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ABSTRACT

Crash modification factors (CMFs) can be used to capture the safety effects of
countermeasures and play significant roles in traffic safety management. The before-
after study has been one of the most popular methods for developing CMFs. However,
several drawbacks have limited its use for estimating high-quality CMFs. As an
alternative, cross-sectional studies, specifically regression models, have been proposed
and widely used for developing CMFs. However, the use of regression models for
estimating CMFs has never been fully investigated. This study consequently sought to
examine the conditions in which regression models could be used for such purpose.

CMFs for several variables and their dependence were assumed and used for
generating random crash counts. CMFs were derived from regression models using the
simulated data for various scenarios. The CMFs were then compared with the assumed
true values. The findings of this study are summarized as follows: (1) The CMFs derived
from regression models should be unbiased when the premise of cross-sectional studies
were met (i.e., all segments were similar, proper functional forms, variables were
independent, enough sample size, etc.). (2) Functional forms played important roles in
developing reliable CMFs. When improper forms for some variables were used, the
CMFs for these variables were biased, and the quality of CMFs for other variables could
also be affected. Meanwhile, this might produce biased estimates for other parameters.
In addition, variable correlation and distribution might potentially influence the CMFs

and parameter estimates when improper functional forms were used. (3) Regression



models did suffer from the omitted-variable bias. If some factors having minor safety
effects were omitted, the accuracy of estimated CMFs might still be acceptable.
However, if some factors already known to have significant effects on crash risk were
omitted, the estimated CMFs were generally unreliable. (4) When the influence on safety
of considered variables were not independent, the CMFs produced from the commonly
used regression models were biased. The bias was significantly correlated with the

degree of their dependence.
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1. INTRODUCTION

A crash modification factor (CMF) is a multiplicative factor that can be used to
reflect or capture changes in the expected number of crashes when a given
countermeasure or a modification in geometric and operational characteristics of a
specific site is implemented (FHWA 2010; Gross et al. 2010; Wu et al. 2015). CMFs
play a significant role in roadway safety management, including in safety effect
evaluation, crash prediction, hotspot identification, countermeasure selection, and the
evaluation of design exemptions. Several methods have been proposed for developing
CMFs, such as the before-after (e.g., nawe or simple before-after, before-after with
comparison group and empirical Bayes (EB) before-after), the cross-sectional (e.g.,
regression models and case-control), and expert panel studies among others (Gross et al.
2010). Amid these methods, before-after and cross-sectional studies are the most popular
approaches (Shen and Gan 2003).

CMFs derived from before-after studies are based on the comparison of safety
performance before and after the implementation of one or several treatments (or
changes in the characteristics of the site(s)). Those derived from cross-sectional studies
are based on the comparison in the safety performance of sites that have a specific
feature with those that do not or are analyzed simultaneously based on datasets that
contain a mixture of sites with different characteristics.

Over the last 15 years or so, the before-after study has been considered to be the

best approach for developing CMFs (Gross and Donnell 2011; Gross et al. 2010). The



CMFs derived from before-after studies are usually believed to be more reliable than
those produced from cross-sectional studies because it can directly account for changes
that occurred at the sites investigated (Hauer 1997). However, although the before-after
analysis is considered superior, high-quality CMFs derived from this approach is
dependent on the availability of data (e.g., data availability for the before period, etc.)
and the sample size (e.g., number of sites where the treatment of interest has been
implemented, etc.). Furthermore, the estimated CMF can be biased if the
regression-to-the-mean (RTM) and site selection effects are not properly accounted for
in the before-after study (Davis 2000; Hauer 1997; Lord and Kuo 2012). Lord and Kuo
(2012) even noted that the EB method can still be plagued by significant biases if the
data collected for the treatment and control groups do not share the exact same
characteristics.

Given the limitations of before-after studies described above, researchers have
proposed that cross-sectional studies could be used for developing CMFs (Bonneson and
Pratt 2010; Noland 2003; Tarko et al. 1999). Although different types of cross-sectional
studies have been proposed over the years, the regression model (also known as safety
performance function or SPF) remains the method of choice for estimating CMFs, as
reflected by the large number of CMFs documented in the Highway Safety Manual
(HSM) (AASHTO 2010) and Federal Highway Administration (FHWA) CMF
Clearinghouse (FHWA 2010) that are derived from regression models.

Even though regression models are popular for developing CMFs, some

researchers have criticized their use for such purpose because they may not properly
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capture the relationships between crashes and variables influencing safety (Hauer 2005b,
2010, 2014). There are several assumptions with using regression models. For example,
the primary premise of a cross-sectional study is that all locations are similar to each
other for all factors affecting crash risk except those of interest (Gross et al. 2010).
However, this requirement can hardly be satisfied in practice. In addition, some other
problems (e.g., sample size, omitted variables, functional forms, independence
assumption, etc.) also influence the modeling result, and hence the quality of CMFs
produced from the regression analyses. Under such conditions, the CMFs derived from
regression models may potentially be biased. In this context, so far, nobody has
examined the statistical performance of CMFs that are developed using regression
models. Thus, the primary objective of this study was to comprehensively investigate the
robustness and accuracy of the CMFs derived from regression models. A secondary
objective was to describe the conditions when the CMFs developed from regression
models became unreliable and potentially biased. Note that, there has been some issues
raised about whether or not cross-sectional studies are able to derive reliable cause-effect
results, not only in traffic safety study, but also in other fields where this kind of
statistical method has been used, such as psychology, epidemiology, etc. (Hauer 2015).
The objective of this study was not to prove that the cross-sectional analyses are able to
reveal the cause and effect of traffic collisions. Rather, the aim was to raise the potential
problems associated with the commonly used regression models (i.e., generalized linear

models or GLMs) for developing CMFs.



To accomplish the objectives, the following four tasks were conducted in this
study:

Task 1 — Validation of CMFs derived from regression models

This task evaluated the accuracy of CMFs derived from regression models
considering the most common and simple form (i.e., the linear relationship) and
assuming all the assumptions of cross-sectional studies were satisfied. The purpose of
this task was to validate whether or not the CMFs produced from regression models
were reliable under ideal conditions.

Task 2 — Omitted variables and the accuracy of CMFs

In task 1, all factors that influenced crash risk were assumed to be known. But
this requirement can hardly be met in reality. In this task, some factors affecting crash
risk were assumed to be unknown or unable to be captured by the models. The purpose
of this task was to investigate how the omitted-variable problem influenced the CMFs
derived from regression models. More specifically, it was to quantify the problem.

Task 3 — Nonlinear relationships and the accuracy of CMFs

In tasks 1 and 2, the variables were assumed to have linear relationships (in the
logarithmic form) with crash risk. This was consistent with the commonly used GLMs.
However, some studies indicated that this may not be the case. Some variables had been
shown to have nonlinear and/or non-monotonic relationships with crash risk (Gross et al.
2009; Hauer 2004). Under such conditions, the commonly used GLM method might not

be applicable, and the CMFs produced from these models could be biased, especially



around the boundary areas. The purpose of this task was to evaluate the CMFs derived
from regression models when some variables had nonlinear relationships with crash risk.

Task 4 — Combined safety effects and the accuracy of CMFs

Factors influencing safety are always assumed to be independent of each other
when modeling crashes using the common methods. However, this may not be realistic
in practice (Gross et al. 2010). It is common that multiple treatments were implemented
at a problematic entity (e.g., a hotspot) simultaneously, and these treatments might have
overlap effects on reducing crashes especially when the target collision types were the
same. The CMFs derived from regression models might be biased if the variables were
actually not independent. The purpose of this task was to investigate how this
independence assumption influenced the accuracy of CMFs. This task is not about
investigating the statistical correlation between variables, but the practical relationship
and effects when multiple changes are applied simultaneously.

Each task contains one or multiple scenarios to assess the CMFs derived from
regression models under various conditions.

This dissertation is divided into six chapters:

Chapter 2 documents the background about the commonly used approaches for
developing CMFs, nonlinear relationships between variables and crash risk, and
combined safety effects of multiple treatments.

Chapter 3 describes the methodologies used for estimating the quality of CMFs
derived using regression models.

Chapter 4 provides detailed results of the simulation analyses.



Chapter 5 validates the findings based on observed data.
And finally, Chapter 6 summarizes the key findings of this study and provides

avenues for further research.



2. BACKGROUND

This chapter provides relevant background pertaining to CMFs in three aspects:
(1) the commonly used CMF estimating methods; (2) nonlinear relationships between

variables and crash risk; and (3) the combined safety effects of multiple treatments.

2.1 Approaches for Estimating CMFs and Their Limitations

This section briefly describes the commonly used methods that have been
proposed for estimating CMFs. The description mainly focuses on their advantages and
limitations.

As mentioned above, before-after and cross-sectional studies are the two main
approaches used to estimate CMFs. The CMF for a countermeasure derived from a
before-after study is estimated by the change in the number of crashes occurring in a
period before the improvement and the number occurring after the improvement (Gross
et al. 2010; Shen and Gan 2003). Four types of before-after studies have been proposed
to estimate CMFs: na'we before-after, before-after with comparison group, EB before-
after and full Bayes (FB) before-after studies. The na'we before-after study simply
assumes the crash performance before improvement is a good estimate of what would be
in the after period if the countermeasure had not been implemented (Hauer 1997; Shen
and Gan 2003). This approach is considered to be less reliable, because it does not

account for changes unrelated to the countermeasure. The before-after study with



comparison group and EB before-after methods were then proposed to overcome this
issue. Gross et al. (2010) documented the details of these CMF developing methods.

Even though multiple before-after studies have been developed and widely used
to estimate CMFs, the comparison results from before-after studies may be inaccurate if
the following issues are not properly accounted for:

Sample size — There might be inadequate samples of sites where the
countermeasures of interest have been implemented. This will lead to statistical
uncertainty (Gross and Donnell 2011).

RTM effect — This bias is related to the level of correlation for sites that are
evaluated during different time periods. Sites that have large (or very small) values in
one time period (say before) are expected to regress towards the mean in the subsequent
period (Hauer 1997; Hauer and Persaud 1983).

Site selection bias — This is related to the RTM, but its effects are different in
that the sites are selected based on a known or unknown entry criteria (e.g., five crashes
per year). These entry criteria lead to a truncated distribution, which influences the
before-after estimate (Lord and Kuo 2012).

Mixed safety effects — This bias or issue is related to when more than two or
more countermeasures are simultaneously implemented at a roadway site, and there can
be changes in traffic volume, weather, etc. after the implementation of treatments. This
makes it difficult to evaluate the safety effect of a single countermeasure (Gross and

Donnell 2011; Gross et al. 2010).



In contrast to before-after studies, cross-sectional studies compare the safety
performance of a site or group of sites with the treatment of interest to similar sites
without the treatment in a single point in time (Gross et al. 2010). The cross-sectional
studies for developing CMFs can be regrouped into three categories: regression, case
control and cohort methods. The regression method is currently the most frequently used
approach because of its simplicity. It is usually accomplished through multiple variable
regression models or SPFs. The SPFs can be used to quantify the effect of a specific
variable on the predicted crash occurrence and CMFs are then derived from the model
coefficients (Gross et al. 2010; Tarko et al. 1999).

Many models have been proposed to predict safety performance and hence to
develop CMFs or crash modification functions (CM-Functions) (Lord and Mannering
2010). Although recent studies have introduced some new models for transportation
safety analysis (Chen and Persaud 2014; Mannering and Bhat 2014; Park et al. 201443;
Zou et al. 2013a), the GLM with a negative binomial (NB) error structure is still the
most popular method for modeling traffic crashes. Despite the fact that regression
models have been extensively used in traffic safety studies, there are still some
limitations with this approach:

Similarity in crash risk — A primary premise of a cross-sectional study is that all
locations are similar to each other in all other factors affecting crash risk (Gross et al.
2010). However, this assumption seems to be unattainable in practice.

Omitted variables — A variety of variables can influence crash risk, but not all of

them are measurable or can be captured in practice for model inclusion. It is common
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that some SPFs were developed with limited variables, for example, using the traffic
volume as the only variable in the model. This can lead to biased parameter estimates
and incorrect CMFs (Lord and Mannering 2010).

Functional form — Functional form establishes the relationship between
expected crashes and explanatory variables and is a critical part of the modeling process.
Various forms have been used to link crashes to explanatory variables. But the modeling
results tend to be inconsistent when using different functional forms (Miaou and Lord
2003). So far, there is no theory-based hypotheses to guide the choice of functional
forms within regression models. Hauer (2015) pointed out it is a tall order to identify the
right functional form.

There are also several other known issues with the crash modeling that will affect
the CMPFs derived from regression methods. Lord and Mannering (2010) and Mannering
and Bhat (2014) provided more details of these issues.

Given the substantive issues associated with the before-after study and regression
model method, it is not surprising that CMFs produced from these two approaches are
not identical (Gross et al. 2013; Gross et al. 2010; Rodegerdts et al. 2007). For example,
Hauer (1991) noted that the safety effects of some treatments tended to be different
between those of cross-sectional and before-after studies. Further, the same approach
and dataset can also generate different CMFs when using different regression models
(Chen and Persaud 2014; Hauer 2010; Li et al. 2011; Lord and Bonneson 2007). Hauer
(2010) illustrated the issue using a case of rail-highway grade crossing. A couple of

previously conducted regression analyses and before-after studies about the safety effect
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of rail-highway grade crossing were compared. The results of the former ones varied
considerable and were obviously influenced by the choice of grouping method as well as
choice of variables. On the other hand, the estimated effects of the six before-after
studies were relatively consistent. Compared to the regression model, the before-after
study has lower within-subject variability since it directly accounts for changes that have
occurred at the study sites (Lord and Kuo 2012). Before-after studies are also less prone
to confounding factors compared to cross-sectional studies (Carter et al. 2012).
Furthermore, well-designed observational before-after studies provide advantages over
other safety countermeasure evaluation methods (Gross and Donnell 2011). CMFs
derived from regression models are suggested to be compared with those from before-

after studies (Gross et al. 2010).

2.2 Nonlinear Relationships between Variables and Their Safety Effects

The coefficients are usually assumed to be fixed in the commonly used GLMs
(i.e., the GLMs with linear additive link functions), and the CMF for a specific variable
or treatment derived from the models is also fixed. This is, in fact, a linear relationship
between the predicted crash risk and the changes in some variable (in the logarithmic
form). The expected crash mean will always be multiplied by a constant factor when the
variable increases by one unit, regardless of the original value of the variable. However,
a fixed CMF may not properly account for the safety effects of the treatment on expected

crash frequency because some variables may have nonlinear influences on crashes
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(Hauer 2004; Hauer et al. 2004; Lee et al. 2015). Actually, some attempts have been
made to explore the nonlinear effects.

Hauer et al. (2004) developed a statistical model to predict non-intersection crash
frequency on urban four-lane undivided roadways. Several variables were considered in
the analysis. Based on the estimated parameters, some variables were found to have
linear or exponential influence on predicted crashes. However, some showed nonlinear
effects on safety. For example, the degree of curve, which represented horizontal
alignment, was captured to have a “U-shape” effect on on-the-road crashes. This
indicated some flat curves might be safer than a tangent if this is true. But sharp curves
would be associated with higher crash risk.

Xie and Zhang (2008) applied generalized additive models (GAMS) in traffic
crash modeling. Compared to GLMs, GAMs used nonparametric smooth functions
instead of parametric terms in GLMs, which made GAMs more flexible in modeling
nonlinear relationships. Analysis result indicated GAMs performed better than GLMs in
terms of goodness-of-fit (GOF) and predicting performance. This method was later
utilized to develop CMFs for rural frontage segments in Texas (Li et al. 2011). The
results showed that nonlinear relationships existed between crash risk and changes in
lane and shoulder widths for frontage roads. For example, increasing shoulder width
could bring relatively significant safety benefits when it was less than 6 ft. But when the
shoulder width was between 6 and 8 ft, the CMF curve became flat, meaning widening
shoulder had little influence on crashes. This result is slightly different with a previous

GLM-based study (Lord and Bonneson 2007).
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In order to capture the nonlinear relationships between variables and crashes,
some neural network models have also been introduced into safety analysis. Xie et al.
(2007) proposed Bayesian neural network (BNN) model for predicting motor vehicle
crashes. BNN models had been previously reported to be able to effectively reduce the
over-fitting phenomenon while still keeping the strong nonlinear approximation ability
of neural networks (Xie et al. 2007). BNN models were estimated using the Texas
frontage road data, the same used in several previous studies (Li et al. 2011; Lord and
Bonneson 2007). Explicit functions between variables (e.g., lane width or shoulder
width) and crash frequency were not available due to the black box property of BNN
models. But the authors conducted sensitivity analysis of the trained BNN model for two
sites. It was found that right shoulder width showed quadratic functions with predicted
crash counts at the two sites, and lane width showed an “inverse U-shape” relation with
crash counts at one site. Li et al. (2008) later conducted a continuation of this work. The
researchers applied support vector machine (SVM) models to predict crashes, aiming to
capture nonlinear relationships between explanatory and dependent variables. The Texas
frontage road data was analyzed using SVM models and the results were quite similar
with those using BNN method.

Recently, Lao et al. (2014) proposed generalized nonlinear models (GNMs)
based approach to better elaborate non-monotonic relationships between variables and
crash rates. Compared to GLMs, the major improvement of GNMs is using piecewise
functions to capture the pattern between dependent and independent variables. This

makes it more flexible to extract complex relationships between the two. Rear-end
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crashes were modeled using GNM and GLM methods. Comparison showed GNMs
outperformed GLMs. Meanwhile, some factors were found to be significant in GNMs
but not in GLMs. Lee et al. (2015) later assessed the safety effects of changing lane
width using GNMs. The main objective was to develop nonlinear relationships between
lane width and crash rate. Various nonlinear link functions were used for the effects on
crash rates of lane widths, and nonlinear CM-Functions were estimated for changing
lane width. It was found that the CM-Function for lane width showed an “inverse U-
shape” curve. It was combined with two quadratic functions and the 12-ft lane was found
to be associated with the highest crash rates. This result contradicts some past studies,
which concluded widening lanes could consistently reduce crash frequency (AASHTO
2010). More recently, Park and Abdel-Aty (2015a) assessed the safety effects of
multiple roadside treatments (i.e., poles, trees, etc.) using GLM, GNM, and multivariate
adaptive regression splines (MARS) model. The MARS model could capture both
nonlinear relationships and interaction impacts between variables. Results showed that
GNMs generally provided slightly better fits than the GLMs, and MARS model
outperformed the other two. This indicated the roadside treatments had nonlinear effects

on crash risk.

2.3 Safety Effects of Combined Treatments

A number of CMFs for various single treatments of roadway segments and
intersections are provided in the HSM. No CMFs for combined treatments are available

in the current version. However, it is common in practice that multiple countermeasures
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are implemented simultaneously at a site to reduce the number and severity of collisions.
The recommended approach (HSM method) of calculating the combined CMF for
multiple treatments is multiplying the CMFs for individual elements or treatments
together, as shown in Equation 2-1. Very limited combined safety effects have been

reported in the CMF Clearinghouse (CMFClearinghouse 2014).

CMF,,,, =CMF, xCMF, x---xCMF, (2-1)
Where,
CMF,,, = the combined CMF for n elements or treatments ( X, X,,--+, X, ); and,

CMF, = the specific CMF for element or treatment X;.

The main concept of this approach is that the simultaneously implemented
treatments are independent. The safety effect of various countermeasures will not
overlap when implemented at the same time. But this is not always true, especially when
the target crashes of these countermeasures are the same. In such cases, the expected
reduction in number of crashes will usually be lower than the sum of individual
treatments. And the product of individual CMFs will underestimate the true combined
CMF (i.e., safety benefits are overestimated) (Bonneson and Lord 2005; Harkey et al.
2008; Roberts and Turner 2007). To address this problem, researchers have proposed a
couple of alternatives for estimating combined effects of multiple treatments, e.g.,
reducing the safety effects of less effective treatments, applying only the most effective
CMF, multiplying weighted factor (Turner method), weighted average of multiple CMFs
(also known as meta-analysis method), etc. More details of these methods are

documented in Gross et al. (2012), Elvik (2009) and Gross and Hamidi (2011). A
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common concept within these approaches is that simultaneously implemented treatments
usually have overlapped safety effects.

Park et al. (2014b) estimated CMFs for two single treatments (installing shoulder
rumble strips, and widening shoulder width) and the combined CMF for implementing
the two simultaneously on rural multi-lane highways. The results confirmed that the
combined CMFs, in general, did not equal to the product of the two single CMFs. The
researchers further calculated CMFs for multiple treatments using various combining
methods and compared them with those estimated using real data. It was found that each
method applied to different crash types and injury levels.

Park and Abdel-Aty (2015b) later developed adjustment functions for combined
CMFs. An adjustment factor (AF) or adjustment function (A-Function) was introduced
to assess the combined safety effects of two treatments (installing shoulder rumble strips,
and widening shoulder width) on rural two-lane highways. An AF higher than 1.0
indicated the combined amount of crash reduction was lower than the sum of individual
treatments. And vice versa if it was less than 1.0. Particularly, when it equaled to 1.0, the
treatments were independent of each other. The AF (or A-Function) used in the study is
shown in Equation 2-2.

CMF,

o> = CMF, xCMF,_ x---xCMF, x AF (2-2)
Where,
AF = the adjustment factor for treatments X,, X,,---, X, AF > 0.

Three nonlinear A-Functions for the combined CMFs were developed

considering different crash types and severities. All of them were higher than 1.0, which
16



indicated the combined CMFs calculated using HSM method were underestimated. The
amount of underestimation varied based on crash types and severities. In addition, the
AFs also varied as the original shoulder width changed rather than kept as constant
values. That means the level of dependence between the two treatments was not identical
among all conditions.

Although only a few studies estimated the combined effects of multiple safety
treatments (Bauer and Harwood 2013; De Pauw et al. 2014; Park and Abdel-Aty 2015b;
Park et al. 2014b; Wang et al. 2015), it has shown that some treatments or highway
characteristics do influence crashes dependently. Under such conditions, the
independence assumption of regression models cannot be met. This might potentially
reduce the quality of CMFs. No matter which CMF combination method is used, reliable
individual CMFs are critical for estimating safety effects of both combined and single

treatments.

2.4 Summary

The primary findings from the literature review are summarized below:

(1) Both before-after and cross-sectional studies have their own drawbacks. So
far, no study has fully investigated whether or not the CMFs derived from regression
models really reflect the true safety effects of treatments. It is necessary to evaluate the
accuracy of CMFs estimated from regression models.

