
DEVELOPING A SPEECH-BASED INTERFACE FOR FIELD DATA COLLECTION

A Thesis

 by

KAITLYN CHERI BECKER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Frederic I. Parke
Committee Members, Sherman Finch

Bruce Gooch
Head of Department, Tim McLaughlin

May 2016

Major Subject: Visualization

Copyright 2016 Kaitlyn Cheri Becker

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79652634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

This work explores the use of speech as an interface for efficient field data

collection. This exploration was conducted using the open source data collection

application Field Book as a platform. The augmented interface was created using

PocketSphinx speech recognition and Android text to speech to enable hands-free

operation of a small scope of commands. At the completion of this work, the interface

concept holds promise, but has some practical limitations that need to be addressed prior

to effective use.

ii

ACKNOWLEDGMENTS

Thank you to Dr. Frederic Parke, my chair, for consistently helping me minimize

the words I took to get my point across. Thank you for your patience and for helping me

through one crisis after another. Thank you also to Sherman Finch, who always shows a

new way to look at things, and thank you to Dr. Bruce Gooch for your expertise,

guidance and friendly chats.

I wish to extend my heartfelt thanks to my parents, who have always been both

my loudest cheerleaders and my most dogged motivators. Thank you for being my

positive influence, my rock-solid support and the angel on my shoulder telling me to get

to work.

I am so grateful for the friends and teachers I have met at Texas A&M. The

lessons you taught me have been invaluable, and I’m so blessed to have met you all.

Thank you to the VIZ department for putting up with me all these years, and thank you

for the experience.

iii

TABLE OF CONTENTS

Page

ABSTRACT...ii

ACKNOWLEDGMENTS...iii

TABLE OF CONTENTS...iv

LIST OF FIGURES...v

1. INTRODUCTION..1

1.1 What is Speech Recognition?...3
1.2 What is Speech Synthesis?...5
1.3 Problem Statement..6
1.4 Significance..6
1.5 Motivation...7

2. PREVIOUS AND RELATED WORK..11

2.1 Data Collection...11
2.1.1 Mobile Applications for Data Collection...12
2.1.2 Mobile Applications for Specific Fields..14
2.1.3 Field Book...15

2.2 Speech-Based Interfaces...17
2.2.1 A Brief History of Speech Systems: Speech Recognition...............17
2.2.2 A Brief History of Speech Systems: Speech Synthesis...................19
2.2.3 Current Uses of Speech Interfaces...20

3. METHODOLOGY...22

4. IMPLEMENTATION...23

4.1 Design Considerations..23
4.2 Identifying Useful Commands..24
4.3 When Audio Feedback is Necessary...27
4.4 Hardware and Software..29

5. RESULTS AND CONCLUSIONS...31

6. FUTURE WORK..35

REFERENCES...36

iv

LIST OF FIGURES

FIGURE Page

1 Excerpt from a speech recognition dictionary..4

2 Example of a speech recognition grammar..5

3 Illustration of a typical speech synthesis system..6

4 A simple interface (left) is easier to navigate than a cluttered one (right).........9

5 An example of the data organization system commonly used in logbooks.....12

6 The iDig application was developed specifically for archeologists.................15

7 Field Book data input follows a serpentine path through a field.....................16

8 The process for collecting flowering dates of Sorghum plants in the field......25

9 The system processing a single command...28

v

1. INTRODUCTION

Many researchers today still rely on traditional log books for data collection. In

scientific fields like chemistry, archeology, entomology and anthropology, the tried and

true pen and paper method of note-taking is common. Accuracy and neatness are

emphasized because the research is only as accurate as the data collected. As mobile

technology becomes more widely available, developers are offering more efficient

alternatives to traditional data collection methods. On a computer, keeping notes

organized is simple, and with a mobile computing device, this technology is as portable

as a paper notebook.

Field Book is an application designed by the Poland Lab as a digital note-taking

tool for wheat researchers collecting data on their crops. It has been developed as part of

the “One Handheld Per Breeder Initiative” which seeks to provide researchers and wheat

breeders with technology that is more efficient and accurate than traditional log books

(One Handheld Per Breeder). Part of this initiative is to make this technology as

accessible as possible by keeping the tool inexpensive and intuitive.

In keeping with this goal, Field Book was designed to work with Android tablets.

These relatively inexpensive and intuitive platforms have an array of useful features

including Bluetooth, cameras and microphones. The Field Book software is open source

to allow users to customize the tool to their specific needs. Field Book provides an

interface that keeps data organized automatically and shows the data of a single plot at a

time.

1

While Field Book allows faster and easier data collection, it still requires manual

input. Researchers have to juggle manipulating plants and recording data, slowing down

the process and often necessitating an extra set of hands. In this thesis, I have

implemented an auxiliary speech interface to allow hands-free field data collection

without the need for an assistant. This could save time and make the process easier and

more efficient. I have created a prototype system that executes spoken commands. It also

reads data aloud to verify accuracy in place of visual confirmation. This prototype

system has been incorporated into the existing Field Book application.

Speech interfaces have been successfully incorporated into video games, office

applications, art pieces and vehicle consoles. In these diverse settings, speech interfaces

are beneficial for different reasons. For vehicle consoles, having hands-free operation

that doesn’t take the driver’s eyes off the road improves safety. In office applications, the

most commonly used feature is dictation. The computer can transcribe the user’s

thoughts as they speak them, thus allowing users who think faster than they type to

capture their message more quickly and efficiently. The main benefit of a speech

interface for a video game is a wider command base. On console games in particular,

there are sometimes not enough buttons to encompass the commands. As such, most

games that utilize a diverse number of commands (for example, World of Warcraft) have

to use the computer keyboard. The addition of a speech interface allows for the use of far

more commands without needing extra buttons or button combinations. Finally, speech

interfaces in art can be used to make a piece more interactive, drawing people in. It is a

relatively new concept that hasn’t been explored extensively as a media, but its use

2

appeals to our impulse to connect to other human-like entities. If something will speak

back, we probably will speak to it.

This augmentation is tailored to Field Book, but the information gleaned from its

implementation as a multimodal interface can be incorporated in other applications. This

exploration of speech-based systems can inform potential developers, artists and users of

the benefits and likely drawbacks. Field Book’s open source software serves as a

convenient exemplar platform to study a system that is directly applicable to other

media.

