
A CYBER-PHYSICAL SYSTEMS APPROACH TO WATER DISTRIBUTION

SYSTEM MONITORING

A Dissertation

by

AGUMBE SURESH MAHIMA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Radu Stoleru
Committee Members, Jennifer Welch

Anxiao (Andrew) Jiang
Kelly Brumbelow

Head of Department, Dilma Da Silva

December 2015

Major Subject: Computer Science

Copyright 2015 Agumbe Suresh Mahima

ABSTRACT

Water Distribution Systems (WDS) are critical infrastructures of national im-

portance that supply water of desired quality and quantity to consumers. They are

prone to damages and attacks such as leaks, breaks, and chemical contamination.

Monitoring of WDS for prompt response to such events is of paramount importance.

WDS monitoring has been typically performed using static sensors that are strate-

gically placed. These solutions are costly and imprecise. Recently mobile sensors

for WDS monitoring has attracted research interest to overcome the shortcomings of

static sensors. However, most existing solutions are unrealistic, or disrupt the normal

functioning of a WDS. They are also designed to be deployed on-demand, i.e., when

the utility manager receives complaints or suspects the presence of a threat.

We propose to solve the problem of WDS monitoring through a Cyber-Physical

system (CPS) approach. We envision a Cyber-Physical Water Distribution System

(CPWDS) with mobile sensors that are deployed in the CPWDS and move with the

flow of water in pipes; mobile sensors communicate with static beacons placed outside

the pipes and report sensed data; the flows in the pipes are controlled to ensure that

the sensors continuously cover the main pipes of the WDS. We propose algorithms to

efficiently monitor the WDS with limited number of devices, protocols to efficiently

communicate among the devices, and mechanisms to control the flows in the WDS

such that consumer demands are met while sensors continuously move around. We

evaluate our algorithms, protocols, and design of communication, computation and

control components of the CPWDS through a simulator developed specifically to

model the movement of sensors through the pipes of the WDS. Our simulations

indicate that investing on improving the sensing range of mobile sensors reduces the

ii

cost of monitoring significantly. Additionally, the placement of beacons, and the

communication range impact the accuracy of localization and estimation of sensor

locations. Our flow control system is observed to converge and improve the coverage

over time.

iii

DEDICATION

To My Beloved and Supportive Parents

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Radu Stoleru, for his support, tremendous

encouragement, and guidance. He has been a constant source of inspiration, and has

provided valuable advice in my research and career. His enthusiasm towards research

is contagious. Even through times of doubt and confusion, his valuable support has

been constant. His motivation was instrumental in completing this dissertation.

I would like to thank my collaborators Dr. Amin Rasekh, Dr. Avi Ostfeld,

Dr. Basem Shihada, Dr. Emily Zechman Berglund, Dr. Mohan Kumar, Dr. Pra-

bir Barooah, Dr. Lidia Smith, Anjana G.R., Usha Manohar, Wei Zhang, and Wei-

jiao Gong. I also thank my committee members, Dr. Jennifer Welch, Dr. Anxiao

(Andrew) Jiang, and Dr. Kelly Brumbelow for their valuable comments and advice

throughout. Their feedback and inputs to the research has shaped this dissertation.

My thanks also goes to my colleagues, past and present members of the LENSS

lab, especially Dr. Harsha Chenji, Dr. Amin Hassanzadeh, Dr. Myounggyu Won, Wei

Zhang, Weijiao Gong, Jay Chen, Chen Yang, for providing valuable inputs through

discussions and collaborations.

My special thanks to my parents for all their sacrifices, support, and encourage-

ment. I am truly grateful to all my friends for their support and all the fun filled

memories. My remarkable experience at College Station will always remain with me.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xv

1. INTRODUCTION . 1

1.1 Motivation . 4
1.2 Dissertation Statement . 6
1.3 Main Contributions . 7
1.4 Organization . 9

2. STATE OF THE ART . 10

2.1 History of WDS Monitoring . 10
2.2 Related Work in Communication . 14
2.3 Related Work in Computation . 17
2.4 Related Work in Control . 19

3. PROPOSED ARCHITECTURE AND PRELIMINARIES 21

3.1 Research Thrusts and Preliminary Results 23
3.1.1 Communication Issues in CPWDS 23
3.1.2 Computation Issues in CPWDS 23
3.1.3 Control Issues in CPWDS . 26

3.2 Preliminaries . 28
3.2.1 Definitions . 28

3.3 Sensing Models . 29
3.3.1 Non-diffusive Events Model 30
3.3.2 Diffusive Events Model . 31

vi

3.3.3 Sensing Range Matrix . 31
3.4 Mobility Model . 32

4. COMMUNICATION IN CPWDS . 36

4.1 Assumptions and Definitions . 36
4.2 Physical Layer Models (PHYSS and PHYSB) 38

4.2.1 Communication Range for Sensors (CRs) 39
4.2.2 Communication Range for Beacons (CRb) 39

4.3 Sensor-Sensor Communication Protocols 40
4.3.1 Group Splitting and Leader Election 42
4.3.2 Group Merging and Leader Selection 45
4.3.3 Delay Analysis for Group Management 46

4.4 Sensor-Beacon Communication Protocols 47

5. COMPUTATION IN CPWDS . 49

5.1 Sensor Deployment Problem for On-demand Monitoring 49
5.1.1 Minimization of Number of Sensors 50
5.1.2 Maximization of Degree of Coverage 56
5.1.3 Algorithms/Heuristics to Solve the MASC Problem 59

5.2 Beacon Placement Problem for On-demand and Continuous Monitoring 61
5.2.1 Minimization of Number of Beacons to Ensure Localization Error 62
5.2.2 Minimization of Number of Beacons to Ensure Localization

Accuracy . 64
5.2.3 Jointly Determining Sensor and Beacon Placement with Bud-

get Constraint for Leak Detection 68
5.2.4 Beacon Placement for Continuous Monitoring 78

5.3 Event Localization Algorithm . 80
5.4 Global View Algorithm . 85

6. CONTROL IN CPWDS . 88

6.1 Flow Estimation . 88
6.1.1 Flow Learning . 90

6.2 Sensor Position Estimation . 91
6.3 Flow Controller . 94

6.3.1 Sensor-agnostic Flow Controller 95
6.3.2 Sensor-aware Flow Controller 99
6.3.3 Flow Control . 100

6.4 Sensor Controller . 102
6.4.1 Sensor Controller Architecture 104

7. PERFORMANCE EVALUATION . 106

vii

7.1 Proof-of-Concept System Implementation and Validation 106
7.1.1 Experimental Results to Validate Communication Model . . . 106
7.1.2 Proof-of-concept Testbed . 108

7.2 Large Scale Simulation Platform: Cyber-Physical Water Distribution
System Simulator (CPWDSim)) . 111

7.3 Performance Evaluation of Communication 114
7.3.1 Group Communication . 115
7.3.2 Impact of SR, CR, Scenario and Time Period on CPWDS

Communication . 119
7.3.3 Impact of CPWDS Computation (Global View) on CPWDS

Communication . 120
7.4 Performance Evaluation of Computation 121

7.4.1 Sensor Placement . 128
7.4.2 Beacon Placement and Event Localization 139

7.5 Performance Evaluation of Control 153
7.5.1 Evaluation of Flow Learning 153
7.5.2 Evaluation of Sensor Position Estimation Algorithm 154
7.5.3 Evaluation of CPWDS Flow Control 157
7.5.4 Evaluation of CPWDS Sensor Control 161

8. CONCLUSIONS AND FUTURE WORK 165

8.1 Conclusion . 165
8.1.1 Realism of Our CPWDS . 167

8.2 Future Work . 168
8.2.1 Flow-based Cyber Physical Systems 168
8.2.2 Implementation of the Cyber-Physical Water Distribution Sys-

tem . 168
8.2.3 Making Water Distribution Systems Controllable 169
8.2.4 Improving the Accuracy of the CPWDSim 169

REFERENCES . 170

APPENDIX A. PROOF THAT THE MNS PROBLEM IS NP-HARD 184

APPENDIX B. APPROXIMATION RATIO OF THEGREEDYALGORITHM
FOR MASC PROBLEM . 187

viii

LIST OF FIGURES

FIGURE Page

1.1 Pictorial representation of the CPWDS 2

1.2 TAMU/Purdue University sensor for chemical monitoring in WDS [8] 3

1.3 Nomenclature and classification of CPWDS 3

3.1 Software architecture of the CPWDS 22

3.2 The number of groups varying over time for two runs. 24

3.3 Impact of number of sensors and placement on coverage. 25

3.4 Example of the data that beacons can provide. 26

3.5 Flow reversal using an additional source “WM” at B. Black dots are
junctions. Quartered circles are valves. 27

3.6 Graphical representation of a WDS involving junctions and pipes for
the event detection problem: a zone of interest I, beacons Bi and an
event X along edge (v5, v4). 28

3.7 Example WDS in EPANET, called Net1 33

4.1 Spatial uncertainty in the acoustic medium. 37

4.2 Examples of group management split (a) and merge (b) operations. . 45

5.1 WDS monitoring example: empty circles are vertices of F , filled circles
are sensors, small towers are beacons. 56

5.2 (a) Example network from EPANET; (b) Graph representation of the
EPANET example network from (a) 60

5.3 Small example to demonstrate beacon placement and event localization 67

6.1 Block Diagram of the CPWDS . 91

6.2 Sample graph . 95

ix

6.3 Design of the control system . 104

7.1 (a) Testbed to validate communication range between sensors and
beacons; (b) Testbed for system evaluation and a Sensor node. . . . 107

7.2 (a) Average, (b) Maximum, and (c) Minimum RSSI as the distance of
the sensor from the beacon is varied. (d) The path loss for different
pipe lengths and r. The rrefs for 4

′′ pipe is 0.051m, 6′′ pipe is 0.076m,
8′′ pipe is 0.102m, 10′′ pipe is 0.127m 108

7.3 (a) Sensing Coverage for 4 scenarios. (b) Localization success rate. . 109

7.4 Scenarios for event localization. Scenario 4 is the same as Scenario 3,
but with a longer CRb. X indicates an event. 110

7.5 CPWDSim design . 112

7.6 Micropolis [10] with zones of interests I1, I2, and I3. 112

7.7 Zoomed in views of (a) Zone I1, (b) Zone I2, (c) Zone I3 113

7.8 Percentage of MAC layer collisions, by varying CRs and FN : (a) I1;
(b) I2; (c) I3. Percentage of communication opportunities missed, by
varying CRs and FN on I3: (d) FN = 30%; (e) FN = 20%; and (f)
FN = 10%. 114

7.9 Impact of CR, Scenario on Pc and Ptx during Morning (a)-(b) and
Afternoon (c)-(d). 116

7.10 Impact of SR, Scenario on Pc and Ptx during Morning (a)-(b) and
Afternoon (c)-(d). 117

7.11 Impact of CPWDS Computation (i.e., Global View information), CR,
and Scenario on Pc and Ptx during Morning (a)-(b) and Afternoon (c)-
(d). 118

7.12 Impact of CPWDS Computation (i.e., Global View information), SR,
and Scenario on Pc and Ptx during Morning (a)-(b) and Afternoon
(c)-(d). 119

7.13 HA at varying distances for different frequencies of communication in
(a) Straight pipes; (b) Pipes with bends 122

x

7.14 Model results for the Net1 example shown in Figure 3.7, with a uni-
form distribution of the leaks for (a) Detection rate, (b) Coverage, and
(c) Average Localization Error, (d) System Localization Error 123

7.15 Model results for the Net1 example shown in Figure 3.7, with a random
distribution of the leaks for (a) Detection rate, (b) Coverage, and (c)
Average Localization Error, (d) System Localization Error 124

7.16 Model results for the Net1 example shown in Figure 3.7, while varying
cost ratio between sensors and beacons for (a) Detection rate, (b)
Coverage, and (c) System Localization Error 125

7.17 Model results for the Net1 example shown in Figure 3.7, when location
of beacons and sensors may be restricted for (a) Detection rate, (b)
Coverage, and (c) System Localization Error 126

7.18 Model results for the Net1 example shown in Figure 3.7, for different
number of simulation runs for (a) Detection rate, (b) Coverage, and
(c) System Localization Error . 127

7.19 # sensors required to achieve FN for non-diffusive events, given SR
and: (a) I1; (b) I2; (c) I3. Achieved Sensing Coverage for different
FN , SR in: (d) I1; (e) I2; (f) I3. 129

7.20 # sensors required to achieve FN , given SR and: (a) I1; (b) I2; (c)
I3. Achieved Sensing Coverage for different FN , SR in: (d) I1; (e) I2;
(f) I3 when for τ = 2 hours. 130

7.21 # sensors required to achieve FN , given SR and: (a) I1; (b) I2; (c)
I3. Achieved Sensing Coverage for different FN , SR in: (d) I1; (e) I2;
(f) I3 when for τ = 4 hours. 131

7.22 # sensors required to achieve FN , given SR and: (a) I1; (b) I2; (c)
I3. Achieved Sensing Coverage for different FN , SR in: (d) I1; (e) I2;
(f) I3 when for τ = 6 hours. 132

7.23 Evaluation of number of possible contacts explored by the sensors
depending on their times of insertion, with the non-diffusive sensing
model, for various CRs and the algorithm used for: (a) I1; (b) I2; (c) I3134

7.24 Evaluation of number of possible contacts explored by the sensors
depending on their times of insertion, with the diffusive sensing model,
for various CRs and the algorithm for: (a) I1; (b) I2; (c) I3 135

xi

7.25 Comparison between MNS and MASC for achieved average sensing
coverage in MATLAB for (a) Zone I1, (b) Zone I2, (c) Zone I3 136

7.26 Comparison between MNS and MASC for achieved average sensing
coverage over 100 runs in CPWDSim for (a) Zone I1, (b) Zone I2, (c)
Zone I3 . 137

7.27 Comparison between MNS and MLBSC for achieved lower bound sens-
ing coverage in MATLAB (a) Zone I1, (b) Zone I2, (c) Zone I3 . . . 139

7.28 Comparison between MNS and MLBSC for achieved lower bound sens-
ing coverage over 100 runs in CPWDSim for (a) Zone I1, (b) Zone I2,
(c) Zone I3 . 140

7.29 Number of beacons deployed for non-diffusive events, varying LE and
SR on (a) I1; (b) I2; and (c) I3. Number of beacons deployed for the
diffusive sensing model, varying LE and Θ, for τ = 2 hours on (d) I1;
(e) I2; and (f) I3. 141

7.30 The actual localization error for different communication ranges vary-
ing with LE on zone of interest I3 with (a) FN=0.2 and (b) FN=0.1
and the event type is non-diffusive. (c) Localization error LE when
events are placed in different edges on I3. 142

7.31 Evaluation of event localization as a function of Pd and Dc for esti-
mated flows. 143

7.32 (a) Evaluation of event localization as a function of Pd for: (a)Dc=0.6;
(b) Dc=0.8; and (c) Dc=0.9 . 143

7.33 Comparison of average sensing coverage determined mathematically
for (a) Zone I1, (b) Zone I2, (c) Zone I3 147

7.34 Comparison of normalized sle determined mathematically for (a) Zone
I1, (b) Zone I2, (c) Zone I3 . 148

7.35 Comparison of achieved normalized sle in CPWDSim for (a) Zone I1,
(b) Zone I2, (c) Zone I3 . 149

7.36 Comparison of average normalized ale for (a) Zone I1, (b) Zone I2, (c)
Zone I3 . 150

7.37 Comparison of detection ratio in CPWDSim for (a) Zone I1, (b) Zone
I2, (c) Zone I3 . 151

xii

7.38 Comparison of coverage in CPWDSim for (a) Zone I1, (b) Zone I2,
(c) Zone I3 . 152

7.39 Evaluation of flow learning with a Pd=0.95, averaged over Dc=0.6,
0.7, 0.8, 0.9. 153

7.40 Sensor position accuracy for varying number of beacons and commu-
nication ranges with (a) Flow scenario 1 with average badness of the
WDS 6.03, and of I, 19.484, (b) Flow scenario 2 with average badness
of the WDS 5.984, and of I, 16.921, (c) Flow scenario 3 with average
badness of the WDS 5.88, and of I, 16.847 154

7.41 Part of the Micropolis virtual city used to demonstrate flow reversal . 154

7.42 Valve settings for (a) v1, (b) v2, and error in valve setting for (c) v1,
(d) v2 over time . 155

7.43 Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 1 . 156

7.44 Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 1 . 157

7.45 Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 2 . 158

7.46 Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 2 . 159

7.47 Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 3 . 160

7.48 Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 3 . 161

7.49 Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 4 . 162

xiii

7.50 Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through
the day during run 4 . 162

7.51 Comparison of coverage with and without flow control 163

7.52 Sample WDS on which sensor control is evaluated 164

xiv

LIST OF TABLES

TABLE Page

2.1 Existing technologies that use mobile sensors for WDS leak/backflow
detection . 12

2.2 MAC protocols for underwater acoustic communication 16

3.1 List of symbols used throughout the dissertation 29

4.1 List of symbols used in this section 37

5.1 List of symbols used in this section 51

5.2 Optimization problems used in this dissertation 78

6.1 List of symbols used in this section 88

7.1 Scenarios for which sensor and beacon placements are restricted . . . 128

7.2 Number of beacons corresponding to a given Pd in I3 142

xv

1. INTRODUCTION

Water distribution systems (WDSs) are identified as a critical infrastructure sys-

tem in the Public Health, Security, and Bioterrorism Preparedness and Response

Act [74]. In the U.S.A, 90% of the population receives drinking water from nearly

170,000 public WDSs [18]. These buried WDS pipelines cover close to a million

miles [90] [6], and many of them date back to the early 20th century. Repairing

and upgrading these pipeline systems is not a trivial task. American Water Works

Association’s report [7] has estimated the repair to incur $250 billion over the next

30 years.

WDSs are vulnerable to a variety of physical and chemical attacks, such as leaks,

breaks, backflow events, and chemical contamination. Ensuring the supply of water

of a desired quality and quantity is essential to industrial growth and public health.

Chemical contamination of water is a great public health risk [91], and may be

introduced into the WDS at the sources or in any of the pipes of the WDS, by

malicious agents or accidentally. Also, structural damages such as breaks in water

pipes cause threats due to leakages (leading to water loss and service disruption),

and backflows events (leading to public health risks). There have been approximately

237,600 water main breaks per year in the U.S.A., causing nearly $2.8 billion worth

of loss [92]. To protect the consumers from health risks, and to prevent losses, there

is a need to install sensor systems to identify the presence and location of these

threats, referred to as events henceforth.

Following the 9/11 attacks in U.S.A., contaminant monitoring in WDSs was con-

sidered to be of prime importance due to impact it has on the population. As a result,

a design competition called the Battle to Water Sensor Networks (BWSN) was de-

1

Communication

Computation Control

Group Mgmt MAC

Global view

algorithm

Sensor data

processing

Flow control

algorithm

Distributed

Centralized

Static Beacons

Mobile Sensors Mobile Sensors

Figure 1.1: Pictorial representation of the CPWDS

signed to encourage research in this area. The competition resulted in a project [50]

that used static sensors to detect the presence of contamination in WDSs. Static

sensor systems were then tested through real world deployments in cities and mu-

nicipalities, as well as in laboratory settings [75] [99], not only for contamination

detection, but also for leak/break detection. Efficient sensor placement to collect

the location and time at which contaminants are introduced into the WDS were also

studied [104]. Further research studied the strategies to flush out contaminants [103]

by opening hydrants.

Recent advancements in wireless sensor networks (WSN) pave way for the de-

velopment of mobile sensors traversing water pipelines [64](depicted in Figure 1.2),

[47] [42] [50] [75] [42] [46]. Also recently, Pure Technologies has developed a leak

detection equipment called SmartBall [67] that is currently in use in municipalities.

The SmartBall is inserted in water pipes, and is collected at a fixed location by ensur-

ing that it follows a predetermined path. Leaks are detected using acoustic signals.

2

Figure 1.2: TAMU/Purdue University sensor for chemical monitoring in WDS [8]

Such systems anchor our research into reality. However, most mobile sensor systems

are not suitable or efficient for deployment in WDS. For example, [47] and SmartBall

are predicated on the requirement that sensors follow a predetermined path during

the deployment, which is achieved by blocking some regions of the WDS, thereby

disrupting the normal function of the WDS. [42] uses RFID tags set up at regular

intervals inside the pipelines, which is impractical. [62] studies the use of mobile sen-

sors and static sensors, where all mobile sensors are assumed to follow the path of the

highest flow, which the authors admit, is inaccurate. To sum up, existing solutions

make assumptions that disrupt the normal functioning of a WDS, are impractical,

or are inefficient.

Flow Aware Flow Unaware

On-demand FLAW-D FLUN-D

Continuous FLAW-C FLUN-C

CPWDS

Architecture

Figure 1.3: Nomenclature and classification of CPWDS

3

1.1 Motivation

To overcome the limitations of current solutions and to provide a cost effective

way to monitor a WDS, we present the design of a Cyber Physical System approach

to monitor a WDS, i.e., a Cyber-Physical Water Distribution System (CPWDS), as

depicted in Figure 1.3. Our CPWDS consists of two kinds of devices, namely, mobile

sensors and static beacons. Mobile sensors traverse through the pipelines aided by

the flow of water, sense the environment, communicate among each other, and report

data to beacons. Beacons on the other hand are static, aid in localization, and are

responsible for data collection and providing a global view to the sensors.

We envision two modes of WDS monitoring - on-demand and continuous. Both

these modes are essential and fulfill different objectives. On-demand monitoring is

required when the utility manager or a static sensor network suspects the presence

of a leak/backflow or contamination in the WDS, whereas continuous monitoring

ensures long term monitoring of the WDS. In our CPWDS, since the sensors move

freely, their movement is dependent on the flow of water in the pipes, the knowledge

of flows in a WDS determines the difficulty in monitoring the WDS. As summarized

in Figure 1.3, there are four different approaches to the CPWDS problem - FLAW-D

(Flow Aware On-demand), FLUN-D (Flow Unware On-demand), FLAW-C (Flow

Aware Continuous), FLUN-C (Flow Unaware Continuous). Additionally, a CPS

is composed of three components: Communication, Computation, and Control. A

CPWDS poses several interesting questions that are not answered by any related

work to the best of our knowledge. For each component, we present the motivation

for all four approaches to WDS monitoring through CPWDS approach.

• Communication: The sensors in our CPWDS are underwater and mobile.

As they move through the pipes, they sense and record data. This data

4

needs to reach devices outside the pipeline at the earliest possible opportu-

nity. Therefore, there needs to be wireless communication from sensors to

beacons. Some sensors may not traverse paths containing beacons. Retrieving

information from such sensors without sensor-sensor communication is time

consuming both in flow-aware and flow-unaware monitoring constructs. In a

WDS, the medium of communication among sensors is chosen to be acoustic

due to the short communication range of RF underwater. Underwater acous-

tic communication is challenging due to the high propagation delays of the

acoustic medium [84] [44] [52]. A MAC protocol that is able to work in such

environments is challenging to design. In case of on-demand monitoring, sen-

sors are usually deployed at once to add redundancy (since the movement of

sensors in pipes is random). The movement of sensors in high density groups

with changing communication topologies makes sensor-sensor communication

more challenging.

• Computation: A key advantage of the CPWDS is that the devices are much

cheaper than static sensors. There is a need to reduce ineffective deployments

so as to improve monitoring. Optimal (i.e., low cost) deployment of sensors

and placement of beacons is therefore an important problem to WDS monitor-

ing, especially in on-demand monitoring. In FLAW-D approach, ensuring that

there is a significant amount of sensor-sensor communication among sensors

traversing different paths improves the event localization. Therefore, we need

to also decide when to insert the sensors is also important. Sensors traversing

the pipes of a WDS are unaware of their locations. On the other hand, bea-

cons placed outside the WDS have a global view of the WDS. When sensors

come in contact with a beacon, the information from the beacons is useful to

5

a sensor to tune its communication parameters. It is, however, challenging to

provide useful information while reducing redundancy. Especially in continu-

ous monitoring, such information may prevent a delay in obtaining data from

sensors.

