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ABSTRACT

This dissertation proposes a programming model for Graphical User Interfaces (GUIs)

that relieves the programmer of a difficult and error-prone task: orchestrating concurrent

responses to events to ensure data dependencies are always enforced correctly. In this

programming model, rather than defining program responses to events, the programmer

defines the data dependencies that exist in the GUI and the methods by which those depen-

dencies may be enforced—a run-time system uses this specification to generate responses to

events. The approach gives the following guarantee: the same sequence of events produces

the same results, regardless of the timing of those events. The dissertation demonstrates

the benefits of the proposed programming model with implementations of several example

user interfaces.

At the core of this programming model is a data structure known as a property model.

A property model composes responses to individual events into a single reactive program

that runs asynchronously. The program’s results are used to update the GUI. The program

is constructed in a manner that respects all data dependencies, thereby guaranteeing that

results are consistent regardless of the length of time taken by individual responses. The

core reactive program may be extended with features that support additional functionality,

such as access to prior variable values, optional data dependencies, and identifying unused

variables. The dissertation defines the semantics of the construction and execution of this

reactive program formally.

The dissertation shows how property models may be defined as a composition of

reusable components. This is essential for modeling GUIs whose structures change in

response to user events by the addition or removal of components. Components can con-

tain data and dependencies as well as templates that describe how dependencies arise from

composition with other components. Furthermore, templates can be written for arrays of

components to define dependencies that arise among them.
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One key task of the property model is planning by which methods dependencies will be

enforced. The dissertation describes how a specialized planner can be constructed that is

able to create a plan for a specific property model. This specialized planner is essentially a

Deterministic Finite-state Automaton (DFA), and can be orders of magnitude faster than

a general-purpose planner.
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1. INTRODUCTION

This work aims at improvements in Graphical User Interface (GUI) programming. It

contributes to an ongoing project to formulate an alternative to the traditional GUI pro-

gramming model. In this new programming model, GUI behavior is defined by a declarative

specification of the data in the GUI, the relationships between pieces of the data, and the

actions which the user may perform using the data. This approach yields concise program

specifications which translate to rich program behavior. More importantly, the effects of

asynchronous events—events which occur while older events are still being processed—on

program behavior can be controlled, and in many cases eliminated. This is a desirable

quality for GUIs, which frequently deal with a large number of events occurring at unpre-

dictable times.

1.1 Motivation

User interfaces are costly to develop and difficult to get correct. Studies have shown

that more than 50% of an application’s design and programming effort [36] and between

30% and 60% of an application’s source code [31, 36, 42] are devoted to user interfaces.

And yet, despite the effort that goes into these GUIs, a disproportionately high number

of defects arise from this code [42]. According to a study by Lazar et al. [29, 7], one-third

to one-half of the time spent on a computer is wasted due to frustrating experiences—and

poor user interfaces is one of the three main causes of that frustration.

We believe a key contributing factor to this problem is the traditional GUI programming

model: the event-driven model, more commonly called event-driven programming. In this

model, the programmer defines GUI behavior by a collection of callback functions, each

assigned to an event that may occur during the life of the GUI. Although this programming

model may work well for simple GUIs, it does not scale well as GUI complexity grows,

leading to what has been called a “spaghetti of call-backs.” [33] Here, we identify two

specific shortcomings of the event-driven model.
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The first shortcoming is that, by requiring program logic to be organized around events,

the event-driven model interferes with abstractions for other program concerns. Modular

design and abstraction are well-established tools in computer science for managing program

complexity: we must be able to divide the program into smaller pieces, and we must be able

to use one of these pieces without full knowledge of its inner workings. However, in event-

driven programming, any abstractions created by the programmer must be broken down

and spread across multiple event handlers. Generally this breaks abstractions boundaries,

forcing the programmer to have full knowledge of their workings and manage the details

of their interactions.

Failure to support the hiding of implementation behind an abstract interface contributes

directly to a lack of support for reusable components. It has long been known that software

systems utilizing reusable components tend to be more robust and less costly than their

hand-crafted counterparts [4, 16, 37]. Indeed, most GUI frameworks provide many reusable

components implementing individual elements of the interface—elements such as text-edit

fields, check-boxes, and buttons, collectively known as widgets. Such component libraries

provide GUIs with reusable widget behavior, yielding robust widgets with consistent look

and performance.

It is rare, however, to find components which encapsulate GUI behavior—that is, the

coordinated response and interaction of multiple widgets to user input. Such components

are difficult to produce in the event-driven model because GUI behavior is so closely tied to

specific event handlers which may vary from GUI to GUI. In fact, general assumption seems

to be that GUI behavior is, by nature, non-reusable, and must be written from scratch for

each GUI. This sentiment is reflected by a quote from the developer documentation of a

widely used GUI framework; referring to the “controller,” which is the application code

controlling widget interactions, the documentation reads: “Since what a controller does is

very specific to an application, it is generally not reusable even though it often comprises

much of an application’s code.” [2]

The second shortcoming of the event-driven model is its lack of assistance to the pro-

2



grammer in dealing with asynchronous program execution. Asynchronous execution is often

necessary in GUIs to ensure responsiveness in the face of lengthy program operations: op-

erations proceed in the background as the GUI continues to accept user input. Current

GUI programming techniques offer a wide range of options for initiating asynchronous ex-

ecution. However, asynchronous execution can become complicated when there are data

dependencies between asynchronous tasks. Such dependencies mean that the execution of

one task may affect the outcome of another; therefore running tasks in different orders or

in parallel may yield different outcomes. In event-driven programming, data dependencies

arise implicitly whenever different event-handlers access the same variables. Ensuring that

data dependencies are enforced in every possible interleaving of events is not a trivial job.

(a) An auto-complete text box.

query

index menu

value

(b) The data dependencies.

Figure 1.1: An example of an auto-complete text box, and a diagram showing the data
dependencies involved in its implementation. These data dependencies are not trivial to
enforce, especially when asynchronous execution is involved.

By way of illustration, consider one common GUI element: the auto-complete text box.

This element helps the user produce a string to be used as input by some part of the

application. Text entered by the user becomes the value of the input string, but is also

used as a parameter in an asynchronous search for related input strings. Typically the

search results are listed below the text box as a menu from which the user, with mouse or

keyboard, may select an alternate input string. Figure 1.1a shows an auto-complete text

box being used to select a city as a travel destination.

3



Figure 1.1b shows the dependencies that emerge in this seemingly simple GUI element.

Text entered by the user becomes the query parameter, which determines the menu items.

If a menu item is selected, the index of the selected item and the contents of the menu

determine the input string; if no item is selected, the query parameter itself becomes the

input string. Finally, a change in the contents of the menu affects the selected index: if the

previously selected city is in the new menu, its new index should be used; otherwise the

index should be reset. We show this dependency with a dashed line, as it is only in effect

when the menu changes.

The dependencies reflected in this diagram are non-trivial, and writing code that en-

forces them is difficult using the traditional event-driven programming model. To test

this claim, we performed an informal survey of six popular commercial travel sites (www.

expedia.com, www.orbitz.com, www.aa.com, www.united.com, www.hotels.com, and www.

yahoo.com/travel) and found that all six contained auto-complete text boxes exhibiting

inconsistent behavior. We define inconsistent behavior as the same sequence of editing

operations producing different outcomes. In all cases, inconsistent behavior was triggered

by a rapid succession of input events: presumably newer events were handled before all

dependencies had been enforced by previous event handlers. Such behavior can lead to ig-

nored input. In one representative case, we typed “TKU” as the airport code and initiated

a search; the results were not for flights from Turku, Finland, but rather (incorrectly) from

Tampa, Florida.

In these particular applications the consequences of inconsistencies are not that severe.

If an error manifests, it is relatively easy to detect and correct. Furthermore, users learn

to avoid errors by adapting their use—in these applications, by waiting for the GUI to

catch up. Yet, requiring users to synchronize their usage negates many of the benefits of

asynchronous execution. And it is not hard to find more harmful problems in other widely

used applications. In a recent interaction with the Blackboard system (www.blackboard.

com, used by many US Universities) we noticed that entering students’ grades quickly

leaves behind numerous erroneous entries as keystrokes get ignored or assigned to wrong

4
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entries. We argue that these examples are not anomalies, but rather indicative of a larger

problem—these applications have millions of users and they can be expected to have been

developed with ample resources and by competent programmers, yet they manifest glaring

errors in their most basic functionalities. The problem of GUI inconsistencies is clearly

systemic.

1.2 Approach

The programming model proposed by my research group is built around a data structure

we call a property model [24]. A property model serves as an abstraction of the GUI, much

like a View-Model in the MVVM design pattern [19] (see Section 2.1 for an overview of

MVVM). As such, it contains the data used by the GUI, and the logic responsible for GUI

behavior; it does not, however, contain any presentation logic, nor any event handlers. Any

necessary event handlers are generated automatically according to binding specifications

indicating how the data of the property model is connected to the widgets of the GUI.

The data of the GUI is held in variables of the property model. The value of these

variables, together with certain dependency information discussed later, define the state of

the property model. The logic of the GUI consists of functions provided by the programmer.

These functions may be divided into two categories. The first category modify variables of

the property model to create a consistent state. What it means for a state to be consistent

is defined by the programmer; generally speaking, it means that all invariants for the data

are satisfied. The second category of functions implement application-specific operations

using data of the property model. We refer to these functions as commands. A command

may be as simple as modifying a single variable, or as complicated as submitting the data

of the GUI to a server for processing.

The life of a property model proceeds much like a state machine. It begins with the

property model executing functions which produce a consistent state. Once this is done,

the property model is available to execute a command in response to events in the appli-

cation. A command may not modify any variables of the property model while executing;

however, it may end by assigning new values to some variables of the property model. The
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property model responds to any assignments by once again executing functions to produce

a consistent state. Taken together, the command and the property model’s response to

assignments define a transition from one consistent state of the property model to another.

At this point, the property model is ready to execute another command, and the cycle

repeats itself.

The property model executes logic of the GUI in two phases. The first phase involves

planning out which functions will be executed and scheduling them to be run. This phase

executes synchronously, beginning with the invocation of a command and ending with the

scheduling of all functions needed to transfer the property model to its next consistent

state. The second phase involves the scheduled functions being executed. This second

phase proceeds asynchronously, with each function executing as its inputs become available.

Because the second phase always follows the plan laid out during the first phase, its results

are unaffected by later operations of the property model. After the first phase finishes,

the property model is immediately available to invoke new operations. An upper limit

for the execution time of the first phase can be established for each constraint system.

In practice the execution is often instantaneous [22], so the GUI is guaranteed to always

remain responsive.

One way to characterize the two phases is that the first phase generates a reactive

program that executes asynchronously in the second phase. A reactive program is one

which responds to changes in variables by automatically recalculating values for function-

ally dependent variables. Various reactive programming frameworks have recently gained

popularity in GUI programming (see, e.g. [3, 27, 32]). These frameworks build reactive

programs from a static description of data dependencies. Data dependencies in a GUI,

however, often change based on user interaction. This would require programmers to de-

fine multiple reactive programs and coordinate their use. By dynamically generating a

reactive program from the description of a constraint system, property models simplify

GUI programming while guaranteeing consistent results.
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My work contributes to this new programming model in the following areas.

• Generating a reactive program given a sequence of user commands and a multi-way

dataflow constraint system. This work defines the core reactive program that governs

all GUI behavior. This program behaves as a state machine, transferring the property

model from one consistent state to the next. The program is a function of the

commands and the order in which they were executed; it is not affected by the

timing between commands or the time required for execution. This work is discussed

in Chapter 3.

• Additional features for generated reactive programs. This work focuses on extending a

generated reactive program with new features, thereby allowing the reactive program

to implement additional program behaviors. This work is discussed in Chapter 4.

• Operational semantics for the dynamic program. This work provides a formalism

for the behavior of a property model. This gives precise definition to the concepts

discussed in Chapters 3 and 4 and serves as a foundation for a correct property model

implementation. This work is discussed in Chapter 5.

• Reusable components and dynamic elements. This work focuses on expressing a prop-

erty model as a composition of reusable components. Composition of components

involves, not only combining their members, but also the generation of new dynamic

elements as a product of the relationships between components. This work is dis-

cussed in Chapter 6.

• Specializing planners for hierarchical multi-way dataflow constraint systems. When

data dependencies in a GUI are made explicit, as they are with property models,

it creates new opportunities for static analysis and optimization. This work is an

example of such an optimization, involving the offline construction of a planner for

a specific constraint system as a finite state automaton. This work is discussed in

Chapter 7.
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1.3 Implementation

The work for this dissertation includes an implementation of property models for web-

based applications called HotDrink [21]. Although a property model implementation exists

from previous work, this new work involves such a drastic departure from previous work

that a complete rewrite was justified; attempting to retrofit the existing implementation

with support for asynchronous execution would have been difficult. This work includes a

collection of unit tests and an introductory tutorial.

We chose TypeScript as the implementation language. TypeScript is a statically typed

variant of JavaScript, created by Microsoft, which is compiled to JavaScript for execution.

The benefit of TypeScript is that it provides a more structured programming environment

than JavaScript, while remaining close enough to JavaScript that the compiled result is

very easy to map back to the source code. We distribute HotDrink as the JavaScript code

generated from the TypeScript sources.

Although this document is not intended as a full introduction or reference to HotDrink

and its use, we will refer to it throughout this document in order to explain how the concepts

discussed in this thesis can be realized in the implementation. For further information

on HotDrink, including its source code and a tutorial, please see http://github.com/

HotDrink/hotdrink.
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2. BACKGROUND AND RELATED WORK

As mentioned in Section 1.1, the traditional event-based programming model has several

shortcomings when it comes to programming complex GUIs. Because of this, there has been

much work towards supplemental or alternative programming techniques for GUIs. This

section gives an overview of two such techniques which are foundational to the property-

model-based programming model: the MVVM design pattern and dataflow constraints. It

also provides an overview of related work and how it compares to our technique.

2.1 MVVM

Much work has been done on the separation of concerns in GUIs, resulting in design pat-

terns such as Model/View/Controller [28], Model/View/Presenter [44], and Presentation-

Model [15]. Each of these patterns organizes a GUI-based application into clearly defined

components, promoting modularity and encapsulation. Our programming model follows

the organization of a more recent pattern: Model/View/View-Model [20], or MVVM.

The MVVM pattern divides the application into three major components. The Model

is responsible for the “business” data and logic in the application. This component is

largely domain-specific; it has no knowledge of, nor direct interaction with, the GUI itself.

The View is responsible only for presentation logic and for accepting user input. More

abstractly, the view is responsible for implementing widget behavior: drawing the widgets

to the screen and translating user input into events. The View-Model is the application’s

model, or abstraction, of the View. It maintains the data used by the GUI and provides

the logic implementing GUI behavior.

The data and logic of the View-Model are connected to the widgets and events of

the View through connections called data bindings, or simply bindings. The purpose of the

bindings is to keep the data of the View “in sync” with the data of the View-Model: changes

to one are automatically propagated to the other. Bindings use event-handlers to translate

events of the view into changes in the variables of the View-Model. Simliarly, the property

9



model produce events whenever its variables are changed; bindings use event-handlers to

translate these events to updates in the View.

Describing our programming model in terms of MVVM, a property model is an im-

plementation of the View-Model generated from a declarative specification. The primary

focus of our work, then, is in defining how the property model can represent the data and

behavior of a GUI, with a secondary focus on defining the bindings that connect the data

and behavior to View. The View and the Model components of an application are outside

the scope of our programming model. In HotDrink the View is constructed from HTML,

along with any JavaScript code that builds HTML elements. The Model is any code im-

plementing business logic, most likely run on a server in response to requests generated by

the web page.

An additional element of the MVVM pattern which is relevant to property models is a

command. A command is simply a function of the View-Model that can be invoked from

the view—e.g., by clicking a button. Typically commands are associated with a property

indicating whether the command can be executed. If the GUI is in an invalid state, e.g.,

due to invalid data, a command can be disabled until the state is corrected.

2.2 Dataflow Constraints

The use of dataflow constraints to manage data dependencies has become increasingly

popular, as evidenced by the many modern GUI frameworks which make use of them, such

as Knockout [27], Ember [13], and ConstraintJS [40]. A dataflow constraint is typically

defined by providing a function which may be used to calculate the value of one variable

based on the value of others. Once a constraint is defined, the run-time system is respon-

sible for updating the variable by calling the function any time one of its inputs change.

Property models make use of dataflow constraints to ensure that invariants are maintained

between variables. In property models, however, the constraints are multi-way dataflow

constraints [6] managed by a hierarchical multi-way dataflow constraint system.
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2.2.1 Multi-way Dataflow Constraints

A multi-way dataflow constraint represents a relation over a set of variables. When 

the relation holds, we say the constraint is satisfied. The relation of the constraint is not 

defined explicitly, but rather implicitly through a set of constraint satisfaction methods, or 

simply methods. Each method is a function which calculates new values for some variables 

of the constraint using the remaining variables of the constraint as inputs. A method 

should enforce the constraint; that is, after execution of the method, the constraint should 

be satisfied.

In general, there is no restriction on how many methods a constraint may have, nor on 

how each method may use the variables of the constraint. A method may have multiple 

inputs and multiple outputs. Some variables may be used as input by every method; some 

may be used as output by every method. The only requirements for a constraint are, first, 

that the output variables of one method may not be a superset of the output variables 

of another, and, second, that every method must use all of the constraint’s variables. A 

method violating the first requirement would be useless; it would never be selected as part 

of any plan for solving the system (see Section 2.2.2). The second requirement, known as 

method restriction [46], ensures that a plan is found in polynomial time [50].

Of all the variables of the property model, a method should read only its input variables, 

and write to only its output variables; it should, furthermore, write to each output variable 

exactly once. We refer to such a function as a dataflow function. In general, dataflow 

functions are not required to be referentially transparent.1 Thus, a method may enforce 

the constraint differently each time it is run. For example, a method which involves a 

database query will return different results depending on the contents of the database. 

After a method of a constraint is executed, a property model assumes its constraint is 

enforced and will remain enforced until some variable of the constraint changes.

Defining the constraints present in a GUI is not always a trivial task. As an exercise

1A function is referentially transparent if it has no external effects, and if the same inputs always result
in the same outputs.
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Figure 2.1: A hypothetical GUI for determining prices in a shipping application. Note the
large number of data dependencies; this means changing one field often results in updates
to many fields.

in constraint design, let us consider the constraints present in an example GUI shown in

Figure 2.1. In this hypothetical shipping application, packages are classified by weight and

volume into one of several “package classes;” the price of shipping a package is a function

of its package class and the distance to be shipped. We assume that any field in the GUI

may be edited and other fields will automatically adjust accordingly. This results in a very

flexible GUI which supports several modes of interaction: the user may determine the price

of shipping a package a certain distance, or how far a package can be shipped for a certain

price, or even what shipping class may be shipped a certain distance for a certain price.

Furthermore, the user may enter package class directly, or choose to enter the weight and

volume of the package instead, or the weight and dimensions.

First, consider the constraint between the volume v of a package and its dimensions x,

y, and z. The relation for this constraint is v = xyz. We may define this constraint using

the four methods x←v/yz, y←v/xz, z←v/xy, and v←xyz. Each of these methods enforce

the constraint by assigning a new value to one variable calculated from the remaining

three. If we label these methods A, B, C, and D, respectively, then we may write them as

x←A(v, y, z), y←B(v, x, z), z←C(v, x, y), and v←D(x, y, z). This representation reveals the

dataflow while omitting details of method implementation.

Next, consider the volume, weight w, and class c of a package. This constraint may be
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expressed informally as follows: a package having weight w and volume v falls into package

class c. Note that constraints do not need to be expressed as mathematical equations,

nor do methods need to be expressed as mathematical expressions. Methods are arbitrary

functions of the implementation language. For this constraint, assume the weight and

volume may determine the class of a package according to some function E, and we may also

query for a representative weight and volume for a given class according to another function

F . Disregarding here the implementation of these functions, we write these methods as

(w, v)←E(c) and c←F(w, v).

The third constraint in our shipping form is between the package class, shipping distance

d, and shipping price p. A simple formulation of this constraint would be as follows: a

package of class c can be shipped a distance of d for a price of p. However, this formulation

has a difficulty: it is problematic to determine a package class for a given price and distance

since many price/distance pairs have no matching shipping class. We could simply define

the constraint without a method that outputs to c, or we could find an alternative relation

which supports output to c. If we add to our constraint the maximum allowed price m,

then we may take this relation: a package of class c can be shipped a distance d for a price

p which is no greater than m. We can implement this constraint with three methods. The

first method, (c, p)←G(d,m), determines the largest package class c which can be shipped a

distance d for a price no greater than m, as well as the actual price p of the shipping. The

second method, (d, p)←H(c,m) determines the greatest distance for which a package of

class c can be shipped for a price no greater than m, and the actual price p of the shipping.

And the third method, (m, p)←I(c, d) determines the price of shipping a package of class

c a distance d; this becomes both the maximum price m and the actual price p.

To use this alternate relation, we must decide how m is to be presented in the GUI. For

example, one might create an additional text box and bind it to m. For this discussion,

however, we assume the binding of the Price text box has been altered so that it reads

from p and writes to m. In this way, the user enters the maximum price and sees the actual

calculated price.
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2.2.2 Hierarchical Multi-Way Dataflow Constraint Systems

A multi-way dataflow constraint system is responsible for ensuring a collection of multi-

way dataflow constraints are satisfied. It does this by executing one method from each 

constraint, taking care that, once a method for a constraint has been executed, no variables 

of that constraint are modified. Practically speaking, this means executing the methods in 

an order such that no method outputs to a variable after it has been used (either as input 

or output) by another method. We call any execution order that satisfies this condition a 

valid execution order. Note that an arbitrary set of methods may not have a valid execution 

order; for example, there can be no valid execution order for a set containing two methods 

which output the same variable, nor for a set containing a cycle in the dependencies.

Satisfying all constraints in the constraint system—known as solving the system—

involves two steps. First, selecting the methods to be executed: one from each constraint, 

such that a valid execution order exists. This set of methods is called the plan. Second, 

executing the methods of the plan in a valid execution order.

Multi-way dataflow constraint systems can be underconstrained ; multiple plans may 

exist for solving the system. Each plan, however, is unique in the set of variables not used 

as output by any method. A ranking of variables thus gives a ranking for plans, so that a 

unique “best” solution can be chosen. This is accomplished in the following three steps.

First, we add a stay constraint for each variable in the system. A stay constraint has 

one variable, and one method that outputs to the variable. The method is a constant 

function with the variable’s current value. Adding stay constraints makes the system 

overconstrained ; no plan can enforce all stay constraints.

Second, we prioritize the stay constraints, making them totally ordered. When a vari-

able is edited, its stay constraint is promoted to the highest priority. Thus, the hierarchy 

of stay constraints corresponds roughly to the order in which variables have been edited.2

Third, we use the hierarchy of constraints to select the plan that enforces the highest

2There are other occasional circumstances in which a constraint’s priority may be altered; these condi-
tions are discussed in Section 4.5.
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priority constraints. More precisely, if we characterize each plan by a sequence of the 

constraints it enforces, in order from highest to lowest priority, then the constraint system 

selects the plan which is lexicographically greatest. Because our hierarchy reflects the 

editing order, the system will have a bias towards preserving variables more recently edited 

by the user.

We define two editing operations for the constraint system. The touch operation pro-

motes a constraint to the highest priority, and the set operation assigns a new value to a 

variable and also touches the stay constraint for that variable. An edit of the system may 

be defined as a sequence of one or more touch and set operations. The constraint system 

is solved after each edit.

2.2.3 Dataflow Graphs

The key to managing asynchronous computations in a GUI is making all dependency 

information explicit. Property models capture this information in three directed graphs, 

defined in terms of the constraint system’s variables, methods, and constraints. To define 

these graphs, let V represent the set of all variables and M the set of all methods (every 

method of every constraint) in the system.

Constraint graph The constraint graph, G = 〈N, E〉, is a bipartite directed graph, 

where the node set N = V ∪ M consists of the variables and methods of the constraint 

system, and the edge set E contains an edge (v, m) if variable v is an input of method 

m, and an edge (m, v) if a variable v is an output of method m. The constraint graph 

represents every potential dependency that exists in the constraint system.

The constraint graph for the shipping form example is shown in Figure 2.2a. This graph 

reflects the three constraints we defined in Section 2.2.1; stay constraints are omitted to 

avoid complication. Notice that constraints are not made explicit in this graph. However, 

because of method restriction, we may deduce the constraints using the following rule: 

two methods m and n are in the same constraint if and only if they each have the same
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neighborhood.3 In practice, we label each method node with its constraint so that they

may be more easily identified.
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(a) The constraint graph for the shipping GUI.
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(b) A solution graph for the plan {B,F,H}

Figure 2.2: Two dataflow graphs for the shipping GUI example. The constraint graph
reflects every possible data dependency; the solution graph reflects only the dependencies
of a single plan.

Solution graph The solution graph represents the dependencies enforced during the

most recent attempt to solve the system—that is, the methods selected as part of the most

recent plan. Thus, given a constraint graph G = 〈V ∪M,E〉 and a plan P ⊆M , a solution

graph is the node-induced subgraph S = G[V ∪P ]. Note that, by the definition of a plan,

the solution graph must be acyclic (i.e., a DAG). Furthermore, a valid execution order for

a plan can be determined by sorting the methods of P topologically with respect to S.

One possible solution graph for the shipping form example is shown in Figure 2.2b.

The plan represented by this solution graph is P = {B,F,H}. A valid execution order for

this plan would be any order in which F comes before H.

3In a graph G = 〈N,E〉, the neighborhood of a node n ∈ N is the set {m ∈ N |(n,m) ∈ E ∨ (m,n) ∈ E}

16



Evaluation graph In some cases a method may run without reading all of its input

variables. In such cases, the solution graph would reflect dependencies that were not

actually enforced. The evaluation graph is identical to the solution graph except that

it does not contain an edge (v,m) if method m did not read variable v during its most

recent execution. Thus, the evaluation graph gives the most accurate representation of the

dependencies currently in place.

The evaluation graph is used only in certain algorithms which require detailed depen-

dency information, such as the algorithm for automatic disabling of irrelevant widgets.[25].

This work includes a complete rewriting of this algorithm, and with it, a complete redefi-

nition of the evaluation graph. For this reason, further discussion of the evaluation graph

is deferred to Section 4.6.

2.3 Related Work

Over the years there has been much research into the use of constraints and constraint

systems in GUI implementation, resulting in many GUI toolkits and frameworks in which

constraints play some part, whether large or small. On one end of the continuum, are GUI

frameworks designed entirely around constraint systems such as SkyBlue [46], Garnet [34],

and Amulet [35]. These frameworks primarily focus on visual tasks such as component

layout and graphics. More recently, the Subtext [11] framework aims at simplified GUI

implementation by providing automatic data layout and constraint satisfaction, much like

a spreadsheet.

At the other end of the continuum are existing GUI frameworks which have added

individual dataflow constraints to their toolkits—frameworks such as OpenLaszlo [41],

Flex [1], and JavaFX [26]. The focus of these constraints is generally propagating changes

in dependencies to the View. Often these constraints are solely to update the View, not for

updating arbitrary variables in the program; the programmer simply binds an expression

to the View, and, as variables in that expression change, the expression is recalculated and

the View is updated with the result.
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In between one finds many toolkits and frameworks focusing on dataflow constraints,

but intended to be used in combination with some other GUI framework to provide tra-

ditional GUI functionality. These frameworks tend to be closer in spirit to property mod-

els. For example, Knockout [27] and ConstraintJS [40] both bring dataflow constraints to

JavaScript, allowing the user to define dependencies which are automatically updated and

propagated to the View. Microsoft’s Reactive Extensions (Rx) [32] can translate changes

in variables to automatic queries using LINQ. Babelsberg [14] integrates constraints with

the Ruby language.

Functional Reactive Programming (FRP) [12, 52] is reactive programming based on

purely-functional abstractions of events and of values which change over time, known as

behaviors or signals. There are several GUI frameworks designed around FRP. Frameworks

such as FranTk [45], Fruit [9], and Yampa [10] are embedded in Haskell, making them

somewhat difficult to integrate with imperative GUI frameworks. Elm and Flapjax, on

the other hand, are two languages based on the concepts of FRP, but which compile

to JavaScript. There are also libraries that allow FRP-style programming in imperative

languages; for example, Bacon [3] brings FRP to JavaScript, and Frappé [8] brings it to

Java.

Property models distinguish themselves from other approaches in three ways. The first

is in the use of multi-way constraints. The majority of the above systems use one-way

constraints, in which data always flows from one set of variables to a second set. A few

systems, such as Knockout and Subtext, also support two-way constraints—i.e., a one-

way constraint with an inverse function. ConstraintJS allows the programmer to define

different program states and specify which constraints are active in each state. In theory,

this mechanism could be used to simulate multi-way constraints by making a separate

state for each possible dataflow. Additionally, Multi-Garnet [48] extended Garnet with

multi-way constraints.

The second distinguishing feature is the explicit representation of dependency informa-

tion as a data structure. This information is the basis for several reusable algorithms. For
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example, we may determine which variables are not being used, allowing widgets bound to

them to be disabled. Or we may determine user intent, defined by which variables were

edited directly by the user vs. calculated by the system, which is needed for recording the

use of a GUI to a script. [24, 25] Additionally, as described in this paper, the dependency

information guides constructing the reactive program.