(2) In the previous studies, analyses using nonlinear methods generally showed

better results than the commonly used GLM approach. This indicates some variables

17



indeed have nonlinear and/or non-monotonic effects on crash frequency, and the CMFs
derived using normal GLMs may not be able to adequately capture these types of
relationships.

(3) The combined CMF of multiple treatments do not always equal to the
productive of single CMFs of individual treatments. In other words, some treatments or
highway characteristics are not actually independent. That is to say the independence
assumption of regression models cannot always be met in practice. This might
potentially reduce the quality of CMFs. It is necessary to examine the accuracy of
individual CMFs derived from regression models considering the dependence of
variables.

This chapter has introduced some relevant background of CMFs/CM-Functions
and numbers of potential problems with the common CMF developing approaches. The

next chapter documents the methodology used to evaluate the quality of CMFs.
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3. METHODOLOGY

This chapter describes the methodologies regarding how to examine the accuracy
of CMFs derived from regression models. Sections 3.1 provides the simulation protocol
for estimating the accuracy of CMFs. Section 3.2 describes the methodology for
quantifying the omitted-variable problem. Section 3.3 mainly introduces the
measurement used to quantify the nonlinearity. Sections 3.4 considers variables
correlations, a common phenomenon with practical crash data. Section 3.5 presents the
specific methodology to investigate the independence problem. Section 3.6 describes the

simulated datasets. And finally, Section 3.7 summarizes all the scenarios in this study.

3.1 Simulation Analysis for Linear Relationships

This section first describes the simulation protocol used to estimate the accuracy
of CMFs derived from regression models, mainly focusing on linear relationships.
Following that, a simulation example is provided to illustrate the specific procedures.

And the scenarios with linear relationship are summarized in the last part.

3.1.1 Simulation Protocol

To investigate the use of regression models for developing CMFs, CMFs for
different variables have to be derived from regression models and compared with their
true safety effect. However, the exact safety effect of a feature or treatment is hardly
known in the real world, this makes it extremely difficult to examine the CMFs when
observed crash data are used. But, by analyzing simulated data, one can compare the
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CMFs estimated from regression models with the assumed true values. So, this study
mainly used simulated data.

This section establishes a simulation protocol for evaluating CMFs derived from
regression models. The simulation experiment used in this study was proposed by Hauer
(2014). First, CMFs (i.e., safety effects) for some highway geometric features were
assumed. Then, random crash counts were simulated based on the assigned values of
CMFs. Finally, the CMFs were estimated from the simulated crash data and compared
with the true CMFs. This research adopted this simulation procedure, but necessary
changes were made. The simulation contains five steps, as described in detail below:

Step 1: Assign initial values

Assume CMFs for highway geometric features of interest. Tasks 1 and 2 (i.e.,
linear relationship and omitted variable) assumed an exponential relationship between a

highway geometric feature and its safety effect. For example, it was assumed that the

CMF for lane width was CMF,, ,meq » Meaning the expected crash frequency was

multiplied or divided by CMF,,, ,meq If the lane width increased or decreased by one

foot. Task 3 assumed multiple forms of relationships (i.e., linear and nonlinear) between
variables and crash risk.

Step 2: Calculate mean values

Calculate the true crash means for each segment using SPFs and assumed CMFs
using Equation 3-1 (AASHTO 2010).

Niwe; = Noy ; X (CMF;, xCMF, ; x---xCMF, ;) xC (3-1)

true,i spf i

Where,
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N... = true crash mean for roadway segment i for a certain time period (i.e., one

true,i
year). The true crash mean was the theoretical number of crashes that occur on a
segment, it was used to generate random crash counts in this study;

N_. . = crash mean for roadway segment i for the base conditions, generated

spf ,i
from an SPF;

CMF,; = assumed CMF specific to geometric feature type j of segment i,

j=12,..., m;

m = the total number of variables or geometric features of interest; and

C = calibration factor to adjust SPF for local conditions, and was assumed to be
1.0 for all segments in this study.

The SPF in this study was adopted from the HSM (AASHTO 2010) for rural two-
lane highways (the same as the data used in this study, described in Section 3.6), as
shown in Equation 3-2.

N, ; = AADT x L x365x107° xe % =2,67x10™* x L, x AADT, (3-2)

spf i
Where,
AADT, = average annual daily traffic (AADT) volume (vehicles per day) of

segment i; and

L, = length of roadway segment i, (mile).
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Step 3: Generate discrete counts
Generate random counts Y, given that the mean for segment i was gamma
distributed with dispersion parameter & (the inverse dispersion parameter, ¢ =1/« )

and mean equal to 1 (Lord 2006):

4 =Ny xexp(g;) (3-3a)
exp(s;) ~ Gamma(l, «) (3-3b)
Y, ~ Poisson(z) (3-3c)
Where,

u, = Poisson mean for segment i for a certain time period;
g, = model error independent of all the covariates, and exp(e;) was assumed to

be independent and gamma distributed with mean equal to 1 and dispersion parameter
equal to « ; and,

Y. =randomly generated crash counts for segment i for a certain time period.
Thus, the simulated crash counts followed Poisson-Gamma or NB distribution
with parameters ¢ and g . The probability density function (PDF) is given by

Equation 3-4 (Lord 2006).

. _F(yi+¢) ¢ lui Yi
HHADE r)y.! (¢+ﬂi)¢(¢+ﬂi) (3-4)

Where,

Y; = crash count for segment i for a certain time period,;
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4, = the crash mean during a period for segment i; and,

¢ = inverse dispersion parameter.

Step 4: Estimate CMFs from the simulated crash data

As has been documented in the background, many models and functional forms
have been proposed to predict crashes. In this study, the most commonly used GLM and
functional form were selected, as shown in Equation 3-5 (Lord and Bonneson 2007).

Note that a different parameter for describing the mean of the site, A,, was used for

estimating the models (compared to the one used for the simulation, ;).
E(A;) =B, xL; x AADT” xexp(D_ B, x X;) (3-5)
j=2

Where,

E(A,) = the estimated crash mean during a period for segment i;
X; = a series of variables, such as the lane width of segment i; and,

By B .., B, = coefficients to be estimated.

For the GOF of the models, the following three methods were used: (1) Akaike
information criterion (AIC), (2) Mean absolute deviance (MAD), and (3) Mean-squared
predictive error (MSPE). More information about MAD and MSPE are documented in
Lord et al. (2008).

Once the model was fitted and coefficients were estimated using the simulated
crash data, the CM-Function for variable j was then derived as (Gross et al. 2010; Lord
and Bonneson 2007):
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CMF, ; =exp[3; x (x =, ;)] (3-6)
Where,

B; = estimated coefficient for variable j;

X =value of variable j, such as lane width, curve density;

X, j = base condition defined for variable j, usually 12 ft for lane width; and,

CMF, ; = CMF specific to variable j with value of x.

This also indicated the CMF derived from the SPF for variable j was

CMF; =exp(/;), meaning the expected crash frequency would be multiplied or divided

by CMF; if the variable j increased or decreased by one unit.

Repeat Steps 2 to 4 100 times, calculate the mean and the standard deviation of
the estimated CMF values for each variable.

Step 5: Evaluate the CMF derived from the regression models

Two indexes, estimation bias and error percentage, were used to evaluate the
CMF derived from SPFs. They are shown in Equations 3-7 and 3-8. The smaller is the

error percentage, the more accurate the CMF derived from SPFs is.

Aj :CMFj_Assumed _CMFj_SPF (3-7)
3]
e, =100x— (3-8)
CM l:j _ Assumed
Where,

A, = estimation bias of CMF for variable j;
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€; = error percentage of CMF for variable j, (%);

CMF = assumed CMF value for variable j; and

j_ Assumed

CMF, ¢ = CMF derived from the SPF for variable j.

Please note the meaning of terminology “bias” used above to quantify the quality
of CMFs. In Mathematics and Statistics, bias is defined as a systematic (built-in) error
which makes all values or estimates wrong in the same direction and by a certain amount
(Math is Fun 2014). Specifically, bias in this dissertation means the difference between
the true CMF for a variable and that estimated from regression models. It can also be
defined as misspecification error (as some CMFs are misestimated in the models).
However, to simplify the description, the issue of misspecification is referred as “bias”

in the rest of this dissertation.

3.1.2 Simulation Example

This section provides an example to illustrate the various steps used for
generating crash data and the method of evaluating CMFs.

Table 1 below shows snapshots of the simulated crash counts for N segments
considering a single variable of lane width. In this table, the CMF was assumed to be
0.9, which meant the increase of one foot in lane width decreased the predicted number
of crashes by 10 percent (1.0 - 0.9), with the base condition for a lane width equal to 12
ft. So, the CMF specific to a segment i can be calculated as Equation 3-9. The assumed

CM-Function for lane width is shown in Figure 1 (the dotted line with triangles).
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Table 1 Example of Simulated Crash Counts for N Segments

Seg. L2 AADT LWP CMF Ny Nirge Yrl Yr2 Yr3
1 0.113 15360 11 1111 047 0.52 0 0 1
2 0.213 18420 8 1524 1.05 1.60 1 3 2
3 0.125 4260 9 1372 0.14 0.20 0 0 1
4 0.161 10600 10 1.235 0.46 0.56 1 0 1
5 0.196 12560 12 1.000 0.66 0.66 1 0 2
N 0.234 4580 13 0.900 0.29 0.26 0 1 1

Note: a — L = length (mile); b - LW = lane width (ft).

1.6
«e+d--- Assumed CMF —@= CMF from C-S Study
15 e
14— oo
~ ’-..
1.3 el
N .
L N Tu,
=12 o
O s S
1.1 e
.
1.0 S
.
0.9 -2
0.8 . . ' ' ' '
8 9 10 11 12 13
Lane Width, ft

Figure 1 An Example Illustrating the Assumed CMF and CMF Derived from SPFs

26



The CMF for lane width is given by:
CMF,, ; =0.9"* (3-9)
Where,

LW, = lane width of segment i (ft); and

CMF,, ; = specific CMF for lane width of segment i.

Thus, the true crash mean of segment i was calculated as (recall that the
calibration factor was assumed to be 1.0 for all segments in this study):

Niyei = Ngpr i XCMFy, ; (3-10)

Then, the exp(e;) of each segment was randomly generated based on a Gamma
distribution with parameters mean equal to 1 and dispersion parameter equal to ¢« ,
which had the value of 2 in Table 1. z of segment i was then calculated by multiplying
N, and exp(s;), as shown in Equation 3-3b.

After, a sequence of Poisson counts were generated based on the mean « for

each segment. Three years of simulated crash counts are shown in the last three columns
in Table 1. The theoretical function form of these crash counts is shown in

Equation 3-11.
Niuei = Neg ; XCMFy, ; = 2.67x107 x L x AADT, x0.9"" (3-11a)
Or equivalently,

Nire =9.45x107 x L; x AADT; xexp(-0.105x LW;) (3-11b)
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The simulated crash data was analyzed using the NB regression model. The mean
functional form is provided in Equation 3-12.

E(A,) = B, x L, x AADT” xexp(3, x LW,) (3-12)

The coefficients of Equation 3-12 were estimated using a NB regression model in
MASS package (Ripley et al. 2014) within the software R. The GOF measures were
calculated using Metrics package (Hamner 2013). The modeling output is shown in
Table 2. The p-values indicate the variables were statistically significant at the 99
percent level in this example. And, the small MAD and MSPE show the modeling result
performed well (given the simulated data).

Based on the fitting result, the CM-Function for lane width derived from this SPF

is shown in Equation 3-13.
CMF,,, =exp[B, x (LW —12)]=0.915""* (3-13)
The value of 12 in Equation 3-13 reflects the base condition for lane width,

which means that the CMF derived from prediction model is equal to 1.0. In this case,

with an increment of one foot in lane width, the crash mean was expected to be

multiplied by e’z ~0.915. So, the CMF derived from the SPF was 0.915 in this

example. The CM-Function is also shown in Figure 1 (the dash line with circles).
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Table 2 Modeling Output of the Example Data

Model Variable Theo. Value ? Coef. Value P SE ¢ p-Value
Intercept [ IN(5,) ] In(9.45x10™) =-6.96 -6.810 0.340 5.3911E-89
Ln(AADT) (5) 1.00 0.960 0.036 9.996E-161
Lane Width ( 5,), ft -0.105 -0.089 0.012 1.5953E-13
AIC 20614.5
MAD 0.214
MSPE 0.244

Note: a — theoretical value; b — estimated coefficient value; ¢ — SE = standard error.
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The bias between the assumed CMF and that from the SPF (without repeat in this

example) is calculated as:

A=CMF

Assumed

—CMF,,. =0.90-0.915=-0.015

And the error percentage is:

|bias|

—-0.015
e=100x :100xg:1.69(%)
0.90

Assumed
By repeating the Steps 2 to 4 100 times, 100 CMFs could be estimated. The mean
and standard deviation of CMFs and mean of GOF measures could be calculated. The
estimation bias and error percentage were then calculated based upon the mean value of
derived CMFs. For illustration purposes, this example only considered one variable, lane

width.

3.1.3 Scenarios

Two scenarios were examined in Task 1 to accommodate more complex
situations with different levels of dispersions (i.e., inverse dispersion parameters) and
two additional variables, curve density and pavement friction. The scenarios are
described below. The scenarios were names as “Scenario Number”. To make it
consistent, the scenarios in the following tasks were given similar names, and the
scenario numbers were continuous.

Scenario I: Consider one variable only, linear relationship

Various CMF values were assumed for lane width in this scenario. The objective
was to examine whether or not the regression models can produce reliable CMFs when

all the requirements of a cross-sectional study were satisfied.
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Scenario I1: Consider three variables, linear relationship

This scenario considered three variables, lane width, curve density and pavement
friction. Details about the last two variables are introduced in Section 3.6.1. A fixed
CMF value was assigned for each of the three variables. The objective was to examine
whether the CMFs derived from SPFs were reliable when multiple variables were
considered.

To reflect different traffic characteristics, the inverse dispersion parameter ¢ in

the two scenarios varied between 0.5, 1.0 and 2.0, respectively.

3.2 Omitted Variable Problem

As has been documented in Chapter 2, omitted variable is an important problem
with regression models. This problem can lead to biased parameter estimates in the
regression models and incorrect CMFs. This task investigated how the omitted-variable
problem influenced the CMFs derived from regression models. In the previous section,
all factors that influenced crash risk were assumed to be known. In contrast, not all the
factors affecting crash risk were known or able to be captured by the model in this
section. One scenario (i.e., Scenario I11) was studied to address this problem, as
described below.

Scenario I11: Omitted variables, linear relationship

This scenario considered three variables, lane width, curve density and pavement
friction. Their CMFs were assumed to be in linear forms, the same as that in Scenario 1.

But only one variable, the lane width, was included in the SPF; this fell under the
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omitted-variable problem. The inverse dispersion parameter ¢ in this scenarios also
varied between 0.5, 1.0 and 2.0, respectively.

The methodology used to evaluate the quality of CMFs in this section was
essentially the same as that in Section 3.1, except that the two variables were excluded in

the regression model.

3.3 Nonlinear Relationships

This section describes how the accuracy of CMFs derived from SPFs was
investigated when some variables had nonlinear relationships. Intuitively, if the
nonlinear relationship is weak (the CM-Function curve is quite flat or approximately a
straight line), the accuracy of CMFs derived from SPFs should be similar to those in the
previous scenarios. In the contrast, if the nonlinear relationship is strong (the curve is
sharp), the accuracy of CMFs may be potentially affected. A measurement is necessary
to describe how flat or sharp the curve is. This section first introduces the concept of

quantifying nonlinearity, then presents the scenarios.

3.3.1 Quantifying Nonlinearity

First, the definition of the closest line to a curve. For a given integrable curve

y = f(X) over [m, n], the closest line to this curve is defined as a straight line
y=KxX+C that minimizes the area between the two. This definition is illustrated in
Figure 2. The dashed curve represents the given function y = f(X), and the solid line

represents the closest line to this curve Y =K xX+C. This line minimizes the area
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between the two (the shadowed area in Figure 2). Given the range, in general, the larger
the area is, the stronger the nonlinearity the curve tends to have. Particularly, if the given
function is linear, the closest line is the function itself, and the area is technically equal

to zero.

== Curve y=1f(x)
— The Closest Line:y=kx +¢C

X

Figure 2 Example Illustrating the Closest Line to a Curve

Second, the definition of average vertical distance between a curve and its

closest line. Although the area between a curve and its closest line can reflect the
nonlinearity of the curve, the area still depends on the range. Wider range is more likely
to yield larger area. The variables affecting traffic crashes are usually different in their

possible values in practice. For example, the lane width may vary from 8 ft to 13 ft,
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while the curve density may vary from 0 to 16 curves per mile. A standardized
measurement is necessary to quantify the nonlinearity. The average vertical distance
(AVD) between a curve and its closest line is defined as the area between the two
divided by the range. So, in Figure 2, the AVD is calculated as dividing the shadowed
area by n—m. This way, the AVD itself can be used to quantify the nonlinearity of a
curve regardless of its range. The larger this distance is, the stronger the nonlinearity that
curve has. If the given function is linear, the AVD is zero.

The details for calculating the coefficients of the line (i.e., k and c¢) and AVD

are shown below. The objective is to minimize the area, shown in Equation 3-14.
Area = j| f(x) = (kx x+c) | dx (3-14a)
Or equivalently,
Z= j[ f(X) = (k x X+ )] dx (3-14b)
k and ¢ can be easily derived through mathematical translations, shown below.

. (n—m)J: xf (xn)dx—J: fn(x)dxjnf xdx
(n—m) j xzo|x-[jm xdx]?

j f(x)dxj:xzdx-j: f(x)dxjr: xax
(n—m) j:xzdx—[jr: xax]?

Cc=

The area can be calculated by substituting k and ¢ into Equation 3-14a, and the
AVD is then calculated as dividing the area by n—m. The AVD was used to measure

the nonlinearity of a CM-Function in this study.
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3.3.2 Scenarios

The method used to evaluate the accuracy of CMFs with nonlinear relationships
with crash risk was similar with that of linear relationships. The only difference was that
nonlinear CM-Functions were assumed for some variable(s) and used to generate crash
counts. Three scenarios were analyzed in this section, as described below.

Scenario 1V: Consider one variable only, in nonlinear form

Only lane width was considered and assumed to have nonlinear effects on crash.
The main objective was to examine the bias of CMF for a variable with different levels
of nonlinearity.

Scenario V: Consider three variables, only one in nonlinear form

Three variables, lane width, curve density and pavement friction, were
considered in this scenario. Fixed CMFs were assigned to curve density and pavement
friction. The CM-Functions for lane width were assumed to be in nonlinear forms. The
main objective was to examine the influence of nonlinear variables on the accuracy of
CMFs for linear variables.

Scenario VI: Consider three variables, two in nonlinear form

This scenario was similar with Scenario V, but both lane width and curve density
were assumed to have nonlinear relationships. The CMF for pavement friction was
fixed. The main objective was to examine the influence of nonlinear variables on the

accuracy of CMFs for both linear and nonlinear variables.

35



For all the three scenarios, the assumed nonlinear relationships varied from weak
to strong. Thus, each scenario contained a number of sub-scenarios. In addition, the
inverse dispersion parameter ¢ in each sub-scenario varied between 0.5, 1.0 and 2.0.

Note that, in Section 3.1, the theoretical functions for generating crash counts and
the considered functional forms in regression models were of the same family (i.e.,
linear form or relationship). And the assumed CMFs and those generated from SPFs
were similar (i.e., single ones). Only one bias and error percentage were calculated to
examine the quality of CMFs. However, in this section, the theoretical functions were in
nonlinear forms, which were not of the same family as the considered functional forms.
No single CMF could be used to represent the assumed CM-Function. Thus, one bias or
error percentage was not enough to assess the quality of CMFs. To overcome this
problem, several specific CMFs for variables at typical points from both the assumed
CM-Function and that developed from regression models were compared, and the bias

and error percentage were calculated based on the specific CMFs.

3.4 Variable Correlation

In the previous sections, all the considered variables were assumed to be
(perfectly) independent of each other, and each was uniformly or discrete uniformly
distributed among the corresponding range (as will be shown in Section 3.6.1).
However, this might not be the case in practice. Some variables may be highly correlated
with each other. For example, when constructing two highways, one with higher demand

(i.e., AADT) and the other with lower, it is common that the former one will be designed
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with higher standard, e.g., wider lanes and shoulders, etc. Thus, variables AADT and
lane width are correlated. And also, in highway design manuals (AASHTO 2004
TxDOT 2014), lane width is recommended to be 12 ft for most highways. So 12 ft may
be prevalent among lanes, and it is not discrete uniformly distributed in practices. This
might affect the regression result and hence the CMFs for variables. This section aimed
to examine whether or not variable correlation had influence on the CMFs derived from
regression models. Two scenarios (i.e., Scenario VII and V1) were analyzed, as
described below.

Scenario VII: Variable correlation, linear relationship

This scenario considered one variables, lane width, only. Various CMF values
were assumed for lane width. This scenario was basically the same as Scenario I, except
the variable lane width was correlated with AADT.

Scenario VIII: Variable correlation, nonlinear relationship

Only lane width was considered and assumed to have nonlinear effects on crash.
This scenario was basically the same as Scenario V, except the variable lane width was
correlated with AADT.,

The inverse dispersion parameter ¢ in the two scenarios varied between 0.5, 1.0
and 2.0, respectively. The methodology used to evaluate the quality of CMFs in this
section was also essentially the same as that in Sections 3.1 and 3.3, except that two
variables AADT and lane width were correlated. A new dataset was generated, as will be

described in Section 3.6.2.
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3.5 Combined Safety Effect

A similar approach was used to evaluate the CMFs derived from regression
models considering the dependence of variables (not in a statistical sense), but it was
modified to fit the specific characteristics of this task. The main concepts were:

(1) assume CMFs and dependence for variables; (2) generate random crash counts; and
(3) estimate CMFs using regression models and compare them with the assumed true
values.

The major difference in this section was the use of adjustment factors (AFs). An
adjustment factor was assumed to capture the combination effect of multiple treatments.
This was similar to the method used in the recent study by Park and Abdel-Aty (2015b).

The combined CMF for multiple treatments is calculated by Equation 3-15.