• Control: During continuous monitoring of a WDS, owing to the varying de-

mands of the consumers and valve actions, the flows in the pipes change in

magnitude and direction over time. The main pipes of a WDS are usually of

larger diameter than the pipes leading to consumers. Therefore, if the sen-

sors are designed to have a large form factor, they move around in the WDS

without getting stuck in small pipes. However, they may travel to parts of the

WDS where flows do not change directions over time. In order to effectively

monitor a WDS with mobile sensors, sensors need to traverse the main pipes

continuously. It is challenging to determine the pipes on which flows need to

be reversed, and actually reversing the flows by controlling valves, pumps, and

demand points.

1.2 Dissertation Statement

We propose that a Cyber-Physical System composed of mobile sensors that move

through the pipes (aided by the inherent flow of water), static beacons (that collect

data from sensors and aid in locating the events) and water flow/sensor control

subsystems, is an efficient and practical solution to the problem of WDS monitoring.

Contrary to the state of the art in WDS monitoring, a CPS approach provides

several advantages, as follows. First, due to the use of mobile sensors, accuracy

of event detection and identifying the location of the event improves over the use

static sensors. Next, communication between sensors and among sensors and beacons

improves the delay in obtaining information about the WDS. Further, continuous

6

monitoring voids the need to collect and redeploy sensors.

1.3 Main Contributions

Our contributions are classified into three categories based on the three compo-

nents of a CPS: Communication, Computation, and Control. We also have contri-

butions in terms of system design and evaluation. Our contributions are elaborated

as follows:

• Communication [82] [78]: We propose a communication architecture that

enables the design of physical, MAC, routing, and higher layers independent

of each other. We present a MAC/group communication protocol that ac-

counts for high propagation delays in the acoustic medium in which sensors

communicate, and adapts to changing topologies.

• Computation [80] [81] [82] [79] [78]: We present algorithms for optimal de-

ployment of sensors, optimal placement of beacons, and algorithms run on

beacons to provide information to sensors. For on-demand monitoring, opti-

mal deployment of sensors involves either minimizing the number of sensors to

achieve a desired level of coverage, or to maximize the coverage when a fixed

number of sensors are available. Similarly, optimal beacon placement involves

either minimizing the number of beacons to achieve a certain level of accuracy,

or to get the best accuracy with a given number of beacons. We also solve the

problem of maximizing the accuracy of event detection and localization when

we have a fixed budget that may be allocated to either sensors or beacons.

In the context of continuous monitoring, we develop a global view algorithm

that predicts the way groups of sensors move, and provides this information to

sensors in a small packet of information.

7

• Control [78]: Computational algorithms assume that we have knowledge of

the flows in the WDS, i.e., the case of flow-aware monitoring. For flow-unaware

monitoring, we propose a flow learning algorithm that uses feedback from sen-

sors to learn the directions, and magnitude of flows in both on-demand and

continuous monitoring. For continuous monitoring, we propose a control mech-

anism that ensures a desired magnitude and direction of flows in each pipe of

the WDS so as to ensure coverage of a region of interest. We propose to de-

rive the desired flows such that the probability of sensors reaching a region of

interest is maximized. We propose an algorithm to estimate the positions of

sensors using information collected at beacons.

• System Design [82] [78]: We design the interaction and behavior of all com-

ponents of the CPWDS including sensing, communication, control, and com-

putation components through a software architecture, a control system design,

and a high level model of the entire system.

• Evaluation [80] [81] [82] [79] [78]: To evaluate our design, we developed a sim-

ulator called CPWDSim to simulate the movement of sensors through pipes of

the WDS, communication among sensors, and communication between sensors

and beacons. CPWDSim simulator accepts input about a WDS from a well

knownWDS hydraulics simulator, EPANET [27]. EPANET generates the flows

in the pipes of a WDS. Using these, CPWDSim simulates the movements of

the sensors. We also simulate the communication among the sensors using our

proposed group management/MAC protocol. The simulator is also equipped

with all the algorithms, including the control system design. CPWDSim is a

first step in CPWDS simulations, and further research is required in improv-

ing its fidelity. The implementation of CPWDSim revealed the complexity of

8

the WDS environment for mobile sensor movement and communication. It is

not trivial to extend the mobility model of the sensors, and the harsh acoustic

environment for sensor-sensor communication in existing simulators. Hence,

there is currently no other simulator that may be used for the purposes of this

research.

1.4 Organization

This dissertation is organized into eight sections. This section, i.e., Section 1

motivates the problem of WDS monitoring and the importance of a CPS approach

to WDS monitoring. The dissertation statement and our contributions are also

presented in this section. Section 2 contains the state of the art related to CPWDS,

i.e., mobile wireless sensor networks for WDS monitoring, underwater acoustic MAC

protocols, group communication protocols, and control systems for flow control in

WDS. Section 3 provides the preliminary background and some initial results that

motivate our CPWDS. Contributions in each of the components of the CPWDS

are then presented in Sections 4-6. Section 4 discusses the design of communication,

section 5 tackles the computational aspects, and section 6 explores the control aspects

of the CPWDS. Our evaluation of the proposed design in real world implementation

and simulation are covered in Section 7. Finally, Section 8 concludes this research

and explores future directions.

9

2. STATE OF THE ART

In this section, we present the state of the art and related work in all the compo-

nents of the CPWDS. We classify this section into seven sections. First, we present

the history of WDS monitoring, including specific related work in contamination

and leak detection. Next, background in communication relevant to our study, i.e.,

MAC protocols for underwater communication, and group communication protocols,

are discussed. We then elaborate on existing research in the computation questions

tackled in this work. Finally, we present existing control mechanisms in WDS flow

control.

2.1 History of WDS Monitoring

Following the 9/11 event in the U.S.A, a competition called the Battle of the

Water Sensor Networks (BWSN) design competition was undertaken [60] so as to

develop infrastructures to identify chemical attacks on the WDS. As a result of

the BWSN competition, a project [50] proposes the placement of static sensors for

contaminant monitoring. Consequently, Pipenet [75] implemented and tested the

static sensor solution in Boston. This led to several studies to optimize the placement

of static sensors due to their high cost [104] [103]. WaterWise [99] also studies the

use of sensors equipped with GPS devices for the monitoring of water pipelines in

Singapore.

Since static sensor systems were costly and imprecise, and with the advent of

wireless sensor network technologies [32] [35] [85], mobile sensor systems for WDS

monitoring gathered research interest [42] [47] [46]. TriopusNet [47] attempts to

provide a solution for autonomous continuous monitoring of pipelines. The sensors

move through the pipes in predetermined paths, and attach themselves to the pipes

10

of the WDS at the appropriate locations. When sensors need to be replaced, they

detach from the pipe and get flushed out through the faucets. However, this solu-

tion is impractical, since flows in pipes cannot be restricted to follow one path while

supplying water to consumers. SPAMMS [42] also proposes to use mobile sensors for

pipeline monitoring. The pipelines are set up with RFID tags at regular distances

for localization of the mobile sensors. The mobile sensors are retrieved at the sinks

to determine where the event is present. A mobile robot is then sent in to counter

the event. However, the placement of RFID tags at regular intervals is impractical.

MISE-PIPE [77] is another similar system that uses magnetic induction to commu-

nicate with sensors moving through underground pipes. This paper demonstrated

that it is feasible to have sensors in buried pipelines communicate with access points

on the ground.

Specific to leak detection, there are several methods based on various operating

principles for detection, localization, and pinpointing of leakages in municipal water

distribution systems. Water audits based on metering and water balance calculations

can be performed to quantify water losses and provide an extremely crude approxi-

mation of the location of losses. A better estimation is achieved through step-testing

method whereby valves are systematically closed to subdivide the area and localize

the leakage.

A comparatively more recent leak localization method is acoustic logging, which

is performed using hydrophones or vibration sensors [38]. Ground penetrating radar

is employed to localize the leaks by virtue of detecting underground voids caused by

leakage water flow in the immediate vicinity of pipes. More accurate leakage local-

ization, which is also referred to as leakage pinpointing, may be achieved using leak

noise correlation, tracer gas, and pig-mounted acoustic techniques. Detailed descrip-

tion and comparison of these well-known methods for detection and pinpointing of

11

Table 2.1: Existing technologies that use mobile sensors for WDS leak/backflow
detection
Authors
/ Com-
pany

Name Capabilities Sensing
technology

Free-
flowing
or line
tethered

Pure
Technolo-
gies

Sahara [66] Detecting leaks, pock-
ets of trapped gas, and
visual inspection

Hydrophone;
camera

Line teth-
ered

Pure
Technolo-
gies

SmartBall
[67]

Detecting leaks, pock-
ets of trapped gas, and
structural defects

Acoustic
emitter and
receiver

Free-flowing

Pure
Technolo-
gies

PipeDiver
[65]

Detecting leaks, pock-
ets of trapped gas, and
structural defects

Acoustic
emitter and
receiver

Free-flowing

Lai et al. PipeProbe
[46]

Mapping hidden
pipeline

Metering
pressure
and angular
velocity

Free-flowing

Trinchero
et al.

[87] Detecting leakage. In-
cludes wireless trans-
mission system

Hydrophone Free-flowing

Chatzigeorgiou[15] Detecting leakage Hydrophone Free-flowing
Purdue-
TAMU
sensor

[8] Measuring water qual-
ity parameters; can be
used for backflow de-
tection. Includes en-
ergy harvest and wire-
less transmission sys-
tems

Ion-selective
electrode-
based
biochip

Free-flowing

MIT
MRL Lab

PipeGuard
[14]

Detecting leakage.
Can be potentially
used for backflow
detection

Measuring
pressure

Free-flowing

Perelman
et. al.

[63] Monitoring water
quality. Uses both
mobile and static
sensors

Water qual-
ity sensors

Free-flowing

12

leaks may be found in [92] [68] [15].

The application of inline, mobile sensors technology for leakage pinpointing has

attracted a lot of attention by both researchers and practitioners during the re-

cent years [67] [15] [46] [8]. These are small monitoring devices that traverse freely

with the water flow inside the pipes. The sensors can collect measurements from

the environment and also process them and transmit the processed data to access

points placed outside the pipelines. They have achieved popularity recently thanks

to their unique abilities in collecting spatially high resolution data. Simple acoustic

sensors are already being employed in real WDSs for leak detection [66] [12] and

new sensors are under test and evaluation for monitoring water quality parameters

in near-realtime scales [8]. Once contaminants are identified, the response to such

events to minimize public health risks are recently being studied [69]. Such studies

shed more light on contaminant propagation and sensing modeling.

Deployment of mobile sensors may happen on-demand by a utility manager as

part of a periodic system monitoring, or it may be triggered when the presence of a

leak/backflow is suspected with the help of a static sensor system or by complaints

from consumers. They have been already applied to water utilities of several cities

around the world, including Dallas, Montreal, and Manila [66]. Their increasing

popularity is presumably due to their ability to pinpoint the leaks more accurately

than other existing methods without causing any disruption to regular water utility

service. Table 2.1 contains most of the existing practical solutions that use mobile

sensors for leak/backflow detection in WDSs.

Although inline, mobile sensors for locating leakages have been already designed

and fabricated, decision support models to facilitate and enhance their operation

through simulation of their movement in the pipelines network and optimization of

their application is still underdeveloped. Development of such computational models

13

is a major focus of this study.

A recent work [63] examines the deployment of mobile water quality sensors along

with static water quality sensors for contamination detection. The paper demon-

strates the improvement in detection rate provided by mobile sensors in conjunction

with static sensors. However, the movement of the sensor is modeled to move through

a deterministic path, provided the flow velocities in the pipes are known. The model’s

use is also limited to contamination event detection and is not developed to enable

source localization as well.

In this dissertation, we study varying sensing ranges, including leak/backflow de-

tection, which requires a more stringent sensing model where the mobile sensors are

required to move close to the leak points to enable detection and localization. In

reality, mobile sensors move randomly through the pipes with a probability distribu-

tion at each junction which has not been yet considered in existing solutions in the

literature. The sensor mobility model in this work is more general to accommodate

the random movement of sensors at junctions. This way, the sensors mobility may

be modeled more accurately and thus be deployed more efficiently and effectively.

2.2 Related Work in Communication

The area of in-pipe acoustic systems including the digital communication aspects

has been explored by [43]. However, the dynamics of multi-path communication

in complex pipe topologies are not considered. In-pipe wave propagation models

are discussed in [89]. Underwater RF communication research is done only in open

seas and oceans [16] [39] [56]. [88] discusses a methodology wherein sensors that

are moving around in pipe conduits can communicate with a surface receiver using

microwave communication.

For open sea applications, several simulators are developed and used, such as

14

Aqua-Sim, MIRACLE, etc. [72], but the models used are insufficient for in-pipe

acoustics.

MAC protocols for underwater acoustic networks are widely explored, especially

in oceans and seas. MAC protocols for underwater acoustic sensor networks are

mainly based on CDMA or TDMA [61]. CDMA is a preferred protocol in mobile

sensor networks, because the uncertainty in propagation delay does not affect the

performance of the algorithm [98] [28]. TDMA is also efficient in scenarios where

delays of a few seconds can be tolerated. Techniques for time synchronization are

also prevalent [83]. However, very few protocols consider in-pipe systems where the

network topology is dynamic and has a relatively low communication range (∼10-

100m) [84] [44] [17].

T-Lohi [84] is a contention based MAC protocol that uses low power tones for

reservation. It is designed to be energy-efficient, and is suitable for randomly chang-

ing topologies and for sparse short range networks with relatively low data rates.

When node density is high, T-Lohi spends a lot of time in contention, which adds

delay. Applying T-Lohi directly to a CPWDS is inefficient since the data rate and

network size are expected to be high. We have demonstrated this to be true in our

evaluations.

Hybrid MAC [44] is designed for fixed topologies, where a period of random access

is preceded by a slotted TDMA access. An idea from Hybrid MAC that we adopt

in this work is that during the slotted access time period, each time slot is as long

as the time for a packet to reach the farthest node. Another protocol that uses

contention based methods is Ordered-CSMA [17] where channel access occurs in a

predetermined order. [52] discusses the uncertainty at receiving the message when

two transmitters are separated in space and time using a conflict graph with respect

to space and time.

15

Table 2.2: MAC protocols for underwater acoustic communication
Protocol High

PD
Changing
topol-
ogy

Objective
achieved

UW-
MAC [98]

CDMA to form clusters,
TDMA among clusters

X Energy efficiency

T Lohi [84] Contention based, ran-
dom backoff

X X Energy efficiency
and channel uti-
lization

Secon [52] Generation of conflict
graph

X Handling spatio-
temporal uncer-
tainty

Hybrid
MAC [44]

Time slots to exchange
control packets. Unslot-
ted for data packets.

X Energy efficiency
and low latency

Z-MAC [70] CSMA and TDMA. Slot
used based on contention
and allocation.

X Reduces colli-
sions

Due to complex nature of underwater acoustic communication, traditional com-

munication models are usually insufficient, and real implementations are difficult.

Only recently, there have been efforts to understand the underwater acoustic com-

munication characteristics through testbed implementations [3] [22] [34] [1].

Table 2.2 provides a description of the protocols reviewed here and indicates

whether the protocols can be extended to, or already support, mobility, changing

topology, and high propagation delay (PD) environments like acoustic.

In the area of wireless adhoc networks, group communication refers to assigning

each node to a particular group such that members of the same group can commu-

nicate reliably [24] [21]. Distributed algorithms for group management operations,

such as leader election for networks with variable message delays (asynchronous)

using link reversal have been studied [5] [41] [40]. Here, directions are assigned to

bidirectional links to represent leadership. These algorithms, however, are effective

16

when there are very little topology changes, since a number of messages need to be

exchanged before the algorithm terminates. Also, in [5], the nodes are required to

know all the communication links in the network.

For mobile ad-hoc networks, [94] [73] provide leader election algorithms. [94] is

based on growing and shrinking spanning trees based on the Dijkstra-Scholten ter-

mination detection algorithm. However, collisions are not considered. The method

proposed in [73] is to use heartbeat messages to check if a leader is alive, similar to

the idea that we propose. The protocol also uses the concept of a vice-coordinator

to take over when the leader fails. This is very similar to the idea we propose of

group splitting. The paper however fails to consider merging groups. A recent study

on leader election [71] accounts for collision. The nodes in this network send pack-

ets with some probability. The nodes progressively tune this value. There are also

time slots reserved for leaders to transmit. Leaders and followers follow different

algorithms. This paper looks at only single-hop networks. Several distributed algo-

rithms for self-organization [105], for distributed event detection, localization, and

tracking [96] [2] have also been studied in the past. However, all these protocols

work best in the terrestrial networks with low, bounded, predictable delays without

spatial uncertainty.

2.3 Related Work in Computation

Sensor mobility in a WDS resembles a delay tolerant networking (DTN) scenario.

The problem of event localization in DTN, however, has received little attention,

primarily because it is done using GPS. DTN typically involves vehicles, for which

energy is not an issue. Consequently, solutions to problems similar to the event local-

ization problem addressed in this work have not been proposed. For completeness,

we review a set of representative DTN research. Data Dolphin [53] uses DTN with

17

fixed sinks and mobile sensors in 2D area. A set of mobile sinks move around in

the area. Whenever a sink is close to a sensor, it exchanges information over one

hop, thereby reducing the overhead of communicating multi hop and saving energy

on the static sensors. A survey done by Lee et al. encompasses the state of art in

vehicular networks using DTN [48]. Sensing coverage problems in DTN are handled

by CarTel [37], MobEyes [49] etc. These systems use vehicles that can communicate

with each other and localization is based on GPS. [97] uses the idea of heterogeneous

system with mobile sensors that are less capable than stationary sensors to develop

data delivery schemes.

Coverage problems in sensor networks have been considered before [86] [55].

These papers consider coverage problems in 2D or 3D area, unlike coverage on graphs,

as in this dissertation. Sensing coverage, in general, has been studied under different

assumptions. [13] uses both a greedy approach, and linear programming to approxi-

mate the set covering problem. These problems consider only minimizing the number

of vertices to cover edges in a graph. Alireza et al. [86] discusses the detection a hole

that is not covered by the sensors. The sensors have no location information. Lapla-

cian method is used here to obtain the area in a plane that is not covered. Stephen et

al. [55] propose a method to solve the coverage problem using Voronoi diagrams. The

sensors are free to move in a 2D space. [106] uses mobility prediction to solve the

problem of localization. Vieira et al. [95] propose locating mobile sinks underwater.

[102] performs a mathematical analysis of complex flow-based systems using

graph-theoretic concepts. The paper presents several metrics and mechanisms to

study the vulnerabilities of flow-based systems. [51] uses robots to monitor pipes.

The solution is based on the gallery guarding problem that ensures that every point

in a pipe is monitored. The robots attach themselves to the pipes and move about

when required. Usually sensing coverage in sensor networks is done so as to ensure

18

k-coverage. A similar problem for flow-based systems is presented in [101], while

ignoring the mobility of sensors. The coverage requirement of our CPWDS is to

ensure that mobile sensors cover the WDS over time. Therefore, none of these

solutions are suitable.

2.4 Related Work in Control

The concept of control of hydro-systems was initially used on irrigation canals

and later on WDS. Controllers can be used for water level control, flow control,

pump speed control, etc. A control system basically compares the measured value

of the flow with the target value to obtain an error. There are mainly two types of

controllers: i) linear controllers, such as PID, PI, PD etc.; and ii) nonlinear controllers

such as Dynamic Inversion controller (DI).

In process industries, PID controllers are used for process control like pressure

control and temperature control since the late 1940’s [59]. DI controllers are well

known methods for nonlinear controls, carrying out feedback linearization on non-

linear systems. A comparative study was carried out for the different controllers in

water distribution network and it was found out that nonlinear controllers perform

better than linear controllers in achieving the target flows [45].

Nonlinear DI controller with PID features was used to achieve the equitable dis-

tribution of water in Bangalore water inflow systems [54]. Simultaneous proportional

integrated derivative (SIM-PID) and normalized proportional integrated derivative

(NOM-PID) were proposed to regulate flows and maintain water quality in water dis-

tribution systems and two case studies were carried out for the same. Several studies

were performed for different controller tunings [45]. Controllers can also be applied

for qualitative control on water networks [25]. In [25], flow control was achieved

by valve throttling. The flow control systems in [54] and [25] are suitable for our

19

CPWDS model, but need to be integrated appropriately. We need to determine the

reference points for the flow controller appropriately, and also implement it in our

simulator to evaluate the control system.

Control of Cyber-Physical Systems and Water Distribution Systems have being

studied using Model Predictive Control (MPC) [57] [58]. In [57], the authors study a

MPC method to decide taxi dispatch such that supply-demand ratio is maintained,

and idle driving times are reduced. The MPC makes a decision based on a prediction

of the future. Applying model predictive control to our CPWDS is difficult because

the movement of sensors is a complex, non-linear, discontinuous function.

20

3. PROPOSED ARCHITECTURE AND PRELIMINARIES∗

In this section, we present the preliminaries for the dissertation. First, we present

a software architecture of the proposed CPWDS. This architecture encompasses the

functionalities of the mobile sensors and static beacons. We also define some terms

that are used throughout this thesis. More terms specific to each component are

presented in the later sections. Next, we describe a general sensing model and the

mobility model.

There are three components in a CPWDS, as shown in Figure 1.1 - computation,

communication, and control. The communication component describes the commu-

nication among sensors and between sensors and beacons. The result of communi-

cation acts as input to the control system design. The control system then provides

input to the computation aspects, i.e., the algorithms for sensor/beacon placement,

global view etc. The beacons act as a bridge between the distributed and centralized

components of the CPWDS. The objective of this research is to design and analyze

all three aspects of the CPWDS, i.e., communication, computation, and control for

both on-demand and continuous WDS monitoring, and when flows are known and

∗Parts of this section are reprinted with permission from “Towards Optimal Monitoring of Flow-
based Systems using Mobile Wireless Sensor Networks” by Suresh, M.A. and Zhang, W. and Gong,
W. and Rasekh, A. and Stoleru, R. and Banks, M.K., ACM Transactions on Sensor Networks,
doi: http://dx.doi.org/10.1145/2700256, 2015 Copyright c⃝ 2015 Associated Computing Machin-
ery, Inc., “A Cyber-Physical System for Continuous Monitoring of Water Distribution Systems” by
Suresh, M.; Manohar, U.; R, Anjana. G.; Stoleru, R.; Mohan Kumar, M.S., IEEE 10th Interna-
tional Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
2014 Copyright c⃝ 2014 IEEE, “Mobile Sensor Networks for Leak and Backflow Detection in Water
Distribution Systems” by Suresh, M.A.; Smith, L.; Rasekh, A.; Stoleru, R.; Banks, M.K.; Shihada,
B., IEEE 28th International Conference on Advanced Information Networking and Applications
(AINA), 2014 Copyright c⃝ 2014 IEEE, “On Event Detection and Localization in Acyclic Flow
Networks” by Suresh, M.A.; Stoleru, R.; Zechman, E.M.; Shihada, B., IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 2013 Copyright c⃝ 2013 IEEE, “Towards Optimal Event
Detection and Localization in Acyclic Flow Networks” by Suresh, M.A.; Stoleru, R.; Denton, R.;
Zechman, E.; Shihada, B., IEEE International Conference on Distributed Computing and Network-
ing (ICDCN), 2012 Copyright c⃝ 2012 Springer

21

unknown.

Beacon Application

CSMA

PHYSB

Time Synch

Hardware

RoutingGroup Mgmt

PHYSS PHYSB

S
e
n
si
n
g

TDMA-like

Hardware

Time Synch

Sensor Application

CSMA

Routing

Figure 3.1: Software architecture of the CPWDS

Figure 3.1 is a pictorial representation of the software architecture of the com-

ponents of the CPWDS. This software architecture may be extended to any system

with an inherent flow and sensors flowing through the system, such as the human cir-

culatory system, oil & gas exploration. Hence, we present this model for any general

flow-based system (FBS). Mobile sensor nodes (executing the shown Sensor Applica-

tion) sense the environment and communicate among themselves using PHYSS (i.e.,

acoustic modems in a WDS). Sensor nodes are able to communicate through PHYSB

(i.e., RF in a WDS) with static beacons, placed outside the pipes strategically. They

aid mobile sensors in time synchronization, collect data, and provide information to

the sensors (Beacon Application).

22

3.1 Research Thrusts and Preliminary Results

Before presenting the specific problems concerning a CPWDS, we highlight the

three key research thrusts, i.e., Communication, Computation, and Control and

provide some motivating examples to demonstrate the challenges in these research

thrusts.