The third distinguishing feature is its approach to asynchronous execution of depen-

dencies. Many of these systems represent dependencies as a function, making them strictly

synchronous. Those which allow asynchronous execution, such as Microsoft Rx and Par-

allel FRP [43], are targeted for situations in which every event must be handled, and the

order of results is unimportant—e.g., a web service replying to requests. A property model

respects the ordering in which edits are made, yet allows computations to proceed as soon

as their inputs are available. Furthermore, it ensures that each variable reflects the most

current known value, and that computations made irrelevant by more recent results are

unscheduled.

Elm permits an alternate type of asynchronicity by allowing the user to specify that

certain computations are to be performed before all dependencies have been updated; if a

dependency has not been updated, its last known value is used. For example, suppose a

variable x is the output of a function f and the input of a function g. If g is ready to be

computed before f has finished calculating the value of x, then g runs using the last known

value of x; later, when f produces a new value for x, function g is run again. This prevents

the lengthy calculation of a single dependency from blocking the flow of computation. In

a property model, we achieve this effect by creating two variables—one for the output of

the first computation, and one for the input of the second—and binding the first to the

second.
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3. THE CORE REACTIVE PROGRAM∗

As discussed in Chapter 1, a property model fills the role of View-Model in a GUI

by storing the data used by the GUI and capturing the logic used to implement GUI

behaviors. Data is held in variables of the property model; the values of these variables

define the state of the GUI. The programmer defines invariants for the data in the form

of constraints in a multi-way dataflow constraint system. When the values of the variables

satisfy all constraints, we say the property model, and therefore the GUI, is in a consistent

state. As the GUI runs, user actions in the View are translated by bindings into changes

in the value of one or more variables. We refer to these changes as edits, and to the acts of

making edits as an editing operations. The property model responds to edits by solving the

constraint system, thereby enforcing all constraints. Taken together, an editing operation

and the solving of the constraint system constitute a transition from one consistent state

of the GUI to another. This transition is illustrated in Figure 3.1.

State i State i+ 1
Perform

Operation

Solve

Constraint System

Figure 3.1: The execution model for a GUI based on a property model. Each editing
operation is followed by solving the constraint system, thereby transitioning the GUI to a
consistent state.

Chapter 2 describes the process by which a multi-way dataflow constraint system is

∗Portions of this chapter are reprinted with permission from “Generating reactive programs for
graphical user interfaces from multi-way dataflow constraint systems” by Gabriel Foust, Jaakko
Järvi, and Sean Parent. Proceedings of the 2015 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, pp. 121–130, Copyright 2015 by ACM.
http://dx.doi.org/10.1145/2814204.2814207

Portions of this chapter reprinted with permission from “Responsive and Consistent User Interfaces with
Multi-Way Dataflow Constraint Systems” by Gabriel Foust, Jaakko Järvi, and Sean Parent. Under review
for inclusion in Computer Languages, Systems and Structures (COMLAN), Elsevier.
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solved. The process can be summarized in two steps. The first step is calculating a plan:

a set of methods, one from each constraint, with a valid execution order. The second step

is executing the methods of the plan following a valid execution order. In this way, all

constraints in the system are enforced.

The discussion in Chapter 2 assumes that methods are executed synchronously—that

is, once the execution of a method begins, no other code may execute until that method is

finished. The synchronous execution of methods prevents the GUI from responding to new

user events until all methods have finished execution. This execution model is depicted in

Figure 3.2; it replaces the single step “Solve Constraint System” in Figure 3.1 with two

steps, “Calculate Plan” and “Execute Methods.” As shown by this figure, the GUI does

not arrive at a consistent state, and thus is unable to receive new user events, until all

methods have finished execution. This conflicts with a key design goal for GUIs: a GUI

should always remain responsive to user events.

State i State i+ 1
Perform

Operation

Calculate

Plan

Execute

Methods

Figure 3.2: The synchronous execution model for a property model. Solving the constraint
system requires calculating a plan and executing its methods. The GUI is not ready to
accept new editing operations until all methods of the plan have finished execution.

This chapter describes how methods may be executed asynchronously. Asynchronous

execution allows the GUI to respond to user events even as methods are executing. The

key idea behind our approach is that the property model does not execute the methods

of the plan while solving the constraint system, but rather schedules them to be run at

a later time. The solution graph, described in Section 2.2.3, is used to guide scheduling

so that no method will be executed before its inputs have been calculated. Furthermore,

we can ensure that a method will only wait on its dependent values; that is, it is free to

begin execution as soon as those values are ready. This execution model is illustrated in
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Figure 3.3; it replaces the step “Execute Methods” with “Schedule Methods.”

State i State i+ 1
Perform

Operation

Calculate

Plan

Schedule

Methods

Figure 3.3: The asynchronous execution model for a property model. Solving the constraint
system requires calculating a plan and scheduling its methods for execution. Methods
execute asynchronously as their inputs become available.

In effect, this execution model constructs a reactive program to respond to edits by

updating functional dependencies. This program runs asynchronously at its own pace.

Solving the constraint system results in adding a new “layer” to the reactive program—

that is, a new set of methods scheduled to be executed. Once the methods of a plan are

scheduled, the GUI is considered to be in a consistent state even though some variable

values may have yet to be calculated. Any attempts to use such variables, e.g., by other

methods, will simply be added to the reactive program and scheduled to run as soon as

the value is ready. Thus, the GUI is available to respond to user events immediately after

all methods of the plan have been scheduled for execution. In this way, the GUI remains

responsive at all times.

This chapter also examines how editing operations may be generalized and included as

elements of the reactive program, and the way in which method failure affects the reactive

program as a whole.

3.1 Solving the Constraint System Asynchronously

This section discusses the representation of variables and methods in a property model,

and how these representations may be used to construct a reactive program. This section

considers only one kind of editing operation: assigning a new value to a single variable.

Section 3.2 shows how we may generalize this definition to include more complex editing

operations.
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3.1.1 Variables

A variable of a property model represents a value that changes over time. Unlike 

variables of some reactive systems, the variables of a property model do not change contin-

uously; they change only in response to an edit: either as a direct result of the edit, or as a 

result of solving the constraint system in response to the edit. Once the constraint system 

has been solved, all variable values will remain constant until the next editing operation.

We represent individual variable values using a well-known asynchronous programming 

construct: promises [30]. A promise represents a value which may not be currently avail-

able, but which will be available at some point in the future. We distinguish promises from 

values: a value is considered to be a value of the implementation programming language 

and not a promise. A promise whose value is not yet available is said to be pending. Once 

the value becomes available, the promise is said to be fulfilled. We may subscribe to a 

promise by providing a callback function to be invoked with the value of the promise once 

it is fulfilled. A fulfilled promise remembers its value; subscribing to a fulfilled promise sim-

ply results in the callback being invoked at the next opportunity. A promise may also be 

rejected indicating that the process intended to produce its value has failed and therefore 

the value will never be available. Section 3.4 discusses rejected promises.

For each variable, we define a sequence of promises called the promise history. The 

promises of the promise history correspond to every value given to the variable over the life 

of the program, ordered by the time they were assigned. The last promise in the promise 

history, known as the current promise, represents the current value of the variable. To 

assign a new value to a variable, we add a new promise to the end of the promise history. 

This promise may be pending, allowing us to effectively assign a new value to a variable 

before the value is known. Promises are only added to the history; they are never removed. 

3.1.2 Methods

Asynchronous execution in property models is supported by scheduling, rather than 

executing, methods while solving the constraint system. Concretely, this is achieved by
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representing each method with a function whose inputs and outputs are promises. When

called by the property model, this function does no real work: it merely subscribes to the

input promises, constructs the output promises, and schedules the work which will fulfill

the output promises once input promises are fulfilled. Since the actual work of a method

will occur later, we say that, when the constraint solver executes this function, it schedules

the method; thus, the function is called the method’s scheduling function.

It is through methods that the reactive program may achieve asynchronous execution.

Methods can offload work to, e.g., other threads or remote servers, thus freeing the current

thread to execute other methods or respond to user events. We make no assumptions

regarding the manner in which this “offloading” is accomplished; the mechanisms used are

assumed to belong to the implementation language. In our JavaScript implementation a

method may schedule work on a different thread using web workers, on a remote server

using Ajax, or simply at a later point in the current thread using a timer event. It may also

forgo asynchronous execution and execute immediately. Which approach, if any, a method

uses does not affect any other part of the reactive program.

It is the programmers job to supply the scheduling function for a method. However,

the scheduling function is frequently formulaic enough to be generalized by a function

we call liftP. The liftP function takes a function over values and “lifts” it to produce a

function over promises; e.g., lifting a function of type T→ U produces a function of type

P〈T〉 → P〈U〉, where P〈T〉 represents a promise for a value of type T. The effect of this new

function is the same as the original, except that it accepts and returns promises instead

of values. When called, the new function subscribes to all input promises and returns

output promises. Once all input promises have been fulfilled, the new function calls the

original function with their values; the return values of this call are then used to fulfill the

output promises. This is exactly the work of a scheduling function. Thus, liftP allows us

to generate scheduling functions for methods implemented by a single function.

We define the term method activation as a single execution of a method: what starts

with scheduling the method and ends when all output promises are resolved. Although
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a method activation is a computation and does not have concrete representation in our 

system, it is useful to think of it as an entity. Like promises, activations are elements in 

our reactive program, each representing the execution of a certain method with certain 

inputs which produced certain outputs. And, just as we associate every variable with a 

promise history, so may we associate every constraint with a sequence of activations, the 

activation history. The activation history represents every activation of any method of the 

constraint, ordered by the time they were scheduled. The last activation in the activation 

history, known as the current activation, represents the activation currently responsible for 

enforcing the constraint.

3.1.3 Constructing the Reactive Program

The reactive program is generated incrementally in response to edits to the variables 

of the property model. The very first edit, and therefore the beginning of the reactive 

program, occurs as variables are initialized according to the property model’s specification. 

Subsequent edits correspond to editing operations triggered in response to events in the life 

of the GUI. The property model responds to each edit by generating a plan for enforcing the 

constraints of the system, as described in Section 2.2.2. It then schedules methods of the 

plan in a valid execution order. Scheduling a method involves three steps: first, the current 

promise for each input variable is retrieved; second, the method’s scheduling function is 

invoked, passing in the retrieved promises as arguments; and third, each promise returned 

by the function is added to the end of the corresponding output variables’ promise history, 

thereby becoming the current promise for that variable.

Some methods of the plan may not need to be scheduled, because executing them is 

known to have no effect. Given a method m belonging to constraint c, if the current 

activation of c is an activation of m, and if the inputs of m remain unchanged since that 

activation, then we may assume that the constraint c is already enforced by m. Thus, the 

methods which must be scheduled are those not selected in the previous generation, and 

those whose inputs have changed since the previous generation. The selection of methods 

for execution is explored further in Section 4.5.
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After all methods have been scheduled, the property model has completed its response 

to the edit; the property model is free to accept other edits while method execution proceeds 

asynchronously. As input promises are fulfilled, method activations perform their work and 

fulfill their output promises. In this way, the constraints of the system will eventually be 

enforced.

The property model’s response to an edit, planning and scheduling methods, is atomic—

editing operations are queued if planning and scheduling for prior edits have not been 

completed. After the response, every variable which will receive a new value because of 

the edit has been given a promise for that value. Should some other code request the value 

of one of these variables, it will receive the promise for the updated value, regardless of 

whether or not its calculation has completed. Thus, the results of any two equal sequences 

of edits will always be the same reactive program, regardless of the differences in time 

intervals between the edits in each sequence. If all methods of the constraint system are 

referentially transparent, then so is the reactive program.

3.1.4 The Reactive Program Graph

As described above, the life span of our constraint system may be characterized as 

a sequence of edits, each followed by an update in which the constraints of the system 

are enforced. We refer to these successive updates as generations of the system. The 

solution graph describes dependencies between variables for a single generation, but not 

the dependencies that may arise between generations.

To capture the dependencies over the lifespan of the GUI, we define the reactive program 

graph. The nodes of the graph consist of promises and activations. The graph contains a 

directed edge from every promise to every activation taking the promise as input, as well 

as an edge from every activation to every promise it produced as output. Although the 

entire graph is simply a DAG, it is illustrative to visualize it in layers stacked on top of each 

other: one layer for every generation of the constraint system, containing all activations 

and promises generated while solving the constraint graph during that generation.

By way of example, Figure 3.4 shows the reactive program graph of one possible se-
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Figure 3.4: A reactive program graph based on the shipping constraint system. Rectangles
represent promises; circles represent method activations. Nodes from the same generation
are grouped together in layers, which are ordered by time along the y-axis.

quence of edits in the shipping form example. Promise nodes are labeled by the variable

to which the promise is assigned; activation nodes are labeled by the method which was

executed. Each label is sub-scripted with the generation in which it occurs. Generation 1

shows that the constraint system was initially solved using the plan {C,E,G}. This plan

generates new promises for the variables z, v, w, p, and c, as indicated by the nodes sub-

scripted with 1. Variables x, y, d, and m retain their initial values given when the property

model was defined as indicated by the nodes sub-scripted with 0.

Generation 2 is the result of editing variable w. This triggers an update producing the

plan {C,F, I}, which gives new promises to variables p, c, and m. Variable v did not receive

a new promise; therefore, activation F2 uses promise v1, which is the current promise for

v, as input. Similarly, activation I2 uses promise d0, which is the current promise for d.

Because the inputs to method C are unchanged, it does not need to be scheduled in this

generation.

27



Generation 3 is the result of editing variable v. This does not alter the plan; however,

all methods have at least one changed input, and thus must be scheduled. Note that

activations in this generation use promises from both previous generations.

The reactive program graph provides a clear visualization of the flow of data over the

lifetime of the application. We imagine it in three-dimensional space: each generation

laid out in its own plane, stacked on top of the previous generation. Arranging the nodes

so that promises for the same variable are directly over one another reveals the promise

history for each variable as a vertical column. Arranging method activations for the same

constraint similarly reveals the activation history for each constraint. Viewing the graph

in this arrangement from above, we see only the current promise for each variable and

the current activation for each constraint. Such a “top-down” view of the graph found in

Figure 3.4 may be seen in Figure 3.5. Once all activations are complete and all promises

fulfilled, then this is the view the GUI will make visible to the user.

p3

m3c3

d0

I3

w2

v3
F3

x0

z3

y0

C3

Figure 3.5: A “top-down” view of the reactive program graph from Figure 3.4. This view 
shows the most recent activation for each constraint and the most recent promise for each 
variable.

3.1.5 The Resulting GUI

As mentioned in Section 2.1, variables of the property model are connected to the view

through data bindings. A variable publishes its value every time it changes; a binding 

subscribes to these notifications and updates the View when they occur. In this way the

results of the property model are made visible in the GUI.

A variable can obtain a new value when a promise in its promise history is fulfilled.
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Often it is the current promise, but in general a variable’s promise history may contain

several pending promises which can be fulfilled in any order. The view should reflect the

most current value of a variable, which is the value of the last fulfilled promise in the

variable’s promise history. Therefore, when a promise of the promise history is fulfilled,

the variable will publish the promise’s value as its own value unless a later promise in the

promise history has already been fulfilled.

Consider again the “top-down” view of the reactive program graph shown in Figure 3.5.

We may imagine that promises which are pending are transparent, so that for each variable

we see the topmost fulfilled promise. As the reactive program’s execution proceeds, we can

see its progress as more recent promises become updated, resulting in new values for the

variable. This is the view reflected in the GUI.

We call a variable pending or fulfilled depending on whether its current promise is

pending or fulfilled, respectively. It is helpful to the user to know whether the View shows

a pending value that might change, or a value that will not change until an edit occurs.

To this end, for each variable we define a property named pending which is true when the

variable is pending and false when it is fulfilled. This property publishes its value in the

same way a variable does, and it is thus suitable for binding to the View.

Figure 3.6 shows the shipping form GUI as it appears just after Generation 3 in Fig-

ure 3.4: the activation I3 has completed, F3 is running, and C3 is scheduled. The promises

c3, p3, and m3 are pending, and therefore the drop-down list for the shipping class reflects

the value of c2 and the text box for price the value of p2. These elements will be updated

when p3 and m3 are fulfilled.

To give a different appearance to GUI elements whose corresponding variables are

pending, we used a binding that updates the element’s CSS class based on the variable’s

pending property; we then used a CSS stylesheet to attach a different background color

and add a “spinning” graphic to elements with the appropriate class.

Note the work required by the programmer to get this advanced GUI behavior: define

the view, the constraint system, and the data bindings. From these specifications, shown
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Figure 3.6: The shipping form after Generation 3 of Figure 3.4, while activation F3 is still 
running.

in part in Section 3.5, a property model derives a GUI implementation which schedules 

asynchronous computations, remains responsive while the computations are running, and 

gives notifications of their progress and results. Not only that, but the implementation 

guarantees that any sequence of edits will always produce the same results, no matter how 

quickly (or slowly) those edits occur.

3.2 Operations and Commands

To this point, the only editing operation we have considered is the assigning of a new 

value to a single variable. However, in certain cases more complex editing operations may 

be required. For example, we may wish to assign values to multiple variables as a single 

operation, without updating the property model between assignments. We may also wish 

an assignment to be a modification of a previous value of a variable, e.g., in the case of 

incrementing a counter. This section examines how we may generalize editing operations 

so that they may be included in the reactive program. We refer to this generalization 

simply as an operation of the property model.

3.2.1 Operations in the Reactive Program

We define an operation of the property model to be a dataflow function, like a method 

of the constraint system. As Section 2.2.1 describes, a dataflow function is a computation 

whose inputs and outputs are variables of the constraint system. Of all the variables in the 

property model, a dataflow function reads only its inputs and writes to only its outputs,

30



writing to each output only once. Operations are scheduled for execution in the same

manner as methods. Specifically, each operation is represented by a scheduling function

whose parameters are promises for input variables and which returns promises for output

variables. Once the operation’s input promises are fulfilled, the work of the operation may

commence, leading to the fulfillment of its output promises.

Operations differ from methods in their intended purpose. The purpose of a method

is to enforce a constraint; after the method has executed, the constraint is assumed to be

satisfied. In general, the purpose of an operation is to carry out an action in response to

a user event. In particular, an operation does not enforce a constraint; after an operation

has executed, constraints that use the output variables of the operation are assumed no

longer to be satisfied after the operation. In other words, the output of an operation is an

edit of the property model. Thus, the constraint system must be solved immediately after

scheduling an operation.

As shown in Figure 3.3, the operation and the methods scheduled by the constraint

system constitute a transition from one consistent state to the next. The construction

of this transition is atomic. Once an operation is accepted by the property model, no

other code that could affect the property model may execute until the operation has been

scheduled, a new plan for the constraint system has been calculated, and the necessary

methods of that plan have been scheduled. Once the transition is complete, the property

model is ready to respond to new events.

An operation may serve many purposes in a property model. For example, we can

represent a variable assignment as a constant operation—i.e., an operation that always

yields the same output—with no inputs and a single output. We can set multiple variables

at once using an operation with multiple outputs. We can also perform incremental updates

by reading a variable’s value as input, altering it, and writing it back. (This requires

accessing the prior value of a variable, which is discussed in Section 4.1.) Other variations

are possible as well, such as using the value of one variable to decide what to write to

another variable.
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Because the scheduling of an operation is atomic, operations themselves may be consid-

ered atomic: it is impossible that between the reading of the inputs and the writing of the

outputs some other process may alter any variables. Scheduling the operation immediately

results in the output promises being assigned to their variables. Therefore, any subsequent

alterations will be forced to come after the output of the operation in the promise history.

Not all operations are editing operations: we may create an operation with no output

variables. Such an operation would presumably use the values of its inputs to perform

some task unrelated to the GUI—e.g., submit data to a server. By performing this task

as an operation we ensure that the values of all inputs to the operation are taken from

the same consistent state. In fact, as a rule we restrict the reading of variable values by

code to operations. In this way, we can be sure no code will make the mistake of using

inconsistent variable values. In terms of state transitions, an operation with no outputs is

considered a “self-loop”, i.e., a transition from a state back to itself.

As an example of operations, let us return to the shipping form of Figure 2.1. As

presented in Chapter 2, a set operation is invoked by a data binding every time the user

changes an element of the View bound to a variable. Because these operations happen

so frequently, rather than generating unique labels for each one, any set of a variable is

labeled as E (for “edit”) in the reactive program graph. These operations have no inputs

and a single output.

Let us add to the shipping form example an operation that submits the form to a server

for processing, perhaps to place a shipping order. We will label this operation J. Assume

the only values required by the server are the shipping class and distance. Thus J is an

operation whose inputs are c and d; it has no outputs.

Furthermore, as an example of an operation with both inputs and outputs, let us add to

the shipping form a “distance calculator” used to calculate the distance between two U.S.

cities. The GUI for such a calculator can be seen in Figure 3.7. It contains drop-down lists

for selecting the departure and arrival cities. We may add to the property model variables l

(for “leaving”) and a (for “arriving”) to hold these values. Clicking the “Calculate” button
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causes the application to calculate the distance between the selected cities and assign the

result to the distance variable d of our existing property model. If we label the operation

that performs this as K, we may describe it as d← K(l, a).

Figure 3.7: The GUI for a distance calculator. Clicking the button causes the application
to calculate the distance between the selected cities.

Note here the difference between an operation and a constraint. A constraint between

l, a, and d would define an invariant requiring that d always equals the distance between l

and a. This is not the desired behavior; the user may choose to ignore l and a and edit d

directly. An operation allows us to enforce the dependency between l, a, and d only upon

request.

Figure 3.8 shows the reactive program graph for a hypothetical execution of this GUI.

As with Figure 3.4, Generation 1 is created as the property model initially solves the

constraint system to create a consistent state. Generation 2 is created in response to a

modification of the arrival city by the user, resulting in the executing of a set operation.

Because there are no constraints using a, executing this operation has no effect beyond

updating a.

Generation 3 is created when the user clicks the “Calculate” button, thereby executing

operation K. This operation reads the current values of l and a and outputs a new value

to d. The property model responds to this edit by solving the constraint system, resulting

in fresh activations of methods G, E, and C.
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Figure 3.8: The reactive program graph showing operations in the shipping form exam-
ple. Rectangles represent promises; circles represent activations: white circles are method
activations, shaded circles are operation activations. Nodes from the same generation are
grouped together in generations, which are ordered by time along the y-axis.

Generation 4 is created when the user submits the form, thereby issuing operation J.

This operation reads the current value of variables c and d. However, it has no effect on

the variables property model. Thus, the state immediately after Generation 4 is identical

to the state immediately after Generation 3.

The execution of operation J in Generation 4 receives as input the promises for c and

d from the previous generation. These promises may still be pending: both K and G are

likely to involve asynchronous server calls which may need time to complete. However, if

either of these promises are pending, J will wait until they are ready; it will not attempt to

use the current values of c and d. We may contrast this behavior with the auto-complete

text box discussed in Section 1.1, which generated inconsistent behavior when an operation

was submitted before all dependencies had been updated.
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3.2.2 Operations as Commands

Methods of the constraint system are scheduled automatically as the property model 

solves the constraint system in response to an edit. However, operations are not scheduled 

unless requested. Such a request is made through an additional property model construct 

known as a command.

A command is simply a function which can be invoked in response to an event. As 

such, it is similar to an event handler in the traditional event-driven programming model. 

However, whereas a traditional event handler generally represents a response to a View-

related event, such as a key press or a mouse-button click, a command represents a response 

to a View-Model-related event. These View-Model events are defined by the programmer, 

and represent actions which may be taken by the user. For example, the set command for 

a variable represents the ability of the user to edit that variable.

A command can execute arbitrary code. For example, Chapter 4 discusses how we 

can use commands to alter the property model itself, adding or removing variables and 

constraints. However, we require that any interaction with variable values take place inside 

an operation: only an operation may read from or write to variables. Further, we require 

that scheduling of an operation be the last thing a command does, to avoid any structural 

changes to the property model after the operation has been scheduled. To enforce these 

requirements, we define the return value of a command to be an operation. The operation 

returned by a command will immediately be scheduled by the property model; this is the 

only means of scheduling an operation. Of course, a command may be a constant function, 

in which case it is represented simply as an operation.

We refer to View-related events as user events and to View-Model-related events as 

logical events. One way to define a binding is as a translation from user events to logical 

events—mapping, e.g., mouse moves and key presses to actions in the View-Model. Thus, 

a full description of an edit would be as follows. First, the user performs some input 

action, such as a key press. A binding translates the user event into a logical event: a set 

command for a variable. The command itself does nothing but return an operation with
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no inputs and a single output. This operation is scheduled, causing the constraint system

to be solved and corresponding methods to be scheduled. This whole process is atomic.

We may now more accurately describe the life of a property model as a sequence of

commands. The guarantee provided by a property model is that any sequence of commands

will generate the same reactive program, regardless of the timing of those commands.

3.3 Detecting Unreachable Program Elements

Up to this point we have described a property model as if it stored every promise of

a promise history and every activation of an activation history. This is unnecessary, as

once a promise is no longer the last promise in the history, it is no longer reachable and

therefore no new tasks may be scheduled for it. It is also undesirable as it would result

in a linear growth in program memory. Therefore, we consider here when elements of the

reactive program may be released and their resources collected.

We define a program element (i.e., a promise or activation) to be live when its value

(if a promise) or execution (if an activation) can affect the GUI, and dead otherwise. As

mentioned previously, commands may have side effects which affect program state; for

this reason, we must always assume commands to be live. However, the methods of the

property model do not have side effects; the only external effect they have is fulfilling

output promises. Promises themselves may affect program state only if their values are

propagated by bindings to the view. We define a promise to be visible if, when fulfilled, its

value may be propagated to the view. A promise is visible when all more recent promises

in the same promise history are still pending.

Just because a promise is not visible does not mean it is dead; it may still have de-

pendencies which are visible. We can use the reactive program graph to trace all the

dependencies of a program element. This leads us to the following definition: a program

element is live if and only if there is a path in the reactive program graph from that element

to a command or a visible promise.

Promises which are dead may be discarded. Activations which are dead may be un-

scheduled so that they will no longer respond to the fulfillment of their input promises,
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then discarded.1 Thus, while new program elements are added to the “top” of the reactive

program graph in response to edits, old program elements may be removed from the “bot-

tom” of the graph after they transition from live to dead. In this way, memory usage can

be generally kept constant. Note that, in practice, it is not actually necessary to perform

graph searches to determine dead elements. Our implementation uses a simple reference

counting scheme in which promises keep track of their subscribers; when a promise looses

all subscribers it dies and may be discarded.

There are still two ways in which memory usage by a property model may grow

unchecked. The first may occur when there are methods which run exceedingly slow.

Our approach to binding requires that promises be preserved until a more recent promise

has been fulfilled. Thus, repeated invocations of slow methods could add new unfulfilled

promises without rendering any old program elements dead. In general, if methods are

taking so long to complete that this is an issue, it seems likely there are other problems

the GUI needs to address. However, if desired we could eliminate this potential memory

leak with an alternate binding approach in which only the most recent promise in each

history is visible. In this way, even adding unfulfilled promises will result in dead program

elements that may be disposed.

The second way in which memory may grow unchecked is if there are methods which

begin execution and never terminate, even when they die. This is a drawback of our decision

not to have the property model directly involved with offloading work to, e.g., other threads:

because the property model is unaware of them, it cannot halt them. The best we can do

in this case is allow a method to detect when it dies. Our promise implementation defines

an event that occurs when the promise dies. Thus, for example, a method which intends

to initiate work on a separate thread may register a callback for this event with its output

promises. If all output promises are dead, the method itself is dead, and may thus go

about halting the thread so that its resources may be released. This task is well suited to

1Note that not all promise implementations support unsubscribing; we use our own promise implemen-
tation which does.
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a library implementation; however it is outside the scope of the property model.

3.4 Failure in an Activation

A method activation executes arbitrary user code, and thus is subject to, e.g., resource

allocation failures, network failures, exceptions, etc. We can equate all these different error

states with a failure to terminate, since the end result is the same: the activation’s output

promises are never fulfilled. From the property model’s perspective, a promise which is

pending behaves as if it is in an error state. No computations which depend on a promise

may proceed while it is pending. Therefore, the outputs of an activation will be pending as

long as any of its inputs are pending. If a method activation fails to terminate, its output

promises remain stuck in this error state forever.

If a variable’s most recent promise is stuck in a pending state, then the variable itself

will be as well. To recover from this error state, a variable must be provided with a new

promise that can be fulfilled. For example, Figure 3.9 shows a representation of the reactive

program graph from Figure 3.4 in which activation G1 fails. Because of this failure, p1 and

c1 will remain pending forever, as will their dependencies. After Generation 1, p, c, w, v,

and z are all stuck in the pending state.

In Generation 2, we make an edit to variable w, resulting in promise w2. Assuming

this promise is fulfilled, w is no longer pending. This also makes w1 invisible and (because

the only promise reachable from w1 is itself) dead. This generation has new activations of

F and I. However, because F2 must wait on v1, and I2 must wait on c2, these activations

never begin execution. Thus, variables p and c remain stuck in the pending state, as do

v and z, which are unchanged from the previous generation. Not only that, m becomes

stuck in the pending state as well. This shows how the pending state naturally spreads:

any variable whose value depends on a pending variable becomes pending itself.