1.1 What is Speech Recognition?

The basic process of speech recognition involves three main steps. The first is to

sample an incoming analog waveform to a digital representation. Next, this digital data

is divided into distinct units of sound called phonemes and pauses. Finally, the resulting

phonemes are run through an algorithm to determine the resulting text. The algorithm

used differs between various speech recognition softwares and can have varying levels

of complexity depending upon the needs of the system.

All speech recognizers have a dictionary. A dictionary consists of a list of all the

words a recognizer can distinguish alongside the combination of phonemes that make up

that word. It is possible for a single word to have multiple phoneme combinations just as

it is possible for words in a language dictionary to have several definitions. Figure 1

below shows an excerpt from the dictionary used in this interface.

3

A speech recognizer might also consult a grammar when parsing a phrase. In the

context of speech recognition, a grammar is a set of guidelines to define the context in

which a word can be used. For example, Figure 2 shows the grammar written for the

Field Book augmentation. Much like a simplified version of a language grammar, it lays

out the rules for when and how certain words are used. From this, the recognizer can

better detect what words are being spoken by comparing them within the context of the

phrase.

4

Figure 1. Excerpt from a speech recognition dictionary

Figure 2. Example of a speech recognition grammar

There are two main types of speech recognition: local and remote. In a local

system, there is a dictionary file stored on the device that is referenced by the recognition

algorithm. All computations are processed locally. These systems tend to be more

accurate when dealing with a small dictionary and often have less sophisticated

algorithms than remote systems.

Remote speech recognition passes the sampled waveform data to a server

which will then break down the phonemes and compare them to an online repository.

These systems are often more sophisticated and can recognize a large dictionary

compared to local systems.

1.2 What is Speech Synthesis?

Speech synthesis, also known as text to speech, or TTS, is essentially the

opposite process of speech recognition. An algorithm is used to parse text into phonemes

and pauses, then phoneme sounds are produced and strung together to produce a

synthetic voice. This process is outlined in Figure 3 (Andy0101). The complexity of a

5

speech synthesis system lies in how these sounds are produced, and how accurately the

digital voice mimics human speech. More complex systems will not only sound out

words, but will use inflection, pauses and tonality to mimic the way we express

questions, group thoughts in a phrase and convey emotion.

Figure 3. Illustration of a typical speech synthesis system

1.3 Problem Statement

Adding a speech interface may improve the efficiency and overall usefulness of

an application. I have explored this usefulness by implementing such an interface in the

Field Book application. I chose to focus on the benefits of making the system hands-free,

having an intuitive command base, and modifying the traditional mode of interaction.

1.4 Significance

As the world’s population continues to increase, food production works to keep

up. Wheat is what is known as a staple food. According to the definition by the Food and

Agricultural Organization of the United Nations, “a staple food is one that is eaten

regularly and in such quantities as to constitute the dominant part of the diet and supply a

6

major proportion of energy and nutrient needs” (FAO Corporate Document Repository).

The FAO also states that rice, maize and wheat make up 60 percent of the world’s food

intake. Wheat is unrivaled in its flexibility, both as a crop and an ingredient. Wheat is

grown from 67°N in Russia and Scandinavia all the way to 45°S in Argentina, from high

elevations to just above sea level. It can tolerate frost, drought and poor soil conditions

better than any other staple crop (P. R. Shewry). Wheat can also be stored indefinitely in

the proper conditions (low humidity with protection from pests) and is easily harvested

through traditional or mechanical means. (P. R. Shewry)

Researchers have developed tens of thousands of different types of wheat. New

variations are constantly being produced that are more resistant to disease and pests, that

are more tolerant of poor growing conditions, and that have higher germination rates and

produce more grain per stalk. This ongoing research is imperative to keep up with the

growing demand for food.

Field Book is making data collection easier for researchers. By providing another

option for controlling the application, data collection may be made more versatile and

efficient. With a more flexible and robust interface, the application could be more

accessible, thus making Field Book a more approachable option for researchers.

1.5 Motivation

The overall goal of the Field Book application is to make data collection more

efficient and accessible. The current iteration of the software meets this goal, but with

the addition of a speech-based interface, many interactions may be made easier. Adding

7

a speech-based interface would not increase the cost of the system as most mobile

devices come equipped with audio input and output devices.

Currently, users operate the application with touch input, requiring both hands.

Researchers have to juggle between manipulating equipment, handling plants and

inputting data. According to field researchers at Texas A&M, the usual approach is to

have one person dictating the data and another transcribing it (Brian Pfeiffer, personal

communication, June 4, 2015). With the inclusion of a speech interface, the application

may be operated hands-free, thus streamlining the process and eliminating the need for

an assistant.

User interface design is all about minimizing the work needed to complete a task.

A good user interface has only necessary elements on screen. A cluttered interface leads

to inefficient navigation and takes longer to operate. Figure 4 (Qayyum, Stevens Creek)

illustrates this point. Speech-based control systems can reduce the time and effort

needed. Users can activate a response without a specific button, minimizing screen

clutter.

8

Speech-based control may also reduce the time needed to navigate menus and

submenus. For example, to access a non-adjacent plot using the current version of Field

Book, the user must expand a drop-down menu, open the map, wait for it to initialize,

and then count through the unlabeled cells to find the plot they’re looking for. With the

implementation of speech-based commands, the user can just say ‘Go to plot 285’.

Field Book currently allows users to record speech for later transcription. This

feature is not commonly used by researchers because of the time it takes to later

transcribe these notes (Trevor Rife, personal communication, May 19, 2015). With

9

Figure 4. A simple interface (left) is easier to navigate than a cluttered one (right).

speech recognition, the user would have a written record that could be transmitted to

colleagues immediately without the transcription time.

By utilizing speech-based software developed for multiple languages, the

interface could also be made available to non-English speaking researchers. With the

addition of speech synthesis, the app could read aloud (in the native language)

instructions or descriptions to the user, making this app accessible to those with limited

literacy. Spoken text could also be added to the in-built tutorial. Since the system is most

often used in bright sunlight (Trevor Rife, personal communication, May 19, 2015), read

aloud functionality could be useful when screen readability is poor.

10

2. PREVIOUS AND RELATED WORK

2.1 Data Collection

Since the advent of modern agriculture, field researchers have used paper to

record their data. Survey books with waterproof pages made to fit in a pocket are often

used. There are conventions as to how these pages are laid out and how the data is

recorded.