3.1.1 Communication Issues in CPWDS

In a CPWDS, the topology of the communication network for mobile sensors

changes over time. Also, the movement of sensors is not deterministic. Consider

a protocol in which sensors are assigned the roles of leaders or followers. At any

time, every follower is in communication range of a leader and no two leaders are in

communication range of each other. A group can then be defined as a set of sensors

containing exactly one leader and its followers. To understand the group dynamics

in a WDS (i.e., how the number of groups varies over time), we ran simulations in

CPWDSim, a simulator specifically designed for sensors moving in a WDS (details

on CPWDSim are given in Section 7.2). Figures 3.2(a)-(b) show how the number of

groups varies with time for two different simulation runs on a deployment scenario

in Micropolis, a model city [10]. It is clear from these results that the topology of

the communication network in a CPWDS changes frequently, and the changes are

not deterministic. Therefore, the dynamics of the network, albeit predictable, is

challenging to handle.

3.1.2 Computation Issues in CPWDS

Mobile sensors provide improved coverage of pipes at a lower cost to municipali-

ties. The key advantage of using in-pipe sensors, when compared to static sensors, is

that events will be detected at closer range. Moreover, these sensors are transported

23

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000 6000 7000 8000

n
u
m

b
e
r

o
f
g
ro

u
p
s

time slot

(a)

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000 6000 7000 8000

n
u
m

b
e
r

o
f
g
ro

u
p
s

time slot

(b)

Figure 3.2: The number of groups varying over time for two runs.

by the flow in the network. Consequently, the sensed data is collected more effectively

than static sensors with static beacons. When few static sensors are used, the sensors

will have to be placed at points where the contaminant has highest concentration

to obtain similar results. Additionally, mobile sensors are inexpensive compared to

static sensors for WDS monitoring. However, their number still needs to be opti-

mal, especially for on-demand monitoring. To understand the reason to optimize

the sensor placement, consider a flow-aware on-demand monitoring example where

sensors may be deployed at any junction in the virtual city, Micropolis [10]. Sensing

coverage is defined as the fraction of pipes in a zone of interest (i.e., given subset of

the pipes) traversed by sensors.

The sensing coverage results obtained from our simulator, CPWDSim are de-

picted in Figure 3.3. We observe that when the optimal number of sensors (50

sensors in total: 20 at IN1534, 10 at IN1090 and 20 at VN826) are placed at the

three insertion points, the coverage achieved is highest. The achieved sensing cover-

age is higher than the scenario when we insert 100 sensors at the pumpstation, and

higher than the scenarios the same number of sensors (i.e., 50 sensors) are all inserted

at a single insertion point. Therefore, optimally deploying sensors is necessary for

24

 0

 0.2

 0.4

 0.6

 0.8

 1

Pumpstation

(100)

IN1534(50)

IN1090(15)

VN826(50)

IN1534 (20),

 IN1090 (10),

 VN826 (20)

S
en

si
ng

 C
ov

er
ag

e

Insertion Point (Number of Nodes)

Pumpstation
IN1534
IN1090
VN826

Figure 3.3: Impact of number of sensors and placement on coverage.

cost-effective monitoring of WDS.

In a CPWDS, mobile sensors traversing the pipelines are unaware of their posi-

tion, uncertain about sensors in communication range, and incapable of predicting

encounters with other groups of sensors. In contrast, beacons have knowledge of the

WDS network, are aware of their position, and can make predictions about future

group splits, group merges, and beacon encounters of sensors. Based on monthly

water bills and usage statistics of consumers, which is an indicator of the average

demand at the consumer end points of the WDS, beacons estimate the flows in the

system at any time. Under the assumption that in a WDS, flows in the pipes at all

time instants are known, or predicted with high accuracy, the beacons can provide

useful information to the sensors.

Consider the scenario in Figure 3.4. After a sensor node n1 comes within com-

munication range of beacon B1, the only path the sensor can follow is to beacon

B3. The beacon B1 provides this information to n1. Similarly, the sensor n2 obtains

information from B2 that B3 and B4 are the next beacons that the nodes can en-

counter. The beacon B2 also knows that a group split at vertex v1, a group merge

25

v1

B3

v2 v3

B4

B2

B1

n1

n2

Figure 3.4: Example of the data that beacons can provide.

at vertex v2 or v3 are possible. The beacons inform the node of the time taken to

reach these vertices and beacons (e.g., B3 at t1; B4 at t2; GM at t3 or t4; GS at t5).

The sensors can then tune their protocol parameters to maximize data transfer to

beacons or other sensors.

3.1.3 Control Issues in CPWDS

In a WDS, it is possible to restrict mobile sensors from flowing into pipes with

low diameter, so as to prevent them from getting stuck at the end points of the

network. However, it is possible that sensors move to regions in the network that we

are not interested in monitoring or pipes from which they cannot return. In such a

case, a flow control mechanism that does not disrupt normal functioning of a WDS

(i.e., continues supplying water of required quality to consumers) becomes necessary

to ensure availability of sensors in the main pipes.

WDS are either tree-type networks or looped networks. Most of the real world

networks are a combination of the two. In looped networks, flow reversal is less costly

since the redundancy in the network is high. Most consumers in the WDS have more

than one set of pipelines connected to them, ensuring water supply to all users even

with a blockage in one of the pipelines.

The reversal of flow in pipes, specific to every network, is achieved by various

26

WM

Reservoir head = 1000 units

Elevation = 950 units

Elevation = 850 unitsElevation = 950 units

6 pipes

6 valves

Demand at nodes

= 100 units

(a)

WM

WM

Reservoir head = 1000 units

Elevation = 950 units

Elevation = 850 unitsElevation = 950 units

6 pipes

6 valves

Demand at nodes

= 100 units

(b)

Figure 3.5: Flow reversal using an additional source “WM” at B. Black dots are
junctions. Quartered circles are valves.

techniques such as: controllers applied to control the flow in pipes; sinks deployed

at certain nodes; additional sources of energy (like pumps) and sources installed

according to the hydraulic gradient along the system.

To demonstrate a simple case, consider the WDS in Figure 3.5. Here, either

of these approaches or a combination of all the approaches may be implemented

for achieving flow reversal. Additionally, care is taken to ensure that the required

quantity of water reaches the consumers at required pressure. We performed various

iterations by closing valves, running a controller, and by providing sink at different

nodes. The most suitable solution is to provide an additional source (as shown in

Figure 3.5(b)). Now, the flow from the reservoir has to be stopped (using a valve)

and water has to be pumped from the additional source located near node B. In

this case, flows in all pipes except pipe AC were reversed. The flow in pipe AC is

reversed by establishing a sink at node C. So in this example, flow reversal is done

by providing an additional source and sink at nodes.

Flow reversal in pipes without disrupting the water supply to consumers is possi-

27

ble, although it might require installation of additional infrastructure. In an efficient

WDS, there is sufficient redundancy to avoid the extra cost. In other cases, such

additions make the WDS more fault tolerant.

3.2 Preliminaries

3.2.1 Definitions

A WDS is modeled as a graph G(V,E) in which every edge (u, v) ∈ E has

a non-negative, real-valued capacity denoted by c(u, v), and two sets of vertices:

S = {s1, s2, ..., sk} a set of sources, and D = {d1, d2, ..., dk} a set of sinks, where

S,D ⊂ V .

v6

v1

v5

v8

v4

v2

v7

v3

B1

B4

B3

B5 I

X

Figure 3.6: Graphical representation of a WDS involving junctions and pipes for the
event detection problem: a zone of interest I, beacons Bi and an event X along edge
(v5, v4).

Definition 1 A Sensor (si) is a component which moves through the water pipes

guided solely by the flow in the WDS. It follows a mobility model, described in the

next section.

28

Table 3.1: List of symbols used throughout the dissertation
Symbol Definition
F Flow network representing the WDS
V The set of vertices in F
E The set of edges in F
Bi Beacon at vertex vi
SPi Sensed Path of sensor ni

PSi Path synopsis of sensor ni

I Zone of Interest

Definition 2 A Beacon (Bi) is a component which periodically broadcasts its loca-

tion. A beacon is placed at a vertex vj ∈ V .

Definition 3 A Zone of Interest (I) is a subset of edges in graph G(V,E), i.e.,

I j E, which we are interested in monitoring. A given WDS may have multiple

Zones of Interest. A typical zone of interest in a WDS may be an area from which

complaints are received. All edges in graph G(V,E) can also be considered a zone of

interest.

3.3 Sensing Models

The design of the sensors is specific to the event that needs to be sensed, and the

physical properties of the WDS. However, there is a need to model the sensing in a

mathematical model to be used in our algorithms for optimal WDS monitoring. In

this section, we design a sensing model for any general event in a WDS, or any FBS

in general.

To model Sensing in a WDS (as shown in Figure 3.1) we consider two different

kinds of events - non-diffusive, and diffusive. Non-diffusive events propagate mainly

based on the distance [4] (e.g., leaks), and diffusive events propagate based on the

flow distribution and, typically, time (e.g., chemical contamination of WDS).

29

Typically, a sensor for physical phenomenon, e.g., pressure sensor for leaks and

blocks, and chemical sensors for chemical attacks have specific sensitivities. A sensor

can detect an event when the intensity of the event at the point of detection is higher

than the sensor sensitivity. This depends on the intensity of the event at the point

of the attack, the distance from the event through the flow network, the structure

of the WDS and the flows in each pipe. Modeling such a sensor is highly complex.

Therefore, in a first attempt, we consider the distance between the event and the

sensor, along the network edges, and the availability of any tool that determines the

propagation of an event, e.g., contaminant propagation in a WDS.

The intensity of the event as sensed around the event up to a reference distance

rref is said to be S(0). We define S(r) as the intensity of the event at distance

r, through the pipes, from the event. Each sensor has a sensitivity ΘS, e.g., the

Purdue/TAMU chemical sensor shown in Figure 1.2 can be tuned to have a sensitivity

in the range of 0.1-10 mg/l [8] [100]. If S(r) > ΘS, the event is detected.

3.3.1 Non-diffusive Events Model

This model describes the intensity of the event at a distance from the source,

such as noise, pressure, etc. S(r) in this model is governed by:

S(r) =

 S(0)(
rref
r
)α + N (µ, σ2) if event is upstream

β S(0)(
rref
r
)α +N (µ, σ2) if event is downstream

where α is the attenuation factor of the event, and N is noise having a normal

distribution with mean µ and variance σ2. As mentioned earlier, rref is a reference

distance upto which the intensity of the event is S(0). If the event propagates

upstream, β is 1. Otherwise, β is 0. We remark here that rref = 0 corresponds to

binary sensing, whereby a sensor detects the event only by traversing the edge where

30

it is present.

3.3.2 Diffusive Events Model

This model characterizes the diffusion property of events, such as contamination

by non-reactive substances. An example of such a model is the water quality model

used in EPANET [27]. The intensity of the event is mainly determined by the flow

diversions and mixing at the vertices of the WDS. The intensity of the event through

a pipe is assumed to be uniform. The mixing/diversion of an event at a vertex in F

is the flow weighted distribution of intensity of the event from the incoming edges at

the vertex.

For a WDS, EPANET [27] simulates chemical contamination propagated through

the pipes of the WDS over time. Using EPANET, we obtain reports about the

concentration of a chemical contaminant in the edges of the WDS. The concentration

of the chemical changes over time. The difference in time (in hours) between the

diffusive event entering the system and the sensors being deployed is denoted as

τ . More specifically, in this dissertation, the sensors are assumed to be deployed

approximately τ hours after the presence of the event is suspected. The concentration

of the chemical contaminant in the pipes of the WDS after τ hours is obtained from

EPANET, which computes the concentration based on the dimensions of the pipes,

the flows in them, and other physical characteristics, such as rate of the reaction

(depends on volume, temperature, and mass).

3.3.3 Sensing Range Matrix

We use our proposed sensing models to define a matrix for sensing range as:

SR(i, j) =

 1 if S(r) > ΘS

0 otherwise

31

where r is the minimum edge traversal distance from the mid points of edges ei and

ej. For any edge ei, the row i of SR indicates the edges that can be sensed by a

sensor in ei, and column i indicate the edges whose sensing range include ei. We

note here that the matrix SR is computed based on a predetermined S(0), which is

the minimum intensity of the event that our model is designed to detect.

We remark here that the sensing models presented here may be used to fit the

behavior of any sensing modality, by setting the parameters appropriately. Any

uncertainty or deviation from the attenuation model or dilution model (as modeled

by in EPANET in this case) may be modeled as noise. However, such a fit can only

be an approximation.

Example: In the example shown in Figure 5.1, given hardware capabilities of sensor

and beacons nodes, let us assume α = 1, β = 0, ΘS = 0.0001 mg/l, S(0) = 0.5mg/l,

rref = 0.01m. Therefore, the distance r up to which the event can be detected is

(S(0)
ΘS

)
1
α rref = 50m. Now, SR(5, 0), SR(5, 2) and SR(5, 4) are 1 (i.e., a sensor in e5

can sense events in e0, e2 and e4) since the distance through the pipes between e5

and e0, e2, and e4 is less than 50m. Although since the distance through the pipes

between e5 and e7 is 50m, SR(7, 5) = 1 and SR(5, 7) = 0 since β = 0.

3.4 Mobility Model

The mobile sensors in our CPWDS move freely with water flow in pipes and

their movement cannot be directly controlled. Assume that flow in pipes is known

or estimated. The movement of sensors at junctions is probabilistic owing to the

fluid dynamics at the junctions of the WDS. We assume that the probability of a

sensor moving into a new pipe section is dependent on the distribution of outgoing

flows. The probability of moving from one vertex to another by traversing a single

edge is represented in matrix M, where an element mij of matrix M is defined as

32

�

�� �� �� ��

�

�� �� ��

�� ��

������

��	

Figure 3.7: Example WDS in EPANET, called Net1

the probability of taking edge eij at vertex vi (in one transition step).

M =

0 m12 . . . m1n

m21 0 . . . m2n

...
...

. . .
...

0 0 . . . 0

For example, in Figure 3.7, m11,12 = 0.4360, m11,21 = 0.5640, m21,22 = 0.4631,

m21,31 = 0.5369, m12,2 = 0.7067, m12,22 = 0.1740, m12,13 = 0.1193, m22,23 = 0.3291,

m22,32 = 0.6709. We note here that if the WDS is a directed acyclic graph (this is

mostly the case), then the matrix M is an upper triangular matrix. We then use

a “traversal probability matrix” to represent the probability of a sensor reaching

another vertex traversing any path as:

33

T =
∑

Mk = I+M+M2 + . . .

An element of matrix T, tij, is the probability of reaching vertex vj with a sensor

starting from vi. Typically, we are interesting in monitoring pipes, rather than the

junctions, especially for leak detection. Therefore, we determine the probability with

which sensors reach the edges of the graph. The probability that a sensor starting

from vertex vr will visit the edge eij is:

ter,ij = tr,i ×mij

The above models the probability of a single sensor reaching an edge. We are more

interested in the probability that a sensor at a vertex does not reach an edge. The

probability of the complementary event is denoted by βr,ij = 1− ter,ij. For example,

in the example illustrated in Figure 3.7, pe11,(22,32) = 0.6398× 0.6709 = 0.4292.

Probability of covering an edge

We model the movement of sensors through vertices as a binomial distribution.

Each sensor represents a trial in the binomial experiment and the probability that a

sensors travels through a certain edge is the probability of “success” for the trials.

We assume that the movement of a sensor is independent of the movement of any

other sensor.

Consider a scenario where sr sensors are inserted at a single vertex vr. The

probability that none of the sr sensors reach edge eij is βsr
r,ij (we assume that the

movement of each sensor is independent of the other). Then the probability that

none of the sensors reach edge eij with the configuration S is:

34

ue
ij =

n∏
r=1

βsr
r,ij

The sensor deployment is defined in a vector S, of length V , containing the

number of sensors inserted at each vertex vi. Hence, the probability that at least

one sensor in a configuration S reaches eij is denoted as:

PV (S, eij) = 1− ue
ij

This section laid the foundation of the dissertation. We defined the terms used

throughout this dissertation, and described the sensing and mobility models. In the

following sections, we will elaborate on each of the components of the CPWDS.

35

4. COMMUNICATION IN CPWDS∗

It is important to encompass the communication mechanisms in a general com-

munication model so as to apply it in our algorithms for optimal WDS monitoring. In

this section, we present communication models for sensor-sensor and sensor-beacon

communication.

4.1 Assumptions and Definitions

The first assumption we make is that sensors are time synchronized. Unlike other

underwater acoustic systems, we use static beacons to aid with time synchronization.

Once deployed, there may be time intervals when no beacon is encountered. During

such intervals, well known time synchronization techniques may be used [83]. With

this assumption, the slotted access mechanism becomes simpler, where the beginning

of a slot on each node is synchronized. It will soon be clear that the accuracy of time

synchronization required here is low.

As shown in Figure 4.1, depending on the distance of a node nj from a source ni,

a message Msg sent by ni at the beginning of a time slot reaches nj offset from the

beginning of the time slot by δij due to the inherent spatial uncertainty of the acoustic

medium. This helps predict the distance between the transmitter and receiver and

to identify contenders [84]. The slot length ∆ is selected to be large enough so that a

message from a transmitter can reach all the nodes in its communication range [44].

∗Parts of this section are reprinted with permission from “Towards Optimal Monitoring of Flow-
based Systems using Mobile Wireless Sensor Networks” by Suresh, M.A. and Zhang, W. and Gong,
W. and Rasekh, A. and Stoleru, R. and Banks, M.K., ACM Transactions on Sensor Networks,
doi: http://dx.doi.org/10.1145/2700256, 2015 Copyright c⃝ 2015 Associated Computing Machinery,
Inc., “A Cyber-Physical System for Continuous Monitoring of Water Distribution Systems” by
Suresh, M.; Manohar, U.; R, Anjana. G.; Stoleru, R.; Mohan Kumar, M.S., IEEE 10th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2014
Copyright c⃝ 2014 IEEE

36

�
�

�
�

�
�

�
��

�
��

�

���
��������	
��

�

��������

����������

������������

	�����	���

	���

Figure 4.1: Spatial uncertainty in the acoustic medium.

Since the length of the time slot is on the order of milliseconds, the protocol works

well with a low accuracy of time synchronization.

Table 4.1: List of symbols used in this section
Symbol Definition
PHYSS The medium of communication among sensors
PHYSB The medium of communication between sensors and bea-

cons
CRs The maximum distance between two sensors such that a

message sent by a sensor through PHYSS can be received
by the other sensor

CRbs The maximum distance between a sensor and a beacon such
that a message sent by one through PHYSB can be received
by the other

gi group ID of node ni

pi Period of transmission of group gi

In our communication model, the communication between sensors and beacons

is RF. Since it involves the communication between sensors that are buried under-

37

ground in pipelines and beacons that are outside the pipes, the range is assumed to

be much smaller than the acoustic communication among sensors.

We assume that the only reason for failure of communication among nodes that

are in range of each other is collisions. All nodes in the network listen to acoustic

messages all the time, since receiving consumes lower power than transmitting [9].

Table 4.1 contains all symbols used in this section.

4.2 Physical Layer Models (PHYSS and PHYSB)

We have designed the physical layer models for a generalized case of CPWDS,

i.e., any system with an inherent flow in it, called flow-based systems (FBS).

As illustrated in Figure 3.1, mobile sensors can communicate with other mobile

sensors and with beacons (when they are in range of each other). However, the de-

sign of PHYSS and PHYSB physical layers is dependent on the physical conditions in

which the FBS monitoring infrastructure is deployed. E.g., in a WDS, mobile sensors

communicate among themselves using acoustic modems, because sensors can com-

municate using pipes as waveguides. Communication between sensors and beacons

is RF due to limitations in acoustic transmission between water (i.e., sensors inside

pipes) and ground (i.e., beacons outside pipes) [77]. In this dissertation, we model

the specific case of a WDS where PHYSS is underwater acoustic and PHYSB is RF.

We model the pathloss for RF communication between underground underwater

sensor and a beacon placed outside the pipe as a log-distance pathloss model:

HRF = PLRF (r)− PLRF (rref) = 10nlog
[

r
rref

]
+N (µ, σ2)

where r is the range, rref is the reference distance, set to 1m and n is the path

loss exponent that depends on obstacles between the source and the receiver. N is

noise having normal distribution with mean µ and variance σ2. We evaluate the RF

communication between sensors in water pipes and static beacons outside the water

38

and present the results in Section 7.1.

We model the acoustic signal transmission using the path loss model:

HA = PLA(r)− PLA(rref) = 10klog
[

r
rref

]
+ ar +N (µ, σ2)

where r is the range, rref is a reference distance, set to 1m, k is a factor that depends

on the structure of the pipes and a is a factor determined by the fluid carried - i.e.,

water, and N is noise normally distributed with mean µ and variance σ2.

We model acoustic communication in a straight pipe using a cylindrical path loss

model [89], where k=1 and a = A + 1, where A is the loss due to scattering. For

pipes with bends, we use a spherical spreading model [43] as an approximation where

k=2 and a is the absorption factor for water that depends on the frequency of sound

waves [89].

4.2.1 Communication Range for Sensors (CRs)

CRs is defined as the maximum distance between an acoustic sender and receiver

(i.e., sensors) such that the receiver can decode the data transmitted by the sender

at a known transmit power in the absence of noise and interference.

4.2.2 Communication Range for Beacons (CRb)

CRb is defined as the maximum distance between an RF sender and receiver

(i.e., sensors) such that the receiver can decode the data transmitted by the sender

at a known transmit power in the absence of noise and interference. We use a

communication range matrix for beacons, CRb as:

CRb(i, j) =

 1 if r < CRb

0 otherwise

where vi ∈ V and ej ∈ E, and r is the physical distance from vi to the midpoint of

ej. For every vertex vi, row i of CRb represents edges on which a sensor needs to

39

be present to hear from a beacon at vi. For every edge ej, the column j represents

vertices that are in communication range with a sensor at ej.

4.3 Sensor-Sensor Communication Protocols

Communication among sensors serves two important purposes: i) it serves as in-

dicators of positions (as in range-free localization [76]), thereby reducing the number

of beacons required to be deployed solely for that purpose; ii) they are required to

collect information from sensors that may move through paths where there may not

be any beacons to report data to. In our design, sensor nodes use Group Manage-

ment (as shown in Figure 3.1) to reduce communication traffic. Unlike terrestrial RF

networks, underwater acoustic networks suffer from high propagation delays, making

it challenging to reduce delays, while ensuring a low collision rate. In this section, we

design the MAC and Group Management protocols to be used in the communication

among sensors that has a low collision rate, but is capable of ensuring that groups

of sensors can exchange data with bounded delay. The protocol is described and its

delay bound is proved in this section.

In our Sensor-Sensor communication protocol, we assume that nodes have unique

IDs. When a set of nodes is deployed into the network, a leader node is pre-assigned.

In our group management protocol, every node has a leader in its range, and no two

leaders are in range of each other. The group that a node belongs to is determined

by its leader. The leader chooses a random group ID gi. It periodically broadcasts

a heart-beat message called GROUP-HELLO containing the node ID ni and group

ID gi.

We consider two modalities for the group communication protocols. The first is

when the followers do not communicate, and the other when followers communicate.

If the sensing range is larger than the communication range, the followers need not

40

Algorithm 1 Group Management on node ni without reporting

Require: node list, gi, li
1: merged ← false
2: for each time slot Ti do
3: if ni = li then
4: if Ti%Prime(gi) = 0 then
5: if merged = true then
6: Transmit GROUP-MERGE
7: else
8: Transmit GROUP-HELLO
9: end if
10: end if
11: if Received GROUP-HELLO from nj then
12: merged ← true; li ← nj; gi ← gj
13: end if
14: else
15: merged ← false
16: if Ti%Prime(gi) = 0 ∧ No hello received then
17: time waited = 1
18: end if
19: if time waited = rank(ni) in node list then
20: li ← ni; gi ← new group id
21: else if time waited > 0 then
22: increment time waited
23: end if
24: if GROUP-HELLO received from nj ∧ nj ̸= li then
25: li ← nj; gi ← group id of nj

26: time waited = 0
27: end if
28: end if
29: if Received GROUP-MERGE from nj then
30: merged ← true; Update node list
31: end if
32: end for

sense, or transmit. Otherwise, an event might be missed by followers not sensing

and reporting to the leader.