In Generation 3, we make an edit to variable v, resulting in promise v3. Again assuming

this promise is fulfilled, activations C3 and F3 have no pending inputs and they may execute;

once F3 finishes, I3 may execute as well. If these three activations complete successfully,

then all pending variables will have their most recent promise fulfilled, meaning they will no
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Figure 3.9: Activation failure in the reactive program. Rectangles represent promises;
circles represent activations. The black circle represents an activation failure. The shaded
rectangles represent promises that will never be fulfilled. The shaded circles represent
methods that never run due to pending inputs.

longer be pending. Also, promises z1, v1, p1, p2, c1, c2, m0, and m2 will become invisible. A

graph search will show that they are also dead, as are activations C1, E1, G1, F2, and I2. Of

these, only G1 had begun execution; the remaining activations may simply be unscheduled.

At this point, all effects of the failed activation have been covered up. There are no

longer any pending promises or scheduled activations. The state of the property model

is exactly the same as it would have been if G1 had succeeded. We were able to recover

from the error state without re-executing G, the method that caused the failure. This

illustrates the resilience of property models: even if a method is poorly written so that

it at times crashes or never terminates, the property model continues to operate, and the

GUI it governs stays responsive and in a well-defined state.

We can make the following guarantee about the consistent behavior of a property

model: a property model is deterministic upon success. Here is what this means. Suppose

we have a property model in which any method may fail non-deterministically, and we
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apply a sequence of editing operations. There may be many possible outcomes for the

property model depending on which method activations succeed and which ones fail. For

any variable, there may be outcomes in which the variable is fulfilled (and thus its current

value is known), and others in which it is stuck as pending (and does not have a current

value). However, in every possible outcome in which the variable is fulfilled, it will have

the same value.

Although forever-pending serves well as an error state for the property model, it may

be helpful to the user to differentiate between a pending state and an error state. A GUI

should provide notification when a method has failed so that the user can stop waiting for a

value, and start to take action to correct the error. To enable such notifications, a method

may indicate failure by rejecting its output promises; a rejected promise is treated as a

pending promise that will never be fulfilled. If any input promise of a method activation

is rejected, the activation rejects all of its output promises, thus spreading the error state

the same way that the pending state spreads.

We call variables whose current promise has been rejected stale. Stale variables are

in an invalid state and will require a new value before they can be used as input to any

methods. To assist Views with indicating when a variable is stale, we define a property

named stale which is true exactly when the variable is stale. This property is suitable

for binding to the View; thus, we may alter the appearance of elements bound to stale

variables, just as we did elements bound to pending variables in Figure 3.6.

When a method rejects a promise, it may provide—as an alternative to the promise

value—an error value. In stale variables, the error property contains the error value with

which the current promise was rejected. This property can also be bound to the View,

providing a mechanism by which a method can communicate the cause of failure. By

reflecting variables’ stale and error properties, rich feedback on errors is easy to automate.

3.5 Implementing Property Models with HotDrink

The above sections describe how a property model implements the View-Model of a

GUI. To give a clear picture of how a programmer might define and use a property model,
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we present an implementation of the shipping example of Figure 2.1 using HotDrink, our

JavaScript property models library.

To implement GUI behavior with HotDrink requires three basic steps: defining the

View, defining the View-Model, and defining the bindings between the two. The View is

implemented by the HTML Document Object Model (DOM), and is usually defined using

HTML. The View may also include JavaScript code that creates or manipulates elements

of the DOM. The View-Model is implemented as a property model, and is defined by

a specification of the variables, constraints, and commands which compose it. Bindings

connect the variables and commands of the property model to elements of the DOM.

Bindings may be written in JavaScript or embedded in the HTML defining the View.

We first examine the process of defining the property model, beginning with method

implementation. Figure 3.10 shows the code for three of the methods of the constraint

system, D, F , and H, following the method definitions given in Section 2.2.1. So that it

easy to match the code with the method definitions, the three functions are simply named

D, F , and H. The parameter names match the names of the corresponding variables,

though this is not required.

1 funct ion D( x , y , z ) { return x∗y∗ z ; }
2

3 funct ion F ( v , w) {
4 var p = new hd . Promise ( ) ;
5 p e r f o r m S h i p p i n g C l a s s Q u e r y ( v , w,
6 funct ion ( c ) { p . r e s o l v e ( c ) ; } ) ;
7 return p ; }
8

9 funct ion H( c , m) {
10 var p1 = new hd . Promise ( ) , p2 = new hd . Promise ( ) ;
11 p e r f o r m S h i p p i n g R a t e Q u e r y ( c ,
12 funct ion ( r ) {
13 var d = Math . f l o o r (m/d ) ;
14 p1 . r e s o l v e ( d ) ; p2 . r e s o l v e ( r ∗d ) ; })
15 return [ p1 , p2 ] ; }

Figure 3.10: The JavaScript definitions for three methods of the shipping form constraint
system.
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As explained in Section 3.1.2, HotDrink uses a “lifting” mechanism to convert functions

over values to functions over promises, thereby creating the scheduling functions needed

for these methods. This avoids boilerplate code for methods that do not perform any

asynchronous computations, allowing them to be written as functions whose inputs and

outputs are values; for example, method D is written on line 1 as a function whose inputs

and output are numbers.

The lifting mechanism works for functions whose inputs and outputs are any mixture

of values and promises. The function F on line 3, for example, takes values as inputs but

returns a promise. It uses an auxiliary function named performShippingClassQuery (not

shown) to look up a shipping class for the given volume and weight, presumably using an

Ajax call. Once the Ajax call returns, the provided callback fulfills the output promise,

thus completing the method’s duties.

The function H on line 9 also takes values as inputs and returns promises as outputs.

This function shows our convention for returning multiple return values using arrays. Like

function F, function H uses an auxiliary function to perform an Ajax call, this time to

retrieve the shipping rate for the given shipping class. It then uses that value to calculate

the maximum distance that can be shipped for a price less than m, and the actual price of

the shipping.

Figure 3.11 shows how we define the various elements of a property model. These are

created as fields in a special object called a component. Components are discussed in detail

in Chapter 6. Briefly, a component of the property model serves as a container of property

model elements such as variables and constraints, and also as a namespace, mapping names

to its members. Components are generally created using a ComponentBuilder factory object.

This temporary object is created in line 1. Its member functions are invoked on lines 2–15.

The call to component member function on line 16 finalizes the construction.

ComponentBuilder’s members define an embedded DSL for creating elements of a prop-

erty model. The variables function on line 2 creates the property model’s variables; the

parameters to this function are the variable names and a map of initial values. Variables are
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1 var model = new hd . ComponentBui lder ( )
2 . v a r i a b l e s ( ”d , c , m, p , v , w, x , y , z , l , a” ,
3 {x : 25 , y : 50 , z : 40 w : 10 , d : 1500})
4 . method ( ”v , y , z → x ” , A)
5 . method ( ”v , x , z → y ” , B)
6 . method ( ”v , x , y → z ” , C)
7 . method ( ”x , y , z → v ” , D)
8 . c o n s t r a i n t ( ”v , w, c ” )
9 . method ( ” c → [ v , w] ” , E)

10 . method ( ”v , w → c ” , F )
11 . c o n s t r a i n t ( ”d , p , m, c ” )
12 . method ( ”d , m → [ c , p ] ” , G)
13 . method ( ”c , m → [ d , p ] ” , H)
14 . method ( ”d , c → [m, p ] ” , I )
15 . command ( ”K” , ” l , a → d” , K)
16 . component ( ) ;
17

18 var pm = new hd . Proper tyMode l ( ) ;
19 pm . addComponent ( model ) ;
20 pm . update ( ) ;
21

22 window . a d d E v e n t L i s t e n e r ( ” r e a d y ” , funct ion ( ) {
23 hd . c r e a t e D e c l a r e d B i n d i n g s (
24 component , document . body ) ; } ) ;

Figure 3.11: JavaScript that creates the property model for the shipping form example
with HotDrink.

initialized in the order declared, which is also the initial priority ordering of the variable’s

stay constraints. To create a constraint, constraint is first called to establish the constraint’s

variables, then repeated calls to method define its methods. Creating a method requires a

signature that defines the method’s inputs and outputs, and the method’s function. Simi-

larly, a command is defined using the command function with a name for the command, a

signature, and the command’s function.

Once the component is created, it is added to the property model, as shown on line 19.

The call to update on line 20 enforces all constraints, creating the first generation of the

reactive program. Finally, the property model’s variables are bound to the View. In a web

application, elements of the view are not available until the Document Object Model, has

been built. Thus, line 22 registers a function for callback when the DOM is ready. This
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1 C l a s s :
2 <s e l e c t data-bind=”bd . v a l u e ( c ) ”>...</ se lect>
3

4 Volume :
5 <input type=” t e x t ” data-bind=”bd . num( v ) ”/>
6

7 P r i c e :
8 <input type=” t e x t ” data-bind=”bd . num( bd . rw ( p , m) ) ,
9 bd . c s s C l a s s ( p . pending , ’ pend ing ’ ) ,

10 bd . c s s C l a s s ( p . s t a l e , ’ s t a l e ’ ) ”/>
11

12 <span data-bind=”bd . t e x t ( p . e r r o r ) ”></span>

Figure 3.12: Example HTML containing binding declarations for the shipping form exam-
ple.

function creates the data bindings by calling createDeclaredBindings with two arguments:

a component and a node of the DOM—here, document.body representing the entire body

of the HTML document. HotDrink searches the contents of the specified node, looking for

HTML elements containing binding specifications. It then attempts to bind according to

found specifications, using the given component to look up any names it encounters.

Implementing the View is done entirely apart from HotDrink, and it is therefore beyond

the scope of this document. However, to illustrate binding specifications, Figure 3.12 shows

excerpts of the HTML that creates the View of the shipping form; the full HTML is a bit

long to include. Binding specifications are given as data-bind attributes of tags; their value

is JavaScript code that customizes the binding for the tag.

HotDrink contains several functions for specifying common bindings; we use some of

these in Figure 3.12. The call to bd.value on line 2 specifies that the variable c should

be bound to the value of the select box widget; the call to bd.num on line 5 specifies

that the variable v should be bound to the value of the text box widget, and that the

string representation of the value should be converted to a number in the property model.

(Bindings can include operations such as data conversion, formatting, and validation.) The

call to bd.cssClass on line 9 specifies that the CSS class pending should be added to the
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element whenever the pending property of the variable p is true. The call to bd.text on

line 12 specifies that p’s error property should be bound to the contents of the span element.

As can be seen on lines 8–10, a tag can have multiple binding specifications, allowing it

to reflect multiple values. This particular binding is for the price text box, which reads from

the variable p but writes to the variable m. Rather than creating two separate bindings, we

bind to a construction, created by the bd.rw function, that will read from p and write to m.

The bd.num function again specifies the need to convert between a string representation in

the View and a numeric representation in the property model.

The code in Figures 3.10, 3.11, and 3.12, along with the method definitions and HTML

that were not shown, are a complete implementation of the shipping form example using

HotDrink.
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4. EXTENSIONS TO THE CORE PROGRAM∗

The previous chapter describes the fundamental operation of a property model and how

it threads methods and operations together into a single reactive program. This section

describes several additional features that extend this basic model. These features have

been developed to address specific issues that have arisen while using property models.

4.1 Accessing Prior Values

As stated previously, the life of a property model proceeds like a state machine, tran-

sitioning from one consistent state to another. That transition begins with a operation

making changes to variables of the property model, and is completed with the constraint

system enforcing constraints so that a consistent state is created. As in any state machine,

transitions between states depend both on the input—in this case the values provided by

a command—and the current state of the property model. We have already encountered

one way in which the previous state affects the next: inputs which are not also outputs

of the next generation are taken from the previous generation. This mechanism can be

generalized: a method can use the values of variables from the previous generation even

when those variables are outputs of the next generation.

While creating a new generation, we make the following distinction: the prior value of

a variable is its value before the new generation; the current value is its value after the

new generation. In cases where the new generation makes no changes to a variable, the

variable’s prior and current value are the same. Generally, a method activation is passed

the current value of each of its inputs. However, some methods may need to access the prior

∗Portions of this chapter are reprinted with permission from “Generating reactive programs for
graphical user interfaces from multi-way dataflow constraint systems” by Gabriel Foust, Jaakko
Järvi, and Sean Parent. Proceedings of the 2015 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, pp. 121–130, Copyright 2015 by ACM.
http://dx.doi.org/10.1145/2814204.2814207

Portions of this chapter reprinted with permission from “Responsive and Consistent User Interfaces with
Multi-Way Dataflow Constraint Systems” by Gabriel Foust, Jaakko Järvi, and Sean Parent. Under review
for inclusion in Computer Languages, Systems and Structures (COMLAN), Elsevier.

46

http://dx.doi.org/10.1145/2814204.2814207


values of inputs even when the variable is updated by the new generation. For example,

a method may wish to access the prior and current value of a variable to calculate the

difference between the two; or a method may wish to access the prior value of one of its

outputs to use as a “hint” in creating the output.

Methods in a property model can specify whether they want the current or prior value

of each input variable, and they will be passed the appropriate promise when the method

is scheduled. The reactive program graph gives a clear interpretation for current and

prior values. The current value is always represented by the current promise (the topmost

element of the promise stack); the prior value by either the promise immediately below the

current promise, if the variable is written to in the new generation, or the current promise,

if it is not. In the latter case, the current and prior values are represented by the same

promise.

As an example of a constraint accessing a prior value of a variable, consider the ship-

ping form example shown in Figure 2.1; specifically, the constraint between the volume,

width, height, and length of a package. In our previous specification of this constraint

(see Section 2.2.1), setting volume resulted in an update to just one dimension with the

other two dimensions were used as inputs. An alternative formulation of this constraint

might distribute a change in volume proportionally among all three dimensions. This

new constraint consists of the old method v←xyz, which we previously labeled D, and a

new method J : (x, y, z) ← (rx′, ry′, rz′) where x′, y′, and z′ are the previous values of,

respectively, x, y, and z, and r = 3
√
v/(x′y′z′).

Because no method may output to a prior value, the use of prior values by a method

has no effect on the plan of the constraint system, nor on the valid execution orders of a

plan. Thus, we add no edges to the constraint graph or the solution graph for uses of prior

values. However, we do add edges to the reactive program graph between promises for

prior values and the activations that use them, representing additional data dependencies.

These dependencies are identical to dependencies for current values: they restrict the

method from executing until the promise is fulfilled, and provide paths by which program
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Figure 4.1: Reactive program graph for a constraint that uses prior values. Nodes x′i, y
′
i,

and z′i represent the values of, respectively, the variables x, y, and z prior to Generation i.

elements may be considered relevant. Figure 4.1 shows the reactive program graph for an

activation of our new method, L. We do not specify the generations that x′i, y
′
i, or z′i come

from; we know only that they are from some prior generation.

Figure 4.2 illustrates the use of prior values in HotDrink. Figure 4.2a shows the im-

plementation for method J: a function which takes four values and returns (an array of)

three. This function gives no indication that any of its parameters are prior values. To

see that they are, we must look to the method signature. Figure 4.2b shows an excerpt

from a property model definition—the same property model from Figure 3.11 except that

methods A, B, and C have been replaced with method J from Figure 4.1. The exclama-

tion marks in the signature mark these parameters as being prior values. Otherwise, the

method definition follows the same pattern as the ones we have seen previously.

The use of prior values enables the programmer to express a richer class of constraints.

For example, suppose we have variables n and t, representing, respectively, a numeric value

and an incrementing timer. Assume these variables are set together to indicate the value

of n at time t. We may define a constraint which calculates i, the integral of n, like so:

i ← i′ + n′(t − t′). However, it should be noted that the use of prior values introduces

synchronization into the system: a method that depends on a prior value cannot execute

before the prior value has been computed. Also, the use of prior values can lead to cascading

failures, in which failure in one generation leads to failure in the next. We will examine

this problem, and a possible solution, in Section 4.4.
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funct ion J ( x , y , z , v ) {
r = Math . c b r t ( v /( x∗y∗ z ) )∗1 0 0 ;
return [ r ∗x , r ∗y , r ∗ z ] ; }

(a) Method implementation

var model = new hd . ComponentBui lder ( )
...

. c o n s t r a i n t ( ”v , x , y , z ” )
. method ( ” ! x , ! y , ! z , v → [ x , y , z ] ” , J )
. method ( ”x , y , z → v” , D)

...
. end ( ) ;

(b) Property model definition

Figure 4.2: Implementation of prior values in HotDrink.

4.2 Managing In-Place Modifications

Up to this point, we have assumed a value semantics for our reactive program: variable

values are copied to the method, return values are copied back. In some cases, however,

value semantics is impractical. For example, a variable in an image-processing application

may contain data for a photographic image; such data may be large enough that we wish

not to make frivolous copies of it. In such cases, it may be desirable to simply modify the

variable’s existing value rather than produce a new one. We refer to this as an in-place

modification of the variable.

The ability to reference prior values offers a simple solution to in-place modifications.

Rather than storing a value in a variable, we store a reference to a value. That reference

is provided to a method as an input; the method modifies the value being referenced,

then returns the same reference. This is a natural extension to our existing property

model semantics, especially in languages which use reference semantics (e.g., JavaScript).

However, in order to allow in-place modifications and still guarantee correctness, we must

make sure that no method is allowed to modify a value until all other methods that rely
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on its current value have completed.

To accomplish this, we create an extra dependency in the reactive program graph that

we refer to as a barrier. A barrier may be described as an activation of a dataflow function

that takes one or more parameters and always returns the first one. In this case, we are

using the dataflow function, not to perform any computation, but for its synchronizing

effect: it effectively “holds” the first parameter until all other parameters are ready. We

refer to this first parameter as the target of the barrier.

As an example, we revise the constraints from the shipping form constraint system of

Figure 2.2a so that the package class variable c is an in-place variable. Figure 4.3 shows an

example reactive program graph from this system. The graph contains only the constraints

that contain c. Notice that we have altered the methods which output to c so that they

also read the prior value of c in order to modify it.

Generation i schedules an activation of method F which writes to c. When preparing

to schedule a dataflow function which could modify a variable in-place, we create a single

barrier targeting the current promise for that variable. In this case, we create the barrier

Bi targeting the prior value of c, represented in the figure by c′i. The other inputs to this

activation are any promises that depend directly on the target—that is, any promise whose

value is calculated by reading the value of the target. The output of the barrier, ĉi, is

used as the input for Fi. Although the value of promise ĉi will be identical to that of c′i,

the promise itself will not be fulfilled until all other inputs to Bi have been fulfilled. This

ensures that no modifications will be made to the value referred to by c′i until all direct

dependencies are resolved.

When a barrier is created, we need to know which promises other than the target should

be inputs. To this end, for each variable that may be modified in-place we keep a list of

promises we call the dependency list. The promises of the dependency list are those that

depend directly on the current promise for the variable. Every time the current promise is

used as an input to an activation, the output promises for that activation are added to the

variable’s dependency list. For example, in Generation i, ci is used as input to an activation
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ĉi

Fi

d′i

pi mi

Ii

Ei

di+1

pi+1 mi+1

Hi+1

Bi+2

v′i+2

wi+2

ci+2
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Figure 4.3: Reactive program graph using barriers. Barriers and their outputs are shaded.

of I; therefore the outputs of that activation, pi and mi, are added to the dependency list

for c. Similarly, in Generation i+1 activation Hi+1 uses ci as input, so promises pi+1 and

di+1 are added to the list.

Generation i+ 2 contains an activation of a method, this time G, that writes to c;

therefore we must create a new barrier for c. This barrier takes ci as its target, and all

promises on the dependency list for c—that is, pi, mi, pi+1, and di+1—as additional inputs.

Its output, ĉi+2, is used as the input to activation Gi+2. This activation outputs a new

promise for c. Whenever a new promise is created for a variable, its dependency list is

reset.

The drawback of in-place modifications is that barriers introduce more synchronization.

They require waiting not only for the target to be calculated but also for all promises which
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depend directly on the target. So that these dependencies are not unnecessarily added to

the reactive program graph, we require that variables which may be modified in-place be

identified when defining the property model. We call such variables in-place variables.

Once a programmer indicates a variable as in-place, the property model handles all

aspects of creating and enforcing its barriers. When an activation uses an in-place variable

as input, all outputs of the activation are added to the variable’s dependency list. Any

method that reads the prior value and writes the current value of the variable is assumed to

perform an in-place modification. This is a conservative assumption; the property model

does not examine the code of the method to see whether an in-place modification actually

occurs. When such a method is scheduled, if the variable’s dependency list is non-empty,

a barrier is created as described above.

With the exception of the target, a barrier does not actually use the value of its inputs;

it needs the promises only to determine when all computation directly depending on the

target has finished. For this reason, the barrier does not distinguish between these promises

being fulfilled or rejected: in either case the computation using the target is no longer

running. Furthermore, the edges corresponding to these inputs are not used to determine

whether program elements are live. If one of these input promises becomes irrelevant, it is

simply removed as an input to the barrier. In Figure 4.3 the edges corresponding to these

inputs are drawn as dotted lines instead of dashed.

It is possible for an in-place variable to be used in methods that do not modify it

in-place. As mentioned above, if a method reads the current value of the variable, any

output promises of that method are added to the dependency list. If a method outputs

to the variable without reading its prior value, that method must create a fresh value for

the variable; therefore, no barrier is created. As usual, when the method’s output promise

is generated, the dependency list for the variable is reset. This is appropriate, since there

will be no in-place modification of the prior value of the variable.

If a method reads the prior value of the in-place variable without writing to it, behavior

varies depending on where the method lies with respect to the dataflow of the current plan.
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If the method lies downstream of some method that writes to the in-place variable, it is

assumed that the method generates a fresh value for the variable; therefore, no action

is required.1 If the method does not lie downstream of some method that writes to the

in-place variable, then the use is treated like a use of the current value, i.e., all output

promises of the method are added to the variable’s dependency list.

A problem can arise if a plan contains one method which reads the prior value of the

variable, another method which performs an in-place modification of the variable, and

the two methods are not topologically ordered by the plan. The problem is that the

method which reads the prior value must be executed before the method which performs

the in-place modification. Enforcing this execution order requires that extra dependencies

be added to the solution graph; in theory, these dependencies could cause cycles in the

solution graph. We currently have no solution for this, but note that the situation cannot

arise if the only methods which read the prior value of an in-place variable are those that

modify the variable in-place.

4.3 Optional Constraints

As discussed in Section 2.2.2, stay constraints are considered optional constraints: they

may or may not be enforced. Which stay constraints are enforced depends on the current

constraint hierarchy: the constraint system attempts to enforce stay constraints that are

higher in the hierarchy. This ability for a constraint to be optional is useful for constraints

in general, not just for stay constraints.

As an example, consider again the “Distance Calculator” shown in Figure 3.7. This

calculator contains a potential dependency between the city from which the package leaves,

l, the city at which the package arrives, a, and the shipping distance, d. As presented in

Section 3.2, the user must click the “Calculate” button to indicate that the dependency

between variables l, a, and d should be enforced.

Instead of using a button, we can use the constraint hierarchy to determine whether

1If the method performs an in-place modification of the variable, the property model is invalid. It is
impossible to read the prior value of a variable after an in-place modification.
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this dependency should be enforced. If the user edits a or l, we assume that we should

enforce the dependency to calculate d. However, if the user edits d directly, we should not

enforce the dependency and simply take the value entered by the user. To specify this

behavior, we make the constraint between l, a, and d optional and add it to the constraint

hierarchy. Whether or not the constraint is enforced depends on its relation to the other

constraints in the hierarchy.

Stay constraints are automatically promoted to the top of the hierarchy whenever their

corresponding variables are edited. Other optional constraints do not have an automatic-

promotion event (though they may still be promoted manually using the touch operation

discussed in Section 2.2.2.) Most commonly, we want to promote optional constraints in

conjunction with stay constraints. For that reason, we allow the defining of touch depen-

dencies. A touch dependency is a non-symmetric relationship between two constraints. If

there is a touch dependency from constraint c1 to constraint c2 (written c1 ⇒ c2), then

any time constraint c1 is promoted, constraint c2 is promoted just beneath it.

Touch dependencies are considered transitive: a touch dependency c1 ⇒ c2 together

with a touch dependency c2 ⇒ c3 imply a touch dependency c1 ⇒ c3. When a constraint

is promoted, we calculate the transitive closure of all touch dependencies, then promote

those constraints immediately beneath the originally promoted constraint. If the transitive

closure includes more than one constraint, the promoted constraints keep the same relative

ordering.

As an example of this, consider a hypothetical constraint hierarchy: in order from

highest to lowest, (a, b, c, d, e, f). Now suppose we have defined touch dependencies d⇒ a,

d ⇒ f , and f ⇒ c. If d is touched, the resulting hierarchy would be (d, a, c, f, b, e).

Constraint d is on top as it was the constraint which was touched. Next come the touch

dependencies of d—namely a, c, and f—in their relative order from the original hierarchy.

Finally are the remaining constraints, also in their relative order from the original hierarchy.

Figure 4.4 shows a reactive program graph for the shipping example (with the distance

calculator) in which we replace the command K with an optional constraint, call it C. This
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constraint consists of the single method d← K(l, a). Notice that K is reused as a method

here; the only difference between a command and a method is that a method is part of a

constraint. Let us add touch dependencies from the stay constraints for l and a to C so

that C will be promoted whenever these stay constraints are promoted.

p1

m0c1

d1

G1 K1

l0

a0

l, C, a,m, d, c, p

p2

c2 m2

I2E2 c, l, C, a,m, d, p

p3

m3

d3

H3E3 m, c, l, C, a, d, p

p4

c4

d4

G4 K4

a4

E4 a,C,m, c, l, d, p

Generation 1

Generation 2

Generation 3

Generation 4

Hierarchy

Figure 4.4: A program graph containing an optional constraint.

Generation 1 of the figure begins by solving the constraint system. The constraint

hierarchy is shown to the right of the generation, in order from highest to lowest. Stay

constraints are referred to by the name of their corresponding variable—e.g., a refers to the

stay constraint for a. In Generation 1, C has a higher priority than the stay constraints

for d, p, or c; therefore it is enforced, as evidenced by the inclusion of K in the program

graph.

Generation 2 is the result of an edit to variable c. This edit promotes the stay constraint
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for c. However, C is still greater than the stay constraints for p or m; thus, it remains

enforced as it was in Generation 1.

Generation 3 is the result of an edit to variable m. This edit promotes the stay con-

straint for m. At this point, every possible plan that preserves C leaves out a stay constraint

that is greater than C. Thus, the constraint is unenforced. Although the graph does not

make this explicit, we can see H writing to d, overwriting the value that came from K.

Generation 4 is the result of an edit to variable a. This edit promotes the stay constraint

for a. However, the touch dependency a ⇒ C means that C is promoted to just beneath

a. Now, C is high enough in the hierarchy to be enforced, resulting in the execution of K.

4.4 Promise Forwarding

Section 3.4 discusses how failure of an activation spread through the reactive program

graph, leaving all dependent variables in a stale state: they received promises for new

values, but those promises will never be fulfilled. In order to recover from this error state,

a stale variable must be assigned a new promise and that new promise must be fulfilled.

This approach has the advantage of making the property model deterministic upon success.

However, the recovery work may include assigning variables the same values they al-

ready have, and thus seem odd, or even pointless, to the user. Take as an example the

reactive program graph in Figure 4.5a. This graph comes from a property model with

three variables, x, y, and z, and a single constraint with two methods, z ← M(x, y) and

(x, y)← N(z). In the second generation, a failure in method N results in rejected promises

for x and y. This means that both of these variables must be given new values in order to

recover from this error.

Consider this example from the user’s perspective. In Generation 2 the user edits

variable z, resulting in a failure. He attempts to correct the error by providing a new value

for y, resulting in Generation 3. At this point it may be unclear to the user as to why

failure persists: both x and y have valid values, but method M will not execute.

Figure 4.5b shows another example, this time using a self-loop. This graph comes from

a property model with two variables, w and v, and a single constraint with two methods,

56



x1

y1

M1 z1

x2

y2

N2 z2 E2

y3

M3 z3E3

(a) Failure persists due to multiple stale variables.

v1 M1 w1

x1

E1

v2 N2 w2 E2

v3 N3 w3 E3

(b) Failure persists due to a “self-loop.”

Figure 4.5: Reactive program graphs demonstrating how failure may propagate further
than expected. The black circles represent failed activations; shaded rectangles stale vari-
ables; and shaded circles activations that never run due to stale inputs.

w ← N(v) and v ← M(w, v′) Here, method M fails in Generation 2, resulting in a stale

promise for v. The user attempts to fix this error by providing a new value for w. However,

because method N depends on the previous value of v, this method cannot run. The only

way to recover from this error is to provide a new value for v.

Both of these examples may be confusing because the View reflects an old value of the

variable that cannot be used because the current value of the variable is a stale promise.

While it is true that, as discussed in Section 3.4, the View may provide visual feedback

indicating that the variable is stale, the concept of a stale variable may be unfamiliar to

the user; the user may not understand why he must edit the variable when it already seems

to contain a valid value.

We may address this problem by allowing rejected promises, when used as input to

a method, to assume the value of the most prior promise of the promise history which

has been successfully fulfilled. We refer to such a promise as a forwarded promise. For

example, in Figure 4.5a the promise x2, when used as input by M3, would take the value

of x1, thereby allowing the method to execute. Similarly, in Figure 4.5b the promise v2,
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when used as input by N3, would take the value of v1.

