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ABSTRACT 

 

Adaptive circuit design is a power-efficient approach to handle variations. 

Compared to conventional circuits, its implementation is more complicated especially 

when we deal with the fine-grained adaptivity. The unconventional and sophisticated 

nature of adaptive design further requires timing verification to validate the design. 

However timing analysis becomes more complicated due to complexities arising from 

nanometer VLSI technologies. A well-known challenge is process variations, which need 

to be addressed in timing analysis at least by considering different process corners. 

Adaptive circuit design further needs statistical static timing analysis (SSTA), which is 

much more time consuming than variation-oblivious timing analysis. Besides timing 

analysis, gate implementation selections of the adaptive design process are also 

computational expensive. This research focuses on parallel acceleration techniques for 

timing analysis and optimization of adaptive circuit. General purpose graphic processing 

units (GPGPU) and multithreading techniques are used in this work. Previous works on 

GPU acceleration for SSTA are mostly based on Monte Carlo based SSTA. By contrast, 

the parallelization techniques for principle component analysis (PCA) based SSTA are 

explored in this work, which is intrinsically more efficient. 

We develop a batch-based scheduling algorithm to partition the circuit graph into 

topological levels for GPU processing and investigate other techniques such as latency 

hiding. We propose a multithreading based acceleration method for the process of gate 

implementation selection and use the same batch-based scheduling result. The experiment 
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result shows effectiveness of our parallel acceleration for timing analysis and for 

optimization with the performance up to 130× and 5× speedup respectively. 
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CHAPTER I  

INTRODUCTION 

 

Unlike the conventional circuits, adaptive circuits can apply power differently on 

each circuit block and tune the circuit performance. This makes the adaptive circuits a 

promising technique for handling variations. An adaptive circuit contains sensors to detect 

the performance and individually compensate the performance variation by using body 

biasing [1], voltage interpolation [2] and other technologies. Unfortunately the adaptive 

circuits are far from widely adopted in realistic products and one reason is the lack of 

corresponding mature timing verification tools. The unconventional and sophisticated 

nature of adaptive design implies relatively large risk of design errors so it requires reliable 

timing verification tools. One way to validate the adaptive circuit design is to enumerate 

all the adaptivity scenarios of adaptive circuits when verifying the timing. This solution is 

reliable but it is very time-consuming especially when the adativity is fine-grained. 

Timing analysis is an indispensable part of mainstream digital IC designs. It can 

also pinpoint logic paths where timing needs to be improved or slack can be traded for 

power savings. In nanometer technology regime, process variations are no longer 

negligible and must be considered in timing analysis. Considering the sophisticated nature 

of adaptive design, timing analysis is also fundamental to provide assurance for design 

timing closure. 

Static Timing Analysis (STA) is a fundamental tool of timing verification in circuit 

design. A traditional STA tends to overestimate the path delay which causes design 
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pessimism. The traditional STA method is deterministic because it analyzes the circuit 

under specific process condition. Therefore it cannot handle the variations across a wafer 

die (also called within-die variations) and will misestimate the circuit delay [3]. To model 

the process variations more effectively, statistical static timing analysis (SSTA) was 

proposed and well formulated [4-8]. Unlike the STA, SSTA represents the circuit delay 

and arrival time using PDF and CDF. There are several primary SSTA approaches. Monte 

Carlo method is based on sampling and enumeration. It carefully chooses samples that are 

sufficient to represent the timing feature of a circuit. Each sample is then analyzed by the 

classical STA to get the deterministic circuit delay. The yield of the whole circuit can be 

defined by the percentage of the passed samples against the total samples extracted. 

Another approach is typically based on probabilistic analysis [9]. Other than propagating 

the arrival times along the circuit graph in STA, this approach propagates the PDF of 

arrival time and performs statistical maximum and summation function. There are two 

ways of performing probabilistic analysis based SSTA, one is path-based circuit delay 

computation and another is block-based. Path-based algorithm is to calculate the delay 

distribution along the critical path and then perform statistical maximum operations to 

obtain the entire circuit delay distribution [10], [11].  Block-based algorithm uses sum and 

max functions to obtain the timing slack of each gate. This thesis will discuss more about 

block-based probabilistic analysis method – principal component analysis (PCA) based 

SSTA for adaptive circuit. 

A scenarios-reduction based acceleration technique for adaptive circuit SSTA is 

proposed in [12]. Compared to [12], we study how to accelerate SSTA for both 
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conventional and adaptive circuit using GPU (Graphics Processing Unit). A GPU consists 

of many small processing cores and is friendly to large scale SIMD (Single Instruction 

Multiple Data) parallelism. It often provides large computing speedups at very modest 

hardware cost. This appealing advantage leads to many GPU acceleration researches for 

CAD algorithms [13], and SSTA is no exception. GPU-based parallel SSTA techniques 

are reported in [14], [15]. However, both of the SSTA techniques are based upon Monte 

Carlo (MC) simulation, which is relatively easy to be parallelized but intrinsically slow. 

Among sequential SSTA methods [9], an efficient one is the integration of conventional 

block-based static timing analysis with PCA (Principal Component Analysis). It is 

demonstrated in [16] that the PCA-based SSTA is orders of magnitude faster than Monte 

Carlo simulations and usually incurs less than 1% error on timing yield estimation. In [12], 

the PCA-based SSTA is extended to adaptive circuit designs, and also obtains dozens to 

thousands of times speedup over Monte Carlo simulations. Therefore, it is more beneficial 

to parallelize the PCA-based SSTA than to parallelize Monte Carlo-based SSTA. The 

GPU parallelization for PCA-based SSTA is quite different from that of MC-based. The 

MC-based SSTA includes many randomized runs of STA and the computing of each 

individual STA is relatively simple. In contrast, the PCA-based SSTA contains only two 

circuit traversals like the STA, but its intermediate computation steps within a traversal is 

quite complicated. 