First, consider the case when the follower nodes do not communicate among

41

themselves or with the leader (i.e., in the acoustic channel). All nodes in the group

(including the leader) store the last beacon encountered. Our distributed algorithm

for group management without reporting is shown in Algorithm 1. Acoustic commu-

nication from leaders is slot-based (TDMA-like). A hash function maps the group

ID gi to a prime number pi. The leader broadcasts the GROUP-HELLO packet with

a period pi (Lines 4-8).

When followers also need to communicate, the protocol requires the leaders and

followers to perform different functions. Every node is given a unique node id. The

actions taken by a leader are described in Algorithm 2, and the actions taken by a

follower are described in Algorithm 3. A leader sends a HELLO message every pi+2

slots where pi is a prime number associated with a group led by node ni (Algorithm 2,

lines 2-7), selected from a hash table. The HELLO message includes pi, ni, and

beaconData that includes global view data as described in the next subsection. When

a follower hears this message, and it is determined that data needs to be reported,

the follower sends its report to the leader (Algorithm 3, line 11-12, 15-16). Once the

leader receives the reports from its followers, it sends an ACK message containing

the node ids of the followers it received reports from (Algorithm 2, lines 12-14).

Complications arise when: a) group members do not hear the GROUP-HELLO

or HELLO (i.e., a subgroup split from the main group); b) a leader hears another

leader’s GROUP-HELLO or HELLO (i.e., two or more groups merge). These are

described below.

4.3.1 Group Splitting and Leader Election

When a group gi split occurs, the subgroup containing the leader li will continue

as group gi.

First, we consider the case where followers do not sense and report. Among the

42

Algorithm 2 Leader node ni with reporting

Require: gi, pi, timeElapsed, beaconData, ACK, allData, mergeDetected
1: for each time slot do
2: if timeElapsed % pi + 2 = 0 then
3: if mergeDetected is true then
4: Broadcast (Acoustic) MERGE
5: else
6: Broadcast (Acoustic) HELLO
7: end if
8: timeElapsed = 0
9: end if
10: if BEACON −HELLO received then
11: Broadcast (RF) allData
12: end if
13: if dataToReport received then
14: Append nodeId(dataToReport) to ACK
15: end if
16: if ACK is not empty at beginning of time slot then
17: Broadcast (Acoustic) ACK
18: Clear ACK
19: end if
20: if beaconData received from Beacon then
21: Add beaconData to HELLO
22: end if
23: if HELLO received from nk then
24: mergeDetected = true;
25: Relinquish leadership and follow nk

26: end if
27: if MERGE received from nk then
28: mergeDetected = true;
29: end if
30: Increment timeElapsed
31: end for

nodes in a group without a leader, a node will decide to be new leader, based on

the following rule: after detecting the absence of a leader, each node waits for a

GROUP-HELLO based on its rank in list of nodes that were in the group before the

split is detected (Lines 16-23). E.g., if a node’s rank was 8 before the group split,

43

Algorithm 3 Follower node nj with reporting

Require: gj, pj, timeElapsed, beaconData, ACK, allData, report
1: for each time slot do
2: if timeElapsed > pi + 2 then
3: Content to be leader
4: end if
5: if Contention for leader won then
6: gj = nj; pj = new prime number
7: Perform leader operations
8: end if
9: if ACK received and contains nj then
10: report = false
11: end if
12: if HELLO received then
13: timeElapsed = 0
14: if Data needs to be sent then
15: report = true
16: end if
17: if HELLO contains beaconData then
18: Update beaconData
19: end if
20: end if
21: if report is true then
22: Broadcast (Acoustic) allData summary
23: end if
24: Increment timeElapsed
25: end for

the node would wait 7 slots. If no GROUP-HELLO packets are received, the node

assumes the leader role and broadcasts its ID together with a randomly chosen group

ID (Line 20). All nodes in the split group accept the leader and the group ID, and

do not contend for the leader role. The hash function, based on the newly chosen

group ID, will produce a new prime number pj. The new leader will start advertising

GROUP-HELLO packet with a period pj.

Next, when the followers sense and report, when a follower does not hear from

44

its leader after pi +2 slots, it is determined that the follower is no longer in range of

the leader, i.e., a group split has occurred. The followers then contend to be a leader

by sending out messages containing their id. If a node has the smallest id among all

its neighbors, it becomes the new leader (Algorithm 3, lines 2-6).

Figure 4.2(a) shows an example of a group split. Leader of group 1 sends hello

message H1 every 3 time slots. Let’s assume the nodes in group 1 are {1, 2, 5, 19,

503, 840}. When nodes 1, 2, 5, 19 go out of range, nodes 503 and 840 detect a group

split after 3 time slots. Their ranks in the list of nodes are 5 and 6, respectively.

From slot 17, node 503 sends hello message H3 every 7 slots with group ID 3. Nodes

530 and 840 update the list of nodes to {503, 840}.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

H1 H1 H1

Nodes detect

group split

H3 H3

New leader

elected

(a)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

H1 H1

H2

H1 M2 D2 D1

Node 2 detects

group merge
Data exchange

H1 H1 H1

Node 1 is the

new leader

(b)

Figure 4.2: Examples of group management split (a) and merge (b) operations.

4.3.2 Group Merging and Leader Selection

When a leader li hears the GROUP-HELLO packet of another leader lj, the two

groups need to be merged.

45

Without followers sensing and reporting, the leader li relinquishes its leader role,

accepts the new group ID gj and the ID of the new leader lj (Line 11). After pi

slots, li sends a GROUP-MERGE packet, instead of a GROUP-HELLO, containing

new leader’s ID lj, the new group gj, the IDs of nodes in group gi and the data

maintained by the group gi (Line 6). li will not communicate after this, unless it

becomes a leader after a group split. When leader of group gj hears the GROUP-

MERGE sent by leader from group gi, it responds with the IDs of nodes in its group

(i.e., group gj) and the data maintained by group gj (Lines 6 and 30).

With followers sensing and reporting, when two groups merge, the leader that

transmitted the first HELLO retains leadership, and the leaders exchange their data

in a MERGE message (Algorithm 2, lines 4, 20-21). A MERGE message contains

ni, pi, and allData.

Figure 4.2(b) shows an example of groups 1 and 2 merging. Leader nodes send

hello messages (H1 and H2). Once leader node 2 detects a group merge, it sends

merge message M2 followed by data D2. Nodes update the list of nodes in their

group. Node 1 then sends its data and remains the leader.

4.3.3 Delay Analysis for Group Management

At the MAC layer, we set the time slot size such that a message sent by a node

reaches all nodes in range, within one time slot (e.g., if the range of communication

is 10m, the time slot chosen will be 7ms). This is done to avoid spatio-temporal

uncertainty associated with underwater acoustic communication [52].

Without followers sensing and reporting, since nodes transmit only in time slots

that are multiples of prime numbers, the worst delay in identifying a group merge

is kp + 1 where k + 1 is the number of groups merging, and p is the minimum pi

among all merging groups (min(pi)∀ merging gi). Since nodes in group gi that are

46

not leaders expect to hear GROUP-HELLO from their leader every pi slots, the time

to detect a group split is pi.

With followers sensing and reporting, since leaders transmit at regular intervals

with a period, the worst case delay in identifying a group merge is kp+1 where k+1

is the number of groups merging, and p = min(pi + 2)∀ merging gi. The time to

detect a group split is pi + 2 since nodes in a group gi that are not leaders expect to

hear HELLO from their leader every pi + 2 slots.

4.4 Sensor-Beacon Communication Protocols

Communication between sensors and beacons is necessary to collect information

from the sensors without collecting the sensors physically. In this section, we design

the protocols to be used in the communication between sensors and beacons.

Nodes synchronize with the beacons when they come in range of each other, using

Cristian’s Algorithm [19] for time synchronization. This step is necessary, since the

nodes report time-stamped data to beacons. The accuracy of time synchronization

required is in the order of tens of milliseconds since sensor-sensor acoustic commu-

nication and timing of event detection can tolerate these errors. The sensors use a

simple epidemic routing algorithm. Since the communication is wireless, all devices

in a given range can listen to a broadcast message.

Beacons act as sinks and are critical for data collection. They also periodically

broadcast their identifiers for localization in a RF-HELLO packet. Only specific

sensor nodes, called leaders, transmit data to beacons. The concept of a leader and

its group is presented in Section 4.3. RF communication between the group leader

and beacons is based on CSMA. When a mobile sensor receives the RF-HELLO

packet sent by a beacon, it first performs time-synchronization and then sends its

data to the beacon. At the end of the RF communication with the beacon node, the

47

nodes erase the transmitted data, and start recording new sensed data.

To save power, nodes may use a duty cycling mechanism. The total capacity of

data that can be transferred to the beacons at each contact depends on the beacon

interval, duty cycle and the communication ranges. The amount of processing that

is performed onboard and the rate of sampling of sensor nodes have to be chosen

appropriately to avoid losing data. Even with a duty cycling mechanism, the time

of contact is expected to be sufficient for the sensor to hear the beacon, since the

movement of sensors in the pipes is slow (e.g., a few meters per second).

48

5. COMPUTATION IN CPWDS∗

In this section, we present the computation aspects of the CPWDS, i.e., sensor

deployment, beacon placement, event localization, and global view algorithm. Some

definitions of terms used in this section are as follows:

Definition 4 A Sensed Path (SPi) is a set {ej | ej ∈ E} of edges through which a

sensor ni traveled and sensed events and proximity to beacons.

Definition 5 An Insertion Point (or Source) is a vertex si ∈ V at which sensors

are introduced into the WDS.

Definition 6 A Path Synopsis (PSi) for a sensor ni is an ordered list of events and

beacons encountered by the sensor along its Sensed Path SPi.

Table 5.1 contains all symbols used in this section.

5.1 Sensor Deployment Problem for On-demand Monitoring

In flow-aware on-demand monitoring, flows in the WDS can be predicted with

high accuracy for any time period based on monthly average demands at the con-

sumer ends. We can make an intelligent decision on the placement of sensors. Event

∗Parts of this section are reprinted with permission from “Towards Optimal Monitoring of Flow-
based Systems using Mobile Wireless Sensor Networks” by Suresh, M.A. and Zhang, W. and Gong,
W. and Rasekh, A. and Stoleru, R. and Banks, M.K., ACM Transactions on Sensor Networks,
doi: http://dx.doi.org/10.1145/2700256, 2015 Copyright c⃝ 2015 Associated Computing Machin-
ery, Inc., “A Cyber-Physical System for Continuous Monitoring of Water Distribution Systems” by
Suresh, M.; Manohar, U.; R, Anjana. G.; Stoleru, R.; Mohan Kumar, M.S., IEEE 10th Interna-
tional Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
2014 Copyright c⃝ 2014 IEEE, “Mobile Sensor Networks for Leak and Backflow Detection in Water
Distribution Systems” by Suresh, M.A.; Smith, L.; Rasekh, A.; Stoleru, R.; Banks, M.K.; Shihada,
B., IEEE 28th International Conference on Advanced Information Networking and Applications
(AINA), 2014 Copyright c⃝ 2014 IEEE, “On Event Detection and Localization in Acyclic Flow
Networks” by Suresh, M.A.; Stoleru, R.; Zechman, E.M.; Shihada, B., IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 2013 Copyright c⃝ 2013 IEEE, “Towards Optimal Event
Detection and Localization in Acyclic Flow Networks” by Suresh, M.A.; Stoleru, R.; Denton, R.;
Zechman, E.; Shihada, B., IEEE International Conference on Distributed Computing and Network-
ing (ICDCN), 2012 Copyright c⃝ 2012 Springer

49

Detection happens if at least one of the sensors deployed traverses an edge where the

event can be detected. Formally, we decide Sensor Deployment (Location and Time)

S = {(si, qi, ti) | si ∈ V, qi ∈ N, ti ∈ N}, where qi denotes the number of sensors

inserted at time ti at vertex si.

We note here that optimal sensor deployment is necessary for on-demand moni-

toring so as to improve the probability that the events are detected. We solve this

problem from two different, yet equally relevant, perspectives. For the first problem,

we assume that we have access to any number of sensors, and the utility manager is

interested in obtaining a certain degree of coverage of a zone of interest in the WDS.

For the other problem, we assume that we have a fixed number of sensors. We then

decide their deployment to maximize the degree of coverage.

5.1.1 Minimization of Number of Sensors

The optimal sensor deployment problem is the problem of determining the num-

ber of sensors such that the probability that any edge is not covered is above a false

negative rate, FN . Covering an edge simply means that at least one sensor traverses

that edge. Hence, we can formally define the problem of minimizing the number of

sensors deployed as:

minimize
∑

i=1...n

qi

subject to(∑
si∈V

qi ln (1− tsij)

)
≤ ln FN ∀ vj ∈ V

qi ≥ 0 ∀i = 1 . . . n

where tsij = max(tij, tik × SR(j, k)) ∀ ek. tij for every pair of vertices is the proba-

bility that a sensor in vertex vi reaches vertex vj. The variables and constraints are

50

Table 5.1: List of symbols used in this section
Symbol Definition
Dc Degree of Coverage
Pd Event Localization Accuracy
FN False negative rate, i.e., the probability that an event goes

undetected
LE Localization error, i.e., the radius of the region where an

event is suspected to be present
Suspects List List of suspected edges
pi Edge chances : the probability that a sensor flows through

edge ei.
M Transition Matrix : the matrix composed of the probability

pi of each edge.
T Traversal Probability Matrix : the matrix composed of tran-

sition probabilities given by
∑l

k=1M
k.

l l ∈ N |Ml = 0 and Ml−1 ̸= 0
νi Number of sensors that traverse edge ei.
N Sensor Requirement Matrix : the matrix containing number

of sensors to insert in each vertex to reach the vertices of
the graph.

G Goodness Matrix : the matrix used to select insertion points.
S Set S = {(si, qi) | si ∈ V ∧ qi ∈ N} where si is an insertion

point and qi is the number of sensors inserted there.
vi.ϕ Potential : the maximum of the number of edges in the set

of paths leading from a beacon to vi.
BT Beacon Table: the table that contains information about

edges between any two beacons.
SR The sensing range matrix
SR The sensing range, i.e., the distance through the edges up

to which an event can be sensed
BI Badness : Badness metric of zone of interest I
ale Average Localization Error
sle System Localization Error

explained in this section.

We note here that the above problem has been proven to be NP Hard (Ap-

pendix A). We therefore present a greedy heuristic in this dissertation. We not only

51

determine where to insert the sensors, and how many need to be inserted. We also

determine the time of deployment for the sensors. We need the time of deployment

for on-demand monitoring to ensure that groups of sensors merge or split at certain

vertices, thereby eliminating the need to place beacons at those vertices. The sensor

placement algorithm ultimately decides: {si, qi, ti}, where qi sensors are inserted at

vertex si at time ti.

Algorithm 4 Sensor Deployment

Require: FN , F , SR
1: {si, qi, 0} = Location Of Deployment(F , SR, FN)
2: {si, qi, ti} = Time Of Deployment(F , {si, qi, 0})

Algorithm 4 presents the Sensor Deployment (with its two steps) while ensuring

a bound false negative. Step 1 of the algorithm ensures a bounded false negative

rate FN for sensor deployment, and is presented in Algorithm 5. The false negative

bound is defined as the probability of an event being present but not detected, is

less than FN . Step 2 of the algorithm determines the time of deployment of sensors,

and is presented in Algorithm 6.

To determine S in Algorithm 5, we first use the sensor mobility model described

in Section 3.

From the mobility model, we derive the number of sensors to be inserted at vertex

vi to ensure that at least one sensor reaches a vertex vj as:

ni′j′ =
ln(FN)

ln(1− pij)

A matrixN, representing the number of sensors to be inserted at each vertex such

52

that the probability of at least one sensor reaches another vertex (using transition

probabilities from T) is at most FN is then computed (Lines 9-14) by computing

ni′j′ for all vertices. If we ensure that the probability that an edge in I is not covered

by any sensor, is at most FN , then the expected false negative rate of I is at most

FN , thereby meeting our requirement.

Algorithm 5 Location Of Deployment

Require: F , SR, FN
1: for each vi ∈ V do
2: for each vj ∈ V do
3: Mij = P (vj | vi)
4: end for
5: end for
6: while Mk ̸= 0 do
7: T+ = Mk; k ++
8: end while
9: for each vi ∈ E do
10: for each vj ∈ E do

11: ni′j′ =
ln(FN)

ln(1−Tij)
+ 1

12: end for
13: end for
14: for each vi ∈ V do
15: for each vj ∈ V do
16: Ek = set of edges between vi and vj that are covered by nij sensors
17: Gij = nij∑

ek

∑
∀el

(SR(ek,el))
, where ek ∈ Ek

18: end for
19: end for
20: while Edges in I are not covered do
21: Gij = min(G)
22: Append {vi, nij, 0} to S
23: Update G for covered edges
24: end while

Next, we derive a goodness matrix G from N to help choose the best vertices of

insertion and the number of sensors to be inserted, i.e., S. The problem of choosing

53

the best vertices is NP Hard. Therefore, we use a greedy heuristic to solve this

problem (approximation ratio of ln |V |). The goodness matrix G is defined as Gij =
nij∑

ek

∑
∀el

(SR(ek,el))
, where ek ∈ set of edges between vi and vj that are covered by the

nij sensors, and nij is an element of the matrixN. The denominator of the expression

indicates the number of edges that can be sensed by the nij sensors inserted at vi. The

set Ek (Line 16) is computed using breadth first search starting at v1 and searching

only through branches that require less than nij sensors.

Algorithm 6 Time Of Deployment

Require: F , {si, qi, 0}
1: Initialize J ← Empty array, Grev, ∆ ← Empty array of arrays.
2: IP ← {si}∀si ∈ insertion points
3: for each vi ∈ V do do
4: if inDegree(vi) > 1 ∨ outDegree(vi) > 1 then
5: Insert vi into J
6: ∆(i)← Longest path from all sources sj to vi
7: end if
8: end for
9: Queue Q ← J
10: while Q is not empty do
11: vi ← tail(Q)
12: for each vj ∈ out-vertices of vi in Grev do
13: ∆(j).insert(∆(i)- Time in (vi, vj))
14: end for
15: end while
16: for each insi ∈ {si, qi, 0} do
17: qj ← qi/size(∆(i))
18: for each tj ∈ ∆(i) do
19: insi ← {si, qj, tj}
20: end for
21: end for

The smallest Gij corresponds to the best insertion point, and we add (vi, nij, 0)

to S (Lines 14-19). Once a selection is made, Gij is updated by removing all edges

54

covered at each step, i.e., edges el for which SR(ek, el) = 1, where ek ∈ Ek (Lines

20-24). If SR is high, more edges are removed at each step.

We define Sensing Coverage as the fraction of edges in I that are covered by at

least one sensor. The expected value of 1-FN is then equal to the expected sensing

coverage. Therefore, if the sensing coverage for a particular sensor deployment is at

least 1-FN , the sensor deployment also meets the false negative bound requirement.

We use Sensing Coverage as a metric in the evaluation of Sensor Deployment. We

refer to 1-FN as the degree of coverage (Dc).

The next edge a sensor traverses after reaching a vertex is determined by the

out-flow rates at the vertex. Owing to irregularities in the pipe dimensions and

varying demand at the sinks, the difficulty of covering a zone of interest with sensors

can vary. Hence, we define the term Badness for Zone of Interest, defined as BI =√∑
(f i

x − fx)2 × 1000, where fx is the flow in edge x of the zone of interest and f i
x

is the ideal flow in that edge (i.e., all out-flows are equally divided at all vertices.

This is ideal since it requires the least number of sensors for a required FN).

A relevant concern with the algorithm is that the insertion points may be re-

stricted to a few nodes in I (e.g., manholes are only available at a few vertices in a

WDS). This challenge can be overcome by reconstructing the graph: remove vertices

that are inaccessible and add edges to maintain connectivity.

The Time of Deployment of sensors in S is presented in Algorithm 6. We define

vertices of I with more than one incoming/outgoing edge as intersections J (Lines

3-8). These are vertices where sensors traversing different paths can communicate.

We clarify here that sensors traversing through the intersections may move through

different paths. We assign each edge of I a weight equal to the time a sensor would

spend in the edge, and determine the longest paths between insertion points and

intersections.

55

v1

v3

v2 v4

e1

e2

e3

e4

v5

e5
v0

e0

v7

e8

v6

e6

e7

v8

e9

B
1

B
3

B
2

n
1

n
4

n
3

n
2

Communication among

sensors

Figure 5.1: WDS monitoring example: empty circles are vertices of F , filled circles
are sensors, small towers are beacons.

Let G(V,E) and Grev(V,E
′) be two DAGs where the only difference between G

and Grev is the direction of their edges. More formally, G and Grev have the same

set of vertices and (u, v) ∈ E if and only if (v, u) ∈ E ′ ∀ u, v ∈ V . Traversing Grev

in a breadth first manner from the intersections will lead us to the insertion points

from various paths. If a sensor needs to reach a intersection at time t, it needs to

be inserted at t − t′ at insertion point si, where t′ is the time taken to reach the

intersection from si. We obtain a list of possible insertion times for each insertion

point corresponding to different intersections and the paths leading to them, as shown

in lines 10-15. For example, in Figure 5.1, if sensors inserted at v0 and v1 have to

reach v6 at time t, and the time to traverse any edge ei is ti, the possible times

of insertion at v0 is {t-t0-t5-t7}, and at v1 are {t-t1-t3-t6, t-t1-t4-t5-t7}. Finally, we

equally distribute sensors among insertion times (Lines 16-21).

5.1.2 Maximization of Degree of Coverage

Given a fixed number of sensors, we solve the problem of maximizing the coverage

of the sensors. We formulate two problems, namely, the problem of maximizing the

least probability of covering any edge, and the problem of maximizing the average

probability of covering any edge. The two formulations impress on the tradeoffs

involved, because the first problem ensures a better coverage, but is computationally

56

intensive. For this problem, we consider SR to be 0m, i.e., covering an edge is

synonymous to detecting a event present on that edge.

5.1.2.1 Maximize Lower Bound Sensing Coverage (MLBSC)

We define Lower Bound Sensing Coverage, LBSC as the minimum probability

of covering an edge, i.e., Lower Bound Sensing Coverage is the largest number such

that ∀ ejk ∈ E, [PV (s, ejk)] ≥ LBSC, i.e.,

LBSC = min
ejk

[PV (s, ejk)] (5.1)

The problem of maximizing LBSC is formulated below.

maximize LBSC i.e.,

maximize min
ejk

[(
1−

∏
i

(
1− tei,jk

)si)]

such that∑
i=1...n

si = c

si ≥ 0 ∀i = 1 . . . n

(5.2)

The problem of maximizing lower bound sensing coverage MLBSC is a min-max

problem that can be reduced to an integer linear programming problem as:

max
s

min
ejk

[
1−

∏
i

(
1− tei,jk

)si]

57

which reduces to

min
s

max
ejk

∏
i

(
1− tei,jk

)si
Since logarithm is a monotone increasing function,

ln

[∏
i

(
1− tei,jk

)si] =
∑
i

ln
(
1− tei,jk

)
· si

where log
(
1− tei,jk

)
are constants. The problem therefore reduces to:

minimize x

such that∑
i=1...n

si = c

∑
i

ln
(
1− tei,jk

)
· si ≤ x ∀i = 1 . . . n

si ≥ 0 ∀i = 1 . . . n

where x is a new variable introduced to convert a min-max problem to a linear

program. The above problem is solved using the CPLEX mixed integer linear pro-

gramming function.

5.1.2.2 Maximize Average Sensing Coverage (MASC)

We define Average Sensing Coverage, ASC for edges as the expected number of

edges to be visited by at least one sensor of the configuration divided by total number

of edges. For every edge ejk, we introduce the indicator random variable, χs,ejk , that

takes the value 1 if the edge ejk is visited by the configuration of sensors, and the

value 0 otherwise.