Figure 5 shows an example of data layout (Doolittle). Traditionally, data in

columns are on the left, and figures and sketches are on the right. The necessity for

precision makes recording in a survey book a time-consuming endeavor. Researchers

have the option of designing and reproducing a form that is custom tailored to their

specific project. This requires the researcher to know ahead of time what data they will

be collecting and offers little flexibility.

11

Figure 5. An example of the data organization system commonly used in logbooks.

2.1.1 Mobile Applications for Data Collection

Users are becoming more comfortable using technology for tasks previously

done on paper. According to a survey conducted by Princeton Survey Research

Associates International, 50% of American adults own and use either a tablet or e-

reading device (Zickuhr and Rainie). In recent years, researchers have begun adopting

new technology in an attempt to make the process of data collection easier and more

streamlined. With advances in mobile technology, digital tablets are becoming more

useful as data recording media. They offer the portability of a logbook with the

computational power of a computer. With a well-written application, a user can edit,

12

http://uts.cc.utexas.edu/~wd/courses/373F/notes/lec04not.html

reorganize and customize their recorded data, as well as disseminate the gathered

information efficiently.

Of the researchers who use a tablet as part of their data collection, many rely on

Microsoft Excel. Excel offers a customizable grid and powerful mathematical

functionality. Averages, totals and other survey data can be calculated and updated on the

fly and can be translated into graphical format to help visualize information.

Excel is useful for data visualization and organization, but when it comes to

mobile data collection, it proves unwieldy. Data cells and input keys are small and can be

difficult to press accurately. The display is nearly impossible to see in bright lighting

conditions on tablets with inadequate glare reduction. The grid format for information is

inefficient on large plots due to the standard serpentine order of collecting. It can also be

difficult to maintain the correct position in a spreadsheet when it is necessary to skip

cells that do not have data to be input.

Many applications have been developed in the past decade to mitigate these

limitations. Some focus on global data management, allowing collaborators to pool their

collective knowledge. Applications like Magpi (DataDyne Group) and Epicollect

(EpiCollect.net) provide tools for creating mobile data collection forms and include

functionality like GPS location and photo uploads. While they support data collection,

their primary goal is organized dissemination of data.

Reference guides are particularly well-suited to mobile application development.

Some, like Plant-o-matic (Ocotea Technologies, LLC) and the iBird Guide (Mitch Waite

Group), present the user with a powerful search tool with which they can identify a

13

specimen. Other references, like Project Noah (Networked Organisms), rely on the

contributions of ‘citizen scientists’ to report and identify sightings of fauna across the

globe. The application serves as a hub for a community of users to share their findings or

seek help from their fellow researchers. There are also automated references with photo-

processing technology. Applications like LeafSnap (Columbia University, University of

Maryland, and Smithsonian Institution) make use of image recognition technology to

analyze a photo of a specimen and return an identification.

2.1.2 Mobile Applications for Specific Fields

While many applications exist that allow users to create their own surveys and

forms, applications are also developed for specific types of data collection. These

applications are optimized for the type of information to be collected. Considerations are

made for the specialized environment in which the tool will be used. For example, the

application iDig (Bruce Hartzler) is a tool developed for archeologists. Users can easily

scan sketches and maps, upload custom data points, and can wirelessly sync with other

iPads on the site. Plans can be viewed in cross-section and from above, and the

application allows for geospatial searching of archival excavation data. A screenshot of

this application is shown below in Figure 6 (Hartzler).

14

Figure 6. The iDig application was developed specifically for archeologists.

2.1.3 Field Book

Field Book is engineered specifically for field data collection. The application

was developed with the needs of wheat researchers in mind. Users create a grid in

Microsoft Excel, or other spreadsheet software, detailing the title or id (usually a

number), row and column of each plot and import it to the tablet. Field Book then

generates a map of the field. When creating a new data set, users specify the data points,

referred to as ‘traits’, they will be collecting (e.g. flowering date, height, disease rating),

and the name of the researcher inputting the data. Field Book then allows the user to

input the data per plot. Traditionally, researchers follow a serpentine pattern when

15

https://itunes.apple.com/us/app/idig-recording-archaeology/id953353960?mt=8

collecting data; completing one row in ascending order, then following the next row in

descending order. An example of this path is shown in Figure 7. Field Book assumes this

layout when progressing through a data set. Field Book’s visual design is high contrast

with large text and large buttons to facilitate its intended use in bright sunlight. Inputting

data is streamlined, making data collection faster and easier than traditional paper

methods. Users can export their collected data in spreadsheet format, allowing them to

make use of Excel’s mathematical capabilities.

Figure 7. Field Book data input follows a serpentine path through a field.

16

Field Book maintains flexibility for users by allowing them to define the traits

they wish to record for a specific crop. The user can create data points of many different

types including numeric, date, text, photo and audio. This allows the user to fine-tune the

process to suit the needs of different research projects.

2.2 Speech-Based Interfaces

2.2.1 A Brief History of Speech Systems: Speech Recognition

The first documented speech recognition program was Audrey (K. Davis).

Audrey was built in 1952 at Bell Laboratories. This computing system could recognize

ten numbers, “0” through “9” and only after the system had been trained to the user’s

voice and with significant pauses in between. Audrey worked by comparing each sound

to a library of individual sounds to find a match. At the time, the system was physically

too large, too slow and too expensive to compete with faster and cheaper push-button

interfaces. Ten years later, at the 1962 Seattle World's Fair, IBM released the “shoebox”

computer (IBM archives). This system still required awkward pauses in between words,

but it was able to recognize 16 words in addition to single digits.

In the 1970s, the United States’ Department of Defense began its Defense

Advanced Research Projects Agency (DARPA) Speech Understanding Research (SUR)

Program. The most successful project funded by the SUR program was Harpy,

developed at Carnegie Mellon University (Bruce Lowerre). Harpy used a new searching

algorithm called “Beam search” that enabled it to recognize over 1000 words, roughly

the average vocabulary of a three-year-old. Soon after, in the 1980s, researchers began

investigating a recursive technique known as the Hidden Markov Model. This model was

17

first described by Ruslan L. Stratonovich in 1960 (Stratonovich), and gained popularity

when researchers at Bell Labs began implementing it. The Hidden Markov Model

allowed computers to assign probabilities of individual sounds being words rather than

comparing them against a repository. This flexibility paved the way for much larger

vocabularies.