Gate implementation selection process is to select the candidates of the gate sizes 

and gate threshold voltages [17] for circuit optimization. A dynamical-programming like 

circuit traversal is proposed to propagate candidate solutions along the circuit graph [18]. 



 

4 

 

The computation of this gate implementation selection is expensive and a corresponding 

GPU-based acceleration technique is developed in [19]. Our work will also consider the 

acceleration for the gate implementation selection for adaptive circuit design. 

The main contribution of this work is development of new GPU techniques for 

parallelizing the PCA-based SSTA for both conventional and adaptive circuit. We also 

use multithreading on CPU to accelerate the gate implementation selection for adaptive 

circuits. A new task scheduling algorithm is designed and data/instruction techniques are 

also studied. Further, we also make the parallelization compatible with analyzing adaptive 

circuit designs. As far as we know, this is the first work using GPU to accelerate PCA-

based SSTA and also the first work using GPU to accelerate the SSTA considering 

adaptive circuit design. We apply our GPU scheduling result for the multithreading of gate 

implement selection. Experiments are conducted on ISPD’13 gate sizing benchmark suite, 

which is prepared by Intel and includes circuit as large as 150K gates. Compared to 

sequential PCA-based SSTA, our approach delivers the same timing results with 22X and 

134X faster speed for conventional circuits and adaptive circuits, respectively. Our 

approach is also compared with GPU-based Monte Carlo SSTA and obtains about 39X 

computing acceleration with an average of 0.77% error on timing yield estimation. And 

the multithreading of gate implement selection helps to get a 5X speedup compared to 

sequential approach. 

The rest of thesis is organized as follows. Chapter II introduces the background on 

adaptive circuit design, timing analysis, and GPU programming. Chapter III proposes the 

batch scheduling and GPU memory techniques for parallel SSTA of adaptive circuits. 
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Chapter IV briefly discusses the application of the batch scheduling for multithreading of 

gate implement selection. The experimental results are shown in Chapter V and finally 

this thesis is concluded by Chapter VI. 
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CHAPTER II  

BACKGROUND 

 

II-A. Variations 

The variation of circuit parameters is a common issue in modern VLSI 

technologies. The main reasons include the modeling analysis errors, the process 

variations and operation environment variations. The modeling and analysis errors come 

from the inaccuracy of design implementation, timing analysis and so on. The 

environment variations include the operation context like the temperatures and power 

supply. The process variations are due to manufacture procedure uncertainty, which we 

focus on handling. 

The physical parameters may vary from die-to-die or within-die because of the 

fluctuations of the manufacture processes. The variations occur in gate length, oxide 

thickness, channel doping and etc. [20], [21]. These physical parameters decide the 

electrical parameters of the device like gate capacitance or threshold voltage that will 

actually affect the circuit delay.  

All the device parameters on the same die are affected by die-to-die variations. It 

represents as discrepancy of physical parameters on different dies due to the shifts in the 

process. A typical solution to this problem is to run STA on multiple process corner files. 

Another type of variations is the within-die variation which results from the intrinsic non-

uniform properties of silicon on which the chip is built. Within-die variations have the 

property that physical parameters show similar characteristics in one location than in other 
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locations which are far. It is as known as the spatial correlation. SSTA we will discuss 

later has strategies to take this problem into consideration. 

 

II-B. Adaptive Circuits 

Adaptive circuit design can handle variation effects, especially process variations 

and circuit aging. An adaptive circuit has sensors to detect performance degradation and 

certain circuit tuning knobs for compensating performance loss due to variations. 

Common tuning techniques include body biasing [1] and adaptive supply voltage [2]. The 

tunings are usually performed after chip fabrication and therefore can be targeted to the 

actual variations occurred. Compared to design-time techniques, which are more or less 

over-design, adaptive circuit spends extra power only when it is needed. Figure 1 gives an 

example of the architecture of the adaptive circuit, the controller tunes the circuits based 

on the observation of the sensors. 

 

Figure 1 An Overview Architecture of Adaptive Circuits 

 

 



 

8 

 

II-C. Static Timing Analysis 

STA is a fundamental tool to support VLSI circuit design. Traditional STA 

estimation tends to be pessimistic but will ensure the circuit design and avoid hold-time 

variation. And all the device parameters like the gate length, wire width are treated as 

deterministic in STA. 

There are two main types of STA, one is path-based and another is block-based. 

The path based STA [11] performs the path enumeration to identify the critical paths and 

check the timing satisfaction. The block-based STA propagates the arrival time (AT) in 

topological order (required arrival time (RAT) in reversed topological order) and checks 

AT and RAT at each node. The gates along the critical paths should have the same negative 

timing slack. Figure 2 shows an example of path-based and blocked-based STA. 
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2
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1

3
2
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Figure 2 Arrival Time Propagation of Path-based and Block-based STA 
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The weakness of PCA based SSTA is that it usually needs to analyze a large 

number of paths, which implies a large computing cost. By contrast, the block-based STA 

has linear runtime and uses sum and max function to compute the delay for each gate. 

STA can handle the die-to-die variation by analyzing multiple corner files. 

However, the limitation is that it cannot rigorously model the within-die variations 

especially the spatial correlation. 

