CMF for a countermeasure derived from a 

before-after study is estimated by the change in the number of crashes occurring in a 

period before the improvement and the number occurring after the improvement (Gross 

et al. 2010; Shen and Gan 2003). Four types of before-after studies have been proposed 

to estimate CMFs: naïve before-after, before-after with comparison group, EB before-

after and full Bayes (FB) before-after studies. The naïve before-after study simply 

assumes the crash performance before improvement is a good estimate of what would be 

in the after period if the countermeasure had not been implemented (Hauer 1997; Shen 

and Gan 2003). This approach is considered to be less reliable, because it does not 

account for changes unrelated to the countermeasure. The before-after study with 



 

8 

 

comparison group and EB before-after methods were then proposed to overcome this 

issue. Gross et al. (2010) documented the details of these CMF developing methods. 

Even though multiple before-after studies have been developed and widely used 

to estimate CMFs, the comparison results from before-after studies may be inaccurate if 

the following issues are not properly accounted for: 

Sample size – There might be inadequate samples of sites where the 

countermeasures of interest have been implemented. This will lead to statistical 

uncertainty (Gross and Donnell 2011). 

RTM effect – This bias is related to the level of correlation for sites that are 

evaluated during different time periods. Sites that have large (or very small) values in 

one time period (say before) are expected to regress towards the mean in the subsequent 

period (Hauer 1997; Hauer and Persaud 1983). 

Site selection bias – This is related to the RTM, but its effects are different in 

that the sites are selected based on a known or unknown entry criteria (e.g., five crashes 

per year). These entry criteria lead to a truncated distribution, which influences the 

before-after estimate (Lord and Kuo 2012). 

Mixed safety effects – This bias or issue is related to when more than two or 

more countermeasures are simultaneously implemented at a roadway site, and there can 

be changes in traffic volume, weather, etc. after the implementation of treatments. This 

makes it difficult to evaluate the safety effect of a single countermeasure (Gross and 

Donnell 2011; Gross et al. 2010). 
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In contrast to before-after studies, cross-sectional studies compare the safety 

performance of a site or group of sites with the treatment of interest to similar sites 

without the treatment in a single point in time (Gross et al. 2010). The cross-sectional 

studies for developing CMFs can be regrouped into three categories: regression, case 

control and cohort methods. The regression method is currently the most frequently used 

approach because of its simplicity. It is usually accomplished through multiple variable 

regression models or SPFs. The SPFs can be used to quantify the effect of a specific 

variable on the predicted crash occurrence and CMFs are then derived from the model 

coefficients (Gross et al. 2010; Tarko et al. 1999).  

Many models have been proposed to predict safety performance and hence to 

develop CMFs or crash modification functions (CM-Functions) (Lord and Mannering 

2010). Although recent studies have introduced some new models for transportation 

safety analysis (Chen and Persaud 2014; Mannering and Bhat 2014; Park et al. 2014a; 

Zou et al. 2013a), the GLM with a negative binomial (NB) error structure is still the 

most popular method for modeling traffic crashes. Despite the fact that regression 

models have been extensively used in traffic safety studies, there are still some 

limitations with this approach: 

Similarity in crash risk – A primary premise of a cross-sectional study is that all 

locations are similar to each other in all other factors affecting crash risk (Gross et al. 

2010). However, this assumption seems to be unattainable in practice. 

Omitted variables – A variety of variables can influence crash risk, but not all of 

them are measurable or can be captured in practice for model inclusion. It is common 
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that some SPFs were developed with limited variables, for example, using the traffic 

volume as the only variable in the model. This can lead to biased parameter estimates 

and incorrect CMFs (Lord and Mannering 2010). 

Functional form – Functional form establishes the relationship between 

expected crashes and explanatory variables and is a critical part of the modeling process. 

Various forms have been used to link crashes to explanatory variables. But the modeling 

results tend to be inconsistent when using different functional forms (Miaou and Lord 

2003). So far, there is no theory-based hypotheses to guide the choice of functional 

forms within regression models. Hauer (2015) pointed out it is a tall order to identify the 

right functional form. 

There are also several other known issues with the crash modeling that will affect 

the CMFs derived from regression methods. Lord and Mannering (2010) and Mannering 

and Bhat (2014) provided more details of these issues.  

Given the substantive issues associated with the before-after study and regression 

model method, it is not surprising that CMFs produced from these two approaches are 

not identical (Gross et al. 2013; Gross et al. 2010; Rodegerdts et al. 2007). For example, 

Hauer (1991) noted that the safety effects of some treatments tended to be different 

between those of cross-sectional and before-after studies. Further, the same approach 

and dataset can also generate different CMFs when using different regression models 

(Chen and Persaud 2014; Hauer 2010; Li et al. 2011; Lord and Bonneson 2007). Hauer 

(2010) illustrated the issue using a case of rail-highway grade crossing. A couple of 

previously conducted regression analyses and before-after studies about the safety effect 
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of rail-highway grade crossing were compared. The results of the former ones varied 

considerable and were obviously influenced by the choice of grouping method as well as 

choice of variables. On the other hand, the estimated effects of the six before-after 

studies were relatively consistent. Compared to the regression model, the before-after 

study has lower within-subject variability since it directly accounts for changes that have 

occurred at the study sites (Lord and Kuo 2012). Before-after studies are also less prone 

to confounding factors compared to cross-sectional studies (Carter et al. 2012). 

Furthermore, well-designed observational before-after studies provide advantages over 

other safety countermeasure evaluation methods (Gross and Donnell 2011). CMFs 

derived from regression models are suggested to be compared with those from before-

after studies (Gross et al. 2010).  

2.2 Nonlinear Relationships between Variables and Their Safety Effects 

The coefficients are usually assumed to be fixed in the commonly used GLMs 

(i.e., the GLMs with linear additive link functions), and the CMF for a specific variable 

or treatment derived from the models is also fixed. This is, in fact, a linear relationship 

between the predicted crash risk and the changes in some variable (in the logarithmic 

form). The expected crash mean will always be multiplied by a constant factor when the 

variable increases by one unit, regardless of the original value of the variable. However, 

a fixed CMF may not properly account for the safety effects of the treatment on expected 

crash frequency because some variables may have nonlinear influences on crashes 
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(Hauer 2004; Hauer et al. 2004; Lee et al. 2015). Actually, some attempts have been 

made to explore the nonlinear effects. 

Hauer et al. (2004) developed a statistical model to predict non-intersection crash 

frequency on urban four-lane undivided roadways. Several variables were considered in 

the analysis. Based on the estimated parameters, some variables were found to have 

linear or exponential influence on predicted crashes. However, some showed nonlinear 

effects on safety. For example, the degree of curve, which represented horizontal 

alignment, was captured to have a “U-shape” effect on on-the-road crashes. This 

indicated some flat curves might be safer than a tangent if this is true. But sharp curves 

would be associated with higher crash risk. 

Xie and Zhang (2008) applied generalized additive models (GAMs) in traffic 

crash modeling. Compared to GLMs, GAMs used nonparametric smooth functions 

instead of parametric terms in GLMs, which made GAMs more flexible in modeling 

nonlinear relationships. Analysis result indicated GAMs performed better than GLMs in 

terms of goodness-of-fit (GOF) and predicting performance. This method was later 

utilized to develop CMFs for rural frontage segments in Texas (Li et al. 2011). The 

results showed that nonlinear relationships existed between crash risk and changes in 

lane and shoulder widths for frontage roads. For example, increasing shoulder width 

could bring relatively significant safety benefits when it was less than 6 ft. But when the 

shoulder width was between 6 and 8 ft, the CMF curve became flat, meaning widening 

shoulder had little influence on crashes. This result is slightly different with a previous 

GLM-based study (Lord and Bonneson 2007). 
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In order to capture the nonlinear relationships between variables and crashes, 

some neural network models have also been introduced into safety analysis. Xie et al. 

(2007) proposed Bayesian neural network (BNN) model for predicting motor vehicle 

crashes. BNN models had been previously reported to be able to effectively reduce the 

over-fitting phenomenon while still keeping the strong nonlinear approximation ability 

of neural networks (Xie et al. 2007). BNN models were estimated using the Texas 

frontage road data, the same used in several previous studies (Li et al. 2011; Lord and 

Bonneson 2007). Explicit functions between variables (e.g., lane width or shoulder 

width) and crash frequency were not available due to the black box property of BNN 

models. But the authors conducted sensitivity analysis of the trained BNN model for two 

sites. It was found that right shoulder width showed quadratic functions with predicted 

crash counts at the two sites, and lane width showed an “inverse U-shape” relation with 

crash counts at one site. Li et al. (2008) later conducted a continuation of this work. The 

researchers applied support vector machine (SVM) models to predict crashes, aiming to 

capture nonlinear relationships between explanatory and dependent variables. The Texas 

frontage road data was analyzed using SVM models and the results were quite similar 

with those using BNN method. 

Recently, Lao et al. (2014) proposed generalized nonlinear models (GNMs) 

based approach to better elaborate non-monotonic relationships between variables and 

crash rates. Compared to GLMs, the major improvement of GNMs is using piecewise 

functions to capture the pattern between dependent and independent variables. This 

makes it more flexible to extract complex relationships between the two. Rear-end 



 

14 

 

crashes were modeled using GNM and GLM methods. Comparison showed GNMs 

outperformed GLMs. Meanwhile, some factors were found to be significant in GNMs 

but not in GLMs. Lee et al. (2015) later assessed the safety effects of changing lane 

width using GNMs. The main objective was to develop nonlinear relationships between 

lane width and crash rate. Various nonlinear link functions were used for the effects on 

crash rates of lane widths, and nonlinear CM-Functions were estimated for changing 

lane width. It was found that the CM-Function for lane width showed an “inverse U-

shape” curve. It was combined with two quadratic functions and the 12-ft lane was found 

to be associated with the highest crash rates. This result contradicts some past studies, 

which concluded widening lanes could consistently reduce crash frequency (AASHTO 

2010). More recently, Park and Abdel-Aty (2015a) assessed the safety effects of 

multiple roadside treatments (i.e., poles, trees, etc.) using GLM, GNM, and multivariate 

adaptive regression splines (MARS) model. The MARS model could capture both 

nonlinear relationships and interaction impacts between variables. Results showed that 

GNMs generally provided slightly better fits than the GLMs, and MARS model 

outperformed the other two. This indicated the roadside treatments had nonlinear effects 

on crash risk. 

2.3 Safety Effects of Combined Treatments 

A number of CMFs for various single treatments of roadway segments and 

intersections are provided in the HSM. No CMFs for combined treatments are available 

in the current version. However, it is common in practice that multiple countermeasures 
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are implemented simultaneously at a site to reduce the number and severity of collisions. 

The recommended approach (HSM method) of calculating the combined CMF for 

multiple treatments is multiplying the CMFs for individual elements or treatments 

together, as shown in Equation 2-1. Very limited combined safety effects have been 

reported in the CMF Clearinghouse (CMFClearinghouse 2014). 

1 2 ncomb X X XCMF CMF CMF CMF     (2-1) 

Where,  

combCMF  = the combined CMF for n elements or treatments ( 1 2, , , nX X X ); and, 

iXCMF  = the specific CMF for element or treatment iX . 

The main concept of this approach is that the simultaneously implemented 

treatments are independent. The safety effect of various countermeasures will not 

overlap when implemented at the same time. But this is not always true, especially when 

the target crashes of these countermeasures are the same. In such cases, the expected 

reduction in number of crashes will usually be lower than the sum of individual 

treatments. And the product of individual CMFs will underestimate the true combined 

CMF (i.e., safety benefits are overestimated) (Bonneson and Lord 2005; Harkey et al. 

2008; Roberts and Turner 2007). To address this problem, researchers have proposed a 

couple of alternatives for estimating combined effects of multiple treatments, e.g., 

reducing the safety effects of less effective treatments, applying only the most effective 

CMF, multiplying weighted factor (Turner method), weighted average of multiple CMFs 

(also known as meta-analysis method), etc. More details of these methods are 

documented in Gross et al. (2012), Elvik (2009) and Gross and Hamidi (2011). A 
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common concept within these approaches is that simultaneously implemented treatments 

usually have overlapped safety effects. 

Park et al. (2014b) estimated CMFs for two single treatments (installing shoulder 

rumble strips, and widening shoulder width) and the combined CMF for implementing 

the two simultaneously on rural multi-lane highways. The results confirmed that the 

combined CMFs, in general, did not equal to the product of the two single CMFs. The 

researchers further calculated CMFs for multiple treatments using various combining 

methods and compared them with those estimated using real data. It was found that each 

method applied to different crash types and injury levels. 

Park and Abdel-Aty (2015b) later developed adjustment functions for combined 

CMFs. An adjustment factor (AF) or adjustment function (A-Function) was introduced 

to assess the combined safety effects of two treatments (installing shoulder rumble strips, 

and widening shoulder width) on rural two-lane highways. An AF higher than 1.0 

indicated the combined amount of crash reduction was lower than the sum of individual 

treatments. And vice versa if it was less than 1.0. Particularly, when it equaled to 1.0, the 

treatments were independent of each other. The AF (or A-Function) used in the study is 

shown in Equation 2-2.  

1 2 ncomb X X XCMF CMF CMF CMF AF      (2-2) 

Where,  

AF  = the adjustment factor for treatments 1 2, , , nX X X , AF > 0. 

Three nonlinear A-Functions for the combined CMFs were developed 

considering different crash types and severities. All of them were higher than 1.0, which 
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indicated the combined CMFs calculated using HSM method were underestimated. The 

amount of underestimation varied based on crash types and severities. In addition, the 

AFs also varied as the original shoulder width changed rather than kept as constant 

values. That means the level of dependence between the two treatments was not identical 

among all conditions.  

Although only a few studies estimated the combined effects of multiple safety 

treatments (Bauer and Harwood 2013; De Pauw et al. 2014; Park and Abdel-Aty 2015b; 

Park et al. 2014b; Wang et al. 2015), it has shown that some treatments or highway 

characteristics do influence crashes dependently. Under such conditions, the 

independence assumption of regression models cannot be met. This might potentially 

reduce the quality of CMFs. No matter which CMF combination method is used, reliable 

individual CMFs are critical for estimating safety effects of both combined and single 

treatments.  

2.4 Summary 

The primary findings from the literature review are summarized below: 

(1) Both before-after and cross-sectional studies have their own drawbacks. So 

far, no study has fully investigated whether or not the CMFs derived from regression 

models really reflect the true safety effects of treatments. It is necessary to evaluate the 

accuracy of CMFs estimated from regression models. 

(2) In the previous studies, analyses using nonlinear methods generally showed 

better results than the commonly used GLM approach. This indicates some variables 
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indeed have nonlinear and/or non-monotonic effects on crash frequency, and the CMFs 

derived using normal GLMs may not be able to adequately capture these types of 

relationships. 

(3) The combined CMF of multiple treatments do not always equal to the 

productive of single CMFs of individual treatments. In other words, some treatments or 

highway characteristics are not actually independent. That is to say the independence 

assumption of regression models cannot always be met in practice. This might 

potentially reduce the quality of CMFs. It is necessary to examine the accuracy of 

individual CMFs derived from regression models considering the dependence of 

variables. 

This chapter has introduced some relevant background of CMFs/CM-Functions 

and numbers of potential problems with the common CMF developing approaches. The 

next chapter documents the methodology used to evaluate the quality of CMFs. 
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3. METHODOLOGY 

 

This chapter describes the methodologies regarding how to examine the accuracy 

of CMFs derived from regression models. Sections 3.1 provides the simulation protocol 

for estimating the accuracy of CMFs. Section 3.2 describes the methodology for 

quantifying the omitted-variable problem. Section 3.3 mainly introduces the 

measurement used to quantify the nonlinearity. Sections 3.4 considers variables 

correlations, a common phenomenon with practical crash data. Section 3.5 presents the 

specific methodology to investigate the independence problem. Section 3.6 describes the 

simulated datasets. And finally, Section 3.7 summarizes all the scenarios in this study. 

3.1 Simulation Analysis for Linear Relationships 

This section first describes the simulation protocol used to estimate the accuracy 

of CMFs derived from regression models, mainly focusing on linear relationships. 

Following that, a simulation example is provided to illustrate the specific procedures. 

And the scenarios with linear relationship are summarized in the last part. 

3.1.1 Simulation Protocol 

To investigate the use of regression models for developing CMFs, CMFs for 

different variables have to be derived from regression models and compared with their 

true safety effect. However, the exact safety effect of a feature or treatment is hardly 

known in the real world, this makes it extremely difficult to examine the CMFs when 

observed crash data are used. But, by analyzing simulated data, one can compare the 
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CMFs estimated from regression models with the assumed true values. So, this study 

mainly used simulated data. 

This section establishes a simulation protocol for evaluating CMFs derived from 

regression models. The simulation experiment used in this study was proposed by Hauer 

(2014). First, CMFs (i.e., safety effects) for some highway geometric features were 

assumed. Then, random crash counts were simulated based on the assigned values of 

CMFs. Finally, the CMFs were estimated from the simulated crash data and compared 

with the true CMFs. This research adopted this simulation procedure, but necessary 

changes were made. The simulation contains five steps, as described in detail below: 

Step 1: Assign initial values 

Assume CMFs for highway geometric features of interest. Tasks 1 and 2 (i.e., 

linear relationship and omitted variable) assumed an exponential relationship between a 

highway geometric feature and its safety effect. For example, it was assumed that the 

CMF for lane width was _LW AssumedCMF , meaning the expected crash frequency was 

multiplied or divided by _LW AssumedCMF  if the lane width increased or decreased by one 

foot. Task 3 assumed multiple forms of relationships (i.e., linear and nonlinear) between 

variables and crash risk. 

Step 2: Calculate mean values 

Calculate the true crash means for each segment using SPFs and assumed CMFs 

using Equation 3-1 (AASHTO 2010). 

, , 1, 2, ,( )true i spf i i i m iN N CMF CMF CMF C       (3-1) 

Where, 
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,true iN  = true crash mean for roadway segment i for a certain time period (i.e., one 

year). The true crash mean was the theoretical number of crashes that occur on a 

segment, it was used to generate random crash counts in this study; 

,spf iN  = crash mean for roadway segment i  for the base conditions, generated 

from an SPF; 

,j iCMF  = assumed CMF specific to geometric feature type j  of segment i , 

1,2, ,j m ; 

m = the total number of variables or geometric features of interest; and 

C = calibration factor to adjust SPF for local conditions, and was assumed to be 

1.0 for all segments in this study. 

The SPF in this study was adopted from the HSM (AASHTO 2010) for rural two-

lane highways (the same as the data used in this study, described in Section 3.6), as 

shown in Equation 3-2. 

6 0.312 4

, 365 10 2.67 10spf i i i i iN AADT L e L AADT            (3-2) 

Where, 

iAADT  = average annual daily traffic (AADT) volume (vehicles per day) of 

segment i; and 

iL  = length of roadway segment i, (mile). 
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Step 3: Generate discrete counts 

Generate random counts iY  given that the mean for segment i  was gamma 

distributed with dispersion parameter   (the inverse dispersion parameter, 1/   ) 

and mean equal to 1 (Lord 2006): 

, ( )i true i iN exp    (3-3a) 

( ) ~ (1,  )iexp Gamma   (3-3b) 

~ ( )i iY Poisson   (3-3c) 

Where,  

i  = Poisson mean for segment i for a certain time period; 

i  = model error independent of all the covariates, and ( )iexp   was assumed to 

be independent and gamma distributed with mean equal to 1 and dispersion parameter 

equal to  ; and, 

iY  = randomly generated crash counts for segment i  for a certain time period.  

Thus, the simulated crash counts followed Poisson-Gamma or NB distribution 

with parameters   and i . The probability density function (PDF) is given by 

Equation 3-4 (Lord 2006). 

( )
( ; , ) ( ) ( )

( ) !
iyi i

i i

i i i

y
f y

y

 
 

    

 


  
 (3-4) 

Where,  

iy  = crash count for segment i for a certain time period; 
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i  = the crash mean during a period for segment i; and, 

  = inverse dispersion parameter. 

Step 4: Estimate CMFs from the simulated crash data 

As has been documented in the background, many models and functional forms 

have been proposed to predict crashes. In this study, the most commonly used GLM and 

functional form were selected, as shown in Equation 3-5 (Lord and Bonneson 2007). 

Note that a different parameter for describing the mean of the site, i , was used for 

estimating the models (compared to the one used for the simulation, i ). 

1

0

2

( ) ( )
n

i i j j

j

E L AADT exp x
 



       (3-5) 

Where, 

( )iE   = the estimated crash mean during a period for segment i; 

jx  = a series of variables, such as the lane width of segment i; and, 

0 1, , , n    = coefficients to be estimated. 

For the GOF of the models, the following three methods were used: (1) Akaike 

information criterion (AIC), (2) Mean absolute deviance (MAD), and (3) Mean-squared 

predictive error (MSPE). More information about MAD and MSPE are documented in 

Lord et al. (2008). 

Once the model was fitted and coefficients were estimated using the simulated 

crash data, the CM-Function for variable j was then derived as (Gross et al. 2010; Lord 

and Bonneson 2007): 



 

24 

 

, 0,[ ( )]x j j jCMF exp x x    (3-6) 

Where,  

j  = estimated coefficient for variable j; 

x  = value of variable j, such as lane width, curve density; 

0, jx  = base condition defined for variable j, usually 12 ft for lane width; and, 

,x jCMF  = CMF specific to variable j with value of x. 

This also indicated the CMF derived from the SPF for variable j was

( )j jCMF exp  , meaning the expected crash frequency would be multiplied or divided 

by jCMF  if the variable j increased or decreased by one unit. 

Repeat Steps 2 to 4 100 times, calculate the mean and the standard deviation of 

the estimated CMF values for each variable.  

Step 5: Evaluate the CMF derived from the regression models 

Two indexes, estimation bias and error percentage, were used to evaluate the 

CMF derived from SPFs. They are shown in Equations 3-7 and 3-8. The smaller is the 

error percentage, the more accurate the CMF derived from SPFs is. 