With advances in personal computing technology, commercial software was soon

developed. In 1997, Dragon introduced their Naturally Speaking software, which

allowed users to speak at a conversational pace rather than the stilted speech that was

previously necessary (Nuance Dragon Naturally Speaking). DARPA launched the

Effective, Affordable, Reusable Speech-to-Text (EARS) project in 2002. The goal of this

project is to improve the accuracy of multilingual speech-to-text transcriptions from

phone conversations (Effective, Affordable, Reusable Speech-to-Text). Soon after, in

2005, DARPA began work on the Global Autonomous Language Exploitation (GALE)

project. The goal of GALE is to develop a system that can automatically process

recorded conversation, text documents and news broadcasts in a variety of languages and

organize the data in a queryable format (Global Autonomous Language Exploitation). In

2007, Google began its research in speech recognition with the GOOG-411 system, a

telephone-based directory service (GOOG-411 Team). This eventually led to the

connection of speech recognition to cloud-based technology, massively increasing the

capabilities of modern systems. With the massive computational power and vast data

stores available today, accuracy in current systems are frequently above 90% (Jordan

Novet).

18

2.2.2 A Brief History of Speech Systems: Speech Synthesis

Speech synthesis has been around far longer than recognition systems. The first

known efforts to produce a synthetic voice were made in 1779 by Professor Christian

Kratzenstein (EduBilla). Professor Kratzenstein studied the human vocal tract and made

artificial resonators that could produce five vowel sounds. Around the same time,

Wolfgang von Kempelen was working on his own speech machine. In 1791, he

introduced his “Acoustic-Mechanical Speech Machine” which could produce single

sounds and a few sound combinations (Wolfgang Kempelen). The machine was

constructed with parts analogous to the working of the human body, including lungs,

vocal cords, vocal tract, tongue and lips. In the 1800’s, Charles Wheatstone unveiled a

more complicated version of von Kempelen’s machine (James Flanagan). Wheatstone’s

machine was capable of producing most vowel and consonant sounds and was even able

to produce full words.

In 1922, Stewart released the first fully electrical synthesis device (Haskins

Laboratories). The system used electricity to create resonance and was only able to make

vowel sounds. The first electrical device that could produce intelligible synthetic speech

was introduced at the 1939 New York World’s Fair by Homer Dudley (Homer Dudley).

Dudley was inspired by the VOCODER, a device built by Bell Laboratories in the

1930’s that could analyze input speech into parameters that could be used by a

synthesizer to reconstruct the original sound. Dudley called his synthesizer VODER. The

system was complex and difficult to play, and the resulting speech was only barely

intelligible.

19

At Haskins Laboratories in 1951, Franklin Cooper and his team developed a

Pattern Playback synthesizer that reconverted recorded spectrograms into sound

(Haskins Laboratories). George Rosen filed a patent for the first articulatory synthesizer

in 1958 (George Rosen). This synthesizer was controlled by a tape recording of signals

produced by hand. During the 1960s, research was conducted on Linear Predictive

coding, in which the formants (vowels) of an input sound are separated from any sibilant

(hissing) and plosive (popping) sounds in the recording. By running the source through a

filter created from the formants, speech is produced. This model was used in early low-

cost systems like Texas Instruments’ Speak’n’Spell from the 1980s. This predictive

system is still used today.

The first text to speech program in English was developed in Japan in 1968 by

Noriko Umeda and his associates (Umeda N.). It used the articulatory model with an

added syntactic analysis model and was regarded as intelligible, though monotonous

speech. A team of researchers at M.I.T. demonstrated the MITalk system in 1979

(Jonathan Allen et al.). This system was later modified for use as a commercial system

for Telesensory Systems Inc. In 1981, Dennis Klatt introduced the famous Klattalk

system (Dennis Klatt). These two systems formed an early basis for speech synthesis

technology that is still used today.

2.2.3 Current Uses of Speech Interfaces

Speech recognition has been used as a dictation tool for many years for both

casual and office use. It has proven to be an accurate and efficient tool for transcription

of medical reports, reducing average turnaround time from 28 hours to 12.7 hours in a

20

study conducted in the Department of Radiology at the University of North Carolina

Hospital (Krishnaraj et al.).

Speech recognition has also been used for command interfacing. Many

computers and most smartphones come with the ability to execute voice commands. This

powerful hands-free capability makes it possible to multitask when driving or cooking,

and improves accessibility for those with limited mobility or dexterity. Most of these

systems include speech feedback to facilitate hands-free operation. Call centers use

speech recognition for directing millions of calls each day.

Video games have also made use of speech recognition technology. Games like

Hey You, Pikachu (Nintendo) or, more recently, There Came an Echo (Iridium Studios),

use voice commands to control the interactions between the computer and the player.

This frees up screen space and allows for more commands than the interface has buttons

(in the case of console games). It also serves to make control more intuitive. In the case

of There Came an Echo, the player acts as a commander of a small unit of soldiers. The

commands mimic those of an officer in charge, such as “Move to point A”, “Target zone

5”, and “retreat”. This gives the game a more immersive feel than with point and click

controls. It has the drawback of being slightly slower, and can be frustrating when the

commands get repetitive, but it can make you feel like you’re a part of the game.

21

3. METHODOLOGY

To explore the usefulness of a speech-based interface for the interactive Field

Book application, I created a prototype that extends Field Book to include constrained

speech recognition for command execution and audio feedback.

I visited a sorghum field with Texas A&M researchers and observed the use of

Field Book in its intended environment as my first step. On the trip, I noticed several

inconveniences that could be mitigated by a speech interface. For one, the tablets require

two hands to input data. This can be inconvenient for users who must also handle the

plants or other equipment (like a measuring pole). The researcher also mentioned that the

tablet touch screens tended to be less responsive in rain or mist, making data difficult to

input. Inputting data also requires the user to look at the screen. It can be difficult to see

the screen when the sun is very bright. With a speech system, input is handled via a

microphone, minimizing the need to handle the device or view the screen.

To ascertain the most intuitive setup, I framed the system as a kind of digital

secretary. I asked the researchers to go over how they would relay their information if

they had an assistant. Having one researcher call out information and one record it is

common practice for large fields, as it speeds up the process. I made note of when the

speaker would announce information, and when the recorder would ask for confirmation.