 

II-D. Statistical Static Timing Analysis 

The SSTA is proposed to remedy the STA’s weakness and effectively model the 

process variations especially the within-die variation. The within-die variations typically 

have two types: the spatially correlated variations and the independent variations. The 

physical parameters are statistically independent from other devices. It is showed in [9], 

the fully-correlated assumption may overestimate the circuit delay while the non-

correlated assumption may underestimate the delay spread.  

SSTA uses probabilistic model to treat each device parameter as random variables. 

The path-based and block-based STA manner can still be used here to do circuit traversal. 

The difference is that SSTA needs to propagate the delay PDF rather than deterministic 

values and the sum/max operation should be performed statistically. Due to the 

correlations, the delay propagation in SSTA becomes a difficult topic. Besides the spatial 

correlations mentioned above, topological correlations and nonlinear max operation also 

makes the SSTA problem more difficult to solve. 
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There are several approaches to deal with the abovementioned problems. SSTA 

can be carried out as Monte Carlo simulations which repeatedly draw a number of samples 

for STA runs. The Monte Carlo based SSTA is typically reliable and easy to perform. But 

the problem is that the runtime is significant when the sample space becomes large.  

To avoid the large runtime of Monte Carlo simulations, one can propagate 

probability distributions of timing information in a couple of circuit traversals like in STA. 

In such SSTA, a main challenge is the complexity of handling spatial correlations among 

the random delays. An elegant approach to account for the correlation is Principal 

Component Analysis (PCA). A PCA-based SSTA is first introduced in [16]. The key idea 

is to represent each random delay variable d as 

                         d = d0 + k1𝜖1 + k2𝜖2 + ⋯ + k𝑚𝜖𝑚                    (1) 

where d0 is the nominal delay, {𝜖1, 𝜖2, … , 𝜖𝑚} is a set of independent Gaussian random 

variables which has zero mean and unity variance, and k1, k2, ... are the coefficients. 

Besides the propagation of principal components {𝜖1, 𝜖2, … , 𝜖𝑚 }, the computation of 

principal components for arrival time and required arrival time is much more expensive 

than its counterpart in conventional STA. Yet, the PCA-based SSTA is normally much 

faster than running Monte Carlo simulations. 

Adaptive circuit designs cause additional computation load to SSTA as many 

different tuning scenarios need to be covered. In [12], the PCA-based SSTA is extended 

for adaptive circuit designs. 
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II-E. Parallel Programming 

II-E.1 Parallel Programming Model for Graph Algorithms 

EDA software involves many advanced algorithms in diverse domains. Our task 

is to find the parallelizable patterns among the algorithms for adaptive circuit timing 

analysis. The techniques for solving STA and SSTA are mostly based on graph theory. 

The breath-first search (BFS) and depth-first search (DFS) traversal can be used here to 

propagate the gate parameters. GPU-accelerated solutions are proposed in [22] for many 

of the graph problems and give code skeletons for the graph traversal algorithms. 

 

1 Create and initialize the working arrays in GPU 

2 while true do 

3 for each vertex/edge in parallel do 

4  invoke Kernel 1 

5 end for each 

6 synchronize 

7  for each vertex/edge in parallel do 

8  invoke Kernel 2 

9  end for each 

10  synchronize 

11 check termination condition; continue if necessary 

12 end while 

Algorithm 1 GPU Code Skeleton for Graph Problems [22] 

 

 The main idea of this code skeleton is to find the parallelizable nodes/edges in the 

current topological level (line 4 Kernel 1) and do some calculation. Then in line 8, the 

algorithm moves forward to the next topological level of the graph. 
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 STA/SSTA can use this pattern to do parallelization easily. For example, in the 

block-based STA, we can do the BFS-like circuit traversal and calculate the PDF for each 

gate concurrently as line 4 of Algorithm 1. 

 When the computing bandwidth of parallel devices is infinite, the algorithm above 

can be an optimal solution because it always processes all of the parallelizable nodes 

concurrently. However in reality, the number of nodes can be processed simultaneously is 

bounded by the computing abilities of the devices (i.e., number of cores, memory 

bandwidth and etc.). We will discuss our scheduling method regarding this issue in later 

chapters. 

 

II-E.2 Parallel Programming Using GPU 

1 Parallel Programming Using GPGPU 

 Graphics Processing Unit (GPU) is designed for graph applications. Compared to 

CPU, a GPU typically consists of many small processor cores and is good at massive 

parallel computing because of its SIMD (Single Instruction Multiple Data) fashion. GPU 

can support data intensive computing for scientific research and other applications. CUDA 

and OpenCL are the application program interfaces (API) for developers to use a GPU for 

general purpose computing as known as the GPGPU. CUDA is supported by Nvidia [23] 

for its own GPU products and OpenCL is supported by Khronos Group [24] for 

heterogeneous platforms. CUDA architecture provides more detailed control of Nvidia 

GPU and OpenCL provides a more portable API across multiple platforms. In this work, 
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we choose CUDA because we can have more controls like memory management using 

some provided APIs. 

 

2 Nvidia GPU Architecture 

 The recently released GPU architecture of Nvidia is Kepler which is also the 

architecture we consider in our experiments. The overall of the multiprocess structure of 

Kepler is shown in Figure 3. 

 

Figure 3 Multiprocessor Architecture of Kepler [25] 
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 The multiprocessor contains 192 single-precision CUDA cores, 64 double-

precision units and 65536 32-bit registers [25]. Compared to last version, Kepler has more 

computing resources and more warp controllers which can dispatch instructions to CUDA 

cores concurrently. Another important feature of Kepler architecture is the support of 

dynamic parallelism. With this capability, GPU can execute kernels itself instead of 

waiting for the assignments from CPU. 