_ _=j j Assumed j SPFCMF CMF   (3-7) 

_

100
j

j

j Assumed

e
CMF


   (3-8) 

Where, 

j  = estimation bias of CMF for variable j; 
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je  = error percentage of CMF for variable j, (%); 

_j AssumedCMF  = assumed CMF value for variable j; and  

_j SPFCMF  = CMF derived from the SPF for variable j. 

Please note the meaning of terminology “bias” used above to quantify the quality 

of CMFs. In Mathematics and Statistics, bias is defined as a systematic (built-in) error 

which makes all values or estimates wrong in the same direction and by a certain amount 

(Math is Fun 2014). Specifically, bias in this dissertation means the difference between 

the true CMF for a variable and that estimated from regression models. It can also be 

defined as misspecification error (as some CMFs are misestimated in the models). 

However, to simplify the description, the issue of misspecification is referred as “bias” 

in the rest of this dissertation. 

3.1.2 Simulation Example 

This section provides an example to illustrate the various steps used for 

generating crash data and the method of evaluating CMFs. 

Table 1 below shows snapshots of the simulated crash counts for N segments 

considering a single variable of lane width. In this table, the CMF was assumed to be 

0.9, which meant the increase of one foot in lane width decreased the predicted number 

of crashes by 10 percent (1.0 - 0.9), with the base condition for a lane width equal to 12 

ft. So, the CMF specific to a segment i can be calculated as Equation 3-9. The assumed 

CM-Function for lane width is shown in Figure 1 (the dotted line with triangles). 
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Table 1 Example of Simulated Crash Counts for N Segments 

Seg. L a AADT LW b CMF spfN  
trueN  Yr 1 Yr 2 Yr 3 

1 0.113 15360 11 1.111 0.47 0.52 0 0 1 

2 0.213 18420 8 1.524 1.05 1.60 1 3 2 

3 0.125 4260 9 1.372 0.14 0.20 0 0 1 

4 0.161 10600 10 1.235 0.46 0.56 1 0 1 

5 0.196 12560 12 1.000 0.66 0.66 1 0 2 

... ... ... ... ... ... ... ... ... ... 

N 0.234 4580 13 0.900 0.29 0.26 0 1 1 

Note: a – L = length (mile); b - LW = lane width (ft). 

 

 

Figure 1 An Example Illustrating the Assumed CMF and CMF Derived from SPFs 

 

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

8 9 10 11 12 13

C
M

F

Lane Width, ft

Assumed CMF CMF from C-S Study



 

27 

 

The CMF for lane width is given by: 

12

, 0.9 i

i

LW

LW iCMF


  (3-9) 

Where, 

iLW  = lane width of segment i (ft); and 

,iLW iCMF  = specific CMF for lane width of segment i. 

Thus, the true crash mean of segment i was calculated as (recall that the 

calibration factor was assumed to be 1.0 for all segments in this study): 

, ,,true i LW ispf iN N CMF   (3-10) 

Then, the ( )iexp   of each segment was randomly generated based on a Gamma 

distribution with parameters mean equal to 1 and dispersion parameter equal to  , 

which had the value of 2 in Table 1. i  of segment i was then calculated by multiplying 

,true iN  and ( )iexp  , as shown in Equation 3-3b. 

After, a sequence of Poisson counts were generated based on the mean   for 

each segment. Three years of simulated crash counts are shown in the last three columns 

in Table 1. The theoretical function form of these crash counts is shown in 

Equation 3-11. 

124
, ,, 2.67 10 0.9 iLW

true i i iLW ispf iN N CMF L AADT         (3-11a) 

Or equivalently,  

4
, 9.45 10 ( 0.105 )true i i i iN L AADT exp LW        (3-11b) 
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The simulated crash data was analyzed using the NB regression model. The mean 

functional form is provided in Equation 3-12.  

1

0 2( ) ( )i i iE L AADT exp LW        (3-12) 

The coefficients of Equation 3-12 were estimated using a NB regression model in 

MASS package (Ripley et al. 2014) within the software R. The GOF measures were 

calculated using Metrics package (Hamner 2013). The modeling output is shown in 

Table 2. The p-values indicate the variables were statistically significant at the 99 

percent level in this example. And, the small MAD and MSPE show the modeling result 

performed well (given the simulated data). 

Based on the fitting result, the CM-Function for lane width derived from this SPF 

is shown in Equation 3-13. 

12

2[ ( 12)] 0.915LW

LWCMF exp LW      (3-13) 

The value of 12 in Equation 3-13 reflects the base condition for lane width, 

which means that the CMF derived from prediction model is equal to 1.0. In this case, 

with an increment of one foot in lane width, the crash mean was expected to be 

multiplied by 2 0.915e  . So, the CMF derived from the SPF was 0.915 in this 

example. The CM-Function is also shown in Figure 1 (the dash line with circles). 



 

29 

 

Table 2 Modeling Output of the Example Data 

Model Variable Theo. Value a Coef. Value b SE c p-Value 

Intercept [ 0( )ln  ] 4(9.45 10 )ln  =-6.96 -6.810 0.340 5.3911E-89 

Ln(AADT) ( 1 ) 1.00 0.960 0.036 9.996E-161 

Lane Width ( 2 ), ft -0.105 -0.089 0.012 1.5953E-13 

AIC   20614.5  

MAD   0.214  

MSPE   0.244  

Note: a – theoretical value; b – estimated coefficient value; c – SE = standard error. 
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The bias between the assumed CMF and that from the SPF (without repeat in this 

example) is calculated as: 

= 0.90 0.915 0.015Assumed SPFCMF CMF       

And the error percentage is: 

0.015
100 100 1.69(%)

0.90Assumed

bias
e

CMF


      

By repeating the Steps 2 to 4 100 times, 100 CMFs could be estimated. The mean 

and standard deviation of CMFs and mean of GOF measures could be calculated. The 

estimation bias and error percentage were then calculated based upon the mean value of 

derived CMFs. For illustration purposes, this example only considered one variable, lane 

width. 

3.1.3 Scenarios 

Two scenarios were examined in Task 1 to accommodate more complex 

situations with different levels of dispersions (i.e., inverse dispersion parameters) and 

two additional variables, curve density and pavement friction. The scenarios are 

described below. The scenarios were names as “Scenario Number”. To make it 

consistent, the scenarios in the following tasks were given similar names, and the 

scenario numbers were continuous. 

Scenario I: Consider one variable only, linear relationship 

Various CMF values were assumed for lane width in this scenario. The objective 

was to examine whether or not the regression models can produce reliable CMFs when 

all the requirements of a cross-sectional study were satisfied.  



 

31 

 

Scenario II: Consider three variables, linear relationship 

This scenario considered three variables, lane width, curve density and pavement 

friction. Details about the last two variables are introduced in Section 3.6.1. A fixed 

CMF value was assigned for each of the three variables. The objective was to examine 

whether the CMFs derived from SPFs were reliable when multiple variables were 

considered. 

To reflect different traffic characteristics, the inverse dispersion parameter   in 

the two scenarios varied between 0.5, 1.0 and 2.0, respectively. 

3.2 Omitted Variable Problem 

As has been documented in Chapter 2, omitted variable is an important problem 

with regression models. This problem can lead to biased parameter estimates in the 

regression models and incorrect CMFs. This task investigated how the omitted-variable 

problem influenced the CMFs derived from regression models. In the previous section, 

all factors that influenced crash risk were assumed to be known. In contrast, not all the 

factors affecting crash risk were known or able to be captured by the model in this 

section. One scenario (i.e., Scenario III) was studied to address this problem, as 

described below.  

Scenario III: Omitted variables, linear relationship 

This scenario considered three variables, lane width, curve density and pavement 

friction. Their CMFs were assumed to be in linear forms, the same as that in Scenario II. 

But only one variable, the lane width, was included in the SPF; this fell under the 
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omitted-variable problem. The inverse dispersion parameter   in this scenarios also 

varied between 0.5, 1.0 and 2.0, respectively. 

The methodology used to evaluate the quality of CMFs in this section was 

essentially the same as that in Section 3.1, except that the two variables were excluded in 

the regression model. 

3.3 Nonlinear Relationships 

This section describes how the accuracy of CMFs derived from SPFs was 

investigated when some variables had nonlinear relationships. Intuitively, if the 

nonlinear relationship is weak (the CM-Function curve is quite flat or approximately a 

straight line), the accuracy of CMFs derived from SPFs should be similar to those in the 

previous scenarios. In the contrast, if the nonlinear relationship is strong (the curve is 

sharp), the accuracy of CMFs may be potentially affected. A measurement is necessary 

to describe how flat or sharp the curve is. This section first introduces the concept of 

quantifying nonlinearity, then presents the scenarios. 

3.3.1 Quantifying Nonlinearity 

First, the definition of the closest line to a curve. For a given integrable curve 

( )y f x  over [ ,  ]m n , the closest line to this curve is defined as a straight line 

y k x c    that minimizes the area between the two. This definition is illustrated in 

Figure 2. The dashed curve represents the given function ( )y f x , and the solid line 

represents the closest line to this curve y k x c   . This line minimizes the area 
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between the two (the shadowed area in Figure 2). Given the range, in general, the larger 

the area is, the stronger the nonlinearity the curve tends to have. Particularly, if the given 

function is linear, the closest line is the function itself, and the area is technically equal 

to zero. 

 

 

Figure 2 Example Illustrating the Closest Line to a Curve 

 

Second, the definition of average vertical distance between a curve and its 

closest line. Although the area between a curve and its closest line can reflect the 

nonlinearity of the curve, the area still depends on the range. Wider range is more likely 

to yield larger area. The variables affecting traffic crashes are usually different in their 

possible values in practice. For example, the lane width may vary from 8 ft to 13 ft, 
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while the curve density may vary from 0 to 16 curves per mile. A standardized 

measurement is necessary to quantify the nonlinearity. The average vertical distance 

(AVD) between a curve and its closest line is defined as the area between the two 

divided by the range. So, in Figure 2, the AVD is calculated as dividing the shadowed 

area by n m . This way, the AVD itself can be used to quantify the nonlinearity of a 

curve regardless of its range. The larger this distance is, the stronger the nonlinearity that 

curve has. If the given function is linear, the AVD is zero. 

The details for calculating the coefficients of the line (i.e., k  and c ) and AVD 

are shown below. The objective is to minimize the area, shown in Equation 3-14. 

| ( ) ( ) |
n

m
Area f x k x c dx     (3-14a) 

Or equivalently,  

2[ ( ) ( )]
n

m
Z f x k x c dx     (3-14b) 

k and c can be easily derived through mathematical translations, shown below. 

2 2

( ) ( ) ( )

( ) [ ]

n n n

m m m

n n

m m

n m xf x dx f x dx xdx
k

n m x dx xdx

 


 

  

 
 

2

2 2

( ) ( )

( ) [ ]

n n n n

m m m m

n n

m m

f x dx x dx f x dx xdx
c

n m x dx xdx




 

   

 
 

The area can be calculated by substituting k and c into Equation 3-14a, and the 

AVD is then calculated as dividing the area by n m . The AVD was used to measure 

the nonlinearity of a CM-Function in this study. 
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3.3.2 Scenarios 

The method used to evaluate the accuracy of CMFs with nonlinear relationships 

with crash risk was similar with that of linear relationships. The only difference was that 

nonlinear CM-Functions were assumed for some variable(s) and used to generate crash 

counts. Three scenarios were analyzed in this section, as described below. 

Scenario IV: Consider one variable only, in nonlinear form 

Only lane width was considered and assumed to have nonlinear effects on crash. 

The main objective was to examine the bias of CMF for a variable with different levels 

of nonlinearity.  

Scenario V: Consider three variables, only one in nonlinear form 

Three variables, lane width, curve density and pavement friction, were 

considered in this scenario. Fixed CMFs were assigned to curve density and pavement 

friction. The CM-Functions for lane width were assumed to be in nonlinear forms. The 

main objective was to examine the influence of nonlinear variables on the accuracy of 

CMFs for linear variables. 

Scenario VI: Consider three variables, two in nonlinear form 

This scenario was similar with Scenario V, but both lane width and curve density 

were assumed to have nonlinear relationships. The CMF for pavement friction was 

fixed. The main objective was to examine the influence of nonlinear variables on the 

accuracy of CMFs for both linear and nonlinear variables. 
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For all the three scenarios, the assumed nonlinear relationships varied from weak 

to strong. Thus, each scenario contained a number of sub-scenarios. In addition, the 

inverse dispersion parameter    in each sub-scenario varied between 0.5, 1.0 and 2.0. 

Note that, in Section 3.1, the theoretical functions for generating crash counts and 

the considered functional forms in regression models were of the same family (i.e., 

linear form or relationship). And the assumed CMFs and those generated from SPFs 

were similar (i.e., single ones). Only one bias and error percentage were calculated to 

examine the quality of CMFs. However, in this section, the theoretical functions were in 

nonlinear forms, which were not of the same family as the considered functional forms. 

No single CMF could be used to represent the assumed CM-Function. Thus, one bias or 

error percentage was not enough to assess the quality of CMFs. To overcome this 

problem, several specific CMFs for variables at typical points from both the assumed 

CM-Function and that developed from regression models were compared, and the bias 

and error percentage were calculated based on the specific CMFs. 

3.4 Variable Correlation 

In the previous sections, all the considered variables were assumed to be 

(perfectly) independent of each other, and each was uniformly or discrete uniformly 

distributed among the corresponding range (as will be shown in Section 3.6.1). 

However, this might not be the case in practice. Some variables may be highly correlated 

with each other. For example, when constructing two highways, one with higher demand 

(i.e., AADT) and the other with lower, it is common that the former one will be designed 
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with higher standard, e.g., wider lanes and shoulders, etc. Thus, variables AADT and 

lane width are correlated. And also, in highway design manuals (AASHTO 2004; 

TxDOT 2014), lane width is recommended to be 12 ft for most highways. So 12 ft may 

be prevalent among lanes, and it is not discrete uniformly distributed in practices. This 

might affect the regression result and hence the CMFs for variables. This section aimed 

to examine whether or not variable correlation had influence on the CMFs derived from 

regression models. Two scenarios (i.e., Scenario VII and VIII) were analyzed, as 

described below. 

Scenario VII: Variable correlation, linear relationship 

This scenario considered one variables, lane width, only. Various CMF values 

were assumed for lane width. This scenario was basically the same as Scenario I, except 

the variable lane width was correlated with AADT. 

Scenario VIII: Variable correlation, nonlinear relationship 

Only lane width was considered and assumed to have nonlinear effects on crash. 

This scenario was basically the same as Scenario V, except the variable lane width was 

correlated with AADT. 

The inverse dispersion parameter   in the two scenarios varied between 0.5, 1.0 

and 2.0, respectively. The methodology used to evaluate the quality of CMFs in this 

section was also essentially the same as that in Sections 3.1 and 3.3, except that two 

variables AADT and lane width were correlated. A new dataset was generated, as will be 

described in Section 3.6.2. 
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3.5 Combined Safety Effect 

A similar approach was used to evaluate the CMFs derived from regression 

models considering the dependence of variables (not in a statistical sense), but it was 

modified to fit the specific characteristics of this task. The main concepts were: 

(1) assume CMFs and dependence for variables; (2) generate random crash counts; and 

(3) estimate CMFs using regression models and compare them with the assumed true 

values.  

The major difference in this section was the use of adjustment factors (AFs). An 

adjustment factor was assumed to capture the combination effect of multiple treatments. 

This was similar to the method used in the recent study by Park and Abdel-Aty (2015b). 

The combined CMF for multiple treatments is calculated by Equation 3-15. 

       11 1

1

nX X X Xbase n nbase

n

I X I X

comb X XCMF CMF CMF AF        (3-15) 

Where, 

combCMF  = the combined CMF for a segment; 

jXCMF  = the assumed specific CMF for variable jX  of the segment; 

AF  = assumed adjustment factor for variables 1X , 2X , , nX ; 

jbaseX  = the base condition for variable jX ; and, 

   
j jbase

jX X
I X


 = indicator function for variable jX . It equaled to zero if variable 

jX  of the segment was equal to the base condition, otherwise 1.0. 



 

39 

 

The indicator functions made the adjustment factor to be working or not based on 

specific conditions of the segment and the presumed dependence relationships between 

variables.  

To simplify the analysis, only two variables, lane width and shoulder width, were 

considered in this scenario (i.e., Scenario IX). And each variable in the dataset was 

assigned one of two values: the baseline and improved, respectively. For lane width, it 

was either 12 ft (baseline) or 13 ft (wider lane). And for shoulder width, it was either 6 ft 

(baseline) or 7 ft (wider shoulder). This way, the total segments could be classified into 

four categories: (1) baseline; (2) wider lane; (3) wider shoulder; and (4) wider lane and 

wider shoulder. They are described in Table 3. 

The CMF for lane width was assumed to be CMFLW with baseline equal to 12 ft. 

So, the specific CMFs for lane widths of 12 ft and 13 ft were 1.0 and CMFLW, 

respectively. Similarly, the CMF for shoulder width was assumed to be CMFSW with 

baseline equal to 6 ft. The specific CMFs for shoulder widths of 6 ft and 7 ft were 1.0 

and CMFSW, respectively. This study assumed neither CMFLW nor CMFSW equaled to 

1.0. Furthermore, the adjustment factor was used to capture the dependence of the safety 

effects of the two variables. That is to say, if a segment was wider in both lane and 

shoulder, the combined CMF was multiplied by the adjustment factor. The CMFs for 

lane width, shoulder width and combined CMF for the four groups of segments are 

shown in the last three columns of Table 3. 
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Table 3 Summary of Four Groups of Segments 

Group 
LW 

(ft) 

SW 

(ft) 

CMF for 

LW 

CMF for 

SW 
Combined CMF 

Baseline 12 6 1.0 1.0 1.0 

Wider Lane 13 6 CMFLW 1.0 CMFLW 

Wider Shoulder 12 7 1.0 CMFSW CMFSW 

Wider Lane and 

Wider Shoulder 
13 7 CMFLW CMFSW CMFLW   CMFSW   AF 

Note: LW = lane width; SW = shoulder width. 

 

Specifically, the assumed CMF for lane width (i.e., CMFLW) varied between 0.8 

and 0.9. And that for shoulder width (i.e., CMFSW) varied between 0.85 and 0.9. The 

adjustment factor changed from 0.80, 0.90, 0.95, 1.05, 1.10 to 1.20. When the 

adjustment factor is less than 1.0, it means widening both lane and shoulder width 

simultaneously will bring more safety benefits than the “sum” of the two single 

treatments. The smaller the adjustment factor is, the more benefit will be. In contrast, if 

it is more than 1.0, taking the two treatments simultaneously will have a lower effect 

than their “sum.” The higher the adjustment factor is, the lower the combined safety 

effect will be.  

In total, there were 24 sub-scenarios in this section, shown in Table 4. The 

inverse dispersion parameter ( ) varied between 0.5, 1.0 and 2.0 in each sub-scenario to 

reflect different traffic characteristics. 

The theoretical function of the generated crash counts in this scenario is shown in 

Equation 3-16. 
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4

, , , ,2.67 10true i spf i comb i i i comb iN N CMF L AADT CMF        (3-16) 

Where, 

,true iN  = true crash mean for roadway segment i during a certain time period (i.e., 

one year); 

iAADT  = AADT of segment i (vehicles per day); 

iL  = length of segment i (mile); and, 

,comb iCMF  = the combined CMF for lane width and shoulder width of segment i. 

It was calculated by the methods shown in Table 3 (the last column). 

The CMFs for the two variables were derived from SPFs with similar procedures 

utilized in the previous study. The considered functional form is shown in 

Equation 3-17, in which the two variables (i.e., lane width and shoulder width) were 

assumed to influence crashes independently.  

1

0 2 3( ) ( )i i i iE L AADT exp LW SW           (3-17) 

Where, 

( )iE   = the estimated crash mean during a period (i.e., one year) for segment i; 

iLW  = lane width of segment i (ft); 

iSW  = shoulder width of segment i (ft); and 

0 1 2 3, , ,     = coefficients to be estimated. 
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Table 4 Summary of Sub-Scenarios in Scenario IX 

Sub-Scenario CMF for LW CMF for SW AF 

IX-1 0.8 0.85 0.80 

IX-2 0.8 0.85 0.90 

IX-3 0.8 0.85 0.95 

IX-4 0.8 0.85 1.05 

IX-5 0.8 0.85 1.10 

IX-6 0.8 0.85 1.20 

IX-7 0.8 0.9 0.80 

IX-8 0.8 0.9 0.90 

IX-9 0.8 0.9 0.95 

IX-10 0.8 0.9 1.05 

IX-11 0.8 0.9 1.10 

IX-12 0.8 0.9 1.20 

IX-13 0.9 0.85 0.80 

IX-14 0.9 0.85 0.90 

IX-15 0.9 0.85 0.95 

IX-16 0.9 0.85 1.05 

IX-17 0.9 0.85 1.10 

IX-18 0.9 0.85 1.20 

IX-19 0.9 0.9 0.80 

IX-20 0.9 0.9 0.90 

IX-21 0.9 0.9 0.95 

IX-22 0.9 0.9 1.05 

IX-23 0.9 0.9 1.10 

IX-24 0.9 0.9 1.20 

Note: LW = lane width; SW = shoulder width. 
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The two coefficients for lane width and shoulder width (i.e., 2  and 3  in 

Equation 3-17) were used to estimate the CMFs for the two variables, respectively. The 

same indexes (i.e., estimation bias and error percentage) were used to evaluate the 

quality of CMFs derived from regression models, and the same GOF and prediction 

measures for the models were used for the regression models. 

3.6 Data Description 

This section describes the characteristics of the datasets used for the simulation 

analyses. Section 3.6.1 documents the datasets of roadway segments for Scenarios I to 

VI. Section 3.6.2 briefly summarizes the datasets for Scenarios VII and VIII (i.e., 

variable correlation.) And the datasets used in Scenario IX (i.e., combined safety effects 

of multiple treatments) is provided in Sections 3.6.3. 

3.6.1 Datasets for Scenarios I to VI 

The roadway data used in Scenarios I to VI contained 1,492 rural two-lane 

highway segments in Texas. The variables included segment length, AADT, lane width, 

curve density (i.e., curves/mile) and pavement friction. Pavement friction is the force 

that resists the relative motion between a vehicle tire and a pavement surface (Hall et al. 