CMFcomb = C:'\/":X1 XoooX C:I\/”:Xn x AF |{><1==><1base}(Xl)x---x|{xn=xnbase}(xn) (3_15)
Where,
CMF_,, = the combined CMF for a segment;

CMFXJ_ = the assumed specific CMF for variable X; of the segment;

AF = assumed adjustment factor for variables X,, X,, ---, X ;

n?

X insse = the base condition for variable X ; and,
I{X « }(Xj) = indicator function for variable X;. It equaled to zero if variable
j’t jbase

X, of the segment was equal to the base condition, otherwise 1.0.
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The indicator functions made the adjustment factor to be working or not based on
specific conditions of the segment and the presumed dependence relationships between
variables.

To simplify the analysis, only two variables, lane width and shoulder width, were
considered in this scenario (i.e., Scenario IX). And each variable in the dataset was
assigned one of two values: the baseline and improved, respectively. For lane width, it
was either 12 ft (baseline) or 13 ft (wider lane). And for shoulder width, it was either 6 ft
(baseline) or 7 ft (wider shoulder). This way, the total segments could be classified into
four categories: (1) baseline; (2) wider lane; (3) wider shoulder; and (4) wider lane and
wider shoulder. They are described in Table 3.

The CMF for lane width was assumed to be CMF.w with baseline equal to 12 ft.
So, the specific CMFs for lane widths of 12 ft and 13 ft were 1.0 and CMFyw,
respectively. Similarly, the CMF for shoulder width was assumed to be CMFsw with
baseline equal to 6 ft. The specific CMFs for shoulder widths of 6 ft and 7 ft were 1.0
and CMFsw, respectively. This study assumed neither CMF.w nor CMFsw equaled to
1.0. Furthermore, the adjustment factor was used to capture the dependence of the safety
effects of the two variables. That is to say, if a segment was wider in both lane and
shoulder, the combined CMF was multiplied by the adjustment factor. The CMFs for
lane width, shoulder width and combined CMF for the four groups of segments are

shown in the last three columns of Table 3.

39



Table 3 Summary of Four Groups of Segments

LW Sw CMF for CMF for

Group Combined CMF
(ft)  (ft) LW SW
Baseline 12 6 1.0 1.0 1.0
Wider Lane 13 6 CMFLw 1.0 CMFLw
Wider Shoulder 12 7 1.0 CMFsw CMFsw

Wider Lane and

) 13 7 CMFLw CMFsw CMFLw x CMFsw x AF
Wider Shoulder

Note: LW = lane width; SW = shoulder width.

Specifically, the assumed CMF for lane width (i.e., CMF_w) varied between 0.8
and 0.9. And that for shoulder width (i.e., CMFsw) varied between 0.85 and 0.9. The
adjustment factor changed from 0.80, 0.90, 0.95, 1.05, 1.10 to 1.20. When the
adjustment factor is less than 1.0, it means widening both lane and shoulder width
simultaneously will bring more safety benefits than the “sum” of the two single
treatments. The smaller the adjustment factor is, the more benefit will be. In contrast, if
it is more than 1.0, taking the two treatments simultaneously will have a lower effect
than their “sum.” The higher the adjustment factor is, the lower the combined safety
effect will be.

In total, there were 24 sub-scenarios in this section, shown in Table 4. The
inverse dispersion parameter (¢ ) varied between 0.5, 1.0 and 2.0 in each sub-scenario to
reflect different traffic characteristics.

The theoretical function of the generated crash counts in this scenario is shown in

Equation 3-16.
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Niei = Ngi i XCMF, i = 2.67x10* x L, x AADT, xCMF,,,,, . (3-16)

Where,

N, = true crash mean for roadway segment i during a certain time period (i.e.,
one year);

AADT, = AADT of segment i (vehicles per day);
L, = length of segment i (mile); and,

CMF

comb, i

= the combined CMF for lane width and shoulder width of segment i.

It was calculated by the methods shown in Table 3 (the last column).

The CMFs for the two variables were derived from SPFs with similar procedures
utilized in the previous study. The considered functional form is shown in
Equation 3-17, in which the two variables (i.e., lane width and shoulder width) were

assumed to influence crashes independently.
E(A,) = B, x L, x AADT# xexp(B, x LW, + B, x SW,) (3-17)
Where,

E(A,) = the estimated crash mean during a period (i.e., one year) for segment i;
LW, = lane width of segment i (ft);
SW. = shoulder width of segment i (ft); and

By, B, By, B, = coefficients to be estimated.

41



Table 4 Summary of Sub-Scenarios in Scenario 1X

Sub-Scenario CMF for LW CMF for SW AF
IX-1 0.8 0.85 0.80
IX-2 0.8 0.85 0.90
IX-3 0.8 0.85 0.95
IX-4 0.8 0.85 1.05
IX-5 0.8 0.85 1.10
IX-6 0.8 0.85 1.20
IX-7 0.8 0.9 0.80
IX-8 0.8 0.9 0.90
IX-9 0.8 0.9 0.95
1X-10 0.8 0.9 1.05
IX-11 0.8 0.9 1.10
IX-12 0.8 0.9 1.20
IX-13 0.9 0.85 0.80
IX-14 0.9 0.85 0.90
IX-15 0.9 0.85 0.95
IX-16 0.9 0.85 1.05
IX-17 0.9 0.85 1.10
IX-18 0.9 0.85 1.20
1X-19 0.9 0.9 0.80
1X-20 0.9 0.9 0.90
IX-21 0.9 0.9 0.95
I1X-22 0.9 0.9 1.05
IX-23 0.9 0.9 1.10
IX-24 0.9 0.9 1.20

Note: LW = lane width; SW = shoulder width.
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The two coefficients for lane width and shoulder width (i.e., £, and £, in

Equation 3-17) were used to estimate the CMFs for the two variables, respectively. The
same indexes (i.e., estimation bias and error percentage) were used to evaluate the
quality of CMFs derived from regression models, and the same GOF and prediction

measures for the models were used for the regression models.

3.6 Data Description

This section describes the characteristics of the datasets used for the simulation
analyses. Section 3.6.1 documents the datasets of roadway segments for Scenarios | to
VI. Section 3.6.2 briefly summarizes the datasets for Scenarios VII and VIl (i.e.,
variable correlation.) And the datasets used in Scenario IX (i.e., combined safety effects

of multiple treatments) is provided in Sections 3.6.3.

3.6.1 Datasets for Scenarios I to VI

The roadway data used in Scenarios | to VI contained 1,492 rural two-lane
highway segments in Texas. The variables included segment length, AADT, lane width,
curve density (i.e., curves/mile) and pavement friction. Pavement friction is the force
that resists the relative motion between a vehicle tire and a pavement surface (Hall et al.
2009). Generally, higher pavement friction is linked to safer roads. The segment length
and AADT were based on actual values from the Texas data, while the other three were
hypothetical variables created specifically for this study. The lane widths were generated
from a discrete uniform distribution with parameters 8 and 13. The curve density and

pavement friction were generated from continuous uniform distributions. For the curve
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density, the parameters were 0 and 16. And for pavement friction, the parameters were

16 and 48. The summary statistics of these variables are shown in Table 5.

Table 5 Summary Statistics of Highway Segments for Scenarios | to VI

Variable Sample Size Min. Max Mean (SD °©)
Length (mile) 1492 0.1 6.3 0.55 (0.67)
AADT 1492 502 24800 6643.9 (3996.4)
Lane Width (ft) 1492 8.0 13.0 10.47 (1.74)
CD 2 (per mile) 1492 0.02 16.0 8.1 (4.66)
PF® 1492 16.0 47.9 31.9 (9.08)

Note: a — CD = curve density; b — PF = pavement friction; ¢ - SD = standard deviation.

3.6.2 Datasets for Scenarios VII and VIII

The considered variables in the previous section were generated independently,
which might not be able to reflect the reality. Some highway characteristics are usually
correlated with each other in practice. For example, roadways with higher AADT are
more likely to be designed with wider lanes. In order to reflect the correlations between
variables, the lane widths in this section were generated base on a multinomial logistic
(MNL) regression analysis between AADT and lane width. The MNL model was

developed from a real dataset, and it is shown in Table 6.
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Table 6 MNL for Generating Lane Width (Baseline: 8 ft)

LW (ft) Intercept AADT (in 100,000)
9 2.202 -13.28
10 4.751 3.57
11 6.836 3.00
12 7.072 6.94
13 4.687 6.36

Note: LW = lane width.

So, for a given segment with AADT equal to v (in 100,000), the probabilities for

the segment of having an 8-ft, 9-ft, 10-ft, 11-ft, 12-ft, or 13-ft lane, respectively, can be

calculated as below:

P(LW =8| AADT =vx10%) =
P(LW =9| AADT =v><105)=1
P(LW =10| AADT :v><1o5)=1
P(LW =11| AADT =vx10°) =
P(LW =12| AADT =v><105)=1

P(LW =13| AADT =vx10°) = :
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Specifically, for a segment with 6,000 AADT, the six probabilities are 0.0003 (8
ft), 0.0013 (9 ft), 0.0447 (10 ft), 0.3474 (11 ft), 0.5568 (12 ft), and 0.0496 (13 ft),
respectively.

Lane widths were generated for the 1,492 segments. Segment length and AADT
were the same as those in Section 3.6.1. The summary statistics of these segments are

shown in Table 7.

Table 7 Summary Statistics of Highway Segments for Scenarios VII and V111

Variable Sample Size Min. Max Mean (SD)

Length (mile) 1,492 0.1 6.3 0.55 (0.67)
AADT 1,492 502 24800 6643.9 (3996.4)

Lane Width (ft) 1,492 8.0 13.0 11.62 (0.68)

Note: SD = standard deviation.

3.6.3 Datasets for Scenario IX

Scenario IX utilized the same roadway segments as those in the previous
scenarios. The segment length and AADT were observed real data, while the two
variables, lane width and shoulder width, were generated from discrete uniform
distributions, respectively. Table 8 provides the summary statistics of the highway
segments used in this scenario. Since both lane width and shoulder width had a discrete
uniform distribution with two numbers, and they were independently generated, the four
types of segment groups were equally distributed among all the segments. Each
accounted for approximately 25%.
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Table 8 Summary Statistics of Highway Segments for Scenario IX

Variable Sample Size Min. Max Mean (SD)

Length (mile) 1492 0.1 6.3 0.55 (0.67)
AADT 1492 502 24800 6643.9 (3996.4)

Lane Width (ft) 1492 12 13 12.5 (0.50)

Shoulder Width (ft) 1492 6 7 6.5 (0.50)

Note: SD = standard deviation.

It is important to point out that this study selected four geometric features and the
CMFs were mainly assumed based on their practical values (i.e., from HSM, CMF
Clearinghouse, etc.) to reflect as close as possible the characteristics related to variables
that can influence crash risk. However, it does not have to be so. With the simulation
protocol, it would be possible for other researchers to use variables and ranges based on
characteristics associated with the roadway entities in which the researchers have

detailed information on these characteristics.
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3.7 Summary

This Chapter provided the methodologies regarding how to accomplish the four
tasks. There are in total nine scenarios, as summarized below.

Scenario I: Consider one variable only, linear relationship.

Scenario I1: Consider three variables, linear relationship.

Scenario I11: Omitted variables, linear relationship.

Scenario 1V: Consider one variable only, in nonlinear form.

Scenario V: Consider three variables, only one in nonlinear form.

Scenario VI: Consider three variables, two in nonlinear form.

Scenario VII: Variable Correlation, linear relationship.

Scenario VI11: Variable Correlation, nonlinear relationship.

Scenario 1X: Combined safety effect.

The next chapter discusses the detailed evaluation of CMFs in each scenario.
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4. ESTIMATING THE QUALITY OF CMFS*

Nine scenarios with numbers of sub-scenarios were analyzed using the
methodologies described in Chapter 3. This chapter documents the results. Sections 4.1
to 4.5 provide the accuracy of CMFs for linear relationship, omitted variable, nonlinear
relationship, variable correlation, and multiple treatments, respectively. The findings are

summarized in Section 4.6.

4.1 Linear Relationships

This section documents the simulation results of Scenarios | and 11, respectively.

4.1.1 Scenario I: Consider Lane Width Only

In this scenario, only the lane width was considered. All other factors affecting
crash risk were assumed to be identical among all segments. This met the primary
premise of cross-sectional studies that all locations were similar to each other in all other
factors affecting crash risk.

The assumed CMF for lane width varied from 0.85 to 1.05 with an increment of
0.05. The theoretical function of the generated crash counts in this scenario is shown in
Equation 4-1, which is similar to Equation 3-11, but the coefficient of lane width varied.

(4-1a)

* Part of this chapter is reprinted with permission from “Validation of Crash Modification Factors Derived
from Cross-Sectional Studies with Regression Models” by L. Wu, D. Lord and Y. Zou, 2015.
Transportation Research Record: Journal of the Transportation Research Board, No. 2514, pp. 88-96,
Washington, D.C. Copyright [2015] by the Transportation Research Board.
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Or equivalently,

(4-1b)
Where,
P = coefficient of lane width, varied between -0.163, -0.105, -0.051, 0 and

0.049, corresponding to the assumed CMFs equal to 0.85, 0.90, 0.95, 1.0 and 1.05,
respectively; and,

B = offset coefficient, varied between 0.0019, 0.0010, 0.0005, 0.0003 and

0.0002, corresponding to the assumed CMFs equal to 0.85, 0.90, 0.95, 1.0 and 1.05,
respectively.

The CMF for each assumed value was derived from the model using the same
procedures illustrated in the simulation example (i.e., Section 3.1.2). The considered
functional form is provided in Equation 3-12 (now 4-2 below).

B 2 (4-2)

The fitting results are shown in Table 9. It can be seen that for each of the
assumed CMFs, the estimation bias between the CMF derived from the SPFs and the
assumed value was relatively small under different simulation settings. The estimation
bias was less than 0.005 for all scenarios, and the error was within 0.5 percent. The small
standard deviation of CMFs (second column in Table 9) also indicated the CMFs derived

from the experiments were consistent.
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Table 9 Results of Scenario |

Theo.
CME @ CMF (SD) b Bias E° AlCd MAD ¢ MSPE f
¢ =05
0.85 0.849 (0.014) 0.001 0.127 11127.63 0.047 0.013
0.90 0.901 (0.014) -0.001 0.107 10681.33 0.042 0.011
0.95 0.949 (0.015) 0.001 0.114 10277.12 0.041 0.010
1.00 0.998 (0.015) 0.002 0.170 9901.71 0.037 0.008
1.05 1.051 (0.018) -0.001 0.109 9540.71 0.036 0.008
¢ =10
0.85 0.849 (0.018) 0.001 0.149 11289.108 0.063 0.026
0.90 0.902 (0.017) -0.002 0.246 10800.501 0.053 0.017
0.95 0.945 (0.017) 0.005 0.498 10390.874 0.050 0.015
1.00 1.002 (0.024) -0.002 0.233 9995.650 0.048 0.013
1.05 1.051 (0.019) -0.001 0.076 9643.008 0.043 0.012
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Table 9 Continued

Theo.
CME @ CMF (SD) b Bias E° AlCd MAD ¢ MSPE f
¢ =20

0.85 0.853 (0.022) -0.003 0.395 11020.611 0.083 0.044
0.90 0.899 (0.023) 0.001 0.099 10574.470 0.068 0.029
0.95 0.95 (0.024) 0.000 0.018¢9 10185.386 0.065 0.026
1.00 0.996 (0.026) 0.004 0.436 9827.826 0.062 0.025
1.05 1.05 (0.025) 0.000 0.032°9 9454.310 0.056 0.022

Note: a — theoretical CMF; b — mean of CMFs from 100 experiments, SD is the standard deviation of the 100 CMFs; c —E is
the error percentage, %; d, e, f — each is the mean value of the corresponding GOF measure of the 100 results; g — the non-
zero error percentage with zero bias is caused by the rounding off during calculation.
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Based on the result of Scenario I, it can be concluded that the CMFs derived
from regression models can reflect the true safety performance of lane width when
considering this variable only. In other words, if a regression model was based on a
group of roadway segments that were ideally identical in all factors affecting traffic
safety, except the segment length, AADT and lane width, the CMFs for lane width

derived from the SPF should be unbiased.

4.1.2 Scenario Il: Consider Three Variables with Fixed CMFs

In Scenario I, only one variable, the lane width, was considered. Scenario Il
considered a more practical condition: considering lane width, curve density and
pavement friction. In this scenario, each of these three variables was assumed to have
influence on crash risk, but they were not identical among all segments. This also met
the primary premise of cross-sectional studies.

CMFs for lane width, curve density and pavement friction were assumed to be
fixed, and they were 0.90, 1.072 and 0.973, respectively. For curve density, the 1.072
CMF meant that if the curve density of a segment increased by 1 per mile, the expected
crash number would increase by 7.2 percent (1.072 - 1.0). And the baseline for curve
density was 0 per mile. So, if the curve density of a segment was 0, the specific CMF for
curve density of this segment was 1.0. For the pavement friction, the 0.973 CMF meant
that if the pavement friction of a segment increased by 1 unit, the expected crash number
would decrease by 2.7 percent (1.0 — 0.973). The baseline was 32.

The theoretical function form of the crash data in scenario 11 is shown in

Equation 4-3. And the fitting equation for this scenario is shown in Equation 4-4.
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Nyges = Ny 1 XCMF, ; xCMFo  x CMF,e

true
=2.67x107 x L, x AADT, x0.9"" % x1.072°™ x0.973™ % (4-3a)

Or equivalently,

Ny =0.0023x L, x AADT, xexp(-0.105LW; +0.070CD, —0.027PF)  (4-3b)

E(A,) = B, x L, x AADT % xexp(3, x LW, + 3, xCD, + 3, x PF)) (4-4)

Where,

CD; = curve density of segment i (per mile);
CMF,,; = specific CMF value for curve density of segment i ;
PF, = pavement friction of segment i;

CMF,.; = specific CMF value for pavement friction of segment i ; and,

B, B, B, = coefficients to be estimated for lane width, curve density and
pavement friction, respectively.

The result of this scenario is shown in Table 10. It can be seen that the CMFs
derived from SPFs for all of the three variables were very close to the assumed values.
The bias and error percentage were small. The result was quite similar as that of
Scenario I. This means that, for fixed CMFs in this scenario, the regression model was
able to derive reliable CMFs for the three variables. Furthermore, two other scenarios
with more variables (five and eight in total, respectively) were analyzed, the results (not
documented in this dissertation) were consistent with the results documented here with

three variables.
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Table 10 Results of Scenario 11

Variable* Z:/T; CMF (SD) ® Bias Ec AlC ¢ MADe® MSPE'
$ =05
LW 0.900 0.900 (0.013) 0.000 0.023 ¢
CcD 1.072 1.073 (0.006) -0.001 0.051 13864.7 0.10 0.06
PF 0.973 0.973 (0.002) 0.000 0.040 9
¢ =1.0
LW 0.900 0.897 (0.014) 0.003 0.366
CD 1.072 1.072 (0.008) 0.000 0.019 9 14072.3 0.13 0.10
PF 0.973 0.973 (0.004) 0.000 0.026 ¢
¢ =2.0
LW 0.900 0.903 (0.023) -0.003 0.354
CD 1.072 1.072 (0.009) 0.000 0.0329 13736.2 0.16 0.17
PF 0.973 0.972 (0.004) 0.001 0.063

Note: a, b, c, d, e, f, g - the same notes as those in Table 9; * - LW = lane width, CD = curve density, PF = pavement friction.
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Based on the results of this experiment, the CMFs derived from the commonly
used GLMs can reflect the true safety performance when considering multiple variables

and assuming other safety factors were identical among all segments.
4.2 Omitted Variables

This sections discusses Scenario I11: consider three variables, but omit two in
models. In Scenario 11, although three variables were considered and included in the
model, other factors affecting traffic safety were assumed to be identical among all
segments. However, this was not the case in most crash prediction studies. Not all the
factors affecting crashes were known or able to be captured by the model in practice. In
this scenario, another condition was considered: both curve density and pavement
friction were associated with crash risk, but only the lane width was included in the
model.

The assumed CMFs for lane width, curve density and pavement friction were
0.90, 1.072 and 0.973, respectively, the same as those in Scenario Il. The theoretical
function of scenario I11 was the same as that of Scenario Il, as shown in Equation 4-3b
(now 4-5 below). In this scenario, the curve density and pavement friction were excluded
from the model. So, the model for Scenario 111 was basically the same as that of
Scenario |, as shown in Equation 3-12 or Equation 4-2 (now 4-6 below).

Niue; = 0.0023x L, x AADT, xexp(~0.105LW, +0.070CD, —0.027PF)  (4-5)

E(A,) =/, x L x AADT# xexp(, x LW,) (4-6)
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Table 11 Results of Scenario 111

Theo.
CME @ CMF (SD) ® Bias Ec° AlCd MAD ¢© MSPE f
¢ =05
0.90 0.898 (0.014) 0.002 0.211 14395.9 0.75 2.45
¢ =1.0
0.90 0.890 (0.026) 0.010 1.111 14479.1 0.75 2.49
¢ =20
0.90 0.898 (0.023) 0.002 0.206 13975.8 0.75 2.51

Note: a, b, c, d, e, f - the same notes as those in Table 9.
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The results for Scenario 111 are shown in Table 11. The derived CMF for lane
width in this scenario was also close to the assumed value 0.90. The bias was relatively
small and the error was within 1.2 percent in this experiment. Generally, the CMF for
lane width in this experiment was reliable.

However, when compared with the results in Scenarios I and 11, both the bias and
error percentage became large in Scenario Il1. That is, when some factors affecting
traffic safety were omitted in the models, the bias for the CMF might become higher.
Meanwhile, the MAD and MSPE also increased greatly, indicating the modeling result
became less reliable. Similar scenarios with CMFs for lane width of 0.85 as well as 1.05
and constant CMFs for curve density and pavement friction were analyzed, and the
results were consistent.