There are two cases when the use of forwarded promises may affect the execution of the

reactive program. The first is when a variable goes from being the output of an activation

in one generation to being a source variable (a variable which is not the output of any

activation) in the next generation. This case is illustrated by variable x in Figure 4.5a.

The second is when a variable is used as both input and output by the same method. This

case is illustrated by variable v in Figure 4.5b.

Forwarded promises, while useful, complicate the programming model; we have yet

to determine all the ramifications of this feature when used in combination with other

features such as detecting irrelevant variables as discussed in Section 4.6. Further, it is

important to note that the use of forwarded promises removes the guarantee of a property

model being deterministic upon success. In Figure 4.5a, the use of a forwarded property

would allow us to successfully calculate all values in Generation 3; however, the values of

variables x and z could be different than they would have been if N2 had succeeded. We

consider it the programmer’s job to determine whether the loss of this guarantee makes up

for the improvement in usability. In our current implementation, the property model may

be configured to either use or not use forwarded promises; it is possible that in the future

this could be further refined as a per-variable option.

4.5 Adjusting Variable Priorities

As mentioned in Section 3.1.3, not every method of the plan must be scheduled for exe-

cution. The only methods which must be scheduled are those which were not selected in the

previous generation, and those whose inputs have changed since the previous generation.

If a method is scheduled, its outputs are considered changed; it follows inductively that all

methods downstream of an edited variable in the solution graph will necessarily be sched-

uled. Ideally, these would be the only methods scheduled: these are the methods affected

by the edited value. However, if the constraint hierarchy (described in Section 2.2.2) is

determined solely by editing order, it is possible that other methods may require scheduling

as well.
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Figure 4.6: An example of confusing method selection. Figure (a) shows a constraint
system; figures (b), (c), and (d) show plans corresponding to a sequence of edits. The last
edit, shown in (d), results in the selection of method m1; this is confusing, as it is a change
which is not downstream from the edit.

As an example of such a situation, consider the constraint system shown in Figure 4.6a.

This hypothetical system consists of four variables, v1, v2, v3, and, v4, as well as two

constraints, C1 = {m1,m2} and C2 = {m3,m4}. Figures 4.6b, 4.6c, and 4.6d show the

plans resulting from three successive edits to this system. In the plans of Figures 4.6b and

4.6c, all methods requiring scheduling lie downstream of the edited variable. In the plan

of Figure 4.6d, however, method m1 is newly selected, so it must be scheduled, yet this

method is not downstream of the edited variable. This may lead to GUI behavior that is

confusing to the user: the edited value does not contribute to the inputs of method m1,

making it unclear why it should be executed.

Considering this scenario in closer detail, the edit of v1 in Figure 4.6b causes the stay

constraint for v1 to be promoted to the top of the hierarchy. We say variable v has a higher

priority than variable w if the stay constraint for v is higher than the stay constraint for w

in the constraint hierarchy; thus, the edit of v1 gives that variable the highest priority. At

this point, if we were to consider the constraint C1 in isolation, we would expect method

m1 to be selected (m1 preserves v1, which has a higher priority). We may describe this

informally by saying that C1 “prefers” method m1. In Figure 4.6c, the edit of v4 gives it

the highest priority. In order to preserve v4, we must select m4 for the plan; this, in turn,
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Input: S = 〈V +M,E〉, a solution graph
Input: P , a sequence of variables sorted in descending priority order

Output: P ′, a sequence of variables sorted in updated priority order

Local: Q, a priority queue of variables sorted according to P
Local: D, a map from graph nodes to integer (representing in-degree)

1 Algorithm: AdjustPriorities

2 foreach m ∈M do
3 D[m]← in degree(m)

4 foreach v ∈ V do
5 D[v]← in degree(m)
6 if D[v] = 0 then enqueue(Q, v)

7 while ¬empty(Q) do
8 v ← dequeue(Q)
9 push(P ′, v)

10 foreach m ∈M | (v,m) ∈ E do
11 D[m]← D[m]− 1
12 if D[m] = 0 then
13 foreach v′ ∈ V | (m, v′) ∈ E do
14 D[v′]← D[v′]− 1
15 if D[v′] = 0 then enqueue(Q, v′)

Algorithm 4.1: Enforce topological ordering on a constraint hierarchy

forces the selection of m2. Even so, variable v1 still has a higher priority than v2, so C1

still “prefers” m1. Thus, when v3 is edited in Figure 4.6d, allowing either m1 or m2 to be

selected, it is m1 that is chosen.

We can prevent scenarios such as this one by adjusting the constraint hierarchy after

the constraint system is solved so that each method selected in the plan becomes the

“preferred” method of its constraint. To do this, we adjust the priority order so that it is

topologically ordered with respect to the solution graph; that is, if there is a path from v

to w in the solution graph, then v has a higher priority than w. If a method m is selected

for the plan, this adjustment will ensure that each of its inputs will have a higher priority

than any of its outputs. Because every other method of the constraint will output to at

least one of the inputs of m, m will be the “preferred” method.

60



Algorithm 4.1 shows how this adjustment is performed. The algorithm takes a list

of variables, sorted by priority, and a solution graph; it returns a new list of variables

representing the adjusted priority order. The algorithm is based on a straightforward

approach to topological sorting: repeatedly picking a source node—i.e., a node with no

incoming edges—then removing it and all its edges from the graph. However, when picking

a source node, the algorithm always selects a method if there is one, and, if not, the variable

with the highest original priority.

To understand the effects of this algorithm, first consider the case where the solution

graph contains no edges. In this case, the algorithm reduces to picking variables in priority

order—i.e., the new priority order is identical to the original. Now suppose there is an edge

from v to w. This means w cannot be added to the new priority order until v is picked and

removed from the graph. If v has a higher priority than w, then this restriction is irrelevant:

v would be picked first regardless. If w has a higher priority than v, then this restriction

will force the new priority of w to be just below that of v. Generalizing, this algorithm

decreases the priority of every variable until it is less than all of the variable’s ancestors

in the solution graph. The relative ordering of all variables with the same ancestors in the

solution graph remains unaffected by this adjustment.

One important property of this adjustment is that it has no effect on the current plan;

that is, planning again immediately after the adjustment results in the same plan. The

adjustment only affects the subsequent plan resulting from the next edit. It ensures that

the only differences between that plan and the current plan lie downstream in the solution

graph of a newly promoted constraint. As a result, we may be sure the only methods of

that plan needing to be scheduled are those lying downstream in the solution graph from an

edited variable or a newly promoted optional constraint (see Section 4.3). Another result

of this adjustment is that removing a constraint from the constraint system has no effect

on the current solution; that is, planning again immediately after removing a constraint

results in the same plan. This property is beneficial when dealing with changes to the

structure of the constraint system as discussed in Chapter 6.
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4.6 Detecting Irrelevant Variables

Section 2.2.3 describes the various dataflow graphs made available by the property 

model. These graphs allow the creation of generic GUI algorithms, parameterized over 

data dependencies. This section presents one such algorithm: detecting and reporting 

irrelevant variables. While this basic algorithm has been presented in previous work [25], 

it had to be revisited and redesigned so that it works with asynchronous property models; 

we have also added some improvements in this second iteration.

4.6.1 Contributing and Relevant Variables

As discussed previously, methods of the constraint system should only affect the pro-

gram state through their return values. However, commands may use data of the property 

model to perform application-specific tasks. In the shipping form example, submitting the 

form invokes a command that reads the shipping class and distance variables’ values. We 

refer to variables used by commands to perform these application-specific tasks as output 

variables. The purpose of a GUI may be described as helping the user synthesize values 

for these output variables. By this definition, variables are only useful insofar as they can 

be used to calculate a value for an output variable. This insight is the basis of a reusable 

algorithm for automatically enabling/disabling widgets of the GUI.

Determining which variables may have been used in calculating the value of an output 

variable requires an analysis of the current data dependencies in the GUI. This analysis will 

yield more accurate results if done using the evaluation graph. Recall from Section 2.2.3 

that the evaluation graph is a subgraph of the solution graph in which we remove any edge 

(v, m) where the activation of method m (in the generation to which the graph applies) 

made no use of the value of v. Thus, whereas the solution graph reveals the potential 

dependencies in one generation, the evaluation graph reveals the actual dependencies en-

forced.

Rather than creating a new graph that is nearly identical to the solution graph, we 

implement the evaluation graph by assigning labels to the input edges—edges from a vari-
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able to a method—of the constraint graph. There are three possible labels for an edge.

The used label indicates that the variable was used by the method in the generation to

which the graph applies. The unused label indicates that the variable was not used by the

method. The unknown label indicates that it is not currently known whether the variable

was used or not because the method was not scheduled or has not finished executing. If

desired, the actual evaluation graph could be constructed by making a copy of the solution

graph, excluding any edges labeled unused. Alternatively, we may use the solution graph

and simply disregard any edges labeled unused.

We define two classifications for variables. A contributing variable is one whose value

was used to calculate the value of an output variable. More specifically, a variable is

contributing if and only if there is a path in the evaluation graph from that variable to an

output variable. Thus, whether or not a variable is contributing may be determined by

simply examining the solution graph and corresponding edge labels.

A relevant variable is one whose value could potentially be used to calculate the value of

an output variable. More specifically, a variable is relevant if and only if there is some plan

of the constraint system in which there is a path from the variable to an output variable

which does not use any edges labeled unused. Note that, by definition, a contributing

variable must also be relevant.

To determine whether a non-contributing variable is relevant requires searching for a

path from the variable to an output variable in the constraint graph, such that the path

does not use edges labeled unused, nor two methods from the same constraint. Once a

path to an output variable is found, we fix that path as a partial solution and solve the

rest of the constraint system to ensure a plan exists that contains the path.

The above two algorithms are run after every solution to the constraint system. The

results of the algorithms are made available as variable properties named contributing and

relevant. The task of the property model is only to set these properties; how the properties

are used is entirely up to the GUI programmer. Like the pending and stale properties,

these properties may be bound to the View in order to alter its appearance. For example,
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widgets may be shaded when they are non-contributing or disabled entirely when they are 

irrelevant.

Neither of the above two algorithms distinguish between edges labeled used and edges 

labeled unknown. This is based on the assumption that an edge should be treated as used 

until it is known for sure that it is unused. In this way we avoid, e.g., disabling widgets 

simply because we are unsure yet whether they are relevant.

4.6.2 Creating the Evaluation Graph

To determine the label for an edge from a variable to a method in the constraint graph, 

we must decide whether the activation which corresponds to the method made use of 

the value of the promise which corresponds to the variable. When this activation is first 

scheduled, this edge will be labeled unknown. Later, when we are able to determine if the 

value of the promise was used, we may change the label accordingly.

We use a simple test to decide whether the value of a promise was used: if the activation 

subscribed to the promise, we assume that it was used; otherwise, we assume it was unused. 

This approach requires the least effort on the part of the method implementer. However, 

two details must be taken into account. First, a method is not required to subscribe to a 

promise right away. A promise may be considered used as soon as a method subscribes to 

it; however, it may not be considered unused until the method has completed execution. 

To determine that a method has completed, we watch its output promises; once all output 

promises are fulfilled, we may consider the method finished and determine whether any of 

its inputs remain unused.

In principle, the execution of the methods of each generation produces a new evaluation 

graph. In practice, however, only the evaluation graph for the most recent generation 

seems useful. While it may be helpful to update the View with older variable values in 

order to show progress, disabling widgets based on old evaluation graphs is more likely to 

be frustrating than helpful. Thus, though we continue to gather more accurate information 

about which promises were used by activations, we ignore this information unless it affects 

the current activation (defined in Section 3.1.2).
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In fact, because it is common for each successive evaluation graph to share many ac-

tivations with the previous evaluation graph, we maintain a single evaluation graph that

is continuously updated. By following the guidelines given above, we get the following

approach.

• When a method is scheduled, first remove from the evaluation graph any method of

the same constraint, along with any edges which use it. Then add to the evaluation

graph the new method with its edges, labeling each input edge unknown.

• When a current activation subscribes to a promise, label the corresponding edge of

the evaluation graph as used.

• When all output promises of a current activation are fulfilled, if any input edges of

the corresponding method are labeled unknown then change them to unused.

Three practical issues arise in implementation. The first is that there are times when

the approach of taking “subscribing” to mean “using” may be inconvenient. For this

reason, we provide an alternative API by which a scheduling function can explicitly mark

a promise as used or unused. If this API is used, then the property model will use the label

provided over the label derived from promise subscriptions.

The second is that a promise may be used as input to multiple activations. Because a

promise has only a single usage flag, it would be impossible to determine which activations

used the promise and which did not. To solve this issue, when a promise is needed as

input for an activation we create a duplicate promise to give the activation. This duplicate

promise subscribes to the original promise so that as soon the original promise is fulfilled,

the duplicate promise can be fulfilled with the same value. In this way we ensure every

usage is represented by a unique promise, and therefore has a unique usage flag.

The third is that, because the label unknown is treated as used, it is possible to get

“flickering”—in which the value changes back and forth—in the contributing or relative

property. The situation in which this occurs results from the following three steps. First,

65



a method does not use one of its inputs; the corresponding edge is labeled unused, which

causes a property to be false. Second, the method is scheduled to be executed again;

the edge label is changed to unknown, allowing the property to become true. Third, the

method executes and again does not use the input; thus, the edge label is once again set

to unused, causing the property to return to false.

We can minimize the effects of such “flickering” by ensuring that any methods that can

be executed are executed before the View is updated. For example, in the above scenario,

the “flickering” property is set to false in the second step when the method is scheduled. If

we were to update the View to reflect this change immediately, the corresponding widget

would be enabled. However, if the scheduled method’s inputs are available, the method

can be executed before updating the View. Executing the method causes the property to

be set to true again. Now updating the View has no effect: the widget remains disabled.

Effectively, this throttles updates to the View, preventing a rapid succession of updates.

This throttling effect can be made even stronger by using a timer to wait a certain period

of time—say, a fraction of a second—before updating the View.
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5. OPERATIONAL SEMANTICS∗

Here we provide operational semantics defining the behavior of a property model in 

response to edits. Our motivation for this formalism is to provide a precise description of 

the concepts discussed informally in Chapter 3 and Section 4.6. Because the purpose of 

these semantics is to clarify intent, we include certain elements which may be unnecessary 

in an actual implementation. For example, these semantics build an actual representation 

of the reactive program graph; in practice, this graph does not need to be reified into a 

concrete data structure.

5.1 About the Formalism

This section defines the formalism and the conventions we use in presenting it. It also 

explains how to interpret the evaluation rules that follow.

5.1.1 Notational Conventions

Sets are represented by capital letters, e.g., X, or by listing individual elements inside 

curly braces, e.g., {x1, ..., xn}.

Sequences are represented by lowercase letters with a bar over them, e.g., ȳ, or by listing 

individual elements in order inside parentheses, e.g., (y1, ..., ym). Similarly, a sequence type 

is denoted using parentheses: the type (T ) refers to a sequence where each element is type 

T . We use the ++ operator to append to sequences.

(x1, ..., xn) ++ (y1, ..., ym) = (x1, ..., xn, y1, ..., ym)

The identity element for this operation is the empty sequence which is denoted “()”.

x̄ ++ () = () ++ x̄ = x̄

Elements of a product type, or tuples, are represented by listing the individual elements 

inside angle brackets, e.g., 〈x, y, z〉. A product type is denoted using angle brackets: the

∗Portions of this chapter reprinted with permission from “Responsive and Consistent User Interfaces
with Multi-Way Dataflow Constraint Systems” by Gabriel Foust, Jaakko Järvi, and Sean Parent. Under
review for inclusion in Computer Languages, Systems and Structures (COMLAN), Elsevier.
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type 〈T,U, V 〉 refers to a tuple in which the first element is of type T , the second of type

U , and the third of type V .

Function types are written using an arrow, e.g., T → U . Function application is denoted

using parentheses, e.g., f(x). We use the notation [x 7→ t]f to define a function which is

identical to f for all inputs except x, which it maps to t.

We represents a graph as a tuple, 〈N,E〉, where N is the node set and E is the edge

set. Each edge is represented as a pair, 〈n,m〉, where n,m ∈ N . We assume the following

graph operations as primitives.

outs(〈N,E〉, n)

This function returns the set {n′ ∈ N | 〈n, n′〉 ∈ E}.

add node(〈N,E〉, n)

This function returns the graph 〈N ∪ {n}, E〉.

add edges(〈N,E〉, E′)

This function returns the graph 〈N,E ∪ E′〉.

topological sort(G,N ′)

This function returns a sequence consisting of the nodes in N ′ sorted topologically

according to G.

5.1.2 Symbols and Values

For this formalism, we represent variables, constraints, methods, promises, and activa-

tions as symbols—that is, values whose only characteristic is identity. We use the function 

newsym to generate unique symbols. We define the types Variable, Constraint, Method, 

Promise, and Activation as sets of symbols representing the elements suggested by their 

name.

We use a definition function to map these symbols to structural information indicating 

how they are related. We assume this function is overloaded so that it returns information 

specific to its argument type. Specifically, the definition function supports the following 

signatures.
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Variable→ (Promise)

A variable symbol is mapped to its promise history : a sequence of promise symbols

indicating the promises that have been made for this variable over the lifetime of the

program, ordered from least to most recent.

Constraint→ (Activation)

A constraint symbol is mapped to its activation history : a sequence of activation sym-

bols indicating the activations of methods of this constraint over the lifetime of the

program, ordered from least to most recent.

Method→ 〈Constraint,Function, (Variable), (Variable)〉

A method symbol is mapped to a tuple of information: the constraint to which the

method belongs, the scheduling function for the method (a function of the underlying

language), the input variables in the order expected by the scheduling function, and

the output variables in the order returned by the scheduling function.

Activation→ 〈Method, (Promise), (Promise)〉

An activation symbol is mapped to a tuple of information: the method invoked for the

activation, the input promises in the order passed to the method’s scheduling function,

and the output promises in the order returned by the method’s scheduling function.

Structural information does not change. We may expand the definition function as new

elements are added to the system, and we may append new promises and activations to

histories. However, the relationships between existing elements will not be redefined.

We use a valuation function to map symbols to their current values. Unlike the defini-

tion function, the value given by the valuation function may change many times over the

life of the program. The valuation function is also overloaded, supporting the following

signatures.

Variable→ Value

A variable symbol is mapped to a value of the underlying programming language. This

is the current value of the variable, as presented by the View.
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Promise→ 〈Value, StatusFlag,UsageFlag〉

A promise symbol is mapped to a tuple of information: a value of the underlying

programming language (or the undefined value “·” if the promise is pending), a flag in-

dicating the current status of the promise with respect to its value, and a flag indicating

whether the promise has been used by an activation.

〈Variable,Method〉 → UsageFlag

An input edge 〈v,m〉 of the constraint graph is mapped to a flag indicating whether

the value of v was used during the most recent execution of m. This value is the edge’s

label in the evaluation graph, as discussed in Section 4.6.2.

The types StatusFlag and UsageFlag are enumerated types defined below. A StatusFlag

indicates the status of a promise: whether it is waiting on a value (pending) or the value 

has been supplied (fulfilled). A UsageFlag indicates whether the value of a promise was used 

by an activation (used), was not used (unused), or whether it is too early to tell (unknown).

StatusFlag = {pending, fulfilled}

UsageFlag = {unknown, used, unused}

5.1.3 Evaluation Environment

For this formalism, we define a property model as a collection of eight elements. We 

define these elements below and assign to each a meta-variable used to refer to the element 

in the evaluation rules.

GC = The constraint graph as defined in Section 2.2.3. The nodes of this graph

are variable and method symbols.

GS = The solution graph as defined in Section 2.2.3. The nodes of this graph are

variable and method symbols.

GR = The reactive program graph as defined in Section 3.1.4. The nodes of this

graph are promise and activation symbols.

π̄ = The variable priority assignment as defined in Section 2.2.2. This is rep-

resented as a sequence of variable symbols sorted from lowest to highest

priority.
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Λ = The modified variable set : a set of variable symbols representing all variables

modified by the current edit.

Γ = The definition function as defined in Section 5.1.2.

Σ = The valuation function as defined in Section 5.1.2.

∆ = The callback set as defined in Section 5.1.4.

A property model, then, is defined as a tuple, 〈GC,GS,GR, π̄,Λ,Γ,Σ,∆〉. Note that

the evaluation graph is not represented directly in the property model; rather, it may

be derived using the current solution graph and the labels provided for each edge by the

valuation function.

Evaluation rules will take one of three forms. A rule describing a purely functional (i.e.,

side-effect free) computation will appear as below.

Example-Pure-Function

premises

form |GC,GS,GR, π̄,Λ,Γ,Σ,∆ = result

The meaning of this rule is as follows: given a program matching the specified form in the

property model 〈GC,GS,GR, π̄,Λ,Γ,Σ,∆〉, if we can satisfy all specified premises, then we

may reduce our program to the specified result . Note that, for brevity, we will list only

those property model elements referred to by either the form or premises; the remaining

elements are assumed to be present but irrelevant.

The second form, used for rules describing a computation which modifies the environ-

ment, will appear as below.

Example-Side-Effect

premises

form |GC,GS,GR, π̄,Λ,Γ,Σ,∆→ result |GC
′,GS

′,GR
′, π̄′,Λ′,Γ′,Σ′,∆′

The meaning of this rule is as follows: given a program matching the specified form in the
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property model 〈GC,GS,GR, π̄,Λ,Γ,Σ,∆〉, if we can satisfy all specified premises, then we

may reduce our program to the specified result in the property model 〈GC
′,GS

′,GR
′, π̄′,Λ′,Γ′,Σ′,∆′〉.

Effectively, this means that the evaluation of the specified form causes the property model

element GC to change to GC
′, the element GS to change to GS

′, and so on. In the case

where evaluation produces no value (e.g., a void function), the result is given simply as the

undefined value “·”. Again, for brevity, we will list only those property model elements

referred to by either the form or premises.

The third form is defined in Section 5.1.4 below.

We use the following metavariables to represent values of the specified type.

v, w := Variable p, q := Promise

c := Constraint s := StatusFlag

a := Activation u := UsageFlag

m := Method

We use the following metavariables to represent values and functions of the underlying 

programming language.

t, o := Value f, g := Function

5.1.4 The Callback Set

These semantics require the ability to specify computations to happen asynchronously 

at some point in the future. The expected implementation for this is registering callback 

functions to be executed when a promise is fulfilled. However, to avoid specifying any 

particular implementation of promises, callback registration, or callback execution, in this 

formalism we use an abstraction: the callback set. This set contains an element for every 

computation that should happen later. Elements of this set are defined as a disjoint-union 

type, implemented as a tuple in which the first field is a tag identifying the element’s 

type. The remainder of the tuple stores the data needed by the computation, i.e., the 

computation’s closure. Below are the six different tuple types which compose this disjoint-

union type.

〈var, Promise, Variable〉
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Indicates that a promise has been assigned to a variable.

〈copy,Promise,Promise〉

Indicates that the second promise is a copy of the first promise.

〈running,Activation〉

Indicates that an activation is currently running.

〈input,Promise,Activation〉

Indicates that a promise is an input for an activation.

〈extern,Promise,Function〉

Indicates that some code external to the property model has registered a callback

function to be executed when a promise has been fulfilled.

〈lifted,Function, (Promise), (Promise)〉

Indicates the activation of a method implemented by lifting a function of the underlying

language.

The third form for evaluation rules specifies the evaluation of an element of the callback

set, as shown below.

Example-Callback

∆ = δ ∪∆′ premises

· |GC,GS,GR, π̄,Λ,Γ,Σ,∆→ result | ·GC
′,GS

′,GR
′, π̄′,Λ′,Γ′,Σ′,∆′

The meaning here is as follows: at any time when the system is not executing a program

for the property model 〈GC,GS,GR, π̄,Λ,Γ,Σ,∆〉, if the callback set ∆ contains an element

δ such that we can satisfy all specified premises, we may transition to the property model

〈GC
′,GS

′,GR
′, π̄′,Λ′,Γ′,Σ′,∆′〉. Notice that, in doing so, we are removing element δ from

the callback set, ensuring that the computation will not occur more than once. Again, for

brevity, we will list only those property model elements referred to by either the form or

premises.
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5.2 The Evaluation Rules

Here we present the evaluation rules, interspersed throughout the explanation of their 

meaning. The rules by themselves may be viewed in a continuous, uninterrupted form in 

Appendix A. The rules are organized into five sections: rules regarding edits to the property 

model, rules regarding scheduling and evaluating methods, rules regarding operations on 

promises, rules for callback operations, and rules for a function lifting mechanism.

5.2.1 Editing the Property Model

This first set of rules defines an API by which the external program can make edits to 

the variables of the property model. We define two functions for performing edits. The 

first is the touch function defined by the rule Touch. This function promotes a variable to 

the highest priority by removing it from its current position in the priority sequence and 

appending it to the end. The touched variable is also added to the modified variable set.

Touch

π̄ = v̄1 ++ (v) ++ v̄2 π̄′ = v̄1 ++ v̄2 ++ (v) Λ′ = Λ ∪ {v}

touch(v) | π̄,Λ→ · | π̄′,Λ′

The second is the set function which is defined by the rule Set. This function sets the

value of a variable, as well as promotes it to the highest priority. The value to be assigned

is represented as a promise. The work of adding the promise to the variable’s history is

delegated to an internal function, add promise, which is defined in Section 5.2.3

Set

touch(v) | π̄,Λ→ · | π̄′,Λ′ add promise(v, p) |GR,Γ,∆→ · |GR
′,Γ′,∆′

set(p) |GR, π̄,Λ,Γ,Σ,∆→ · |GR
′, π̄′,Λ′,Γ′,Σ′,∆′

An edit is defined as one or more calls to touch or set followed by a single call to update,

thereby making edits that affect multiple variables possible. The update function, defined

by the rule Update, responds to the edits by solving the constraint system: calculating a
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plan and scheduling its methods.

Update

GS
′ = plan(GC, π̄,GS,Λ) π̄′ = adjust(π̄,GS

′)

M = downstream many(Λ) |GS
′,Σ m̄ = topological sort(GS

′,M)

schedule(m̄) |GR,Γ,Σ,∆→ · |GR
′,Γ′,Σ′,∆′ Λ′ = {}

update() |GC,GS,GR, π̄,Λ,Γ,Σ,∆→ · |GC,GS
′,GR

′, π̄′,Λ′,Γ′,Σ′,∆′

This rule makes use of two functions defined elsewhere: plan and adjust . The function

plan calculates and returns a plan represented as a solution graph, as discussed in Sec-

tion 2.2.2. The required parameters for this function are the constraint system and the

current priority order; as a concession to our implementation, which uses an incremental

planning algorithm, we also pass as parameters the previous plan and the changed variable

set. The function adjust adjusts the priority order so that it is topologically ordered with

respect to the solution graph, as described in Section 4.5.

Once the plan has been calculated and the priorities adjusted, the internal function

downstream many, defined below, is used to collect all methods that lie downstream in

the solution graph of an edited variable. These are the methods that must be scheduled.

They are sorted topologically with respect to the solution graph, then scheduled using the

schedule function, which is defined in Section 5.2.2.

The rule Methods-Downstream defines the function downstream. This internal func-

tion returns all methods downstream of a single variable. The two rules Downstream-

Many and Downstream-Many-Empty define the internal function downstream many,

which simply maps downstream over a set of variables and returns a set containing the

combined results. These two functions are mutually recursive, and together they traverse

the entire downstream subgraph of their given arguments.
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Methods-Downstream

M = {m ∈ outs(GS, v) | Σ(〈v,m〉) 6= unused}

V = ∪m∈M outs(GS,m) M ′ = downstream many(V ) |GS,Σ

downstream(v) |GS,Σ = M ∪M ′

Downstream-Many

V = {v} ∪ V ′

M = downstream(v) |GS,Σ M ′ = downstream many(V ′) |GS,Σ

downstream many(V ) |GS,Σ = M ∪M ′

Downstream-Many-Empty

downstream many({}) |GS,Σ = {}

Note that the first premise of the Methods-Downstream rule specifies that the 

downstream traversal excludes any edges that currently have a value of unused. This 

reflects the fact that the input parameter corresponding to such an edge was not used 

during the last execution of the method, and therefore changes to that parameter are 

irrelevant.

5.2.2 Scheduling Methods

The next set of rules define the work necessary to schedule the selected methods of 

the plan. The rules Schedule-Methods and Schedule-Methods-Empty define the 

schedule function, which is the entry point for this operation; this function is called by 

update, which is defined in the previous section. This function recursively iterates over a 

sequence of methods that has been sorted topologically with respect to the solution graph. 