2009). Generally, higher pavement friction is linked to safer roads. The segment length 

and AADT were based on actual values from the Texas data, while the other three were 

hypothetical variables created specifically for this study. The lane widths were generated 

from a discrete uniform distribution with parameters 8 and 13. The curve density and 

pavement friction were generated from continuous uniform distributions. For the curve 



 

44 

 

density, the parameters were 0 and 16. And for pavement friction, the parameters were 

16 and 48. The summary statistics of these variables are shown in Table 5. 

 

Table 5 Summary Statistics of Highway Segments for Scenarios I to VI 

Variable Sample Size Min. Max Mean (SD c) 

Length (mile) 1492 0.1 6.3 0.55 (0.67) 

AADT 1492 502 24800 6643.9 (3996.4) 

Lane Width (ft) 1492 8.0 13.0 10.47 (1.74) 

CD a (per mile) 1492 0.02 16.0 8.1 (4.66) 

PF b 1492 16.0 47.9 31.9 (9.08) 

Note: a – CD = curve density; b – PF = pavement friction; c - SD = standard deviation. 

 

3.6.2 Datasets for Scenarios VII and VIII 

The considered variables in the previous section were generated independently, 

which might not be able to reflect the reality. Some highway characteristics are usually 

correlated with each other in practice. For example, roadways with higher AADT are 

more likely to be designed with wider lanes. In order to reflect the correlations between 

variables, the lane widths in this section were generated base on a multinomial logistic 

(MNL) regression analysis between AADT and lane width. The MNL model was 

developed from a real dataset, and it is shown in Table 6. 
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Table 6 MNL for Generating Lane Width (Baseline: 8 ft) 

LW (ft) Intercept AADT (in 100,000) 

9 2.202 -13.28 

10 4.751 3.57 

11 6.836 3.00 

12 7.072 6.94 

13 4.687 6.36 

Note: LW = lane width. 

 

So, for a given segment with AADT equal to v (in 100,000), the probabilities for 

the segment of having an 8-ft, 9-ft, 10-ft, 11-ft, 12-ft, or 13-ft lane, respectively, can be 

calculated as below: 

5

2.20 13.28* 4.71 3.57* 4.69 6.36*

1
( 8 | 10 )

1 v v v
P LW AADT v

e e e  
   

   
 (3-18a) 

2.20 13.28*
5

2.20 13.28* 4.71 3.57* 4.69 6.36*
( 9 | 10 )

1

v

v v v

e
P LW AADT v

e e e



  
   

   
 (3-18b) 

4.71 3.57*
5

2.20 13.28* 4.71 3.57* 4.69 6.36*
( 10 | 10 )

1

v

v v v

e
P LW AADT v

e e e



  
   

   
 (3-18c) 
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5

2.20 13.28* 4.71 3.57* 4.69 6.36*
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
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2.20 13.28* 4.71 3.57* 4.69 6.36*
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Specifically, for a segment with 6,000 AADT, the six probabilities are 0.0003 (8 

ft), 0.0013 (9 ft), 0.0447 (10 ft), 0.3474 (11 ft), 0.5568 (12 ft), and 0.0496 (13 ft), 

respectively. 

Lane widths were generated for the 1,492 segments. Segment length and AADT 

were the same as those in Section 3.6.1. The summary statistics of these segments are 

shown in Table 7. 

 

Table 7 Summary Statistics of Highway Segments for Scenarios VII and VIII 

Variable Sample Size Min. Max Mean (SD) 

Length (mile) 1,492 0.1 6.3 0.55 (0.67) 

AADT 1,492 502 24800 6643.9 (3996.4) 

Lane Width (ft) 1,492 8.0 13.0 11.62 (0.68) 

Note: SD = standard deviation. 

 

3.6.3 Datasets for Scenario IX 

Scenario IX utilized the same roadway segments as those in the previous 

scenarios. The segment length and AADT were observed real data, while the two 

variables, lane width and shoulder width, were generated from discrete uniform 

distributions, respectively. Table 8 provides the summary statistics of the highway 

segments used in this scenario. Since both lane width and shoulder width had a discrete 

uniform distribution with two numbers, and they were independently generated, the four 

types of segment groups were equally distributed among all the segments. Each 

accounted for approximately 25%. 
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Table 8 Summary Statistics of Highway Segments for Scenario IX 

Variable Sample Size Min. Max Mean (SD) 

Length (mile) 1492 0.1 6.3 0.55 (0.67) 

AADT 1492 502 24800 6643.9 (3996.4) 

Lane Width (ft) 1492 12 13 12.5 (0.50) 

Shoulder Width (ft) 1492 6 7 6.5 (0.50) 

Note: SD = standard deviation. 

 

It is important to point out that this study selected four geometric features and the 

CMFs were mainly assumed based on their practical values (i.e., from HSM, CMF 

Clearinghouse, etc.) to reflect as close as possible the characteristics related to variables 

that can influence crash risk. However, it does not have to be so. With the simulation 

protocol, it would be possible for other researchers to use variables and ranges based on 

characteristics associated with the roadway entities in which the researchers have 

detailed information on these characteristics. 
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3.7 Summary 

This Chapter provided the methodologies regarding how to accomplish the four 

tasks. There are in total nine scenarios, as summarized below. 

Scenario I: Consider one variable only, linear relationship. 

Scenario II: Consider three variables, linear relationship. 

Scenario III: Omitted variables, linear relationship. 

Scenario IV: Consider one variable only, in nonlinear form. 

Scenario V: Consider three variables, only one in nonlinear form. 

Scenario VI: Consider three variables, two in nonlinear form. 

Scenario VII: Variable Correlation, linear relationship. 

Scenario VIII: Variable Correlation, nonlinear relationship. 

Scenario IX: Combined safety effect. 

The next chapter discusses the detailed evaluation of CMFs in each scenario. 
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4. ESTIMATING THE QUALITY OF CMFS 

 

Nine scenarios with numbers of sub-scenarios were analyzed using the 

methodologies described in Chapter 3. This chapter documents the results. Sections 4.1 

to 4.5 provide the accuracy of CMFs for linear relationship, omitted variable, nonlinear 

relationship, variable correlation, and multiple treatments, respectively. The findings are 

summarized in Section 4.6. 

4.1 Linear Relationships 

This section documents the simulation results of Scenarios I and II, respectively. 

4.1.1 Scenario I: Consider Lane Width Only 

In this scenario, only the lane width was considered. All other factors affecting 

crash risk were assumed to be identical among all segments. This met the primary 

premise of cross-sectional studies that all locations were similar to each other in all other 

factors affecting crash risk. 

The assumed CMF for lane width varied from 0.85 to 1.05 with an increment of 

0.05. The theoretical function of the generated crash counts in this scenario is shown in 

Equation 4-1, which is similar to Equation 3-11, but the coefficient of lane width varied.
 

 (4-1a) 

                                                 

 Part of this chapter is reprinted with permission from “Validation of Crash Modification Factors Derived 

from Cross-Sectional Studies with Regression Models” by L. Wu, D. Lord and Y. Zou, 2015. 

Transportation Research Record: Journal of the Transportation Research Board, No. 2514, pp. 88-96, 

Washington, D.C. Copyright [2015] by the Transportation Research Board. 
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Or equivalently,  

 (4-1b) 

Where, 

LW  = coefficient of lane width, varied between -0.163, -0.105, -0.051, 0 and 

0.049, corresponding to the assumed CMFs equal to 0.85, 0.90, 0.95, 1.0 and 1.05, 

respectively; and, 

off  = offset coefficient, varied between 0.0019, 0.0010, 0.0005, 0.0003 and 

0.0002, corresponding to the assumed CMFs equal to 0.85, 0.90, 0.95, 1.0 and 1.05, 

respectively. 

The CMF for each assumed value was derived from the model using the same 

procedures illustrated in the simulation example (i.e., Section 3.1.2). The considered 

functional form is provided in Equation 3-12 (now 4-2 below). 

2  (4-2) 

The fitting results are shown in Table 9. It can be seen that for each of the 

assumed CMFs, the estimation bias between the CMF derived from the SPFs and the 

assumed value was relatively small under different simulation settings. The estimation 

bias was less than 0.005 for all scenarios, and the error was within 0.5 percent. The small 

standard deviation of CMFs (second column in Table 9) also indicated the CMFs derived 

from the experiments were consistent. 
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Table 9 Results of Scenario I 

Theo. 

CMF a 
CMF (SD) b Bias E c AIC d MAD e MSPE f 

  = 0.5 

0.85 0.849 (0.014) 0.001 0.127 11127.63 0.047 0.013 

0.90 0.901 (0.014) -0.001 0.107 10681.33 0.042 0.011 

0.95 0.949 (0.015) 0.001 0.114 10277.12 0.041 0.010 

1.00 0.998 (0.015) 0.002 0.170 9901.71 0.037 0.008 

1.05 1.051 (0.018) -0.001 0.109 9540.71 0.036 0.008 

  = 1.0 

0.85 0.849 (0.018) 0.001 0.149 11289.108 0.063 0.026 

0.90 0.902 (0.017) -0.002 0.246 10800.501 0.053 0.017 

0.95 0.945 (0.017) 0.005 0.498 10390.874 0.050 0.015 

1.00 1.002 (0.024) -0.002 0.233 9995.650 0.048 0.013 

1.05 1.051 (0.019) -0.001 0.076 9643.008 0.043 0.012 
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Table 9 Continued 

Theo. 

CMF a 
CMF (SD) b Bias E c AIC d MAD e MSPE f 

  = 2.0 

0.85 0.853 (0.022) -0.003 0.395 11020.611 0.083 0.044 

0.90 0.899 (0.023) 0.001 0.099 10574.470 0.068 0.029 

0.95 0.95 (0.024) 0.000   0.018 g 10185.386 0.065 0.026 

1.00 0.996 (0.026) 0.004 0.436 9827.826 0.062 0.025 

1.05 1.05 (0.025) 0.000   0.032 g 9454.310 0.056 0.022 

Note: a – theoretical CMF; b – mean of CMFs from 100 experiments, SD is the standard deviation of the 100 CMFs; c – E is 

the error percentage, %; d, e, f – each is the mean value of the corresponding GOF measure of the 100 results; g – the non-

zero error percentage with zero bias is caused by the rounding off during calculation. 



 

53 

 

Based on the result of Scenario I, it can be concluded that the CMFs derived 

from regression models can reflect the true safety performance of lane width when 

considering this variable only. In other words, if a regression model was based on a 

group of roadway segments that were ideally identical in all factors affecting traffic 

safety, except the segment length, AADT and lane width, the CMFs for lane width 

derived from the SPF should be unbiased. 

4.1.2 Scenario II: Consider Three Variables with Fixed CMFs 

In Scenario I, only one variable, the lane width, was considered. Scenario II 

considered a more practical condition: considering lane width, curve density and 

pavement friction. In this scenario, each of these three variables was assumed to have 

influence on crash risk, but they were not identical among all segments. This also met 

the primary premise of cross-sectional studies.  

CMFs for lane width, curve density and pavement friction were assumed to be 

fixed, and they were 0.90, 1.072 and 0.973, respectively. For curve density, the 1.072 

CMF meant that if the curve density of a segment increased by 1 per mile, the expected 

crash number would increase by 7.2 percent (1.072 - 1.0). And the baseline for curve 

density was 0 per mile. So, if the curve density of a segment was 0, the specific CMF for 

curve density of this segment was 1.0. For the pavement friction, the 0.973 CMF meant 

that if the pavement friction of a segment increased by 1 unit, the expected crash number 

would decrease by 2.7 percent (1.0 – 0.973). The baseline was 32. 

The theoretical function form of the crash data in scenario II is shown in 

Equation 4-3. And the fitting equation for this scenario is shown in Equation 4-4. 
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, , , , ,true i spf i LW i CD i PF iN N CMF CMF CMF     

12 3242.67 10 0.9 1.072 0.973i i iLW CD PF

i iL AADT
         (4-3a) 

Or equivalently,  

, 0.0023 ( 0.105 0.070 0.027 )true i i i i i iN L AADT exp LW CD PF        (4-3b) 

1

0 2 3 4( ) ( )i i i i iE L AADT exp LW CD PF              (4-4) 

Where, 

iCD  = curve density of segment i  (per mile); 

,CD iCMF  = specific CMF value for curve density of segment i ; 

iPF  = pavement friction of segment i ;  

,PF iCMF  = specific CMF value for pavement friction of segment i ; and, 

2 3 4, ,    = coefficients to be estimated for lane width, curve density and 

pavement friction, respectively. 

The result of this scenario is shown in Table 10. It can be seen that the CMFs 

derived from SPFs for all of the three variables were very close to the assumed values. 

The bias and error percentage were small. The result was quite similar as that of 

Scenario I. This means that, for fixed CMFs in this scenario, the regression model was 

able to derive reliable CMFs for the three variables. Furthermore, two other scenarios 

with more variables (five and eight in total, respectively) were analyzed, the results (not 

documented in this dissertation) were consistent with the results documented here with 

three variables. 
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Table 10 Results of Scenario II 

Variable* 
Theo 

.CMFa 
CMF (SD) b Bias E c AIC d MADe MSPEf 

  = 0.5 

LW 0.900 0.900 (0.013) 0.000 0.023 g     

CD 1.072 1.073 (0.006) -0.001 0.051 13864.7 0.10 0.06 

PF 0.973 0.973 (0.002) 0.000 0.040 g     

  = 1.0 

LW 0.900 0.897 (0.014) 0.003 0.366    

CD 1.072 1.072 (0.008) 0.000 0.019 g  14072.3 0.13 0.10 

PF 0.973 0.973 (0.004) 0.000 0.026 g     

  = 2.0 

LW 0.900 0.903 (0.023) -0.003 0.354    

CD 1.072 1.072 (0.009) 0.000 0.032 g 13736.2 0.16 0.17 

PF 0.973 0.972 (0.004) 0.001 0.063    

Note: a, b, c, d, e, f, g - the same notes as those in Table 9; * - LW = lane width, CD = curve density, PF = pavement friction. 
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Based on the results of this experiment, the CMFs derived from the commonly 

used GLMs can reflect the true safety performance when considering multiple variables 

and assuming other safety factors were identical among all segments. 

4.2 Omitted Variables 

This sections discusses Scenario III: consider three variables, but omit two in 

models. In Scenario II, although three variables were considered and included in the 

model, other factors affecting traffic safety were assumed to be identical among all 

segments. However, this was not the case in most crash prediction studies. Not all the 

factors affecting crashes were known or able to be captured by the model in practice. In 

this scenario, another condition was considered: both curve density and pavement 

friction were associated with crash risk, but only the lane width was included in the 

model. 

The assumed CMFs for lane width, curve density and pavement friction were 

0.90, 1.072 and 0.973, respectively, the same as those in Scenario II. The theoretical 

function of scenario III was the same as that of Scenario II, as shown in Equation 4-3b 

(now 4-5 below). In this scenario, the curve density and pavement friction were excluded 

from the model. So, the model for Scenario III was basically the same as that of 

Scenario I, as shown in Equation 3-12 or Equation 4-2 (now 4-6 below).  

, 0.0023 ( 0.105 0.070 0.027 )true i i i i i iN L AADT exp LW CD PF        (4-5) 

1

0 2( ) ( )i i iE L AADT exp LW        (4-6) 

 



 

57 

 

Table 11 Results of Scenario III 

Theo. 

CMF a 
CMF (SD) b Bias E c AIC d MAD e MSPE f 

  = 0.5 

0.90 0.898 (0.014) 0.002 0.211 14395.9 0.75 2.45 

  = 1.0 

0.90 0.890 (0.026) 0.010 1.111 14479.1 0.75 2.49 

  = 2.0 

0.90 0.898 (0.023) 0.002 0.206 13975.8 0.75 2.51 

Note: a, b, c, d, e, f - the same notes as those in Table 9. 
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The results for Scenario III are shown in Table 11. The derived CMF for lane 

width in this scenario was also close to the assumed value 0.90. The bias was relatively 

small and the error was within 1.2 percent in this experiment. Generally, the CMF for 

lane width in this experiment was reliable. 

However, when compared with the results in Scenarios I and II, both the bias and 

error percentage became large in Scenario III. That is, when some factors affecting 

traffic safety were omitted in the models, the bias for the CMF might become higher. 

Meanwhile, the MAD and MSPE also increased greatly, indicating the modeling result 

became less reliable. Similar scenarios with CMFs for lane width of 0.85 as well as 1.05 

and constant CMFs for curve density and pavement friction were analyzed, and the 

results were consistent. 

In Scenario III, the assumed CMFs for curve density and pavement friction were 

close to 1.0. This means the change of one unit of these two variables would have 

relatively small effect or association on crash risk. In other words, if minor factors were 

omitted in the SPFs, the result might still be acceptable. However, the bias might 

become unacceptable if the omitted factors had a strong relationship with crashes. 

Further analyses were conducted to examine this hypothesis. For example, the assumed 

CMF for curve density was augmented to 1.2 and 1.3, which led to a significantly 

increase in the error. At the same time, the MAD and MSPE values also increased 

significantly. Therefore, when major factors were omitted in the SPFs, the CMFs derived 

may became unreliable. 
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In regression analysis, Mallows 
pC  has been proposed for model selection. The 

statistic 
pC  can be used as a criteria to assess fits when models with different numbers 

of parameters are being compared (Kutner et al. 2005). 
pC  is calculated by Equation 

4-7. 

( )
2

( )
p

RSS p
C N p

MSE full
     (4-7) 

Where, 

p  = number of parameters in the subset model (i.e., omitted-variable model in 

this study); 

( )RSS p  = residual sum of squares for the subset model; 

( )MSE full  = mean square error for the full model (i.e., the model containing all 

variables affecting safety in this study); and, 

N  = sample size. 

The subset model (or omitted-variable model) is considered to be “good” if 

pC p . Note that “good” in this context means the omitted-variable model is 

acceptable, or the model is not suffering from omitted-variable bias. 

The Mallows 'pC s  were calculated in this scenario. With initial CMFs (0.90 for 

LW, 1.072 for CD and 0.973 for PF), the mean and standard error of the 100 'pC s  were 

36.1 and 161, respectively. The probability that the omitted-variable model was “good” 

(i.e., 3pC  ) was about 0.40. In other words, about 60% of these models were not 

“good” (i.e., they suffered from omitted-variable bias). This probability decreased 
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significantly as the assumed CMF for curve density increased. When the CMF for curve 

density was 1.3, it was nearly zero (i.e., nearly all the models suffered from omitted-

variable bias). That is to say, when significant variables are excluded, the models suffer 

from the omitted-variable bias (Lord and Mannering 2010).  

4.3 Nonlinear Relationships 

This sections describes the findings of Scenarios IV, V and VI. 

4.3.1 Scenario IV: Consider One Variable Only, Nonlinear Form 

In this scenario, three nonlinear CM-Functions were assumed for lane width. 

This way, there were three sub-scenarios, IV-1, IV-2 and IV-3. The first two 

CM-Functions for lane width were quadratic functions (in logarithm form), shown in 

Equations 4-8 and 4-9. 

2( ) 0.1 2.22 12.28ln CMF LW LW      (4-8) 

2( ) 0.2 4.22 21.88ln CMF LW LW      (4-9) 

The third one was a combination of two piecewise quadratic functions. This 

nonlinear function, shown in Equation 4-10, was developed by Lee et al. (2015) based 

on real crash data. Note that, in Lee et al. (2015)’s study lanes narrower than 9 ft were 

considered to have the same CMF as a 9-ft lane. To keep the analyses consistent and 

make it easier, this study assumed that an 8-ft lane had a different CMF with a 9-ft lane, 

and it was directly calculated using Equation 4-10. 

2

2

0.11 ( 12) 0.30 12
( )

0.08 ( 12) 0.30 12

LW LW
ln CMF

LW LW

    
 

    
 (4-10) 
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Table 12 Assumed CM-Functions for Lane Width in Scenario IV 

Sub-Scenario ( )ln CMF
a Line b Area c AVD Level d 

IV-1 20.1 2.22 12.28LW LW     0.123 1.46LW    0.802 0.160 Weak 

IV-2 20.2 4.22 21.88LW LW     0.023 0.24LW    1.603 0.321 Strong 

IV-3 

20.11 ( 12) 0.30 12LW LW    

20.08 ( 12) 0.30 12LW LW      
0.339 0.45LW   0.886 0.177 Weak 

Note: a - LW = lane width (ft); b - Line = the closest line to the curve; c - Area = the area between the curve and its closest 

line; d - Level = the relative nonlinear level. 
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The assumed CM-Functions and their characteristics (closest line, area and 

AVD) for the three sub-scenarios are summarized in Table 12. It can be seen that, the 

AVD of Sub-Scenario IV-2 was higher than those of IV-1 and IV-3. The latter two were 

close to each other. This made the assumed CM-Function in IV-2 relatively strong in 

nonlinearity, and the other two relatively weak. 

The theoretical function of the generated crash counts in these three 

sub-scenarios is shown in Equation 4-11. The specific CMF for lane width was 

calculated using Equations 4-8 to 4-10. 

4

, , , ,2.67 10true i spf i LW i i i LW iN N CMF L AADT CMF        (4-11) 

The considered functional form used in regression models is shown in 

Equation 4-12. 