 

3 CUDA Programming Model 

 CUDA is GPGPU development platform provided by Nvidia. It contains both the 

hardware devices and software model. Figure 4 shows the programming model of CUDA. 

The smallest processing unit is the thread. Multiple threads make up a thread block and 

multiple blocks make up a grid. The threads in a block reside on the same multiprocessor 

so the number of threads of a block is limited. Each thread/block has a unique index inside 

a block/grid. This index can be used by the programmer to control the desired thread or 

block in programming. Figure 5 shows the relationship between the software model and 

hardware devices in CUDA. 
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Figure 4 CUDA Programming Hierarchy [30] 
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Figure 5 Software Models against Hardware Hierarchy [33] 

 

 From the software program perspective, a piece of code is called kernel. For Kepler 

GPU, 32 consecutive threads form a warp, which share the same kernel. All threads of a 

warp must be executed on the same multiprocessor. Each multiprocessor has a scheduler 

that dispatches warps onto its CUDA cores. Multiple warps constitute a thread block. 

 

II-F. Related Works on Adaptive Circuit Design 

  A joint gate implementation selection and adaptivity assignment methodology for 

adaptive circuit optimization is proposed in [5]. The selection problem is transformed by 

Lagrangian relaxation and solved by Joint Relaxation and Restriction (JRR) [18] which is 

a dynamic programming like solution search. The idea of JRR is to perform topological 

and reversed topological circuit traversals and propagate solution candidates along a 
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circuit graph. The adaptivity assignment is solved by sensitivity-based optimization [26]. 

Liu and Hu [19] proposes a GPU-based acceleration for joint gate sizing and threshold 

voltage assignment for a circuit optimization problem in [18]. They observe that during 

the JRR traversal in [18], the different gates undergo identical computations and they can 

be parallelized using the GPU. In this work, we explore the parallelism of the optimization 

process which is described in [17]. Multithreading are used to accelerate the design 

process. 

A reduction-based acceleration technique for SSTA of adaptive circuit is proposed 

in [12]. It prunes the adaptivity configurations by analyzing the performance and 

discarding the configurations which for sure fail in satisfying timing constraints. Circuit 

partitioning and block merging are also proposed to reduce the problem space. However, 

these reduction techniques may not be fully reliable when they are applied to a wide range 

of realistic adaptive circuits. In our work, we enumerate the possible adaptivity 

configurations and accelerate the timing analysis using the GPU. The experiment shows 

it can get a significant speedup and maintain the same precision at the same time. 
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CHAPTER III  

PARALLELIZATION OF PCA-BASED SSTA FOR ADAPTIVE CIRCUIT* 

 

III-A. Problem Statement 

III-A.1 PCA-based SSTA 

A statistical timing graph is defined in [16] to represent the SSTA problem in a 

combination circuit. The traditional STA performs a program evaluation and review 

technique (PERT) like traversal and calculates the arrival time using the deterministic sum 

and max operation in topological order. The SSTA is, however, to propagate the PDF and 

do statistical sum and max operations. SSTA is similar to STA but it can handle variations 

among timing paths. The propagation of STA1is shown in the top subfigure of Figure 6 in 

which we use deterministic parameters. The SSTA has the same propagation manner 

(bottom subfigure of Figure 6), but the data becomes PDF. The vertical arrows in the top 

subfigure of Figure 6 represent the deterministic delay of the gates while the distribution 

curves in the bottom subfigure of Figure 6 represent PDFs of the gates. Therefore, the 

MAX operation in g3 then becomes statistical max operation. 

First, we formulate the SSTA problem for process variation aware timing 

verification as in [16]. 

                                                 

*Part of this chapter is reprinted with permission from “GPU Acceleration for PCA-Based Statistical 

Static Timing Analysis” by Y. Shen and J. Hu, 2015. In Proceedings of the International Conference on 

Computer Design, pp. 674-679, ©2015 IEEE. 
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Problem 1: Given a directed timing graph G = (V, E) where V is the set of 

nodes and E is the set of edges. Each edge has a weight di which is a random 

variable. The di contains the gate delay and interconnection delay 

information and di of every edge are partially correlated with each other. 

The objective of the SSTA problem is to find all the arrival time distributions of 

the nodes in G and then calculate the timing yield for the whole circuit. 

 

+

+

g1

g2

g3

MAX

+

g1

g2

g3

MAX

+

STA

SSTA

 

Figure 6 STA vs SSTA 

 

 

III-A.2 GPU Scheduling 

Though PCA SSTA is faster than Monte Carlo SSTA as we mentioned previously, 

the statistical max and sum functions are still time-consuming. Moreover, when we try to 
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examine multiple adaptivity scenarios for adaptive integrated circuits [12], the runtime 

may become overly large. 

Therefore it is reasonable to parallelize the PCA-based SSTA for conventional and 

adaptive circuits. For almost every parallel computing work, a central problem is how to 

partition the overall computing into small tasks and schedule the tasks onto parallel 

processing units [27]. The objective is typically to minimize the makespan, which is the 

time difference between the start and end of the computing. Therefore when we try to 

solve Problem 1 on GPU, we should focus on how to partition the set V under the 

precedence constraints implied by E. From the hardware perspective, if we can make the 

better use of GPU resources (processing cores, registers, shared memory and etc.), the 

runtime can be decreased accordingly. We generally formulate the GPU scheduling 

problem for PCA-based SSTA as Problem 2, 

Problem 2: Given a directed timing graph G (V, E) where V is the set of 

nodes and E is the set of edges. PCA-based SSTA performs block-based 

circuit delay propagation on G and outputs the timing yield at primary 

output. Partition the timing graph G into small parallelizable sets (we call it 

batches) such that the total makespan of parallel computing is minimized. 