In Scenario 11, the assumed CMFs for curve density and pavement friction were
close to 1.0. This means the change of one unit of these two variables would have
relatively small effect or association on crash risk. In other words, if minor factors were
omitted in the SPFs, the result might still be acceptable. However, the bias might
become unacceptable if the omitted factors had a strong relationship with crashes.
Further analyses were conducted to examine this hypothesis. For example, the assumed
CMF for curve density was augmented to 1.2 and 1.3, which led to a significantly
increase in the error. At the same time, the MAD and MSPE values also increased
significantly. Therefore, when major factors were omitted in the SPFs, the CMFs derived

may became unreliable.
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In regression analysis, Mallows C has been proposed for model selection. The
statistic C, can be used as a criteria to assess fits when models with different numbers

of parameters are being compared (Kutner et al. 2005). C_ is calculated by Equation

4-7.
RSS(p)
=— " N+2 4-7
» T MSE(fully P 47
Where,
p = number of parameters in the subset model (i.e., omitted-variable model in
this study);

RSS(p) = residual sum of squares for the subset model;

MSE(full) = mean square error for the full model (i.e., the model containing all
variables affecting safety in this study); and,

N =sample size.

The subset model (or omitted-variable model) is considered to be “good” if

C, < p. Note that “good” in this context means the omitted-variable model is

acceptable, or the model is not suffering from omitted-variable bias.

The Mallows C's were calculated in this scenario. With initial CMFs (0.90 for
LW, 1.072 for CD and 0.973 for PF), the mean and standard error of the 100 C's were

36.1 and 161, respectively. The probability that the omitted-variable model was “good”

(i.e., C, <3) was about 0.40. In other words, about 60% of these models were not

“good” (i.e., they suffered from omitted-variable bias). This probability decreased
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significantly as the assumed CMF for curve density increased. When the CMF for curve
density was 1.3, it was nearly zero (i.e., nearly all the models suffered from omitted-
variable bias). That is to say, when significant variables are excluded, the models suffer

from the omitted-variable bias (Lord and Mannering 2010).
4.3 Nonlinear Relationships

This sections describes the findings of Scenarios IV, V and VI.

4.3.1 Scenario IV: Consider One Variable Only, Nonlinear Form

In this scenario, three nonlinear CM-Functions were assumed for lane width.
This way, there were three sub-scenarios, 1V-1, IV-2 and IV-3. The first two
CM-Functions for lane width were quadratic functions (in logarithm form), shown in

Equations 4-8 and 4-9.

IN(CMF) =0.1x LW? —2.22x LW +12.28 (4-8)

IN(CMF) =0.2x LW? —4.22x LW +21.88 (4-9)

The third one was a combination of two piecewise quadratic functions. This
nonlinear function, shown in Equation 4-10, was developed by Lee et al. (2015) based
on real crash data. Note that, in Lee et al. (2015)’s study lanes narrower than 9 ft were
considered to have the same CMF as a 9-ft lane. To keep the analyses consistent and
make it easier, this study assumed that an 8-ft lane had a different CMF with a 9-ft lane,

and it was directly calculated using Equation 4-10.

—0.11x (LW =12)>+0.30 LW <=12
in(cMF) = 01 )+ < (4-10)
—0.08><(LW —12)2 +0.30 LW >=12
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Table 12 Assumed CM-Functions for Lane Width in Scenario IV

Sub-Scenario In(CMF)* Line® Area® AVD Level @
V-1 0.1xLW?—2.22x LW +12.28 —0.123x LW +1.46 0.802  0.160 Weak
V-2 02xLW?=4.22x LW +21.88 —0.023x LW +0.24 1.603 0.321 Strong

—0.11x (LW -12)*+0.30 LW <12
V-3 0.339x LW —0.45 0.886  0.177 Weak

—0.08x (LW —12)* +0.30 LW >12

Note: a - LW = lane width (ft); b - Line = the closest line to the curve; ¢ - Area = the area between the curve and its closest
line; d - Level = the relative nonlinear level.
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The assumed CM-Functions and their characteristics (closest line, area and
AVD) for the three sub-scenarios are summarized in Table 12. It can be seen that, the
AVD of Sub-Scenario IV-2 was higher than those of 1\VV-1 and 1VV-3. The latter two were
close to each other. This made the assumed CM-Function in V-2 relatively strong in
nonlinearity, and the other two relatively weak.

The theoretical function of the generated crash counts in these three
sub-scenarios is shown in Equation 4-11. The specific CMF for lane width was

calculated using Equations 4-8 to 4-10.

Nyei = Ny i XCMF, = 2.67x107" x L, x AADT. xCMF,,, ; (4-11)

The considered functional form used in regression models is shown in
Equation 4-12.

E(A,) = B, x L, x AADT” xexp(B, x LW,) (4-12)

Table 13 presents the CMFs derived from SPFs as well as other results (i.e., ¢

and GOF measurements) in this scenario. First, MAD and MSPE of nonlinear forms
were significantly higher when compared with linear ones (i.e., Scenario I). This
indicated the CMFs in this scenario might have higher bias. Second, with the increase of
nonlinearity, the MAD and MSPE also increased. In other words, when the relationship
between the variable and crash risk became strong in nonlinear level, the normal GLMs
were likely to produce biased CMFs. Finally, under nonlinear relationships, in general,
the inverse dispersion parameters estimated from SPFs were biased (see the column of

“¢” in Table 13).
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Table 13 Results of Scenario 1V

#* CMF (SD) @ ¢ ° AlCd MAD ¢ MSPE f
¢ °=05

V-1 0.88 (0.01) 0.57 11413.39 0.31 0.39

V-2 0.98 (0.02) 0.81 11522.30 0.64 1.57

IV-3 1.33 (0.02) 0.56 7770.30 0.15 0.11
¢ °=1.0

V-1 0.87 (0.02) 1.08 11492.77 0.31 0.39

V-2 0.98 (0.02) 1.34 11509.57 0.64 1.58

V-3 1.34 (0.03) 1.08 7803.04 0.15 0.13
9 =20

V-1 0.88 (0.03) 2.11 11233.07 0.32 0.40

V-2 0.98 (0.03) 2.41 11138.83 0.64 1.60

V-3 1.35 (0.03) 2.11 7690.76 0.15 0.15

Note: a — mean of CMFs from 100 experiments, SD is the standard deviation of the 100 CMFs; b - the inverse dispersion
parameter derived from SPFs; ¢ — the theoretical inverse dispersion parameter in each sub-scenario; d, e, f — each is the mean
value of the corresponding GOF measure of the 100 results; * - sub-scenario number.
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To verify the above assumption, the curves of assumed CM-Functions and the
CMFs derived from SPFs are illustrated in Figure 3. Figure 3 only presents the curves
with a 0.5 inverse dispersion parameter. In addition, the specific CMFs for lane widths
(8,9, 11 and 13 ft) are presented in Table 14 for explicit comparison. The CMFs for 12-
ft lane are excluded in Table 14, because 12 ft is the base condition for lane with and the
CMFs are equal to 1.0 in both assumed and derived CM-Functions.

Figure 3(a) shows the CM-Functions in Sub-Scenario IV-1 (weak nonlinearity).
It can be seen that the assumed true CMF for lane width first decreased from 8 ft until
about 11 ft and then increased. But the CMF derived from SPF was 0.88, meaning the
expected number of crashes consistently reduced by 12 percent whenever the lane was
widened by 1 foot. According to the assumed true CMF, the 11-ft lane had the lowest
crash risk. That is to say increasing lane width might bring negative influence on safety
when the lane width was more than 11 ft. However, the CMF derived from regression
analysis showed a contrary result, further safety benefits would be continually gained
when widening lane to 12 or 13 ft. In addition, when the lane width was less than about
9 ft or more than 12 ft, the CMF was underestimated (the safety effect of widening lane
was overestimated). The result was contrary when the lane width was between about 9
and 12 ft. The differences between the two were more obvious around boundary areas.
The true CMF for an 8-ft lane was 2.44, whereas that derived from SPF was 1.78. The
bias was 0.66 and error was 27.1 percent. Similar results can be observed when the lane
was 13 ft. The specific CMFs, bias and error for other points (i.e., lanes with different

widths) are shown in the rows of “IV-1” in Table 14.
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Figure 3 CM-Functions for Lane Width in Scenario IV (¢ =0.5)
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Table 14 Bias and Error of CMFs for Lane Width in Scenario IV

#* Th. SPFP Bias EC Th. SPFP Bias EC Th.t SPF? Bias EC
LW (ft) 8 9 10
¢9=05

V-1 2.44 1.78 0.66 27.1 1.45 1.54 -0.09 6.5 1.05 1.33 -0.29 27.4

V-2 2.44 1.21 1.23 50.4 1.07 1.15 -0.08 7.7 0.70 1.10 -0.40 56.8

V-3 0.17 0.31 -0.14 86.1 0.36 0.41 -0.05 13.7 0.64 0.56 0.08 13.0

$9=10

V-1 2.44 1.78 0.66 27.0 1.45 1.54 -0.09 6.6 1.05 1.33 -0.29 27.4

V-2 244 1.19 1.25 51.2 1.07 1.14 -0.07 6.3 0.70 1.09 -0.39 55.4

V-3 0.17 0.30 -0.13 80.0 0.36 0.40 -0.04 11.0 0.64 0.55 0.09 14.4

¢ 9=20

V-1 2.44 1.73 0.71 28.9 1.45 151 -0.06 4.5 1.05 1.32 -0.27 25.7

V-2 2.44 1.18 1.26 51.6 1.07 1.13 -0.06 5.7 0.70 1.09 -0.38 54.8

V-3 0.17 0.28 -0.12 71.4 0.36 0.39 -0.03 7.0 0.64 0.53 0.10 16.5
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Table 14 Continued

#* Th.? SPF? Bias E° Th.? SPFP Bias E°
LW (ft) 11 13
¢ 9=05
V-1 0.93 1.16 -0.23 24.7 1.32 0.87 0.45 34.4
V-2 0.69 1.05 -0.36 52.9 2.17 0.95 1.22 56.2
V-3 0.89 0.75 0.15 16.6 0.93 1.34 -0.41 44.7
$9=1.0
V-1 0.93 1.16 -0.23 24.8 1.32 0.87 0.45 34.4
V-2 0.69 1.04 -0.36 52.3 2.17 0.96 1.22 56.0
V-3 0.89 0.74 0.15 17.3 0.93 1.35 -0.43 45.9
¢ 9=20
V-1 0.93 1.15 -0.22 23.9 1.32 0.87 0.45 33.9
V-2 0.69 1.04 -0.36 51.9 2.17 0.96 1.22 55.9
V-3 0.89 0.73 0.16 18.3 0.93 1.37 -0.44 47.7

Note: a — theoretical CMF (assumed true specific CMFs for lane widths of 8, 9, 10, 11 and 12 ft); b — CMF derived from SPF
(specific CMFs derived from regression models for corresponding lane widths); ¢ — error percentage, %; d — the theoretical
inverse dispersion parameter (¢ ) in each sub-scenario; * - sub-scenario number.
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Figure 3(b) presents the CM-Functions in Sub-Scenario V-2 (strong
nonlinearity). The overall result was similar to that of Sub-Scenario IV-1. CMFs derived
from SPFs overestimated the safety effectiveness of lane width when it was less than 9 ft
or more than 12 ft, and vice versa when it was between 9 and 12 ft. But the bias and
error around the boundary areas in this sub-scenario were much higher than those in
Sub-Scenario 1V-1. For example, in this sub-scenario the bias at 8-ft lane was 1.23 and
error was 50.4 percent, which were almost two times of those in Sub-Scenario 1V-1. Bias
and error for other points are also shown in Table 14 (rows of “IV-2"). More
interestingly, the CMF derived from SPFs in this sub-scenario was 0.98, very close to
1.0, indicating lane width had minor influence on crash risk. Increasing lane width by
one foot would only decrease crashes by about two percent. Safety analysts may
misleadingly conclude that widening lane has little effect on reducing collisions based
on this finding. However, the assumed true safety effect of lane width was far from this
statement. In fact, both widening the lane from 11 ft and narrowing from10 ft would
increase crash risk significantly.

The results of Sub-Scenario 1VV-3 (piecewise nonlinear functions) are shown in
Figure 3(c). The CMF for lane width derived from SPFs was 1.33, widening the lane by
one foot would increase crashes by 33 percent (1.33 — 1.0). When the lane width was
between 9 and 12 ft, the two curves were close to each other. The error at 9-, 10- and
11-ft lanes were 13.7, 13.0 and 16.6 percentage, respectively. However, the bias was
significantly high when the lane became relatively wide or narrow. The error reached

nearly 90 percent at the point of 8-ft lane. On the side of wider lanes, the true CMF
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decreased as lane width increased, but the CMF derived from SPFs increased
continuously. Another interesting finding is that smaller MAD and/or MSPE did not
always indicate smaller error percentage. When compared with the results in the other
two sub-scenarios (i.e., Sub-Scenarios 1VV-1 and 1V-2), the MAD and MSPE were
consistently smaller in this sub-scenario. But the error percentages were significantly
higher than those in the other two when the lane widths were 8 and 9 ft. This was
probably due to the relatively smaller values of assumed CMFs in this sub-scenario. The
assumed specific CMF for 8-ft lane was 0.17 in this sub-scenario, and a small bias lad to
a relatively large error percentage under such condition (recall the definition for error
percentage).

Similar results were found for other inverse dispersion parameters (i.e., 1.0 and
2.0). So, it can be concluded that none of the CMFs derived from SPFs could reflect the
true safety effects accurately. They were all biased, especially around boundary areas.
Regression analysis with commonly used linear link functions could produce biased
CMFs when the variable had nonlinear relationships on crash risk. With the increase of
nonlinearity, the bias became significant. In addition, the misuse of linear link function
also led to biased estimates for other parameters, which might play important roles in
safety analyses. For example, the inverse dispersion parameter is important in
calculating the weights in EB analyses (Hauer et al. 2002; Wu et al. 2014; Zou et al.

2015). As a result, biased dispersion parameters lead to biased EB estimates of crashes.
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4.3.2 Scenario V: Consider Three Variables, Only One in Nonlinear Form

In this scenario, three variables (i.e., lane width, curve density and pavement
friction) were considered. Lane width was assumed to have a nonlinear relationship with
crash risk. The other two were assumed to have linear relationships (i.e., fixed values).
The assumed CMFs for curve density and pavement friction were 1.072 and 0.973,
respectively. Actually the settings in this sub-scenario were basically the same as those
of Scenario 11, expect the lane width was assumed to have nonlinear relationships with
crash risk. The same three nonlinear CM-Functions for lane width were used. Three

sub-scenarios, V-1, V-2 and V-3, were analyzed, shown in Table 15.

Table 15 Assumed CM-Functions in Scenario V

In(CMF) (Nonlinear Level) CMF
#" Curve Pavement
Lane Width ] o
Density Friction
V-1 0.1x LW? —2.22x LW +12.28 (W) 1.072%° 0.973%F#
V-2 0.2xLW?-4.22x LW +21.88 (S) 1.072%° 0.973%F#®
—0.11x (LW -12)*+0.30 LW <12
V-3 1.072° 0.973¢F
—0.08x (LW —12)2 +0.30 LW >12 (W)

Note: * # = sub-scenario number; LW = lane width (ft); CD = curve density (number of
curves per mile); PF = pavement friction.

The nonlinear level of the assumed CM-Functions for lane width of each
sub-scenario was the same as the corresponding one in Scenario IV. It was relatively

strong in Sub-Scenario V-2, and weak in V-1 and V-3.
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The theoretical function of the generated crash counts and the considered
functional form in this scenario are shown in Equations 4-13 and 4-14, respectively.

Nspf,i xCMF,, ; xCMF, ; xCMF, ;

true,i

= 2.67x10* x L, x AADT, x CMF,, ; x CMF, ; x CMF,y | (4-13)

E(A,) =B, xL, x AADT” xexp(B, x LW, + 3, xCD, + 3, x PF.) (4-14)

The CMFs for the three variables and other modeling results of each sub-scenario
are documented in Table 16. The overall result was quite similar with that in Scenario
IV. The MAD and MSPE were higher than those of linear relationships (i.e., Scenario Il
in the Section 4.1). Sub-Scenario V-2 consistently had the highest MAD and MSPE.
Meanwhile, the inverse dispersion parameters estimated from SPFs were biased again.
The second, third and fourth rows of Table 16 show the CMFs for lane width, curve
density and pavement friction, respectively. The CMFs for lane width derived in this
scenario were slightly different with those of Scenario 1V, in which lane width was the
only considered variable. The CMFs for curve density and pavement friction were very
close to their true values. However, the MAD and MSPE of this scenario were higher
than those of Scenario 1V under the same assumed CM-Function for lane width.

Figure 4 illustrates the curves of assumed CM-Function for lane width and those
derived from regression models in this scenario with a 0.5 inverse dispersion parameter.
The specific CMFs for several lane widths of interest are provided in Table 17. The
results were very close to those of the corresponding sub-scenario in Scenario IV. The
CMFs were all biased, especially in boundary areas. The bias of Sub-Scenario V-2 was

always higher than those of V-1 and V-3 (except over a very small range around 9).
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Table 16 Results of Scenario V

CMF (SD) @
#* g P AlCd MAD ¢ MSPE f
LW CD PF
¢ ©=0.5
V-1 0.88(0.014)  1.071(0.007) 0.972 (0.003) 0.57 14677.2 0.62 1.60
V-2 0.98(0.015)  1.069 (0.006) 0.971 (0.003) 0.79 14988.9 1.27 6.63
V-3 1.33(0.021)  1.073(0.006) 0.973 (0.003) 0.57 10441.8 0.29 0.52
¢ °=1.0
V-1 0.88(0.015)  1.072(0.007) 0.972 (0.003) 1.08 14842.6 0.62 1.65
V-2 0.98(0.021)  1.069 (0.008) 0.971 (0.004) 1.31 14908.6 1.26 6.72
V-3 1.35(0.024)  1.073(0.008) 0.974 (0.004) 1.07 10520.1 0.30 0.60
¢ ©=2.0
V-1 0.88(0.022)  1.071(0.008) 0.972 (0.004) 2.08 14439.9 0.63 1.76
V-2 0.98(0.026)  1.069 (0.010) 0.97 (0.005) 2.36 14370.7 1.26 6.80
V-3 1.35(0.034)  1.072(0.010) 0.974 (0.005) 2.08 10277.6 0.31 0.66

Note: the same notes as those in Table 13.

73



CMF

CMF

o
) —=—  Assumed CM-F for LW: In(CMF)=0.1*LW"2+-2 22*L W+12.28
£-- CM-F from SPF for LW: In(CMF)=-0.13*(LW-12) or CMF=0.878
Lo
™~
Assumed CM-F for CD: In(CMF)=0.07*CD or CMF=1.072
g Assumed CM-F for PF: In(CMF)=-0.03*(PF-32) or CMF=0.973
i
g 7 =
'-..\ _'-"\_“‘ B
o | g _ T i -
A T — £\
LD —
o
Sub-scenario: V-1 (phi.True=0.5)
o | phi.SPF=0.57 MAE=0.62 MSPE=1.6
o
| | | | |
8 9 10 11 12 13
Lane Wdith, ft
(@) Sub-Scenario V-1
o
) —=—  Assumed CM-F for LW: In(CMF)=0.2*LW"2+-4 22*| W+21.88
£~ CM-F from SPF for LW: In(CMF)=-0.02*(LW-12) or CMF=0.98
Lo
o
\ Assumed CM-F for CD: In(CMF)=0.07*CD or CMF=1.072&
g Assumed CM-F for PF: In(CMF)=-0.03*(PF-32) or CMF=0.973
w0
o | & B B # . O — N
o | & o
o
Sub-scenario: V-2 (phi.True=0.5)
o | phi.SPF=0.79 MAE=1.26 MSPE=6.63
o
| | | | |
8 9 10 11 12 13
Lane Wdith, ft

(b) Sub-Scenario V-2
Figure 4 CM-Functions for Lane Width in Scenario V (4=0.5)
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Table 17 Bias and Error of CMFs for Lane Width in Scenario VV

#* Th2  SPPFP Bias E° Th2  SPF®  Bias E° Th2  SPF®  Bias E°
LW (ft) 8 9 10
¢ 9=05
V-1 244 168 076 312 145 148 -003 20 1.05 130 -025 237
V-2 244  1.08 136 556  1.07 1.06 001 0.9 070 104 -034 483
V-3 017 032 -015 903 036 042 -006 157 @064 056 0.08 12.0
$9=10
V-1 244 167 078 318 145 147 002 1.3 1.05 129 -024 232
V-2 244  1.08 1.36 556 1.07 1.06 0.1 0.9 070 104 -034 483
V-3 017 030 -014 84 036 041 -004 120 064 055 0.09 138
$9=20
V-1 244 164 080 327 145 145 0.0 0.3 1.05 128 023 224
V-2 244  1.08 136 559 107 1.06 001 1.3 070 104 -034 479
V-3 017 030 -014 816 036 041 -004 117 064 055 009 140
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Table 17 Continued

#* Tha SPFP Bias EC Th.a SPFP Bias EC
LW (ft) 11 13
¢ 9=05
V-1 0.93 1.14 -0.21 22.9 1.32 0.88 0.44 33.4
V-2 0.69 1.02 -0.33 48.7 2.17 0.98 1.19 54.9
V-3 0.89 0.75 0.14 16.1 0.93 1.33 -0.41 43.9
$9=1.0
V-1 0.93 1.14 -0.21 22.7 1.32 0.88 0.44 33.3
V-2 0.69 1.02 -0.33 48.8 2.17 0.98 1.19 54.9
V-3 0.89 0.74 0.15 17.0 0.93 1.35 -0.42 45.4
¢ 9=20
V-1 0.93 1.13 -0.21 22.3 1.32 0.88 0.44 33.0
V-2 0.69 1.02 -0.33 48.5 2.17 0.98 1.19 54.9
V-3 0.89 0.74 0.15 17.1 0.93 1.35 -0.42 45.6

Note: a, b, c, d, * — the same notes as those in Table 14; LW = lane width.
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The CMFs for curve density derived from SPFs in the three sub-scenarios (with a
0.5 inverse dispersion parameter) were 1.071, 1.069, and 1.073, respectively. They were
quite close to the assumed true value, 1.072. The curves for the four CM-Functions are
shown in Figure 5. The specific CMFs, bias as well as error percentages at some points
are listed in Table 18. The CMFs were generally acceptable. However, when comparing
the results between the three sub-scenarios, it can be observed that the bias and error
percentage in Sub-Scenario V-2 (strong nonlinearity) were always higher than those in V-
1 and V-3 (weak nonlinearity). So, as the nonlinearity between lane width and crash risk
increased, the bias of CMF for curve density became significant. That is to say, even the
link function for one variable was correct, the accuracy of CMF for this variable can still
be influenced if incorrect or improper link functions for other variables had been utilized

in the models.
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Table 18 Bias and Error of CMFs for Curve Density in Scenario V