1

0 2( ) ( )i i iE L AADT exp LW        (4-12) 

Table 13 presents the CMFs derived from SPFs as well as other results (i.e.,   

and GOF measurements) in this scenario. First, MAD and MSPE of nonlinear forms 

were significantly higher when compared with linear ones (i.e., Scenario I). This 

indicated the CMFs in this scenario might have higher bias. Second, with the increase of 

nonlinearity, the MAD and MSPE also increased. In other words, when the relationship 

between the variable and crash risk became strong in nonlinear level, the normal GLMs 

were likely to produce biased CMFs. Finally, under nonlinear relationships, in general, 

the inverse dispersion parameters estimated from SPFs were biased  (see the column of  

“ ” in Table 13).  
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Table 13 Results of Scenario IV 

# * CMF (SD) a   b AIC d MAD e MSPE f 

  c = 0.5  

IV-1 0.88 (0.01) 0.57 11413.39 0.31 0.39 

IV-2 0.98 (0.02) 0.81 11522.30 0.64 1.57 

IV-3 1.33 (0.02) 0.56 7770.30 0.15 0.11 

  c = 1.0 

IV-1 0.87 (0.02) 1.08 11492.77 0.31 0.39 

IV-2 0.98 (0.02) 1.34 11509.57 0.64 1.58 

IV-3 1.34 (0.03) 1.08 7803.04 0.15 0.13 

  c = 2.0 

IV-1 0.88 (0.03) 2.11 11233.07 0.32 0.40 

IV-2 0.98 (0.03) 2.41 11138.83 0.64 1.60 

IV-3 1.35 (0.03) 2.11 7690.76 0.15 0.15 

Note: a – mean of CMFs from 100 experiments, SD is the standard deviation of the 100 CMFs; b - the inverse dispersion 

parameter derived from SPFs; c – the theoretical inverse dispersion parameter in each sub-scenario; d, e, f – each is the mean 

value of the corresponding GOF measure of the 100 results; * - sub-scenario number. 
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To verify the above assumption, the curves of assumed CM-Functions and the 

CMFs derived from SPFs are illustrated in Figure 3. Figure 3 only presents the curves 

with a 0.5 inverse dispersion parameter. In addition, the specific CMFs for lane widths 

(8, 9, 11 and 13 ft) are presented in Table 14 for explicit comparison. The CMFs for 12-

ft lane are excluded in Table 14, because 12 ft is the base condition for lane with and the 

CMFs are equal to 1.0 in both assumed and derived CM-Functions. 

Figure 3(a) shows the CM-Functions in Sub-Scenario IV-1 (weak nonlinearity). 

It can be seen that the assumed true CMF for lane width first decreased from 8 ft until 

about 11 ft and then increased. But the CMF derived from SPF was 0.88, meaning the 

expected number of crashes consistently reduced by 12 percent whenever the lane was 

widened by 1 foot. According to the assumed true CMF, the 11-ft lane had the lowest 

crash risk. That is to say increasing lane width might bring negative influence on safety 

when the lane width was more than 11 ft. However, the CMF derived from regression 

analysis showed a contrary result, further safety benefits would be continually gained 

when widening lane to 12 or 13 ft. In addition, when the lane width was less than about 

9 ft or more than 12 ft, the CMF was underestimated (the safety effect of widening lane 

was overestimated). The result was contrary when the lane width was between about 9 

and 12 ft. The differences between the two were more obvious around boundary areas. 

The true CMF for an 8-ft lane was 2.44, whereas that derived from SPF was 1.78. The 

bias was 0.66 and error was 27.1 percent. Similar results can be observed when the lane 

was 13 ft. The specific CMFs, bias and error for other points (i.e., lanes with different 

widths) are shown in the rows of “IV-1” in Table 14. 



 

65 

 

 

(a) Sub-Scenario IV-1 

 

(b) Sub-Scenario IV-2 

Figure 3 CM-Functions for Lane Width in Scenario IV ( =0.5) 
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(c) Sub-Scenario IV-3 

Figure 3 Continued 
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Table 14 Bias and Error of CMFs for Lane Width in Scenario IV 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  8    9    10   

  d = 0.5 

IV-1 2.44 1.78 0.66 27.1 1.45 1.54 -0.09 6.5 1.05 1.33 -0.29 27.4 

IV-2 2.44 1.21 1.23 50.4 1.07 1.15 -0.08 7.7 0.70 1.10 -0.40 56.8 

IV-3 0.17 0.31 -0.14 86.1 0.36 0.41 -0.05 13.7 0.64 0.56 0.08 13.0 

  d = 1.0 

IV-1 2.44 1.78 0.66 27.0 1.45 1.54 -0.09 6.6 1.05 1.33 -0.29 27.4 

IV-2 2.44 1.19 1.25 51.2 1.07 1.14 -0.07 6.3 0.70 1.09 -0.39 55.4 

IV-3 0.17 0.30 -0.13 80.0 0.36 0.40 -0.04 11.0 0.64 0.55 0.09 14.4 

  d = 2.0 

IV-1 2.44 1.73 0.71 28.9 1.45 1.51 -0.06 4.5 1.05 1.32 -0.27 25.7 

IV-2 2.44 1.18 1.26 51.6 1.07 1.13 -0.06 5.7 0.70 1.09 -0.38 54.8 

IV-3 0.17 0.28 -0.12 71.4 0.36 0.39 -0.03 7.0 0.64 0.53 0.10 16.5 
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Table 14 Continued 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  11    13   

  d= 0.5 

IV-1 0.93 1.16 -0.23 24.7 1.32 0.87 0.45 34.4 

IV-2 0.69 1.05 -0.36 52.9 2.17 0.95 1.22 56.2 

IV-3 0.89 0.75 0.15 16.6 0.93 1.34 -0.41 44.7 

  d= 1.0 

IV-1 0.93 1.16 -0.23 24.8 1.32 0.87 0.45 34.4 

IV-2 0.69 1.04 -0.36 52.3 2.17 0.96 1.22 56.0 

IV-3 0.89 0.74 0.15 17.3 0.93 1.35 -0.43 45.9 

  d= 2.0 

IV-1 0.93 1.15 -0.22 23.9 1.32 0.87 0.45 33.9 

IV-2 0.69 1.04 -0.36 51.9 2.17 0.96 1.22 55.9 

IV-3 0.89 0.73 0.16 18.3 0.93 1.37 -0.44 47.7 

Note: a – theoretical CMF (assumed true specific CMFs for lane widths of 8, 9, 10, 11 and 12 ft); b – CMF derived from SPF 

(specific CMFs derived from regression models for corresponding lane widths); c – error percentage, %; d – the theoretical 

inverse dispersion parameter ( ) in each sub-scenario; * - sub-scenario number. 
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Figure 3(b) presents the CM-Functions in Sub-Scenario IV-2 (strong 

nonlinearity). The overall result was similar to that of Sub-Scenario IV-1. CMFs derived 

from SPFs overestimated the safety effectiveness of lane width when it was less than 9 ft 

or more than 12 ft, and vice versa when it was between 9 and 12 ft. But the bias and 

error around the boundary areas in this sub-scenario were much higher than those in 

Sub-Scenario IV-1. For example, in this sub-scenario the bias at 8-ft lane was 1.23 and 

error was 50.4 percent, which were almost two times of those in Sub-Scenario IV-1. Bias 

and error for other points are also shown in Table 14 (rows of “IV-2”). More 

interestingly, the CMF derived from SPFs in this sub-scenario was 0.98, very close to 

1.0, indicating lane width had minor influence on crash risk. Increasing lane width by 

one foot would only decrease crashes by about two percent. Safety analysts may 

misleadingly conclude that widening lane has little effect on reducing collisions based 

on this finding. However, the assumed true safety effect of lane width was far from this 

statement. In fact, both widening the lane from 11 ft and narrowing from10 ft would 

increase crash risk significantly. 

The results of Sub-Scenario IV-3 (piecewise nonlinear functions) are shown in 

Figure 3(c). The CMF for lane width derived from SPFs was 1.33, widening the lane by 

one foot would increase crashes by 33 percent (1.33 – 1.0). When the lane width was 

between 9 and 12 ft, the two curves were close to each other. The error at 9-, 10- and 

11-ft lanes were 13.7, 13.0 and 16.6 percentage, respectively. However, the bias was 

significantly high when the lane became relatively wide or narrow. The error reached 

nearly 90 percent at the point of 8-ft lane. On the side of wider lanes, the true CMF 
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decreased as lane width increased, but the CMF derived from SPFs increased 

continuously. Another interesting finding is that smaller MAD and/or MSPE did not 

always indicate smaller error percentage. When compared with the results in the other 

two sub-scenarios (i.e., Sub-Scenarios IV-1 and IV-2), the MAD and MSPE were 

consistently smaller in this sub-scenario. But the error percentages were significantly 

higher than those in the other two when the lane widths were 8 and 9 ft. This was 

probably due to the relatively smaller values of assumed CMFs in this sub-scenario. The 

assumed specific CMF for 8-ft lane was 0.17 in this sub-scenario, and a small bias lad to 

a relatively large error percentage under such condition (recall the definition for error 

percentage). 

Similar results were found for other inverse dispersion parameters (i.e., 1.0 and 

2.0). So, it can be concluded that none of the CMFs derived from SPFs could reflect the 

true safety effects accurately. They were all biased, especially around boundary areas. 

Regression analysis with commonly used linear link functions could produce biased 

CMFs when the variable had nonlinear relationships on crash risk. With the increase of 

nonlinearity, the bias became significant. In addition, the misuse of linear link function 

also led to biased estimates for other parameters, which might play important roles in 

safety analyses. For example, the inverse dispersion parameter is important in 

calculating the weights in EB analyses (Hauer et al. 2002; Wu et al. 2014; Zou et al. 

2015). As a result, biased dispersion parameters lead to biased EB estimates of crashes. 
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4.3.2 Scenario V: Consider Three Variables, Only One in Nonlinear Form 

In this scenario, three variables (i.e., lane width, curve density and pavement 

friction) were considered. Lane width was assumed to have a nonlinear relationship with 

crash risk. The other two were assumed to have linear relationships (i.e., fixed values). 

The assumed CMFs for curve density and pavement friction were 1.072 and 0.973, 

respectively. Actually the settings in this sub-scenario were basically the same as those 

of Scenario II, expect the lane width was assumed to have nonlinear relationships with 

crash risk. The same three nonlinear CM-Functions for lane width were used. Three 

sub-scenarios, V-1, V-2 and V-3, were analyzed, shown in Table 15. 

 

Table 15 Assumed CM-Functions in Scenario V 

# * 

( )ln CMF  (Nonlinear Level) CMF 

Lane Width 
Curve 

Density 

Pavement 

Friction 

V-1 20.1 2.22 12.28LW LW     (W) 1.072CD
 

( 32)0.973 PF
 

V-2 20.2 4.22 21.88LW LW     (S) 1.072CD
 

( 32)0.973 PF
 

V-3 

20.11 ( 12) 0.30 12LW LW    

20.08 ( 12) 0.30 12LW LW      (W) 
1.072CD

 
( 32)0.973 PF

 

Note: * # = sub-scenario number; LW = lane width (ft); CD = curve density (number of 

curves per mile); PF = pavement friction. 

 

The nonlinear level of the assumed CM-Functions for lane width of each 

sub-scenario was the same as the corresponding one in Scenario IV. It was relatively 

strong in Sub-Scenario V-2, and weak in V-1 and V-3. 



 

72 

 

The theoretical function of the generated crash counts and the considered 

functional form in this scenario are shown in Equations 4-13 and 4-14, respectively. 

, , , , ,true i spf i LW i CD i PF iN N CMF CMF CMF     

4

, , ,2.67 10 i i LW i CD i PF iL AADT CMF CMF CMF        (4-13) 

1

0 2 3 4( ) ( )i i i i iE L AADT exp LW CD PF              (4-14) 

The CMFs for the three variables and other modeling results of each sub-scenario 

are documented in Table 16. The overall result was quite similar with that in Scenario 

IV. The MAD and MSPE were higher than those of linear relationships (i.e., Scenario II 

in the Section 4.1). Sub-Scenario V-2 consistently had the highest MAD and MSPE. 

Meanwhile, the inverse dispersion parameters estimated from SPFs were biased again. 

The second, third and fourth rows of Table 16 show the CMFs for lane width, curve 

density and pavement friction, respectively. The CMFs for lane width derived in this 

scenario were slightly different with those of Scenario IV, in which lane width was the 

only considered variable. The CMFs for curve density and pavement friction were very 

close to their true values. However, the MAD and MSPE of this scenario were higher 

than those of Scenario IV under the same assumed CM-Function for lane width. 

Figure 4 illustrates the curves of assumed CM-Function for lane width and those 

derived from regression models in this scenario with a 0.5 inverse dispersion parameter. 

The specific CMFs for several lane widths of interest are provided in Table 17. The 

results were very close to those of the corresponding sub-scenario in Scenario IV. The 

CMFs were all biased, especially in boundary areas. The bias of Sub-Scenario V-2 was 

always higher than those of V-1 and V-3 (except over a very small range around 9).  
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Table 16 Results of Scenario V 

# * 

CMF (SD) a 
  b AIC d MAD e MSPE f 

LW CD PF 

  c =0.5 

V-1 0.88 (0.014) 1.071 (0.007) 0.972 (0.003) 0.57 14677.2 0.62 1.60 

V-2 0.98 (0.015) 1.069 (0.006) 0.971 (0.003) 0.79 14988.9 1.27 6.63 

V-3 1.33 (0.021) 1.073 (0.006) 0.973 (0.003) 0.57 10441.8 0.29 0.52 

  c =1.0 

V-1 0.88 (0.015) 1.072 (0.007) 0.972 (0.003) 1.08 14842.6 0.62 1.65 

V-2 0.98 (0.021) 1.069 (0.008) 0.971 (0.004) 1.31 14908.6 1.26 6.72 

V-3 1.35 (0.024) 1.073 (0.008) 0.974 (0.004) 1.07 10520.1 0.30 0.60 

  c =2.0 

V-1 0.88 (0.022) 1.071 (0.008) 0.972 (0.004) 2.08 14439.9 0.63 1.76 

V-2 0.98 (0.026) 1.069 (0.010) 0.97 (0.005) 2.36 14370.7 1.26 6.80 

V-3 1.35 (0.034) 1.072 (0.010) 0.974 (0.005) 2.08 10277.6 0.31 0.66 

Note: the same notes as those in Table 13. 
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(a) Sub-Scenario V-1 

 

(b) Sub-Scenario V-2 

Figure 4 CM-Functions for Lane Width in Scenario V ( =0.5) 
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(c) Sub-Scenario V-3 

Figure 4 Continued 
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Table 17 Bias and Error of CMFs for Lane Width in Scenario V 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  8    9    10   

  d = 0.5 

V-1 2.44 1.68 0.76 31.2 1.45 1.48 -0.03 2.0 1.05 1.30 -0.25 23.7 

V-2 2.44 1.08 1.36 55.6 1.07 1.06 0.01 0.9 0.70 1.04 -0.34 48.3 

V-3 0.17 0.32 -0.15 90.3 0.36 0.42 -0.06 15.7 0.64 0.56 0.08 12.0 

  d = 1.0 

V-1 2.44 1.67 0.78 31.8 1.45 1.47 -0.02 1.3 1.05 1.29 -0.24 23.2 

V-2 2.44 1.08 1.36 55.6 1.07 1.06 0.01 0.9 0.70 1.04 -0.34 48.3 

V-3 0.17 0.30 -0.14 82.4 0.36 0.41 -0.04 12.0 0.64 0.55 0.09 13.8 

  d = 2.0 

V-1 2.44 1.64 0.80 32.7 1.45 1.45 0.00 0.3 1.05 1.28 -0.23 22.4 

V-2 2.44 1.08 1.36 55.9 1.07 1.06 0.01 1.3 0.70 1.04 -0.34 47.9 

V-3 0.17 0.30 -0.14 81.6 0.36 0.41 -0.04 11.7 0.64 0.55 0.09 14.0 
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Table 17 Continued 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  11    13   

  d = 0.5 

V-1 0.93 1.14 -0.21 22.9 1.32 0.88 0.44 33.4 

V-2 0.69 1.02 -0.33 48.7 2.17 0.98 1.19 54.9 

V-3 0.89 0.75 0.14 16.1 0.93 1.33 -0.41 43.9 

  d = 1.0 

V-1 0.93 1.14 -0.21 22.7 1.32 0.88 0.44 33.3 

V-2 0.69 1.02 -0.33 48.8 2.17 0.98 1.19 54.9 

V-3 0.89 0.74 0.15 17.0 0.93 1.35 -0.42 45.4 

  d = 2.0 

V-1 0.93 1.13 -0.21 22.3 1.32 0.88 0.44 33.0 

V-2 0.69 1.02 -0.33 48.5 2.17 0.98 1.19 54.9 

V-3 0.89 0.74 0.15 17.1 0.93 1.35 -0.42 45.6 

Note: a, b, c, d, * – the same notes as those in Table 14; LW = lane width. 
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The CMFs for curve density derived from SPFs in the three sub-scenarios (with a 

0.5 inverse dispersion parameter) were 1.071, 1.069, and 1.073, respectively. They were 

quite close to the assumed true value, 1.072. The curves for the four CM-Functions are 

shown in Figure 5. The specific CMFs, bias as well as error percentages at some points 

are listed in Table 18. The CMFs were generally acceptable. However, when comparing 

the results between the three sub-scenarios, it can be observed that the bias and error 

percentage in Sub-Scenario V-2 (strong nonlinearity) were always higher than those in V-

1 and V-3 (weak nonlinearity). So, as the nonlinearity between lane width and crash risk 

increased, the bias of CMF for curve density became significant. That is to say, even the 

link function for one variable was correct, the accuracy of CMF for this variable can still 

be influenced if incorrect or improper link functions for other variables had been utilized 

in the models. 
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Figure 5 CM-Functions for Curve Density in Scenario V ( =0.5) 

 

 

Figure 6 CM-Functions for Pavement Friction in Scenario V ( =0.5)
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Table 18 Bias and Error of CMFs for Curve Density in Scenario V 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

CD  4    8   

  d = 0.5 

V-1 1.32 1.32 0.00 0.3 1.74 1.73 0.01 0.6 

V-2 1.32 1.31 0.01 1.0 1.74 1.71 0.03 2.0 

V-3 1.32 1.33 -0.01 0.5 1.74 1.76 -0.02 1.1 

  d = 1.0 

V-1 1.32 1.32 0.00 0.1 1.74 1.74 0.00 0.2 

V-2 1.32 1.31 0.01 0.9 1.74 1.71 0.03 1.9 

V-3 1.32 1.32 0.00 0.3 1.74 1.75 -0.01 0.5 

  d = 2.0 

V-1 1.32 1.32 0.00 0.4 1.74 1.73 0.01 0.7 

V-2 1.32 1.31 0.01 1.0 1.74 1.71 0.03 2.0 

V-3 1.32 1.32 0.00 0.0 1.74 1.74 0.00 0.1 
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Table 18 Continued 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

CD  12    16   

  d = 0.5 

V-1 2.30 2.28 0.02 0.9 3.04 3.01 0.04 1.2 

V-2 2.30 2.24 0.07 2.9 3.04 2.92 0.12 3.9 

V-3 2.30 2.34 -0.04 1.7 3.04 3.11 -0.07 2.2 

  d = 1.0 

V-1 2.30 2.30 0.01 0.3 3.04 3.03 0.01 0.4 

V-2 2.30 2.24 0.06 2.8 3.04 2.93 0.11 3.7 

V-3 2.30 2.32 -0.02 0.8 3.04 3.07 -0.03 1.1 

  d = 2.0 

V-1 2.30 2.28 0.02 1.0 3.04 3.00 0.04 1.4 

V-2 2.30 2.24 0.07 3.0 3.04 2.92 0.12 3.9 

V-3 2.30 2.30 0.00 0.1 3.04 3.04 0.00 0.1 

Note: a, b, c, d, * – the same notes as those in Table 14; CD = curve density (number of curves per mile). 
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Table 19 Bias and Error of CMFs for Pavement Friction in Scenario V 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

PF  16    24   

  d = 0.5 

V-1 1.55 1.57 -0.02 1.2 1.24 1.25 -0.01 0.6 

V-2 1.55 1.60 -0.05 3.5 1.24 1.27 -0.02 1.7 

V-3 1.55 1.54 0.01 0.5 1.24 1.24 0.00 0.2 

  d = 1.0 

V-1 1.55 1.57 -0.02 1.1 1.24 1.25 -0.01 0.5 

V-2 1.55 1.60 -0.05 3.5 1.24 1.27 -0.02 1.8 

V-3 1.55 1.53 0.01 0.9 1.24 1.24 0.01 0.5 

  d = 2.0 

V-1 1.55 1.56 -0.02 1.0 1.24 1.25 -0.01 0.5 

V-2 1.55 1.62 -0.07 4.4 1.24 1.27 -0.03 2.2 

V-3 1.55 1.54 0.01 0.8 1.24 1.24 0.01 0.4 
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Table 19 Continued 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

PF  40    48   

  d = 0.5 

V-1 0.80 0.80 0.00 0.6 0.65 0.64 0.01 1.2 

V-2 0.80 0.79 0.01 1.7 0.65 0.62 0.02 3.4 

V-3 0.80 0.81 0.00 0.3 0.65 0.65 0.00 0.5 

  d = 1.0 

V-1 0.80 0.80 0.00 0.5 0.65 0.64 0.01 1.0 

V-2 0.80 0.79 0.01 1.7 0.65 0.62 0.02 3.4 

V-3 0.80 0.81 0.00 0.5 0.65 0.65 -0.01 1.0 

  d = 2.0 

V-1 0.80 0.80 0.00 0.5 0.65 0.64 0.01 1.0 

V-2 0.80 0.79 0.02 2.1 0.65 0.62 0.03 4.2 

V-3 0.80 0.81 0.00 0.4 0.65 0.65 -0.01 0.9 

Note: a, b, c d, * – the same notes as those in Table 14; PF = pavement friction. 
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The CMFs for pavement friction produced from the three sub-scenarios (with a 

0.5 inverse dispersion parameter) were 0.972, 0.971 and 0.973, respectively. The CM-

Function curves are shown in Figure 6. Specific values of CMFs as well as bias and error 

percentage at some points are listed in Table 19. The results were similar with those of 

curve density. Overall, the bias and error percentage were relatively small. And the 

highest error percentage appeared around boundary areas. The further the point was 

away from the baseline, the higher the bias and error percentage were. The error 

percentage was under 5 percent, indicating the results were acceptable in all the three 

sub-scenarios. However, Sub-Scenario V-2 was consistently the highest in terms of bias 

and error percentage. So, the CMFs for pavement friction derived from SPFs were likely 

to become less accurate as the nonlinear level of lane width became strong. 