The rule Schedule-Methods defines the work done for each element of the sequence; the 

rule Schedule-Methods-Empty simply halts the recursion when the sequence is empty.
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Schedule-Methods

m̄ = (m) ++ m̄′ Γ(m) = 〈 , f, (v1, ..., vj), (w1, ..., wk)〉

∀ji=1 : Γ(vi) = (..., pi) duplicate((p1, ..., pj)) | Σ,∆→ (p′1, ..., p
′
j) | Σ′,∆′

f(p′1, ..., p
′
j) | Σ′,∆′ → (q1, ..., qk) | Σ′′,∆′′

add promise many((w1, ..., wk), (q1, ..., qk)) |GR,Γ,∆
′′ → · |GR

′,Γ′,∆(3)

reset(m) | Γ′,Σ′′ → · | Γ′,Σ(3)

make activation(m, (p′1, ..., p
′
j), (q1, ..., qk)) | Γ′,∆(3) → a | Γ′′,∆(4)

add to graph(a, (p1, ..., pj), (q1, ..., qk)) |GR
′ → · |GR

′′

schedule(m̄′) |GR
′′,Γ′′,Σ(3),∆(4) → GR

(3),Γ(3),Σ(4),∆(5)

schedule(m̄) |GR,Γ,Σ,∆→ · |GR
(3),Γ(3),Σ(4),∆(5)

Schedule-Methods-Empty

schedule(()) |GR,Γ,Σ,∆→ · |GR,Γ,Σ,∆

The scheduling of a single method involves several steps. The first step is to look up the

scheduling function, input variables, and output variables for the method. Next, the most

current promise for each input variable is retrieved. As described in Section 4.6, we must

duplicate these promises so that each input promise has its own usage flag; this is done using

the duplicate function, defined below. Now the scheduling function can be called, passing

the duplicated input promises and capturing the returned output promises. These output

promises are then added to the promise histories of their corresponding variables using the

add promise many function defined in Section 5.2.3. Once this has been done, the method

is scheduled; all that remains is some record-keeping steps performed by three functions

defined below. The function reset resets all usage flags for the constraint that contains the

method being scheduled. The function make activation initializes a symbol with the new

activation. And the function add to graph updates the reactive program graph for the new

activation. Finally, we have a recursive call to continue iterating through the sequence.

The duplicate function is defined by the rules Duplicate-Promises and Duplicate-
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Promises-Empty. This function recursively iterates over a sequence of promises, and

makes a duplicate promise for each. Rule Duplicate-Promises defines the work done to

duplicate a single promise. First, a new symbol is created for the duplicate promise and

its flags are initialized to pending and unknown. Then an element is added to the callback

set; this element is discussed further below. Finally, we have a recursive call to continue

iterating through the sequence. The rule Duplicate-Promises-Empty halts recursion

when the sequence is empty.

Duplicate-Promises

p̄ = (p) ++ p̄′ q = newsym() Σ′ = [q 7→ 〈·, pending, unknown〉]Σ

∆′ = {〈copy, p, q〉} ∪∆ duplicate(p̄′) | Σ′,∆′ → q̄ | Σ′′,∆′′

duplicate(p̄) | Σ,∆→ (q) ++ q̄ | Σ′′,∆′′

Duplicate-Promises-Empty

duplicate(()) | Σ,∆→ () | Σ,∆

The rule Duplicate-Promise-Fulfilled handles the callback element added by duplicate

once the original promise has been fulfilled. The rule specifies that the duplicate promise

is to be fulfilled using the value of the original promise.

Duplicate-Promise-Fulfilled

∆ = {〈copy, p, q〉} ∪∆′ Σ(p) = 〈t, fulfilled, 〉

Σ(q) = 〈·, pending, u〉 Σ′ = [q 7→ 〈t, fulfilled, u〉]Σ

· | Σ,∆→ · | Σ′,∆′

The rule Reset-Constraint defines the function reset, which resets the usage infor-

mation for the constraint containing a certain method, specified as a parameter of the

function. All edges of the constraint are guaranteed to be unknown except for the input

edges of the most recent method activated for the constraint. Thus, the function starts

by looking up the constraint for the passed method, then the most recent activation of
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a method of that constraint, then the method of the activation, and then the inputs of

the method. Finally, the function updates the value of all input edges of the method to

unknown.

Reset-Constraint

Γ(m) = 〈c, , , 〉 Γ(c) = (..., a) Γ(a) = 〈m′, , 〉

Γ(m′) = 〈c, , (v1, ..., vj), 〉 Σ′ = [∀ji=1 : 〈vi,m′〉 7→ unknown]Σ

reset(m) | Γ,Σ→ · | Γ,Σ′

The rule Make-Activation defines the function make activation which initializes the

symbol for a new activation. In addition to recording the structural information that

defines the activation, this function also adds an element to the callback set so that we can

update usage information once the activation is complete; the handling of this element is

defined by rule Activation-Completed in Section 5.2.4.

Make-Activation

a = newsym() Γ′ = [a 7→ 〈m, (p1, ..., pj), (q1, ..., qk)〉]Γ Γ′(m) = 〈c, , , 〉

Γ′′ = [c 7→ Γ′(c) ++ (a)]Γ′ ∆′ = {〈running, a〉} ∪ {〈input, pi, a〉 | 1 ≤ i ≤ j} ∪∆

make activation(m, (p1, ..., pj), (q1, ..., qk)) | Γ,∆→ a | Γ′′,∆′

Finally, rule Add-To-Graph defines the function add to graph. This function takes

an activation with its input and output promises and adds to the reactive program graph

the node and appropriate edges for the activation.

Add-To-Graph

GR
′ = add node(GR, a) GR

′′ = add edges(GR
′, {〈pi, a〉|1 ≤ i ≤ j})

GR
(3) = add edges(GR

′′, {〈a, qi〉|1 ≤ i ≤ k})

add to graph(a, (p1, ..., pj), (q1, ..., qk)) |GR → · |GR
(3)
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5.2.3 Variables and Promises

The next set of rules defines how promises are associated with variables, and how the 

variables are updated when promises are fulfilled. The rule Add-Promise defines the 

function add promise, which appends a new promise to the end of a variable’s promise 

history. Additionally, this function adds the promise as a node in the reactive program 

graph, and adds an element to the callback set so that the promise can potentially be used 

to update the variable when it resolves.

Add-Promise

Γ′ = [v 7→ Γ(v) ++ (p)]Γ GR
′ = add node(GR, p) ∆′ = {〈var, p, v〉} ∪∆

add promise(v, p) |GR,Γ,∆→ · |GR
′,Γ′,∆′

Rules Add-Promise-Many and Add-Promise-Many-Empty define the function

add promise many, that recursively iterates over two sequences, one of variables and one of

promises. The function adds each promise in the promise sequence to the corresponding

variable in the variable sequence using the add promise function.

Add-Promise-Many

v̄ = (v) ++ v̄′ p̄ = (p) ++ p̄′ add promise(v, p) |GR,Γ,∆→ · |GR
′,Γ′,∆′

add promise many(v̄′, p̄′) |GR
′,Γ′,∆′ → · |GR

′′,Γ′′,∆′′

add promise many(v̄, p̄) |GR,Γ,∆→ · |GR
′′,Γ′′,∆′′

Add-Promise-Many-Empty

add promise many((), ()) |GR,Γ,∆→ · |GR,Γ,∆

The element added to the callback set by add promise is handled in rule Variable-

Promise-Fulfilled. This rule specifies that once the promise for the variable’s value has

been fulfilled, the function maybe set var may be called.
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Variable-Promise-Fulfilled

∆ = {〈var, p, v〉} ∪∆′

Σ(p) = 〈 , fulfilled, 〉 maybe set var(v, p) | Γ,Σ→ · | Γ,Σ′

· | Γ,Σ,∆→ · | Γ,Σ′,∆′

The maybe set var function is defined in rules Maybe-Set-Var-Visible and Maybe-

Set-Var-Invisible. The former handles the case when the fulfilled promise is visible;

in this case, the value of the promise becomes the value of the variable presented by the

view, as defined by the valuation function. The latter handles the case when the promise

is invisible; in this case, no action is taken.

Maybe-Set-Var-Visible

Γ(v) = (p1, ..., pj , ..., pk)

pj = p ∀ki=j+1 : Σ(pi) = 〈 , pending, 〉 Σ(p) = 〈t, , 〉 Σ′ = [v 7→ t]Σ

maybe set var(v, p) | Γ,Σ→ · | Γ,Σ′

Maybe-Set-Var-Invisible

Γ(v) = (p1, ..., pj , ..., pk) pj = p ∃i : j < i ≤ k ∧ Σ(pi) = 〈 , fulfilled, 〉

maybe set var(v, p) | Γ, Σ → · | Γ, Σ

5.2.4 Promise and Edge Usage

This section defines the rules which determine when promises are assigned the used and 

unused usage flags, and also how those flags propagate to the edges of the constraint graph. 

Promises are always created with the unknown usage flag. As described in Section 4.6, 

a property model will automatically deduce whether or not a promise has been used. 

However, it is possible that the programmer may wish to override these rules and explicitly 

define the usage flag of a promise.

Rules Set-Usage and Set-Usage-Again define the usage function which can be used
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to explicitly set the usage flag of a promise. For these semantics, we assume the usage of

a promise may only be set one time. Rule Set-Usage defines the case when the usage

flag of a promise is unknown; in this case, the usage flag is assigned to the promise. Rule

Set-Usage-Again defines the case when the usage flag of a promise has not yet been set;

in this case the usage function has no effect.

Set-Usage

Σ(p) = 〈t, s, unknown〉 Σ′ = [p 7→ 〈t, s, u〉]Σ

usage(p, u) | Σ→ · | Σ′

Set-Usage-Again

Σ(p) = 〈t, s, u′〉 u′ 6= unknown

usage(p, u) | Σ→ · | Σ

If the programmer does not explicitly set the usage flag, it will be set to used when

the promise is subscribed to. The rules Subscribe-Unknown and Subscribe-Known

define the subscribe function which implements this behavior. Rule Subscribe-Unknown

defines the case when the promise subscribed to has an unknown flag; in this case, the flag

is changed to used. Rule Subscribe-Known defines the case when the promise subscribed

to has either a used or unused flag; in this case, the flag is left alone.

Subscribe-Unknown

Σ(p) = 〈t, s, unknown〉 Σ′ = [p 7→ 〈t, s, used〉]Σ ∆′ = ∆ ∪ {〈extern, p, f〉}

subscribe(p, f) | Σ,∆→ · | Σ′,∆′

Subscribe-Known

Σ(p) = 〈 , , u〉 u 6= unknown ∆′ = ∆ ∪ {〈extern, p, f〉}

subscribe(p, f) | Σ,∆→ · | Σ,∆′

Rules Fulfill-Promise and Fulfill-Promise-Again define the fulfill function, used

to fulfill a promise. Rule Fulfill-Promise defines the case when the promise to be

fulfilled is pending. In this case, the promise takes the specified value and is marked

as fulfilled. Note, in particular, that fulfilling a promise does not immediately invoke

subscribed callbacks; these functions will be invoked by the rule Subscribed-Promise-
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Fulfilled at some point in the future when there is a break in program execution. Rule

Fulfill-Promise-Again defines the case when the promise to be fulfilled has already

been fulfilled. In this case the fulfill function has no effect.

Fulfill-Promise

Σ(p) = 〈 , pending, u〉 Σ′ = [p 7→ 〈t, fulfilled, u〉]Σ

fulfill(p, t) | Σ→ · | Σ′

Fulfill-Promise-Again

Σ(p) = 〈 , fulfilled, 〉

fulfill(p, t) | Σ→ · | Σ

Rule Subscribed-Promise-Fulfilled specifies how callback functions are invoked.

We assume the callback function invoked does not make any structural changes to the

property model; thus, the definition function is not affected. However, the callback function

may create and schedule promises; thus, the valuation function and callback function may

be affected.

Subscribed-Promise-Fulfilled

∆ = {〈extern, p, f〉} ∪∆′ Σ(p) = 〈t, fulfilled, 〉 f(t) | Σ,∆′ → · | Σ′,∆′′

· | Σ,∆→ · | Σ′,∆′′

Rule Activation-Completed handles the running callback element added when an

activation is created. This rule may be invoked once all output promises of the activation

have been fulfilled. Once the outputs are fulfilled, the method is considered to be complete;

therefore, any promises whose usage flag is still unknown are updated to indicate they were

unused.

Activation-Completed

∆ = {〈running, a〉} ∪∆′

Γ(a) = 〈m, (p1, ..., pj), (q1, ..., qk)〉 ∀ki=1 : Σ(qi) = 〈 , fulfilled, 〉

Σ′ = [∀ji=1 : Σ(pi) = 〈t, s, unknown〉 =⇒ pj 7→ 〈t, s, unused〉]Σ

· | Γ,Σ,∆→ · | Γ,Σ′,∆′

When the usage flag of an input promise is set, that flag should be copied to the
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corresponding input edge unless there is a more recent activation for a method of the same

constraint. Rule Input-Usage-Known handles an input callback element created for an

input promise when an activation is created. Once the usage flag of the promise has been

set to something other than unknown, the function maybe set edge is called.

Input-Usage-Known

∆ = {〈input, p, a〉} ∪∆′

Σ(p) = 〈 , , u〉 u 6= unknown maybe set edge(a, p) | Γ,Σ→ · | Γ,Σ′

· | Γ,Σ,∆→ · | Γ,Σ′,∆′

Rules Maybe-Set-Edge-Current and Maybe-Set-Edge-Old define the function

maybe set edge. Rule Maybe-Set-Edge-Current handles the case where the promise

whose usage flag has been set is an input promise for the most recent activation of some

constraint. In this case, the usage flag is assigned to the edge for this input, thereby altering

the evaluation graph—since the evaluation graph is derived from the application of labels

to the constraint graph (see Section 4.6.2). Rule Maybe-Set-Edge-Old handles the case

where there is an activation more recent than the one which uses the promise; in this case,

no action is taken.

Maybe-Set-Edge-Current

Γ(a) = 〈m, p̄, 〉 Γ(m) = 〈c, , (v1, ..., vk), 〉 Γ(c) = (..., a)

p̄ = (p1, ..., pj , ..., pk) pj = p Σ(p) = 〈 , , u〉 Σ′ = [〈vj ,m〉 7→ u]Σ

maybe set edge(a, p) | Γ,Σ→ · | Γ,Σ′

Maybe-Set-Edge-Old

Γ(a) = 〈m, , 〉 Γ(m) = 〈c, , , 〉 Γ(c) = (..., a′) a 6= a′

maybe set edge(a, p) | Γ,Σ→ · | Γ,Σ

84



5.2.5 Lifting Functions

As discussed in Section 3.1.2, one approach for creating scheduling functions is to lift 

a function over values to create a function over promises. Here we give semantics for such 

a lifting mechanism.

Rule Lift-Function defines the lift function. This function takes as parameters a 

function over values g, the number of outputs k returned by g, and some number j of input 

promises. The function first sets the usage flags of all input promises to used. It then 

creates and initializes k output promises. Finally, it adds an element to the callback set. 

The return value of the function is the output promises created. Note that by binding the 

first two of these parameters, we create a function which takes and returns promises; this 

binding of the first two parameters represents the act of “lifting” the function g.

Lift-Function

Σ′ = [∀ji=1 : Σ(pi) = 〈t, s, unknown〉 =⇒ pi 7→ 〈t, s, used〉]Σ

∀ki=1 : qi = newsym() Σ′′ = [∀ki=1 : qi 7→ 〈·, pending, unknown〉]Σ′

∆′ = {〈lifted, g, (p1, ..., pj), (q1, ..., qk)〉} ∪∆

lift(g, k, p1, ..., pj) | Σ,∆→ (q1, ..., qk) | Σ′′,∆′

The lifted callback element is handled by the rule Lifted-Inputs-Ready. This rule

may be invoked any time after all input promises have been fulfilled. The rule retrieves

the value of all input promises, then invokes the lifted function g. The return values of g

are then used to fulfill the output promises.

Lifted-Inputs-Ready

∆ = {〈lifted, g, (p1, ..., pj), (q1, ..., qk)〉} ∪∆′

∀ji=1 : Σ(pi) = 〈ti, fulfilled, 〉 g(t1, ..., tj) = (o1, ..., ok)

Σ′ = [∀ki=1 : Σ(qi) = 〈 , pending, ui〉 =⇒ qi 7→ 〈oi, fulfilled, ui〉]Σ

· | Σ,∆→ · | Σ′,∆′
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5.3 Summary

These rules give a precise specification of the reaction of the property model to external

events. These external events may be organized into three categories: the invocation of

API functions by data bindings (touch, set, and update), the invocation of API functions

by methods (usage, subscribe, fulfill, and lift), and the fulfilling of promises by methods.

These rules reflect the non-determinism which naturally arises from an implementation

using promises. Nevertheless, the application of these rules in any order allowed by their

premises will always result in the same valuation of the property model’s variables.
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6. COMPONENTS AND DYNAMIC ELEMENTS

It is well established that software systems designed from reusable components tend

to be more robust and less costly to develop than their hand-crafted counterparts [4,

16, 37]. To support a component-based approach to system design, a property model

must be a reusable software artifact. It should be possible to build libraries of property

model fragments corresponding to prevalent GUI elements or behaviors, and then to build

complete GUIs by composing such fragments. To this end, we introduce the notion of a

property model component.

There is an additional motivation for property model components. GUIs commonly

support user actions that add or remove data, thereby adding or removing data dependen-

cies as well. One common example is a table in a GUI that allows the user to add or remove

rows. Data dependencies may exist, not only between data belonging to the same row, but

between data belonging to different rows as well. As rows are added to or removed from

the table, constraints may be added, removed, or modified to reflect the changes. Our goal

is to make it easy to implement such operations as the addition or removal of property

model components.

Components serve as containers for elements of the property model: variables, con-

straints, etc. Some of these elements are created as the component is created and de-

stroyed as the component is destroyed. We refer to these elements as static members of the

component. However, elements can also be defined in terms of the relationships between

components. These elements may be automatically created or destroyed as the relation-

ships between components change. We refer to these elements as dynamic members of the

component.

As an example, consider the GUI shown in Figure 6.1. This GUI presents a schedule of

events arranged as a table, with each row representing a single event. Each event contains

a title, the time at which it begins, the time at which it ends, and its duration in minutes.
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When considering the property model for this GUI, a natural design is to define each event

as a separate component. To add a new event to the schedule, a new row is added to the

table in the View and, at the same time, a new event component is created and added to

the property model.

Figure 6.1: A hypothetical scheduling application. Each row represents a single event.
Constraints exist between elements of the same row as well as elements of different rows.

Each event component contains variables to store the data associated with the event:

the variable t for title, b for begin time, e for end time, and d for duration. The component

also contains a constraint to enforce the relationship between the begin time, end time,

and duration, i.e., b + d = e. These variables and this constraint are static members of

the component: they are created with the component and exist as long as the component

itself does.

For every component except the last, an additional constraint is needed between the

end time of the event and the begin time of the next event. We can express this constraint

generically as the relation ei ≤ bi+1, i.e., the end time of event i must be less than or equal

to the begin time of event i + 1. This generic constraint defines a pattern that can be

instantiated for each event. Furthermore, this pattern can be used to update constraints

as rows are added to, removed from, and rearranged in the table.

This chapter presents a component mechanism that serves to group property model

elements into components and gives a precise definition for how dynamic members arise as

components are connected to one another.
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6.1 Components and Composition

From the perspective of a property model, a component is simply a collection of property

model elements grouped together as a single entity, allowing them to be added to and

removed from the property model as a group. We define a property model element as one

of the following:

• a variable, representing a storage location,

• a constraint in the constraint system,

• a command in the property model,

• a touch dependency between two constraints,

• an output designation for a variable, or

• a property model component.

A component owns the elements of which it is composed; thus, it is responsible for

creating and destroying them. Static members are created as the component is created and

destroyed as it is destroyed; dynamic members are created or destroyed as relationships

between components change. It follows that each property model element belongs to exactly

one component. An element may not be removed from, nor outlive the component it

belongs to.

We assume some mechanism for referencing property model elements from outside the

component, such as pointers. We refer to these as references. Property model elements, too,

may contain references to other elements. For example, a constraint may contain references

to the variables used by the constraint. Note, however, that references do not indicate

ownership. Thus, a constraint does not own the variables for which it has references.

A property model manages a set of property model elements as described in Chapters 3

and 4: solving the system of constraints, scheduling the dataflow functions, etc. However,

we define a property model, not as a collection of elements, but as a collection of compo-

nents. The elements managed by the property model are exactly those contained by the

components which define it. It follows that elements are not added directly to or removed
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directly from a property model, but rather indirectly by adding or removing components.

A component may contain a nested component. As with other component members,

a component owns its nested components, and is responsible for creating and destroying

them. When a component is added to a property model, we recursively add all nested

components to the property model as well.

A component may contain two additional types of members. These member types are

different in that they are not considered to be property model elements; the property model

does not manage them or interact with them directly. The first type is templates, which

serve as patterns for dynamic elements. The second is reference variables, used to hold

references to other property model elements. Together, templates and reference variables

are the basis for dynamic elements, discussed in Section 6.2.

A component uses reference variables to identify and keep track of related components

and/or elements. For example, components in a list may store a reference to the next

element in the list; components in a tree may store references to child components. Com-

position of property model components consists not only in grouping components together,

but also assigning references to components or elements as appropriate to signify the correct

relationships between the components.

Reference variables are the only component elements that may be modified destruc-

tively: a reference variable may be modified to refer to some other element or, in the case

of the null reference, no element at all. All other component members are assumed to

remain unchanged for their entire lifespans. This includes dynamic elements; changes to

relationships between components may result in the destruction of existing elements and

the creation of new ones, but never modifications of existing ones.

Though a component owns all reference variables it contains, it does not own the

elements referred to. Thus, it does not create or destroy the elements, and adding the

component to a property model does not add the elements. It is the programmer’s job to

ensure that an element inside the property model does not refer to an element outside the

property model.
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HotDrink provides support for creating and composing reusable property model com-

ponents. Section 3.5 introduced HotDrink, and described how an individual component

may be created using an embedded DSL provided by the ComponentBuilder object. The

same sequence of commands that can be used to create a component can also be used

to create a component specification. A specification is a data structure which serves as a

pattern for creating a new component. Multiple components can be created from the same

specification, allowing reuse.

1 var EventSpec = new hd . ComponentBui lder ( )
2 . v s ( ” t , b , e , d” , {d : 10})
3 . r ( ”n” )
4 . c ( ”b , e , d” )
5 .m( ”b , d → e ” , hd . sum )
6 .m( ”e , d → b” , hd . d i f f )
7 .m( ”e , b → d” , hd . d i f f )
8 . s p e c ( ) ;
9

10 var e v t 1 = new hd . Component ( EventSpec , {b : 0} ) ;
11 var e v t 2 = new hd . Component ( EventSpec ) ;
12 var e v t 3 = new hd . Component ( EventSpec ) ;
13

14 var pm = new hd . Proper tyMode l ( ) ;
15 pm . addComponent ( e v t 1 ) ;
16 pm . addComponent ( e v t 2 ) ;
17 pm . addComponent ( e v t 3 ) ;
18

19 e v t 1 . n = e v t 2 ;
20 e v t 2 . n = e v t 3 ;

Figure 6.2: Creating and composing components in HotDrink.

Figure 6.2 shows the code needed to define and compose event components for the

scheduling application of Figure 6.1. The construction of the specification begins on line 1

with the creation of a ComponentBuilder object. Line 2 defines the four variables t, b, e,

and d for this component, providing a default value for the variable d alone. Line 3 defines

a reference variable, n, to hold a reference to the next event in the list. Line 4 defines
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a constraint between b, e, and d; that constraint has three methods, given on lines 5–7.

Finally, line 8 retrieves the component specification; had this line instead been a call to

the component function, as in Figure 3.11, we would have retrieved an actual component

rather than a component specification.

Lines 10–12 show the creation of three components using the specification. As an

alternative, we could have defined a subtype of hd.Component which was automatically

constructed according to this specification. Note that the construction of evt1 on line 10

includes an initial value for the variable b. The three components are then added to the

property model on lines 15–17. This is the first step in composing them: group them

together in the same property model. The second step is to assign references; this is done

in lines 19–20. In this example, the assigning of references has no effect other than to

link the components together. The next section examines how we can generate dynamic

elements in response to this act of composition.

6.2 Templates and Dynamic Elements

A template is a pattern for creating a dynamic element. We can create templates for

any property model element which contains a reference to another element—specifically,

constraints, commands, touch dependencies, and output designations. A template contains

all required information for constructing one such element, except for one or more of the

required references. Missing references are represented by a marker called a path. A path

describes a potential property model element using one or more reference variables.

As an example, consider the table of events used by the scheduling application of

Figure 6.1. As mentioned at the beginning of this chapter, we may represent this table by

creating a component for each event containing variables t, b, e, and d. Each component

also contains a static constraint, call it C, for the relation b = e+ d.

In order to create a constraint between the end time e of one event and the begin

time b of the next, we must first add to each component a reference variable, n, to hold a

reference to the next event. Now we can define a constraint template T using a reference

to the variable e and the path n.b, where n.b describes the b variable of the component
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referred to by n. The constraint represented by this template enforces the relation e ≤ n.b.

Figure 6.3 gives an illustration of such a component. The dashed rectangle represents

the component itself. It contains variables t, b, e, and d, represented as rectangles, and also

constraint C, represented as a circle. We use edges to connect node C with each variable

used in the constraint. The reference variable n is represented with a triangle; for now, we

assume this variable holds a null reference, indicated by the grounded arrow. The template

T is drawn as a constraint in gray; we may think of this as a potential constraint. Notice

the node for T shares an edge with the variable e, and also a node indicated by the path

n.b. The node n.b is drawn outside of the component because it describes a variable not

belonging to the component.

When all paths in a template describe valid elements, the template may be instantiated

by creating a new element of the type corresponding to the template, replacing all paths

with references to the elements they describe. In the case of template T , when the reference

variable n is assigned a reference to another event component, T may be instantiated as a

constraint between the variable e and the variable n.b.

Figure 6.4 gives an illustration of three event components in a list. Notice the reference

variables in the first and second components contain references to the next component in

the list. Therefore, in these two components the path n.b describes a valid variable, and

the template T may be instantiated into a constraint. This is indicated in the figure by

drawing the template in black, and replacing the node n.b with the variable described by

C

b e

dt n

n.bT

Figure 6.3: Representation of a component containing a template. Variables and paths are
squares; constraints and templates are circles; reference variables are triangles. Variables
and constraints are black; paths and templates are gray. The dashed rectangle indicates
which elements belong to the component.
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C1

b1 e1

d1t1 n1

C2

b2 e2

d2t2 n2

C3

b3 e3

d3t3 n3

n.bT1 T2 T3

Figure 6.4: Representation of multiple components containing instantiated templates.
Templates T1 and T2 have been instantiated to create a constraint between successive
events.

that path—i.e., the b variable of the component referred to by n. In the third component,

however, the template remains uninstantiated, indicated by the gray color.

Because reference variables may change, the element described by a path in a template

may change as well. If this happens, all instantiations of that element are automatically

destroyed; then new instantiations may be constructed as appropriate.

Figure 6.5 gives an example of this process by illustrating the insertion of a new com-

ponent in a list of components. Figure 6.5a shows the original list of three components.

This list is identical to the one in Figure 6.4 except that we have omitted n and t from the

figure for simplicity. As soon as the reference to from the first to the second component is

modified, the instantiation of template T1 is destroyed. This may be seen in Figure 6.5b;

template T1 is gray, indicating that it is no longer instantiated. Figure 6.5c shows the list

with the new element positioned for insertion, but with none of the reference variables yet

assigned. Once they are assigned, the templates T1 and T4 may be instantiated to create

the necessary constraints.

It is important to note that constraint T1 in Figure 6.5a and constraint T1 in Figure 6.5d

are two different constraints. We have labeled them both T1 because they are both instan-

tiations of template T1; however, the property model sees them as two completely separate

constraints. This is in keeping with our semantics that constraint definitions are not al-

tered.

In HotDrink, the syntax for creating a template is identical to the syntax for creating
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(b)
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b1

e1
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n.b
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e4
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n.b

C2

b2
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d2
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e3

d3
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T1

T4
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T3

(c)

C1

b1

e1
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e4

d4
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b2

e2

d2

C3

b3

e3

d3

n.b

T1

T4

T2

T3

(d)

Figure 6.5: Constraints modified by inserting a component into a list of components. The
original list is shown in (a) with constraints T1 and T2 generated by that list. Breaking
the list at the insertion point results in the deletion of constraint T1, as shown in (b). The
new element is positioned in (c); once references are connected, constraints T1 and T4 are
created, as shown in (d).
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1 var EventSpec = new hd . ComponentBui lder ( )
2 . v s ( ” t , b , e , d” , {d : 10})
3 . r ( ”n” )
4 . c ( ”b , e , d” )
5 .m( ”b , d → e ” , hd . sum )
6 .m( ”e , d → b” , hd . d i f f )
7 .m( ”e , b → d” , hd . d i f f )
8 . c ( ”e , n . b” )
9 .m( ” ! e , n . b → e ” , hd . min )

10 .m( ”e , ! n . b → n . b” , hd . max )
11 . s p e c ( ) ;

Figure 6.6: Creating a constraint template in HotDrink.

a property model element. HotDrink decides whether it should create a template based

on whether any of the paths involved make use of reference variables. Figure 6.6 shows an

extended version of the event component from Figure 6.2, this time with a template for the

constraint between adjacent events. The template is defined on line 8. The only indication

that it is a template is that it contains the path n.b where n is a reference variable. Every

time a reference is assigned to n, all existing instantiations of this template are destroyed

and, if the assigned reference identifies a valid event component, a new instantiation is

created.

6.3 Templates as Signals

This section provides a detailed account of how templates may be instantiated to pro-

duce dynamic elements. For the sake of clarity, this process is defined in a purely-functional

notation for types inspired by Haskell. The purpose in using this notation is to communi-

cate intent, not to suggest implementation.