#* Th.a SPFP Bias EC Th.a SPFP Bias EC
CD 4 8
¢ 9=05
V-1 1.32 1.32 0.00 0.3 1.74 1.73 0.01 0.6
V-2 1.32 1.31 0.01 1.0 1.74 1.71 0.03 2.0
V-3 1.32 1.33 -0.01 0.5 1.74 1.76 -0.02 1.1
¢9=10
V-1 1.32 1.32 0.00 0.1 1.74 1.74 0.00 0.2
V-2 1.32 1.31 0.01 0.9 1.74 1.71 0.03 1.9
V-3 1.32 1.32 0.00 0.3 1.74 1.75 -0.01 0.5
¢ 9=20
V-1 1.32 1.32 0.00 0.4 1.74 1.73 0.01 0.7
V-2 1.32 1.31 0.01 1.0 1.74 1.71 0.03 2.0
V-3 1.32 1.32 0.00 0.0 1.74 1.74 0.00 0.1
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Table 18 Continued

#* Tha SPFP Bias EC Th.? SPFP Bias EC
CD 12 16
¢ 9=05
V-1 2.30 2.28 0.02 0.9 3.04 3.01 0.04 1.2
V-2 2.30 2.24 0.07 2.9 3.04 2.92 0.12 3.9
V-3 2.30 2.34 -0.04 1.7 3.04 3.11 -0.07 2.2
$9=10
V-1 2.30 2.30 0.01 0.3 3.04 3.03 0.01 0.4
V-2 2.30 2.24 0.06 2.8 3.04 2.93 0.11 3.7
V-3 2.30 2.32 -0.02 0.8 3.04 3.07 -0.03 1.1
¢ 9=20
V-1 2.30 2.28 0.02 1.0 3.04 3.00 0.04 1.4
V-2 2.30 2.24 0.07 3.0 3.04 2.92 0.12 3.9
V-3 2.30 2.30 0.00 0.1 3.04 3.04 0.00 0.1

Note: a, b, ¢, d, * — the same notes as those in Table 14; CD = curve density (number of curves per mile).
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Table 19 Bias and Error of CMFs for Pavement Friction in Scenario V

#* Th.? SPFP Bias E° Th.? SPFP Bias E°
PF 16 24
¢ 9=05
V-1 1.55 1.57 -0.02 1.2 1.24 1.25 -0.01 0.6
V-2 1.55 1.60 -0.05 35 1.24 1.27 -0.02 1.7
V-3 1.55 1.54 0.01 0.5 1.24 1.24 0.00 0.2
$9=1.0
V-1 1.55 1.57 -0.02 1.1 1.24 1.25 -0.01 0.5
V-2 1.55 1.60 -0.05 35 1.24 1.27 -0.02 1.8
V-3 1.55 1.53 0.01 0.9 1.24 1.24 0.01 0.5
¢ 9=20
V-1 1.55 1.56 -0.02 1.0 1.24 1.25 -0.01 0.5
V-2 1.55 1.62 -0.07 4.4 1.24 1.27 -0.03 2.2
V-3 1.55 1.54 0.01 0.8 1.24 1.24 0.01 0.4
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Table 19 Continued

#* Th.? SPF? Bias E° Th.? SPFP Bias E°
PF 40 48
$9=05
V-1 0.80 0.80 0.00 0.6 0.65 0.64 0.01 1.2
V-2 0.80 0.79 0.01 1.7 0.65 0.62 0.02 3.4
V-3 0.80 0.81 0.00 0.3 0.65 0.65 0.00 0.5
¢9=10
V-1 0.80 0.80 0.00 0.5 0.65 0.64 0.01 1.0
V-2 0.80 0.79 0.01 1.7 0.65 0.62 0.02 3.4
V-3 0.80 0.81 0.00 0.5 0.65 0.65 -0.01 1.0
¢ 9=20
V-1 0.80 0.80 0.00 0.5 0.65 0.64 0.01 1.0
V-2 0.80 0.79 0.02 2.1 0.65 0.62 0.03 4.2
V-3 0.80 0.81 0.00 0.4 0.65 0.65 -0.01 0.9

Note: a, b, ¢ d, * — the same notes as those in Table 14; PF = pavement friction.
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The CMFs for pavement friction produced from the three sub-scenarios (with a
0.5 inverse dispersion parameter) were 0.972, 0.971 and 0.973, respectively. The CM-
Function curves are shown in Figure 6. Specific values of CMFs as well as bias and error
percentage at some points are listed in Table 19. The results were similar with those of
curve density. Overall, the bias and error percentage were relatively small. And the
highest error percentage appeared around boundary areas. The further the point was
away from the baseline, the higher the bias and error percentage were. The error
percentage was under 5 percent, indicating the results were acceptable in all the three
sub-scenarios. However, Sub-Scenario V-2 was consistently the highest in terms of bias
and error percentage. So, the CMFs for pavement friction derived from SPFs were likely
to become less accurate as the nonlinear level of lane width became strong.

Another interesting finding worth to mention is the relationship between the
quality of CMFs and the GOF of the model results (i.e., MAD and MSPE). The MAD
and MSPE were higher in this scenario than those in Scenario IV (see the last two
columns of Table 13 and Table 16). It seems that adding another two variables made the
modeling result less accurate, which might potentially reduce the quality of CMFs
derived from SPFs. So, one might assume the CMFs of this scenario should have higher
bias and error than those of Scenario IV. However, it was not always true. Comparison
between Table 14 and Table 17 indicates the CMFs for lane width in this scenario
generally only had slightly higher error percentage than those of Scenario IV except a
small range around 9 ft. One possible reason was that two additional variables were

included in this scenario, and they both had considerable influence on the response
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variable (i.e., true crash mean). They might have potentially influenced the quality of
CMFs for all the three variables. Another possible reason was the differences of
response variables (i.e., expected crash count) in the two scenarios. Simple comparison
showed the mean of the random crash numbers in this scenario was about two times of
that of Scenario IV. So it is not surprising the MAD and MSPE were higher in this
scenario given other conditions (e.g., sample size, model link functions, etc.) were
similar in the two.

Similar results were found when the inverse dispersion parameter was 1.0 and
2.0. So the main findings of this scenario can be summarized as follows: (1) the
CM-Function for lane width derived from the common regression models (i.e., GLMs)
were biased when it had a nonlinear relationship with crash risk and improper function
form was used in the regression models; (2) with the increase of nonlinearity (i.e.
nonlinear relationship became stronger), the bias trended to become more significant; (3)
the CMFs for other variables having linear relationship might be acceptable when mixed
with those having nonlinear relationship. But the quality decreased as the nonlinear
relationship became stronger; (4) the misuse of linear link function for one or more

variables also led to biased estimates of other parameters.

4.3.3 Scenario VI: Consider Three Variables, Two in Nonlinear Form

In this scenario, the three variables (i.e., lane width, curve density and pavement
friction) were considered again. But two of them, lane width and curve density, were
assumed to have nonlinear relationships with crash risk. Pavement friction was assumed

to have a linear relationship (i.e., fixed value).
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To simplify the analyses, the first two nonlinear CM-Functions for lane width in
Scenarios IV and V were used in this scenario, and the last one with piecewise function
was removed. The assumed CMF for pavement friction was 0.973, the same as that in
Scenario V.

Two quadratic CM-Functions for curve density were assumed, as shown in
Equations 4-15 and 4-16, respectively.

IN(CMF,) =8.7x10* xCD,? +5.56x10 % x CD, (4-15)

IN(CMF,) =3.5x10°xCD.? +1.39x102 xCD, (4-16)
Where,

CMF; = the specific CMF for curve density of segment i; and

CDi = curve density of the segment, (average numbers of curve per mile).

The CM-Functions for curve density and other characteristics regarding
nonlinear level (the closest line to the curve, area between the two, and average vertical
distance) are listed in Table 20. It can be seen that both area and average vertical
distance of the second function are much higher than those of the first one. So, the

nonlinear level of the second one is stronger than the first one.
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Table 20 Assumed CM-Functions for Curve Density in Scenario VI

In(CMF) 2 Line P Area® AVDY Level®

8.7x10°CD? +5.56x10°CD  6.95x102CD-0.037 0.229 0.014 Weak

3.5x10°CD? +1.39x107°CD 6.99x10°CD-0.149 0920 0.057 Strong

Note: a - LW = lane width (ft); b - Line = the closes line to the curve; c - Area = the area
between the curve and its closest line; d - AVD = average vertical distance between the
curve and the line; e - Level = the relative nonlinear level.

In total, there were four sub-scenarios in this scenario, shown in Table 21. It can
be seen that the nonlinear level of Sub-Scenario VI-1 was weak in both lane width and
curve density. That of Sub-Scenario VI-4 was strong in both. Sub-Scenarios VI-2 and
VI-3 were a combination of a weak and a strong.

The theoretical function of the generated crash counts and considered functional

form used in this scenario were identical with those in Scenario V (i.e., Equations 4-13

and 4-14). They are reproduced below as Equations 4-17 and 4-18, respectively.
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Table 21 Assumed CM-Functions in Scenario VI

In(CMF) (Nonlinear Level) CMF
# *
Lane Width Curve Density Pavement Friction
VI-1 0.1LW? —2.22LW +12.28 (W) 8.7x10*CD? +5.56x10>CD (W) 0.973(PF-%)
VI-2 0.2LW? —4.22LW +21.88 (S) 8.7x107*CD? +5.56x10°CD (W) 0.973°F32
VI-3 0.1LW? —2.22LW +12.28 (W) 3.5x10°CD? +1.39x107°CD(S) 0.973(PF-32)
VI-4 0.2LW?* -4.22LW +21.88 (S) 3.5x107°CD? +1.39x10°CD (S) 0.973FF-32)

Note: the same notes as those in Table 15.
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Niei = Ngpr i XCMF, ; xCMF, ; xCMF ;
=267x10"x |_I X AADTi ><C|\/||:|_W]i ><C|\/||:CD'i ><C|\/|FPF’i (4-17)
E(A) = £, x L, x AADT A xexp(f, x LW, + 3, <CD, + 3, x PF,) (4-18)

The CMFs for the three variables as well as other results produced from the
modeling are presented in Table 22. Similarly to Scenario V, the MAD and MSPE were
higher than those of linear relationships (i.e., Scenario Il in Section 4.1). But surprisingly
they were always the highest in Sub-Scenario VI-2 (combination of strong and weak)
rather than in V1-4 (strong in both). The inverse dispersion parameters estimated from
SPFs were biased again in this scenario. The second, third and fourth rows of Table 22
show the CMFs for lane width, curve density and pavement friction, respectively. The
CMF for lane width derived in this scenario was nearly the same as that of Scenario V
with corresponding assumed CM-Function. The CMFs for curve density were slightly
different with those in Scenario V. And the CMFs for pavement friction were very close

to the true value.
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Table 22 Results of Scenario VI

#* CMF(SD)* ¢ b AlC ¢ MAD® = MSPEf
LW CD PF
é °=0.5
VI-1 0.88(0.014) = 1.073(0.006) = 0.973 (0.002) 0.57 14455.8 0.60 2.05
VI-2 0.97 (0.017) = 1.072(0.005) = 0.972 (0.002) 0.79 14670.4 1.21 6.80
VI-3 0.88(0.015) = 1.075(0.005)  0.973(0.003) 0.57 13835.8 0.55 1.61
VI-4 0.97 (0.016) = 1.074(0.006)  0.972 (0.003) 0.79 13980.7 1.08 5.47
¢ °=1.0
VI-1 0.88 (0.015) = 1.072(0.008) = 0.972(0.003) 1.07 14648.4 0.61 2.15
VI-2 0.97 (0.020) = 1.074(0.008)  0.972(0.003) 1.31 14621.6 1.21 6.89
VI-3 0.88 (0.018) = 1.073(0.008)  0.973(0.003) 1.08 13965.8 0.55 1.71
VI-4 0.97 (0.021) = 1.074(0.008)  0.972(0.004) 1.32 13978.6 1.08 5.55
$ °=2.0
VI-1 0.88 (0.021) = 1.073(0.010) = 0.972(0.005) 2.09 142435 0.62 2.26
VI-2 0.98(0.027) = 1.073(0.010)  0.971(0.005) 2.36 14118.3 1.22 7.16
VI-3 0.88(0.022) = 1.073(0.010) = 0.973 (0.004) 2.09 13592.0 0.56 1.81
VI-4 0.98(0.027) = 1.074(0.011)  0.971(0.004) 2.36 13420.4 1.08 5.70

Note: the same notes as those in Table 13.

90



CMF

CMF

0.5 1.0 1.5 2.0 25 3.0

0.0

0.5 1.0 1.5 2.0 25 3.0

0.0

—— Assumed CM-F for LW: In(CMF) = 0.1 * LW"2+-2.22 * LW+12.28
£-- CM-F from SPF for LW: In(CMF) =-0.13 * (LW-12) or CMF = 0.88

@ Assumed CM-F for CD: In(CMF) = 9e-04 * CD*2+0.0556 * CD+0
: Assumed CM-F for PF: In(CMF) =-0.027 * (PF-32) or CMF =0.973

A

. - - h,-"\_‘.r - P

- - .-‘-“'"."_3\-.-_ B -
T =
Sub-scenario: VI-1 (phi.True = 0.5)
phi.SPF =057 MAE=06 MSPE =204

I I [ I I
8 9 10 11 12 13

Lane Wdith, ft

(a) Sub-Scenario VI-1
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(b) Sub-Scenario VI-2

Figure 7 CM-Functions for Lane Width in Scenario VI (¢ =0.5)
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Figure 7 Continued
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Table 23 Bias and Error of CMFs for Lane Width in Scenario VI

#* Th.? SPFP Bias EC Th2 SPF®  Bias EC Th2  SPF®  Bias EC
LW (ft) 8 9 10
¢ 9=05

ViI-1 2.44 1.66 0.78 31.91 1.45 146 -0.02 1.18 1.05 1.29 -024 2310

VI-2 2.44 1.07 1.37 56.26 1.07 1.05 0.02 1.99 0.70 1.03 -0.33 47.19

VI-3 2.44 1.67 0.77 31.71 1.45 147 -0.02 141 1.05 1.29 -0.24 23.28

Vi-4 2.44 1.06 1.38 56.42 1.07 1.05 0.02 2.27 0.70 1.03 -0.33  46.92

¢ 9=1.0

VI-1 2.44 1.65 0.79 32.55 1.45 145 -0.01 047 1.05 128 -0.24 2252

VI-2 2.44 1.06 1.38 56.45 1.07 1.05 0.02 2.31 0.70 1.03 -0.33  46.87

VI-3 2.44 1.64 0.80 32.81 1.45 1.45 0.00 0.18 1.05 128 -0.23 22.28

VI-4 2.44 1.07 1.37 56.12 1.07 1.05 0.02 1.76 0.70 1.04 -033 4743

¢ 9=2.0

ViI-1 2.44 1.66 0.78 31.87 1.45 146 -0.02 123 1.05 1.29 -0.24 23.14

VI-2 2.44 1.08 1.36 55.76 1.07 1.06 0.01 1.15 0.70 1.04 -0.34  48.03

VI-3 2.44 1.63 0.81 33.32 1.45 1.44 0.01 0.39 1.05 1.28 -0.23 21.82

VI-4 2.44 1.07 1.37 56.32 1.07 1.05 0.02 2.09 0.70 1.03 -0.33  47.09
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Table 23 Continued

#* Tha SPFP Bias EC Th.a SPFP Bias EC
LW (ft) 11 13
¢ 9=05
VI-1 0.93 1.14 -0.21 22.62 1.32 0.88 0.44 33.23
VI-2 0.69 1.02 -0.33 48.18 2.17 0.98 1.19 54.76
VI-3 0.93 1.14 -0.21 22.71 1.32 0.88 0.44 33.28
VI-4 0.69 1.02 -0.33 48.05 2.17 0.98 1.19 54.72
¢ 9=1.0
VI-1 0.93 1.13 -0.21 22.33 1.32 0.88 0.44 33.07
VI-2 0.69 1.02 -0.33 48.02 2.17 0.98 1.19 54.72
VI-3 0.93 1.13 -0.21 22.21 1.32 0.88 0.44 33.01
VI-4 0.69 1.02 -0.33 48.30 2.17 0.98 1.19 54.80
¢ =20
VI-1 0.93 1.14 -0.21 22.64 1.32 0.88 0.44 33.24
VI-2 0.69 1.02 -0.33 48.61 2.17 0.98 1.19 54.89
VI-3 0.93 1.13 -0.20 21.98 1.32 0.89 0.43 32.88
VI-4 0.69 1.02 -0.33 48.13 2.17 0.98 1.19 54.75

Note: a, b, ¢, d, * — the same notes as those in Table 14.
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Figure 7 illustrates the curves of assumed CM-Functions for lane width and those
derived from regression models in this scenario with a 0.5 inverse dispersion parameter.
The specific CMFs for several lane widths of interest are provided in Table 23. The
results of lane width were nearly identical with those of the corresponding one in
Scenario V. The CMFs were all biased, especially around boundary areas. The
calculation indicated the bias in Sub-Scenarios VI-1 and VI-3 (weak in lane width) were
significantly lower than those in VI-2 and VI-4 (strong in lane width). It seems the
changes in nonlinearity of curve density had no significant influence on the CMF for
lane width.

The CMFs for curve density derived from SPFs in the four sub-scenarios with a
0.5 inverse dispersion parameter were 1.073, 1.072, 1.075 and 1.074, respectively. The
curves for the four CM-Functions as well as the assumed one were shown in Figure 8,
and the specific CMFs, bias as well as error percentages at some points are listed in
Table 24. The CMFs derived from SPFs were overestimated (the safety benefits were
underestimated) in all of the four sub-scenarios. When comparing the results between the
two assumed CM-Functions for curve density, the bias and error percentage of
Sub-Scenarios VI-3 and VI-4 (strong in curve density) were always much higher than
those of VI-1 and VI-2 (weak in curve density), expect at a small range around 16. In
short, the CMFs for curve density derived from SPFs were all biased when the
relationship was nonlinear. The bias increased when the nonlinear level became stronger.

Another interesting finding was that the highest bias of CMF for curve density

did not appear around the boundary areas, but near the middle. As can be seen in Figure
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8, as curve density increased from the base point (i.e., zero), the bias first increased then
decreased. The highest was around 11. This was probably due to the fact that the
baseline for curve density was at the very left side. If the baseline was at some point in
the middle (e.g., 8 or 10), the result might be similar to that of lane width. The bias
should appear to be small around baseline and became large in boundary areas,
intuitively. Nevertheless, the CMFs were still biased.

The CMFs for pavement friction produced from the four sub-scenarios with a 0.5
inverse dispersion parameter were 0.973, 0.972, 0.973 and 0.972, respectively. The
curves for the assumed CM-Functions and those derived from SPFs in this scenario
(with a 0.5 inverse dispersion parameter) are shown in Figure 9. Specific values of
CMFs as well as bias and error percentage at some points are listed in Table 25. The
overall results were nearly the same as those of Scenario V. Both bias and error
percentage were small. The error percentages were all under 2 percent. So the CMFs for

curve density were acceptable in all sub-scenarios.
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Figure 8 CM-Functions for Curve Density in Scenario VI (¢ =0.5)
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Table 24 Bias and Error of CMFs for Curve Density in Scenario VI

#* Th.a SPFP Bias EC Th.a SPFP Bias EC
CD 4 8
¢ 9=0.5
VI-1 1.27 1.31 -0.04 35 1.65 1.72 -0.07 4.2
VI-2 1.27 1.30 -0.03 2.4 1.65 1.68 -0.03 1.9
VI-3 1.12 1.32 -0.20 18.0 1.40 1.74 -0.34 24.7
VI-4 1.12 1.31 -0.19 16.8 1.40 1.70 -0.31 22.0
¢ 9=1.0
VI-1 1.27 1.31 -0.04 35 1.65 1.72 -0.07 4.1
VI-2 1.27 1.30 -0.03 2.4 1.65 1.68 -0.03 2.0
VI-3 1.12 1.32 -0.20 17.8 1.40 1.73 -0.34 24.1
VI-4 1.12 1.30 -0.19 16.6 1.40 1.70 -0.30 21.6
¢ 9=2.0
VI-1 1.27 1.31 -0.04 3.4 1.65 1.71 -0.06 3.9
VI-2 1.27 1.29 -0.02 1.6 1.65 1.65 -0.01 0.3
VI-3 1.12 1.32 -0.20 17.7 1.40 1.73 -0.33 23.9
VI-4 1.12 1.31 -0.19 16.8 1.40 1.70 -0.31 22.1
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Table 24 Continued

#* Th.? SPF? Bias E° Th.? SPFP Bias E°
CD 12 16
¢ 9=0.5
VI-1 2.21 2.25 -0.04 2.0 3.04 2.95 0.09 2.9
VI-2 2.21 2.18 0.03 1.3 3.04 2.83 0.22 7.1
VI-3 1.95 2.30 -0.35 17.8 3.04 3.03 0.01 0.4
VI-4 1.95 2.22 -0.27 14.1 3.04 2.90 0.14 4.6
¢ 9=1.0
VI-1 2.21 2.25 -0.04 1.9 3.04 2.95 0.09 3.0
VI-2 2.21 2.18 0.02 1.1 3.04 2.83 0.21 6.8
VI-3 1.95 2.28 -0.33 17.0 3.04 3.00 0.04 1.3
VI-4 1.95 2.21 -0.26 13.6 3.04 2.88 0.16 5.2
¢ 9=2.0
VI-1 2.21 2.24 -0.03 1.6 3.04 2.94 0.10 3.4
VI-2 2.21 2.13 0.08 3.6 3.04 2.74 0.30 10.0
VI-3 1.95 2.28 -0.33 16.7 3.04 2.99 0.05 1.6
VI-4 1.95 2.23 -0.28 14.2 3.04 2.91 0.14 45

Note: a, b, ¢, d, * — the same notes as those in Table 14; CD = curve density (number of curves per mi).
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Figure 9 CM-Functions for Pavement Friction in Scenario VI (¢ =0.5)
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Table 25 Bias and Error of CMFs for Pavement Friction in Scenario VI

#* Th.2 SPFP Bias EC Th.2 SPFP Bias EC
PF 16 24
¢ 9=05
VI-1 1.55 1.56 -0.01 0.47 1.24 1.25 0.00 0.24
VI-2 1.55 1.55 0.00 0.06 1.24 1.24 0.00 0.03
VI-3 1.55 1.56 -0.01 0.52 1.24 1.25 0.00 0.26
VI-4 1.55 1.56 -0.01 0.49 1.24 1.25 0.00 0.25
$9=1.0
VI-1 1.55 1.56 -0.01 0.63 1.24 1.25 0.00 0.31
VI-2 1.55 1.56 -0.01 0.38 1.24 1.25 0.00 0.19
VI-3 1.55 1.54 0.01 0.78 1.24 1.24 0.00 0.39
VI-4 1.55 1.56 -0.01 0.43 1.24 1.25 0.00 0.21
$9=20
VI-1 1.55 1.56 -0.01 0.38 1.24 1.25 0.00 0.19
VI-2 1.55 1.53 0.02 1.12 1.24 1.24 0.01 0.56
VI-3 1.55 1.54 0.01 0.59 1.24 1.24 0.00 0.30
VI-4 1.55 1.57 -0.02 1.49 1.24 1.25 -0.01 0.74
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Table 25 Continued

#* Th.a SPFP Bias EC Th.a SPFP Bias EC
PF 40 48
¢ 9=05
VI-1 0.80 0.80 0.00 0.24 0.65 0.64 0.00 0.47
VI-2 0.80 0.80 0.00 0.03 0.65 0.65 0.00 0.06
VI-3 0.80 0.80 0.00 0.26 0.65 0.64 0.00 0.52
VI-4 0.80 0.80 0.00 0.25 0.65 0.64 0.00 0.49
¢ 9=1.0
VI-1 0.80 0.80 0.00 0.31 0.65 0.64 0.00 0.62
VI-2 0.80 0.80 0.00 0.19 0.65 0.64 0.00 0.38
VI-3 0.80 0.81 0.00 0.39 0.65 0.65 -0.01 0.79
VI-4 0.80 0.80 0.00 0.21 0.65 0.64 0.00 0.43
¢ 9=2.0
VI-1 0.80 0.80 0.00 0.19 0.65 0.64 0.00 0.37
VI-2 0.80 0.81 0.00 0.57 0.65 0.65 -0.01 1.14
VI-3 0.80 0.81 0.00 0.30 0.65 0.65 0.00 0.60
VI-4 0.80 0.80 0.01 0.74 0.65 0.64 0.01 1.46

Note: a, b, c, d, * — the same notes as those in Table 14; PF = pavement friction.
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Recall that in Scenario V, CMFs for both curve density and pavement friction
become less accurate as the nonlinear relationship between lane width and crash risk
becomes strong, but this seems not to be always true to the CMF for pavement friction in
this scenario. When the inverse dispersion parameter equaled to 0.5 and 1.0, CMFs for
pavement friction in Sub-Scenario VI-3 (with weaker nonlinear relationship in lane
width and stronger in curve density) had the highest bias and error percentage, and those
in Sub-Scenario VI-2 (with stronger in lane width and weaker in curve density) had the
lowest. But when the inverse dispersion parameter was 2.0, the former had the lowest
while the latter had the highest. No possible reasons can be made at this moment.