In the case of a speech recognition system, particularly the less accurate local variety, it

was necessary to assume this digital secretary was rather hard of hearing and would have

to ask for confirmation more frequently than a human counterpart.

22

4. IMPLEMENTATION

4.1 Design Considerations

In designing an augmentation for Field Book, it was important to take into

consideration the current implementation of the software. The application was designed

for 7 inch tablets to maximize available screen space while keeping the device small

enough to be easily portable. It was first developed for Android systems because the cost

of these devices is lower and distributing the application is free and easy. This is in

keeping with the goal of the “One Handheld Per Breeder” initiative. By keeping costs

low, the application is available to more researchers. Android offers tablet models that

are constructed to be durable, making them practical for field work.

A potential challenge faced by an outdoor speech recognition application is input

sound quality. In practice, there likely will be environmental noise from wind, nearby

roads or other interference. Distance of the user from the microphone (for speech

recognition) or the speakers (for audio feedback) can reduce the user’s ability to properly

communicate with the system. The user could hold the tablet closer to their head, but this

defeats the purpose of hands-free functionality. As such, I worked with an inexpensive

headset to provide quality audio input and output.

It is assumed that researchers may not have internet access while recording data

in remote fields. As such, the data collection capabilities of the software have no internet

dependency. Data dissemination is handled outside the application following data export.

23

The Field Book application is being introduced to both new and seasoned

researchers. Prospective users run the gamut from avid technical gurus to traditional pen

and paper enthusiasts. To account for this, developers have worked to make the interface

as intuitive as possible, including an on-board tutorial.

In keeping with these design considerations, I developed this speech

augmentation for the Field Book application on a Neutab N7 Android tablet. My

prototype requires little added equipment cost. The text and buttons added to the

interface are large and high contrast to be seen easily in bright sunlight. The speech

recognition and speech synthesis softwares used (PocketSphinx and Android Speech

Synthesis, respectively) are available for free and operate locally without access to the

internet. I made efforts to keep the system as intuitive as possible, relying on common-

sense phrasing for commands and accounting for some variation.

4.2 Identifying Useful Commands

The primary goal of this speech augmentation is to make data collection a hands-

free operation. It is important that the user not feel the need to check the accuracy of

each entry. To accomplish this, audio feedback in the form of speech and tones has been

implemented in addition to speech commands.

To determine a useful set of commands, I accompanied two wheat researchers

from Texas A&M on a survey of their project fields. The process for recording data is

illustrated in Figure 8 below.

24

Figure 8. The process for collecting flowering dates of Sorghum plants in the field

The two actions shown in rectangles are points at which a researcher would

announce to their assistant what to write down. These actions served as my initial

reference when developing commands for the prototype.

The first allows the user to state at which plot they are recording information.

The use of this command will feel natural as researchers will often count off plots as

they walk them. The system would then automatically keep pace with the researcher

rather than the researcher keeping track of which plot they have selected on screen. This

command can be a simple “move forward”, “move backward”, “go to next plot”, or the

user can specify the plot number: “go to plot 100”.

As is shown above, researchers sometimes have to overwrite previous data as

more information becomes available. For example, a researcher says that a particular

plot must have flowered a day ago based on the appearance of the panicle (the loose,

branching cluster of flowers found at the top of the plant) and the amount of pollen it has

released. The researcher then encounters a plot a few columns down that has released

less pollen but clearly didn’t start today. The researcher records that the current plot

25

flowered yesterday and edits the previous plot to say it flowered two days ago.

Collecting data that requires estimation, like flowering date, is subjective and users must

be able to go back and modify the data if they change their minds. The system can

understand multiple phrases to accomplish this, including “Go to plot 100” or “I am at

plot 100.”

The second action a user would announce is what trait to record and what its

value is. To be most intuitive, this command mimics the researcher announcing data to

an assistant. For the purposes of this prototype, I have implemented the most common

type of trait input: numeric. Currently, the user can record height data or flower date in

epoch form. The user can either navigate to a plot and then record the data (“Go to plot

120. Set height to 40[inches]”), or command inclusively (“Set height to 40[inches] at

plot 120”).

The system asks for and awaits confirmation before changing data. The system

announces the registered command and prompts (e.g. “Want to set height to 40 at plot

120?”), and waits for a ‘yes’ or ‘no’ answer. If the user answers no, the system will

discard the changes and await further instruction.

The user can also undo the last step. If the system moves or sets a trait

incorrectly, the user can simply say “Undo last”. This is necessary as we can’t assume

the system will always be 100% accurate. I chose to use the phrase “undo last” rather

than just “undo” to avoid false triggers.

Finally, the researcher has the ability to request that the system read out the data

for a given data point, whether that be the current plot id, row, column, or traits of the

26

current plot. Examples of working commands include: “Where am I?”, “What row is

this?” or “What is height set to?”.

4.3 When Audio Feedback is Necessary

Since the user should not feel the need to look at the screen when using this

interface, audio feedback becomes the primary way of communicating information. It is

necessary for the user to know when the system is listening, when the system recognizes

or fails to recognize a command, and when it requests confirmation. To accomplish this,

the system provides audio feedback for each case. This system makes use of both speech

and tonal feedback, depending on the situation.

The system is always listening, but only activates command detection when it is

specifically addressed using the key phrase “Field Book”. This prevents the system from

trying to interpret everything it hears as commands. When the application detects the key

phrase, the system issues a notification sound to alert the user. Here, sound was

employed rather than a spoken phrase to minimize the time between the user activating

the system and speaking their command.

When the system recognizes a command, it issues a unique notification tone, then

repeats the command it heard. For example, if the system recognizes the command

‘move forward’, plays the command recognized sound (a synthesized chime), then says

“Moving forward to plot [next plot]”. In the case of any error, the system will first play

an error notification sound (a descending pair of tones). If it fails to recognize a given

command, it says “[command issued] is an invalid command.” If the command has a

problem, for instance if the user attempts to move to a plot outside the map’s bounds, the

27

system will speak to the specific problem, in this case “The maximum plot is [# of plots],

cannot access plot [the plot the user attempted]”.