6.3.1 Signals

We begin by adopting a concept of Functional Reactive Programming (FRP) [12, 52]:

a signal is a value which can change over time.1 The use of signals makes it possible to

1The term behavior is sometimes used for this concept as well. The terms behavior and signal are
frequently interchangeable; however, behavior is more common when referring to implementation as a
function, whereas signal is more common when referring to implementation as a sequence of values.
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abstract away changes to values over time and focus instead on the computations that

occur as values change. A signal may be represented as a function of time; the value of a

signal s at time t is s(t). Thus, we may define the type of a signal as follows.

type Signal T = Time → T

This functional representation makes it easy to define new signals from old ones. For

example, given two signals a and b, we may define a new signal whose value is the sum of

a and b by the function λt.a(t) + b(t). In practice, however, signals are rarely implemented

as functions like this due to efficiency concerns. In FRP, signals are often assumed to be

discrete functions, and are represented as sequences of time-value pairs. It is also possible

to adopt a push-based approach following the Observer pattern. In this approach signals

publish a notification any time their values change. This approach is discussed further in

Section 6.3.6.

An example of a signal in the context of property models is a reference variable of a

component. We would like to think of this variable not as a pointer, but as a property

model element that may change over the life of the program. Additionally, because a

reference variable may contain the null reference, it is possible that it may represent no

value. In keeping with Haskell, we use the type Maybe T to represent either a value of type

T or no value at all. Thus, we may define the type of a reference variable as follows.

type ReferenceVariable T = Signal (Maybe T)

6.3.2 Labels

We assume each member of a property model component is given a label that may 

be used to refer to it. We adopt the standard dot-notation for applying a label to a 

component: if e is a component, then e.l identifies the member l in e. We require a label 

to have some run-time representation. In practice, this may take the form of an offset 

that can be combined with the component address, or a string that can be mapped to 

an element, perhaps using reflection. Here we simply use Label T as the type for a label
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identifying an entity of type T. Thus, if e.l denotes a variable, its type is Label Variable.

A label may be applied to a component at run-time. We generalize this with the function

applyL which returns a signal whose value is the result of applying a label to a component. A

label may identify a reference variable, so the type of the signal must be Signal (Maybe T).

If the label identifies a member other than a reference, then applyL simply returns the

constant signal whose value is always that member. This avoids the unnecessary distinction

between members contained directly by the component and members referred to by a

reference variable. The type of applyL is as follows.

applyL :: Component → Label T → Signal (Maybe T)

In practice, the type of a label may or may not be known. In a statically-checked 

environment, we may enforce restrictions on the type of labels. In a dynamically-checked 

environment, we may have to wait until run-time to ensure that a label produces the correct 

type. We abstract away this detail by assuming that if at any time the application of a 

label does not produce a value of the correct type, then at that time the signal returns no 

value.

6.3.3 Paths

We define a path to be a non-empty sequence of labels. When writing paths, we use 

dots to separate the labels—e.g., n.b is a path consisting of two labels: n and b. A path is 

applied to a component by applying each label in turn. For example, applying the path n.b 

to the component c, written c.n.b, requires first applying n to c, then b to the result of the 

first application. This implies that each label in a path, with the possible exception of the 

last, should identify a component for the next label to be applied to. Therefore, we may 

represent a path as a (possibly empty) list of component labels, followed by one additional 

label of any type.

type Path T = ([Label Component], Label T)

For example, if our representation of a label is a string, then the path e is represented as
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([ ], ”e”) and the path n.b as ([”n”], ”b”).

Just as with labels, we must be able to apply a path to a component at run-time. This

we generalize with the function applyP. This function returns a signal whose value is the

final result obtained after applying each label in turn. If at any time one of the applications

fails to produce a value (due to a null reference or type error), then at that time the signal

returns no value. The type of applyP is as follows .

applyP :: Component → Path T → Signal (Maybe T)

6.3.4 Templates

We define a template as a property model element in which all references to other 

elements are represented by paths. This is a generalization; in reality, a template may 

contain both references and paths. However, restricting templates to contain only paths 

simplifies the representation. We simply treat a reference as a constant path, that is, a 

path that always describes the same variable.

To give an example of a template, we must first define a property model element. Let 

us represent a constraint as a list of variables and a list of methods. Assume that methods 

do not reference variables directly, but rather through the constraint’s variable list, e.g., 

using an index. This gives the following type.

type Constraint = ([Variable], [Method])

In this case, a constraint template would have the same representation, with the exception

that variables would be replaced with paths to variables. Thus, the type for a constraint

template is as follows.

type ConstraintTemplate = ([Path Variable], [Method])

Just as a label or path can be applied to a component, so too can a template be applied

to a component. This requires replacing each path in the template with the result of

applying the path to the component. This application process fails to produce a result if

99



the application of any path fails to produce a result. Again, we represent this application

with a signal, given by the function applyT.

applyT :: Component → ConstraintTemplate → Signal (Maybe Constraint)

In a similar manner, we may define templates for commands, touch dependencies, and

outputs, along with application functions for each.

We do not consider it an error condition when the application of a path fails to produce

a result; the template is merely not instantiated and produces no value. However, it is

possible that all paths produce a value, but that the instantiation would still result in an

invalid element. In such a case, we say that instantiation has failed. In a dynamically typed

environment, an instantiation may fail if a path produces a value of the wrong type. Even

if all values are of the correct type, there are still possibilities of error due to aliasing, i.e.,

when multiple paths refer to the same element. Although we do not consider aliasing itself

to be an error, it is likely to produce invalid elements, such as a constraint that outputs to

the same variable twice. A failed instantiation produces no value. It is, however, likely an

indication of programmer error, and it may be beneficial to produce a warning message.

6.3.5 Resulting Elements

Finally, we may define components themselves. Here, we take Element to be the union

of all property model element types and Template to be the union of all template types.

We may define a component as consisting of static elements, templates, and references, like

so:

type Element = Variable | Constraint | Command | TouchDependency |
Output | Component

type Template = ConstraintTemplate | CommandTemplate |
TouchDependencyTemplate | OutputTemplate

type Component = (Set Element, Set Template, Set Reference)

As mentioned previously, property models view a component as a set of property model

elements. This set may change as dynamic elements are created or destroyed; therefore
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we represent it as a signal, given by a function elements. The value of this signal at any

given time is the set containing all static elements of the component, together with the

instantiations produced by all templates of the component at that time, excluding the

templates that cannot be instantiated.

elements :: Component → Signal (Set Element)

This signal represents the entire interaction between a property model and one of its 

components. It defines, at any given time, the property model elements contained by the 

component. To place this in the context of property model execution, recall from Chapter 3 

that the property model responds to edits by solving a constraint system. The constraint 

system solved is defined by the variables and constraints contained by the property model, 

which, in turn, is defined by the members of the components that compose the property 

model. Thus, it is as if, after every edit, the property model queries the elements signal for 

each of its components, takes the union of the results, then solves the constraint system 

defined by those elements.

6.3.6 Implementation

There are two general approaches to signal implementation. The first is a pull-based 

approach in which a signal must be queried for its value. This is the approach used 

throughout this section (Section 6.3) by defining a signal as a function. Using this approach 

requires, at the beginning of every update, the property model to query each component 

to retrieve the elements of that component. Querying the component results in a query 

the value of each of its template, which causes templates to query the value of their paths, 

and so on.

The second is a push-based approach in which the signal publishes a notification every 

time its value changes. In this approach, we assume that the set of property model elements 

remains unchanged until notification is given otherwise. When the programmer modifies a 

reference variable, that variable gives notification to any paths which use it. This results in 

the paths giving notification to any templates using them, the templates to give notification
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to their components, and so on.

This push-based approach requires slightly more coordination, since previous signal

values must be remembered and altered according to notifications—though reactive pro-

gramming techniques can lighten this burden considerably. The advantage of this approach

is that, when changes occur, only the affected elements must be recalculated. This can

considerably lighten the work involved for small changes to the property model. This is

significant, as small changes to the property model are relatively much more common than

large changes. For example, adding an event to the scheduling application requires only

the addition of three variables and two constraints; the rest of the property model can be

left unchanged.

6.4 Dynamic Elements Using Arrays

Sequences or lists arise commonly in GUIs—for example, options in a selection or rows

in a table. Section 6.2 discussed how reference variables allow dynamic constraints to be

defined between adjacent components in a sequence by giving each component a reference

to the next component in the sequence. However, this linked-list implementation is not

always ideal. Just as a linked list makes random access difficult, it also makes it difficult to

define dynamic elements with constraints that extend further than one row and the next.

When random access is required, the preferred representation for a sequence is usually

an array, allowing elements to be selected by an index. Use of arrays in property model

components allows dynamic elements in a sequence to be expressed more naturally and can

support a wider variety of templates. For example, returning to the scheduling application

example of Figure 6.1, if we define the property model for the table as an array s (for

“schedule”) in which each array element is a component containing variables b, e, and d,

we may express the relation between table rows using standard array notation as s[i].e ≤

s[i+1].b. The interpretation for this relation is, for every integer i such that i and i+1 are

valid indices of s, the end time of component s[i] is less-than-or-equal-to the begin time of

component s[i+ 1]. As another example, we could guarantee no more than four events in

an hour using a constraint for the relation s[i].b + 60 ≤ s[i + 4].b. We could even require
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Figure 6.7: Representation of a constraint containing an array and an array template.
Variables and paths are squares; constraints and templates are circles; property model
components are dashed rectangles. The array s is a sequence of squares representing the
individual elements of the array; below each square is the corresponding array index. Paths
and templates are gray.

a half-hour between even-numbered and odd-numbered events using a constraint for the

relation s[2i].e+ 30 ≤ s[2i+ 1].b.

Figure 6.7 shows a representation of a component containing an array. The outermost

dashed rectangle represents a component containing an array s of event components, as

well as a constraint template T for the relation s[i].e ≤ s[i + 1].b. The array has a length

of three, allowing T to be instantiated twice: once for i = 0 and once for i = 1, resulting

in constraint T0 and T1 respectively. Because the template T belongs to the outermost

component, so too do all instantiations of T . We may contrast this with Figure 6.4 in

which each component had its own template with, potentially, its own instantiation.

We allow for the possibility that arrays may change size over the life of the program.

If this happens, new instantiations should be created or old ones deleted as appropriate.

In the figure, node T3 represents a potential constraint that will be instantiated should the

array be extended so that 3 is a valid index.

Figure 6.8 contains JavaScript code that creates the property model of Figure 6.7.

Lines 1–7 define the specification for a component type for events; this is the type of each

member of the array. Lines 9–14 define the outermost component. The array s is defined on

103



1 var EventSpec = new hd . ComponentBui lder ( )
2 . v s ( ” t , b , e , d” , {d : 10})
3 . c ( ”b , e , d” )
4 .m( ”b , d → e ” , hd . sum )
5 .m( ”e , d → b” , hd . d i f f )
6 .m( ”e , b → d” , hd . d i f f )
7 . s p e c ( ) ;
8

9 var model = new hd . ComponentBui lder ( )
10 . n ( ” s ” , hd . a r r a y O f ( EventSpec ) )
11 . c ( ” s [ i ] . e , s [ i +1] . b” )
12 .m( ” s [ i ] . e , ! s [ i +1] . b → s [ i +1] . b” , hd . max )
13 .m( ” ! s [ i ] . e , s [ i +1] . b → s [ i ] . e ” , hd . min )
14 . component ( ) ;
15

16 model . s . expand ( 3 ) ;
17 model . s [ 0 ] . b . s e t ( 0 ) ;
18

19 var pm = new hd . Proper tyMode l ( ) ;
20 pm . addComponent ( model ) ;
21 pm . update ( ) ;

Figure 6.8: Creating and composing components in HotDrink.

line 10 as a nested component—i.e., a component contained by the outermost component.

The arguments to the nested function are a name for and constructor to create the nested

component. The function hd.arrayOf is a helper function which creates a constructor for

an array component; the argument is the element type of the array. The template T is

defined on line 11. As before, the only indication that this is a template is that it references

elements of the array s. Before the array is added to the property model, we dynamically

adjust its size by calling the expand function on line 16. This function extends the length

of the array by the amount given as a parameter. We also set the begin time b of the first

event on line 17.

In this code listing we create an array of size three to match the picture in Figure 6.7.

However, array components in HotDrink may be dynamically resized. As the size of the

array changes, new event components are created or destroyed, as are instantiations of the

constraint template. These modifications to the property model are handled automatically
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in response to the change in array size.

6.5 Array Components as Signals

This section provides a detailed account of how array templates may be instantiated to 

produce dynamic elements. We do this by revising the function types given in Section 6.3 

to take array components into account. As in Section 6.3, this is done to communicate 

intent, not to suggest implementation.

6.5.1 Array Components

We define a special property model component type called an array component in which 

elements are labeled by numbers rather than identifiers. An array component represents, 

but is distinct from, an array of the implementation language. Array components are 

treated as a subtype of ordinary components. Thus, an array component representing 

an array of property model elements owns the elements it contains, and adding the array 

component to the property model recursively adds all of its elements to the property model. 

We may also define an array component to represent an array of reference variables. As 

with all property model components, the array component would not own any elements 

referred to by reference variables.

We define the type of an array component as a signal whose value is an array of the 

implementation language, as shown below. Because the value of a signal may change over 

time, the array component may represent many different arrays; alternatively, we may 

interpret this as a single array which may be modified—both by changing the size of the 

array, as well as by modifying elements if their type supports such operations (e.g., reference 

variables.) To accommodate the possibility of null references, the type of each element in 

the array is Maybe T.

asArray :: ArrayComponent T → Signal (Array (Maybe T))
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6.5.2 Indexing Expressions

The addition of array components means that paths may include, not only labels, but 

also indexing expressions. An indexing expression is a mathematical expression containing 

no more than one free variable, known as the index variable. We use the standard notation 

of writing indexing expressions inside square brackets. For example, the path a[i + 1] 

consists of the label a followed by the indexing expression i + 1 with index variable i. In its 

most general form, an indexing expression is simply a bijection between two sets of integers. 

This bijection may be represented by a function and its inverse, called the indexing function 

and the inverse indexing function, respectively. For example, the indexing expression i + 1 

represents the indexing function λn.n + 1 and inverse indexing function λn.n − 1. We give 

both of these functions the type Int → Maybe Int to accommodate the fact that not every 

integer may map forward or in reverse. For example, the indexing expression i/2 will not 

produce a value for odd integers.

Although array components represent one-dimensional arrays, we can simulate multi-

dimensional arrays through the use of arrays-of-arrays. For this reason, it may be desirable 

to permit paths to contain indexing expressions which use different index variables. For 

example, given a table t, we might wish to create a constraint between consecutive elements 

of the same column—e.g., t[i][j] and t[i][j +1]. In theory, the names of these index variables 

do not matter. In practice, it is helpful to define the names of index variables ahead of time 

to make them easy to identify. In HotDrink, the names i, j, and k are initially recognized 

as index variables, though this is configurable. For purposes of this discussion, we assume 

n index variables named i1, ..., in. We distinguish between indexing expressions which use 

different index variables by assigning them different types, as shown below. Here we define 

types supporting expressions of two index variables, i1 and i2. This may be extended to 

any number of index variables as desired.

type Index0 = Int

type Index1 = (Int → Maybe Int, Int → Maybe Int)

type Index2 = (Int → Maybe Int, Int → Maybe Int)
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Here, the type Index0 represents a constant indexing expression—that is, an expression

without an index variable, e.g., as in the path a[3]. The type Index1 represents an indexing

expression using index variable i1, and Index2 represents an indexing expression using index

variable i2.

Just as a label may be applied to an ordinary component, so too may an indexing

expression be applied to an array component, provided we know the value of the expres-

sion’s index variable. We represent this application with a set of functions, applyAn, where

n = 0, 1, 2, .... Because the value of an array at a given index may change over time, the

return type of this function is a signal. The value of this signal is obtained by applying the

indexing function to the value of the index variable, then using the result as an index into

the component’s array. For example, if the indexing expression is i1 + 1 and the value of

index variable i1 is 4, then the signal would result in the element of the array with index

5. The signal has no value if the indexing function itself returns no value, if the indexing

function returns an out-of-bounds index, or if the corresponding element of the array has no

value (e.g., a null reference). Note that no integer is required to apply a constant indexing

expression since it has no index variable.

applyA0 :: ArrayComponent T → Index0 → Signal (Maybe T)

applyA1 :: ArrayComponent T → Index1 → Int → Signal (Maybe T)

applyA2 :: ArrayComponent T → Index2 → Int → Signal (Maybe T)

Now let us consider the case where the value of the index variable is unknown. Calling

applyA1 or applyA2 with only an array component and an indexing expression yields a

function of type Int → Signal (Maybe T); that is, it yields a function mapping a value of

an index variable to a value of the array. In theory, this function could be used to iterate

over all possible values of the given indexing expression. In practice, however, such a

function is a poor data structure for iteration since most integers will map to no value.

Remembering that a signal is simply a function, switching the order of the parameters

gives us Signal (Int → Maybe T). We may then replace the function type Int → Maybe T

with the type for a map data structure, Map Int (Maybe T); such a data structure is much
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more practical for iteration. We assume such a map would contain only integers which

map to a value. For this reason, there is no longer any need for the Maybe type. This

gives the type Signal (Map Int T). We define alternative versions of the applyAn functions,

named queryAn, for use when only the first two parameters are known. Note that we need

not define queryA0 since type Index0 represents a constant indexing expression.

queryA1 :: ArrayComponent → Index1 T → Signal (Map Int T)

queryA2 :: ArrayComponent → Index2 T → Signal (Map Int T)

6.5.3 Paths

Just as we classify indexing expressions by the index variable used, we may similarly 

classify paths according to the index variables they contain. We say an n-dimensional path 

contains indexing expressions for n distinct index variables. (Note that this is different 

from saying it contains n indexing expressions because a path could contain two indexing 

expressions of the same variable.) In this discussion, we will use the simplifying assumption 

that, if a path uses n index variables, it will be the first n index variables, i.e., i1 through 

in. Removing this assumption complicates the implementation slightly, but does not alter 

the basic theory.

We define a distinct type for each different possible dimension of a path. As noted, 

a path may now contain, not only labels, but also indexing expressions of different index 

variables. To generalize, we refer to each individual element of a path as a leg. We define a 

leg type for each dimension as a union of the allowable types for that dimension. We then 

define a path as a non-empty sequence of legs of the appropriate type.

type Leg0 T = Label T | Index0 T

type Leg1 T = Label T | Index0 T | Index1 T

type Leg2 T = Label T | Index0 T | Index1 T | Index2 T

type Path0 T = ([Leg0 Component], Leg0 T)

type Path1 T = ([Leg1 Component], Leg1 T)

type Path2 T = ([Leg2 Component], Leg2 T)
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The type Path0 represents a 0-dimensional path—i.e., a path containing only labels and

constant indexing expressions. The type Path1 represents a 1-dimensional path; thus, it

may also contain indexing expressions using index variable i1. The type Path2 represents a

2-dimensional path; thus, it may also contain indexing expressions using index variables i1

and i2. These typing rules are ambiguous: type Path0 is actually a subtype of Path1, Path1

of Path2, etc. We resolve this ambiguity by saying a path should be given the smallest

dimension possible.

Applying a path to a component is similar to applying an indexing expression. If

values are known for all index variables, applying path results in either a single value or

no value. Determining the value requires applying each leg of the path in turn. Labels

are applied using applyL; indexing expressions of type Index0 are applied using applyA0;

indexing expressions of type Indexn (for n = 1, 2, ...) are applied using applyAn with the

value of the nth index variable. Because of our assumption that a path always uses the

first n index variables, we may use an n-tuple to represent an assignment of values to index

variables, e.g., (i1, i2, . . .).

applyP0 :: Component → Path0 T → Signal (Maybe T)

applyP1 :: Component → Path1 T → Int → Signal (Maybe T)

applyP2 :: Component → Path2 T → (Int, Int) → Signal (Maybe T)

Just as with the applyAn functions, calling an applyPn function with only two parame-

ters yields a function mapping index variable values to path values: Int → Signal (Maybe T)

in the case of one-dimensional paths, and (Int, Int) → Signal (Maybe T) in the case of two-

dimensional paths. In general, an n-dimensional path will produce a mapping from n-tuples

to values. And, as with the applyAn functions, we define alternative versions of the applyPn

functions, named queryPn, that provide data structures more suitable for iteration.

queryP0 :: Component → Path0 T → Signal (Map () T)

queryP1 :: Component → Path1 T → Signal (Map Int T)

queryP2 :: Component → Path2 T → Signal (Map (Int, Int) T)

Note that the function queryP0 is essentially identical to applyP0: we have simply
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replaced the type Maybe T with the type Map () T—a map which can contain at most one

entry. In this way, we provide a consistent interface: each function queryPn returns a map

from n-tuple to value.

6.5.4 Templates

Templates are classified by dimension in a manner similar to paths. An n-dimensional

template uses paths of n or fewer dimensions. Below we give the types for constraint

templates of dimension 0, 1, and 2. As with paths, we resolve the ambiguity in these types

by saying a template should be given the smallest dimension possible.

type PathLE0 T = Path0 T

type PathLE1 T = Path0 T | Path1 T

type PathLE2 T = Path0 T | Path1 T | Path2 T

type ConstraintTemplate0 = ([PathLE0 Variable], [Method])

type ConstraintTemplate1 = ([PathLE1 Variable], [Method])

type ConstraintTemplate2 = ([PathLE2 Variable], [Method])

As with indexing expressions and paths, so with templates can application take two

forms. If values are known for all index variables, application generates at most one

instantiation. To apply the template, we apply each path to the component in turn. An n-

dimensional path must be applied with applyPn and the values of the first n index variables.

If all applications give valid results, we may create an instantiation, otherwise not.

applyT0 :: Component → ConstraintTemplate0 → Signal (Maybe Constraint)

applyT1 :: Component → ConstraintTemplate1 → Int → Signal (Maybe Constraint)

applyT2 :: Component → ConstraintTemplate2 → (Int, Int) → Signal (Maybe Constraint)

If values are not known for all index variables, application generates a mapping from

index variable values to instantiations.

queryT0 :: Component → ConstraintTemplate0 → Signal (Map () Constraint)

queryT1 :: Component → ConstraintTemplate1 → Signal (Map Int Constraint)

queryT2 :: Component → ConstraintTemplate2 → Signal (Map (Int, Int) Constraint)
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6.5.5 Resulting Elements

For an n-dimensional template, the function queryTn yields a map from n-tuple to 

property model element. The values in this map are all possible instances of the template. 

All of these are considered dynamic members of the component and must be included in the 

set of elements returned by the elements signal of Section 6.3.5. As far as the property model 

is concerned, the keys of this map are of no consequence. However, the keys do uniquely 

identify each instantiation, which is important for an incremental implementation, as we 

shall discuss in the next section. Note that templates of all dimensions except zero have 

the potential to generate multiple elements; 0-dimensional templates still generate at most 

a single element. All other elements in a component remain the same.

6.5.6 Implementation

As before implementation can follow a pull-based or push-based approach. And, as 

before, the push-based can help to minimize the work required for small changes. We give 

here two notes regarding the push-based approach.

First, in order to allow incremental updates of the property model we may replace a 

signal of type, e.g., Signal (Map Int T) with a signal of type (Int, Maybe T) representing 

changes made to the map. In this way, when a single element of an array changes (e.g., 

when adding a new element to the end), paths using that element may report a single 

change, and templates using those paths may update a single instantiation.2

Second, there may be times when a change results in a large number of elements 

“switching” keys. For example, suppose in our scheduling example that the user moves the 

last event in the array to the front of the array. This change causes the first event to become 

the second event, the second event to become third, and so on. Effectively, this modifies 

every element of the array, thereby forcing the template for the relation s[i].e ≤ s[i + 1].b 

to rebuild all instantiations. Yet, if we were to compare the set of constraints previously

2A template may still need to update multiple instantiations if the path that is affected has a smaller
dimension than the template itself. If a template has dimension n, then a path of dimension m < n may
be used in multiple instantiations.
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generated by the template to the set of constraints generated after the change, we would

find only two differences: a constraint removed and a constraint added. Because the

component only cares about the constraints contained by the template, and not the keys

that map to them, performing such a comparison of the sets can minimize the number of

changes reported to the property model. This is the approach taken in HotDrink.

6.6 Signature Variations

As described in Chapter 3, dataflow functions in the property model—i.e., methods

and operations—are represented by a scheduling function whose parameters and return

values are promises for the inputs and outputs of the dataflow function. When invoking

a scheduling function, the parameters must be passed in a particular order; we similarly

assume that scheduling a function returns multiple promises in a particular order. In

Chapter 5, we represented the inputs and outputs of a dataflow function as sequences of

variables; these sequences also served to indicate the order in which promises are passed

to and returned from the scheduling function. We refer to these two variable sequences

together as the signature of the function, or individually as the input signature and output

signature, respectively.

For purposes of this discussion, we will write input and output signatures as a list of

variables in parentheses. For example, we write an input (or output) signature consisting

of, in order, the variables a, b, and c as (a, b, c). We write a full signature by separating

inputs and outputs with an arrow. For example, (a, b)→ (x, y) indicates the inputs are, in

order, a and b, and the outputs are, in order, x and y.

Making the input and output signature of a scheduling function distinct from the input

and output sets of a dataflow function allows us some additional flexibility. For example,

the input signature of a method need not include every input variable. This could be

useful if a variable is not needed, but must be included as an input to satisfy method

restriction (see Section 2.2.1). Another example of added flexibility is an input signature

that contains the same variable twice, thereby allowing the value of one variable to be

passed as the argument for two separate parameters.
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This section examines two types of signature variations that enable a wider range of 

dynamic elements to be created: signatures containing constant values, and signatures 

containing nested signatures.

6.6.1 Constants and Partial Instantiation

We allow an input signature to contain constant values—e.g., numeric or string con-

stants. When calling the dataflow function, these constant values are passed to the corre-

sponding parameter. For example, an input signature of (a, 3, b) indicates that the schedul-

ing function is to be called with three parameters: the value of the variable a, the number 

3, and the value of the variable b. Variable values are always passed as promises; for con-

sistency, constant values are converted to promises as well: a new promise is created and 

immediately fulfilled using the constant value. In this way, scheduling functions need not 

know whether a particular parameter comes from a variable or a constant. This promotes 

reusability by allowing general functions to be used in specific situations by fixing one or 

more of their parameters. Note that an output signature cannot contain a constant value 

since a constant cannot be written to.

We extend our definition of a component to include constant values of the implemen-

tation language. Constants may be embedded directly in the component or they may be 

referred to by a reference variable. We assume constants are never modified; however, a 

reference variable may be modified to refer to a different value. Because constants may be 

included in components, a path in a template may describe a constant value. If a template 

for a dataflow function has an input path that describes a constant, we may instantiate 

the template with the constant in the function’s signature. If a template for a dataflow 

function has an output path that refers to a constant, that template cannot be instanti-

ated. This may be considered an instantiation failure, similar to the failures discussed in 

Section 6.3.4.

In some cases a constraint template may be instantiated even if the instantiation of 

one or more of its methods fails. As long as at least one method can be instantiated, 

the constraint can still be enforced; there are simply fewer methods for doing so. We call
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this a partial instantiation of a constraint template. As an example, consider a constraint

template for the relation a = b+c with three methods: a← b+c, b← a−c, and c← a−b.

Suppose that this template is applied to a component in which a and b refer to variables,

but c refers to the constant value 1. This makes the method c ← a − b invalid; however,

this template may be partially instantiated resulting in a constraint over the variables a

and b with the methods a← b+ 1 and b← a− 1; in other words, this constraint enforces

the relation a = b+ 1.

Continuing the example, suppose we now apply the same constraint template to a

component in which b and c refer to the same variable. This invalidates both methods

b ← a − c and c ← a − b as they would use the same variable as input and output.

However, the remaining method may still be instantiated as, effectively, a← b+ b. Thus,

this constraint can be partially instantiated to enforce the relation a = 2b.

1 var c o n s t r a i n t S p e c = new hd . ComponentBui lder ( )
2 . c ( ”a , b , c ” )
3 .m( ”a , b → c ” , hd . sum )
4 .m( ”c , a → b” , hd . d i f f )
5 .m( ”c , b → a” , hd . d i f f )
6 . s p e c ( ) ;
7

8 var dataSpec = new hd . ComponentBui lder ( )
9 . v s ( ”a , b” , {a : 0})

10 . c o n s t ( ” c ” , 1)
11 . s p e c ( ) ;
12

13 var model = new hd . Component ( dataSpec , c o n s t r a i n t S p e c ) ;

Figure 6.9: Partial instantiation of a template in HotDrink.

Our embedded DSL in HotDrink does not support constant values in signatures.3 How-

ever, we do allow the inclusion of constant values in property model components, thereby

3Our reason for this design decision is to avoid confusion about which JavaScript expressions are, and
which are not, supported by our DSL.
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allowing constants to be introduced into signatures indirectly. We also support the partial 

instantiation of constraint templates. Figure 6.9 shows an example of this.

The example begins with two component specifications. The first, beginning on line 1, 

defines a constraint for the relation a = b + c. Note that this specification uses the paths a, 

b, and c without defining them; it is intended that these paths be defined by an additional 

specification. Such a specification may be found on line 8. This specification defines a and 

b as variables, and defines c as the constant value 1.

These two specifications are combined into a single component on line 13. This may be 

viewed as a form of multiple inheritance; the constructed component contains all elements 

described by both specifications. In the resulting component, the constraint template is 

partially instantiated as a constraint for the relation a = b + 1.