The main findings of this scenario are close to those in Scenario V and can be
summarized as follows: (1) the CM-Function for both lane width and curve density
derived from SPFs were biased when using the common linear forms to model their
nonlinear relationships; (2) with the increase of nonlinearity (i.e., nonlinear becomes
stronger), the bias trended to become more significant; (3) the CMFs for other variables
having linear relationship might be acceptable when mixed with those having nonlinear
relationship; and (4) the misuse of linear link function for one or more variables led to
biased estimate of other parameters.

The results in this section seem to contradict the results in Section 4.1 (i.e., linear
relationships). In the previous section, the functional form used in regression models was
of the same family with the one used to generate crash counts. The CMFs derived from
SPFs were unbiased. In this section, they were not of the same family, and the CMFs

were biased. It can be conclude from the two sections that functional forms play vital
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roles in developing CMFs and/or CM-Functions in regression models, which is
consistent with Hauer (2015). Unfortunately, the true safety effects of variables can be
hardly known in practice, and this makes it difficult or impossible to identify the correct
functional form in regression models. Safety analysts commonly adopt the linear form
probably for its simplicity. This might be inadequate when some variables are having

nonlinear effects on safety, as this section has illustrated.
4.4 Variable Correlation

Scenarios VII and V111 are discussed in this section.

4.4.1 Scenario VII: Variable Correlation, Linear Relationship

This scenario was essentially the same as Scenario I, except the two variables,
AADT and lane width, were correlated in this scenario. The assumed CMF for lane
width varied from 0.85 to 1.05 with an increment of 0.05. The theoretical function of the

generated crash counts in this scenario is shown in Equation 4-1 (now as 4-19 below).

Niwes = Noy  XCMP,, | = 2.67x107 x L, x AADT, xexp[ B, x (LW, —12)] (4-19a)

true,i spf ,i
Or equivalently,

Niei = Bor X L x AADT, xexp(B,, X LW,)) (4-19b)

true,i

The considered functional form is shown in Equation 4-2 (now as 4-20 below).

E(A,) =/, xL x AADT4 xexp(3, x LW,) (4-20)
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The results are shown in Table 26. They were nearly the same as those of
Scenario I. The estimation bias was relatively small under different simulation settings.

The estimation bias was less than 0.02, and the error was within 2 percent.
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Table 26 Results of Scenario VII

Theo.
CME @ CMF (SD) b Bias E° AlCd MAD ¢ MSPE f
¢ =05
0.85 0.850 (0.033) 0.000 0.045 10181.9 0.038 0.010
0.90 0.903 (0.041) 0.003 0.322 10086.4 0.038 0.009
0.95 0.958 (0.039) 0.008 0.795 9994.2 0.036 0.008
1.00 1.002 (0.042) 0.002 0.205 9880.1 0.036 0.008
1.05 1.060 (0.042) 0.010 0.907 9785.6 0.035 0.007
¢ =10
0.85 0.851 (0.047) 0.001 0.158 10315.9 0.050 0.015
0.90 0.905 (0.046) 0.005 0.508 10217.2 0.049 0.014
0.95 0.960 (0.054) 0.010 1.049 10101.4 0.046 0.014
1.00 1.006 (0.056) 0.006 0.578 9967.6 0.048 0.014
1.05 1.051 (0.052) 0.001 0.087 9877.4 0.044 0.013
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Table 26 Continued

Theo.
CME @ CMF (SD) b Bias E° AlCd MAD ¢ MSPE f
¢ =20

0.85 0.849 (0.051) -0.001 0.111 10148.4 0.063 0.024
0.90 0.907 (0.068) 0.007 0.829 9998.2 0.061 0.022
0.95 0.943 (0.064) -0.007 0.694 9892.5 0.058 0.020
1.00 1.017 (0.070) 0.017 1.729 9789.4 0.060 0.023
1.05 1.056 (0.064) 0.006 0.575 9727.2 0.053 0.018

Note: a — theoretical CMF; b — mean of CMFs from 100 experiments, SD is the Standard Deviation of the 100 CMFs; ¢ — E is
the error percentage, %; d, e, f — each is the mean value of the corresponding GOF measure of the 100 results.

108



Based on the result of this scenario, it seems the correlation between variables

had trivial influence on CMFs derived from regression models.

4.4.2 Scenario VIII: Variable Correlation, Nonlinear Relationship
This scenario is the same as Scenario IV, except the dataset. The same three
nonlinear CM-Functions were used for lane width, as shown in Equations 4-8, 4-9, and

4-10 (here as 4-21, 4-22, and 4-23 below), respectively.

IN(CMF) =0.1x LW? —2.22x LW +12.28 (4-21)

IN(CMF) =0.2x LW? —4.22x LW +21.88 (4-22)
—0.11x (LW —12)2+0.30 LW <=12

In(CMF) = | O (LW =127 < (4-23)
—0.08x (LW —12)*+0.30 LW >=12

The nonlinear properties (closest line, area and AVD) for the three sub-scenarios
are the same as those in Scenario IV (summarized in Table 12).

The theoretical function is shown in Equation 4-11 (here as 4-24 below).

Niwei = Ngy i XCMF, ; = 2.67x107" x L, x AADT. xCMF,, ; (4-24)

true, pf i
The considered functional form is shown in Equation 4-12 (here as 4-25 below).
E(A,) =B, x L, x AADT " xexp(3, x LW,) (4-25)
Table 27 presents the CMFs derived from SPFs as well as other results (i.e., ¢

and GOF measurements) in this scenario. Figure 10 illustrates the curves of assumed

CM-Functions for lane width and those derived from regression models in this scenario

with a 0.5 inverse dispersion parameter. The specific CMFs for several lane widths of

interest are listed in Table 28. First, the CMFs derived from the regression models were
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all biased, especially around boundary areas. Second, Sub-Scenario VI11-2 (stronger
nonlinearity) consistently had the highest MAD and MSPE. These two findings were
consistent with that of Scenario IV. However, there were two significant differences
between the two scenarios.

(1) The CMFs for lane width changed. The CMFs for lane width were 1.07, 1.49,
and 1.12 in the three sub-scenarios, respectively, when the dispersion parameter was 0.5.
They were obviously different with the corresponding ones in Scenario 1V, which were
0.88, 0.98, and 1.33, respectively. Both the slope and intercept of the curve for CM-
Function derived from SPFs changed when the variables became correlated, as shown in
Figure 10. In this scenario, the two curves crossed at 11 and 12. Specifically, the bias
and error percentage at 11-ft lane were really small, but they were relatively high at
other points (i.e., 8-, 9-, and 10-ft lanes).

(2) The estimated dispersion parameter was close to the true value in this
scenario, as shown in the third column of Table 27. Recall the findings in Scenario IV as
well as Scenarios V and VII, the estimated dispersion parameter was biased when
improper functional form was used. However, it was not in this scenario. That means the
variables correlation also had significant influence on the estimates of other parameters

in the regression models.
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Table 27 Results of Scenario VI1II

Sub-Scenario CMF (SD) @ ¢ ° AlC¢d MAD ¢ MSPE

¢ ©=0.5

VIII-1 1.09 (0.05) 0.50 9845.45 0.05 0.03

VIII-2 1.53 (0.07) 0.51 9443.69 0.08 0.12

VIII-3 1.13 (0.05) 0.50 9624.95 0.05 0.02
¢ °=1.0

VIII-1 1.07 (0.06) 0.99 9941.70 0.06 0.03

VIlI-2 1.51 (0.09) 1.02 9520.91 0.09 0.14

VI3 1.12 (0.06) 1.00 9713.03 0.05 0.03
4 =20

VIII-1 1.07 (0.08) 1.98 9758.17 0.07 0.04

VIII-2 1.48 (0.12) 2.03 9368.08 0.09 0.16

VIII-3 1.12 (0.07) 1.99 9504.21 0.07 0.03

Note: a — mean of CMFs from 100 experiments, SD is the Standard Deviation of the 100 CMFs; b - the inverse dispersion
parameter derived from SPFs; ¢ — the theoretical inverse dispersion parameter in each sub-scenario; d, e, f — each is the mean
value of the corresponding GOF measure of the 100 results.
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Figure 10 CM-Functions for Lane Width in Scenario V111 (¢ =0.5)
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Table 28 Bias and Error of CMFs for Lane Width in Scenario VIII

S“b'. Th.2 SPFP Bias EC Th. SPF? Bias EC Th.t SPF? Bias EC
Scenario
LW (ft) 8 9 10

$9=05

VIII-1 2.44 0.72 1.72 70.5 1.45 0.78 0.67 46.0 1.05 0.85 0.20 19.0

Vill.2 | 244 018 226 926 107 028 079 741 070 043 028 395

vill-3 | 017 062 045 2710 036 069 -033 909 064 078 -015 229

¢ 9=10

VIII-L | 244 075 169 693 145 081l 064 443 105 087 018 173

Vill-2 244 019 225 921 107 029 078 728 070 044 026 373

VIII-3 0.17 0.63 -046 2785 0.36 0.71 -0.34 93.7 0.64 0.79 -0.15 24.2

¢ 9=20

VIIl-L | 244 077 167 686 =145 082 063 433 105 088 017 164

Vill.2 | 244 021 224 916 107 031 077 715 070 045 025 354

VIII-3 0.17 0.64 -0.48 288.0 0.36 0.72 -0.35 97.4 0.64 0.80 -0.16 25.7
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Table 28 Continued

Sub-Scenario Th.2 SPF® Bias E° Th.2 SPF® Bias EC
LW (ft) 11 13
4 9=05
VIII-1 0.93 0.92 0.00 0.5 1.32 1.09 0.23 17.7
VIII-2 0.69 0.65 0.03 5.0 2.17 1.53 0.64 29.5
VIlI-3 0.89 0.89 0.01 0.9 0.93 1.13 -0.20 21.8
4 9=1.0
VII-1 0.93 0.93 0.00 0.5 1.32 1.07 0.24 18,5
VIII-2 0.69 0.66 0.02 3.3 2.17 1.51 0.67 30.7
VIII-3 0.89 0.89 0.00 0.4 0.93 1.12 -0.20 21.2
4 9=20
VIII-1 0.93 0.94 -0.01 1.1 1.32 1.07 0.25 19.0
VIII-2 0.69 0.67 0.01 1.8 2.17 1.48 0.69 31.7
VIII-3 0.89 0.90 0.00 0.2 0.93 1.12 -0.19 20.4

Note: a — theoretical CMF (assumed true specific CMFs for lane widths of 8, 9, 10, 11 and 12 ft); b — CMF derived from SPF
(specific CMFs derived from regression models for corresponding lane widths); ¢ — error percentage, %; d — the theoretical
inverse dispersion parameter (¢ ) in each sub-scenario.
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Another interesting finding is that the results differed between Scenarios VI and
VIII. Variable correlation affected the CMFs derived from regression models when
improper functions were used (Scenario VII1I), but it did not when the functional form
used in the model was of the same family with the one assumed (Scenario V). Further
analysis was conducted to analyze this phenomenon.

In order to examine the difference between the data points with variable
correlation (i.e., Scenario VIII) and those without (i.e., Scenario V), the scatter plots of
crash counts against lane width in two sub-scenarios (IV-1 and V1II-1) are shown in
Figure 11. It can be seen that, in Sub-Scenario IV-1, the points were nearly equally
distributed among the five lane widths, whereas they were highly gathered together (11-
and 12-ft lanes) in Sub-Scenario VI1I1I-1. Calculation revealed that the five lane widths
accounted for about 0.1 (8 ft), 0.1 (9 ft), 5.4 (10 ft), 33.2 (11 ft), 56.4 (12 ft), and 4.8 (13
ft) percent, respectively, in the latter sub-scenario. As can be seen, 11- and 12-ft lanes
were prevalent among the five possible values. Together they accounted for nearly 90
percent. It is likely that the two groups of data points in Scenarios VII and VIII

determined the regression results (i.e., the intercept and the slope).
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Figure 11 Scatter Plots of Crash Counts and Lane Width
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Figure 12 illustrated four types of dummy data points considering the distribution
(uniform or non-uniform) and the relationship (linear or nonlinear). In (a) and (b) of
Figure 12, the points were uniformly distributed, and the line were determined by the
four groups of data points. In Figure 12 (a), the response variable and the explanatory
variable had a linear relationship, so the line went through the four groups of data points
roughly. In Figure 12 (b), they had a nonlinear relationship, then the line moved up to
“better” fit the points, and of course biased. However, most of the data gathered around
points b and c in Figure 12 (c) and (d). The intercept and slope of the line highly
depended on these two groups of points. In Figure 12 (c), the response variable and the
explanatory variable had a linear relationship, so the line again went through most of
points. The relationship changed to nonlinear in Figure 12 (d), but the line did not move
or rotate much. Because its intercept and slope were highly based on the two groups in
the middle (i.e., points around b and c). The change of the data points on the two ends
had trivial effect on the line since they were minority among all the data points. These
four figures correspond to Scenarios I, IV, VII and V111, respectively. This explains why
variable correlations had no obvious effect in Scenario IV, but it influenced the CMFs
significantly in Scenario VIII. Unfortunately, their effect on the estimation of other
parameters (e.g., dispersion parameter) are not clear, and this needs further analysis in

the future.
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Figure 12 Example Illustrating the Effects of VVariable Distribution on Regression
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4.5 Combined Safety Effect

This sections discusses Scenario 1X: combined safety effect. Two variables, lane
width and shoulder width were considered in this scenario. The CMFs for them and
other modeling results of each sub-scenario with a 0.5 inverse dispersion parameter are
documented in Table 29. The results with other inverse dispersion parameters are
presented in the Appendix. When compared with the previous scenarios, the bias and
error percentage were relatively high in this scenario. The average error percentage was
around 5.3% for CMFs of both lane width and shoulder width. The maximum was about
10%. When the adjustment factor was less than 1.0, the CMFs for both lane width and
shoulder width were consistently underestimated. For example, the true CMFs for lane
width and shoulder width were 0.8 and 0.85, respectively, in Sub-Scenario 1X-1
(adjustment factor equaled to 0.80). Those derived from regression models were 0.73
and 0.77, respectively. Safety analysts may misleadingly overestimate the safety benefits
of widening the lane and that of widening the shoulder. The results were contrary when
the adjustment factor was more than 1.0. CMFs were overestimated and benefits of
widening lane or shoulder individually were both underestimated. So, neither the CMFs
for lane width nor those for shoulder width can reflect their true individual safety

effectiveness in this scenario.
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Table 29 Results of CMFs in Scenario IX (¢ = 0.5)

LW b Swb
#*  AF? b AIC!  MAD¢ MSPES
Th SPE Bias E Th SPF Bias E !
~___(SD) ~___(Sb)
0.73 0.77
IX-1 0.80 0.8 -0.07 9.26 0.85 -0.08 892 049 875040 0.052 0.014
(0.048) (0.046)
x-2 090 o8 7 003 406 o085 Oo% 0.04 419 050 890833 0.043 0.012
. 8 | .04 . . . (0.048) . . . . . .
0.79 0.83
IX-3 095 0.8 -0.01 146 0.85 -0.02 177 049 8917.64 0.040  0.010
(0.049) (0.046)
0.82 0.88
IX-4 1.05 0.8 0.02 257 085 0.03 3.17 050 9056.37 0.039 0.010
(0.05) (0.05)
0.83 0.89
IX-5 110 0.8 0.03 377 0.85 0.04 444 049 910698 0.044 0.012
(0.054) (0.054)
0.87 0.93
IX-6  1.20 0.8 0.07 872 0.85 0.08 9.20 050 9200.09 0.051 0.014
(0.047) (0.052)
0.82 0.77
IX-7 0.80 0.9 -0.08 9.08 0.85 -0.08 9.68 050 9046.82 0.055 0.016
(0.043) (0.049)
0.86 0.8
IX-8  0.90 0.9 -0.04 450 0.85 -0.05 555 0.49 9162.17 0.043 = 0.011
(0.046) (0.044)
0.88 0.83
IX-9 095 0.9 -0.02 208 0.85 -0.02 264 050 9223.60 0.042 @ 0.011
(0.049) (0.048)
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Table 29 Continued

LW b Swb
* a b d e f
’ o Th. P% Bias E  Th  F  Bias E ! AIET MR MERE
~___(SD) ~__(SD)
0.92 0.86
IX-10 1.05 0.9 0.02 257 0.85 0.01 176 049 9307.60 0.040  0.009
(0.045) (0.045)
0.94 0.89
IX-11 1.10 0.9 0.04 411 0.85 0.04 480 050 9366.01 0043  0.010
(0.055) (0.049)
0.98 0.93
IX-12 1.20 0.9 0.08 9.04 0.85 0.08 9.95 050 945137 0.054  0.015
(0.06) (0.05)
0.73 0.82
IX-13 0.80 08 -0.07 9.00 0.9 -0.08 848 049 8927.76 0.054  0.016
(0.035) (0.047)
0.76 0.87
IX-14 090 08 -0.04 551 09 -0.03 3.66 050 9003.28 0.042  0.011
(0.046) (0.047)
0.78 0.88
IX-15 095 0.8 -0.02 292 09 -0.02 219 049 907250 0.038  0.009
(0.04) (0.047)
0.81 0.92
IX-16 1.05 0.8 001 1.65 0.9 0.02 231 049 918427 0041  0.009
(0.045) (0.055)
0.84 0.94
IX-17  1.10 08 0.04 445 0.9 0.04 411 049 923253 0041  0.009
(0.046) (0.051)
0.87 0.98
IX-18 1.20 08 0.07 933 09 0.08 858 049 9330.62 0.053  0.014
(0.057) (0.054)
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Table 29 Continued

LW b SWb

a c d e f

’ o Th. SPF Bias E Th. F  Bias E ! AIET | MADT) MEFE
~__(SD) ~___(SD)
0.81 0.81

IX-19 0.80 0.9 0.09 975 0.9 0.09 964 051 915548 0.058  0.018
(0.05) (0.048)
0.86 0.87

IX-20 090 0.9 0.04 474 09 -0.03 364 050 9287.17 0.044  0.011
(0.044) (0.047)
0.88 0.88

IX-21 095 0.9 0.02 213 09 -0.02 218 050 9358.16 0.042  0.010
(0.047) (0.053)
0.92 0.93

IX-22 105 0.9 0.02 270 0.9 0.03 343 051 944752 0.044  0.012
(0.058) (0.055)
0.95 0.94

IX-23 1.10 0.9 0.05 529 0.9 0.04 460 049 9490.10 0.044  0.011
(0.049) (0.053)
0.99 0.99

IX-24 120 0.9 0.09 9.80 0.9 0.09 10.12 050 9627.21 0.056  0.016
(0.061) (0.054)

Note: # = Sub-scenario number; a — AF is the assumed adjustment factor; b — LW is for lane width, SW is for shoulder width,
Th. means the true CMF value, SPF is the mean of CMFs from 100 experiments, SD is the standard deviation of the 100
CMFs, E is error percentage (%); ¢ - the mean of inverse dispersion parameter estimated from 100 experiments; d, e, f — each
is the mean of the corresponding GOF of the 100 results.
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Further, the relationship between the accuracy of CMFs and the presumed
adjustment factors were investigated. The relationship between error percentage and
adjustment factor are illustrated in Figures 13 and 14. Figure 13 shows the error
percentage of CMFs for lane width and Figure 14 shows that for shoulder width. The
two figures clearly indicate that the error percentage was highly related to the adjustment
factor. The error percentage was consistently the highest when the adjustment factor was
0.80 or 1.20. And the lowest when it was 0.95 or 1.05. The error percentage became
small as the adjustment factor became closer to 1.0. A special case can be seen when the
adjustment factor equaled to 1.0, the scenario configuration fell into that in Scenario 11
(with two variables). The error percentage should be much lower (technically zero)
based on the findings in that scenario. So the adjustment factor considerably influenced
the CMFs for both lane width and shoulder width. When it was close to 1.0, this
influence might be minor. But when it became far from 1.0 (i.e., less than or more than
1.0), the accuracy of CMFs can be significantly affected. The further away it is from 1.0,
the lower the quality of the CMFs is. In other words, the CMFs were biased when the
multiple treatments were actually not affecting crash risk independently. The rate at
which the value became biased was actually very high when the adjustment factor went

away from 1.0.
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Error Percentage of CMF for Lane Width
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Figure 13 Error Percentage of CMFs for Lane Width in Scenario IX (¢ =0.5)
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Figure 14 Error Percentage of CMFs for Shoulder Width in Scenario 1X
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The row of “¢” in Table 29 lists the estimated inverse dispersion parameters

from the regression models for each scenario. All of them were very close to the
corresponding true values regardless of the assumed CMFs for variables. No significant
influence of the adjustment factor on the estimate of inverse dispersion parameters was
found in this scenario. Similar results were observed for other inverse dispersion
parameters.