58

χs,ejk =

1 with probability p = PV (s, ejk)

0 with probability1− p

Sensing coverage is therefore formally defined as E
[∑

∀ejk χs,ejk

]
, the expected

number of edges visited by sensors in the configuration s. Due to the linearity of

expected value

ASC = E

∑
∀ejk

χs,ejk

 =
∑
∀ejk

E
[
χs,ejk

]
ASC =

∑
∀ejk

PV (s, ejk) (5.3)

The problem of maximizing ASC is formulated below.

maximize ASC i.e.,

maximize
∑
j

[
1−

∏
i

(1− tei,jk)
si

]

such that∑
i=1...n

si = c

si ≥ 0 ∀i = 1 . . . n

(5.4)

5.1.3 Algorithms/Heuristics to Solve the MASC Problem

The objective in the problem of maximizing average sensing coverage ASC is

written as

59

Algorithm 7 Greedy for MASC problem

Require: n, c, tei,jk∀ejk
1: initialize si as 0
2: for k = 1 to c do
3: max = 0, insertAt = 0
4: for all vi ∈ V do
5: increment si
6: if

∑
ejk

∏
i

[
1− (1− tei,jk)

si
]
> max then

7: max =
∑

ejk

∏
i

[
1− (1− tei,jk)

si
]

8: insertAt = vi
9: end if
10: decrement si
11: end for
12: increment insertAt element in s
13: end for

(a)

v1

v2

v3 v4 v5

v8 v7 v6

v9 v10

v11 v12

(b)

Figure 5.2: (a) Example network from EPANET; (b) Graph representation of the
EPANET example network from (a)

minimize
∑
j

(∏
i

βsi
ij

)

60

which is a nonlinear convex programming problem. The MASC problem is also

NP-Hard by reduction from the Weighted Maximum Coverage Problem. The con-

struction and proof of NP-Hardness is analogous to that of the proof for the MNS

problem in Appendix A. We solve this problem using a heuristic as described in Al-

gorithm 7 for the integer optimization problems. The algorithm starts with an initial

configuration in which no sensors are inserted (line 1) and insert one sensor at a time

(line 12), with insertion done at the node that would generate the best value of the

objective function given the configuration of sensors already in place (lines 4-11).

Example: To understand the optimization problems and their solutions, we present

a sample 12 node network generated from EPANET [27], as shown in Figure 5.1.2.2.

This network can be simplified and represented as a graph as shown in Figure 5.2(b).

At each junction, the flows are equally distributed in all the out-going edges, i.e.,

p23 = p24 = p27 = 1
3
, p45 = p46 = 1

2
, etc. Here, the zone of interest includes all the

edges.

The problems are solved with the constraint s1+s2+ . . . s12 = 10. The solution to

the MLBSC problem, solved using CPLEX is {6, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0}, and the

lower bound sensing coverage achieved is 0.9095. The solution to the MASC problem,

solved using the greedy heuristic in Algorithm 7 is {5, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0} and

the average sensing coverage is 0.9405.

5.2 Beacon Placement Problem for On-demand and Continuous Monitoring

Beacons are important to collect information from sensors, as well as to aid

in localization. However, placing beacons everywhere in the WDS is costly, and

inefficient. Similar to sensor deployment, we solve beacon placement problem from

two perspectives. The first is where we minimize the number of beacons to achieve

a certain localization measure. The second is where we are given a certain number

61

of beacons, and we wish to achieve the best localization measure with the given

number of beacons. We also consider two different objectives for beacon placement,

one based on number of edges, and the other based on the radius of localization.

Also, we present the problems of sensor deployment and beacon placement in a

single problem formulation, where we assume that we have a budget constraint and

we allot the budget to purchase sensors and beacons.

5.2.1 Minimization of Number of Beacons to Ensure Localization Error

We define Localization Error, LE as the radius of the region where an event is

suspected to be present. When the presence of an event in the FBS is determined,

we will need to determine the location of the event so as to attend to it in a timely

fashion. We remark here that localization error does not refer to the range of the

actual event. It only refers to the resolution of the localization.

Algorithm 9 determines the beacon placement such that bounded localization

error LE is ensured in a zone of interest I, i.e., a subgraph of F . First, we define

a variable vi.ϕ for a vertex vi that determines the localization error of a sensor that

reaches vi from the sources. We place beacons to reduce ϕ at all vertices, thereby

ensuring that LE is bounded. vi.ϕ is updated through Algorithm 9. The algorithm

initializes the required data structures in lines 1-4. Sources refers to the source

vertices in I, i.e., have an in-degree 1. We perform a breadth first search of the

graph, adding vertices to the queue in a topological order, so that we can determine

all paths from sources to sinks. While we traverse these paths, we place beacons when

ϕ exceeds LE. In this algorithm, we keep track of every path in I from insertion

points to sinks and edges leading out of the zone of interest. Each path is assigned

an id. The list of paths that a vertex vi is part of is maintained in a map pathsOn.

The list of edges in every path is maintained in a map pathSummary, called the

62

Algorithm 8 Beacon Placement with Localization Error requirement

Require: LE, I, CRb, SR, J
1: Initialize pid ← 0, pathsOn, pathSummary, Q← Sources ∈ I
2: for all s ∈ Sources do
3: pathsOn(s)← pid; pid++; s.ϕ = 0
4: end for
5: while Q is not empty do
6: vi ← deque(Q)
7: for each path ∈ pathsOn(vi) do
8: pathSummary(path).append(vi)
9: end for
10: if vi.children is empty then
11: Place beacon at vi
12: end if
13: for each vj ∈ vi.children do
14: if vj is first child of vi then
15: pathsOn(vj).append(pathsOn(vi))
16: else
17: for path ∈ pathsOn(vi) do
18: pathsOn(vj).append(pid)
19: pathSummary(pid) ← pathSummary(path); pid++
20: end for
21: end if
22: vj.ϕ← vj.ϕ + vi.ϕ +

∑
k

∑
l SR(ek, el), where ek ∈ edges with vj as terminal

vertex, and el such that CRb(vj, el) = 1
23: if ¬vj.queued then
24: Q.enque(vj)
25: else if vj.ϕ ≥ LE ∧ vj /∈ J then
26: Place beacon at vj
27: end if
28: end for
29: end while

path summary.

A breadth first search of the graph is done in lines 5-29. At each iteration in the

BFS, the path summaries of each path containing the vertex is updated (Lines 7-9).

Since beacons are not only identifiers, but also collection points for information from

sensors, we need to place them at all sinks. If the vertex has no children (i.e., sink

63

vertex), we place a beacon at this point for collection (Line 11). If a vertex has no

out-edges that lead into I, it is considered a pseudo-sink. Since the input to this

algorithm is I, such vertices have no children. If a vertex has only one child, the

child vertex is added to the path summary pathSummary of every path containing

the parent vertex (Line 15). No new paths are added. If the vertex has more than

one child, each child vertex is in a different path. The path summaries for multiple

paths are updated in lines 17-20. ϕ of each child vertex is updated in line 22. If a

child vertex was not already queued, it is added to the BFS queue in line 24. If ϕ of

the vertex exceeds LE, i.e., vi.ϕ ≥ LE, a beacon is placed at the child vertex (Line

26). This step also updates the potential of the vertex for the beacon.

We place beacons at vertices only when ϕ > LE. Since vertices are considered in

a topological order, optimal beacon placement (excluding sinks) in the subgraph at

any iteration is optimal with a new vertex added, as long as the topological order still

holds. Hence, when the algorithm terminates, optimal beacon placement is complete.

5.2.2 Minimization of Number of Beacons to Ensure Localization Accuracy

The Probability of Detection / Event Localization Accuracy (Pd) is the probability

of finding an event (or the accuracy of event localization) in zone of interest I.

Formally, Pd =
TP+TN

TP+TN+FP+FN
, where TP , TN , FP and FN are true positives (i.e.,

an event existed and the algorithm detected it), true negatives (i.e., an event did

not exist and the algorithm correctly indicated a non-existence), false positives (i.e.,

an event did not exist, but the algorithm detected one) and false negatives (i.e., an

event existed and the algorithm failed to detect it), respectively.

Our solution to the problem of optimal placement of beacons (i.e., reduce the

number of beacons), so that probability of event detection Pd is met is as follows.

The Beacon Placement algorithm is presented in Algorithm 9. This algorithm

64

Algorithm 9 Beacon Placement with Localization Accuracy requirement

Require: Pd, G(V,E),
1: Q← V.sources
2: V.sources.place bcn
3: τ ← (1− Pd)|E|
4: while Q ̸= Φ do
5: vi ← deque(Q);no bcns← Φ
6: for each pj ∈ vi.parents do
7: if ¬ pj.completed then
8: Q.insert(pj)
9: end if
10: if ¬ pj.has bcn then
11: no bcns.add(pj)
12: end if
13: end for
14: while vi.ϕ < τ ∧ no bcns ̸= Φ do
15: pj ← no bcns.GET MAX
16: pj.place bcn
17: vi.ϕ← vi.ϕ− pj.ϕ− 1
18: end while
19: if vi.ϕ > τ then
20: vi.has bcn← true
21: end if
22: for each vj ∈ vi.children do
23: vj.ϕ← vj.ϕ+ vi.ϕ+ 1
24: if ¬vj.queued then
25: Q.enque(vj)
26: end if
27: end for
28: vi.completed← true
29: end while

optimizes the placement of beacons in the network, so that the event localization

algorithm can achieve a Pd accuracy. Consider the directed acyclic graphs G(V,E)

and Grev(V,E
′) where the only difference between G and Grev is the direction of their

edges. More formally, G and Grev have the same set of vertices and ∀ (u, v) ∈ E,

(v, u) ∈ E ′ and ∀ (u, v) ∈ E ′, (v, u) ∈ E where u, v ∈ V . The algorithm uses an

65

approach similar to Breadth First Search on a directed acyclic graph G(V,E). In

Line 1, a vertex queue Q is initialized with sources of F . In Line 2, a beacon is

placed in all sources of F .

Every vertex has a potential ϕ, where ϕ for a vertex vi is max(|Pathij|), where

|Pathij| is the number of edges in the set of paths from vi to a beacon Bj in Grev,

such that each path contains at most one beacon. For example, in Figure 3.6, v3.ϕ

= 0, since beacon B2 is placed at v3. If there was no beacon at v3, then v3.ϕ would

be max(|{(v3, v4)}|, |{(v3, v7), (v7, v8)}|, |{(v3, v2), (v2, v1)}|) = 2. If vj is a parent of

a vertex vi in G, then intuitively vi.ϕ > vj.ϕ unless vi has a beacon. Hence, we can

iteratively obtain ϕ for a vertex, using ϕ of its parents. When a beacon is placed at

vj, vi’s potential will decrease. At the end of beacon placement, every vertex should

have a potential less than a threshold to ensure accuracy of event localization. A

threshold τ for ϕ is derived from Pd in Line 3.

Lines 4-29 iterate over the vertices of a graph using Breadth First Search (BFS).

If the parent of a vertex vi was not iterated over, the vertex is added back to the

queue, with a priority, in Line 8. This is because we cannot make an informed

decision about beacon placement in vi without knowing the potential value vi.ϕ. We

maintain a heap for the parents of vi that do not have beacons, with key as pj.ϕ,

in Line 11. Once we check all parents of vi, we are sure that the potential of vi is

correctly computed. Now we start placing beacons at the parent vertices of vi until

the potential of vi decreases below τ . Parents are selected using a greedy approach,

so that as few parents as possible have beacons, as shown in Lines 14-18. If vi.ϕ is

still greater than τ , a beacon is placed at vi. Lines 22-27 add the children of vi to the

queue, similar to Breadth First Search. Once a vertex is iterated over, it is marked

as completed in Line 28. Since we consider directed acyclic graphs, Line 8 will not

introduce an infinite loop.

66

v1

v3

v2
v4

e1

e2

e3

e4

Figure 5.3: Small example to demonstrate beacon placement and event localization

Example: Consider the graph shown in Figure 5.3. At each iteration, the ϕ for

one edge is updated in a breadth first search order. For Pd = 0.5, the threshold τ is

2 edges. ϕ will be updated and beacons will be chosen as shown below. At first a

beacon is placed in v1 and Q = {v1}.

1. v1.ϕ = 0 v2.ϕ = v3.ϕ = v4.ϕ = ∞. Now Q = {v2}

2. v1.ϕ = 0 v2.ϕ = 1 v3.ϕ = v4.ϕ = ∞. Now Q = {v4, v3} and v4 is dequeued.

In line 7, it becomes evident that v3 ∈ v4.parents is not completed. So, now

Q = {v3, v4} and v3 is dequeued.

3. v1.ϕ = 0 v2.ϕ = 1 v3.ϕ = 2 v4.ϕ = ∞. Now v4 is dequeued.

4. v1.ϕ = 0 v2.ϕ = 1 v3.ϕ = 2 v4.ϕ = 4. v4.ϕ is greater than τ . So, parents of v4

are selected greedily. A beacon is placed in v3. Now, ϕ for each vertex becomes:

5. v1.ϕ = 0 v2.ϕ = 1 v3.ϕ = 0 v4.ϕ = 2. Now, Q = Φ. Algorithm terminates. We

can now see that no vertex has ϕ greater than τ .

This algorithm provides an optimal solution to the Beacon Placement problem for

directed acyclic graphs, since we ensure optimal result for each subgraph of G. The

time complexity of this algorithm depends on the number of times a vertex is added

back in the queue and the number of parents a vertex has. Adding and removing

67

parents from heap takes O(lg n) time, where n is the number of parents. A vertex

can be added back to the queue at most O(V) times. There is no cyclic dependency

because the graph is directed and acyclic. The number of parents of a vertex is also

O(V). Consequently, the Beacon Placement problem is in P, and our algorithm has

O(V 3(lg V)) time complexity.

5.2.3 Jointly Determining Sensor and Beacon Placement with Budget Constraint

for Leak Detection

Probability of covering an edge: Amajor goal in WDSmonitoring for leak/backflow

events is to narrow down the suspected area, as it is closely related to the scale of

the problem and the time and labor it takes to pinpoint and eliminate the events.

The design objective of our monitoring system is to minimize the scope of suspected

area quantified as system localization error.

Imagine a mobile sensor inserted in vertex v11 in Example 3.7 which travels to v22

through vertex v12. If there are beacons at vertices v11 and v22, and a leak/backflow in

edge e11,12, it is reported by the sensor through communication with beacons placed

at vertices v11 and v22. Any of the four pipes between v11 and v22 are now suspected

to contain the reported leak/backflow. But, if there was an additional beacon present

at v12, we would be able to narrow down the location of the leak/backflow to one

pipe.

Consider the problem of leak/backflow detection as an example where SR = 0m.

Beacons placed at junctions can localize the event by collecting information from the

sensors passing by. The probability that a pipe contains leaks/backflows depends on

its age and operation conditions. Leak probability of a pipe is denoted by lij.

Edge localization error: We define edge localization error, or localization error of

an edge, denoted by le(S, eij), as the product of its leak probability and uncovered

68

probability, i.e. lij · ue
ij. The upper bound of all edge localization error is denoted by

ubele.

For clarity, we first introduce two concepts, inner vertices and inner edges, before

giving the definition of beacon localization error. inner vertices is defined between

two vertices vi and vj in the network, and it consists of all vertices which a sensor

may pass by if it travels from vi to vj, excluding vi and vj. Similarly, inner edges

includes those edges which the sensor may go through during its travel.

Beacon localization error: The beacon localization error, or localization error of a

leak/backflow between two adjacent beacons, say bi and bj, denoted by leij, is defined

as the sum of localization errors of all inner edges between vi to vj.

The average beacon localization error, denoted by ale, is calculated by:

ale =
∑
(bi,bj)

leij
bp num

(5.5)

where (bi, bj) is a pair of beacons and bp num is the number of beacon pairs.

System localization error: The metric system localization error, denoted by sle,

is calculated as:

sle = AchSC · ale+ (1− AchSC)
∑
ekh

lkh (5.6)

where AchSC is the achieved average sensing coverage, i.e.,
∑

∀ eij
PV (S, eij).

For each edge, say eij, we introduce the indicator random variable, χS,eij , that

takes value 1 if leak/backflow present on edge eij cannot be detected with a specific

configuration of sensors S, and value 0 otherwise.

69

χS,eij =

1 with probability p = le(S, eij)

0 with probability1− p

The expected system localization error, denoted by esle, is calculated by:

else = E

∑
∀eij

χS,eij

which is equal to the system localization error when no beacons are placed. Due

to the linearity of expected value, we have E
[∑

∀eij χS,eij

]
=
∑

∀eij E
[
χS,eij

]
, then

esle =
∑

∀eij le(S, eij).

Optimization Problem

The optimization objective function is defined as the minimization of system

localization error represented by Equation 5.6. The decision variables include the

number of mobile sensors and stationary beacons used, and their deployment lo-

cations. The respective number of sensors and beacons is subject to the available

budget. The constrained optimization problems is thus mathematically formulated

as:

minimize sle (5.7)

subject to:

sp ·
∑
r

sr + bp ·
∑
r

br ≤ cost (5.8)

sr ∈ {0, 1, . . . , ⌊
cost

sp
⌋} (5.9)

br ∈ {0, 1} (5.10)

70

where cost is the available budget for purchasing sensor and beacon devices, sp

is the price of a mobile sensor, bp is the price of a beacon and r = 1, . . . , n. In all the

equations in this section, the indices range from 1 to n, unless specified otherwise.

The first constraint represents the cost budget constraint and the last two constraints

define variables sr to be integer and br to be binary.

The joint sensor and beacon placement optimization presented in Section 5.2.3

is a computationally intensive problem. Hence, we simplify the formulation to solve

the sensor and beacon placement jointly. However, the problem continues to be

nonlinear and computationally intensive. To this end, we will define two alternative

formulations that separately optimize sensor and beacon placement for a given cost.

Joint Formulation

Minimization of sle is a complex problem, e.g., in our experiments, finding the

optimal solution for a WDS with over 50 junctions in not possible even in weeks.

An alternative approach used here is minimizing ale instead, which is a less complex

problem and can be solved in a reasonable time.

We note here that the sle is AchSC · ale + (1 − AchSC)
∑

ekh
lkh. The term

AchSC in the sle formulation ensures that we place emphasis on false negatives in

leak/backflow detection as well. Another notable point is that ale is also dependent

both on the sensor and beacon configurations. The benefit of minimizing ale as

opposed to the minimization of sle is not as harmful, as we see in the Performance

Evaluation section.

The set {(i, j)|pij > 0} includes all non-independent vertex pairs in graph G,

denoted by CN . The set {(i, j)′|pij > 0, or i == j} is denoted by CN
′
. In order to

express ale, we introduce a binary variable cij to represent the presence (cij = 1) and

absence (cij = 0) of beacons between vertices vi and vj including vertex vj, defined

as:

71

cii = 1

cij = 0, (i, j) /∈ CN

cij = 1−
∏

ekj
(1− cik · (1− bj)), (i, j) ∈ CN

(5.11)

Then, the localization error leij can be expressed as:

leij =
∑
ekh

(cik · ckh · connhj · lkh · ue
kh)

+
∑
egj

ci,g · lgj · ue
gj

(5.12)

where connhj = (1 −
∏

egj
(1 − chg)) which is 1 only if there exists a neighbor vg

of vertex vj such that chg is 1.

The joint formulation is a Mixed Integer Non-Linear Programming (MINLP)

formulation and is given as:

minimize ale i.e.,

minimize

∑
(i,j)∈CN [leij · bi · bj]
(
∑

r br)
2 −

∑
r br

(5.13)

subject to the same constraints represented by Equations 5.8, 5.9, and 5.10.

Disjoint Formulation

Although many MINLP solvers [30] [11] have been developed and can be used for

solving the joint formulation, their time complexity is exponential to the problem

core size (it takes several days to solve the problem for 100 vertices). A possible idea

to reduce time complexity of the problem is to split and solve the sensor and beacon

placement problems separately.

72

Considering the computational intensity of ale minimization problem, we define

two alternative formulations that separately solve the sensor and beacon placement

optimization problems.

The function leij in the original formulation is a monotonically decreasing func-

tion (i.e., if i′ > i and j′ > j, then lei′j′ ≤ leij). A monotonic optimization problem

achieve optimum solution at boundaries when constraints set is convex. The only

constraint sp ·
∑n

r=1 sr + bp ·
∑n

r=1 br ≤ cost in our formulation is convex. Therefore

a separate solution will not sacrifice the optimality of the results.

The number of cases satisfying sp ·
∑n

r=1 sr + bp ·
∑n

r=1 br = cost is linearly

related to the network size because the number of beacons is the upper bounded by

the number of vertices in the network. The outline of the searching process of the

disjoint method is shown in Algorithm 10. The algorithm iteratively splits the total

cost among sensors and beacons starting with no beacons and adds one beacon at

a time (Lines 2 and 5). For each s and b, we solve the sensor and beacon problems

separately by methods described later in this section (Lines 6 and 7). During the

iterations, we record S and B that achieve the least sle (Lines 10 - 14).

The alternative disjoint formulations and algorithms for sensor deployment prob-

lem and beacon placement problem are presented in the following subsections.

Sensor Deployment Problem

Two objectives of the sensor deployment problem are to minimize esle and to

minimize ubele. We present formulations and solutions for the two objectives this

subsection.

Greedy Heuristic for Minimizing the Expected System Localization Error

(MESLE)

The problem of minimizing esle is formulated as follows:

73

Algorithm 10 Exhaustive Searching Algorithm

Require: n, cost, sp, bp
1: initialize both bmax, and b as 0
2: initialize localS and localB with all si and bi as 0
3: min = INF, localSle = INF
4: for bmax = 1 to n do
5: smax = (cost− bmax · bp)/sp
6: solve sensor deployment problem
7: solve beacon placement problem
8: update localSle using the Equation 5.6
9: if localSle < min then
10: min = localSle
11: s = smax
12: b = bmax
13: S = localS
14: B = localB
15: end if
16: increment bmax
17: end for

minimize esle i.e.,

minimize
∑
eij

[
leij · ue

ij

]
(5.14)

subject to: ∑
r=1...n

sr = s

sr ≥ 0 ∀r = 1 . . . n

The objective in the problem of minimizing esle is written as:

minimize
∑
eij

(
leij ·

∏
r

βsr
r,ij

)

This is a convex nonlinear programming problem and we solve it using a greedy

74

heuristic similar to the MASC problem, by Algorithm 7.

When a utility manager is only interested in detecting the presence of the leak/backflow,

and not in localizing it, only the sensor deployment problem needs to be solved. In

this case, we define the Average Sensing Coverage (ASC) as the average probability

of covering any edge, i.e.,
∑

eij

[
1− ue

ij

]
. The MESLE problem is then reduced to

maximizing the average sensing coverage problem MASC. If the leakage/backflow

probability is not considered, we solve the MASC problem using the greedy algo-

rithm with all the leak probabilities set to to 1. The approximation ratio of greedy

algorithm for MASC is (1 + 1
e−1

) (See Appendix B).

Integer Linear Programming for Minimizing the Upper Bound Edge Lo-

calization Error (MUBELE)

As defined before, ubele is the smallest number such that ∀ eij ∈ E, [le(S, eij)]

≤ ubele. The formulation for minimizing ubele is as follows:

minimize ubele, i.e.,

minimize max
eij

[(
leij · (1− ue

ij)
)]

subject to: ∑
r=1...n

si = s

sr ≥ 0 ∀r = 1 . . . n

(5.15)

The MUBELE problem is a min-max problem that can be reduced to an integer

linear programming problem (IP) as follows:

min
s

max
eij

[
leij · ue

ij

]
Taking the logarithm of the objective function, we get ln(leij · ue

ij) = ln(leij) +

75

∑
r sr·ln (βij), Since logarithm is a monotone increasing function and ln(leij), log (βij)

are constants, the problem can be reduced to:

minimize x

subject to∑
r

ln(leij) + sr · ln (βij) ≤ x

∑
r

sr = s

sr ≥ 0

where x is a new variable introduced to convert a min-max problem into a linear

program.

Similar to MLBSC, when only sensor deployment is considered, the coverage of a

pipe becomes synonymous to detection of a leak/backflow in that pipe. The Lower

Bound Sensing Coverage (LBSC) is defined as the minimum probability of covering

any edge, i.e., LBSC is the largest number such that ∀ eij ∈ E,
[
1− ue

ij

]
≥ LBSC.

The problem of MUBELE is then transformed into maximizing the lower bound of

covering any edge (MLBSC).

Beacon Placement Problem

Once the sensor deployment problem is solved, the joint optimization problem is

reduced to the beacon placement problem. We can further reduce the problem to

a linear programming problem by linearizing the equations for c and leij in Equa-

tion 5.11 and 5.12, respectively, as follows:

76

cii = 1

cij = 0, (i, j) /∈ CN

cij ≥ cik − bj, (i, j) ∈ CN

cij ≤ 1− bj, (i, j) ∈ CN

(5.16)

The linearized crh is equal to 1 when there is no beacon along the path from

vertex r to vertex h. Its value is uncertain otherwise.