The following sections will focus on Problem 2 and discuss more details. To 

examine multiple adaptivity scenarios, we just need to repeat the PCA SSTA to calculate 

each of them. 
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III-B. Simplification Strategy 

The scheduling problem is difficult to solve due to the following reasons: on one 

hand dynamic scheduling conceivably results in large overhead considering the fine-

grained parallelism at GPU, on the other hand each logic gate has an unknown 

computation time on GPU in advance. 

To circumvent the difficulties, we propose a simplification formulation — batch-

based static scheduling. That is, the gates are partitioned into ordered batches, which are 

processed in topological order. To process a batch of gates, one needs to ensure that all 

their predecessor gates have already been processed in earlier batches. In addition, the 

gates in the same batch should be independent of each other so that they can be processed 

concurrently. Figure 7 shows a small example for the simple approach. In this example, 

G1-G4 are the primary input gates and they form the first batch. The successors of G1-G4 

which are ready will be grouped into the second batch. “Ready” means that all the 

predecessors of the gate have already been processed. Then the next batch is generated in 

the same manner. 
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Figure 7 An Example of Simplification Strategy 

 

 

III-C. Analysis of the Simplified Problem 

The makespan is determined by the total number of batches and the computing 

time of each batch. To minimize the number of batches, we wish the size of each batch, in 

terms of the number of gates, is as large as possible. And we also want to compact the 

computing time of each batch.  

The first problem, which the simplified approach does not consider, is the size of 

each batch, which may affect the total number of batches. The algorithm actually groups 

the nodes into the original circuit levels. As shown in Figure 7, the toy circuit has three 

levels which are marked by three rectangles.  As discussed in Chapter II, PCA-based 

SSTA accounts for correlation by using principal components (PCs). During the timing 

graph traversal, the calculation of PDF of the AT for one node (i.e., the mean and standard 

deviation value) needs the principal components (PCs) which should be propagated as 
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well. We need to take the memory consumption of the PCs into consideration when 

designing the parallel algorithms because GPU’s on-chip memory resources are limited 

and the off-chip memory access is expensive. Due to this restriction, the maximum number 

of gates in each batch is limited by the shared (on-chip) memory size in the GPU. We 

should also notice that the number of total batches highly depends on how we partition the 

circuit graph because there are precedence constraints among the gates. 

Another problem is the runtime bottleneck of each batch due to unbalanced 

computing time for nodes in a batch. Figure 8 gives the runtime of G1-G4 that are the 

logic gates within the same batch. G1 – G4 start together, but G1 requires much more 

calculation. The speedup will be compromised because that the computing for G1 forms 

a bottleneck. To minimize the computing time of each batch, we hope that all tasks (or 

logic gates) in a batch incur about the same computation time so that no task forms a 

bottleneck.  

 

 

Figure 8 A Runtime Bottleneck Is Formed Due to Unbalanced Computing Time 

among Gates in A Batch. 
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It is still a challenge on how to simultaneously minimize the number of batches 

and equalize gate computation time in each batch. A naive approach is to keep a ready list 

like in the list scheduling [27] and randomly select up to K gates (batch size limitation) 

for processing in each iteration. Such approach does not pay attention if processing a gate 

can release sufficient number of gates to be ready for the next iteration [19]. The result 

may be quite below the GPU processing capacity. Consequently, the GPU is under-utilized 

and the makespan is unnecessarily long. And it also neglects the bottleneck problem in 

one batch – the chosen gates may have the non-uniform runtimes. 

 

III-D. Solution for GPU Scheduling 

We handle two main difficulties of this scheduling problem separately. First we 

model the makespan problem to an N-tasks-K-processors problem that is a well-known 

NP-complete problem [28].  Then we handle the makespan and bottleneck together. 

 

III-D.1. Minimize the Makespan 

Figure 9 shows an example of N-tasks-K-processors problem. The three rows in 

Figure 9 represent three processors and the length of every column represents a time 

duration for a single task. An assumption is made here that every task consumes identical 

processing time. The goal is to minimize the number of columns under the precedence 

constraint. We can take every task node Ti in Figure 9 as the processing task of a logic 

gate when do the SSTA. Then every row of the table becomes a GPU core (We assign 
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each logic gate to one GPU core). We currently make the same assumption that processing 

time of every gate is identical and we will discuss realistic cases without this assumption. 

Fortunately, this problem can be solved by the famous Coffman-Graham algorithm 

[29], which is a polynomial time heuristic algorithm when there are more than two 

processors. The Coffman-Graham algorithm generates a numerical label λ𝑖 for each task 

v𝑖 ∈ V such that a schedule following the labels would result in the minimum makespan. 

The convention is that a task with larger label value is processed earlier. 
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Figure 9 N-tasks-K-processors Scheduling Example 

 

III-D.2. Balancing Computing Loads in a Batch 

 The labels obtained from the Coffman-Graham algorithm are based on the 

assumption that all tasks (or gates) cost the same computation time. In SSTA, this 

assumption rarely holds and the computation time of each gate vi ∈ V is proportional to 
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its fanin size 𝜙𝑖. So we should take both the labels 𝜆𝑖 and fanin size 𝜙𝑖 of logic gates into 

consideration.  