Another interesting finding from this scenario was the GOF measurements. Both
MAE and MSPE were relatively small in each sub-scenario, and they were very close to
those in Scenario I. This indicated that the predicated crash number was quite close to
the true crash mean. However, this did not guarantee the quality of CMFs derived from
regression models, as has been described above. That is to say, although the fitting result
seems to be good in terms of GOF measurements, there can still be some substance
issues with the models. A possible reason is that some parameters may have been
overestimated (or underestimated) while others may have been underestimated (or
overestimated) in the regression models. Take Sub-Scenario 1X-1 as an example. The

specific theoretical function for generating crash counts is shown in Equation 4-26.

N — 267 X104 % LI > AAD-I-I X0.8LWi_12 % 0.858Wi—6 % AF I{LWitlz)(LWi)I{SWitG}(vai)

true,i
(4-26a)

Or equivalently,

Nyye; = 0.103x AR o (WWlisa () | AADT, x exp(—0.22LW, —0.165W,)

true,i

(4-26b)
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Where,

I LW, ) = indicator function for lane width of segment i. It equals to O if

{LW; =12} (
the lane width is 12 ft, otherwise 1.0, and,

I SW;) = indicator function for shoulder width of segment i. It equals to 0

{swi¢6}(
if the shoulder width is 6 ft, otherwise 1.0.

The modeling output of one experiment in this sub-scenario is shown in Table
30. It can be seen that the coefficients for lane width and shoulder width were both
obviously underestimated. And that for AADT was slightly underestimated. But the
intercept coefficient was overestimated. Note that the specific theoretical value for the
intercept is not directly given in Table 30 due to the fact that it depends on the two
indicator functions. In other words, the theoretical intercept varied when the segment
group changed. For segment Groups 1, 2 and 3, it was -2.27 (logarithm of 0.103). But it
was -2.49 (logarithm of the product of 0.103 and AF, 0.8) for segment Group 4. The
coefficient estimated from regression models was much higher than either of them. In
this experiment, the coefficients for lane width and shoulder width were both
underestimated. It seems the underestimation was compensated through overestimating
the intercept coefficient. Perhaps this explains the overall smaller MAE and MSPE

values.
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Table 30 Modeling Output of the an Experiment in Sub-Scenario 1X-1

Model Variable Theo. Value ? Coef. Value P SE ¢ p-Value
Intercept [IN(5,)]  -2.27-0.223Twlsw ¢ -1.810 0.713 0.0111
Ln(AADT) (f) 1.00 0.981 0.040 <2e-16
Lane Width ( £,), ft -0.223 -0.352 0.045 3.26E-15
Shoulder Width
-0.162 -0.321 0.045 6.18E-13
(o), i
AIC 8921.8
MAD 0.050
MSPE 0.014

Note: a — theoretical value; b — estimated coefficient value; ¢ — SE is standard error;
d - the theoretical value for intercept was calculated by taking the nature logarithm of the

first two terms of Equation 4-26b, 0.103x AF iy (W (%) ) and Isw are the two
indicator functions of lane width and shoulder width, respectively.

4.6 Summary

This chapter has described the detailed evaluation results of CMFs derived from
regression models using simulated crash data with nine scenarios. The simulation has
shown several key findings.

(1) Scenarios I and 1l considered linear relationships between variables and crash
risk and assumed all the requirements of a cross-sectional study were satisfied. The
result indicated the CMFs produced using the common regression models should be

unbiased under such conditions.
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(2) Scenario Il focused on the omitted-variable problem. Simulation analyses
confirmed that regression models suffer from this problem, and the CMFs derived from
the models were biased when some factors having significant effect on safety were
omitted. When this effect was minor, the quality of CMFs might be acceptable.

(3) Scenarios 11, IV and VI examined the bias of CMFs when some variables
had nonlinear relationship with crash risk. It was found that link functions were crucial
in developing reliable CMFs. The commonly used GLMs were likely to produce biased
CMFs when the relationship between variables and crash risk were not linear (in
logarithm format). In addition, this also led to biased estimates for other parameters.

(4) Scenarios VII and V111 were repetitions of Scenarios | and 1V, respectively,
with emphasis on variable correlation. It was found that the correlation between
variables had no obvious influence on the CMFs under conditions of linear relationships.
However, it affects the CMFs significantly when improper functional form was used in
the regression models.

(5) Scenario IX considered the independence assumption within the common
regression models. Once this assumption was not met, the individual CMFs for multiple
variables or treatments included in the regression models were biased, especially when
the dependence was strong.

To verify the simulation findings, observed data was analyzed and the results are

discussed in the next chapter.
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5. VALIDATION USING OBSERVED DATA*

In previous chapters, simulation had been used to examine the quality of CMFs
developed from regression models. The simulation analyses mainly raised three
problems with the use of regression models for estimating CMFs. Specifically, they are
the omitted-variable problem, functional form, and dependence of variables. In order to
better illustrate the findings from the simulation analyses, the CMFs were derived from
an observed dataset with regression methods. Due to the fact that little was known about
the combined safety effects of multiple variables, it was not easy to validate the variable
dependent problem. Thus, this chapter mainly considered the functional form and
omitted-variable problems.

Section 5.1 briefly introduces the dataset used in this study. Section 5.2 presents
the modeling results and CM-Functions derived from regression models with various
functional forms. Section 5.3 documents the volume-only model and “full-variable”
model. Section 5.4 provides a summary of the work accomplished with the observed

dataset.

5.1 Data Description

The real observed dataset was requested from the Highway Safety Information

System (HSIS) managed by the FHWA (FHWA 2011). Segments of two-lane rural

* The real crash date used in this chapter was provided by the Highway Safety Information System (HSIS).
The author greatly appreciates HSIS for providing the data.
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highways in Washington State was identified, and three-year (from 2006 to 2008) crash
records on these segments were collected. The segment length, traffic volume (i.e.,
AADT), lane width and shoulder width (right + left) of each segment were obtained.
Note that the AADT was the average in the three years. The segments with AADT less
than 500 were excluded, because some agencies pointed out the AADT of those
segments were usually unreliable (Srinivasan and Carter 2011). In addition, some
segments with obvious mistakes (e.g., O-ft or extreme wide lanes) were removed.
Finally, 8,132 segments were identified. The segments are summarized in Table 31. The
scatter plots of crash rate (number of crashes per mile) against the three variables (i.e.,

AADT, lane width, and shoulder width) are illustrated in Figure 15.

Table 31 Summary Statistics of Observed Data

Variable Sample Size Min. Max Mean (SD ¥)
Length (mi) 8132 0.01 7.51 0.3 (0.5)
AADT 8132 511 26856 4263.4 (3948.4)
Lane Width (ft) 8132 9 14 11.6 (0.7)
Shoulder Width (ft) 8132 0 44 9.6 (5.4)
Crash Count (3 years) 8132 0 50 1.4 (2.6)

Note: * SD = standard deviation.
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Figure 15 Scatter Plots of Crash Rate against Variables

5.2 Estimated CMFs using Different Functional Forms

Based on the simulation results, functional forms played important roles in
developing CMFs. The use of improper functional forms could lead to significant bias to
CMFs developed from regression models. To validate the importance of functional
forms, GLM and GNM were used to analyze the real observed data. Six types of link
functions were utilized in the regression models. They were linear, inverse, exponential,
log, power, and quadratic functions, respectively. The model with linear link function
was equivalent to the commonly used GLM. The other five link functions were adopted
from a recent study (Park and Abdel-Aty 2015b). The modeling procedure of GNMs was
generally the same as the previous studies conducted by Lao et al. (2014) and Lee et al.
(2015), but necessary improvements were made. In the previous studies, the nonlinear

link functions were determined by observing the curve pattern between crash rate (in
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logarithm form) and the variables of interests. This could lead to bias, because the link
functions were subject to observers. Instead, this study developed the nonlinear link
functions, given the forms, by fitting the relationship between crash rate and variable
(i.e., lane width). It is worth to mention that this section only considered lane width in
the regression models to simplify the analysis, the result of which might be affected by
the omitted-variable bias. However this would not influence the objective of the
analysis.

Prior to regression analyses, the relationship between crash rate and lane width
was explored. The curve is shown in Figure 16. The vertical axis in Figure 16 is mean
crash rate (number of crashes in three years per mile per one thousand AADT), and the
horizontal axis represents lane width. It can be seen that the overall crash rate decreased
as the lane width increased. However, the decreasing rate was obviously higher when the
lane was narrower. Widening segments with narrower lanes seemed to be more effective
than widening wider ones if other factors (e.g., AADT) were the same or similar. This
indicated a linear function might not be adequate to reflect the relationship between the

two.
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Figure 16 Mean Crash Rate and Lane Width

5.2.1 Linear

The linear functional form assumed the relationship between crash rate (in
logarithm) and variable of interest (i.e., lane width) followed Equation 5-1.

U(LW) =In(CR) = A+ Bx LW (5-1)

Where,

U (LW) = link function for lane width;

CR = crash rate;

LW = lane width (ft); and,

A and B are coefficients to be estimated.
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Actually, this was consistent with the commonly used GLMs. The target model
form was the same as Equation 4-2 (now as 5-2 below).
B 2 (5-2)
The modeling results (coefficient estimates and GOF measures) are presented in
Table 32. All the three parameters were statistically significant at a 99 percent level. The

CMF for lane width derived from this model was 0.85 (e °*°), meaning the expected

crash number would decrease by 15 percent whenever the lane was widen by 1 foot. The

CM-Function is illustrated in Figure 17.

Table 32 Modeling Result of Observed Date with Linear Functional Form

Model Variable Coef. Value ? SE P p-Value
Intercept [ IN(/5;)] -4.72 0.31 5.84E-53
Ln(AADT) () 1.02 0.02 0.00E+00
Lane Width (f3,), ft -0.16 0.03 7.58E-10
¢ 1.3344 0.0542 ]
AIC 22083.9
MAD 1.211
MSPE 5.418

Note: a — estimated coefficient value; b — SE = standard error.
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Figure 17 CM-Function for Lane Width Derived using Observed Data (Linear)

5.2.2 Inverse

With inverse functional form, the assumed relationship between crash rate (in
logarithm) and lane width is shown in Equation 5-3.

U(LW)=In(CR) = A+B/LW (5-3)

The fitting results of inverse link function is shown in Table 33 and the specific
function is shown in Equation 5-4. Both A and B were statistically significant at a 99
percent level.

U(LW)=-0.0063+0.1037/ LW (5-4)
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Table 33 Fitting Result of Inverse Functional Form for Lane Width

Model Variable Coef. Value ? SE P p-Value
A -0.0063 0.0020 1.92¢-03
B 0.1037 0.0234 9.62¢-06

Note: a — estimated coefficient value; b — SE = standard error.

The target model form is shown in Equation 5-5.
E(A}) = /iy x L, x AADT# xexp 4, xU (LW,)] (5-5)
In Equation 5-5, the link function for lane width, U (LW, was substituted by

Equation 5-4. The final results are shown in Table 34.

Table 34 Modeling Result of Observed Date with Inverse Functional Form

Model Variable Coef. Value ? SE P p-Value
Intercept [ IN(4;) ] -7.17 0.20 <2e-16
Ln(AADT) ( 5) 1.02 0.02 <2e-16
ULW) (f,) 211.94 33.11 1.54e-10
¢ 1.3353 0.0543 .
AIC 22081.5
MAD 1.210
MSPE 5.411

Note: a — estimated coefficient value; b — SE = standard error.
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The CM-Function for lane width was then estimated as Equation 5-6.

IN(CMF) = 8, xU (LW) — 8, xU (12) = 211.94x0.1037(ﬁ—$) (5-6a)

Or equivalently,

CMF = exp[21.97 x (L - i)] (5-6a)
LW 12

The value of 12 in Equation 5-6 reflects the base condition for lane width. The

CM-Function for lane width with inverse functional form is illustrated in Figure 18.
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Figure 18 CM-Function for Lane Width Derived using Observed Data (Inverse)
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5.2.3 Exponential
The exponential form is shown in Equation 5-7.
U(LW) =In(CR) = A+ Bxexp(LW) (5-7)
Similar procedures were used as that for the inverse form. The results are shown

in Tables 35 and 36.

Table 35 Fitting Result of Exponential Functional Form for Lane Width

Model Variable Coef. Value ? SE P p-Value
A 2.972e-03 1.644¢e-04 <2e-16
B -2.111e-09 8.012e-10 8.43E-03

Note: a — estimated coefficient value; b — SE = standard error.

Table 36 Modeling Result of Observed Date with Exponential Functional Form

Model Variable Coef. Value ? SE p-Value
Intercept [ IN(/;) ] -7.12 0.26 <2e-16
Ln(AADT) () 1.01 0.02 <2e-16
ULW) (5,) 239.14 69.83 6.16E-04
¢ 1.3271 0.0538 -
AIC 22107.4
MAD 1.214
MSPE 5.415

Note: a — estimated coefficient value; b — SE = standard error.
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The CM-Function for lane width is shown in Equation 5-8. And the curve is

illustrated in Figure 19.

IN(CMF) = B, xU (LW) — 3, xU (12) = —5.05x10"" x[exp(LW) —exp(12)] (5-8)

—+—  Exponential

2.0
|

CMF
1.5
|

1.0

0.0
|

LW (ft)
Figure 19 CM-Function for Lane Width Derived using Observed Data

(Exponential)

5.2.4 Log
The log form is shown in Equation 5-9.
U(LW) =In(CR) = A+ BxIn(LW) (5-9)

The results are shown in Tables 37 and 38.
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Table 37 Fitting Result of Log Functional Form for Lane Width

Model Variable Coef. Value ? SE b p-Value
A 0.0242 0.0050 <2e-16
B -0.0088 0.0020 1.48E-05

Note: a — estimated coefficient value; b — SE = standard error.

Table 38 Modeling Result of Observed Date with Log Functional Form

Model Variable Coef. Value ? SE P p-Value
Intercept [ IN(4,) ] -7.17 0.20 <2e-16
Ln(AADT) (53) 1.02 0.02 <2e-16
ULW) (5,) 214.47 34.12 3.28E-10
¢ 1.3349 0.0542 -
AIC 22082.6
MAD 1.210
MSPE 5.415

Note: a — estimated coefficient value; b — SE = standard error.

The CM-Function for lane width is shown Equation 5-10. And the curve is
illustrated in Figure 20.

IN(CMF) = A, xU (LW) — 3, xU (12) = 0.71x [exp(LW) —exp(12)] (5-10)

141



2.0
|

CMF
1.5
|
II_H
/

1.0
/
/

0.0
|

—— Log

LW (ft)

12

13

14

Figure 20 CM-Function for Lane Width Derived using Observed Data (Log)

5.2.5 Power
The power form is shown in Equation 5-11.
U(LW)=In(CR) = A+LW?®

The results are shown in Tables 39 and 40.

142

(5-11)



Table 39 Fitting Result of Power Functional Form for Lane Width

Model Variable Coef. Value ? SE P p-Value
A -0.9755 0.0051 <2e-16
B -0.0090 0.0021 2.25E-05

Note: a — estimated coefficient value; b — SE = standard error.

Table 40 Modeling Result of Observed Date with Power Functional Form

Model Variable Coef. Value ? SE P p-Value
Intercept [ IN(4;) ] -7.17 0.20 <2e-16
Ln(AADT) () 1.02 0.02 <2e-16
ULW) (5,) 214.40 34.11 3.26E-10
¢ 1.3349 0.0542 -
AIC 22082.6
MAD 1.210
MSPE 5.415

Note: a — estimated coefficient value; b — SE = standard error.

The CM-Function for lane width is shown Equation 5-12. And the curve is

illustrated in Figure 21.

IN(CMF) = 3, xU (LW) — 3, xU (12) = 214.4x (LW °*® —12°%) (5-12)
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Figure 21 CM-Function for Lane Width Derived using Observed Data (Power)

5.2.6 Quadratic
The quadratic form is shown in Equation 5-13.
U(LW)=In(CR) = A+BxLW +Cx LW?

The results are shown in Tables 41 and 42.
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Table 41 Fitting Result of Quadratic Functional Form for Lane Width

Model Variable Coef. Value ? SE b p-Value
A 0.0471 0.0194 1.50E-02
B -0.0069 0.0033 3.73E-02
C 0.0003 0.0001 6.27E-02

Note: a — estimated coefficient value; b — SE = standard error.

Table 42 Modeling Result of Observed Date with Quadratic Functional Form

Model Variable Coef. Value ? SE P p-Value
Intercept [ IN(4,) ] -7.15 0.19 <2e-16
Ln(AADT) () 1.02 0.02 <2e-16
ULW) (5,) 204.74 30.31 1.42E-11
¢ 1.3379 0.0545 -
AIC 22078.3
MAD 1.208
MSPE 5.376

Note: a — estimated coefficient value; b — SE = standard error.
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The CM-Function for lane width is shown Equation 5-14. And the curve is

illustrated in Figure 22.

In(CMF) = S, xU (LW) - B, xU (12) =0.05x LW?2-1.41x LW+9.2 (5-14)
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Figure 22 CM-Function for Lane Width Derived using Observed Data (Quadratic)

5.2.7 Comparison of CMFs with various forms

The previous sections provide the CM-Functions for lane width derived from
regression models with six types of link functions. They are shown together in Figure
23. It can be seen from Figure 23 that the overall trend of these CM-Functions were the

same, widening lane could bring safety benefits. However, there were significant
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differences between the six CM-Functions (except that the log and power forms were
nearly identical). The inverse, log, and power CM-Functions were close to the linear
one. Widening the lane by one feet had fixed (or approximately fixed in the three
nonlinear forms) safety effect regardless of the initial width, and this effect was about 15
percent reduction of crashes. But the other two (exponential and quadratic) showed
obvious difference. In the exponential CM-Function, when the lane width was between 9
ft and about 12 ft, the CMF was consistently about 1.0, meaning changing the lane width
in this range had little effects on safety. But when the lane was wider than 12 ft,
widening it reduced crashes significant. In addition, the wider the initial lane was, the
more safety benefits widening it could bring (i.e., widening from 13 ft to 14 ft had more
effects than that from 12 ft to 13 ft). The quadratic CM-Functions illustrated a different
effect. When the lane was narrow (between 9 ft and 12 ft), widening it had significant
safety effect. And the narrower the initial lane was, the more effects widening by one
foot had. But when the lane was wide (more than 12 ft), widening the lane had relatively
minor effect. Specifically, from 12 ft to 13 ft the expected crashes reduced by about six

percent, and from 13 ft to 14 ft, it increased by about five percent.
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Figure 23 CM-Functions for Lane Width Derived using Observed Data (All)

Since the true safety effect of lane width was unknown, it was difficult to
evaluate the quality of the six CM-Functions directly. The GOF and prediction
measurements of the six models are shown in Table 43. It can been seen that quadratic
function consistently had the lowest AIC, MAD and MSPE. From this perspective, the
regression model with quadratic link functions fitted the data best. If a bold assumption,
that the mean crash rate (mean number of crashes per mile per AADT) could represent
the actual effect of lane width on safety, a “true” CM-Function could be obtained by
scaling the mean crash rate (it was scaled such that the rate equaled to 1.0 at base
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condition, 12-ft lane.) The curve of the “true” CM-Function is also illustrated in Figure
23. The area between the “true” curve and the six CM-Function curves were calculated,
respectively, as shown in Table 43 (row of “Area”). It can be seen that quadratic form
had the smallest area with the curve of “true” CM-Function, which made it overall the

closest to the “true” safety effect.

Table 43 Comparison of GOFs and Prediction Measurements

Form Linear Inverse  Exponential Log Power Quadratic

AIC 22083.91 22081.46 22107.40 22082.61 22082.60  22078.34

MAD 1.2106 1.2101 1.2139 1.2103 1.2103 1.2082
MSPE 5.4179 5.4111 5.4149 5.4148 5.4148 5.3758
Area * 2.353 2.233 3.067 2311 2310 2.014

Note: the number in bold indicate the smallest in the corresponding row, and those with
underline mean they are the largest. * Area = the area between the curve of scaled mean

crash rate and that of corresponding CM-Function.

Given the “true” CMFs for lane width, the “bias” and “error percentage” of those
derived from regression models with various function forms were calculated (using the
same method described in Section 3.3.2) at several points of interest, the results are
shown in Table 44. First, none of the six CM-Functions adequately captured the “true”
safety effect of lane width. They all underestimated the CMFs on the left side (i.e., lane
narrower than 12 ft) and vice versa on the right side (lane wider than 12 ft). Second,

none could always outperform others. For example, quadratic form had the smallest
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error percentage when lane width was less than 12 ft, but it had the greatest when lane
width was more than 12 ft. Although quadratic form fitted the data best and it was the
closest to the “true” curve, one still could not conclude that it was the best. Finally, recall
that all the parameters estimated in the six models were statistically significant with at
least a 90 percent level. So, even though the modeling result looked statistically correct
and acceptable, the CM-Functions derived from the models might be biased when
improper link functional forms were used. All of these were consistent with the

simulation findings.
5.3 Volume-Only Model and “Full-Variable” Model

The simulation analyses have demonstrated how omitted variables affected the
quality of CMFs. In practice, however, it is nearly impossible to capture all factors
affecting crash risk. Section 5.2 has shown that lane width influenced crash counts
considerably. To explore how the modeling result changed when some variables
affecting safety was omitted, this section further analyzed the volume-only and “full-
variable” models. The former one, including AADT as the only explanatory variable as

the name implies, has been developed often in highway safety.