The localization error leij is linearized based on the AMGM inequality:

leij =
n∑
ekh

(
cik + cih + connkj

3
) · lekh

+
∑
g

cig · leegj
(5.17)

where connkj = (
∑

egj
ckg)/n.

We define the linearized ale minimization, denoted by MLALE, as:

minimize
∑

(i,j)∈CN

[
leij

bmax2 − bmax

]
(5.18)

and define the linearized uble minimization, denoted by MLUBLE, as:

minimize max
(i,j)∈CN

[
leij

bmax2 − bmax

]
(5.19)

The two separate solutions we propose are two different combinations of sen-

77

Table 5.2: Optimization problems used in this dissertation
Method Objective Constraints
joint minimizing ale Budget
MESLE minimizing esle Budget
MUBELE minimizing ubele Budget
MLALE minimizing ale Budget
MLUBLE minimizing linearized ubele Budget
greedy Algorithm 10 with MESLE and

MLALE
Budget

linear Algorithm 10 with MUBELE and
MLUBLE

Budget

MASC Maximizing ASC Sensor budget
MLBSC Maximizing LBSC Sensor budget
MNS Minimizing number of sensors LBSC

sor placement and beacon placement formulations. The former, greedy, combines

MESLE and MLALE and the latter, linear, integrates MUBELE and MLUBLE.

All the optimization problems used in this dissertation are summarized in Ta-

ble 5.2.

5.2.4 Beacon Placement for Continuous Monitoring

The above algorithms for beacon placement assume that the WDS is moni-

tored on-demand. Beacon placement algorithm to ensure a certain localization er-

ror/localization accuracy is harder for a continuous monitoring case. In on-demand

monitoring, the graph of the WDS is acyclic. Hence, computing all the paths in the

WDS is simple.

With continuous monitoring, we cannot assume any directions for the edges in

the graph. Therefore, to extend the above algorithms for continuous monitoring,

we need to find all the paths between any pair of vertices in an undirected graph.

Enumerating all the paths in an undirected graph is a sharp-P problem [93].

We therefore consider both a directed acyclic graph generated using the aver-

78

age used demands, G(V,E), and Grev(V,E
′), where ∀ (u, v) ∈ E, (v, u) ∈ E ′ and

∀ (u, v) ∈ E ′, (v, u) ∈ E, where u, v ∈ V (i.e., the only difference between G and

Grev is the direction of their edges). Since Algorithms 9 and 13 rely on the input

graph G being directed, we run the algorithm with G and Grev as inputs and the

union of the beacons generated is used to place beacons in G.

Algorithm 11 Shortest paths to Zone of Interest

Require: Pd, G(V,E)
1: Q← all V ∈ I
2: depth(vi) = 0 ∀ V ∈ I
3: while Q ̸= Φ do
4: vi ← deque(Q);
5: for each vj ∈ vi.children do
6: if ¬vj.queued ∧ vj /∈ I then
7: Q.enque(vj)
8: end if
9: if depth(vj) > depth(vi) + 1 then
10: depth(vj) = depth(vi) + 1
11: end if
12: end for
13: end while

Ensuring the same event localization error and accuracy throughout the WDS

may not be necessary, since we are usually interested in monitoring a particular zone

of interest. Therefore, once the Pd requirement for the zone of the interest is set, we

set Pd for the other set of edges to be Pd

γi
, where γi is the ratio of the number of edges

in the shortest path from edge ei to any edge in the zone of interest and the number

of edges in the zone of interest. The farther away a edge is from the zone of interest,

the lesser is the Pd requirement of the edge. A similar approach is used for LE.

We note here that the beacon placement is computed only once for every zone of

79

interest. Also, the number of edges in the shortest path between any pair of edges is

not dependent on the zone of interest. Hence, we pre-compute the number of edges

in the shortest path between every pair of edges (as described in Algorithm 11),

thereby reducing the computation time when the zone of interest is changed. The

algorithm performs a breadth first search (Lines 3-13) starting from the vertices in

the zone of interest (Line 1). For each vertex dequeued in the BFS, the depth of its

children is updated to reflect the shortest path (Line 10).

5.3 Event Localization Algorithm

Once the data from the sensors is collected at beacons, there is a need to parse

that data to collect information about the events. In this section, we design an

algorithm to deduce the location of the events using the knowledge of the flows in

the WDS, beacon locations, and data collected from sensors. Based on the two

beacon placement objectives, event localization algorithms are also of two types.

The localization of an event (presented in Algorithm 12) is based on data col-

lected at beacons with the objective of minimizing localization error. A summary of

events and beacons encountered, (i.e., path synopsis PS) is collected by beacons from

sensors. The Event Localization Algorithm deduces the list of edges that possibly

contain the event (list labeled EE) to determine the localization error. The achieved

localization error is the radius of the circle covering the midpoints of edges EE.

We classify path synopsis collected by a beacon based on time stamps in a list, EL

(Lines 1-2). EL is the set of data recorded with the same timestamp. If EL contains

and event and a beacon (Lines 3-4), we add edges from columns of SR corresponding

to all edges in CRb of the beacon to the EE. We also mark those edges as suspect

(Lines 5-12). If EL contained an event, but did not contain a beacon, the edges

in the path between the previously seen beacon P and the beacon seen next N , are

80

Algorithm 12 Event Localization

Require: d, F , CRb, SR, B, PS
1: for each PSi in PS do
2: for each EL in PSi do
3: if X ∈ EL then
4: if Bi ∈ EL, where Bi ∈ B then
5: for all ek such that (CRb(Bi, ek) = 1) do
6: for all ej do
7: if SR(ej, ek) = 1 then
8: EE.append(ek)
9: ek marked as suspect
10: end if
11: end for
12: end for
13: else
14: for all ek ∈ edges ei between P & N do
15: for all ej do
16: if SR(ej, ek) = 1 then
17: EE.append(ek)
18: ek marked as suspect
19: end if
20: end for
21: end for
22: end if
23: else
24: for all ek such that (CRb(Bi, ek) = 1) do
25: for all ej do
26: if SR(ej, ek) = 1 then
27: ek marked as sensed
28: end if
29: end for
30: end for
31: end if
32: end for
33: end for
34: EE.remove(Edges ∈ sensed ; /∈ suspect)

suspected to contain the event (Line 14-21). If no event was present in EL, the edges

in SR are marked as sensed (Line 24-30). After iterating over data from all sensors,

81

we remove the edges from EE that were not identified as suspect, but were sensed

(Line 34).

Example: In the example in Figure 5.1, the paths taken by the sensors are: n1 - v1

v2 v4 v6 v7; n2 - v1 v3 v5 v6 v8; n3 - v2 v3 v5 v6 v7 and n4 - v0 v3 v5 v6 v7. If there is an

event X present on edge e2 and sensors n1, n2 and n4 reach v6 at the same time, n1,

n2, n3 and n4 report the following information: (n3, t(n1)1) (B3, t(n1)2) (n2, t(n1)3)

(n4, t(n1)3) (B1, t(n1)4), (X, t(n2)1) (n4, t(n2)2) (X, t(n2)2) (n1, t(n2)2) (B2, t(n2)3),

(n1, t(n3)1) (X, t(n3)2) (B1, t(n3)3) and (n2, t(n4)1) (X, t(n4)1) (n2, t(n4)2) (n1, t(n4)2)

(B1, t(n4)3), respectively where t(ni)j refers to the time at which node ni recorded

the jth report. Based on the knowledge of expected time to traverse each path, we

can locate the event on edge e2. The LE is |e|/2 = 50m.

The localization of an event (presented in Algorithm 13) is based on data collected

at beacons with the objective of minimizing localization accuracy.

The algorithm for Event Localization is presented in Algorithm 13. In Line 1,

we initialize Suspects List (i.e., edges where an event might be present) to contain

all edges in the network. We follow an elimination method to localize events to as

few edges as possible. In Line 2, we initialize a Beacons Table (BT). Each entry in

the BT contains, for each pair of beacons, the number of paths and the list of edges

between them, and an indication of whether an event is present or not between them.

The number of paths and list of edges between each pair of beacons is obtained from

the graph. The event indicator is initialized to false. Next, in Lines 3-15, we iterate

over all sensors to analyze their path synopses. For each entry in the path synopsis

p of a sensor ni, Line 5 checks if no event was detected. If no event is detected

between two beacons, and there is only one path between them, then the edges in

that path definitely do not have an event. Hence, Line 8 eliminates such edges from

Suspects List. If an event is found in the path synopsis, we mark an event in the

82

Algorithm 13 Event Localization

Require: PS, N , G(V,E)
1: Suspects List← E.
2: BT ← initialize Beacon Table
3: for each ni ∈ N do
4: for each p ∈ PSi do
5: if p ̸= X then
6: if BT [p][p.next].path = 1 then
7: for each ej ∈ BT [p][p.next] do
8: Suspects List.remove(ej);
9: end for
10: end if
11: else
12: BT [p][p.next].event
13: end if
14: end for
15: end for
16: for each bi ∈ BT do
17: if bi.event = false then
18: for each ej ∈ bi do
19: Suspects List.remove(ej);
20: end for
21: else
22: bi.event
23: end if
24: end for

corresponding BT entry, in Line 12.

Upon iterating over all path synopses obtained from all sensors, the BT entries

will reflect whether or not an event was detected on a path between pairs of beacons.

Consequently, in Lines 16-24 we iterate over the entries in BT . An entry in the BT

will be marked for an event only if one of the sensors detected an event between

the beacons for that entry. If the entry in BT is not marked with an event, Line

19 removes edges between those beacons from Suspects List. At the end of the

iteration, we will be left with the smallest possible Suspects List, i.e., the highest

83

event localization accuracy.

The time complexity of this algorithm depends on the number of sensors, the

number of beacons in each path synopsis and the number of edges between any two

beacons. The number of edges between any two beacons is O(E). Number of sensors

is O(V) and number of Beacons in the Path Synopsis is also O(V). The worst case

time of the algorithm is O(V 2E).

Example: Consider again the flow network in Figure 3.6. Between source v6 and

sink v3, there are 6 possible paths. When sensing coverage is ensured, sensors are

inserted in such a way that all these paths are covered. Without loss of generality

(since we solve here the event localization problem), we can assume that all sensors

were inserted in the source. Let there be an event in edge (v5, v4). The sensed paths

SPi of the sensors (and their path synopsis PSi) are:

SP1 = {v6, v1, v2, v3} with PS1 = {B1, B4, B2};

SP2 = {v6, v1, v5, v4, v3} with PS2 = {B1, B4, X,B3, B2};

SP3 = {v6, v5, v4, v3} with PS3 = {B1, X,B3, B2};

SP4 = {v6, v8, v5, v4, v3} with PS4 = {B1, B5, X,B3, B2};

SP5 = {v6, v8, v7, v4, v3} with PS5 = {B1, B5, B3, B2};

SP6 = {v6, v8, v7, v3} with PS6 = {B1, B5, B2}.

In the first part of the algorithm, the following edges are removed: (v6, v1), (v1, v2),

(v2, v3), (v6, v8), (v8, v7), (v4, v3), (v7, v4), (v7, v3). Next, we use BT entries, but we

cannot remove more edges. So finally, in the Suspects List, we have (v1, v5), (v8, v5),

(v5, v4), (v6, v5).

We remark here that if we know that there was only one event in the network,

we can localize the event more precisely by taking only the common edges from the

BT entries that have events. In the above example, we can reduce Suspects List to

84

(v5, v4), thereby achieving 100% success.

5.4 Global View Algorithm

Static beacons in the network provide an external perspective to the network

dynamics. When a leader comes in range of a beacon, it transfers all its data to

the beacon. The beacons have a global view of the network. At a given point of

time, the directions of flows in a network can be approximated using monthly bills

and usage patterns. Based on this knowledge, the topology of the WDS, and nodes

encountered by other beacons, the beacons provide the set of possible group splits,

group merges, and beacon encounters over time.

The beacons periodically broadcast a BEACON −HELLO message to indicate

their presence to the leader nodes. When a leader hears a BEACON − HELLO

from a beacon, it transmits allData packet containing all the data collected by its

sensor and from the followers, including data from group merges. F is a time varying

graph of the network. At any instant of time, the beacons are aware of the snapshot

of F . At each step of the breadth first search, while adding nodes to the queue, the

next edge is determined based on the time varying graph, rather than a snapshot.

Algorithm 14 describes the algorithm used by the beacons. The beacons period-

ically send BEACON −HELLO to enable leaders to identify their presence (lines

2-3). Upon receiving a message from leaders, they follow the procedure as shown in

lines 4-26. The algorithm is an adaptation of the breadth first search (BFS) for a

time varying graph. Starting at the beacon vertex, the algorithm performs a BFS on

the time-varying graph until beacons are reached. New vertices are added to BFS

queue based on how long it takes for the nodes to traverse the edges (lines 15-25).

Unlike traditional BFS, the same vertex may be visited repeatedly due to the varying

flows. Infinite loops are avoided by using a time limit.

85

Algorithm 14 Beacon B at vertex vi
Require: vertex, F , reportedData
1: while true do
2: if time % period = true then
3: Broadcast BEACON −HELLO
4: end if
5: if message received from leader then
6: G(V,E) = F(time)
7: Q = (vi, 0)
8: while Q not empty do
9: (v, t)← Q.dequeue()
10: if In-degree of v > 1 then
11: Add (v, t) to groupMerges
12: end if
13: if Out-degree of v > 1 then
14: Add (v, t) to groupSplits
15: end if
16: if Beacon at v then
17: Add (v, t) to nextBeacons
18: end if
19: for each c← child of v in G do
20: t′ ← t
21: e(t′)← (c, v) ∈ E, de(t

′) = length(e)/2
22: while de(t

′) > 0 or < length(e) do
23: t′prev ← t′

24: t′ ← time after t′ when flows change
25: de(t

′)← distance covered on e(t′) from t′prev to t′

26: end while
27: if de(t

′) < 0∧ no beacon at v then
28: Q.enqueue(v, t′)
29: end if
30: if de(t

′) > length(e)∧ no beacon at c then
31: Q.enqueue(c, t′)
32: end if
33: end for
34: end while
35: Transmit (groupSplits, groupMerges, nextBeacons)
36: end if
37: end while

86

At each vertex visited, if the in-degree is greater than 1, there is a possible

group merge; if the out-degree is greater than 1, there is a possible group split;

finally, if there is a beacon, the leader will get to communicate with it. This infor-

mation is stored in three data structures, namely, groupMerges, groupSplits, and

nextBeacons. This information is then sent to the leader node that broadcasts it

to the group. Based on this data, the leaders choose their communication schedules,

which are also broadcast.

87

6. CONTROL IN CPWDS∗

In this section, we present the control aspects of our CPWDS. It includes a

flow estimation algorithm required for flow-unaware monitoring, a sensor position

estimation algorithm, and a control system design to modify the flows in the WDS.

Table 6.1: List of symbols used in this section
Symbol Definition
Gest The flow network with estimated flows in the WDS
S Sampling function to sample from a discrete probability

distribution
X(t) The two dimensional state of the sensors at time step t
Xi0(k) The edge that sensor i is present on at iteration k
Xi1(k) The fraction of the edge covered at iteration k
Q∗

i Desired flows in edge ei

Table 6.1 contains all symbols used in this section.

6.1 Flow Estimation

Up until this point, we assumed that flows in the network edges are known. In the

real world (i.e., a real water distribution system), due to the usage/flow dynamics,

the flows (i.e., directions and magnitude) are not known precisely. In this section we

present a solution which relaxes our assumption about known flows in WDS.

We propose a solution in which an estimate of flow is initially derived, based on

knowledge about the network flow topology and average usage patterns (e.g., utility

∗Parts of this section are reprinted with permission from “A Cyber-Physical System for Con-
tinuous Monitoring of Water Distribution Systems” by Suresh, M.; Manohar, U.; R, Anjana. G.;
Stoleru, R.; Mohan Kumar, M.S., IEEE 10th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), 2014 Copyright c⃝ 2014 IEEE

88

providers have access to household average water usage). Then, the actual flows

in the network are learned, based on events and encountered beacons, reported by

sensors.

Based on the monthly bills of users, an average demand at the consumers is

available. Additionally, the pattern of the demands throughout the day may also

be estimated. Using these values, estimates of flows for any part of the day are

generated.

Mathematically, the problem flow learning is defined as: given G(V,E), D =

{di | ∀vi ∈ V } (i.e., the demand at each vertex of the network), and c(u, v)∀u ∈

V and v ∈ V (i.e., the capacities of all edges), derive F(u, v)∀u ∈ V and v ∈ V ,

the flows in all edges. This problem is precisely the computation of the maximum

flow in a network. To estimate these flows, each sink is replaced by an edge. The

demands at the end points set the flows in those edges. We know the capacities of

the network edges. Hence, a max-flow algorithm can be used to compute the flows in

all edges. To approximate the flows in all edges based on the maximum flow in the

network, we use the Edmonds-Karp algorithm [26]. Considering the graph example

in Figure 5.3, let’s set the capacities of all edges be 5 units. If the demand in v4 fixes

the total incoming flow to 8 units, the flow will be divided by the Edmonds-Karp

algorithm in v2 and v3 as 3 units and 5 units, respectively.

If the levels of water in reservoirs and tanks are also known, EPANET may be

used to derive the estimated flows in greater accuracy, since it also accounts for

energy losses as the water flows through the pipes.

In flow-unaware on-demand monitoring, the beacon placement based on estimated

flows may not be optimal if the expected flows are different from the actual flows in

the WDS. Hence, we will use the beacon placement for continuous monitoring here.

Since Algorithm 12 and 13 for Event Localization does not depend on direction or

89

Algorithm 15 Flow Learning

Require: Gest(V,E)
1: PS ← Collected path synopses.
2: clear unseen
3: unseen← BT
4: for each ni ∈ N do
5: for each p ∈ PSi do
6: Remove BT [p][p.next] from unseen
7: if edges(BT [p][p.next]) = 0 then
8: flows to change += BT [p][p.next]
9: end if
10: end for
11: end for
12: for each bp in BP do
13: if bp ∈ flows to change then
14: Reverse flows on bp.edges
15: end if
16: if bp ∈ unseen then
17: Reduce edge chances on bp.edges
18: end if
19: end for
20: Update Gest with the new flows.
21: Repeat from Line 1.

magnitude of flows, it is not affected by knowledge about flows.

6.1.1 Flow Learning

So far, we have approximated the flow in each edge of the graph. Now, we use

information collected by sensors to learn flows in the network. This step can be

repeated several times, i.e., through multiple deployments in on-demand monitoring.

The key intuition for how we derive flows is as follows. Consider an undirected

graph. Between any two beacons, there is a fixed number of paths/edges that do

not include another beacon. Consequently, the direction of some edges between the

two beacons is inferred by the order in which the beacons are sensed by sensors.

90

��������	�

�	
�������
�

���������

������

����	
��

���������������

�����

������
�

��	
�

�������

���������	���
	

������

����	
��

��
�������	�	�
����	���������������������

��
����

����
�

�����
	��	�

 ��!����	��

��

Figure 6.1: Block Diagram of the CPWDS

For example a path synopsis B1B2 suggests that B2 was sensed after B1. Thus, the

directions of edges between B1 and B2 are inferred. When flows in the system do not

change, after several deployments in on-demand monitoring, or over several hours in

continuous monitoring, all flow directions are inferred. While flows are inferred, the

insertion points, the number of deployed sensors, and the placement of beacons are

decided using the new inferred flows after each on-demand deployment.

The steps for learning the flows, are described in Algorithm 15. Lines 1-3 initialize

the algorithm. We collect the Path Synopses from beacons. Lines 4-11 iterates over

the information collected on all sensors and records unseen beacon pairs and flows

that are reversed. Lines 12-19 then iterate over all possible beacon pairs. Based on

the information collected by Path Synopses, the flows in the estimated graph are

altered in line 20. The same procedure is repeated as given by Line 21. The flow

learning algorithm will reduce the difference between estimated flows and the actual

flows in the pipes of the network.

6.2 Sensor Position Estimation

To estimate the position of sensors, we will use the reports collected at beacons.

The sensors send neighborhood information to beacons and the neighborhood infor-

mation of sensors is updated whenever there are group splits and group merges. At

91

a group split, when the leader election happens, the nodes update the nodes that

were no longer in range of them.

Algorithm 16 TimeToExit(e)

Require: e, f
1: f is the fraction of the edge ei covered
2: de - Length of edge e
3: ve - Velocity of flow in edge e
4: l = de/ve
5: Return l × (1− f)

Algorithm 17 Location update for a sensor si
Require: G, Xi(k)
1: Let t = T
2: Xi0(k + 1) = Xi0(k)
3: while t ̸= 0 do
4: if Xi1(k) = 1 then
5: if Sensor reaches beacon Bx at vertex vy then
6: Xi0(k) = S(vy)
7: else
8: Xi0(k + 1) = S(terminal vertex ofXi0(k))
9: end if
10: Xi1(k + 1) = 0
11: else
12: if TimeToExit(Xi0(k + 1)) < T (Algorithm 16) then
13: t = T - TimeToExit(Xi0(k + 1))
14: Xi1(k + 1) = 1
15: else
16: Xi1(k + 1) = Xi1(k + 1) + T

TimeToExit(Xi0(k+1))

17: t = 0
18: end if
19: end if
20: end while

92

For continuous monitoring of WDS, the insertion point of the sensors is inconse-

quential. Every sensor is moving through one of the edges of the WDS. If the sensor

has reached the terminal vertex of an edge, it moves from that edge to another ad-

joining edge. Therefore, the transition probabilities of the sensors from an edge to

another edge adjoining it, and from a vertex to the edges incident on it are important

here. The terms used in the sensor position estimation algorithm are as follows.

The flows in the WDS are obtained from EPANET, a simulator designed to model

WDS. The flows at a vertex are used to model the transition probability of a sensor

from vertex to an adjoining edge. The probability distribution of the movement of

a sensor at a junction is proportional to the flow distribution, as described in the

mobility model. We define a function S that samples from the discrete probability

distribution of movement of a sensor at a vertex. E.g., S(vi) provides an edge that

is sampled from the probability distribution at that vertex.

Example: Consider the graph shown in Figure 6.2. Suppose the single step

transition probability of sensor movement are: P [v2|v1] = 0.75, P [v3|v1] = 0.25,

P [v5|v2] = 0.3, P [v4|v2] = 0.2, P [v6|v2] = 0.5 P [v4|v3] = 1, P [v6|v4] = 1, P [v6|v5] = 1.

S(v1) picks e1 with probability 0.75 and e2 with probability 0.25.

The state of the system X(t) contains the position of the sensors at time t. For

every sensor, si, the state Xi(k) consists of two variables Xi0(k) that indicates the

edge that the sensor is present on, and Xi0(k) represents the fraction of the edge cov-

ered at iteration k. The system is considered to be discrete, with a sampling interval

of T . The state of the sensors is updated as shown in Algorithm 17. Whenever a

sensor reaches a beacon, as shown in Lines 5-6, the location is updated. Otherwise,

the movement of the sensor for the time duration t is updated (Lines 11-19). Using

the data about the WDS, we obtain the time spent in each pipe at any time as

described in Algorithm 16.

93

For any time duration [t, t+ δ], we may determine the edges covered during this

interval as
∪k=t+δ

∀si,k=t Xi0(k). Our objective for continuous monitoring is to cover all

the edges in a zone of interest in the interval δ.

6.3 Flow Controller

For continuous monitoring of a WDS, the reference point of the control system

changes over time and needs to be computed for every iteration. An iteration in

the continuous monitoring of a WDS contains a flow control, sensor movement, and

sensor position estimation. Figure 6.1 shows the model of our CPWDS. As shown in

the figure, the Flow Controller sets the valve settings in the WDS. Sensors are beacons

in the CPWDS communicate among themselves. This communication, aided by the

global view provided by the beacons, helps in estimating the position of the sensors.

Given that we know the positions of the sensors, we obtain the reference point for

the flow controller by observing the positions of the sensors at the beacons. The first

step in this work is in obtaining a optimal target value Q∗
i for the flow controller, so

as to minimize the control effort and control error. The obtained target flows only

act as a reference point to a flow controller. The actual flow control by means of

valve throttling, or source and sink control is achieved by the PID controller. Setting

the reference point by observing the sensors ties the communication, computation,

and control aspects of the CPWDS together.

Flow control is considered in two distinct ways: sensor-agnostic, and sensor-aware.