 Our batch generation algorithm is a topological traversal of G while a ready-gate 

list is maintained like in the list scheduling [27]. Before we do the scheduling, we redefine 

the label of each gate as a scheduling priority as 

                                                𝑞𝑖 =  𝛼 ∙
𝜆𝑖

𝜆𝑚𝑎𝑥
+ (1 − 𝛼) ∙

𝜙𝑖

𝜙𝑚𝑎𝑥
   (2) 

where 𝜆𝑚𝑎𝑥 and 𝜙𝑚𝑎𝑥 are the maximum label and fanin size, respectively, among all gates 

in the current ready-gate list. If we group the gates with high and similar priority q values 

together into a batch, the gates in a batch would have similar fanin sizes, which remedy 

the load imbalance problem, and similar label values, which to certain degree embrace the 

Coffman-Graham algorithm result 

 

III-D.3. The Combined Batch Scheduling Algorithm 

After we define the priority of each gate for the scheduling, we can use the list 

scheduling algorithm as the skeleton to generate the batches. 

Input : Circuit G = (V, E), max batch size K 

Output : Disjoint batches B1 ∪ B2 ∪ … = 𝑉 

1 initialize ready_list 

2 j ← 1 // batch_index 

3 while ready_list ≠ ∅ do 

4  if | ready_list | ≤ K then 

5  B𝑗 = {𝑣𝑖|𝑣𝑖 ∈ 𝑟𝑒𝑎𝑑𝑦_𝑙𝑖𝑠𝑡} 

6 end 

7 else 
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8  sort ready_list in decreasing order of q 

9  index gates in ready_list by the order 

10  δ𝑚𝑖𝑛 =  −∞ 

11  for i = 1; i ≤ |𝑟𝑒𝑎𝑑𝑦_𝑙𝑖𝑠𝑡| − K +1; i++ do 

12   δ𝑖 = 𝑞𝑖 − 𝑞𝑖+𝐾−1 //𝑞𝑖 corresponds to v𝑖 

13   if δ𝑖 <  δ𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 

14    δ𝑚𝑖𝑛 = δ𝑖 

15    B𝑚𝑖𝑛  ← {𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑖+𝐾−1}  

16   end 

17  end 

18  B𝑗 ← B𝑚𝑖𝑛 

19 end 

20 j++ 

21 update ready_list 

22 end 

Algorithm 2 Batch Generation 

 

The pseudo code of batch generation algorithm is shown in Algorithm 2. In line 1, 

the ready list is initialized by gates whose predecessors are all primary inputs. In line 4 

and 5, if the number of gates in the ready-list is no greater than the maximum batch size 

K, then all gates in the ready list form a batch. Otherwise, we select K gates in the ready 

list with the minimum difference on their q values to form a batch (line 10-18). This 

selection procedure follows the ascending order of q values (line 8-9). In other words, 

gates with large q values have higher priority to form batches. After a batch is formed, the 

ready list is updated (line 21) by removing the gates that have been added to batches and 

adding new ready gates. 
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The Pre-labeling and Batch generation are performed once on CPU and the 

scheduling result is stored. We will reuse this scheduling result for multiple scenarios 

analysis of the adaptive circuit design which will be discussed later. 

 

III-E. Memory Techniques 

As mentioned before, the PCA-based SSTA is a data intensive algorithm for GPU 

to perform. The information as well as the PC values of a single gate of large circuits in 

our experiments (over 10K gates) can make the memory size of a single gate to 0.1K bytes. 

Many memory access patterns are introduced in [30] to help enhance the device memory 

usage of the GPU. We next show how we embrace these design patterns in our data 

structures and algorithms. 

CUDA has a memory coalescing mechanism to reduce global memory access 

pains. It shows that the CUDA warp tends to coalesces the memory accesses into one or 

more memory transactions depending on the size of the words accessed by each thread 

and the distribution of the memory addresses across the threads [30]. Our timing graph 

after batch scheduling will store gate data of the same batch adjacent to each other. Since 

the data of the same batch are utilized at the same time (i.e., the statistical max and sum 

operations for each gate data in the same batch), we can use the coalescing mechanism to 

simultaneously fetch the data and therefore the efficiency of data access is improved. 

Another important design pattern is that the memory access should be aligned because the 

instructions of global memory support accessing the words of size equal to 1, 2, 4, 8, or 

16 bytes [30]. This requires us to build the struct as 
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struct  __align__(16){ 

 float x; 

 float y; 

 …… 

} 

 

Each arithmetic operation takes about 20 clock cycles while an access to global 

memory may take more than 400 clock cycles [31]. In this regard, a well-known approach 

is to increase the parallelism and thereby hide the latency. And accessing the global 

memory of GPU is typically slower compared to the on-chip shared memory/L1 Cache. 

We can exploit the on-chip fast shared memory to help us hide the latency to further 

improve the memory performance. 

 

 

Figure 10 Example of Moving from One Batch to Another in Iterations and the 

Shared Memory Usage 
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 We show how to hide memory latency for SSTA using an example in Figure 10. 

When processing gate G5 and G6, we need timing data of G1, G2, G3, G5 and G6. In 

processing the next batch (G7, G8 and G9), we still need to use the timing data of G5 and 

G6. We organize the shared memory in a pipelined fashion as shown in the lower half of 

Figure 10. When gates G5 and G6 are processed, data of G1, G2, G3, G5 and G6 reside 

in the shared memory. Meanwhile, data of G7, G8 and G9 are loaded from the global 

memory. In other words, the computing of G5 and G6 hide the latency of loading data of 

G7, G8 and G9. The maximum batch size K (see Chapter III-C) is decided by the amount 

of data we can store at the shared memory. 