Another interesting finding worth to mention is the relationship between the 

quality of CMFs and the GOF of the model results (i.e., MAD and MSPE). The MAD 

and MSPE were higher in this scenario than those in Scenario IV (see the last two 

columns of Table 13 and Table 16). It seems that adding another two variables made the 

modeling result less accurate, which might potentially reduce the quality of CMFs 

derived from SPFs. So, one might assume the CMFs of this scenario should have higher 

bias and error than those of Scenario IV. However, it was not always true. Comparison 

between Table 14 and Table 17 indicates the CMFs for lane width in this scenario 

generally only had slightly higher error percentage than those of Scenario IV except a 

small range around 9 ft. One possible reason was that two additional variables were 

included in this scenario, and they both had considerable influence on the response 
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variable (i.e., true crash mean). They might have potentially influenced the quality of 

CMFs for all the three variables. Another possible reason was the differences of 

response variables (i.e., expected crash count) in the two scenarios. Simple comparison 

showed the mean of the random crash numbers in this scenario was about two times of 

that of Scenario IV. So it is not surprising the MAD and MSPE were higher in this 

scenario given other conditions (e.g., sample size, model link functions, etc.) were 

similar in the two. 

Similar results were found when the inverse dispersion parameter was 1.0 and 

2.0. So the main findings of this scenario can be summarized as follows: (1) the 

CM-Function for lane width derived from the common regression models (i.e., GLMs) 

were biased when it had a nonlinear relationship with crash risk and improper function 

form was used in the regression models; (2) with the increase of nonlinearity (i.e. 

nonlinear relationship became stronger), the bias trended to become more significant; (3) 

the CMFs for other variables having linear relationship might be acceptable when mixed 

with those having nonlinear relationship. But the quality decreased as the nonlinear 

relationship became stronger; (4) the misuse of linear link function for one or more 

variables also led to biased estimates of other parameters. 

4.3.3 Scenario VI: Consider Three Variables, Two in Nonlinear Form 

In this scenario, the three variables (i.e., lane width, curve density and pavement 

friction) were considered again. But two of them, lane width and curve density, were 

assumed to have nonlinear relationships with crash risk. Pavement friction was assumed 

to have a linear relationship (i.e., fixed value). 
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To simplify the analyses, the first two nonlinear CM-Functions for lane width in 

Scenarios IV and V were used in this scenario, and the last one with piecewise function 

was removed. The assumed CMF for pavement friction was 0.973, the same as that in 

Scenario V. 

Two quadratic CM-Functions for curve density were assumed, as shown in 

Equations 4-15 and 4-16, respectively.  

4 2 2( ) 8.7 10 5.56 10i i iln CMF CD CD        (4-15) 

3 2 2( ) 3.5 10 1.39 10i i iln CMF CD CD        (4-16) 

Where,  

CMFi = the specific CMF for curve density of segment i; and 

CDi = curve density of the segment, (average numbers of curve per mile). 

The CM-Functions for curve density and other characteristics regarding 

nonlinear level (the closest line to the curve, area between the two, and average vertical 

distance) are listed in Table 20. It can be seen that both area and average vertical 

distance of the second function are much higher than those of the first one. So, the 

nonlinear level of the second one is stronger than the first one. 
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Table 20 Assumed CM-Functions for Curve Density in Scenario VI 

( )ln CMF a Line b Areac AVDd Levele 

4 2 28.7 10 5.56 10CD CD     26.95 10 0.037CD   0.229 0.014 Weak 

3 2 23.5 10 1.39 10CD CD     26.99 10 0.149CD   0.920 0.057 Strong 

Note: a - LW = lane width (ft); b - Line = the closes line to the curve; c - Area = the area 

between the curve and its closest line; d - AVD = average vertical distance between the 

curve and the line; e - Level = the relative nonlinear level. 

 

In total, there were four sub-scenarios in this scenario, shown in Table 21. It can 

be seen that the nonlinear level of Sub-Scenario VI-1 was weak in both lane width and 

curve density. That of Sub-Scenario VI-4 was strong in both. Sub-Scenarios VI-2 and 

VI-3 were a combination of a weak and a strong. 

The theoretical function of the generated crash counts and considered functional 

form used in this scenario were identical with those in Scenario V (i.e., Equations 4-13 

and 4-14). They are reproduced below as Equations 4-17 and 4-18, respectively.  
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Table 21 Assumed CM-Functions in Scenario VI 

# * 

( )ln CMF  (Nonlinear Level) CMF 

Lane Width Curve Density Pavement Friction 

VI-1 20.1 2.22 12.28LW LW   (W) 4 2 28.7 10 5.56 10CD CD    (W) 
( 32)0.973 PF

 

VI-2 20.2 4.22 21.88LW LW   (S) 4 2 28.7 10 5.56 10CD CD    (W) 
( 32)0.973 PF

 

VI-3 20.1 2.22 12.28LW LW   (W) 
3 2 23.5 10 1.39 10CD CD    (S) ( 32)0.973 PF

 

VI-4 20.2 4.22 21.88LW LW   (S) 3 2 23.5 10 1.39 10CD CD    (S) ( 32)0.973 PF
 

Note: the same notes as those in Table 15. 
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, , , , ,true i spf i LW i CD i PF iN N CMF CMF CMF     

4

, , ,2.67 10 i i LW i CD i PF iL AADT CMF CMF CMF        (4-17) 

1

0 2 3 4( ) ( )i i i i iE L AADT exp LW CD PF              (4-18) 

The CMFs for the three variables as well as other results produced from the 

modeling are presented in Table 22. Similarly to Scenario V, the MAD and MSPE were 

higher than those of linear relationships (i.e., Scenario II in Section 4.1). But surprisingly 

they were always the highest in Sub-Scenario VI-2 (combination of strong and weak) 

rather than in VI-4 (strong in both). The inverse dispersion parameters estimated from 

SPFs were biased again in this scenario. The second, third and fourth rows of Table 22 

show the CMFs for lane width, curve density and pavement friction, respectively. The 

CMF for lane width derived in this scenario was nearly the same as that of Scenario V 

with corresponding assumed CM-Function. The CMFs for curve density were slightly 

different with those in Scenario V. And the CMFs for pavement friction were very close 

to the true value. 
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Table 22 Results of Scenario VI 

# * 
CMF (SD) a 

  b AIC d MAD e MSPE f 
LW CD PF 

  c=0.5 

VI-1 0.88 (0.014) 1.073 (0.006) 0.973 (0.002) 0.57 14455.8 0.60 2.05 

VI-2 0.97 (0.017) 1.072 (0.005) 0.972 (0.002) 0.79 14670.4 1.21 6.80 

VI-3 0.88 (0.015) 1.075 (0.005) 0.973 (0.003) 0.57 13835.8 0.55 1.61 

VI-4 0.97 (0.016) 1.074 (0.006) 0.972 (0.003) 0.79 13980.7 1.08 5.47 

  c=1.0 

VI-1 0.88 (0.015) 1.072 (0.008) 0.972 (0.003) 1.07 14648.4 0.61 2.15 

VI-2 0.97 (0.020) 1.074 (0.008) 0.972 (0.003) 1.31 14621.6 1.21 6.89 

VI-3 0.88 (0.018) 1.073 (0.008) 0.973 (0.003) 1.08 13965.8 0.55 1.71 

VI-4 0.97 (0.021) 1.074 (0.008) 0.972 (0.004) 1.32 13978.6 1.08 5.55 

  c=2.0 

VI-1 0.88 (0.021) 1.073 (0.010) 0.972 (0.005) 2.09 14243.5 0.62 2.26 

VI-2 0.98 (0.027) 1.073 (0.010) 0.971 (0.005) 2.36 14118.3 1.22 7.16 

VI-3 0.88 (0.022) 1.073 (0.010) 0.973 (0.004) 2.09 13592.0 0.56 1.81 

VI-4 0.98 (0.027) 1.074 (0.011) 0.971 (0.004) 2.36 13420.4 1.08 5.70 

Note: the same notes as those in Table 13.  
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(a) Sub-Scenario VI-1 

 

(b) Sub-Scenario VI-2 

Figure 7 CM-Functions for Lane Width in Scenario VI ( =0.5) 
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(c) Sub-Scenario VI-3 

 

(d) Sub-Scenario VI-4 

Figure 7 Continued
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Table 23 Bias and Error of CMFs for Lane Width in Scenario VI 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  8    9    10   

  d= 0.5 

VI-1 2.44 1.66 0.78 31.91 1.45 1.46 -0.02 1.18 1.05 1.29 -0.24 23.10 

VI-2 2.44 1.07 1.37 56.26 1.07 1.05 0.02 1.99 0.70 1.03 -0.33 47.19 

VI-3 2.44 1.67 0.77 31.71 1.45 1.47 -0.02 1.41 1.05 1.29 -0.24 23.28 

VI-4 2.44 1.06 1.38 56.42 1.07 1.05 0.02 2.27 0.70 1.03 -0.33 46.92 

  d= 1.0 

VI-1 2.44 1.65 0.79 32.55 1.45 1.45 -0.01 0.47 1.05 1.28 -0.24 22.52 

VI-2 2.44 1.06 1.38 56.45 1.07 1.05 0.02 2.31 0.70 1.03 -0.33 46.87 

VI-3 2.44 1.64 0.80 32.81 1.45 1.45 0.00 0.18 1.05 1.28 -0.23 22.28 

VI-4 2.44 1.07 1.37 56.12 1.07 1.05 0.02 1.76 0.70 1.04 -0.33 47.43 

  d= 2.0 

VI-1 2.44 1.66 0.78 31.87 1.45 1.46 -0.02 1.23 1.05 1.29 -0.24 23.14 

VI-2 2.44 1.08 1.36 55.76 1.07 1.06 0.01 1.15 0.70 1.04 -0.34 48.03 

VI-3 2.44 1.63 0.81 33.32 1.45 1.44 0.01 0.39 1.05 1.28 -0.23 21.82 

VI-4 2.44 1.07 1.37 56.32 1.07 1.05 0.02 2.09 0.70 1.03 -0.33 47.09 
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Table 23 Continued 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  11    13   

  d= 0.5 

VI-1 0.93 1.14 -0.21 22.62 1.32 0.88 0.44 33.23 

VI-2 0.69 1.02 -0.33 48.18 2.17 0.98 1.19 54.76 

VI-3 0.93 1.14 -0.21 22.71 1.32 0.88 0.44 33.28 

VI-4 0.69 1.02 -0.33 48.05 2.17 0.98 1.19 54.72 

  d= 1.0 

VI-1 0.93 1.13 -0.21 22.33 1.32 0.88 0.44 33.07 

VI-2 0.69 1.02 -0.33 48.02 2.17 0.98 1.19 54.72 

VI-3 0.93 1.13 -0.21 22.21 1.32 0.88 0.44 33.01 

VI-4 0.69 1.02 -0.33 48.30 2.17 0.98 1.19 54.80 

  d= 2.0 

VI-1 0.93 1.14 -0.21 22.64 1.32 0.88 0.44 33.24 

VI-2 0.69 1.02 -0.33 48.61 2.17 0.98 1.19 54.89 

VI-3 0.93 1.13 -0.20 21.98 1.32 0.89 0.43 32.88 

VI-4 0.69 1.02 -0.33 48.13 2.17 0.98 1.19 54.75 

Note: a, b, c, d, * – the same notes as those in Table 14. 
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Figure 7 illustrates the curves of assumed CM-Functions for lane width and those 

derived from regression models in this scenario with a 0.5 inverse dispersion parameter. 

The specific CMFs for several lane widths of interest are provided in Table 23. The 

results of lane width were nearly identical with those of the corresponding one in 

Scenario V. The CMFs were all biased, especially around boundary areas. The 

calculation indicated the bias in Sub-Scenarios VI-1 and VI-3 (weak in lane width) were 

significantly lower than those in VI-2 and VI-4 (strong in lane width). It seems the 

changes in nonlinearity of curve density had no significant influence on the CMF for 

lane width. 

The CMFs for curve density derived from SPFs in the four sub-scenarios with a 

0.5 inverse dispersion parameter were 1.073, 1.072, 1.075 and 1.074, respectively. The 

curves for the four CM-Functions as well as the assumed one were shown in Figure 8, 

and the specific CMFs, bias as well as error percentages at some points are listed in 

Table 24. The CMFs derived from SPFs were overestimated (the safety benefits were 

underestimated) in all of the four sub-scenarios. When comparing the results between the 

two assumed CM-Functions for curve density, the bias and error percentage of 

Sub-Scenarios VI-3 and VI-4 (strong in curve density) were always much higher than 

those of VI-1 and VI-2 (weak in curve density), expect at a small range around 16. In 

short, the CMFs for curve density derived from SPFs were all biased when the 

relationship was nonlinear. The bias increased when the nonlinear level became stronger. 

Another interesting finding was that the highest bias of CMF for curve density 

did not appear around the boundary areas, but near the middle. As can be seen in Figure 
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8, as curve density increased from the base point (i.e., zero), the bias first increased then 

decreased. The highest was around 11. This was probably due to the fact that the 

baseline for curve density was at the very left side. If the baseline was at some point in 

the middle (e.g., 8 or 10), the result might be similar to that of lane width. The bias 

should appear to be small around baseline and became large in boundary areas, 

intuitively. Nevertheless, the CMFs were still biased. 

The CMFs for pavement friction produced from the four sub-scenarios with a 0.5 

inverse dispersion parameter were 0.973, 0.972, 0.973 and 0.972, respectively. The 

curves for the assumed CM-Functions and those derived from SPFs in this scenario 

(with a 0.5 inverse dispersion parameter) are shown in Figure 9. Specific values of 

CMFs as well as bias and error percentage at some points are listed in Table 25. The 

overall results were nearly the same as those of Scenario V. Both bias and error 

percentage were small. The error percentages were all under 2 percent. So the CMFs for 

curve density were acceptable in all sub-scenarios. 



 

97 

 

 

(a) Sub-Scenario VI-1 

 

(b) Sub-Scenario VI-2 

Figure 8 CM-Functions for Curve Density in Scenario VI ( =0.5) 
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(c) Sub-Scenario VI-3 

 

(d) Sub-Scenario VI-4 

Figure 8 Continued
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Table 24 Bias and Error of CMFs for Curve Density in Scenario VI 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

CD  4    8   

  d=0.5 

VI-1 1.27 1.31 -0.04 3.5 1.65 1.72 -0.07 4.2 

VI-2 1.27 1.30 -0.03 2.4 1.65 1.68 -0.03 1.9 

VI-3 1.12 1.32 -0.20 18.0 1.40 1.74 -0.34 24.7 

VI-4 1.12 1.31 -0.19 16.8 1.40 1.70 -0.31 22.0 

  d=1.0 

VI-1 1.27 1.31 -0.04 3.5 1.65 1.72 -0.07 4.1 

VI-2 1.27 1.30 -0.03 2.4 1.65 1.68 -0.03 2.0 

VI-3 1.12 1.32 -0.20 17.8 1.40 1.73 -0.34 24.1 

VI-4 1.12 1.30 -0.19 16.6 1.40 1.70 -0.30 21.6 

  d=2.0 

VI-1 1.27 1.31 -0.04 3.4 1.65 1.71 -0.06 3.9 

VI-2 1.27 1.29 -0.02 1.6 1.65 1.65 -0.01 0.3 

VI-3 1.12 1.32 -0.20 17.7 1.40 1.73 -0.33 23.9 

VI-4 1.12 1.31 -0.19 16.8 1.40 1.70 -0.31 22.1 

 



 

100 

 

Table 24 Continued 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

CD  12    16   

  d=0.5 

VI-1 2.21 2.25 -0.04 2.0 3.04 2.95 0.09 2.9 

VI-2 2.21 2.18 0.03 1.3 3.04 2.83 0.22 7.1 

VI-3 1.95 2.30 -0.35 17.8 3.04 3.03 0.01 0.4 

VI-4 1.95 2.22 -0.27 14.1 3.04 2.90 0.14 4.6 

  d=1.0 

VI-1 2.21 2.25 -0.04 1.9 3.04 2.95 0.09 3.0 

VI-2 2.21 2.18 0.02 1.1 3.04 2.83 0.21 6.8 

VI-3 1.95 2.28 -0.33 17.0 3.04 3.00 0.04 1.3 

VI-4 1.95 2.21 -0.26 13.6 3.04 2.88 0.16 5.2 

  d=2.0 

VI-1 2.21 2.24 -0.03 1.6 3.04 2.94 0.10 3.4 

VI-2 2.21 2.13 0.08 3.6 3.04 2.74 0.30 10.0 

VI-3 1.95 2.28 -0.33 16.7 3.04 2.99 0.05 1.6 

VI-4 1.95 2.23 -0.28 14.2 3.04 2.91 0.14 4.5 

Note: a, b, c, d, * – the same notes as those in Table 14; CD = curve density (number of curves per mi). 
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Figure 9 CM-Functions for Pavement Friction in Scenario VI ( =0.5) 
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Table 25 Bias and Error of CMFs for Pavement Friction in Scenario VI 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

PF  16    24   

  d = 0.5 

VI-1 1.55 1.56 -0.01 0.47 1.24 1.25 0.00 0.24 

VI-2 1.55 1.55 0.00 0.06 1.24 1.24 0.00 0.03 

VI-3 1.55 1.56 -0.01 0.52 1.24 1.25 0.00 0.26 

VI-4 1.55 1.56 -0.01 0.49 1.24 1.25 0.00 0.25 

  d = 1.0 

VI-1 1.55 1.56 -0.01 0.63 1.24 1.25 0.00 0.31 

VI-2 1.55 1.56 -0.01 0.38 1.24 1.25 0.00 0.19 

VI-3 1.55 1.54 0.01 0.78 1.24 1.24 0.00 0.39 

VI-4 1.55 1.56 -0.01 0.43 1.24 1.25 0.00 0.21 

  d = 2.0 

VI-1 1.55 1.56 -0.01 0.38 1.24 1.25 0.00 0.19 

VI-2 1.55 1.53 0.02 1.12 1.24 1.24 0.01 0.56 

VI-3 1.55 1.54 0.01 0.59 1.24 1.24 0.00 0.30 

VI-4 1.55 1.57 -0.02 1.49 1.24 1.25 -0.01 0.74 
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Table 25 Continued 

# * Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

PF  40    48   

  d= 0.5 

VI-1 0.80 0.80 0.00 0.24 0.65 0.64 0.00 0.47 

VI-2 0.80 0.80 0.00 0.03 0.65 0.65 0.00 0.06 

VI-3 0.80 0.80 0.00 0.26 0.65 0.64 0.00 0.52 

VI-4 0.80 0.80 0.00 0.25 0.65 0.64 0.00 0.49 

  d= 1.0 

VI-1 0.80 0.80 0.00 0.31 0.65 0.64 0.00 0.62 

VI-2 0.80 0.80 0.00 0.19 0.65 0.64 0.00 0.38 

VI-3 0.80 0.81 0.00 0.39 0.65 0.65 -0.01 0.79 

VI-4 0.80 0.80 0.00 0.21 0.65 0.64 0.00 0.43 

  d= 2.0 

VI-1 0.80 0.80 0.00 0.19 0.65 0.64 0.00 0.37 

VI-2 0.80 0.81 0.00 0.57 0.65 0.65 -0.01 1.14 

VI-3 0.80 0.81 0.00 0.30 0.65 0.65 0.00 0.60 

VI-4 0.80 0.80 0.01 0.74 0.65 0.64 0.01 1.46 

Note: a, b, c, d, * – the same notes as those in Table 14; PF = pavement friction. 
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Recall that in Scenario V, CMFs for both curve density and pavement friction 

become less accurate as the nonlinear relationship between lane width and crash risk 

becomes strong, but this seems not to be always true to the CMF for pavement friction in 

this scenario. When the inverse dispersion parameter equaled to 0.5 and 1.0, CMFs for 

pavement friction in Sub-Scenario VI-3 (with weaker nonlinear relationship in lane 

width and stronger in curve density) had the highest bias and error percentage, and those 

in Sub-Scenario VI-2 (with stronger in lane width and weaker in curve density) had the 

lowest. But when the inverse dispersion parameter was 2.0, the former had the lowest 

while the latter had the highest. No possible reasons can be made at this moment. 

The main findings of this scenario are close to those in Scenario V and can be 

summarized as follows: (1) the CM-Function for both lane width and curve density 

derived from SPFs were biased when using the common linear forms to model their 

nonlinear relationships; (2) with the increase of nonlinearity (i.e., nonlinear becomes 

stronger), the bias trended to become more significant; (3) the CMFs for other variables 

having linear relationship might be acceptable when mixed with those having nonlinear 

relationship; and (4) the misuse of linear link function for one or more variables led to 

biased estimate of other parameters. 

The results in this section seem to contradict the results in Section 4.1 (i.e., linear 

relationships). In the previous section, the functional form used in regression models was 

of the same family with the one used to generate crash counts. The CMFs derived from 

SPFs were unbiased. In this section, they were not of the same family, and the CMFs 

were biased. It can be conclude from the two sections that functional forms play vital 
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roles in developing CMFs and/or CM-Functions in regression models, which is 

consistent with Hauer (2015). Unfortunately, the true safety effects of variables can be 

hardly known in practice, and this makes it difficult or impossible to identify the correct 

functional form in regression models. Safety analysts commonly adopt the linear form 

probably for its simplicity. This might be inadequate when some variables are having 

nonlinear effects on safety, as this section has illustrated. 

4.4 Variable Correlation 

Scenarios VII and VIII are discussed in this section. 

4.4.1 Scenario VII: Variable Correlation, Linear Relationship 

This scenario was essentially the same as Scenario I, except the two variables, 

AADT and lane width, were correlated in this scenario. The assumed CMF for lane 

width varied from 0.85 to 1.05 with an increment of 0.05. The theoretical function of the 

generated crash counts in this scenario is shown in Equation 4-1 (now as 4-19 below).

2

42.67 10 (true,i spf ,i LW ,i AADTi exp[LW LWiN N CMF     Li   12)]  (4-19a) 

Or equivalently, 

true,i off i i LW iN  L  AADT exp  LW( )  (4-19b) 

The considered functional form is shown in Equation 4-2 (now as 4-20 below). 

1

0( )   exp(i i iE L  AADT   LW )  (4-20) 
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The results are shown in Table 26. They were nearly the same as those of 

Scenario I. The estimation bias was relatively small under different simulation settings. 

The estimation bias was less than 0.02, and the error was within 2 percent. 
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Table 26 Results of Scenario VII 

Theo. 