6.6.2 Nested Signatures and Array Slices

We further expand our definition of input and output signatures to include, not only 

variables and (in the case of input signatures) constants, but also nested signatures—that 

is, sequences of variables and constants nested within the signature. A nested input signa-

ture contains inputs that are to be passed together as an array rather than as individual 

parameters. For example, the input signature ((a, b, c), d) indicates the scheduling function 

should be called with two parameters: first an array containing promises for, in order, a, 

b, and c, and second a promise for d. Similarly, a nested output signature contains outputs 

that will be returned from the scheduling function as an array rather than as individual 

return values. For example, the output signature (w, (x, y, z)) indicates that the scheduling 

function will return two values: a promise for w and an array containing, in order, promises 

for x, y, and z.

One obvious use for nested signatures is to support multiple outputs for programming 

languages which only allow a single return value for functions. The use of nested signatures 

allows multiple outputs to be returned as an array. (In fact, this was our convention even 

before we introduced nested signatures; the use of nested signatures simply makes this 

explicit.) For example, the output signature ((x, y, z)), indicates the scheduling function’s
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one return value will be an array containing, in order, promises for x, y, and z.

Another use for nested signatures comes from dataflow functions which need to access

every element in an array component. For example, suppose we have an array component

a which represents an array of variables, and we wish to define a constraint with a single

method that calculates the sum of the variables in a and writes it to a variable t (for

“total”). Using nested signatures, we can create an array parameter for this method which

mirrors the structure of a. If, for example, a has a length of three, then we may write

the signature of our method as ((a[0], a[1], a[2])) → (t). This signature specifies that our

scheduling function takes one parameter: an array containing, in order, promises for the

variables of a. Recall that signatures are distinct from input and output sets; as far as the

constraint system is concerned, this is simply a method with three input variables and one

output variables.

The method that sums the variables of a can easily be made to work for any size of a

by iterating over the array passed to it. In order to make a signature that similarly works

for all sizes of a, we introduce the notion of an array slice. Broadly speaking, a slice is

an indexing expression that refers to multiple elements of an array. For now, we consider

only the slice which refers to all elements of an array, which we write with the indexing

expression “∗”. Thus, in our example, we may write the method signature as (a[∗])→ (t).

We may think of a path containing an array slice as being dynamically expanded to an

array of paths: one for each index of the array component which has a value. If a has

a length of three, our method signature will be expanded to ((a[0], a[1], a[2])) → (t), as

desired.

We assume array components can be dynamically resized. This implies that if a method

signature includes a path containing an array slice, the expanded version of that signature

will change as the size of the array component changes. Therefore, only templates may

include paths containing array slices, and they must be re-instantiated after every change

to the size of the array. Continuing with our example, if a is expanded to have a length of

four, the constraint with method ((a[0], a[1], a[2])) → (t) must be destroyed and replaced
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with a constraint with method ((a[0], a[1], a[2], a[3])) → (t). This ensures that no matter

how the size of a changes, the variable t will always contain the sum of the variables of a.

To implement this change, we must redefine a path so that it describes, not a single

value, but a list of values. Returning to the type definitions of Section 6.5, applying a path

should yield signal whose value is of type Maybe [T]. For most paths, this value will be

either a list containing a single element or no value. For paths containing an array slice,

however, the size of the list may vary. The resulting types of applyPn and queryPn as

follows.

applyP0 :: Component → Path0 T → Signal (Maybe [T])

applyP1 :: Component → Path1 T → Int → Signal (Maybe [T])

applyP2 :: Component → Path2 T → (Int, Int) → Signal (Maybe [T])

queryP0 :: Component → Path0 T → Signal (Map () [T])

queryP1 :: Component → Path1 T → Signal (Map Int [T])

queryP2 :: Component → Path2 T → Signal (Map (Int, Int) [T])

All other types remain the same as in Section 6.5. Note that changes to the size of the

array result in changes to the signal produced by a path; templates respond to this change

by updating their instantiations.

Figure 6.10 shows an example of array slices in HotDrink. This code is a continuation of

the scheduling example of Figure 6.1 in which we have added a variable t and a constraint

ensuring t will always equal the sum of the duration d of each event. This constraint

is written as a specification which is intended to be added to the model component of

Figure 6.8. In particular, it refers to the variable s, which is defined in Figure 6.8 as an

array of event components.

The variable t is declared on line 2. This is followed by a constraint template for the

constraint between t and d. Line 3 defines the variables of the constraint as s[∗].d and t. The

path s[∗].d will be expanded for every element of s—i.e. s[0].d, s[1].d, etc. Line 4 defines

a method which reads all duration variables, calculates their sum, and returns it to be

stored in t. Line 8 defines a method which uses t to update the duration variables. It does
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1 var extendedModelSpec = new hd . ComponentBui lder ( )
2 . v ( ” t ” )
3 . c ( ” s [ ∗ ] . d , t ” )
4 .m( ” s [ ∗ ] . d → t ” , funct ion ( d ) {
5 f o r ( var t = 0 , i = 0 ; i < d . l e n g t h ; ++i ) {
6 t += d [ i ] ; }
7 return t ; } )
8 .m( ” ! s [ ∗ ] . d , ! t , t → s [ ∗ ] . d” , funct ion ( d , t1 , t2 ) {
9 f o r ( var i = 0 ; i < d . l e n g t h ; ++i ) {

10 d [ i ] += ( t2 - t1 )/ d . l e n g t h ; }
11 return d ; } } )
12 . s p e c ( ) ;

Figure 6.10: A template with an array slice in HotDrink.

this using the prior value of t and the prior value of all duration variables: the difference

between the sums is distributed evenly among all duration variables. This is, perhaps, not

an ideal implementation for this method as it may result in negative or fractional duration

values. However, it communicates the possibilities introduced by nested signatures.

6.7 Proper Placement of Property Model Modifications

Section 6.1 describes how the elements managed by a property model are determined

by the composition of one or more components. This set of elements does not change unless

the composition changes—that is, unless components are added to or removed from the

property model, or reference variables are changed, thereby altering the dynamic elements

generated from templates. We refer to these changes as structural modifications of the

property model. Chapter 3 describes how the property model restricts variable access to

methods and operations, thereby ensuring consistent behavior. In this section we consider

what restrictions are necessary on structural modifications of the property model to ensure

this consistency is maintained.

To begin, let us observe that dataflow functions (methods and operations) are unsuit-

able places for property model modification. For one thing, allowing methods to modify

the property model would mean that solving the constraint system could result in modi-

fying the constraint system—thus, it immediately needs to be solved again! Perhaps more
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importantly, since dataflow functions run asynchronously, we would have no confidence as

to when any such structural modifications would actually take effect. This would make our

reactive program non-deterministic.

Modifications affect the property model by redefining what variables exist and what

constraints must be enforced. It follows that, once modifications are made, the property

model cannot be assumed to be in a consistent state until the constraint system has been

solved. Additionally, if a modification adds variables to the property model, it may need to

initialize those variables, which implies an operation. Taking this all together, we conclude

that structural modifications should take place in a command, as defined in Section 3.2.

Commands may be followed by an operation, allowing a chance for initialization, and are

always followed by solving the constraint system. This results in a state transition diagram

as shown in Figure 6.11.

State i State i+ 1
Perform

Modification

Schedule

Operation

Calculate

Plan

Schedule

Methods

Figure 6.11: GUI state transition, this time including structural modifications of the prop-
erty model.

Either the first or second step in this transition may be omitted, but not both. Thus, a

transition consists of either a modification, an operation, or a modification followed by an

operation. In any case, the transition ends with solving the constraint system: calculating

a plan and scheduling methods. Note that a modification is not a dataflow function. In

particular, it may not read the value of any variables. It may, however, examine structure—

e.g., check the value of reference variables and modify them as desired. If a modification

needs to use the value of a variable, then the modification cannot be performed until the

value of the variable is known.

For example, consider a GUI that responds to input by performing a database query
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and displaying the results in a table. When the input is given, a method or command may

immediately initiate the query; it may not, however, immediately issue the modification

to create new rows in the table if it does not know how many records it will retrieve.

Only once the query has completed can we perform the modification to create rows in the

table, and the operation to initialize them with the results. Users will be unable to edit or

interact with these new rows while waiting for the query to complete.
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7. STATIC ANALYSIS: SPECIALIZING PLANNERS∗

In a GUI controlled by a property model, the property model’s constraint system must

be solved after every user interaction. No further user events may be handled until a plan

has been calculated and the methods of the plan scheduled. Though hierarchical multi-

way dataflow constraint systems can be planned efficiently (in the worst-case quadratic

time in the number of constraints, and often linear time) [51], minimizing the time of

planning is important to ensure responsiveness. The performance requirements can be even

more stringent: for some user interface behaviors, such as enabling and disabling widgets

automatically, a planner may need to be executed several times for each interaction [25].

Further, planning is but one part of responding to a user event and thus the quicker it can

be done the better.

As discussed in Section 2.2.2, the inputs to the planning algorithm are a specification of

the constraint system and the current constraint hierarchy. For many GUIs the constraint

system remains unchanged, or changes little, over many planning tasks, while the constraint

hierarchy changes often. It may therefore be beneficial to generate a planning algorithm

that is specialized for a particular constraint system, instead of using the same general

purpose algorithm to plan all systems.

This chapter presents a specialization scheme for generating planners for hierarchical

multi-way dataflow constraint systems [6]. The generated planners are able to execute in

linear time in the number of variables in the system. The planners are DFAs, guaranteed

to take no more transition steps than there are variables. The performance experiments

reported confirm substantial speedups over a general purpose planner, and that for con-

straint systems of the size and complexity that can arise in practical user interfaces for

which the general purpose planners may not be instantaneous, the specialized planners

∗This chapter is reprinted with permission from “Specializing Planners for Hierarchical Multi-way
Dataflow Constraint Systems” by Jaakko Järvi, Gabriel Foust, and Magne Haveraaen. Proceedings of
the 2014 International Conference on Generative Programming: Concepts and Experiences, pp. 1–10,
Copyright 2014 by ACM. http://dx.doi.org/10.1145/2775053.2658762
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are.

7.1 Supplementary Background Material

This section provides additional background material not contained in Chapter 2. The 

work described here is not a contribution of this dissertation. It is presented here to serve 

as a basis for the specialization scheme that follows.

7.1.1 Planning Algorithms

Many algorithms have been developed for solving dataflow constraint systems (for ex-

ample, see [51, 47, 18]), differing, among other things, on the strategy of finding a plan. 

Planning algorithms based on the propagation of the degrees of freedom scheme [49, 51] 

identify free variables to avoid backtracking. A variable that belongs to exactly one con-

straint is free. We also call a method free if all its outputs are free. The significance of a 

free method is that it can enforce a constraint without restricting which methods can be 

used to enforce other constraints in the system. Hence, a plan can be found by repeating 

the following steps: (1) find a constraint with a free method, (2) include the method in 

the resulting plan, and (3) remove the constraint from consideration. The process either 

succeeds to remove all constraints, in which case a plan has been found, or fails with no 

free methods remaining, in which case there are no plans. With some reasonable assump-

tions about the structure of the system the complexity is linear in the number of variables, 

methods, and constraints [51].

Planning algorithms for constraint hierarchies iterate the above simple planning al-

gorithm for candidate constraint sets, attempting to identify the strongest constraint set 

that has a plan. The basic strategy is to add constraints one by one, from strongest to 

the weakest starting from the empty system, and run the simple planning algorithm after 

every addition. Constraints that make the system unsatisfiable are discarded, ones that 

keep it satisfiable are kept [51]. There are variations of this strategy, but the worst case 

is that the simple planner must be run for each constraint, leading to overall complexity 

of O(n2) for planners for hierarchical systems, where n is any of the number of variables,
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constraints, or methods.

7.1.2 Constraint Systems as a Monoid

Prior work by Järvi et al. [23] explains how a multi-way dataflow constraint system can 

be viewed as a commutative monoid. This view is useful in two ways. First, it makes many 

properties of dataflow constraint systems obvious. For example, planning becomes nothing 

more than composing all of the system’s constraints with the monoid’s binary operation. 

Second, it unifies the notions of a constraint and constraint system. Any set of constraints 

can be composed with the monoid’s binary operator into a single constraint. The plans 

for a system of constraints are then the methods of the composition of those constraints. 

This makes it straightforward to examine all possible plans for the purpose of generating 

specialized planners.

Section 2.2.1 gives an informal definition of multi-way dataflow constraints. Formally, 

we may define such a constraint as a tuple 〈R, r, M〉, where R is a set of variables, r is an 

n-ary relation (n = |R|) among variables in R, and M is a set of constraint satisfaction 

methods. In this representation, r is the relation of the constraint: the constraint is satisfied 

if the values of the variables in R satisfy r.

We may also formalize the method requirements given in Section 2.2.1 as a set of well-

formedness conditions for constraints. Let ins(m) and outs(m) refer to, respectively, the 

input and output variables of a method m. Then a constraint 〈R, r, M〉 is well-formed if 

for all methods n, m ∈ M :

• outs(n) 6⊆ outs(m) and

• {ins(m), outs(m)} is a partition of R.

Furthermore, for any two constraints 〈R1, r1,M1〉 and 〈R2, r2,M2〉 in the same system,

R1 6= R2,

In the monoid representation, a constraint continues to be defined as 〈R, r,M〉, whereM

is a set of methods, but the notion of a method is generalized. In the graph representation of

a constraint given in Section 2.2.3, a method consists of a single method vertex, connected
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to a set of variable vertices with incoming edges for input variables and outgoing edges for

output variables. In the monoid view, we take this method graph as the representation of

a method, and generalize it from the “one method vertex connected to variable vertices”

structure to a (bipartite) DAG that can contain several method vertices. To be a valid

method graph, the in-degree of every variable vertex is at most one. For purposes of

executing a method, this internal graph structure of the method is irrelevant; a method

can be viewed as a function from its input to output variables. For purposes of correctly

composing constraints, the graph structure must be retained.

The composition of constraints 〈R1, r1,M1〉 and 〈R2, r2,M2〉 is a union over their vari-

ables, a conjunction over their relations, and the set of those (non-disjoint) graph unions1

of all pairs of method graphs, one from each constraint, that are method graphs themselves

(we use the symbol + for this “pairwise graph unions followed by a filtering” operation):

〈R1 ∪ R2, r1 ∧ r2,M1 + M2〉. Every method graph of a constraint contains all of the con-

straint’s variable vertices, and has the same number of method vertices as all the other

method graphs.

Below we refer to constraints that are not a composition of other constraints as primi-

tive. Similarly, methods of primitive constraints are called primitive.

Since in a constraint 〈R, r,M〉, M uniquely determines R and r is not used in planning,

we can, for the purposes of planning, think of a constraint to be merely a set of method

graphs. The constraint system monoid is thus as follows:

• The carrier set is all sets of method graphs.

• The binary operation forms a Cartesian product of the two sets of method graphs,

computes the graph union of each pair of this product, and discards those graphs

that are not valid method graphs. Formally, let A = {a1, a2, . . . , am} and B =

{b1, b2, . . . , bn} be sets of method graphs. Then the monoid operation is defined as

1 The graph union operation 〈V1, E1〉 ∪ 〈V2, E2〉 is defined in the canonical way as the union of vertices
and edges: 〈V1∪V2, E1∪E2〉. When composing constraints, only variable vertices are shared, never method
vertices or edges.
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A+B = {c | a ∈ A, b ∈ B, c = a ∪ b, c a method graph}.

• The identity element is the singleton set whose sole element is the null graph.

The binary operation is both associative and commutative because of the associativity and

commutativity of graph union [5, §1.4]. The monoid has an absorber, the empty set.

If an element of the monoid is generated (by repeated application of the monoid op-

eration) from primitive constraints that satisfy the well-formedness conditions from Sec-

tion 7.1.2, it too will satisfy those conditions. The condition that {ins(m), outs(m)} is

a partition of a constraint’s variables, though, requires a clarification: variables that are

sources in the method graph are considered inputs, all other variables outputs.

Figure 7.1: A user interface for ordering customized picture frames. The cost is determined
as a function of perimeter (for the frame itself) and area (for the glass.)

For purposes of illustration, let us consider a GUI used to order custom picture frames,

as shown in Figure 7.1. Here, the price of the frame is a function of the material costs,

which are in turn based on the perimeter (for the frame) and area (for the glass) of the

frame. These values may be edited directly, or they may be derived from the dimensions

of the frame. Figure 7.2 shows the constraint graph describing the constraints between

these four values. In order to keep this and subsequent related figures less cluttered, the

constraint graph does not contain the one-way constraint between area, perimeter, and

cost.
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Figure 7.2: Constraints arising from the picture frame GUI.
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Figure 7.3: Constraint graph resulting from composing the constraints in Figure 7.2.

Figure 7.3 shows the two constraints from Figure 7.2 composed into a single constraint.

The circular nodes represent method graphs; the internal graph structures of the methods

are not shown. Of the nine graph unions between two method graphs, one from each

operand constraint, the two method graphs p · w
h · a and p · w

h · a must be discarded as

cyclic and the two method graphs p · w
h · a and p · w

h · a because a variable vertex has

w
h

w
h

w
h

w
h

w
h

an in-degree larger than one. This leaves five method graphs representing the five possible 

plans of the original constraint system graph: p · · a, p · · a, p · · a, p · · a, 

and p · · a. These are the graphs of the five methods in Figure 7.3. The method shown 

as bold corresponds to the selected plan shown in Figure 7.2.

7.1.3 Planning of Constraint Hierarchies as Monoid Composition

The iterative planning of a hierarchical constraint system has a simple interpretation 

in terms of the monoid:

foldl (λ a b. if a + b = z then a else a + b) e S

S is a sequence of the system’s constraints in the order of decreasing strength (highest
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priority first), z the absorber element ∅, e the identity element {∅}, and foldl is as

defined, e.g., in Haskell. This expression composes all constraints of S into a single

constraint, excluding those which would cause the composition to go to z. The result

is a single constraint with just one method: the unique plan.

Instead of starting the fold from the identity constraint, in practice we first com-

pose all mandatory constraints into a single constraint, and then attempt to compose

this constraint with the individual stay constraints in order of decreasing priority.

Composing a stay constraint with another constraint, call it C, is an even simpler

operation than composing two arbitrary constraints; it is effectively a filtering of

methods of C. Let Sx be a stay constraint of variable x. Some method graphs in C

might contain an edge whose target is x, some not. The former will be filtered out,

since Sx’s only method graph, that must be used in each graph union, contains an

edge whose target is x. C + Sx will thus contain a subset of the method graphs of

C, each augmented with one additional method vertex and an edge from that vertex

to the variable vertex x. In our specialization scheme we use stay constraints purely

to prune the set of plans. We thus restrict each method in C + Sx to only include

vertices and edges in C. We use the notation (C + Sx)|C for this operation.

In the above fold operation, if adding a stay constraint to a constraint results in

the empty constraint (the absorber), the stay constraint cannot be enforced, and the

value of the corresponding variable will not be preserved. In this case the original

constraint is kept. Because the stay constraints are added in order of decreasing

priority, a variable of higher priority is always preserved over one of lower priority, if

possible. The interpretation of the (restricted) sum (C+ s1 + · · ·+ sn)|C is the set of

all plans that will preserve the variables of stay constraints s1, . . . , sn. These sums

will directly correspond to the states of the planning state machines, to be discussed

in Section 7.3, that our specialization scheme generates.
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Figure 7.4: A planner for the four-variable system of Figure 7.2, implemented as a decision
tree.

7.2 Properties of Constraint Compositions

The number of plans of a multi-way dataflow constraint system can be large.

Assume a constraint system of n variables. The upper bound for the number of

methods is then
(

n
bn/2c

)
, which can be seen as follows. Taking advantage of the

monoid representation, we can view the system as a single constraint. As the inputs

and outputs of each method partitions the constraints’ variables, and no two methods

can have the same partitioning, a method can be identified with the set consisting

of its output variables (or, equivalently, its input variables). The well-formedness

conditions on constraints guarantee that the output variables of a method are not

a subset of the output variables of another method. The number of methods in a

constraint is thus limited by the maximum number of different subsets of variables,

where none is a subset of the other. This maximum is
(

n
bn/2c

)
, obtained when all

subsets have bn/2c or dn/2e elements. This is a rather large number. In practice

the number of plans can be expected to be much smaller, so that it is feasible to

generate code for a state machine that encompasses all those possible plans.

There are several reasons why we can expect the number of plans to remain quite

reasonable in practice. In typical user interfaces, the most common constraint is a

one-way constraint, where the constraint’s relation is a function, and subsequently

it needs only one method. Composing a one-way constraint with another constraint

that has, say, m, methods produces a constraint that has at most m methods.
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Two-way constraints are also somewhat common. Composing a two-way con-

straint with an existing m-method constraint, such that the constraints share at

least one variable, produces a constraint that has at most m+ 1 methods.

We have not conducted empirical studies to quantify the distribution of con-

straints with different number of methods, but constraints with a large number of

methods are rare. Even if a constraint involves many variables, often each method

has just one output. In such a case, the number of methods in a constraint is at

most n (i.e., the number of variables), instead of
(

n
bn/2c

)
.

Since the constraint monoid is commutative, it makes no difference in which order

constraints are composed. The order, however, can drastically impact the size of the

intermediate constraints, that is, the number of methods in those constraints. In

particular, if two constraints Ca and Cb share no variables, and Ca has ma and Cb

has mb methods, then their composition Ca + Cb has ma ×mb methods. The more

variables they share, the more the resulting method set gets pruned as many graph

unions will be cyclic or contain variable nodes with more than one incoming edge,

violating the conditions for method graphs.

7.3 Specializing a Constraint System

The monoid representation of a constraint provides a foundation for a specializa-

tion scheme in which the relatively complex hierarchical planning algorithm discussed

in Section 7.1.1 (a nested iteration that at the outer level runs a simple planner algo-

rithm for each stay constraint, which at the inner level iterates over all constraints,

“peeling off” constraints that have a free method until a plan is found) can be spe-

cialized into a simple automaton that takes no more transitions than there are stay

constraints in the system.
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7.3.1 Planner as a DFA

The specialized planner is a DFA whose input is the sequence of all variables or-

dered from the highest priority to the lowest. Each state in the machine corresponds 

to a set of possible plans, i.e., a constraint. The start state of the state machine 

corresponds to the constraint that represents all possible plans. Each transition cor-

responds to an attempt to add a stay constraint to the constraint of the current state. 

The accepting states are constraints with only one method, which is the resulting 

plan.

If the size of the state machine were of no concern, we could use a decision tree 

where the nodes at the ith level of the tree encode a decision based on which variable 

is in the ith position of the priority order. In such a tree, each path from the root to 

a leaf represents one priority order. As a priority order uniquely determines a plan, 

we can associate a plan with every leaf node of the decision tree. For example, the 

decision tree for the four-variable constraint system in Figure 7.2 (and 7.3) is shown 

in Figure 7.4. Each leaf corresponds to a unique priority ordering, and would be 

associated with whatever plan this ordering induces.

As a large number of states in the “full-blown” decision tree are equivalent, the 

same decision logic can be implemented with a much smaller DFA. The DFA cor-

responding to the decision tree in Figure 7.4 is shown in Figure 7.2. The DFA has 

only ten distinct states, and it reaches an accepting state in at most three steps; 

once the machine reaches an accepting state, it stays in the same state, so the DFA 

can be implemented to ignore any remaining input. As discussed in Section 7.2, the 

number of plans is usually significantly smaller than the number of priority orders; 

here there are five distinct plans for the 24 different priority orders.

There are several sources of redundancy that the DFA generation takes advantage 

of in keeping the number of states low:

1. A transition that corresponds to an attempt to add an unenforceable stay con-
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straint can loop back to the same state.

2. A unique plan is often determined by a (short) prefix of the input sequence.

3. Two different compositions of constraints can produce the same result, and thus

equivalent states. Some of the equalities follow from the monoid’s properties,

others only occur for some graph structures. Different equalities are detected

by the DFA generation algorithm by different means. Two special cases are:

(a) All sub-paths that consist of the same variables in different order lead to

equivalent states. This is implied by the commutativity of the constraint

composition operation.

(b) For some constraints, a variable is preserved by all methods. A transition

that adds a stay constraint for such a variable can loop back to the same

state.

Figure 7.5: A DFA equivalent to the decision tree of Figure 7.4. The sums at state labels 
are assumed to be restricted to C.

7.3.2 Generating the DFA

The DFA to be generated maps a priority order to a plan. The generation has 

to determine which plan results from which priority order, and thus analyze every

possible priority order—or realize that certain priority orders need not be analyzed.
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The strategy is to traverse the decision tree of all priority orders in a depth-first

order, recognizing equivalent states along the way, so that no redundant states are

generated, and no unnecessary paths are traversed.

The starting point of the generation is the constraint formed as a composition

of all mandatory constraints, call it C, using the composition operation defined in

Section 7.1. This representation expresses the entire constraint system as a single

constraint, whose methods are the possible plans of the system. Stay constraints

are then composed one by one into the constraint, every time checking whether

an equivalent state has already been generated. Most of the equivalent states are

detected prior to having to traverse downward in the tree, so that entire sub-trees can

be pruned. These cases take advantage of the algebraic properties (commutativity) of

the composition operation. Some states can only be recognized to be equivalent after

fully constructing both states. These are the cases where composing two different

sets of stay constraints with C happens to produce the same constraint.

To be able to recognize equivalent states based on the commutativity property,

each state stores the labels, i.e., variable identifiers, occurring within the path from

the initial state to the current state. Self-loops, transitions that loop back to their

initial state, are not considered. A hash table, we call it the path map, that maps

these sets of labels (using a suitable canonical representation for sets) to states en-

ables quickly checking for the existence of equivalent states. Additional checking for

equivalent states is based on the equivalence of transition tables of each state—for

this, the transition tables must have been already fully generated.

Algorithm 7.1 summarizes this process. This algorithm generates a new state for

a given constraint C or reuses an existing state in the DFA. If a new state needs to

be generated, it first recurses to each transition out of the generated state. When

started from the initial state, the algorithm generates the entire DFA.

The parameters of the algorithm are Vs, the set of variables seen in the path to
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Input: Vs, the set of variables seen in the path to current state
Input: Vu, the set of variables not yet seen in the path to current state
Input: Cc, the constraint represented by current state

Global: Paths, a map from variable sets (representing paths) to states
Global: States, a map from transition tables to states

Result: the current state

1 Function DfaState(Vs, Vu, Cc):
2 if |Cc| == 1 then
3 return accept(Cc)

4 t← an empty transition table
5 foreach v ∈ Vu do
6 if Paths[Vs ∪ {v})] defined then
7 t[v]← Paths[Vs ∪ {v})]
8 else
9 C ′c ← (Cc + stay(v))|Cc

10 if |C ′c| > 0 ∧ |C ′c| < |Cc| then
11 t[v]←DfaState(Vs ∪ {v}, Vu \ {v}, C ′c)

12 if States[t] defined then
13 s← States[t]

14 else
15 s← a new unique state
16 s.transition table← t
17 States[t]← s

18 Paths[Vs]← s
19 return s

Algorithm 7.1: Calculate DFA state for a given path
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the current state; Vu, the unprocessed input (also a set of variables); and Cc the

current constraint that this state represents. The algorithm accesses and modifies

two lookup tables that are global variables: Paths is the path map and States the

mapping from transition tables to DFA states. We assume the transition tables are

in a form that enables fast look-up. The algorithm returns a state, either one of the

existing ones, or a newly constructed.

Initially the algorithm is invoked as DfaState({}, V, C), where {} is the empty

set of already processed variables, V the set of all variables in the system, and C the

composition of all mandatory constraints. The global variables Paths and States are

assumed to be empty lookup tables.

First, the algorithm checks whether the current state represents a solution (a

constraint with exactly one method). If so, an accepting state is returned. We

assume that the accept function will either create a new state, or return an existing

one if the plan represented by Cc has already been encountered.

If an accepting state has not been generated, the algorithm proceeds to generate

transitions for all variables v that have not yet been seen. If a state for a path that

is a different permutation of the current path Vs extended with v has already been

generated, the transition can reuse that state (relying on the commutativity prop-

erty), and the algorithm does not need to recurse. Otherwise the current constraint

Cc is composed with v’s stay constraint to produce a new constraint C ′c. If the stay

constraint of v can be enforced (C ′c has at least one method, i.e., it is not the absorber

element) and if it is not enforced in all methods in Cc, then the algorithm will recurse

to determine a new state (which can end up being newly constructed or reused).

Once all variables in Vu have been analyzed, the transition table is complete, and

can be looked up in States . If an entry exists, that existing state can be reused.

If not, a new state will be created and t is assigned as its transition table (the

.transition table notation accesses a state’s transition table). The new state is added
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to States prior to returning it. Whether a state was generated or reused, the path

to it must be added to Paths .

There are no explicit checks for exhausting the variable set Vu. This is because all

priority orderings uniquely determine a plan, and thus the algorithm is guaranteed

to have generated an accepting state by the time it has exhausted its input, likely

sooner.

A DFA generated by the DfaState algorithm is not yet a correctly functioning

planner as the algorithm does not add self-loops. We assume every state has a

self-loop for all possible inputs that do not have a transition out of the state. For

example, the state C + a in Figure 7.5 has such a self-loop for the input p.

The only transitions in accepting states are the self-loops that keep the state

machine in the same accepting state for all remaining inputs. As an optimization,

the generated DFA returns a plan when it first enters an accepting state, ignoring

any remaining input.