III-F. Handling Adaptive Circuit Designs 

The SSTA for adaptive circuit designs are very time consuming since many 

different adaptivity scenarios need to be covered. Reduction-based speedup techniques are 

described in [16]. Compared to the work of [16], our approach can produce the same 

results as sequential computing without reduction, i.e., no approximation or errors are 

incurred. Since the SSTAs for different adaptivity scenarios are independent of each other, 

we simply add scenario-level parallelism upon the parallel techniques described in 

previous sections. Specifically, we allocate the SSTA for one adaptivity scenario to one 

thread block as shown in Figure 11. SSTA within the thread block is performed as the 

aforementioned batch-based scheduling, latency hiding, etc. The final timing yield for 

adaptive circuits are captured based on the timing yields of different scenarios that are 

analyzed and processed concurrently. 
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Figure 11 The Illustration of Examination of Multiple Adaptivity Scenarios 
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CHAPTER IV  

PARALLELIZATION OF GATE IMPLEMENT SELECTION 

 

IV-A. Gate Implementation Selection 

Gate implementation selection is to simultaneously choose the gate size and 

threshold voltage for each gate in the circuit from a given cell library [17]. It is solved by 

Lagrangian relaxation in [18]. The bottleneck of the design process is the Lagrangian 

subproblem which is performed using dynamical-programming like circuit traversal 

proposed in [18]. Algorithm 3 shows this DP like traversal algorithm which is also called 

JRR. 

 

1 begin 

2 Phase I: Initial solution by relaxation 

3 history consistency relaxation via topological traversal 

3 history consistency restoration via reversed topological traversal 

4 Phase II: Iterative refinement by restriction 

5 while not converged do 

6  generate candidate solutions with restrictions via topological order search 

7  select solution via reverse topological order search 

8 end while 

9 end 

Algorithm 3 Joint Relaxation and Restriction (JRR) Algorithm for Simultaneous 

Gate Sizing and Vt Assignment Algorithm [18] 

 

Line 5-7 iteratively preform the topological and reversed topological order 

traversal to generate the candidate solutions. And the number of candidate solutions may 
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be very large depending on which cell library is used. Therefore, the runtime of the gate 

implementation selection in [17] is usually very long and we also need to accelerate this 

part for the adaptive circuit design. 

 

IV-B. Multithreading 

The batch scheduling can be taken as a general circuit parallel topological traversal 

templet. We also apply the batch scheduling to accelerate dynamical-programming-like 

circuit traversal in [17] using multithreading.  The threads take the logic gates from the 

same batch in first-come-first-serve manner. After a batch is processed, the threads 

synchronize and move to the next batch. The difference from the GPU acceleration [19] 

is that the threads take turns to fetch the computing tasks from one batch while GPU itself 

dispatches tasks to the GPU threads at one time. 

 

Input: Batch queue BQ 

Output: Processed BQ 

1 Pointer = BQ.front(); 

2 While (pointer < BQ.size()) 

3  mutex.lock() 

4   Cell = pointer -> value 

5   pointer = next position 

6  mutex.unlock() 

7  Size_Vt_Selector (Cell) 

8 End while 

Algorithm 4 Multithreading Using Mutual Exclusive 
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Algorithm 4 is an example for the relaxation part of the circuit traversal. That is 

we relax the history consistency constraint and then propagate the solution in reversed 

topological direction [18]. Notice that a gate will be locked to prevent being modified by 

other threads (Line 3-6). We also maintain a thread pool to manage the idle threads to 

fetch data accordingly and keep all the threads busy. 
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CHAPTER V2 

EXPERIMENTS* 

 

V-A. Experimental Setup 

We use ISPD’13 gate sizing benchmark suites [32] to test our design. The circuit 

graph is extracted from the benchmark. The largest circuit in ISPD’13 contains over 150K 

logic gates. 

We need to compare the sequential and parallel algorithm to examine the 

effectiveness of our design. The sequential SSTA [14] and gate implement selection [17] 

are implemented in C++ and tested on Intel Xeon E3-1231 3.4 GHz CPU with 16GB 

DRAM. The parallel counterparts are implemented with CUDA C and tested on NVIDIA 

GeForce GTX780 GPU, which contains 2304 CUDA cores operating at 863MHz and 3GB 

global memory. The GeForce GTX780 has the Kepler GK110 architecture [25] and a 

typical Kepler GK110 contains 15 multiprocessors (SMXs) in total and each of them 

contains 192 CUDA cores. The GPU is configured to have 48K shared memory and 16K 

L1 cache for each SMX. All the devices are connected on the motherboard of a desktop, 

the host environment runs 64-bit Windows 6.2. Development platform is Microsoft Visual 

Studio 2013 with Nvidia NVCC compiler. 

                                                 

*Part of this chapter is reprinted with permission from “GPU Acceleration for PCA-Based Statistical 

Static Timing Analysis” by Y. Shen and J. Hu, 2015. In Proceedings of the International Conference on 

Computer Design, pp. 674-679, ©2015 IEEE. 
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The delay and process variation models are the same as in [16] and the adaptive 

circuit design models are the same in [12]. Process variations are considered with spatial 

correlations, which are modeled as in [11] and handled in SSTA by PCA as in [16]. 