CMF a 
CMF (SD) b Bias E c AIC d MAD e MSPE f 

  = 0.5 

0.85 0.850 (0.033) 0.000 0.045 10181.9 0.038 0.010 

0.90 0.903 (0.041) 0.003 0.322 10086.4 0.038 0.009 

0.95 0.958 (0.039) 0.008 0.795 9994.2 0.036 0.008 

1.00 1.002 (0.042) 0.002 0.205 9880.1 0.036 0.008 

1.05 1.060 (0.042) 0.010 0.907 9785.6 0.035 0.007 

  = 1.0 

0.85 0.851 (0.047) 0.001 0.158 10315.9 0.050 0.015 

0.90 0.905 (0.046) 0.005 0.508 10217.2 0.049 0.014 

0.95 0.960 (0.054) 0.010 1.049 10101.4 0.046 0.014 

1.00 1.006 (0.056) 0.006 0.578 9967.6 0.048 0.014 

1.05 1.051 (0.052) 0.001 0.087 9877.4 0.044 0.013 
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Table 26 Continued 

Theo. 

CMF a 
CMF (SD) b Bias E c AIC d MAD e MSPE f 

  = 2.0 

0.85 0.849 (0.051) -0.001 0.111 10148.4 0.063 0.024 

0.90 0.907 (0.068) 0.007 0.829 9998.2 0.061 0.022 

0.95 0.943 (0.064) -0.007 0.694 9892.5 0.058 0.020 

1.00 1.017 (0.070) 0.017 1.729 9789.4 0.060 0.023 

1.05 1.056 (0.064) 0.006 0.575 9727.2 0.053 0.018 

Note: a – theoretical CMF; b – mean of CMFs from 100 experiments, SD is the Standard Deviation of the 100 CMFs; c – E is 

the error percentage, %; d, e, f – each is the mean value of the corresponding GOF measure of the 100 results. 



109 

4.4.2 Scenario VIII: Variable Correlation, Nonlinear Relationship 

This scenario is the same as Scenario IV, except the dataset. The same three 

nonlinear CM-Functions were used for lane width, as shown in Equations 4-8, 4-9, and 

4-10 (here as 4-21, 4-22, and 4-23 below), respectively. 

2( ) 0.1 2.22 12.28ln CMF LW LW      (4-21) 

2( ) 0.2 4.22 21.88ln CMF LW LW      (4-22) 

2

2

0.11 ( 12) 0.30 12
( )

0.08 ( 12) 0.30 12

LW LW
ln CMF

LW LW

    
 

    
(4-23) 

The nonlinear properties (closest line, area and AVD) for the three sub-scenarios 

are the same as those in Scenario IV (summarized in Table 12). 

The theoretical function is shown in Equation 4-11 (here as 4-24 below). 

4

, , , ,2.67 10true i spf i LW i i i LW iN N CMF L AADT CMF       (4-24) 

The considered functional form is shown in Equation 4-12 (here as 4-25 below). 

1

0 2( ) ( )i i iE L AADT exp LW        (4-25) 

Table 27 presents the CMFs derived from SPFs as well as other results (i.e.,   

and GOF measurements) in this scenario. Figure 10 illustrates the curves of assumed 

CM-Functions for lane width and those derived from regression models in this scenario 

with a 0.5 inverse dispersion parameter. The specific CMFs for several lane widths of 

interest are listed in Table 28. First, the CMFs derived from the regression models were 

Based on the result of this scenario, it seems the correlation between variables 

had trivial influence on CMFs derived from regression models. 
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all biased, especially around boundary areas. Second, Sub-Scenario VIII-2 (stronger 

nonlinearity) consistently had the highest MAD and MSPE. These two findings were 

consistent with that of Scenario IV. However, there were two significant differences 

between the two scenarios. 

(1) The CMFs for lane width changed. The CMFs for lane width were 1.07, 1.49, 

and 1.12 in the three sub-scenarios, respectively, when the dispersion parameter was 0.5. 

They were obviously different with the corresponding ones in Scenario IV, which were 

0.88, 0.98, and 1.33, respectively. Both the slope and intercept of the curve for CM-

Function derived from SPFs changed when the variables became correlated, as shown in 

Figure 10. In this scenario, the two curves crossed at 11 and 12. Specifically, the bias 

and error percentage at 11-ft lane were really small, but they were relatively high at 

other points (i.e., 8-, 9-, and 10-ft lanes).  

(2) The estimated dispersion parameter was close to the true value in this 

scenario, as shown in the third column of Table 27. Recall the findings in Scenario IV as 

well as Scenarios V and VII, the estimated dispersion parameter was biased when 

improper functional form was used. However, it was not in this scenario. That means the 

variables correlation also had significant influence on the estimates of other parameters 

in the regression models. 
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Table 27 Results of Scenario VIII 

Sub-Scenario CMF (SD) a   b AIC d MAD e MSPE f 

  c = 0.5 

VIII-1 1.09 (0.05) 0.50 9845.45 0.05 0.03 

VIII-2 1.53 (0.07) 0.51 9443.69 0.08 0.12 

VIII-3 1.13 (0.05) 0.50 9624.95 0.05 0.02 

  c = 1.0 

VIII-1 1.07 (0.06) 0.99 9941.70 0.06 0.03 

VIII-2 1.51 (0.09) 1.02 9520.91 0.09 0.14 

VIII-3 1.12 (0.06) 1.00 9713.03 0.05 0.03 

  c = 2.0 

VIII-1 1.07 (0.08) 1.98 9758.17 0.07 0.04 

VIII-2 1.48 (0.12) 2.03 9368.08 0.09 0.16 

VIII-3 1.12 (0.07) 1.99 9504.21 0.07 0.03 

Note: a – mean of CMFs from 100 experiments, SD is the Standard Deviation of the 100 CMFs; b - the inverse dispersion 

parameter derived from SPFs; c – the theoretical inverse dispersion parameter in each sub-scenario; d, e, f – each is the mean 

value of the corresponding GOF measure of the 100 results. 
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(a) Sub-Scenario VIII-1 

 

(b) Sub-Scenario VIII-2 

Figure 10 CM-Functions for Lane Width in Scenario VIII ( =0.5) 
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(c) Sub-Scenario VIII-3 

Figure 10 Continued 
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Table 28 Bias and Error of CMFs for Lane Width in Scenario VIII 

Sub-

Scenario 
Th.a SPFb Bias Ec Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  8    9    10   

  d = 0.5 

VIII-1 2.44 0.72 1.72 70.5 1.45 0.78 0.67 46.0 1.05 0.85 0.20 19.0 

VIII-2 2.44 0.18 2.26 92.6 1.07 0.28 0.79 74.1 0.70 0.43 0.28 39.5 

VIII-3 0.17 0.62 -0.45 271.0 0.36 0.69 -0.33 90.9 0.64 0.78 -0.15 22.9 

  d = 1.0 

VIII-1 2.44 0.75 1.69 69.3 1.45 0.81 0.64 44.3 1.05 0.87 0.18 17.3 

VIII-2 2.44 0.19 2.25 92.1 1.07 0.29 0.78 72.8 0.70 0.44 0.26 37.3 

VIII-3 0.17 0.63 -0.46 278.5 0.36 0.71 -0.34 93.7 0.64 0.79 -0.15 24.2 

  d = 2.0 

VIII-1 2.44 0.77 1.67 68.6 1.45 0.82 0.63 43.3 1.05 0.88 0.17 16.4 

VIII-2 2.44 0.21 2.24 91.6 1.07 0.31 0.77 71.5 0.70 0.45 0.25 35.4 

VIII-3 0.17 0.64 -0.48 288.0 0.36 0.72 -0.35 97.4 0.64 0.80 -0.16 25.7 
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Table 28 Continued 

Sub-Scenario Th.a SPFb Bias Ec Th.a SPFb Bias Ec 

LW (ft)  11    13   

  d= 0.5 

VIII-1 0.93 0.92 0.00 0.5 1.32 1.09 0.23 17.7 

VIII-2 0.69 0.65 0.03 5.0 2.17 1.53 0.64 29.5 

VIII-3 0.89 0.89 0.01 0.9 0.93 1.13 -0.20 21.8 

  d= 1.0 

VIII-1 0.93 0.93 0.00 0.5 1.32 1.07 0.24 18.5 

VIII-2 0.69 0.66 0.02 3.3 2.17 1.51 0.67 30.7 

VIII-3 0.89 0.89 0.00 0.4 0.93 1.12 -0.20 21.2 

  d= 2.0 

VIII-1 0.93 0.94 -0.01 1.1 1.32 1.07 0.25 19.0 

VIII-2 0.69 0.67 0.01 1.8 2.17 1.48 0.69 31.7 

VIII-3 0.89 0.90 0.00 0.2 0.93 1.12 -0.19 20.4 

Note: a – theoretical CMF (assumed true specific CMFs for lane widths of 8, 9, 10, 11 and 12 ft); b – CMF derived from SPF 

(specific CMFs derived from regression models for corresponding lane widths); c – error percentage, %; d – the theoretical 

inverse dispersion parameter ( ) in each sub-scenario. 
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Another interesting finding is that the results differed between Scenarios VII and 

VIII. Variable correlation affected the CMFs derived from regression models when 

improper functions were used (Scenario VIII), but it did not when the functional form 

used in the model was of the same family with the one assumed (Scenario IV). Further 

analysis was conducted to analyze this phenomenon.  

In order to examine the difference between the data points with variable 

correlation (i.e., Scenario VIII) and those without (i.e., Scenario IV), the scatter plots of 

crash counts against lane width in two sub-scenarios (IV-1 and VIII-1) are shown in 

Figure 11. It can be seen that, in Sub-Scenario IV-1, the points were nearly equally 

distributed among the five lane widths, whereas they were highly gathered together (11- 

and 12-ft lanes) in Sub-Scenario VIII-1. Calculation revealed that the five lane widths 

accounted for about 0.1 (8 ft), 0.1 (9 ft), 5.4 (10 ft), 33.2 (11 ft), 56.4 (12 ft), and 4.8 (13 

ft) percent, respectively, in the latter sub-scenario. As can be seen, 11- and 12-ft lanes 

were prevalent among the five possible values. Together they accounted for nearly 90 

percent. It is likely that the two groups of data points in Scenarios VII and VIII 

determined the regression results (i.e., the intercept and the slope).  
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(a) Without Variable Correlation (Sub-Scenario IV-1) 

 

(b) With Variable Correlation (Sub-Scenario VIII-1) 

Figure 11 Scatter Plots of Crash Counts and Lane Width 
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Figure 12 illustrated four types of dummy data points considering the distribution 

(uniform or non-uniform) and the relationship (linear or nonlinear). In (a) and (b) of 

Figure 12, the points were uniformly distributed, and the line were determined by the 

four groups of data points. In Figure 12 (a), the response variable and the explanatory 

variable had a linear relationship, so the line went through the four groups of data points 

roughly. In Figure 12 (b), they had a nonlinear relationship, then the line moved up to 

“better” fit the points, and of course biased. However, most of the data gathered around 

points b and c in Figure 12 (c) and (d). The intercept and slope of the line highly 

depended on these two groups of points. In Figure 12 (c), the response variable and the 

explanatory variable had a linear relationship, so the line again went through most of 

points. The relationship changed to nonlinear in Figure 12 (d), but the line did not move 

or rotate much. Because its intercept and slope were highly based on the two groups in 

the middle (i.e., points around b and c). The change of the data points on the two ends 

had trivial effect on the line since they were minority among all the data points. These 

four figures correspond to Scenarios I, IV, VII and VIII, respectively. This explains why 

variable correlations had no obvious effect in Scenario IV, but it influenced the CMFs 

significantly in Scenario VIII. Unfortunately, their effect on the estimation of other 

parameters (e.g., dispersion parameter) are not clear, and this needs further analysis in 

the future. 
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(a) Uniform and Linear (b) Uniform and Nonlinear 

  

(c) Non-uniform and Linear (d) Non-uniform and Nonlinear 

Figure 12 Example Illustrating the Effects of Variable Distribution on Regression 
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4.5 Combined Safety Effect 

This sections discusses Scenario IX: combined safety effect. Two variables, lane 

width and shoulder width were considered in this scenario. The CMFs for them and 

other modeling results of each sub-scenario with a 0.5 inverse dispersion parameter are 

documented in Table 29. The results with other inverse dispersion parameters are 

presented in the Appendix. When compared with the previous scenarios, the bias and 

error percentage were relatively high in this scenario. The average error percentage was 

around 5.3% for CMFs of both lane width and shoulder width. The maximum was about 

10%. When the adjustment factor was less than 1.0, the CMFs for both lane width and 

shoulder width were consistently underestimated. For example, the true CMFs for lane 

width and shoulder width were 0.8 and 0.85, respectively, in Sub-Scenario IX-1 

(adjustment factor equaled to 0.80). Those derived from regression models were 0.73 

and 0.77, respectively. Safety analysts may misleadingly overestimate the safety benefits 

of widening the lane and that of widening the shoulder. The results were contrary when 

the adjustment factor was more than 1.0. CMFs were overestimated and benefits of 

widening lane or shoulder individually were both underestimated. So, neither the CMFs 

for lane width nor those for shoulder width can reflect their true individual safety 

effectiveness in this scenario.  
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Table 29 Results of CMFs in Scenario IX (  = 0.5) 

# * AF a 

LW b SW b 

 b AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-1 0.80 0.8 
0.73 

(0.048) 
-0.07 9.26 0.85 

0.77 

(0.046) 
-0.08 8.92 0.49 8750.40 0.052 0.014 

IX-2 0.90 0.8 
0.77 

(0.047) 
-0.03 4.06 0.85 

0.81 

(0.048) 
-0.04 4.19 0.50 8908.33 0.043 0.012 

IX-3 0.95 0.8 
0.79 

(0.049) 
-0.01 1.46 0.85 

0.83 

(0.046) 
-0.02 1.77 0.49 8917.64 0.040 0.010 

IX-4 1.05 0.8 
0.82 

(0.05) 
0.02 2.57 0.85 

0.88 

(0.05) 
0.03 3.17 0.50 9056.37 0.039 0.010 

IX-5 1.10 0.8 
0.83 

(0.054) 
0.03 3.77 0.85 

0.89 

(0.054) 
0.04 4.44 0.49 9106.98 0.044 0.012 

IX-6 1.20 0.8 
0.87 

(0.047) 
0.07 8.72 0.85 

0.93 

(0.052) 
0.08 9.20 0.50 9200.09 0.051 0.014 

IX-7 0.80 0.9 
0.82 

(0.043) 
-0.08 9.08 0.85 

0.77 

(0.049) 
-0.08 9.68 0.50 9046.82 0.055 0.016 

IX-8 0.90 0.9 
0.86 

(0.046) 
-0.04 4.50 0.85 

0.8 

(0.044) 
-0.05 5.55 0.49 9162.17 0.043 0.011 

IX-9 0.95 0.9 
0.88 

(0.049) 
-0.02 2.08 0.85 

0.83 

(0.048) 
-0.02 2.64 0.50 9223.60 0.042 0.011 
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Table 29 Continued 

# * AF a 

LW b SW b 

 b AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-10 1.05 0.9 
0.92 

(0.045) 
0.02 2.57 0.85 

0.86 

(0.045) 
0.01 1.76 0.49 9307.60 0.040 0.009 

IX-11 1.10 0.9 
0.94 

(0.055) 
0.04 4.11 0.85 

0.89 

(0.049) 
0.04 4.80 0.50 9366.01 0.043 0.010 

IX-12 1.20 0.9 
0.98 

(0.06) 
0.08 9.04 0.85 

0.93 

(0.05) 
0.08 9.95 0.50 9451.37 0.054 0.015 

IX-13 0.80 0.8 
0.73 

(0.035) 
-0.07 9.00 0.9 

0.82 

(0.047) 
-0.08 8.48 0.49 8927.76 0.054 0.016 

IX-14 0.90 0.8 
0.76 

(0.046) 
-0.04 5.51 0.9 

0.87 

(0.047) 
-0.03 3.66 0.50 9003.28 0.042 0.011 

IX-15 0.95 0.8 
0.78 

(0.04) 
-0.02 2.92 0.9 

0.88 

(0.047) 
-0.02 2.19 0.49 9072.50 0.038 0.009 

IX-16 1.05 0.8 
0.81 

(0.045) 
0.01 1.65 0.9 

0.92 

(0.055) 
0.02 2.31 0.49 9184.27 0.041 0.009 

IX-17 1.10 0.8 
0.84 

(0.046) 
0.04 4.45 0.9 

0.94 

(0.051) 
0.04 4.11 0.49 9232.53 0.041 0.009 

IX-18 1.20 0.8 
0.87 

(0.057) 
0.07 9.33 0.9 

0.98 

(0.054) 
0.08 8.58 0.49 9330.62 0.053 0.014 
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Table 29 Continued 

# AF a 

LW b SW b 

 c AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-19 0.80 0.9 
0.81 

(0.05) 
-0.09 9.75 0.9 

0.81 

(0.048) 
-0.09 9.64 0.51 9155.48 0.058 0.018 

IX-20 0.90 0.9 
0.86 

(0.044) 
-0.04 4.74 0.9 

0.87 

(0.047) 
-0.03 3.64 0.50 9287.17 0.044 0.011 

IX-21 0.95 0.9 
0.88 

(0.047) 
-0.02 2.13 0.9 

0.88 

(0.053) 
-0.02 2.18 0.50 9358.16 0.042 0.010 

IX-22 1.05 0.9 
0.92 

(0.058) 
0.02 2.70 0.9 

0.93 

(0.055) 
0.03 3.43 0.51 9447.52 0.044 0.012 

IX-23 1.10 0.9 
0.95 

(0.049) 
0.05 5.29 0.9 

0.94 

(0.053) 
0.04 4.60 0.49 9490.10 0.044 0.011 

IX-24 1.20 0.9 
0.99 

(0.061) 
0.09 9.80 0.9 

0.99 

(0.054) 
0.09 10.12 0.50 9627.21 0.056 0.016 

Note: # = Sub-scenario number; a – AF is the assumed adjustment factor; b – LW is for lane width, SW is for shoulder width, 

Th. means the true CMF value, SPF is the mean of CMFs from 100 experiments, SD is the standard deviation of the 100 

CMFs, E is error percentage (%); c - the mean of inverse dispersion parameter estimated from 100 experiments; d, e, f – each 

is the mean of the corresponding GOF of the 100 results.  
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Further, the relationship between the accuracy of CMFs and the presumed 

adjustment factors were investigated. The relationship between error percentage and 

adjustment factor are illustrated in Figures 13 and 14. Figure 13 shows the error 

percentage of CMFs for lane width and Figure 14 shows that for shoulder width. The 

two figures clearly indicate that the error percentage was highly related to the adjustment 

factor. The error percentage was consistently the highest when the adjustment factor was 

0.80 or 1.20. And the lowest when it was 0.95 or 1.05. The error percentage became 

small as the adjustment factor became closer to 1.0. A special case can be seen when the 

adjustment factor equaled to 1.0, the scenario configuration fell into that in Scenario II 

(with two variables). The error percentage should be much lower (technically zero) 

based on the findings in that scenario. So the adjustment factor considerably influenced 

the CMFs for both lane width and shoulder width. When it was close to 1.0, this 

influence might be minor. But when it became far from 1.0 (i.e., less than or more than 

1.0), the accuracy of CMFs can be significantly affected. The further away it is from 1.0, 

the lower the quality of the CMFs is. In other words, the CMFs were biased when the 

multiple treatments were actually not affecting crash risk independently. The rate at 

which the value became biased was actually very high when the adjustment factor went 

away from 1.0. 
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Figure 13 Error Percentage of CMFs for Lane Width in Scenario IX ( =0.5) 

 

 

Figure 14 Error Percentage of CMFs for Shoulder Width in Scenario IX 

( =0.5) 
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The row of “ ” in Table 29 lists the estimated inverse dispersion parameters 

from the regression models for each scenario. All of them were very close to the 

corresponding true values regardless of the assumed CMFs for variables. No significant 

influence of the adjustment factor on the estimate of inverse dispersion parameters was 

found in this scenario. Similar results were observed for other inverse dispersion 

parameters. 

Another interesting finding from this scenario was the GOF measurements. Both 

MAE and MSPE were relatively small in each sub-scenario, and they were very close to 

those in Scenario I. This indicated that the predicated crash number was quite close to 

the true crash mean. However, this did not guarantee the quality of CMFs derived from 

regression models, as has been described above. That is to say, although the fitting result 

seems to be good in terms of GOF measurements, there can still be some substance 

issues with the models. A possible reason is that some parameters may have been 

overestimated (or underestimated) while others may have been underestimated (or 

overestimated) in the regression models. Take Sub-Scenario IX-1 as an example. The 

specific theoretical function for generating crash counts is shown in Equation 4-26. 

       12 612 64

, 2.67 10 0.8 0.85
i iLW SWi ii i

I LW I SWLW SW

true i i iN L AADT AF           

 (4-26a) 

Or equivalently,  

       12 6

, 0.103 0.16( 0.22 )i iLW SWi i
I LW I SW

itrue i i i iAF SWN L AADT exp LW        

 (4-26b) 
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Where, 

   12i
iLW

I LW


 = indicator function for lane width of segment i. It equals to 0 if 

the lane width is 12 ft, otherwise 1.0, and,  

   6i
iSW

I SW


 = indicator function for shoulder width of segment i. It equals to 0 

if the shoulder width is 6 ft, otherwise 1.0. 