The algorithm guarantees that the generated DFA is minimal—all states are

reachable and distinguishable. That all states are reachable is trivial. That all states

are distinguishable requires justification. By construction, each state corresponds

to a set of methods. In the following discussion, we use these two descriptions in-

terchangeably. Each final state is a singleton set. Every state reaches exactly the

final states corresponding to the methods of that state (because of the constraints’

well-formedness conditions, see Section 7.1.2, every method of a state is necessar-

ily included in at least one of the state’s direct successors; also no transition adds

methods). Thus, two states that contain different methods are distinguishable by

any input leading to a final state corresponding to a method contained by one but

not the other. What remains is to show that no two states contain the same meth-

ods. The condition on line 10 guarantees that a transition is always to a state that

has fewer methods, based on which an inductive argument can be constructed to
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show that the transition table generated for a given set of methods is unique. Per 

the condition on line 12, the algorithm never creates a new state if a state with an 

equivalent transition table exists.

7.4 Experiments

To assess the improvements in speed obtainable using planner specialization, 

we performed multiple experiments using our HotDrink implementation. As a re-

minder, this property model implementation is written in TypeScript and compiled 

to JavaScript to be executed in web browsers. As a JavaScript library, it is also suit-

able for use in command-line applications using a suitable JavaScript engine, such 

as Node.js [39].

7.4.1 Generator Implementation

We used the ideas presented in this chapter to implement a tool that can generate 

specialized planners for use with our library. The intent is that the tool is used

offline to read in a constraint system specification and generate code for a planner

specialized for the particular constraint system. That code may then be included in

an application, to be used by our UI library in lieu of the default general-purpose

planner.

The generator is also written in TypeScript so as to take advantage of our existing

code base. The generator expects constraint system specifications to be in the format

used with the HotDrink library, using its embedded domain-specific language for

defining constraints. A constraint system is created from this specification, then

converted into a DFA using the algorithm described in Section 7.3.

Internally, the generator represents a DFA simply as a collection of transition

tables, one for each state. It would be possible to simply serialize this data structure

(e.g. using JavaScript Object Notation) so that it could be inserted into and used by

some application. However, we generate executable JavaScript code: one function
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for each state, with a switch statement to implement transitions.

Figure 7.6 shows an excerpt of the code generated for the planner DFA for the

system in Figure 7.2. For clarity, we show all variables and functions as if they were

defined globally. In reality, the only function exposed is the dfa function found at

the end of the listing; all others are hidden from direct access.

Each DFA state gives rise to one function. The global variable input is the se-

quence of constraint system variables in priority order and i the current index into

the sequence. The state functions collectively iterate through the input sequence;

each state function advances the iteration, and uses a switch statement to choose the

next state to transition to. If a corresponding case is not found, the machine stays in

the same state. This is how the self-loops discussed in Section 19 are implemented.

Function n4 is the function corresponding to the state labeled C in Figure 7.5.

This state makes transitions on inputs of 0, 1, 2, and 3, which correspond to the

variables w, h, a, and p, respectively.

Function n3 corresponds to the state C+p. It has two transitions leading to accept

states; all other transitions are implicit self-loops. An accept state is represented as

an array containing the indices of the methods to be selected. Thus, an accept state

is simply a plan. In this example, 4, 8, and 9 are the indices for w
h · a, p · w

h, and

p · w
h, respectively. States n0, n1, and n2 are very similar to n3, and have thus been

omitted for brevity.

Each state, rather than calling the next state function directly, performs a transi-

tion by returning the function corresponding to the new state. The main function dfa

then invokes the function. An accepting state returns a non-function, which stops

the machine. JavaScript virtual machines do not typically recognize tail calls, so this

mechanism (sometimes called trampolining) ensures that the state machine runs in

constant space.
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1 var i n p u t , i ;
2

3 funct ion n0 ( ) { . . . }
4

5 funct ion n1 ( ) { . . . }
6

7 funct ion n2 ( ) { . . . }
8

9 funct ion n3 ( ) {
10 whi le ( t r u e ) {
11 switch ( s t a y s [ i -- ] ) {
12 case 0 : return [ 4 , 8 ] ;
13 case 1 : return [ 4 , 9 ] ;
14 }
15 }
16 }
17

18 funct ion n4 ( ) {
19 whi le ( t r u e ) {
20 switch ( i n p u t [ i -- ] ) {
21 case 0 : return n0 ;
22 case 1 : return n1 ;
23 case 2 : return n2 ;
24 case 3 : return n3 ;
25 }
26 }
27 }
28

29 funct ion d f a ( v a r I d s ) {
30 i n p u t = v a r I d s ; i = v a r I d s . l e n g t h - 1 ;
31 var f = n4 ;
32 do { f = f ( ) ; } whi le ( typeof f === ’ f u n c t i o n ’ ) ;
33 return f ;
34 }

Figure 7.6: Code generated for a DFA.
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7.4.2 Methodology

We compared the running times of several specialized planners with those of 

our library’s default planner. This general-purpose planner is based on Zanden’s 

QuickPlan [51] algorithm—an incremental version of the degrees-of-freedom algo-

rithm which reuses the previous solution whenever possible. In cases where the 

correct plan contains many of the same methods as the previous plan, incremen-

tal planning can be very fast. The worst-case time complexity, though, remains 

quadratic in the number of variables.

Our experiments used fifteen different constraint systems, selected to cover a wide 

variety of different constraint graph structures. Some of the systems came directly 

from small user interfaces, others were generated programmatically by repeating a 

pattern to generate large constraint systems. We describe the test systems in more 

detail below.

The tests updated randomly selected variables of the system; the time of find-

ing a plan for each update was measured. An update to a variable promotes the 

corresponding stay constraint to the highest priority, thus altering the priority order.

The running times of both QuickPlan and the specialized planners were generally 

only a fraction of a second. Timers in JavaScript measure wall-clock time, not 

CPU time. This introduces the risk that sudden ill-timed actions performed by the 

operating system may interfere with accurate timing. To counteract this, we ran each 

test case seven times, recording the individual times of each planning operation, and 

used the median time as our measurement. The random sequence of variable updates 

was hard-coded into each test case, guaranteeing that the same sequence of planning 

operations occurred every time we ran the test case.

There are three kinds of constraints that most of the constraint systems in the 

test cases are composed of, and are also common in constraint systems modeling 

user interfaces. We name them to help concisely describe the test cases: a one-way2
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constraint consists of two variables and a single method with one input and one

output, graphically � · �; a two-way2 constraint consists of two variables and two

methods, both with one input and one output, graphically � ·· �; and a three-way3

constraint consists of three variables and three methods, each with two inputs and

one output, graphically � ··· �

�.

The fifteen different constraint systems that we tested with can can be categorized

as follows:

• hotel, dimensions, and frame are constraint systems powering user interfaces,

hotel based on a form for reserving a hotel room, dimensions on a dialog for

specifying dimensions of an image, and frame is the example system from Fig-

ure 7.2. These are small systems, so their planning times are very short.

• single, solid, dotted, and dashed are systems where the number of input variables

dominates that of output variables in their plans. In planning such systems,

composing a stay constraint will succeed more often than fail. As explained in

Section 7.3, successful compositions follow a transition to a new state in the

DFA planner. The state machines in this group thus tend to have a larger

number of states than those of systems with the opposite characteristic.

The detailed description of the four tests in this group are: single is one large

constraint consisting of 10 variables and 10 methods, each method writing to

a single variable; Solid is a chain of five three-way3 constraints, where two

adjacent constraints share one variable; dotted is a chain of five three-way3

constraints, intercalated by altogether four one-way2 constraints, each two ad-

jacent constraints sharing one variable; and dashed is chain of three groups

of two three-way3 constraints, intercalated by one-way2 constraints, each two

adjacent constraints sharing one variable.

• chain-n and ladder-n are templates of systems where the number of outputs
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dominates that of output variables in their plans. Each template was instan-

tiated with n = 10, 20, 50, and 100. The chain-n tests consist a chain of n

variables, each adjacent pair of variables connected with a two-way2 constraint.

The ladder-n tests consist of n variables and n− 2 three-way3 constraints, the

constraints arranged in a “ladder” sequence, such that each adjacent pair of

constraints shares two variables. The structure of the ladder-4 system is the

one shown in Figure 7.2.

We ran the experiments on several platforms, covering different browser implemen-

tations and types of machines:

• Node.js JavaScript runtime on MacBook Pro (2.7 GHz Intel Core i7, 8GB of

memory),

• Firefox desktop web browser on the same 2013 MacBook Pro,

• Chrome mobile web browser on a Google Nexus 10 tablet, and

• Safari mobile web browser on an iPhone 5S smart phone.

As mentioned in Section 7.4.1, the intended application of the specialized planners

are to serve as a drop-in replacement for the planner in our existing library UI

programming library. We thus matched the interface of the specialized planner to

the interface of the existing planner. In particular, the existing planner operates

directly on a graph data structure which is then used, not only to determine which

methods were selected, but also to determine dependency information required by

other parts of the library

To accurately measure the performance benefit in the context of this real-world

use scenario, we recorded the time of the entire specialized planner—including the

time it spent building the graph data structure. This method ensures fairness, but

it also somewhat masks the performance benefit of the DFA, as it adds overhead
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which is not strictly necessary for the DFA algorithm. In most cases the time of 

constructing the graph data structure is much more expensive than running the 

planner itself. The graph construction could be avoided by redesigning the parts of 

the library that need the dependency information, but we have not done that.

To compare just the DFA planner with the QuickPlan-based planner, we per-

formed additional test runs using the Node.js runtime, not including the graph con-

struction time. These tests were executed only on Node.js; it was the only JavaScript 

runtime that provided a timer with a high enough resolution—the DFAs generally 

run in less than ten microseconds.

7.4.3 Results

Tables 7.1 and 7.2 show, respectively, the average and maximum of the measured 

planning times. For each test, the time for the QuickPlan-based planner and the 

combined time for the specialized planner followed by constructing the solution graph 

are reported. For Node.js, the running time of the specialized planner without graph 

construction is also reported. To give a sense of the achieved improvement, the 

running times for the specialized planners are also given relative to those of the 

QuickPlan-based planner.

In almost all tests, the specialized planner is significantly faster than the QuickPlan-

based planner. The difference is expectably most pronounced in the chain-n and 

ladder-n tests as their DFA planners determine the best plan based on the first few 

highest priority variables.

One test case, single, shows a performance decrease for the specialized planner. 

This rather pathological case consists of exactly one constraint, so there is little to 

plan. Further, that constraint is such that the DFA always makes the maximum 

number of transitions to decide the best method, and is in that sense the worst-case 

scenario for the specialized planner. Regardless, the DFA part runs in a fraction of 

the time of the QuickPlan-based planner, but when the graph construction is included
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to the former, their combined running time is notably more than the running time

of the latter.

We also observe that the performance difference is more significant when looking

at the maximum times. The running time of the QuickPlan-based planner fluctuates

significantly more than the running time of the specialized planners. This can also be

seen from the standard deviations of both types of planners, shown in Table 7.3. The

timer for mobile Safari had insufficient resolution for our test setup, so the standard

deviations were highly skewed, and not reported. We still report the averages and

maximum times, as they at least give an indication of the performance.

Our tests do not give a precise picture of the growth of the algorithms’ running

times with the size of the systems. The chain-n and ladder-n tests, however, repeat

the same test for four different sizes. They give some indication of a higher than linear

growth for the QuickPlan-based planner, but not so for the specialized planners.

It should be noted that all of the tests, even with the slower general purpose

planner, were solved in a fraction of a second; the worst-case running time of the

slowest test was about one second on an Android tablet. Even though planning is

already quick—for small systems it may be hard to imagine that QuickPlan would

not be sufficiently fast—the reported performance gains are still significant.

First, the reaction to many tasks in user interfaces should be instantaneous. In

order for the user to feel that the system is reacting instantaneously, the interface

needs to respond to input in approximately 0.1 seconds or less [38, Ch. 5]. In the

larger test cases, the QuickPlan-based planner is already on the wrong side of the

0.1 second guideline. Taking into account that planning is not the only task that

must take place before the system is ready to respond (the methods in the constraint

system need to be executed, parts of the UI re-rendered reflecting any changed values,

to name a few), reducing the planning time even in the smaller systems is beneficial.

Second, QuickPlan’s performance varies more than the specialized planners’ per-
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formance. For guarantees on instantaneousness, one needs to worry about the max-

imum running times, not merely the average. Variation in planning time could in

some settings also lead to intermittent unresponsiveness.

Third, several interface behaviors call for tentative planning. For example, pin-

ning [17] attempts to preserve a particular value by keeping its stay constraint at

the highest priority. More than one variable may be pinned but not all combination

of variables are valid for pinning. Therefore, given a set of variables already pinned,

an application must determine which additional variables can and which cannot be

pinned. This requires attempting to find a plan which preserves all pinned variables

plus the additional variable—thereby calling the planner once for each variable that

is not pinned. Another algorithm that can benefit from tentative planning is deciding

when widgets bound to a variable should be enabled and when disabled [25]. For

all but the smallest constraint systems, such algorithms quickly become infeasible

if based on QuickPlan. Note that repeated runs of the planner for the purposes of

pinning do not need the dependency graph: the relevant running time of a special-

ized solver is just the DFA execution time, without the overhead of constructing a

solution graph.

Finally, we address the topic of the size of the generated DFA planners. All of

our test cases were quite manageable, though a few generated DFAs with a moderate

size: dashed, 2200 states in 27 seconds; single, 1013 states in 87 seconds; solid, 812

states in 4.5 seconds; dotted, 519 states in 1.6 seconds; and ladder-100, 101 states

in 19 seconds. All other planners had fewer than hundred states, and they were

generated in few seconds, or in a fraction of a second. The code for generating the

DFA was not carefully optimized, but the data structures that it uses were selected

so that the generator is not unnecessarily “pessimized”.

For a large and complex constraint system, a specialized planner can be pro-

hibitively large. As a specialized planner can be a drop-in replacement for a general
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planner, the decision to specialize or not can thus be made case by case, with ease.
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8. CONCLUSION AND FUTURE WORK

It has become more and more common for GUIs to manifest rich and complex

behaviors. These behaviors often require performing multiple interrelated tasks si-

multaneously, and modifying data dependencies to reflect the current state of the

GUI. As GUIs grow in complexity, they become harder and harder to manage with

traditional event-driven programming techniques. As a result, GUIs are difficult to

implement correctly, difficult to debug, and commonly exhibit unpredictable behav-

ior.

There are many factors contributing to erroneous or inconsistent behavior in

GUIs. One substantial factor is the difficulty to orchestrate asynchronous compu-

tations so that they are not interleaved in ways that might lead to breaking the

data dependencies that should be maintained in the GUI. Failure to prevent such

bad interleavings results in GUI behavior that may be sensitive to slight changes in

the timing of events. Event-driven programming places the entire burden of both

identifying and enforcing data dependencies on the programmer.

A second contributing factor is the difficulty in adjusting to changing dependen-

cies as data is added to and removed from the GUI, and as relationships between

pieces of data are modified, e.g., when rearranging rows in a table. Again, event-

driven programming places on the programmer the entire burden of changing the

calculation of data dependencies to match the current shape of the data in the GUI.

Failure to adapt to changes may result in dropped or erroneous dependency calcu-

lations. Combining this complex dependency management with the orchestration of

asynchronous computations only increases the difficulty of both.

A third contributing factor is the inability to reuse GUI behavior across multi-

ple applications. In event-driven programming, the only constant factor among all

GUIs is events, yet the interpretation of those events varies greatly from one GUI to
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another. This lends itself to an ad-hoc programming style in which the majority of

the code implementing GUI behavior applies only to a single GUI.

GUI programming with property models is a new approach which relieves the

programmer from the burden of dependency management. The programmer’s re-

sponsibility is only to identify the possible data dependencies. It is the property

model which enforces these dependencies and adapts as changes are made to the

arrangement of data within the program. Furthermore, a property model defines a

standard representation of dependencies within a program. Not only does this make

it possible to create generic, reusable components, it also allows the possibility of

generic algorithms parameterized over a specification of data dependencies, such as

our algorithm for disabling irrelevant widgets.

There is still work to be done towards a complete programming model based

on property models. One area we have identified for future work is formalizing a

more principled model for structural changes to a property model. Our goal is that

defining a property model would include defining structured ways in which it may be

modified so that changes may be enacted automatically. In this way, the programmer

is relieved of the burden of ensuring structural changes are enacted correctly.

A second area we have identified for future work is the bindings between the View

to the View Model. Open questions include how the View may be automatically

manipulated to match changes in the property model, and how commands may be

delayed while still ensuring consistency in GUI behavior.

One final area for future work is the validation of variable values. Supporting

validation of the output of dataflow functions promotes component-based property

models by lowering the requirements for composing two components. We can also

provide dataflow-sensitive validation. This allows validation to occur as close to the

user’s input as possible.

The work described in this dissertation defines a new programming model for
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GUIs. In this model a run-time system assumes the responsibility of orchestrating

asynchronous computations and responding to structural changes in a GUI. GUIs

implemented in the model are guaranteed to be responsive and consistent. The model

promotes reusable software components and algorithms that can capture fragments

of GUI behavior. This new programming model lays a foundation for a future where

rich, complex GUI behavior may be predictably implemented correctly.
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APPENDIX A

LISTING OF OPERATIONAL SEMANTICS

This appendix lists the full operational semantics of property models. These

semantics are explained in detail in Chapter 5. This appendix simply makes it easier

to view the entire semantics at once without interruptions.

A.1 Overloaded Signatures

The following signatures are supported by the definition function.

Variable→ (Promise)

A variable is mapped to its promise history.

Constraint→ (Activation)

A constraint is mapped to its activation history.

Method→ 〈Constraint,Function, (Variable), (Variable)〉

A method is mapped to the constraint to which it belongs, its scheduling function,

its input variables, and its output variables.

Activation→ 〈Method, (Promise), (Promise)〉

An activation is mapped to its method, the input promises, and the output

promises.

The following signatures are supported by the valuation function.

Variable→ Value

A variable is mapped to its value.

Promise→ 〈Value, StatusFlag,UsedFlag〉

A promise is mapped to its value, its status, and its usage.

〈Variable,Method〉 → UsedFlag

An input edge of the constraint graph is mapped to its usage.
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The enumerated types StatusFlag and UsedFlag are defined as follows.

StatusFlag = {pending, fulfilled}

UsedFlag = {unknown, used, unused}

A.2 Evaluation Environment

The following elements define a property model. Each is listed with the meta-

variables used to represent them.

GC = The constraint graph.

GS = The solution graph.

GR = The reactive program graph.

π̄ = The variable priority assignment, sorted from lowest to highest priority.

Λ = The modified variable set.

Γ = The definition function.

Σ = The valuation function.

∆ = The callback set.

The following are other meta-variables appearing in the evaluation rules.

v, w := Variable p, q := Promise

c := Constraint s := StatusFlag

a := Activation u := UsedFlag

m := Method

t, o := Value f, g := Function
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A.3 Editing the Property Model

Touch

π̄ = v̄1 ++ (v) ++ v̄2 π̄′ = v̄1 ++ v̄2 ++ (v) Λ′ = Λ ∪ {v}

touch(v) | π̄,Λ→ · | π̄′,Λ′

Set

touch(v) | π̄,Λ→ · | π̄′,Λ′ add promise(v, p) |GR,Γ,∆→ · |GR
′,Γ′,∆′

set(p) |GR, π̄,Λ,Γ,Σ,∆→ · |GR
′, π̄′,Λ′,Γ′,Σ′,∆′

Update

GS
′ = plan(GC, π̄,GS,Λ) π̄′ = adjust(π̄,GS

′)

M = downstream many(Λ) |GS
′,Σ m̄ = topological sort(GS

′,M)

schedule(m̄) |GR,Γ,Σ,∆→ · |GR
′,Γ′,Σ′,∆′ Λ′ = {}

update() |GC,GS,GR, π̄,Λ,Γ,Σ,∆→ · |GC,GS
′,GR

′, π̄′,Λ′,Γ′,Σ′,∆′

Methods-Downstream

M = {m ∈ outs(GS, v) | Σ(〈v,m〉) 6= unused}

V = ∪m∈M outs(GS,m) M ′ = downstream many(V ) |GS,Σ

downstream(v) |GS,Σ = M ∪M ′

Downstream-Many

V = {v} ∪ V ′

M = downstream(v) |GS,Σ

M ′ = downstream many(V ′) |GS,Σ

downstream many(V ) |GS,Σ = M ∪M ′

Downstream-Many-Empty

downstream many({}) |GS,Σ = {}
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A.4 Scheduling Methods

Schedule-Methods

m̄ = (m) ++ m̄′ Γ(m) = 〈 , f, (v1, ..., vj), (w1, ..., wk)〉

∀ji=1 : Γ(vi) = (..., pi) duplicate((p1, ..., pj)) | Σ,∆→ (p′1, ..., p
′
j) | Σ′,∆′

f(p′1, ..., p
′
j) | Σ′,∆′ → (q1, ..., qk) | Σ′′,∆′′

add promise many((w1, ..., wk), (q1, ..., qk)) |GR,Γ,∆
′′ → · |GR

′,Γ′,∆(3)

reset(m) | Γ′,Σ′′ → · | Γ′,Σ(3)

make activation(m, (p′1, ..., p
′
j), (q1, ..., qk)) | Γ′,∆(3) → a | Γ′′,∆(4)

add to graph(a, (p1, ..., pj), (q1, ..., qk)) |GR
′ → · |GR

′′

schedule(m̄′) |GR
′′,Γ′′,Σ(3),∆(4) → GR

(3),Γ(3),Σ(4),∆(5)

schedule(m̄) |GR,Γ,Σ,∆→ · |GR
(3),Γ(3),Σ(4),∆(5)

Schedule-Methods-Empty

schedule(()) |GR,Γ,Σ,∆→ · |GR,Γ,Σ,∆

Duplicate-Promises

p̄ = (p) ++ p̄′ q = newsym() Σ′ = [q 7→ 〈·, pending, unknown〉]Σ

∆′ = {〈copy, p, q〉} ∪∆ duplicate(p̄′) | Σ′,∆′ → q̄ | Σ′′,∆′′

duplicate(p̄) | Σ,∆→ (q) ++ q̄ | Σ′′,∆′′

Duplicate-Promises-Empty

duplicate(()) | Σ,∆→ () | Σ,∆
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Duplicate-Promise-Fulfilled

∆ = {〈copy, p, q〉} ∪∆′ Σ(p) = 〈t, fulfilled, 〉

Σ(q) = 〈·, pending, u〉 Σ′ = [q 7→ 〈t, fulfilled, u〉]Σ

· | Σ,∆→ · | Σ′,∆′

Reset-Constraint

Γ(m) = 〈c, , , 〉 Γ(c) = (..., a) Γ(a) = 〈m′, , 〉

Γ(m′) = 〈c, , (v1, ..., vj), 〉 Σ′ = [∀ji=1 : 〈vi,m′〉 7→ unknown]Σ

reset(m) | Γ,Σ→ · | Γ,Σ′

Make-Activation

a = newsym() Γ′ = [a 7→ 〈m, (p1, ..., pj), (q1, ..., qk)〉]Γ

Γ′(m) = 〈c, , , 〉 Γ′′ = [c 7→ Γ′(c) ++ (a)]Γ′

∆′ = {〈running, a〉} ∪ {〈input, pi, a〉 | 1 ≤ i ≤ j} ∪∆

make activation(m, (p1, ..., pj), (q1, ..., qk)) | Γ,∆→ a | Γ′′,∆′

Add-To-Graph

GR
′ = add node(GR, a) GR

′′ = add edges(GR
′, {〈pi, a〉|1 ≤ i ≤ j})

GR
(3) = add edges(GR

′′, {〈a, qi〉|1 ≤ i ≤ k})

add to graph(a, (p1, ..., pj), (q1, ..., qk)) |GR → · |GR
(3)
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A.5 Variables and Promises

Add-Promise

Γ′ = [v 7→ Γ(v) ++ (p)]Γ GR
′ = add node(GR, p) ∆′ = {〈var, p, v〉} ∪∆

add promise(v, p) |GR,Γ,∆→ · |GR
′,Γ′,∆′

Add-Promise-Many

v̄ = (v) ++ v̄′ p̄ = (p) ++ p̄′ add promise(v, p) |GR,Γ,∆→ · |GR
′,Γ′,∆′

add promise many(v̄′, p̄′) |GR
′,Γ′,∆′ → · |GR

′′,Γ′′,∆′′

add promise many(v̄, p̄) |GR,Γ,∆→ · |GR
′′,Γ′′,∆′′

Add-Promise-Many-Empty

add promise many((), ()) |GR,Γ,∆→ · |GR,Γ,∆

Variable-Promise-Fulfilled

∆ = {〈var, p, v〉} ∪∆′

Σ(p) = 〈 , fulfilled, 〉 maybe set var(v, p) | Γ,Σ→ · | Γ,Σ′

· | Γ,Σ,∆→ · | Γ,Σ′,∆′

Maybe-Set-Var-Visible

Γ(v) = (p1, ..., pj, ..., pk) pj = p

∀ki=j+1 : Σ(pi) = 〈 , pending, 〉

Σ(p) = 〈t, , 〉 Σ′ = [v 7→ t]Σ

maybe set var(v, p) | Γ,Σ→ · | Γ,Σ′

Maybe-Set-Var-Invisible

Γ(v) = (p1, ..., pj, ..., pk) pj = p

∃i : j < i ≤ k ∧ Σ(pi) = 〈 , fulfilled, 〉

maybe set var(v, p) | Γ,Σ→ · | Γ,Σ
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A.6 Promise and Edge Usage

Set-Usage

Σ(p) = 〈t, s, unknown〉 Σ′ = [p 7→ 〈t, s, u〉]Σ

usage(p, u) | Σ→ · | Σ′

Set-Usage-Again

Σ(p) = 〈t, s, u′〉 u′ 6= unknown

usage(p, u) | Σ→ · | Σ

Subscribe-Unknown

Σ(p) = 〈t, s, unknown〉 Σ′ = [p 7→ 〈t, s, used〉]Σ ∆′ = ∆ ∪ {〈extern, p, f〉}

subscribe(p, f) | Σ,∆→ · | Σ′,∆′

Subscribe-Known

Σ(p) = 〈 , , u〉 u 6= unknown ∆′ = ∆ ∪ {〈extern, p, f〉}

subscribe(p, f) | Σ,∆→ · | Σ,∆′

Fulfill-Promise

Σ(p) = 〈 , pending, u〉 Σ′ = [p 7→ 〈t, fulfilled, u〉]Σ

fulfill(p, t) | Σ→ · | Σ′

Fulfill-Promise-Again

Σ(p) = 〈 , fulfilled, 〉

fulfill(p, t) | Σ→ · | Σ

Subscribed-Promise-Fulfilled

∆ = {〈extern, p, f〉} ∪∆′ Σ(p) = 〈t, fulfilled, 〉 f(t) | Σ,∆′ → · | Σ′,∆′′

· | Σ,∆→ · | Σ′,∆′′
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Activation-Completed

∆ = {〈running, a〉} ∪∆′

Γ(a) = 〈m, (p1, ..., pj), (q1, ..., qk)〉 ∀ki=1 : Σ(qi) = 〈 , fulfilled, 〉

Σ′ = [∀ji=1 : Σ(pi) = 〈t, s, unknown〉 =⇒ pj 7→ 〈t, s, unused〉]Σ

· | Γ,Σ,∆→ · | Γ,Σ′,∆′

Input-Usage-Known

∆ = {〈input, p, a〉} ∪∆′

Σ(p) = 〈 , , u〉 u 6= unknown maybe set edge(a, p) | Γ,Σ→ · | Γ,Σ′

· | Γ,Σ,∆→ · | Γ,Σ′,∆′

Maybe-Set-Edge-Current

Γ(a) = 〈m, p̄, 〉 Γ(m) = 〈c, , (v1, ..., vk), 〉 Γ(c) = (..., a)

p̄ = (p1, ..., pj, ..., pk) pj = p Σ(p) = 〈 , , u〉 Σ′ = [〈vj,m〉 7→ u]Σ

maybe set edge(a, p) | Γ,Σ→ · | Γ,Σ′

Maybe-Set-Edge-Old

Γ(a) = 〈m, , 〉 Γ(m) = 〈c, , , 〉 Γ(c) = (..., a′) a 6= a′

maybe set edge(a, p) | Γ,Σ→ · | Γ,Σ

166



A.7 Lifting Functions

Lift-Function

Σ′ = [∀ji=1 : Σ(pi) = 〈t, s, unknown〉 =⇒ pi 7→ 〈t, s, used〉]Σ

∀ki=1 : qi = newsym() Σ′′ = [∀ki=1 : qi 7→ 〈·, pending, unknown〉]Σ′

∆′ = {〈lifted, g, (p1, ..., pj), (q1, ..., qk)〉} ∪∆

lift(g, k, p1, ..., pj) | Σ,∆→ (q1, ..., qk) | Σ′′,∆′

Lifted-Inputs-Ready

∆ = {〈lifted, g, (p1, ..., pj), (q1, ..., qk)〉} ∪∆′

∀ji=1 : Σ(pi) = 〈ti, fulfilled, 〉 g(t1, ..., tj) = (o1, ..., ok)

Σ′ = [∀ki=1 : Σ(qi) = 〈 , pending, ui〉 =⇒ qi 7→ 〈oi, fulfilled, ui〉]Σ

· | Σ,∆→ · | Σ′,∆′
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