It is necessary for the researcher to receive audio feedback to ensure accuracy of

data collected. For the trait command, the system announces the trait and value it is

going to record, as well as the plot it is recording in. The system awaits feedback in the

form of a ‘yes’ or a ‘no’ from the user prior to making changes in case the data is

incorrect. The same occurs for the move command. Unlike other commands, the move

forward and move backward commands do not await confirmation as they are used to

move quickly between plots. The potential risk of falsely triggering these commands are

combated by their dissimilarity to other command phrases. Figure 9 shows the process of

the system executing a command.

The user can request data such as the current row, column, plot, and trait values

of the current plot using the commands detailed in the previous section.

Figure 9. The system processing a single command

28

4.4 Hardware and Software

This software was tested on a Neutab N7 Android tablet. This tablet was

inexpensive while still providing the features necessary for testing, including adequate

processing power, screen resolution and sound quality. It had a headphone jack for the

inexpensive headset and debugging capabilities. The headset I used was a set of Apple

earbuds with built in microphone.

I built my program in Android Studio, the official IDE (Integrated Development

Environment) for Android application development. I began by creating a rudimentary

program to get accustomed to application styling and work through the kinks of getting

the tablet to talk to the computer. With that Hello World completed, I moved on to text to

speech. Text to speech is included in the base Android environment, so it was not

necessary to seek third party software.

Speech recognition proved far more difficult. Like text to speech, speech

recognition is available with base libraries for Android, and is, on some versions, capable

of working offline. I was never able to get it to work. Instead, I moved over to

PocketSphinx. PocketSphinx is an open source, local speech recognition application that

allowed me to define my own grammar, thus limiting the number of words my

application would try to recognize and specifying how they would be arranged. By

limiting the options, the recognizer was more accurate. It also meant that I knew the

exact format of recognized commands and could use them accordingly. Because it is

open source, it can be incorporated into Field Book without licensing issues or adding

cost to the system.

29

I found there were significant drawbacks to using the PocketSphinx software.

One example was the lack of control over audio threshold. There is no built in way to tell

PocketSphinx to discard low level sound information. PocketSphinx adjusts its recording

threshold automatically and tends to amplify environment noise and get false positive

results. As such, I found it necessary to change the activation key phrase from the single

syllable ‘book’ to the longer ‘Field Book’ to eliminate some of those false positives. I

also directed the command listeners to reset after a short period of time. This helps

prevent the system from over-amplifying prolonged silence to produce errant results.

Another challenge was the inherent inaccuracy of the recognizer. At times, it

would detect every word flawlessly, and at others it would fail. To combat this, I sought

to make commands phonetically diverse, so no two commands were similar enough to be

easily confused. I also switched from my original grammar that allowed for intuitive

input of numbers such as “one hundred and one” to digits “one zero one”. This was

necessary because the system couldn’t reliably distinguish close-sounding words like

“sixteen” and “sixty”. I ensured the system repeated any command it was attempting and

for any command that would change data to await confirmation prior to executing.

The software also tended to have unpredictable periods of lag. These would

happen most often when the system would hang while trying to interpret a speech input.

My attempts to optimize the system have thus far failed to alleviate this unfortunate

behavior, so more time must be spent determining the cause.

30

5. RESULTS AND CONCLUSIONS

The conclusion I reached conducting this study is that getting a speech interface

to work properly is more difficult than I had anticipated. Having done the background

research and played with tools like Siri, I felt I was adequately cynical about the

capabilities of such a system. I was not.

There are many factors that make implementing a speech interface a challenge.

First is the number of points at which the system can fail. In a traditional digital system,

a button is essentially a yes or a no. A command in a speech system can be several

hundred yes’s and no’s. Because of this, a speech-based command system must have a

commensurate number of fail safes. It is up to the designer of the system to anticipate

these failure points and account for them. Failure rates in a speech recognition system

increase as commands are less distinct (e.g. ‘sixty’ vs ‘sixteen’). Even with widely

distinct commands, the current system misinterprets speech roughly once in five

attempts. This can be incredibly frustrating to deal with and would require improvement

for the system to be used in the field. While there are error checks in place to prevent the

system from executing an errant command, there is a significant delay in having to

cancel and restate a request.

The second challenge when working with a speech-based system is finding the

appropriate software (assuming the user is not making their own). When conducting that

search, the user must know what is needed for their system. For this implementation, I

31

needed a software that was open source and reasonably accurate without continuous

access to the internet. I also strongly preferred any system with a customizable grammar.

After finding that software, the designer of the system must be able to work

around that software’s idiosyncrasies. For instance, PocketSphinx doesn’t give the user

the ability to set the minimum threshold for sound, so it will pick up noises that are not

commands. I dealt with this using timeout functions to cut any noises that hadn’t been

identified as a command. PocketSphinx is well documented and has an active support

forum, so finding help wasn’t difficult. In other cases, however, dealing with poor

documentation or lack of support could make a software virtually unusable.

The second conclusion I came to is how helpful it is to have a good mental

model. In designing this interface, I found that thinking of my speech interface as

dealing with a person who is hard of hearing helped me visualize how the ‘conversation’

should play out. I found it easier to see where potential miscommunications could occur

and how to address them. Thinking about the system in terms of a conversation was a

pragmatic way to consistently come up with intuitive command phrasing.

In exploring this speech-based system, I worked out a series of do’s and do not’s

for those considering the use of a similar system:

Do expect a good speech-based control system to feel like a conversation.

Because this type of system requires the user to talk to it, and for the system to talk back,

it inherits many of the characteristics of a traditional conversation. It can be more

engaging to users than a passive point and click system. With a large enough command

32

base, this type of system is also intuitive. The user can request a specific action, and the

system will return the expected result.

Do expect a hands-free experience. Given the appropriate command base and

audio feedback, the user does not have to physically interact with the system at all except

for listening and speaking. This leaves the user free to use their hands and eyes

elsewhere.

Do the research for what type of recognizer your system will need. Be aware of

the requirements of the proposed system. Does it need a free or open source software, or

will it need a proprietary package? Know the priorities of speed, accuracy and flexibility.

Will the developer define the grammar or use an open ended phonetic interpreter? A

wider command base can mean less overall accuracy. Does the system require access to

the internet? Internet dependent systems have access to more processing power and can

handle larger dictionaries, but they can also be slower or less reliable depending on your

connection.

Do expect to have to update your system. The first iteration (and likely the

fifteenth) will not be perfect. Be prepared to make changes to the command base, the

grammar, and the command interpreter many times to get it to a useable state.