The modeling output of one experiment in this sub-scenario is shown in Table 

30. It can be seen that the coefficients for lane width and shoulder width were both 

obviously underestimated. And that for AADT was slightly underestimated. But the 

intercept coefficient was overestimated. Note that the specific theoretical value for the 

intercept is not directly given in Table 30 due to the fact that it depends on the two 

indicator functions. In other words, the theoretical intercept varied when the segment 

group changed. For segment Groups 1, 2 and 3, it was -2.27 (logarithm of 0.103). But it 

was -2.49 (logarithm of the product of 0.103 and AF, 0.8) for segment Group 4. The 

coefficient estimated from regression models was much higher than either of them. In 

this experiment, the coefficients for lane width and shoulder width were both 

underestimated. It seems the underestimation was compensated through overestimating 

the intercept coefficient. Perhaps this explains the overall smaller MAE and MSPE 

values. 
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Table 30 Modeling Output of the an Experiment in Sub-Scenario IX-1 

Model Variable Theo. Value a Coef. Value b SE c p-Value 

Intercept [ 0( )ln  ] -2.27-0.223ILWISW d -1.810 0.713 0.0111 

Ln(AADT) ( 1 ) 1.00 0.981 0.040 < 2e-16 

Lane Width ( 2 ), ft -0.223 -0.352 0.045 3.26E-15 

Shoulder Width 

( 3 ), ft 
-0.162 -0.321 0.045 6.18E-13 

AIC   8921.8  

MAD   0.050  

MSPE   0.014  

Note: a – theoretical value; b – estimated coefficient value; c – SE is standard error; 

d - the theoretical value for intercept was calculated by taking the nature logarithm of the 

first two terms of Equation 4-26b,        12 60.103
i iLW SWi i

I LW I SW
AF   . ILW and ISW are the two 

indicator functions of lane width and shoulder width, respectively. 

 

4.6 Summary 

This chapter has described the detailed evaluation results of CMFs derived from 

regression models using simulated crash data with nine scenarios. The simulation has 

shown several key findings. 

(1) Scenarios I and II considered linear relationships between variables and crash 

risk and assumed all the requirements of a cross-sectional study were satisfied. The 

result indicated the CMFs produced using the common regression models should be 

unbiased under such conditions. 
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(2) Scenario II focused on the omitted-variable problem. Simulation analyses 

confirmed that regression models suffer from this problem, and the CMFs derived from 

the models were biased when some factors having significant effect on safety were 

omitted. When this effect was minor, the quality of CMFs might be acceptable. 

(3) Scenarios III, IV and VI examined the bias of CMFs when some variables 

had nonlinear relationship with crash risk. It was found that link functions were crucial 

in developing reliable CMFs. The commonly used GLMs were likely to produce biased 

CMFs when the relationship between variables and crash risk were not linear (in 

logarithm format). In addition, this also led to biased estimates for other parameters. 

(4) Scenarios VII and VIII were repetitions of Scenarios I and IV, respectively, 

with emphasis on variable correlation. It was found that the correlation between 

variables had no obvious influence on the CMFs under conditions of linear relationships. 

However, it affects the CMFs significantly when improper functional form was used in 

the regression models.  

(5) Scenario IX considered the independence assumption within the common 

regression models. Once this assumption was not met, the individual CMFs for multiple 

variables or treatments included in the regression models were biased, especially when 

the dependence was strong. 

To verify the simulation findings, observed data was analyzed and the results are 

discussed in the next chapter. 
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5. VALIDATION USING OBSERVED DATA 

 

In previous chapters, simulation had been used to examine the quality of CMFs 

developed from regression models. The simulation analyses mainly raised three 

problems with the use of regression models for estimating CMFs. Specifically, they are 

the omitted-variable problem, functional form, and dependence of variables. In order to 

better illustrate the findings from the simulation analyses, the CMFs were derived from 

an observed dataset with regression methods. Due to the fact that little was known about 

the combined safety effects of multiple variables, it was not easy to validate the variable 

dependent problem. Thus, this chapter mainly considered the functional form and 

omitted-variable problems. 

Section 5.1 briefly introduces the dataset used in this study. Section 5.2 presents 

the modeling results and CM-Functions derived from regression models with various 

functional forms. Section 5.3 documents the volume-only model and “full-variable” 

model. Section 5.4 provides a summary of the work accomplished with the observed 

dataset. 

5.1 Data Description 

The real observed dataset was requested from the Highway Safety Information 

System (HSIS) managed by the FHWA (FHWA 2011). Segments of two-lane rural 

                                                 

 The real crash date used in this chapter was provided by the Highway Safety Information System (HSIS). 

The author greatly appreciates HSIS for providing the data. 
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highways in Washington State was identified, and three-year (from 2006 to 2008) crash 

records on these segments were collected. The segment length, traffic volume (i.e., 

AADT), lane width and shoulder width (right + left) of each segment were obtained. 

Note that the AADT was the average in the three years. The segments with AADT less 

than 500 were excluded, because some agencies pointed out the AADT of those 

segments were usually unreliable (Srinivasan and Carter 2011). In addition, some 

segments with obvious mistakes (e.g., 0-ft or extreme wide lanes) were removed. 

Finally, 8,132 segments were identified. The segments are summarized in Table 31. The 

scatter plots of crash rate (number of crashes per mile) against the three variables (i.e., 

AADT, lane width, and shoulder width) are illustrated in Figure 15. 

 

Table 31 Summary Statistics of Observed Data 

Variable Sample Size Min. Max Mean (SD *) 

Length (mi) 8132 0.01 7.51 0.3 (0.5) 

AADT 8132 511 26856 4263.4 (3948.4) 

Lane Width (ft) 8132 9 14 11.6 (0.7) 

Shoulder Width (ft) 8132 0 44 9.6 (5.4) 

Crash Count (3 years) 8132 0 50 1.4 (2.6) 

Note: * SD = standard deviation. 
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Figure 15 Scatter Plots of Crash Rate against Variables 

 

5.2 Estimated CMFs using Different Functional Forms 

Based on the simulation results, functional forms played important roles in 

developing CMFs. The use of improper functional forms could lead to significant bias to 

CMFs developed from regression models. To validate the importance of functional 

forms, GLM and GNM were used to analyze the real observed data. Six types of link 

functions were utilized in the regression models. They were linear, inverse, exponential, 

log, power, and quadratic functions, respectively. The model with linear link function 

was equivalent to the commonly used GLM. The other five link functions were adopted 

from a recent study (Park and Abdel-Aty 2015b). The modeling procedure of GNMs was 

generally the same as the previous studies conducted by Lao et al. (2014) and Lee et al. 

(2015), but necessary improvements were made. In the previous studies, the nonlinear 

link functions were determined by observing the curve pattern between crash rate (in 



 

133 

 

logarithm form) and the variables of interests. This could lead to bias, because the link 

functions were subject to observers. Instead, this study developed the nonlinear link 

functions, given the forms, by fitting the relationship between crash rate and variable 

(i.e., lane width). It is worth to mention that this section only considered lane width in 

the regression models to simplify the analysis, the result of which might be affected by 

the omitted-variable bias. However this would not influence the objective of the 

analysis. 

Prior to regression analyses, the relationship between crash rate and lane width 

was explored. The curve is shown in Figure 16. The vertical axis in Figure 16 is mean 

crash rate (number of crashes in three years per mile per one thousand AADT), and the 

horizontal axis represents lane width. It can be seen that the overall crash rate decreased 

as the lane width increased. However, the decreasing rate was obviously higher when the 

lane was narrower. Widening segments with narrower lanes seemed to be more effective 

than widening wider ones if other factors (e.g., AADT) were the same or similar. This 

indicated a linear function might not be adequate to reflect the relationship between the 

two. 



 

134 

 

 

Figure 16 Mean Crash Rate and Lane Width 

 

5.2.1 Linear 

The linear functional form assumed the relationship between crash rate (in 

logarithm) and variable of interest (i.e., lane width) followed Equation 5-1. 

( ) ln( )U LW CR A B LW     (5-1) 

Where,  

( )U LW  = link function for lane width; 

CR  = crash rate; 

LW  = lane width (ft); and, 

A and B are coefficients to be estimated. 
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Actually, this was consistent with the commonly used GLMs. The target model 

form was the same as Equation 4-2 (now as 5-2 below). 

2  (5-2) 

The modeling results (coefficient estimates and GOF measures) are presented in 

Table 32. All the three parameters were statistically significant at a 99 percent level. The 

CMF for lane width derived from this model was 0.85 ( 0.16e ), meaning the expected 

crash number would decrease by 15 percent whenever the lane was widen by 1 foot. The 

CM-Function is illustrated in Figure 17. 

 

Table 32 Modeling Result of Observed Date with Linear Functional Form 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -4.72 0.31 5.84E-53 

Ln(AADT) ( 1 ) 1.02 0.02 0.00E+00 

Lane Width ( 2 ), ft -0.16 0.03 7.58E-10 

  1.3344 0.0542 - 

AIC  22083.9  

MAD  1.211  

MSPE  5.418  

Note: a – estimated coefficient value; b – SE = standard error. 
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Figure 17 CM-Function for Lane Width Derived using Observed Data (Linear) 

 

5.2.2 Inverse 

With inverse functional form, the assumed relationship between crash rate (in 

logarithm) and lane width is shown in Equation 5-3. 

( ) ln( ) /U LW CR A B LW    (5-3) 

The fitting results of inverse link function is shown in Table 33 and the specific 

function is shown in Equation 5-4. Both A and B were statistically significant at a 99 

percent level. 

( ) 0.0063 0.1037 /U LW LW    (5-4) 
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Table 33 Fitting Result of Inverse Functional Form for Lane Width  

Model Variable Coef. Value a SE b p-Value 

A -0.0063 0.0020 1.92e-03 

B 0.1037 0.0234 9.62e-06 

Note: a – estimated coefficient value; b – SE = standard error. 

 

The target model form is shown in Equation 5-5. 

1

0 2( ) [ ( )]i i iE L AADT exp U LW        (5-5) 

In Equation 5-5, the link function for lane width, ( )U LW , was substituted by 

Equation 5-4. The final results are shown in Table 34. 

 

Table 34 Modeling Result of Observed Date with Inverse Functional Form 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -7.17 0.20 < 2e-16 

Ln(AADT) ( 1 ) 1.02 0.02 < 2e-16 

U(LW) ( 2 ) 211.94 33.11 1.54e-10 

  1.3353 0.0543 - 

AIC  22081.5  

MAD  1.210  

MSPE  5.411  

Note: a – estimated coefficient value; b – SE = standard error. 
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The CM-Function for lane width was then estimated as Equation 5-6. 

2 2

1 1
( ) ( ) (12) 211.94 0.1037( )

12
ln CMF U LW U

LW
         (5-6a) 

Or equivalently, 

1 1
[21.97 ( )]

12
CMF exp

LW
    (5-6a) 

The value of 12 in Equation 5-6 reflects the base condition for lane width. The 

CM-Function for lane width with inverse functional form is illustrated in Figure 18. 

 

 

Figure 18 CM-Function for Lane Width Derived using Observed Data (Inverse) 
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5.2.3 Exponential 

The exponential form is shown in Equation 5-7. 

( ) ln( ) ( )U LW CR A B exp LW     (5-7) 

Similar procedures were used as that for the inverse form. The results are shown 

in Tables 35 and 36. 

 

Table 35 Fitting Result of Exponential Functional Form for Lane Width  

Model Variable Coef. Value a SE b p-Value 

A 2.972e-03 1.644e-04 < 2e-16 

B -2.111e-09 8.012e-10 8.43E-03 

Note: a – estimated coefficient value; b – SE = standard error. 

 

Table 36 Modeling Result of Observed Date with Exponential Functional Form 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -7.12 0.26 < 2e-16 

Ln(AADT) ( 1 ) 1.01 0.02 < 2e-16 

U(LW) ( 2 ) 239.14 69.83 6.16E-04 

  1.3271 0.0538 - 

AIC  22107.4  

MAD  1.214  

MSPE  5.415  

Note: a – estimated coefficient value; b – SE = standard error. 
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The CM-Function for lane width is shown in Equation 5-8. And the curve is 

illustrated in Figure 19. 

7

2 2( ) ( ) (12) 5.05 10 [ ( ) (12)]ln CMF U LW U exp LW exp            (5-8) 

 

 

Figure 19 CM-Function for Lane Width Derived using Observed Data 

(Exponential) 

 

5.2.4 Log 

The log form is shown in Equation 5-9. 

( ) ln( ) ( )U LW CR A B ln LW     (5-9) 

The results are shown in Tables 37 and 38. 
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Table 37 Fitting Result of Log Functional Form for Lane Width 

Model Variable Coef. Value a SE b p-Value 

A 0.0242 0.0050 < 2e-16 

B -0.0088 0.0020 1.48E-05 

Note: a – estimated coefficient value; b – SE = standard error. 

 

Table 38 Modeling Result of Observed Date with Log Functional Form 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -7.17 0.20 < 2e-16 

Ln(AADT) ( 1 ) 1.02 0.02 < 2e-16 

U(LW) ( 2 ) 214.47 34.12 3.28E-10 

  1.3349 0.0542 - 

AIC  22082.6  

MAD  1.210  

MSPE  5.415  

Note: a – estimated coefficient value; b – SE = standard error. 

 

The CM-Function for lane width is shown Equation 5-10. And the curve is 

illustrated in Figure 20. 

2 2( ) ( ) (12) 0.71 [ ( ) (12)]ln CMF U LW U exp LW exp         (5-10) 
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Figure 20 CM-Function for Lane Width Derived using Observed Data (Log) 

 

5.2.5 Power 

The power form is shown in Equation 5-11. 

( ) ln( ) BU LW CR A LW    (5-11) 

The results are shown in Tables 39 and 40. 
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Table 39 Fitting Result of Power Functional Form for Lane Width  

Model Variable Coef. Value a SE b p-Value 

A -0.9755 0.0051 < 2e-16 

B -0.0090 0.0021 2.25E-05 

Note: a – estimated coefficient value; b – SE = standard error. 

 

Table 40 Modeling Result of Observed Date with Power Functional Form 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -7.17 0.20 < 2e-16 

Ln(AADT) ( 1 ) 1.02 0.02 < 2e-16 

U(LW) ( 2 ) 214.40 34.11 3.26E-10 

  1.3349 0.0542 - 

AIC  22082.6  

MAD  1.210  

MSPE  5.415  

Note: a – estimated coefficient value; b – SE = standard error. 

 

The CM-Function for lane width is shown Equation 5-12. And the curve is 

illustrated in Figure 21. 

0.009 0.009

2 2( ) ( ) (12) 214.4 ( 12 )ln CMF U LW U LW         (5-12) 
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Figure 21 CM-Function for Lane Width Derived using Observed Data (Power) 

 

5.2.6 Quadratic 

The quadratic form is shown in Equation 5-13. 

2( ) ln( )U LW CR A B LW C LW       (5-13) 

The results are shown in Tables 41 and 42. 
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Table 41 Fitting Result of Quadratic Functional Form for Lane Width  

Model Variable Coef. Value a SE b p-Value 

A 0.0471 0.0194 1.50E-02 

B -0.0069 0.0033 3.73E-02 

C 0.0003 0.0001 6.27E-02 

Note: a – estimated coefficient value; b – SE = standard error. 

 

Table 42 Modeling Result of Observed Date with Quadratic Functional Form 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -7.15 0.19 < 2e-16 

Ln(AADT) ( 1 ) 1.02 0.02 < 2e-16 

U(LW) ( 2 ) 204.74 30.31 1.42E-11 

  1.3379 0.0545 - 

AIC  22078.3  

MAD  1.208  

MSPE  5.376  

Note: a – estimated coefficient value; b – SE = standard error. 
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The CM-Function for lane width is shown Equation 5-14. And the curve is 

illustrated in Figure 22. 

2

2 2( ) ( ) (12) 0.05 LW -1.41 LW+9.2ln CMF U LW U         (5-14) 

 

 

Figure 22 CM-Function for Lane Width Derived using Observed Data (Quadratic) 

 

5.2.7 Comparison of CMFs with various forms 

The previous sections provide the CM-Functions for lane width derived from 

regression models with six types of link functions. They are shown together in Figure 

23. It can be seen from Figure 23 that the overall trend of these CM-Functions were the 

same, widening lane could bring safety benefits. However, there were significant 
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differences between the six CM-Functions (except that the log and power forms were 

nearly identical). The inverse, log, and power CM-Functions were close to the linear 

one. Widening the lane by one feet had fixed (or approximately fixed in the three 

nonlinear forms) safety effect regardless of the initial width, and this effect was about 15 

percent reduction of crashes. But the other two (exponential and quadratic) showed 

obvious difference. In the exponential CM-Function, when the lane width was between 9 

ft and about 12 ft, the CMF was consistently about 1.0, meaning changing the lane width 

in this range had little effects on safety. But when the lane was wider than 12 ft, 

widening it reduced crashes significant. In addition, the wider the initial lane was, the 

more safety benefits widening it could bring (i.e., widening from 13 ft to 14 ft had more 

effects than that from 12 ft to 13 ft). The quadratic CM-Functions illustrated a different 

effect. When the lane was narrow (between 9 ft and 12 ft), widening it had significant 

safety effect. And the narrower the initial lane was, the more effects widening by one 

foot had. But when the lane was wide (more than 12 ft), widening the lane had relatively 

minor effect. Specifically, from 12 ft to 13 ft the expected crashes reduced by about six 

percent, and from 13 ft to 14 ft, it increased by about five percent. 
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Figure 23 CM-Functions for Lane Width Derived using Observed Data (All) 

 

Since the true safety effect of lane width was unknown, it was difficult to 

evaluate the quality of the six CM-Functions directly. The GOF and prediction 

measurements of the six models are shown in Table 43. It can been seen that quadratic 

function consistently had the lowest AIC, MAD and MSPE. From this perspective, the 

regression model with quadratic link functions fitted the data best. If a bold assumption, 

that the mean crash rate (mean number of crashes per mile per AADT) could represent 

the actual effect of lane width on safety, a “true” CM-Function could be obtained by 

scaling the mean crash rate (it was scaled such that the rate equaled to 1.0 at base 
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condition, 12-ft lane.) The curve of the “true” CM-Function is also illustrated in Figure 

23. The area between the “true” curve and the six CM-Function curves were calculated, 

respectively, as shown in Table 43 (row of “Area”). It can be seen that quadratic form 

had the smallest area with the curve of “true” CM-Function, which made it overall the 

closest to the “true” safety effect. 

 

Table 43 Comparison of GOFs and Prediction Measurements 

Form Linear Inverse Exponential Log Power Quadratic 

AIC 22083.91 22081.46 22107.40 22082.61 22082.60 22078.34 

MAD 1.2106 1.2101 1.2139 1.2103 1.2103 1.2082 

MSPE 5.4179 5.4111 5.4149 5.4148 5.4148 5.3758 

Area * 2.353 2.233 3.067 2.311 2.310 2.014 

Note: the number in bold indicate the smallest in the corresponding row, and those with 

underline mean they are the largest. * Area = the area between the curve of scaled mean 

crash rate and that of corresponding CM-Function. 

 

Given the “true” CMFs for lane width, the “bias” and “error percentage” of those 

derived from regression models with various function forms were calculated (using the 

same method described in Section 3.3.2) at several points of interest, the results are 

shown in Table 44. First, none of the six CM-Functions adequately captured the “true” 

safety effect of lane width. They all underestimated the CMFs on the left side (i.e., lane 

narrower than 12 ft) and vice versa on the right side (lane wider than 12 ft). Second, 

none could always outperform others. For example, quadratic form had the smallest 
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error percentage when lane width was less than 12 ft, but it had the greatest when lane 

width was more than 12 ft. Although quadratic form fitted the data best and it was the 

closest to the “true” curve, one still could not conclude that it was the best. Finally, recall 

that all the parameters estimated in the six models were statistically significant with at 

least a 90 percent level. So, even though the modeling result looked statistically correct 

and acceptable, the CM-Functions derived from the models might be biased when 

improper link functional forms were used. All of these were consistent with the 

simulation findings.  

5.3 Volume-Only Model and “Full-Variable” Model 

The simulation analyses have demonstrated how omitted variables affected the 

quality of CMFs. In practice, however, it is nearly impossible to capture all factors 

affecting crash risk. Section 5.2 has shown that lane width influenced crash counts 

considerably. To explore how the modeling result changed when some variables 

affecting safety was omitted, this section further analyzed the volume-only and “full-

variable” models. The former one, including AADT as the only explanatory variable as 

the name implies, has been developed often in highway safety. 

5.3.1 Volume-Only Model 

The target functional form in the volume-only model is shown in Equation 5-15. 

And the modeling results are presented in Table 45. 

1

0( )i iE L AADT      (5-15) 
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Table 44 “Bias” and “Error” of CMFs for Lane Width 

LW (ft)  9   10   11   13   14  

“True” CMF  4.59   2.07   1.22   0.77   0.64  

Function 

Form 
CMF Bias E* CMF Bias E* CMF Bias E* CMF Bias E* CMF Bias E* 

Linear 1.62 2.96 64.6 1.38 0.69 33.4 1.17 0.05 3.9 0.85 -0.09 11.2 0.72 -0.08 12.6 

Inverse 1.84 2.74 59.8 1.44 0.63 30.4 1.18 0.04 3.4 0.87 -0.10 13.4 0.77 -0.13 19.6 

Exponential 1.07 3.51 76.6 1.06 1.01 48.6 1.05 0.18 14.3 0.88 -0.12 15.2 0.63 0.02 2.4 

Log 1.71 2.87 62.7 1.41 0.67 32.2 1.18 0.05 3.8 0.86 -0.10 12.5 0.75 -0.11 16.5 

Power 1.71 2.87 62.7 1.41 0.67 32.2 1.18 0.05 3.8 0.86 -0.10 12.5 0.75 -0.11 16.5 

Quadratic 2.38 2.21 48.1 1.59 0.48 23.2 1.19 0.03 2.4 0.94 -0.17 22.4 0.98 -0.34 52.6 

Note: the number in bold indicate the smallest in the corresponding column, and those with underline mean they are the 

largest. * E = error percentage, %. 
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Table 45 Modeling Result of Volume-Only Model 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -6.40 0.15 <2E-16 

Ln(AADT) ( 1 ) 1.00 0.02 <2E-16 

AIC  22117.87  

MAD  1.212  

MSPE  5.364  

Note: a – estimated coefficient value; b – SE = standard error. 

 

5.3.2 “Full-Variable” Model 

In the contrast, full-variable model included all the variables that affecting crash 

risk, which was nearly unattainable in practice. In this section, “full-variable” refers to 

including all the variables available (i.e., AADT, lane width, and shoulder width) in the 

dataset. Based on the simulation findings, the modeling results can be biased if variables 

already known to have significant effect on safety are omitted in the analysis. To 

simplify the problem, in this section, it was assumed that factors other than lane width 

and shoulder width had trivial effects. 

The functional form utilized in the “full-variable” model is shown in Equation 

5-16. The modeling results are presented in Table 46. 