Depending on circuit sizes, the number of principal components varies from around 10 to 

around 100 for each case. The maximum batch size K is related to the number of principal 

components and typically around 500. The parameter α in Equation (2) empirically takes 

value of 0.8. 

 

V-B. Experimental Result 

In the experiments, we first compare the sequential SSTA with three variants of 

parallel SSTA on conventional circuits without adaptivity: 

• Naive parallel: Like in the list scheduling [27], a ready list is maintained. 

Each time, up to K gates from the ready list are scheduled for GPU 

processing. This is a naive approach of using GPU for the PCA-based SSTA 

without our techniques described in Chapter III-B. 

• Our batch parallel: This is GPU computing of the PCA-based SSTA using 

our batch-based scheduling but without the techniques in Chapter III-E. 

• Our best parallel: This is the complete version of our approach using 

techniques in Chapter III. 

All these parallel SSTA methods reach the same timing yield results as the 

sequential SSTA. The runtime comparison among them are shown in Table 1. On average, 

our best approach achieves 22.6× speedup, in which near a half is attributed to our 
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techniques. One observation is that the acceleration is usually greater for larger cases, 

where the runtime saving is more desired. 

 

 

 

Table 1 Runtime Comparison for GPU-based Parallel SSTA VS. Sequential SSTA 

on Conventional Circuit Designs [34] 

 

We further collect data to show how our techniques take effects. A key algorithm 

design objective in Chapter III is to minimize the number of batches for runtime reduction. 

From Table 2, the number of batches obtained from our batch parallel method is indeed 

significantly less than that from the naive parallel method. The effectiveness of the 

techniques in Chapter III-E is also evidenced by the throughput data depicted in Figure 12. 

The throughput is measured by GFLOPS (Giga FLoating-point Operations Per Second). 

The throughput improvement from techniques of Section IV is more obvious in three large 

circuits, each of which has at least 100K gates. For circuit matrix_mult, the throughput is 

increased from 0.62 to 1.15 GFLOPS. 
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Table 2 Comparison of the Number of Batches between Naive Parallel and Our 

Batch Parallel [34] 

 

 

 

Figure 12 Throughput of Our Batch Parallel and Best Parallel [34] 

 

We investigate the impact of parameter α in Equation (2) in experiments. Our batch 

parallel method is performed with α value varying between 0 and 1 on a medium case fft 

and a large case edit_dist. The obtained runtime-α curves are depicted in Figure 13. One 

can see that considering similar fanin size alone (α = 0) or the Coffman-Graham label 
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alone (α = 1) result in large runtime. Small runtimes are obtained when both factors are 

accounted for, especially when α = 0.8. 

 

Figure 13 Runtime of Different α Values Using Our Batch Parallel Method [34] 

 

We also compare our approach with Monte Carlo-based SSTA of both sequential 

CPU computing and parallel GPU computing, which is implemented in a way similar as 

[14]. Each Monte Carlo simulation takes 10K and 20K runs for small and large circuits, 

respectively. The results are displayed in Table 3. On average, our approach has −0.77% 

error on timing yield estimation. However, our approach is about 39× faster than the GPU 

parallel computing of Monte Carlo SSTA. 
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Table 3 Runtime Comparison between Our Best Parallel PCA-SSTA and Monte 

Carlo SSTA on Conventional Circuit Designs [34] 

 

Experiments are also performed on adaptive design version of the benchmark 

circuits. Each circuit is partitioned into 6 adaptivity blocks and each block can be 

independently configured to either high VDD or low VDD according to the voltage 

interpolation [2]. The results are summarized in Table 4. One can see that the speedup 

from our techniques is 134× on average, which is even greater than in conventional circuit 

designs. 

 

 

Table 4 Runtime Comparison between Our Best Parallel SSTA and Sequential 

SSTA on Adaptive Circuit Designs [34] 

  



 

41 

 

Our best parallel runtime shown in Table 4 is the total runtime including the CPU 

and GPU runtime. In addition, we show the ratio between the GPU SSTA runtime for 

adaptive circuits and the entire runtime in Figure 14. The ration ranges from 0.4 to 0.74 

and the large circuits have higher ratio of GPU runtime. 

 

 

Figure 14 GPU Runtime Ration of Adaptive Circuits SSTA 

 

 We apply the multithreading techniques described in Chapter III. The adaptivity 

assignment is jointly performed with gate implementation selection, whose runtime is 

reduced by 5X on 8-core CPU processor and 8GB RAM as shown in Table 5. 
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Table 5 Speedup by Multithreading for Gate Implement Selection 
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CHAPTER VI  

CONCLUSION 

 

In this thesis, we introduce parallel computing techniques to alleviate runtime cost 

of PCA-based SSTA and accelerate the optimization process of adaptive circuit designs. 

To minimize the runtime of the computing and handle the bottleneck issue, a new task 

partitioning and scheduling approximate algorithm is developed. After the scheduling, the 

circuit graph is partitioned into multiple batches within which the logic gates can be 

processed concurrently.  Memory organization is also investigated. The fast on-chip 

memory helps to hide the off-chip memory latency. The memory coalescing mechanism 

is also exploited by arranging the data structure. The scheduling strategy is also applied 

for the multithreading for gate implement selection. Experiments on benchmark of 

ISPD’13 show that the proposed approach can achieve 22X and 134X speedup for 

conventional and adaptive circuit designs, respectively. It is also 39X faster than GPU 

parallel computing of Monte Carlo based SSTA. In addition, 5X speedup is achieved for 

gate implement selection by using the multithreading. 
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