5.3.1 Volume-Only Model
The target functional form in the volume-only model is shown in Equation 5-15.

And the modeling results are presented in Table 45.

E(A

)=f5,x L, x AADT# (5-15)
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Table 44 “Bias” and “Error” of CMFs for Lane Width

LW (ft) 9 10 11 13 14
“True” CMF 4.59 2.07 1.22 0.77 0.64
F”Fr(‘)crtr:f” CMF Bias E° CMF Bias E° CMF Bias E CMF Bias E° CMF Bias E
Linear 162 296 646 138 069 334 117 005 39 08 -009 112 072 -0.08 126
Inverse  1.84 274 598 144 063 304 118 004 34 087 -010 134 077 -013 19.6
Exponential 1.07 351 76.6 106 101 486 105 0.18 143 088 -0.12 152 063 0.02 24

Log 171 2.87 627 141 067 322 118 005 38 086 -010 125 075 -011 165
Power 171 287 627 141 067 322 118 005 38 086 -010 125 075 -0.11 165
Quadratic = 2.38 221 481 159 048 232 119 003 24 094 -017 224 098 -0.34 526

Note: the number in bold indicate the smallest in the corresponding column, and those with underline mean they are the

largest. * E = error percentage, %.
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Table 45 Modeling Result of Volume-Only Model

Model Variable Coef. Value ? SE P p-Value
Intercept [ IN(5) ] -6.40 0.15 <2E-16
Ln(AADT) (5) 1.00 0.02 <2E-16
AIC 22117.87
MAD 1.212
MSPE 5.364

Note: a — estimated coefficient value; b — SE = standard error.

5.3.2 “Full-Variable” Model

In the contrast, full-variable model included all the variables that affecting crash
risk, which was nearly unattainable in practice. In this section, “full-variable” refers to
including all the variables available (i.e., AADT, lane width, and shoulder width) in the
dataset. Based on the simulation findings, the modeling results can be biased if variables
already known to have significant effect on safety are omitted in the analysis. To
simplify the problem, in this section, it was assumed that factors other than lane width
and shoulder width had trivial effects.

The functional form utilized in the “full-variable” model is shown in Equation

5-16. The modeling results are presented in Table 46.
E(A,) = 3, x L x AADT " xexp[ 8, xU (LW) + 3, x Shoulder] (5-16)
Where,
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U (Lw) = link function for lane width, the quadratic results was adopted,

Shoulder = shoulder width (ft).

Table 46 Modeling Result of “Full-Variable” Model

Model Variable Coef. Value ? SE P p-Value
Intercept [|n(,50)] -7.11 0.19 <2e-16
Ln(AADT) (B3)) 1.05 0.02 <2e-16
ULW) (f,) 172.8 30.7 1.83¢-08
Shoulder ( 5;) -0.016 0.0033 9.36e-07
AIC 22058.2
MAD 1.185
MSPE 5.052

Note: a — estimated coefficient value; b — SE = standard error.

5.3.3 Comparison between Volume-Only and “Full-Variable” Models

When comparing the fitting results between the two models, the AIC, MAD and
MSPE of the volume-only model were significantly higher than that of the “full-
variable” model. This indicates the volume-only model might be relatively less reliable,
as expected.

Another significant difference was the coefficient estimates. AADT was the

common variable to the two models, but the estimated coefficients for it differed. It was
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1.00 and 1.05 in the volume-only model and the “full-variable” model, respectively.
Lane width and shoulder width were not included in the volume-only model, and it was
impossible to compare the coefficients for these two variables. It can be seen that
omitting lane width and shoulder width in the model affected the estimated coefficient of
AADT. This is in general consistent with the simulation findings. Since the true
relationship between AADT and crash risk was unknown, it was difficult to assess which
coefficient represented the relationship better. The lower GOF measurements (i.e., AIC,
MAE and MSPE) with the “full-variable” model indicated the estimate within it might

be relatively more reliable. In addition, Mallows C were calculated for the volume-

only model. It was 187.0, which was significantly greater than the number of parameters,
2. This meant the volume-only model was heavily biased.

Besides estimated coefficients, safety practitioners may be more interested in
confidence intervals or prediction intervals, because they can provide the uncertainty and
are usually more important for use in safety-decision making (Ash et al. 2016). This
study calculated the confidence intervals (Cls) for the estimated safety (M) and the
prediction intervals (PIs) for the predicted number of crashes (YY) using the two models
separately. The approach proposed by Wood (2005), Lord (2008) and Lord et al. (2010)
was utilized. Since the two models contained different variables, the Cls and Pls for
three kinds of segments were calculated, as shown below. The AADT varied between
500 and 15,000, and the segment length was 0.1 mile.

(a) Normal segment. 12-ft lane and 8-ft shoulder;

(b) Narrow segment: 11-ft lane and 3-ft shoulder; and,
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(c) Wide segment: 12-ft lane and 16-ft shoulder.

The estimated safety (M), its 95 percent Cls, and 95 percent Pls of the predicted
number of crashes () as functions of AADT for the three kinds of segments are shown
in Figure 24, respectively. Note that the lower bound for both estimated safety (M) and
predicted number of crashes () were all zero. For the normal segment, in Figure 24 (a),
the estimated safety (M) were nearly the same in the two models, and the Cls and Pls
were also very close. But for the other two kinds of segments, they differed a lot. For the
narrow segment (i.e., Figure 24 (b)), the safety (M) was greater in the “full-variable”
model, because according to the modeling result, narrowing lane and/or shoulder
increased the predicted number of crashes. However, in the volume-only model, changes
in lane width or shoulder width had no influence on the estimated safety (M) or the
predicted number of crashes (). Both Cls and Pls of “full-variable” model was wider
than that of volume-only model, especially when the AADT was high (as shown in the
figures on the right side of Figure 24 ). The situation was contrary for the wide segment
(i.e., Figure 24 (c)). Estimated safety (M) was smaller in “full-variable” model, its Cls
and PIs were narrower.

Since the exact values of the safety of these segments are unknown for the
observed dataset, no comments can be made on which model performs better regarding
the Cls or Pls. Nevertheless, adding or omitting variables influenced the estimated safety

and predicted number of crashes as well as the confidence/prediction intervals.
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It is worth to mention that the three variables (i.e., AADT, lane width and
shoulder width) were related in the observed dataset, as can be seen in Figure 25. High
volume roads were very likely to be wider in lane and somewhat in shoulder, and vice
versa. That is to say, even though lane width and shoulder width were omitted in the
volume-only model, there were still some information about lane width and shoulder
width (in forms of AADT) included in it. In addition, either lane width or shoulder width
was uniformly distributed among their range, as shown in Figure 26. This fell under the
variable correlation and distribution problems that have been discussed in Section 4.4.

This should have also influenced the modeling result.
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5.4 Summary

In this chapter, real observed crash data were analyzed to estimate CMFs from
various models. The results successfully supported the previous findings based on
simulated data. The CM-Functions differed a lot when different functional forms were
used in the regression models. Some showed reasonable results, while some looked
contrary to the data. In general, the CM-Functions derived from the models with better
GOF measures (i.e., AIC, MAE and MSPE) seemed to be more reliable. Omitting
variable(s) made the model less reliable, and significantly influenced the estimated

coefficients as well as the predicted crash numbers.
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The next chapter provides a summary and discussion of the research

accomplished in this study, and discusses future research on this topic.
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6. SUMMARY AND CONCLUSIONS

The effectiveness evaluation of countermeasures is an important process in
roadway safety management. It provides valuable information for future decision
making and policy development (AASHTO 2010). CMFs have been widely used to
quantify the safety effects of treatments (or changes in design or operation). Before-after
study and regression model analysis are the two main approaches used to develop CMFs.
The former has been considered to be superior for estimating CMFs in the past two
decades or so. However, several limitations have restricted its use for developing high-
quality CMFs. As an alternative, regression models have been popular to estimate CMFs
in recent years. Nevertheless, both of the two methods have their own drawbacks. So far,
no study has comprehensively evaluated whether or not regression models should be
used for developing CMFs, because they may not properly capture the safety effect of
treatments. Considering the fact that a large number of CMFs have been developed using
regression models, it is necessary to evaluate the accuracy of CMFs estimated from this
kind of approach. Hence, the primary objective of this study was to examine the use of
regression models for developing CMFs. Specifically, the goal was to investigate the
accuracy of the CMFs derived from regression models under various conditions. The
objective was mainly accomplished using simulated data and the findings were validated
using observed data. Several cautions of using regression models for developing CMFs

were raised.
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The following two sections summarize the work of this study and make some
recommendations for developing CMFs using regression models in the future,

respectively.

6.1 Summary of This Study

This section briefly summarizes the major contributions of each chapter.

Chapter 1 introduced the general information about developing CMFs and the
objective of this study.

In Chapter 2, a background about research findings on CMFs was documented.
Specifically, it presented the advantages and limitations of the common CMF estimating
approaches (i.e., before-after study and regression model method), the attempts made to
explore the nonlinear relationships some highway features had, and the combined safety
effects of multiple treatments on safety.

Chapter 3 described detailed methodologies for examining the accuracy of CMFs
estimated using regression models. A simulation protocol was developed and an
example was provided for illustrating the simulation procedures. Measurement used to
quantify the nonlinearity of CM-Function was proposed. And nine scenarios were
specified to examine the CMFs under various conditions.

The result of each simulation scenario was discussed in Chapter 4. The main

findings are summarized as follows:
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(1) The CMFs derived from the common regression models should be unbiased
when the premise of cross-sectional studies were met (i.e., all segments were similar,
proper functional forms, variables were independent, enough sample size, etc.).

(2) Functional forms played important roles in developing reliable CMFs.
Improper functions may lead to misleading conclusions and biased CMFs. This is
consistent with several previous studies (Davis 2000, 2014; Hauer 2005a, 2010; Lord
and Mannering 2010; Miaou and Lord 2003). When improper forms for some variables
were used, the CMFs for these variables were biased, and the quality of CMFs for other
variables could also be influenced. Using the common GLMs method to model variables
having nonlinear relationships with crash risk would produce biased CMFs. With the
increase in nonlinearity, the bias became significant. This might also produce biased
estimates for other parameters. In addition, variable correlation and/or distribution
showed influence on the CMFs as well as other parameter estimates when improper
functional forms were used.

(3) Regression models did suffer from the omitted-variable problem. If some
factors having minor safety effects were omitted, the accuracy of estimated CMFs might
still be acceptable. However, if some factors already known to have significant effects
on crash risk were omitted, the estimated CMFs were generally unreliable.

(4) When the influence on safety of considered variables were not independent,
the CMFs produced from the commonly used regression models were biased. The bias
was significantly correlated with the adjustment factor (i.e., degree of their dependence).

Higher dependence led to significant bias. Under the conditions of dependence, the
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coefficients for the variables of interests might be over- or underestimated, and other
variables may be under- or overestimated to compensate for the biased estimated
coefficients.

Chapter 5 validated the findings in this study using observed data. The results, in

general, were consistent with the simulation findings.

6.2 Recommendations and Future Research Area

Although the CMFs derived from regression models should be unbiased when all
requirements of cross-sectional studies are met, this assumption can hardly be satisfied
when dealing with observed data. Several issues have been raised when using regression
models for developing CMFs. When modeling crash data, transportation safety analysts
are recommend to answer the following questions: (1) whether variables having
significant effects on safety have been omitted; (2) has improper link functions been
used in the models; and (3) are the variables dependent when multiple ones are
considered?

The first question can be examined through reviewing the segments or sites to
detect if they have significant differences in some safety associated factors other than
those included in the models. If these factors have significant effects on safety (e.g.,
relatively large or small CMFs are found from HSM, CMF Clearinghouse, and other
relevant documents or peer-reviewed papers), the regression models are likely to suffer
from the omitted-variable problem. The second one may be analyzed by observing the

patterns between variables and crash frequency or crash rate, or by comparing multiple
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link functions (Lee et al. 2015; Park and Abdel-Aty 2015b). For the last question,
engineering judgment and experiences may need to be considered, because so far with
only limited studies on the safety effects of multiple treatments it is not easy to conclude
whether or how much two or more safety treatments are dependent of each other.

If any of the above questions exists, the modeling result will probably lead to
biased CMFs and misleading conclusions, and attention should be paid.

There are a few limitations with this study. First, a solid model is the base for
developing reliable CMFs when using the regression method. This study used the most
common one, NB distribution, to analyze the simulated crash counts, which were
generated from the same distribution. Although NB distribution is the most popular one
used by safety analysts, new models are being proposed for predicting crashes and some
show better results given particular characteristics of crash datasets (Geedipally et al.
2012; Lord et al. 2005; Wu et al. 2014; Zou et al. 2013a; Zou et al. 2013b). Second,
sample size influences the modeling result significantly (Lord 2006; Lord and Miranda-
Moreno 2008; Ye and Lord 2014). The sample size of simulated dataset was 1,492, and
8,132 for real data. Both should be large enough in this study. These two problems will
affect the modeling result and the quality of CMFs. To estimate reliable CMFs, these
questions need further consideration when dealing with real observed data. Nevertheless,
the simulation protocol proposed in this study can still be applied to evaluate the CMFs
under different conditions.

In addition, several problems may exist simultaneously in one regression model.

For example, a regression analysis using observed data may have omitted important
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variables and utilized improper function form, while the variables included in the model
may be dependent. This is likely to make the result worse, and the bias of CMFs should
become higher. This study did not examine how multiple problems affected the accuracy
of CMFs.

Although before-after studies have been considered to be the state-of-the-art
method and are always preferred for developing CMFs, recent studies have pointed out
that the before-after study can also be biased (Kuo and Lord 2013; Lord and Kuo 2012).
Hence, further research is needed to provide guidelines when a cross-sectional study
should be used over the before-after study, and vice versa, as a function of the

characteristics of the data.
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Table 47 Results of CMFs in Scenario IX (¢ =1.0)

APPENDIX

LW b SWh
a c d e f
A h, SPF Bias E  Th, SPF Bias  E pT | AICT | MADT | MSPE
(SD) (SD)
X1 08 08 22 008 o988 08 977 008 892 100 890122 0057 0016
(0.05) (0.054)
X2 09 08 %™ 006 698 08 98 004 416 097 904094 0056 0017
(0.064) (0.065)
X3 095 08 27 001 116 o085 98 001 107 099 901917 0044 0011
(0.062) (0.043)
x-4 105 08 28 001 157 o8 98 003 321 102 912098 0049 0013
(0.052) (0.077)
0.83 0.9
X5 | 11 08 Joo. 003 402 085 vl 005 557 100 917948 0048 | 0013
0.0 0.92
X6 | 12 08 G 010 1190 085 OO 007 815 098 933457 0059 | 0019
X7 08 09 %8 003 862 08 %77 008 986 099 917311 0063  0.020
(0.061) (0.051)
X8 09 09 %8 005 601 08 98 004 446 101 924026 0048 0013
(0.057) (0.057)
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Table 47 Continued

LW b SW b
a [+ d e f
i ., SPF Bias E  Th, PF Biass  E #T | AICT | MADE MSPE
(SD) (SD)
X9 095 09 989 001 111 o085 98 01 124 099 931130 0048 0012
(0.06) (0.063)
IX-10 .05 09 .99 002 235 08 987 002 216 098 942314 0051  0.015
(0.046) (0.069)
0.95 0.9
X411 11 09 e 005 559 085 (Tl 005 570 099 046237 0053 0.8
x-12 12 09 9%® 008 so9s 08 9B 008 048 099 956022 0062  0.020
(0.072) (0.059)
0.72 101 0.82
x13 08 08 crd 008 G109 U 008 892 100 900158 0057 0017
x-14 09 08 977 003 38 09 28 005 518 099 913119 0050 @ 0.014
(0.054) (0.047)
IX-15 095 08 978 002 191 09 989 001 160 1.00 916399 0050 @ 0.013
(0.049) (0.081)
Ix-16  1.05 08 982 002 278 09 992 002 253 1.00 927612 0050 @ 0.013
(0.053) (0.065)
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Table 47 Continued

LW b SW b
a [+ d e f
i h., P Bias E Th. SPF O Bias  E #T | AICT | MADE MSPE
(SD) (SD)
x-17 11 08 28 003 436 09 9% 003 384 100 932339 0049 0014
(0.051) (0.064)
Ix-18 1.2 08 28 008 959 09 99 009 1014 1.00 944475 0057 0017
(0.057) (0.068)
x-19 08 09 98 000 964 09 98 509 o949 101 923306 0063  0.020
(0.056) (0.064)
IXx20 09 09 98 505 517 09 98 004 419 098 938050 0055 0015
(0.067) (0.075)
Ix-21 | 095 09 988 o002 172 09 98 500 212 101 943987 0056 @ 0017
(0.081) (0.064)
x-22 105 09 2% 001 113 09 99 003 341 100 956176 0050 @ 0.013
(0.062) (0.06)
x23 11 09 2P 006 618 09 9% 005 588 098 960089 0052  0.015
(0.062) (0.064)
0.99 10.0 0.98
x24 12 09 JU 000 100 09 POV 008 918 090 070408 0064 0022

Note: the same notes as those in Table 29.
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Table 48 Results of CMFs in Scenario IX (¢ = 2.0)

LW P SW b
a ¢ AICY | MAD® MSPEf
’ o Th SPF Bias E Th SPF Bias E ’ © >
' (SD) ' (SD)
IX-1 0.8 0.8 0.73 0.07  8.60 0.85 0.76 0.09 10.2 199 871243 0.065 0.023
. . (0.055) . . . (0.062) . . . . . .
IX-2 0.9 0.8 0.76 0.04  4.87 0.85 081 0.04 453 199 885232 0.062 0.021
. . 0.07) . . . 0.078) . . . . . .
0.76 0.83
IX-3 095 0.8 -0.04 4.75 0.85 -0.02 189 199 8859.33 0.064 0.026
(0.079) (0.08)
0.82 0.88
IX-4 105 0.8 0.02 2.09 @ 0.85 0.03 3.28  2.02 8969.92 0.064 0.021
(0.091) (0.087)
IX-5 1.1 0.8 0.84 0.04  4.41 0.85 0.9 0.05 586 1.99 9019.91 0.065 0.031
. . (0.066) . . . 0.073) . . . . . .
IX-6 1.2 0.8 0.87 0.07 9.14 0.85 0.92 0.07 8.10 2.01 914589 0.071 0.028
. . 0.079) . . . (0.074) . . . . . .
IX-7 0.8 0.9 081 0.09 10.47 0.85 0.78 0.07 850 198 8937.33 0.074 0.027
. . (0.081) . . . (0.075) . . . . . .
0.86 0.81
IX-8 0.9 0.9 -0.04 4.89 0.85 -0.04 432 200 9092.99 0.063 0.021
(0.081) (0.067)
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Table 48 Continued

LW b SW b

a c d e f

’ o Th SPF Bias E Th SPF Bias E ! Al MAD MSPE
~___(Sb) ~_(SD)
0.87 0.82

1X-9 0.95 0.9 -0.03 3.20 0.85 -0.03  3.23 199 9139.26 0.059 0.018
(0.07) (0.069)

IX-10 105 0.9 0.92 0.02 262 0.85 089 0.04 525 197 9313.70 0.061 0.021

. . (0.082) . . . (0.079) . . . . . .

0.93 0.89

IX-11 1.1 0.9 0.03 3.69 | 0.85 0.04 491 198 9289.12 @ 0.064 0.022
(0.086) (0.083)

IX-12 1.2 0.9 0-99 0.09 995 0.85 0.93 0.08 926 196 9363.04 0.075 0.026

. . (0.098) . . . (0.086) . . . . . .

0.73 0.8

IX-13 0.8 0.8 -0.07 846 09 -0.10  11.18 2.02 @ 8823.29 @ 0.069 0.026
(0.062) (0.067)
0.76 0.87

IX-14 0.9 0.8 -0.04 438 09 -0.03  3.09 198 @ 8995.65 @0.065 0.025
(0.061) (0.066)
0.79 0.9

IX-15 095 | 0.8 -0.01 140 09 0.00 044 | 2.05 : 8924.75 | 0.061 0.020
(0.072) (0.07)
0.82 0.92

IX-16 1.05 @ 0.8 0.02 3.09 0.9 0.02 2.64 198 @ 9053.82 @ 0.062 0.019
(0.079) (0.095)
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Table 48 Continued

LW P Swb

a c d e f

’ ol Th SPF Bias E Th SPF Bias E ! Ale MAD MEPE
- (SD) ~_(SD)
0.84 0.96

IX-17 1.1 0.8 004 474 0.9 006 @ 6.11 2.04 @ 9088.58 @ 0.066 0.023
(0.067) (0.095)
0.87 0.98

IX-18 1.2 0.8 0.07 897 0.9 0.08 | 8.49 2.00 @ 9237.24 @ 0.067 0.028
(0.074) (0.064)
0.82 0.82

IX-19 0.8 0.9 -0.08 924 09 -0.08 851 2.01 904591 @ 0.073 0.027
(0.08) (0.061)

IX-20 0.9 0.9 0.86 -0.04 390 09 0.85 -0.05 5.10 199 @ 924858 @ 0.062 0.021
(0.068) (0.067)
0.87 0.88

IX-21 095 | 0.9 -0.03 293 09 -0.02 231 201  9210.21 @ 0.066 0.026
(0.067) (0.093)
0.89 0.93

IX-22 105 : 09 -0.01 082 09 0.03 @ 3.66 2.00  9386.44 @ 0.071 0.027
(0.081) (0.086)
0.96 0.94

IX-23 1.1 0.9 0.06 @ 6.62 0.9 004 @ 447 197 @ 9403.88 @ 0.069 0.026
(0.084) (0.093)
0.99 104 0.98

IX-24 1.2 0.9 0.09 0.9 0.08 | 8.87 1.99 @ 9509.79 @ 0.078 0.034
(0.078) 6 (0.098)

Note: the same notes as those in Table 29.
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