1

0 2 3( ) [ ( ) ]i i iE L AADT exp U LW Shoulder           (5-16) 

Where,  
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( )U LW  = link function for lane width, the quadratic results was adopted; 

Shoulder = shoulder width (ft). 

 

Table 46 Modeling Result of “Full-Variable” Model 

Model Variable Coef. Value a SE b p-Value 

Intercept [ 0( )ln  ] -7.11 0.19 < 2e-16 

Ln(AADT) ( 1 ) 1.05 0.02 < 2e-16 

U(LW) ( 2 ) 172.8 30.7 1.83e-08 

Shoulder ( 3 ) -0.016 0.0033 9.36e-07 

AIC  22058.2  

MAD  1.185  

MSPE  5.052  

Note: a – estimated coefficient value; b – SE = standard error. 

 

5.3.3 Comparison between Volume-Only and “Full-Variable” Models 

When comparing the fitting results between the two models, the AIC, MAD and 

MSPE of the volume-only model were significantly higher than that of the “full-

variable” model. This indicates the volume-only model might be relatively less reliable, 

as expected. 

Another significant difference was the coefficient estimates. AADT was the 

common variable to the two models, but the estimated coefficients for it differed. It was 
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1.00 and 1.05 in the volume-only model and the “full-variable” model, respectively. 

Lane width and shoulder width were not included in the volume-only model, and it was 

impossible to compare the coefficients for these two variables. It can be seen that 

omitting lane width and shoulder width in the model affected the estimated coefficient of 

AADT. This is in general consistent with the simulation findings. Since the true 

relationship between AADT and crash risk was unknown, it was difficult to assess which 

coefficient represented the relationship better. The lower GOF measurements (i.e., AIC, 

MAE and MSPE) with the “full-variable” model indicated the estimate within it might 

be relatively more reliable. In addition, Mallows 
pC  were calculated for the volume-

only model. It was 187.0, which was significantly greater than the number of parameters, 

2. This meant the volume-only model was heavily biased. 

Besides estimated coefficients, safety practitioners may be more interested in 

confidence intervals or prediction intervals, because they can provide the uncertainty and 

are usually more important for use in safety-decision making (Ash et al. 2016). This 

study calculated the confidence intervals (CIs) for the estimated safety (M) and the 

prediction intervals (PIs) for the predicted number of crashes (Y) using the two models 

separately. The approach proposed by Wood (2005), Lord (2008) and Lord et al. (2010) 

was utilized. Since the two models contained different variables, the CIs and PIs for 

three kinds of segments were calculated, as shown below. The AADT varied between 

500 and 15,000, and the segment length was 0.1 mile.  

(a) Normal segment. 12-ft lane and 8-ft shoulder; 

(b) Narrow segment: 11-ft lane and 3-ft shoulder; and, 
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(c) Wide segment: 12-ft lane and 16-ft shoulder. 

The estimated safety (M), its 95 percent CIs, and 95 percent PIs of the predicted 

number of crashes (Y) as functions of AADT for the three kinds of segments are shown 

in Figure 24, respectively. Note that the lower bound for both estimated safety (M) and 

predicted number of crashes (Y) were all zero. For the normal segment, in Figure 24 (a), 

the estimated safety (M) were nearly the same in the two models, and the CIs and PIs 

were also very close. But for the other two kinds of segments, they differed a lot. For the 

narrow segment (i.e., Figure 24 (b)), the safety (M) was greater in the “full-variable” 

model, because according to the modeling result, narrowing lane and/or shoulder 

increased the predicted number of crashes. However, in the volume-only model, changes 

in lane width or shoulder width had no influence on the estimated safety (M) or the 

predicted number of crashes (Y). Both CIs and PIs of “full-variable” model was wider 

than that of volume-only model, especially when the AADT was high (as shown in the 

figures on the right side of Figure 24 ). The situation was contrary for the wide segment 

(i.e., Figure 24 (c)). Estimated safety (M) was smaller in “full-variable” model, its CIs 

and PIs were narrower. 

Since the exact values of the safety of these segments are unknown for the 

observed dataset, no comments can be made on which model performs better regarding 

the CIs or PIs. Nevertheless, adding or omitting variables influenced the estimated safety 

and predicted number of crashes as well as the confidence/prediction intervals. 
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Figure 24 Ninety-Five Percent Confidence Intervals 



 

157 

 

It is worth to mention that the three variables (i.e., AADT, lane width and 

shoulder width) were related in the observed dataset, as can be seen in Figure 25. High 

volume roads were very likely to be wider in lane and somewhat in shoulder, and vice 

versa. That is to say, even though lane width and shoulder width were omitted in the 

volume-only model, there were still some information about lane width and shoulder 

width (in forms of AADT) included in it. In addition, either lane width or shoulder width 

was uniformly distributed among their range, as shown in Figure 26. This fell under the 

variable correlation and distribution problems that have been discussed in Section 4.4. 

This should have also influenced the modeling result. 

 

 

Figure 25 Mean AADT and Lane Width 
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Figure 26 Histograms of Lane Width and Shoulder Width 

 

5.4 Summary 

In this chapter, real observed crash data were analyzed to estimate CMFs from 

various models. The results successfully supported the previous findings based on 

simulated data. The CM-Functions differed a lot when different functional forms were 

used in the regression models. Some showed reasonable results, while some looked 

contrary to the data. In general, the CM-Functions derived from the models with better 

GOF measures (i.e., AIC, MAE and MSPE) seemed to be more reliable. Omitting 

variable(s) made the model less reliable, and significantly influenced the estimated 

coefficients as well as the predicted crash numbers. 
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The next chapter provides a summary and discussion of the research 

accomplished in this study, and discusses future research on this topic. 
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6. SUMMARY AND CONCLUSIONS 

 

The effectiveness evaluation of countermeasures is an important process in 

roadway safety management. It provides valuable information for future decision 

making and policy development (AASHTO 2010). CMFs have been widely used to 

quantify the safety effects of treatments (or changes in design or operation). Before-after 

study and regression model analysis are the two main approaches used to develop CMFs. 

The former has been considered to be superior for estimating CMFs in the past two 

decades or so. However, several limitations have restricted its use for developing high-

quality CMFs. As an alternative, regression models have been popular to estimate CMFs 

in recent years. Nevertheless, both of the two methods have their own drawbacks. So far, 

no study has comprehensively evaluated whether or not regression models should be 

used for developing CMFs, because they may not properly capture the safety effect of 

treatments. Considering the fact that a large number of CMFs have been developed using 

regression models, it is necessary to evaluate the accuracy of CMFs estimated from this 

kind of approach. Hence, the primary objective of this study was to examine the use of 

regression models for developing CMFs. Specifically, the goal was to investigate the 

accuracy of the CMFs derived from regression models under various conditions. The 

objective was mainly accomplished using simulated data and the findings were validated 

using observed data. Several cautions of using regression models for developing CMFs 

were raised. 
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The following two sections summarize the work of this study and make some 

recommendations for developing CMFs using regression models in the future, 

respectively.  

6.1 Summary of This Study 

This section briefly summarizes the major contributions of each chapter. 

Chapter 1 introduced the general information about developing CMFs and the 

objective of this study. 

In Chapter 2, a background about research findings on CMFs was documented. 

Specifically, it presented the advantages and limitations of the common CMF estimating 

approaches (i.e., before-after study and regression model method), the attempts made to 

explore the nonlinear relationships some highway features had, and the combined safety 

effects of multiple treatments on safety. 

Chapter 3 described detailed methodologies for examining the accuracy of CMFs 

estimated using regression models. A simulation protocol was developed and an 

example was provided for illustrating the simulation procedures. Measurement used to 

quantify the nonlinearity of CM-Function was proposed. And nine scenarios were 

specified to examine the CMFs under various conditions. 

The result of each simulation scenario was discussed in Chapter 4. The main 

findings are summarized as follows: 
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(1) The CMFs derived from the common regression models should be unbiased 

when the premise of cross-sectional studies were met (i.e., all segments were similar, 

proper functional forms, variables were independent, enough sample size, etc.). 

(2) Functional forms played important roles in developing reliable CMFs. 

Improper functions may lead to misleading conclusions and biased CMFs. This is 

consistent with several previous studies (Davis 2000, 2014; Hauer 2005a, 2010; Lord 

and Mannering 2010; Miaou and Lord 2003). When improper forms for some variables 

were used, the CMFs for these variables were biased, and the quality of CMFs for other 

variables could also be influenced. Using the common GLMs method to model variables 

having nonlinear relationships with crash risk would produce biased CMFs. With the 

increase in nonlinearity, the bias became significant. This might also produce biased 

estimates for other parameters. In addition, variable correlation and/or distribution 

showed influence on the CMFs as well as other parameter estimates when improper 

functional forms were used. 

(3) Regression models did suffer from the omitted-variable problem. If some 

factors having minor safety effects were omitted, the accuracy of estimated CMFs might 

still be acceptable. However, if some factors already known to have significant effects 

on crash risk were omitted, the estimated CMFs were generally unreliable. 

(4) When the influence on safety of considered variables were not independent, 

the CMFs produced from the commonly used regression models were biased. The bias 

was significantly correlated with the adjustment factor (i.e., degree of their dependence). 

Higher dependence led to significant bias. Under the conditions of dependence, the 
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coefficients for the variables of interests might be over- or underestimated, and other 

variables may be under- or overestimated to compensate for the biased estimated 

coefficients. 

Chapter 5 validated the findings in this study using observed data. The results, in 

general, were consistent with the simulation findings. 

6.2 Recommendations and Future Research Area 

Although the CMFs derived from regression models should be unbiased when all 

requirements of cross-sectional studies are met, this assumption can hardly be satisfied 

when dealing with observed data. Several issues have been raised when using regression 

models for developing CMFs. When modeling crash data, transportation safety analysts 

are recommend to answer the following questions: (1) whether variables having 

significant effects on safety have been omitted; (2) has improper link functions been 

used in the models; and (3) are the variables dependent when multiple ones are 

considered?  

The first question can be examined through reviewing the segments or sites to 

detect if they have significant differences in some safety associated factors other than 

those included in the models. If these factors have significant effects on safety (e.g., 

relatively large or small CMFs are found from HSM, CMF Clearinghouse, and other 

relevant documents or peer-reviewed papers), the regression models are likely to suffer 

from the omitted-variable problem. The second one may be analyzed by observing the 

patterns between variables and crash frequency or crash rate, or by comparing multiple 
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link functions (Lee et al. 2015; Park and Abdel-Aty 2015b). For the last question, 

engineering judgment and experiences may need to be considered, because so far with 

only limited studies on the safety effects of multiple treatments it is not easy to conclude 

whether or how much two or more safety treatments are dependent of each other. 

If any of the above questions exists, the modeling result will probably lead to 

biased CMFs and misleading conclusions, and attention should be paid. 

There are a few limitations with this study. First, a solid model is the base for 

developing reliable CMFs when using the regression method. This study used the most 

common one, NB distribution, to analyze the simulated crash counts, which were 

generated from the same distribution. Although NB distribution is the most popular one 

used by safety analysts, new models are being proposed for predicting crashes and some 

show better results given particular characteristics of crash datasets (Geedipally et al. 

2012; Lord et al. 2005; Wu et al. 2014; Zou et al. 2013a; Zou et al. 2013b). Second, 

sample size influences the modeling result significantly (Lord 2006; Lord and Miranda-

Moreno 2008; Ye and Lord 2014). The sample size of simulated dataset was 1,492, and 

8,132 for real data. Both should be large enough in this study. These two problems will 

affect the modeling result and the quality of CMFs. To estimate reliable CMFs, these 

questions need further consideration when dealing with real observed data. Nevertheless, 

the simulation protocol proposed in this study can still be applied to evaluate the CMFs 

under different conditions. 

In addition, several problems may exist simultaneously in one regression model. 

For example, a regression analysis using observed data may have omitted important 
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variables and utilized improper function form, while the variables included in the model 

may be dependent. This is likely to make the result worse, and the bias of CMFs should 

become higher. This study did not examine how multiple problems affected the accuracy 

of CMFs. 

Although before-after studies have been considered to be the state-of-the-art 

method and are always preferred for developing CMFs, recent studies have pointed out 

that the before-after study can also be biased (Kuo and Lord 2013; Lord and Kuo 2012). 

Hence, further research is needed to provide guidelines when a cross-sectional study 

should be used over the before-after study, and vice versa, as a function of the 

characteristics of the data. 
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APPENDIX 

 

Table 47 Results of CMFs in Scenario IX ( = 1.0) 

# AF a 

LW b SW b 

 c AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-1 0.8 0.8 
0.72 

(0.05) 
-0.08 9.88 0.85 

0.77 

(0.054) 
-0.08 8.92 1.00 8901.22 0.057 0.016 

IX-2 0.9 0.8 
0.74 

(0.064) 
-0.06 6.98 0.85 

0.81 

(0.065) 
-0.04 4.16 0.97 9040.94 0.056 0.017 

IX-3 0.95 0.8 
0.79 

(0.062) 
-0.01 1.16 0.85 

0.84 

(0.043) 
-0.01 1.07 0.99 9019.17 0.044 0.011 

IX-4 1.05 0.8 
0.81 

(0.052) 
0.01 1.57 0.85 

0.88 

(0.077) 
0.03 3.21 1.02 9120.98 0.049 0.013 

IX-5 1.1 0.8 
0.83 

(0.064) 
0.03 4.02 0.85 

0.9 

(0.067) 
0.05 5.57 1.00 9179.48 0.048 0.013 

IX-6 1.2 0.8 
0.9 

(0.062) 
0.10 11.90 0.85 

0.92 

(0.068) 
0.07 8.15 0.98 9334.57 0.059 0.019 

IX-7 0.8 0.9 
0.82 

(0.061) 
-0.08 8.62 0.85 

0.77 

(0.051) 
-0.08 9.86 0.99 9173.11 0.063 0.020 

IX-8 0.9 0.9 
0.85 

(0.057) 
-0.05 6.01 0.85 

0.81 

(0.057) 
-0.04 4.46 1.01 9240.26 0.048 0.013 
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Table 47 Continued 

# AF a 

LW b SW b 

 c AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-9 0.95 0.9 
0.89 

(0.06) 
-0.01 1.11 0.85 

0.84 

(0.063) 
-0.01 1.24 0.99 9311.30 0.048 0.012 

IX-10 1.05 0.9 
0.92 

(0.046) 
0.02 2.35 0.85 

0.87 

(0.069) 
0.02 2.16 0.98 9423.14 0.051 0.015 

IX-11 1.1 0.9 
0.95 

(0.066) 
0.05 5.59 0.85 

0.9 

(0.067) 
0.05 5.70 0.99 9462.37 0.053 0.016 

IX-12 1.2 0.9 
0.98 

(0.072) 
0.08 8.98 0.85 

0.93 

(0.059) 
0.08 9.48 0.99 9560.22 0.062 0.020 

IX-13 0.8 0.8 
0.72 

(0.05) 
-0.08 

10.1

6 
0.9 

0.82 

(0.058) 
-0.08 8.92 1.00 9001.58 0.057 0.017 

IX-14 0.9 0.8 
0.77 

(0.054) 
-0.03 3.83 0.9 

0.85 

(0.047) 
-0.05 5.18 0.99 9131.19 0.050 0.014 

IX-15 0.95 0.8 
0.78 

(0.049) 
-0.02 1.91 0.9 

0.89 

(0.081) 
-0.01 1.60 1.00 9163.99 0.050 0.013 

IX-16 1.05 0.8 
0.82 

(0.053) 
0.02 2.78 0.9 

0.92 

(0.065) 
0.02 2.53 1.00 9276.12 0.050 0.013 
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Table 47 Continued 

# AF a 

LW b SW b 

 c AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-17 1.1 0.8 
0.83 

(0.051) 
0.03 4.36 0.9 

0.93 

(0.064) 
0.03 3.84 1.00 9323.39 0.049 0.014 

IX-18 1.2 0.8 
0.88 

(0.057) 
0.08 9.59 0.9 

0.99 

(0.068) 
0.09 10.14 1.00 9444.75 0.057 0.017 

IX-19 0.8 0.9 
0.81 

(0.056) 
-0.09 9.64 0.9 

0.81 

(0.064) 
-0.09 9.49 1.01 9233.06 0.063 0.020 

IX-20 0.9 0.9 
0.85 

(0.067) 
-0.05 5.17 0.9 

0.86 

(0.075) 
-0.04 4.19 0.98 9380.50 0.055 0.015 

IX-21 0.95 0.9 
0.88 

(0.081) 
-0.02 1.72 0.9 

0.88 

(0.064) 
-0.02 2.12 1.01 9439.87 0.056 0.017 

IX-22 1.05 0.9 
0.91 

(0.062) 
0.01 1.13 0.9 

0.93 

(0.06) 
0.03 3.41 1.00 9561.76 0.050 0.013 

IX-23 1.1 0.9 
0.96 

(0.062) 
0.06 6.18 0.9 

0.95 

(0.064) 
0.05 5.88 0.98 9609.89 0.052 0.015 

IX-24 1.2 0.9 
0.99 

(0.071) 
0.09 

10.0

0 
0.9 

0.98 

(0.072) 
0.08 9.18 0.99 9704.08 0.064 0.022 

Note: the same notes as those in Table 29. 
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Table 48 Results of CMFs in Scenario IX (  = 2.0) 

# AF a 

LW b SW b 

 c AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-1 0.8 0.8 
0.73 

(0.055) 
-0.07 8.60 0.85 

0.76 

(0.062) 
-0.09 10.2 1.99 8712.43 0.065 0.023 

IX-2 0.9 0.8 
0.76 

(0.07) 
-0.04 4.87 0.85 

0.81 

(0.078) 
-0.04 4.53 1.99 8852.32 0.062 0.021 

IX-3 0.95 0.8 
0.76 

(0.079) 
-0.04 4.75 0.85 

0.83 

(0.08) 
-0.02 1.89 1.99 8859.33 0.064 0.026 

IX-4 1.05 0.8 
0.82 

(0.091) 
0.02 2.09 0.85 

0.88 

(0.087) 
0.03 3.28 2.02 8969.92 0.064 0.021 

IX-5 1.1 0.8 
0.84 

(0.066) 
0.04 4.41 0.85 

0.9 

(0.073) 
0.05 5.86 1.99 9019.91 0.065 0.031 

IX-6 1.2 0.8 
0.87 

(0.079) 
0.07 9.14 0.85 

0.92 

(0.074) 
0.07 8.10 2.01 9145.89 0.071 0.028 

IX-7 0.8 0.9 
0.81 

(0.081) 
-0.09 10.47 0.85 

0.78 

(0.075) 
-0.07 8.50 1.98 8937.33 0.074 0.027 

IX-8 0.9 0.9 
0.86 

(0.081) 
-0.04 4.89 0.85 

0.81 

(0.067) 
-0.04 4.32 2.00 9092.99 0.063 0.021 
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Table 48 Continued 

# AF a 

LW b SW b 

 c AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-9 0.95 0.9 
0.87 

(0.07) 
-0.03 3.20 0.85 

0.82 

(0.069) 
-0.03 3.23 1.99 9139.26 0.059 0.018 

IX-10 1.05 0.9 
0.92 

(0.082) 
0.02 2.62 0.85 

0.89 

(0.079) 
0.04 5.25 1.97 9313.70 0.061 0.021 

IX-11 1.1 0.9 
0.93 

(0.086) 
0.03 3.69 0.85 

0.89 

(0.083) 
0.04 4.91 1.98 9289.12 0.064 0.022 

IX-12 1.2 0.9 
0.99 

(0.098) 
0.09 9.95 0.85 

0.93 

(0.086) 
0.08 9.26 1.96 9363.04 0.075 0.026 

IX-13 0.8 0.8 
0.73 

(0.062) 
-0.07 8.46 0.9 

0.8 

(0.067) 
-0.10 11.18 2.02 8823.29 0.069 0.026 

IX-14 0.9 0.8 
0.76 

(0.061) 
-0.04 4.38 0.9 

0.87 

(0.066) 
-0.03 3.09 1.98 8995.65 0.065 0.025 

IX-15 0.95 0.8 
0.79 

(0.072) 
-0.01 1.40 0.9 

0.9 

(0.07) 
0.00 0.44 2.05 8924.75 0.061 0.020 

IX-16 1.05 0.8 
0.82 

(0.079) 
0.02 3.09 0.9 

0.92 

(0.095) 
0.02 2.64 1.98 9053.82 0.062 0.019 



 

182 

 

Table 48 Continued 

# AF a 

LW b SW b 

 c AICd MADe MSPEf 

Th. 
SPF 

(SD) 
Bias E Th. 

SPF 

(SD) 
Bias E 

IX-17 1.1 0.8 
0.84 

(0.067) 
0.04 4.74 0.9 

0.96 

(0.095) 
0.06 6.11 2.04 9088.58 0.066 0.023 

IX-18 1.2 0.8 
0.87 

(0.074) 
0.07 8.97 0.9 

0.98 

(0.064) 
0.08 8.49 2.00 9237.24 0.067 0.028 

IX-19 0.8 0.9 
0.82 

(0.08) 
-0.08 9.24 0.9 

0.82 

(0.061) 
-0.08 8.51 2.01 9045.91 0.073 0.027 

IX-20 0.9 0.9 
0.86 

(0.068) 
-0.04 3.90 0.9 

0.85 

(0.067) 
-0.05 5.10 1.99 9248.58 0.062 0.021 

IX-21 0.95 0.9 
0.87 

(0.067) 
-0.03 2.93 0.9 

0.88 

(0.093) 
-0.02 2.31 2.01 9210.21 0.066 0.026 

IX-22 1.05 0.9 
0.89 

(0.081) 
-0.01 0.82 0.9 

0.93 

(0.086) 
0.03 3.66 2.00 9386.44 0.071 0.027 

IX-23 1.1 0.9 
0.96 

(0.084) 
0.06 6.62 0.9 

0.94 

(0.093) 
0.04 4.47 1.97 9403.88 0.069 0.026 

IX-24 1.2 0.9 
0.99 

(0.078) 
0.09 

10.4

6 
0.9 

0.98 

(0.098) 
0.08 8.87 1.99 9509.79 0.078 0.034 

Note: the same notes as those in Table 29. 

 