Don’t expect the recognizer to be completely accurate. Even the best recognizers

have some degree of error. Always prepare your system for that eventuality and make

sure it can handle miscommunications. It is far better to prepare for failures that never

happen than to not be prepared for the one that does.

33

Don’t expect the recognizer to be instant. Speech recognition takes time. The

fastest systems still require a second or so to process. Speech controls are therefore not

appropriate for situations requiring twitch controls such as in first person shooter games.

Don’t get discouraged. Speech recognition is a conversation. It doesn’t always go

the way you’d expect. Be prepared to deal with the frustration of fine tuning the system

to get it to a point where it is useable.

Overall, this system does what it was expected to do. It facilitates the use of the

Field Book application as a hands-free tool. The user can move, set traits and “view”

information without having to handle or look at the device. With some improvements,

this system could function as a useful, not just useable, addition. It currently has the

capability to execute the commands tasked to it, but it is incorrect approximately 1 in 5

attempts. This causes significant frustration for the user, who would likely dismiss it for

the more efficient option of manual input. To be useful, the system would require higher

accuracy, fewer false positive results, and would require reduced lag time. If these

requirements were met, the system could be reliable enough for the benefits of a hands-

free interface to outweigh the unfavorable traits.

34

6. FUTURE WORK

For future improvements of the system, I would like to continue to refine the

accuracy of the recognizer. The incorporation of a remote recognizer could provide

better translation while adding the requirement of continuous internet access. The system

could also potentially incorporate user profiles, which would improve accuracy by

training the system to a specific user’s speech traits. I would also like to expand the

commands the system is capable of handling, including the ability to navigate the main

menu, load maps, and create new traits.

I would also like to continue to explore the cause of the unpredictable lag and

remove it. Further optimization of the code structure would help with this, as well as

seeking help from the developers of PocketSphinx.

More expansion possibilities include translation to other languages, and dictation

for notes. In an ideal setup, users could add customized commands through an intuitive

interface rather than having to modify the code.

35

REFERENCES

Allen, Jonathan, Sharon Hunnicutt, Rolf Carlson, and Bjorn Granstrom. "MITalk 79: ‐

The 1979 MIT Text to speech System." ‐ ‐ Acoustical Society of America 65.51

(1979): n. pag. AIP Scitation. AIP Publishing LLC, 11 Aug. 2005. Web. 29 Sept.

2015. <http://dx.doi.org/10.1121/1.1906946>.

Andy0101. Overview of a Typical TTS System. Digital image. Speech Synthesis.

Wikipedia, 13 Mar. 2012. Web. 20 June 2015.

<https://en.wikipedia.org/wiki/File:TTS_System.svg>.

Davis, K. H. "Automatic Recognition of Spoken Digits." J. Acoust. Soc. Am. The

Journal of the Acoustical Society of America 24.6 (1952): 627-42. Web.

<http://dx.doi.org/10.1121/1.1906946>.

Doolittle, William E. Logbook data organization. Digital image. Recording Data.

University of Texas, 12 Dec. 2013. Web. 23 June 2015.

<http://uts.cc.utexas.edu/~wd/courses/373F/pdf/4.4FullPage.pdf>.

Dudley, Homer, R.r. Riesz, and S.s.a. Watkins. "A Synthetic Speaker." Journal of the

Franklin Institute 227.6 (1939): 739-64. Web. <http://dx.doi.org/10.1016/S0016-

0032(39)90816-1>.

"Effective, Affordable, Reusable Speech-to-Text (EARS)." Effective, Affordable,

Reusable Speech-to-Text (EARS). Electronic Frontier Foundation, n.d. Web. 05

Nov. 2015. <https://w2.eff.org/Privacy/TIA/ears.php>.

36

EpiCollect. Computer software. EpiCollect.net. Wellcome Trust, n.d. Web. 30 June 2015.

<http://www.epicollect.net/>.

Flannigan, James L. "Techniques for Speech Analysis." Speech Analysis

Synthesis and Perception. N.p.: Springer-Verlag Berlin Heidelberg, 1972. 166-67. Print.

"Global Autonomous Language Exploitation." Global Autonomous Language

Exploitation. The Idiap Research Institute, n.d. Web. 05 Nov. 2015.

<http://www.speech.sri.com/projects/GALE/>.

GOOG-411 Team. "Goodbye to an Old Friend: 1-800-GOOG-411." Web log post.

Official Google Blog. Google, 8 Oct. 2010. Web. 5 Nov. 2015.

<https://googleblog.blogspot.com/2010/10/goodbye-to-old-friend-1-800-goog-

411.html>.

Hartzler, Bruce. IDig. Computer software. Apple App Store. Vers. 5.0.2. N.p., 12 Feb.

2015. Web. 30 June 2015. <https://itunes.apple.com/us/app/idig-recording-

archaeology/id953353960?mt=8>.

Hartzler, Bruce. IPad Screenshot of iDig App. Digital image. IDig - Recording

Archaeology. ITunes App Store, n.d. Web. 30 June 2015.

<https://itunes.apple.com/us/app/idig-recording-archaeology/id953353960?

mt=8>.

Hey You, Pikachu! Redmond, WA: Nintendo, 1998. Computer software.

IBird Pro Guide to Birds. Computer software. Apple App Store. Vers. 7.22. Mitch Waite

Group, 15 Mar. 2015. Web. 30 June 2015. <https://itunes.apple.com/us/app/ibird-

pro-guide-to-birds/id308018823?mt=8>.

37

"IBM Shoebox." IBM Archives. N.p., n.d. Web. 30 June 2015. <https://www-

03.ibm.com/ibm/history/exhibits/specialprod1/specialprod1_7.html>.

Kempelen, Wolfgang Von, Heinrich Fuger, and J. G. Mansfeld. Wolfgangs Von Kempelen

K.k. Wirklichen Hofraths Mechanismus Der Menschlichen Sprache: Nebst Der

Beschreibung Seiner Sprechenden Maschine. Wien: J.V. Degen, 1791. Print.

Klatt, Dennis. "The Klattalk Text-to-speech Conversion System." Acoustics, Speech, and

Signal Processing, IEEE International Conference on ICASSP '82. Vol. 7. 1589-

592. IEEE Xplore. IEEE. Web. 29 Sept. 2015.

<http://dx.doi.org/10.1109/ICASSP.1982.1171431>.