In the sensor-agnostic flow control mechanism, we control the flows such the sensors

do not leave the zone of interest, i.e., we do not need to track the positions of the

sensors, since they will always stay in the zone of interest. In the sensor-aware flow

control mechanism, we track the position of the sensors and use them to determine

the desired flows in the WDS. We then use a single flow controlling mechanism based

94

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 6.2: Sample graph

on the reference points set by either of the two flow control mechanisms.

6.3.1 Sensor-agnostic Flow Controller

The key assumption for sensor-agnostic flow control is that it is possible to main-

tain cycles in the WDS with the addition of pumps. The idea is that if there is a

cycle that prevents sensors from leaving the zone of interest, we are ensured coverage

of the zone of interest. Such a mechanism must also account for the varying demands

of the WDS and tune the flow controller accordingly.

The objective for the Sensor-agnostic Flow Controller is the minimization of

total pumping cost. The constraints for the controller are the flow and capacity

constraints, and the constraint that defines the desired direction of flows. Desired

direction of flow is defined for each edge, and can be +1, -1, or 0 (+1 indicates a

default direction of flow, -1 indicates flow in the opposite direction, and 0 indicates

indifference to the preferred direction of flow in the edge).

The WDS is observed at periodic intervals (e.g., hourly) to measure the demands

and the flow rates at sources. The flow controller uses this information to maintain

flow conservation and ensure that consumer demands are met. The desired direction

of flow ensure that there is a cycle in the zone of interest, and the pipes that lead

directly into the zone of interest have flows toward the zone of interest. This can be

formulated as follows:

95

minimize pumpingCost (6.1)

subject to:

A(t)× f(t) = j(t) (6.2)

B(t)× fd(t) ≥ 0 (6.3)

f(t) ≤ c (6.4)

where:

A is the incidence matrix of the zone of interest (dimension V ×E). aij is 1 if

the flow on edge ej is inbound from vertex vi, and -1 otherwise.

f is a flow magnitude vector (dimension E× 1). fi is the magnitude of flow on

edge ei.

j is the demand vector (dimension V × 1). ji is positive if the vertex vi is a

sink, negative if vertex vi is a source, and 0 otherwise.

B is a diagonal matrix with desired direction of flows (dimension E×E). bii is

the +1 if the direction of desired flow in edge ei is the same as its predetermined

direction, and -1 otherwise.

fd is a flow vector (dimension E×1). fi is the flow on edge ei and fi is positive

or negative based on predetermined direction of flows.

t indicates the time step t.

The pumpingCost in the objective function refers to pumping cost, which may be

assumed to be quadratic in f , i.e.,
∑

∀ei
1
2ci

f 2
i . Equation 6.2 is the flow conservation

96

equation. For any vertex vi, the sum of incoming flows (positive) and outgoing flows

(negative) is the total demand at the vertex. Equation 6.3 ensures flows in the

desired directions. Equation 6.4 ensures that the flows in the pipes do not exceed

the maximum capacity on the pipes. The decision variables in the objective function

is f . Solving the optimization problem provides the optimal desired flows in the zone

of interest and neighboring edges of the WDS.

For example, in Figure 6.2, the edge e4 is defined to be from v2 to v4. At vertex

v2, the sum of incoming flow should be equal to the sum of outgoing flow, i.e.,

a21 ∗ f1 + a24 ∗ f4 + a26 ∗ f6 + a25 ∗ f5 = j2. Here, j2 = 0. If we desire the flow to be

from v2 to v4, b44 = 1, if we desire the flow to be from v4 to v2, then b44 = −1.

When the flows cannot be retained in a certain region of the WDS, and the

position of the sensors are not tracked, the objective of a flow controller is to maximize

the probability that any sensor in any part of the WDS reaches the zone of interest

in T time.

Let the probability that a sensor moves from a edge ei to edge ej, Mij be con-

solidated in a matrix M. The probability that a sensor reaches a edge ej starting at

edge ei at any time in the future is thus obtained as T =
∑

k=1...K Mk, where K is

the smallest number such that PK = 0. We note here that we may also set K to

be the maximum number of transitions in T time (i.e., the time period for which we

attempt to control the flow). We also define a function outij as:

outij

1 if end vertex of ei = begin vertex of ej

0 otherwise

Formally, the problem of maximizing the probability that sensors reach the zone

of interest is represented as:

97

Algorithm 18 Sensor-aware Flow Controller

Require: G, I, X, t, δ
1: C =

∪
∀si

∪t+δ
k=t Xi0(k)

2: S =
∪

∀si Xi0(t+ δ)
3: Enqueue in Q, S
4: while Q is not empty do
5: q ← Dequeue from Q
6: P ← shortest path from q to I − S
7: for all e in P do
8: Assign direction to e
9: end for
10: end while

max.
∑
∀j∈I

∑
∀i∈E

Tij

s.t.
∑
∀j∈E

Mij = 1 ∀ei ∈ E

∑
∀j∈edges adjoining to vertex vi

fj = 0 ∀vi ∈ V

fi ≤ capacityi , for every edge ei∑
∀j

Mij = 1 , for every edge ei

where Tij =
∑

k=1toK

Mk
ij

and Mij = flow fj in edge ej / sum of all out-flows from edge ei, if ej is adjacent

to ei, and the flow from ei drains into ej, and 0 otherwise. Formally,

Mij = outij ×
fj∑

∀ek∈E fk × outik

The decision variable is fi. Although, deciding Mij may also suffice. Both de-

98

ciding fi and Mij are complex problem that are time consuming even for small

networks.

6.3.2 Sensor-aware Flow Controller

Contrary to the sensor-agnostic flow controller, the sensor-aware flow controller

allows the sensors to leave the zone of interest briefly. The flow controller then re-

verses the flows in some edges to bring the sensors back to the zone of interest. This

method does not require additional pumps and may require merely throttling valves,

and adding few tanks that act as sources or sinks interchangeably. As mentioned

earlier, sensor positions are estimated by Algorithm 17. We observe the WDS peri-

odically, similar to sensor-agnostic flow controller. But, in this case, we also estimate

the sensor positions and update their locations periodically. For a period δ, we make

the following measurement:

C =
∪

∀si

∪t+δ
k=t Xi0(k) is the set of edges covered by all sensors in the interval

[t, t+ δ]

Our objective for the next δ interval is to cover the remaining edges in zone of interest

I (I is the set of edges in the zone of interest), i.e., I −C. The set of edges on which

the sensors are present at time t + δ is given by S =
∪

∀si Xi0(t + δ). We may now

consider these edges as “insertion points” of the sensors for the next interval.

Let si be the number of sensors at vertex vi at the time at which we start the flow

control. We use the definitions of T and M from the previous section. Our objective

is:

maximize
∑

∀i(1−
∏

j∈I(1−Tij))
si (6.5)

subject to

99

∑
∀j

Mij = 1 , for every edge ei

The above objective ensures that the probability that the sensors reach the zone

of interest in the time horizon is maximized. The decision variables are Mij, and the

objective is a non-linear function. However, similar to the sensor-agnostic controller,

this problem takes too long to obtain results.

Therefore, a simple mechanism to ensure that the sensors cover the remaining

area of the zone of interest is by setting the flow directions towards the zone of

interest from edges in S towards I −C edges by following the shortest path (weights

of the edges given by the cost function cr), as described in Algorithm 18.

This algorithm attempts to assign direction to every edge in the path to reach

the zone of interest. However, it may not be possible to ensure these flows. Also,

since the movement of sensors is probabilistic, it is not sufficient to ensure that there

is at least one path leading back to the zone of interest. We also need to ensure that

the probability of traversing those edges is high.

As mentioned earlier, the sensor position estimation algorithm serves as an input

to the flow controller. The flow controller tracks a reference input that is provided

by solving an optimization problem to maximize the probability that sensors reach

the zone of interest.

6.3.3 Flow Control

Pipes, pumps, reservoirs, valves etc. are the main components of a WDS. Pipes

convey water from the source to users. As water moves along the pipe, its energy gets

dissipated. Consider a pipe section with length lp (m), diameter Dp (m), and area

Ap (m2). If the difference in head between two ends of a pipe section is considered

as ∆(h), the nonlinear differential equation, describing the fluid flow behavior is:

dQp(t)

dt
= gAp(∆h− hloss(t)).

100

The total head loss in a pipe section is given as hloss(t) = hloss−fp(t) + hloss−l(t),

where hloss−fp is the friction loss in pipe section and hloss−l is the local friction loss

in sections like bends, valves etc. Friction loss in pipe sections are usually calculated

using Hazen-William equation or Darcy-Weisbach equation. According to Darcy-

Weisbach equation: hloss−fp(t) =
(

fplp
2gDpA2

p

)
Q2

p(t). According to Hazen Williams

equation: hloss−fp(t) =
(

10.71lp
CHW 1.852D4.87

p

)
Q1.852

p (t). Here, Qp (m3/s) is the flow rate in

a pipe. In Darcy-Weisbach equation, fp is the friction loss coefficient and in Hazen

William equation, CHW is the Hazen-Williams roughness coefficient. The local

friction losses mainly constitute valve loss, expressed as: hvalveloss(t) =
(

Kv

2gA2
p

)
Q2

p(t),

where Kv is the valve loss coefficient.

Pumps supply energy to water, balancing loss due to friction and elevation and are

generally described by the head versus flow characteristics. The head characteristic

of a variable speed pump is: hp(N,Qp) = A0N
2 + B0

n
NQp − C0

n2Q
2
p. Here, hp(m) is

the head, A0, B0 and C0 are constants of a pump. N (rpm) is pump speed and n is

number of pumps.

Reservoir storage enhances system flexibility, providing supplies for random fluc-

tuations in demand. When a reservoir discharges under its own head without exter-

nal pressure, the continuity equation is d(V (t))
dt

= Qi(t)−Q0(t), where Qi(m
3/s) and

Q0(m
3/s) denotes the reservoir input and output water flow rates respectively and

V (m3) is the volume of a particular reservoir.

For any WDS, the above equations provide the system dynamics. All the above

equations act as constraints in the controller. The controller must provide a solution

that satisfies all of the above equations.

We propose a standard PID (Proportional-Integral-Derivative) controller, which

is a form of lead-lag compensator with one pole at the origin and other at infinity.

The objective of the PID controller is to determine an output based on the error

101

between the desired set point and the actual value. The error is then used to adjust

some input to the process so that the error gets minimized [25]. The PID Controller

is generally represented as u = Kpe+Ki

∫
edt+Kd

de
dt
, where e is the error; u is the

input to the system; Kp is the proportional gain; Ki is the integral gain; and Kd is

the derivative gain. The gains of a PID controller are tuned using Zeigler-Nicholas,

a commonly used method, to achieve the desired values.

A single valve or a combination of valves are throttled in order to reverse the

flow in a particular pipe. That particular combination of valves is identified using

trial and error method, and for valve throttling, a PID controller is implemented.

For the PID controller, the pipe flows are considered as the state variable: X(t) =

[Q1 Q2 . . . Qn], where n is the number of pipes. The control variables are the valve

settings, U(t) = [u1 u2 . . . um] = [Kv1 Kv2 . . . Kvm], where m is the number of valves.

The goal of the controller is to change the direction flow in a specific pipe or a

combination of pipes while satisfying the aforementioned constraints. The error is

defined as the difference between actual (simulated) value Q1 and the target value

Q∗
1 of the flows. The error vector E is represented as E = [e1 e2 . . . en], i.e., =

[Q1−Q∗
1 Q2−Q∗

2 . . . Qn−Q∗
n]. Please note that when x valves are throttled, x− n

error values will be zero. The valve loss coefficient is then estimated using the PID

equation Kvi = Kpiei +Kii

∫
eidt+Kdi

de
dt
.

6.4 Sensor Controller

In this dissertation, we propose a sensor control mechanism to minimally steer the

sensors in a on-demand flow aware (FLAW-D) monitoring mode. The assumptions

we make for sensor control are:

1. The flows in the WDS are known and do not vary for a certain duration

2. We assume that sensors are inserted into edges, rather than vertices. At

102

sources, we add a virtual edge for insertion

3. We assume that there are beacons/devices that can provide control inputs to

sensors at each junction

We note here that this is the first work to steer sensors in the WDS, and since

the problem is not trivial, these assumptions need to be relaxed in further detailed

studies.

The WDS is a complex non-linear system and the movement of sensors through

this system is stochastic. To model the dynamics of sensor movement in the pipes

of a WDS and to generate control inputs to steer them is a complex task in general.

Therefore, we consider here a very simple model where it is assumed that all pipes

of the WDS are traversed in the same time T (i.e., for an edge ej of length lj and

velocity of the sensor in the pipe υj,
lj
υj

= T).

Given the above condition, we design the state of the system at time k as x(k),

given by:

x(k) =

x1,1 x1,2 . . . x1,m

x2,1 0 . . . x2,m

...
...

. . .
...

xT,1 0 . . . xT,m

where xi,j ∈ {0, 1} indicates the presence (xi,j = 1) or absence (xi,j = 0) of a sensor

at distance
i×lj
T

on edge ej.

The sensor density function is defined as fsum(x) = 1m∗x, where 1m = (11, 12, . . . , 1T)

is 1*T vector, the coverage function is defined as fcover(u) where u is a 1*m vector

103

and the j − th element of u indicates the coverage status of edge ej, given by:

uj =

 1 fsum(x)j > 0

0 otherwise

We define the current system state as the measured output y(k) = x(k), the feedback

gain function of the transducer is defined as h = fcover(fsum(y)).

6.4.1 Sensor Controller Architecture

���
������	
���

�
�

����������

�
�

� �
�

�
�

�
�
�

�

�
�	�		
	�	��

��
�

Figure 6.3: Design of the control system

As a baseline design we present the Integral Sensor Controller(ISC) which employs

the linear quadratic regulator(LQR) control algorithm, as shown in figure 6.3.

The feedback control system is defined as follows:

y(k + 1) = x(k + 1) (6.6)

e(k) = 1m − h(y(k)) (6.7)

eI(k + 1) = eI(k) + e(k) (6.8)

u(k) = u(k − 1) +KIeI(k) (6.9)

The cost function to be minimized in ISC is defined in Equation 6.10 below,

104

including the cost of sensors ui + fsum(y) and cost of control force ui and ur, where

y is the state vector, ui is the insertion control force and ur is the rotation control

force, Q and R are weighting matrices. The first part of the cost function is related

to the cost of sensor density imbalances and the second part accounts for the power

consumption for steering sensors.

J = (ui + fsum(y))
T ∗Q ∗ (ui + fsum(y)) + uT

r ∗R ∗ ur (6.10)

where ui is given by ui = (ui1, ui2, . . . , uim) where uij = 0, 1, 2, . . . indicates the

number of sensors passing through edge ej, ur is given by ur = (ur1, ur2, . . . , urm)

where urj = 0, 1, 2, . . . indicates the power consumption for sensor at edge ej steering

at the end point of the edge according to the control input.

With Q and R defined, the control parameters KI is determined by the LQR.

Q and R are constructed based on cost models for control and resource imbalances

which can be obtained through experiments. To enable real-time control, distributed

control architecture where each beacon takes role of controller locally and traditional

control method may be used to generate the control input. The connection between

these local controllers is the control reference signal which indicates those edges need

to be covered.

105

7. PERFORMANCE EVALUATION∗

To evaluate our proposed models and algorithms, we present real world proof of

concept implementations and results of our simulations in this section.

7.1 Proof-of-Concept System Implementation and Validation

We anchor our proposal to use mobile WSN for WDS monitoring into reality,

through proof-of-concept system implementations comprising mobile sensor nodes in

pipes and static beacons outside the pipes. We evaluate sensor-beacon communi-

cation in WDS using sensors placed in a water pipe and beacons placed outside as

shown in Figure 7.1(a). We also present a testbed that uses air flow to propel sensors,

as shown in Figure 7.1(b) to demonstrate sensing coverage and event localization.

7.1.1 Experimental Results to Validate Communication Model

We validate our communication model through a testbed as shown in Figure 7.1(a).

We tested RSSI on four pipes with diameters of 4′′, 6′′, 8′′, 10′′ respectively. We use

six sensors with CC2420 RF transceivers powered by Rayovac - AAA batteries for

sensors and beacons. Five sensors are fixed outside the pipe at intervals of 0.3 meter,

∗Parts of this section are reprinted with permission from “Towards Optimal Monitoring of Flow-
based Systems using Mobile Wireless Sensor Networks” by Suresh, M.A. and Zhang, W. and Gong,
W. and Rasekh, A. and Stoleru, R. and Banks, M.K., ACM Transactions on Sensor Networks,
doi: http://dx.doi.org/10.1145/2700256, 2015 Copyright c⃝ 2015 Associated Computing Machin-
ery, Inc., “A Cyber-Physical System for Continuous Monitoring of Water Distribution Systems” by
Suresh, M.; Manohar, U.; R, Anjana. G.; Stoleru, R.; Mohan Kumar, M.S., IEEE 10th Interna-
tional Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
2014 Copyright c⃝ 2014 IEEE, “Mobile Sensor Networks for Leak and Backflow Detection in Water
Distribution Systems” by Suresh, M.A.; Smith, L.; Rasekh, A.; Stoleru, R.; Banks, M.K.; Shihada,
B., IEEE 28th International Conference on Advanced Information Networking and Applications
(AINA), 2014 Copyright c⃝ 2014 IEEE, “On Event Detection and Localization in Acyclic Flow
Networks” by Suresh, M.A.; Stoleru, R.; Zechman, E.M.; Shihada, B., IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 2013 Copyright c⃝ 2013 IEEE, “Towards Optimal Event
Detection and Localization in Acyclic Flow Networks” by Suresh, M.A.; Stoleru, R.; Denton, R.;
Zechman, E.; Shihada, B., IEEE International Conference on Distributed Computing and Network-
ing (ICDCN), 2012 Copyright c⃝ 2012 Springer

106

(a) (b)

Figure 7.1: (a) Testbed to validate communication range between sensors and bea-
cons; (b) Testbed for system evaluation and a Sensor node.

and the sensor immersed under water is at the same level with the lowest sensor out-

side. The sensor in water broadcasts 3000 packets in 5 minutes for each experiment.

The average, maximum, minimum RSSI for each pipe are shown in Figure 7.2

(a)(b)(c). RSSI shows a logarithmic decrease with distance for all pipes. Although

the value of RSSI changes greatly, it is in the range of -50dbm to 10dbm for all

experiments, which can guarantee reliable communication.

From Figure 7.2 (d), we see that our log-distance path loss model can fit the

experimental data well. f(x) line in the figure fits the RSSI for 4′′ and 6′′ pipes, and

g(x) for 8′′ and 10′′ pipes. As we can notice, the pathloss exponents are 2.9 and 3.5.

We remark here that, since we do not use soil around the pipes, the path loss in real

WDS deployments may be higher. Therefore, in our theoretical models as mentioned

earlier, we consider the path loss to be 4. Any inaccuracies will only lead to a low

107

-50

-40

-30

-20

-10

 0

 10

 0 0.2 0.4 0.6 0.8 1 1.2

A
v
e
ra

g
e
 R

S
S

I
(d

b
m

)

Distance from sensor(m)

4
6
8

10

(a)

-50

-40

-30

-20

-10

 0

 10

 20

 0 0.2 0.4 0.6 0.8 1 1.2

M
a

x
im

u
m

 R
S

S
I

(d
b

m
)

Distance from sensor(m)

4
6
8

10

(b)

-50

-40

-30

-20

-10

 0

 10

 0 0.2 0.4 0.6 0.8 1 1.2

M
in

im
u
m

 R
S

S
I
(d

b
m

)

Distance from sensor(m)

4
6
8

10

(c)

 5

 10

 15

 20

 25

 30

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
R

F
 (

d
b

)

log10(r/rref)

4 inch
6 inch
8 inch

10 inch
f(x) = 29.05x + -8.60

g(x) = 35x + -10

(d)

Figure 7.2: (a) Average, (b) Maximum, and (c) Minimum RSSI as the distance of
the sensor from the beacon is varied. (d) The path loss for different pipe lengths and
r. The rrefs for 4

′′ pipe is 0.051m, 6′′ pipe is 0.076m, 8′′ pipe is 0.102m, 10′′ pipe is
0.127m

CRb.

7.1.2 Proof-of-concept Testbed

For mobile sensors and beacons we use TI eZ430-RF2500 motes powered by

CR2320 cell batteries. The components of a sensor are shown in Figure 7.1(b).

The TI eZ430 and the battery can easily fit in a golf ball with 3.8cm diameter. A

golf ball containing the mote and the battery, padded with sponge, can roll well

inside the pipe. To generate network flow, we use an industrial vacuum cleaner. A

beacon is a TI eZ430-RF2500 mote connected to a laptop.

108

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

S
e
n
s
in

g
 C

o
v
e
ra

g
e

Scenario

e1
e2
e3
e4
e5
e6
e7
e8
e9

e10
e11
e12

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

L
o

c
a

li
z
a

ti
o

n
 S

u
c
c
e

s
s
 R

a
te

Scenario

(b)

Figure 7.3: (a) Sensing Coverage for 4 scenarios. (b) Localization success rate.

The sensor nodes and beacons are programmed (using the C language) with func-

tionality as described in Sections 4-5 and presented in Figure 3.1. Due to the design of

our testbed (i.e., the absence of acoustic communication), we employ only communi-

cation between sensors and beacons, which is RF in the 2.4GHz range (note here that

testbeds in acoustic communications are complex to design and evaluate [3] [1] [22]).

As described in Section 4, a beacon periodically broadcasts an RF-HELLO packet,

containing its ID and the time, for time synchronization with sensor nodes. When

a sensor node receives an RF-HELLO packet from a beacon, it broadcasts the col-

lected data. Even if there is nothing to report, the sensor sends a HELLO message

to the beacon. Events are emulated as RF signals by using motes that broadcast

periodically. In our sensing model, rref , as described in Section 3.3 is 0m.

At the MAC layer, we use the IEEE standard 802.15.4 protocol. The mote

backs off randomly and at the end of the backoff, if two consecutive clear channel

assessments indicate a clear channel, the mote transmits. In our experiments we

noticed a relatively short battery lifetime (∼10 minutes, due to reduced capacity of

the CR2320 battery). We therefore use Low Power Listening (LPL) with a duty cycle

109

v2 v1

v4 v3

B1

B2

X

v1v2

X

v2 v1

v4

B1

B2

X

Scenario 1 Scenario 2 Scenario 3

B1B2

Figure 7.4: Scenarios for event localization. Scenario 4 is the same as Scenario 3,
but with a longer CRb. X indicates an event.

of 10% to prolong the battery life to ∼30 minutes. The TI ez430-rf2500 platform

has 32KB flash memory and 1KB RAM. Our implementation for the beacon nodes

(∼2,600 lines of code) uses 301B of RAM and 4,954B of program memory. The

sensor node implementation (∼3,000 lines of code) uses 610B of RAM and 5,530B

of program memory.

To validate our Sensor Deployment Algorithm we ran four sets of experiments

(i.e., scenarios) on the testbed shown in Figure 7.1(b). Each scenario had different

insertion and collection points and were repeated 5 times with events placed on all

edges. We used a total of 14 sensors for each experiment.

The results for the average sensing coverage for each scenario over 5 runs are

shown in Figure 7.3 (a). The e1 . . . e12 correspond to the 12 edges in the WDS.

Covering a single edge corresponds to a sensing coverage of 1
12
. The figure also shows

the sensing coverage for each edge, averaged for the 5 runs. The expected FN in

scenarios 1, 2, 3, and 4 with 14 sensors are 14.5%, 23.9%, 8.4% and 7.5%, respectively,

obtained by estimating the flows on all edges in all scenarios. Edge e3 in scenarios 1

and 4 and edge e8 in scenarios 2 and 3 had very low flow. They were therefore not

included in the zone of interest while calculating the sensing coverage and FN in 1,

110

4 and 2, 3 respectively.

To validate our Event Localization Algorithm, we ran 4 sets of experiments (i.e.,

scenarios) on a subset of the testbed shown in Figure 7.1(b). The four scenarios

are shown in Figure 7.4. For each scenario, our results depicted in Figure 7.3 (b)

represent averages of 10 experiments. The actual localization error achieved obtained

by time stamps of reported data was 0.2m for scenarios 1 and 2, 0.64m for scenario

3, and 0.5m for scenario 4 on an average. We observe that the localization success

rate (1 - FN , for false negatives due to failure in communication) was lower than

100% in Scenarios 1-3, when CRb, the communication range of beacons, was small.