Krishnaraj, Arun, Joseph K. T. Lee, Sandra A. Laws, and T. Jay Crawford. "Voice

Recognition Software: Effect on Radiology Report Turnaround Time at an

Academic Medical Center." American Journal of Roentgenology 195.1 (2010):

194-97. American Journal of Roentgenology. Web. 25 Nov. 2015.

<http://www.ncbi.nlm.nih.gov/pubmed/20566816>.

LeafSnap. Computer software. LeafSnap. Vers. 1.07. Columbia University, University of

Maryland, and Smithsonian Institution, 5 June 2015. Web. 30 June 2015.

<http://leafsnap.com/>.

Lowerre, Bruce, and Raj Reddy. "The Harpy Speech Understanding System." Readings

in Speech Recognition (1990): 576-86. Web. <http://dl.acm.org/citation.cfm?

id=108277>.

38

Magpi. Computer software. Apple App Store. Vers. 3.0.3. DataDyne Group LLC, 22 June

2015. Web. 30 June 2015. <https://itunes.apple.com/us/app/magpi/id956798146?

mt=8>.

Novet, Jordan. "Google Says Its Speech Recognition Technology Now Has Only an 8%

Word Error rate." VentureBeat. N.p., 28 May 2015. Web. 30 June 2015.

<http://venturebeat.com/2015/05/28/google-says-its-speech-recognition-

technology-now-has-only-an-8-word-error-rate/>.

"Nuance Dragon Naturally Speaking, Medical Transcription, Voice Recognition

Software." Nuance Dragon Naturally Speaking, Medical Transcription, Voice

Recognition Software. N.p., n.d. Web. 30 June 2015.

<http://www.nuance.com/dragon/index.htm>.

"One Handheld Per Breeder." One Handheld Per Breeder. McKnight Foundation, n.d.

Web. 04 Nov. 2015. <http://www.wheatgenetics.org/research/one-handheld-per-

breeder>.

Plant-O-Matic. Computer software. Apple App Store. Vers. 1.2. Ocotea Technologies,

LLC, 9 Apr. 2015. Web. 30 June 2015. <https://itunes.apple.com/us/app/plant-o-

matic/id906932765?mt=8>.

Project Noah. Computer software. Apple App Store. Vers. 2.6.1. Networked Organisms,

24 Feb. 2012. Web. 30 June 2015. <https://itunes.apple.com/us/app/project-

noah/id417339475?mt=8>.

Rosen, George. Dynamic Analog Speech Synthesizer. George Rosen, assignee. Patent

3042748. 3 July 1962. Print.

39

Qayyum, Ali. Coffely interface. Digital image. 40 Beautiful Flat UI Design Inspiration.

Smashing Hub, n.d. Web. 23 June 2015. <http://smashinghub.com/40-beautiful-

flat-ui-design-inspiration.htm>.

Shewry, Peter R. "Wheat." Journal of Experimental Botany 60.6 (2009): 1537-553.

Journal of Experimental Botany. Oxford Journals. Web. 29 Sept. 2015.

<http://dx.doi.org/10.1093/jxb/erp058>.

"Speech Synthesis—Invented by Christian Gottlieb Kratzenstein." Edubilla.com.

EduBilla, n.d. Web. 30 June 2015. <http://www.edubilla.com/invention/speech-

synthesis/>.

"Staple Foods: What Do People Eat?" FAO Corporate Document Repository. Food and

Agriculture Organization of the United Nations, n.d. Web. 29 Sept. 2015.

<http://www.fao.org/docrep/u8480e/u8480e07.htm>.

Stevens Creek. TripLog interface. Digital image. Learning from "bad" UI. Signal v.

Noise, 9 July 2008. Web. 23 June 2015. <https://signalvnoise.com/posts/1128-

learning-from-bad-ui>.

"Stewart's Electrical Analog." Stewart's Electrical Analog. Haskins Laboratories, n.d.

Web. 30 June 2015.

<http://www.haskins.yale.edu/featured/heads/SIMULACRA/stewart.html>.

Stratonovich, R. L. "Conditional Markov Processes."Theory of Probability & Its

Applications 5.2 (1959): 156-78. Society for Industrial and Applied Mathematics.

Web. 22 Dec. 2015. <http://epubs.siam.org/doi/abs/10.1137/1105015>.

40

"The Pattern Playback." Haskins Laboratories. N.p., n.d. Web. 30 June 2015.

<http://www.haskins.yale.edu/featured/patplay.html>

There Came an Echo. Steam App Store. Vers. 1.0.5. Iridium Studios, 24 Feb. 2015. Web.

30 June 2015. <http://store.steampowered.com/app/319740/>.

Umeda, N., and R. Teranishi. "The Parsing Program for Automatic Text-to-speech

Synthesis Developed at the Electrotechnical Laboratory in 1968." IEEE

Transactions on Acoustics, Speech, and Signal Processing IEEE Trans. Acoust.,

Speech, Signal Process. 23.2 (1975): 183-88. IEEE Xplore Digital Library. Web.

29 Sept. 2015. <http://dx.doi.org/10.1109/TASSP.1975.1162663>.

Zickuhr, Kathryn, and Lee Rainie. "E-Reading Rises as Device Ownership Jumps." Pew

Research Center Internet Science Tech RSS. Pew Research Center, 16 Jan. 2014.

Web. 23 June 2015. <http://www.pewinternet.org/2014/01/16/e-reading-rises-as-

device-ownership-jumps/>.

41

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1. Introduction
	1.1 What is Speech Recognition?
	1.2 What is Speech Synthesis?
	1.3 Problem Statement
	1.4 Significance
	1.5 Motivation
	2. Previous and related work
	2.1 Data Collection
	2.1.1 Mobile Applications for Data Collection
	2.1.2 Mobile Applications for Specific Fields
	2.1.3 Field Book

	2.2 Speech-Based Interfaces
	2.2.1 A Brief History of Speech Systems: Speech Recognition
	2.2.2 A Brief History of Speech Systems: Speech Synthesis
	2.2.3 Current Uses of Speech Interfaces

	3. Methodology
	4. Implementation
	4.1 Design Considerations
	4.2 Identifying Useful Commands
	4.3 When Audio Feedback is Necessary
	4.4 Hardware and Software
	5. RESULTS AND CONCLUSIONS
	6. Future work
	References