Several factors contributed to this, such as sensor speed (the sensor crossed the

beacon without waking up) and the structure of the pipes (bends, and irregular

communication ranges). In Scenario 4 all events were successfully localized, due to

the higher CRb. We therefore conclude that mobile sensors need to have a higher

transmit power, especially if LPL is used, to ensure that communication failures do

not lead to false negatives.

7.2 Large Scale Simulation Platform: Cyber-Physical Water Distribution System

Simulator (CPWDSim))

Since the evaluation of our algorithms and protocols in a real world WDS, or in a

testbed is tedious and time consuming, we developed a simulator called CPWDSim.

CPWDSim is a simulator specifically designed for WDS, as depicted in Figure 7.2.

CPWDSim includes a Network Model, implementation of Algorithms and a Simula-

tor. CPWDSim simulates the movement of sensors in pipes, given a Network Model,

which contains the structure of the network and the flows. The Network Model is

generated using: a) the model of a WDS in a city (e.g., for this we use Micropo-

lis [10]); and b) flow rates, flow velocity and demands at end points in the network,

111

CPWDSim

��������	

����������	
�����	����	

�����

�����

������

������

������������

�����

�������

���������

�������

���������

������

����������

������ �������	

�����

������	������	��	

�����	��������

�����	������������	

��������	

�����	����� ����

!��������

Figure 7.5: CPWDSim design

Pumpstation

Reservoir

Pipe

I3
|V| = 70,

|E| = 84,

BI = 40.5

I1
|V| = 35,

|E| = 44,

BI = 51.5

I2
|V| = 65,

|E| = 86,

BI = 35.5

Figure 7.6: Micropolis [10] with zones of interests I1, I2, and I3.

for a given time of the day (e.g., report files from EPANET [27]).

When the CPWDSim is started, it accepts the network model, flows, and de-

mands as inputs from EPANET. These inputs initialize the Network Model. This

network model is used to determine the placement of sensors and beacons, and the

112

IN1048

IN1037 IN897

IN467

(a)

IN 901

IN1534IN 916

IN 835

(b)

IN1110

IN1039

IN1044

IN1124

(c)

Figure 7.7: Zoomed in views of (a) Zone I1, (b) Zone I2, (c) Zone I3

communication parameters for the sensors (i.e., the pi for each leader). During the

simulation, the movement and communication of each sensor for one hour is com-

puted. After each hour, if the user has chosen to control the flows, the algorithms

relating to flow control are run. The flows for the next hour are either computed

using valve settings from the flow controller, or read from a file. At the end of the

simulation duration, the results are written into an output file.

We evaluate our algorithms on three zones of interest, I1, I2, and I3, as depicted

in Figure 7.2 (zoomed in structures of the zones are in Figure 7.7).

113

7.3 Performance Evaluation of Communication

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 10 20 30 40 50 60 70 80

C
o
lli

s
io

n
 R

a
te

 [
%

]

CRs [m]

nodes = 246
nodes = 173
nodes = 132

(a)

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 10 20 30 40 50 60 70 80

C
o

lli
s
io

n
 R

a
te

 [
%

]

CRs [m]

nodes = 1139
nodes = 791
nodes = 594

(b)

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 0 10 20 30 40 50 60 70 80

C
o
lli

s
io

n
 R

a
te

 [
%

]

CRs [m]

nodes = 1407
nodes = 1001
nodes = 737

(c)

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80 90 100

O
p

p
o

rt
u

n
it
ie

s
 m

is
s
e

d
 [

%
]

CRs [m]

Algorithm 1
TDMA

No collision

(d)

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80 90 100

O
p

p
o

rt
u

n
it
ie

s
 m

is
s
e

d
 [

%
]

CRs [m]

Algorithm 1
TDMA

No collision

(e)

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80 90 100

O
p
p
o
rt

u
n
it
ie

s
 m

is
s
e
d
 [
%

]

CRs [m]

Algorithm 1
TDMA

No collision

(f)

Figure 7.8: Percentage of MAC layer collisions, by varying CRs and FN : (a) I1; (b)
I2; (c) I3. Percentage of communication opportunities missed, by varying CRs and
FN on I3: (d) FN = 30%; (e) FN = 20%; and (f) FN = 10%.

114

Metrics: (i) rate of collisions during group communication and the percentage

of communication opportunities missed (Algorithm 1); (iii) average CG (to evaluate

Algorithm 6, we define CG as the ratio of group merges among sensors, and the total

number of group merges possible);

7.3.1 Group Communication

To evaluate Algorithm 1, we consider the rate of collisions and percentage of

communication opportunities missed. Rate of collisions is important to evaluate,

since collisions will cost energy and cause information to be potentially lost. To

deduce if a communication opportunity was missed, we keep track of group merges,

group splits, and encounters with beacons. This is important because missed com-

munication opportunities may translate to false negatives. We consider the sensor

deployment as derived for a non-diffusive event scenario. We note here that the

initial sensor deployment only determines the initial network topology.

To evaluate the rate of collision, we vary the communication range CRs and the

number of nodes (obtained for FN = 10%, 20%, and 30% and SR=10m). The

results are depicted in Figure 7.8(a,b,c). Interestingly, we observe that increasing

the number of sensors and CRs increases collisions, but it is always between 1.5%

and 4.2%. Different zones of interests (as shown in Figure 7.7) have different collision

rates, because of the number of sensors inserted and the graph structure of I.

The evaluation of percentage of communication opportunities missed is presented

in Figure 7.8(d,e,f). We compare Algorithm 1 against a TDMA protocol, where sen-

sors broadcast during predetermined time slots, and against a hypothetical scenario

where sensors can decode the packets even if there was a collision. We notice that

increasing CRs reduces the percentage of communication opportunities missed, be-

cause the sensors have more time per contact. Another important observation is that

115

the gap in the communication opportunities missed between Algorithm 1 and the

hypothetical scenario arises solely because of collisions.

The above evaluation highlights the importance of a MAC and group management

algorithm. It also emphasizes that having a sufficiently large CRs is important to

ensure reliability of data transfer among sensors.

 0

 5

 10

 15

 20

 25

1 2 3

P
c

Scenario

CR=10m, CPWDS
CR=10m, STLohi

CR=20m, CPWDS
CR=20m, STLohi

(a)

 0

 20

 40

 60

 80

 100

1 2 3

P
tx

Scenario

CR=10m, CPWDS
CR=10m, STLohi

CR=20m, CPWDS
CR=20m, STLohi

(b)

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3

P
c

Scenario

CR=10m, CPWDS
CR=10m, STLohi

CR=20m, CPWDS
CR=20m, STLohi

(c)

 0

 20

 40

 60

 80

 100

 120

1 2 3

P
tx

Scenario

CR=10m, CPWDS
CR=10m, STLohi

CR=20m, CPWDS
CR=20m, STLohi

(d)

Figure 7.9: Impact of CR, Scenario on Pc and Ptx during Morning (a)-(b) and
Afternoon (c)-(d).

We evaluate the performance of continuous monitoring of WDS with our algo-

rithms/protocols in CPWDSim on Micropolis [10] virtual city.

The flows in the main pipes of Micropolis change significantly every hour. There-

fore, we use reports of the flows in the edges for each hour in the simulated 12 hours.

116

 0

 5

 10

 15

 20

 25

1 2 3

P
c

Scenario

SR=25m, CPWDS
SR=25m STLohi

SR=40m, CPWDS
SR=40m, STLohi

(a)

 0

 20

 40

 60

 80

 100

1 2 3

P
tx

Scenario

SR=25m, CPWDS
SR=25m, STLohi

SR=40m, CPWDS
SR=40m, STLohi

(b)

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3

P
c

Scenario

SR=25m, CPWDS
SR=25m, STLohi

SR=40m, CPWDS
SR=40m, STLohi

(c)

 0

 20

 40

 60

 80

 100

 120

1 2 3

P
tx

Scenario

SR=25m, CPWDS
SR=25m, STLohi

SR=40m, CPWDS
SR=40m, STLohi

(d)

Figure 7.10: Impact of SR, Scenario on Pc and Ptx during Morning (a)-(b) and
Afternoon (c)-(d).

We simulated 96 different set of parameters, 10 times each, with different random

seed values and a simulation duration of 6 hours, where the flows change every 1

hour. Our simulation results plot mean values. Due to the fact that, to the best

of our knowledge no comparable system exists, we chose to evaluate the individual

components (communication, computation and control) of our proposed CPWDS.

For comparison with state of the art in communication we chose T-Lohi [84].

The metrics we use for evaluating our algorithms are: (i) percentage of collisions

(Pc) - the percentage of transmissions that result in collisions; (ii) percentage of data

transferred successfully (Ptx) - the percentage of nodes that have transferred their

data to a beacon, or another sensor node; and (iii) valve settings and error for our

117

controller.

 0

 5

 10

 15

 20

1 2 3

P
c

Scenario

CR=10m, Without Global
CR=10m, With Global

CR=20m, Without Global
CR=20m, With Global

(a)

 0

 20

 40

 60

 80

 100

 120

1 2 3

P
tx

Scenario

CR=10m, Without Global
CR=10m, With Global

CR=20m, Without Global
CR=20m, With Global

(b)

 0

 0.5

 1

 1.5

 2

1 2 3

P
c

Scenario

CR=10m, Without Global
CR=10m, With Global

CR=20m, Without Global
CR=20m, With Global

(c)

 0

 20

 40

 60

 80

 100

 120

1 2 3

P
tx

Scenario

CR=10m, Without Global
CR=10m, With Global

CR=20m, Without Global
CR=20m, With Global

(d)

Figure 7.11: Impact of CPWDS Computation (i.e., Global View information), CR,
and Scenario on Pc and Ptx during Morning (a)-(b) and Afternoon (c)-(d).

The parameters we vary are: (i) Scenario, i.e., number of sensors deployed and

their deployment locations; (ii) Time Period, i.e., time of the day, with varying WDS

flows; (iii) SR - Sensing ranges for sensors (i.e., distance through the pipes up to

which an event, such as a leak or chemical contamination, can be sensed); and (iv)

CR - Communication range among sensors (the distance through the pipes up to

which a receiver can decode a message transmitted by a sensor). We simulate 3

Scenarios. Scenario 1 has 67 sensors initially deployed in 11 locations, scenario 2

has 124 nodes initially deployed in 23 locations, and scenario 3 has 98 nodes initially

118

 0

 5

 10

 15

 20

1 2 3

P
c

Scenario

SR=25m, Without Global
SR=25m, With Global

SR=40m, Without Global
SR=40m, With Global

(a)

 0

 20

 40

 60

 80

 100

 120

1 2 3

P
tx

Scenario

SR=25m, Without Global
SR=25m, With Global

SR=40m, Without Global
SR=40m, With Global

(b)

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3

P
c

Scenario

SR=25m, Without Global
SR=25m, With Global

SR=40m, Without Global
SR=40m, With Global

(c)

 0

 20

 40

 60

 80

 100

 120

1 2 3

P
tx

Scenario

SR=25m, Without Global
SR=25m, With Global

SR=40m, Without Global
SR=40m, With Global

(d)

Figure 7.12: Impact of CPWDS Computation (i.e., Global View information), SR,
and Scenario on Pc and Ptx during Morning (a)-(b) and Afternoon (c)-(d).

deployed in 24 locations. For Time Period, we have Morning and Afternoon, 6

hours each. The flows in pipes corresponding to these 12 hours are obtained from

Micropolis. The average length of an edge in Micropolis is 10m. We placed beacons

at vertices, with an average separation of 30m. The time slot, ∆ is chosen according

to the communication range among sensors.

7.3.2 Impact of SR, CR, Scenario and Time Period on CPWDS Communication

We consider the percentage of collisions (Pc) and percentage of data successfully

transferred (Ptx) for the three Scenarios, two Time Periods, two sensing ranges and

two communication ranges. We compare our MAC/group communication mechanism

with the state of the art MAC protocol for underwater short range communication,

119

T-Lohi [84] in which nodes contend to report their data to each other every 10 time

slots (e.g., 100ms when communication range is 10m). In a network of 1,000 nodes the

T-Lohi protocol simulation takes several minutes to run and is very inefficient, since

the nodes contend for the channel simultaneously. We therefore evaluate scenarios

with at most 124 nodes.

The evaluation of our group communication protocol for communication ranges

CR of 10m and 20m and sensing range SR=25m is shown in Figure 7.9. As shown,

increasing the CR increases the node density, thereby increasing Pc. However, both

T-Lohi and our protocol overcome this problem. Interestingly, Ptx is higher for our

algorithm than T-Lohi in most cases. Whenever T-Lohi has higher Ptx, it also has a

very high Pc. We observe that the Time Period, which directly affects the topology

of the network, impacts Pc and Ptx. In Figure 7.10, the CR=10m. When SR is

increased, the number of followers that have data to report increases. However, the

results do not reflect a direct increase in Pc. It is interesting to note that Ptx is higher

for our algorithm than for T-Lohi in most cases. In the case where SR = 25m in

the Afternoon Time Period of Scenario 3, the sensors move such that the number of

group splits and merges are high. That is the reason for the high Pc. However, Ptx

is still high.

7.3.3 Impact of CPWDS Computation (Global View) on CPWDS Communication

For evaluating the computational aspect (i.e., the global view algorithm), we

compare Pc and Ptx with and without using global information for the three Scenar-

ios, by varying CR, SR, and the Time Period of day. Upon receiving global view

information, the leader modifies its broadcast interval for the HELLO message to

the least allowable if it predicts group splits or beacon encounters. Otherwise it

chooses a random broadcast interval to prepare for group merges.

120

Algorithm 14 consistently helps increase Ptx, although it does not always decrease

Pc as shown in Figures 7.11 and 7.12. In Figure 7.11, SR = 10m. Figure 7.12 has

CR = 10m. Interestingly, Pc is always lower than 15% when global view information

is used. These results clearly demonstrate that the frequency with which the leader

sends theHELLO message affects Pc and Ptx and show that using global information

from beacons increases the efficiency of communication. As we can see in Figure 7.12,

Scenario 3, SR = 25m has a very high Pc without global view information. This is

because there are many group splits and merges in this scenario. The global view

data in this case significantly reduces the Pc while maintaining a high Ptx.

7.4 Performance Evaluation of Computation

The metrics we used for evaluating our proposed algorithms were: (i) the number

of sensors and sensing coverage (Algorithm 5); (ii) the number of beacons and the

achieved localization error (Algorithms 9 and 12). The parameters we were varied

were: (i) CRs; (ii) CRb; (iii) SR and the sensing model; (iv) FN ; (v) LE; and (vi)

the zone of interest I. The sizes and badness of the zones of interest are also depicted

in the figure. The length of the diagonal of I1 is 701m, I2 is 1,349m, and I3 is 1,100m.

To evaluate the impact of sensing range for non-diffusive events on our algorithms,

we use a parameter SR, which is the distance r up to which S(r) > ΘS in the absence

of noise (i.e., r = (S(0)
ΘS

)
1
α rref). In our simulations, we set ΘS = 10−4, S(0) = 1,

α = 1, β = 0 and rref to 0m, 0.001m, and 0.0025m, giving us SR of 0m, 10m, and

25m respectively. Evaluation of the group communication algorithms are done on

one of these scenarios.

To evaluate the diffusive sensing model, we assume that the sensors are inserted

after a certain time period after which the event occurred, τ . In this dissertation,

we use data from EPANET to provide the range of the event in terms of the con-

121

 12

 14

 16

 18

 20

 22

 24

30 50 70 90

P
a
th

 l
o
s
s
 [
d
B

]

CRs [m]

10KHz
20KHz

100KHz

(a)

 28

 30

 32

 34

 36

 38

 40

 42

 44

30 50 70 90

P
a

th
 l
o

s
s
 [

d
B

]

CRs [m]

10KHz
20KHz

100KHz

(b)

Figure 7.13: HA at varying distances for different frequencies of communication in
(a) Straight pipes; (b) Pipes with bends

centration of the contaminant in the pipes of a WDS. When τ is provided as an

input to EPANET, it provides the concentration of the contaminant in each edge

after τ hours. We vary τ as 2, 4, and 6 hours, as well as the sensing threshold, ΘS of

the sensors as 1mg/l, 5mg/l, 10mg/l, and 20mg/l. Both these parameters vary the

sensing range of the sensors.

To choose the CRs for our simulations, we derive the results of using the path

loss model, HA. [29] derives the absorption factor for sound waves in sea water,

where the expression for absorption due to pure water is defined as: A3P3f
2, where

A3 = 3.964×10−4−1.146×10−5T +1.45×10−7T 2−6.5×10−10T−10dBkm−1KHz−1;

P3 = 1−3.83×10−5D+4.9×10−10D2,D being the depth of water; f is the frequency of

the sound wave. From a testbed that has been developed specifically for underwater

acoustic communication experiments [3], we consider the frequency of communication

of the order of 20KHz. Using the communication model from Section 4, for 10 KHz,

20 KHz, and 100KHz frequency of communication, the path loss HA for distances

30m and 60m, for pipe with and without bends are as shown in Figure 7.13. As the

figure suggests, at 100 KHz, the path loss is the highest. Based on a desired data

122

rate and the range of communication, researchers may use this analysis to determine

the appropriate frequency of communication. This also provides us suitable values

of CRs to use in our evaluation. In our experiments, we use CRs between 10m and

90m.

 0.6

 0.8

 1

10 20 30 40 50 60 70

D
e
te

c
ti
o
n
 r

a
te

Cost

Linear
Joint

Greedy

(a)

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o

v
e

ra
g

e

Cost

Linear
Joint

Greedy

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 a

le

Cost

Linear
Joint

Greedy

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

N
o

rm
a

liz
e

d
 s

le

Cost

Linear
Joint

Greedy

(d)

Figure 7.14: Model results for the Net1 example shown in Figure 3.7, with a uni-
form distribution of the leaks for (a) Detection rate, (b) Coverage, and (c) Average
Localization Error, (d) System Localization Error

We divide the evaluation into three parts: (i) evaluation on the Net1 example; (ii)

evaluation on the Micropolis example; (iii) evaluation of sensing coverage solutions for

cases where localization is not required. We perform evaluations on the Net1 example

to verify the accuracy and robustness of our models and algorithms. Micropolis

123

 0.6

 0.8

 1

10 20 30 40 50 60 70

D
e
te

c
ti
o
n
 R

a
te

Cost

Linear
Joint

Greedy

(a)

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o

v
e

ra
g

e

Cost

Linear
Joint

Greedy

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 a

le

Cost

Linear
Joint

Greedy

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

N
o

rm
a

liz
e

d
 s

le

Cost

Linear
Joint

Greedy

(d)

Figure 7.15: Model results for the Net1 example shown in Figure 3.7, with a ran-
dom distribution of the leaks for (a) Detection rate, (b) Coverage, and (c) Average
Localization Error, (d) System Localization Error

evaluations are done to ensure the scalability of our algorithms to bigger networks.

We first present our evaluations on a simple EPANET example, Net1, depicted in

Figures 7.14 - 7.18. All the results are averaged over 30 runs each, with leaks being

present on each of the pipes of the WDS. We run sensitivity analysis by varying the

leak distribution, sensor-beacon cost ratio, and number of simulation runs. We also

check robustness of the formulations by adding restrictions on sensor and beacon

placement locations.

In Figure 7.14, the leak distribution is uniform (i.e., the leak probability is the

same in all edges), whereas in Figure 7.15, the leak distribution is random (i.e.,

124

 0.6

 0.8

 1

2 3 4 5 6 7 8 9 10

D
e
te

c
ti
o
n
 r

a
te

Cost Ratio

Linear
Joint

Greedy

(a)

 0.6

 0.8

 1

2 3 4 5 6 7 8 9 10

C
o

v
e

ra
g

e

Cost Ratio

Linear
Joint

Greedy

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6 7 8 9 10

N
o
rm

a
liz

e
d
 s

le

Cost Ratio

Linear
Joint

Greedy

(c)

Figure 7.16: Model results for the Net1 example shown in Figure 3.7, while varying
cost ratio between sensors and beacons for (a) Detection rate, (b) Coverage, and (c)
System Localization Error

sampled from a uniform random distribution where each pipe has different leak

probabilities). In both cases, the cost ratio of a beacon to a sensor is 3. As the

figures suggest, the general tendency is for the coverage and detection rate to increase,

whereas the sle and ale reduce. This is expected, since when more budget is available,

it is possible to afford more devices to improve sle and ale, and that in turn improves

the coverage and detection rate.

In Figure 7.14, we notice that the normalized sle for the linear case does not de-

cline smoothly. This is because the objective function in the linear problem formula-

tion is to maximize the minimum sensing coverage with optimizing sensor placement

125

 0.6

 0.8

 1

1 2 3 4 5 6

D
e
te

c
ti
o
n
 r

a
te

Scenario

Joint
Greedy
Linear

(a)

 0.6

 0.8

 1

1 2 3 4 5 6

C
o

v
e

ra
g

e

Scenario

Joint
Greedy
Linear

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6

N
o
rm

a
liz

e
d
 s

le

Scenario

Joint
Greedy
Linear

(c)

Figure 7.17: Model results for the Net1 example shown in Figure 3.7, when location
of beacons and sensors may be restricted for (a) Detection rate, (b) Coverage, and
(c) System Localization Error

first, and to minimize the maximum ale with optimizing beacon placement next. This

places a lot of emphasis on sensor placement thus deviating from the real optimum

for the original joint problem. This indicates that although the linear formulation is

simple and easy to solve, it does not provide the best result in practice.

Figure 7.16 illustrates the sensitivity of performance metrics to the beacon-sensor

cost ratio. The cost budget is set to be 50. Normalized sle increases overall with

increasing the cost ratio. This is because fewer beacons are placed. Fewer beacons

lead to an increased ale, because there are more pipes between each of the beacon

pairs. In case of a cost ratio of 2, the joint formulation places beacons at all vertices,

126

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

D
e
te

c
ti
o
n
 R

a
te

runs

Linear
Joint

Greedy

(a)

 0.95

 1

10 20 30 40 50 60 70 80 90 100

C
o

v
e

ra
g

e

runs

Joint
Greedy
Linear

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

N
o
rm

a
liz

e
d
 s

le

runs

Joint
Greedy
Linear

(c)

Figure 7.18: Model results for the Net1 example shown in Figure 3.7, for different
number of simulation runs for (a) Detection rate, (b) Coverage, and (c) System
Localization Error

thereby spending less on sensors, which is determined to be the optimal for that

cost ratio. This leads to a higher coverage, and a lower sle for the cost ratio of

3. However, the greedy formulation is able to maintain an increasing trend in sle

because by nature, it optimizes the average coverage and localization errors. Above

a cost ratio of 5, the trend is more uniform over all formulations.

We test robustness of our solution by adding constraints to the placement of

beacons and sensors, as shown in Figure 7.17. The nodes that are restricted are as

described in Table 7.1. The cost budget is set to be 50.

Restricting the placement of beacons and sensors harms the coverage and de-

127

Table 7.1: Scenarios for which sensor and beacon placements are restricted
Scenario Beacon Sensor

restriction restriction
1 12, 21 12, 22
2 11, 12, 21 11, 12, 22
3 11, 12, 21, 31 11, 12, 21, 31
4 9, 11, 12, 21, 31
5 9, 11, 12, 21, 31
6 9, 11, 12, 21, 31 9, 11, 12, 21, 31

tection rate as expected. But mainly, with a higher cost, the beacon placement

restriction affects sle more than the sensor placement restriction. It is observed that

when both sensor and beacon placement are restricted severely (Scenario 6), the

beacons are deployed at all possible vertices, even though it reduces the number of

sensors slightly as compared to a case when there are fewer restrictions (Scenario 3).

The obtained coverage, detection rate, and sle values for varying number of runs,

are shown in Figure 7.18. The cost budget is set to 50. However, the error bars for

coverage gradually reduce. In case of the normalized sle, the error bars are wide

because the edge localization errors are different for each edge. Moreover, if the leak

is not detected, the normalized sle is 1, thereby increasing the variance in the results.

The median length of edges in all three zones of interest is ∼10m. We add noise

(mean µ = 0m and a variance σ2 = 1m) to sensing and communication ranges, SR,

CRs, and CRb.

7.4.1 Sensor Placement

First, we evaluate the Sensor Deployment Algorithm (Algorithm 5) by varying

parameters that influence sensor deployment, namely the false negative rate FN ,

SR and the Zone of Interest. We then evaluate the Time of Deployment Algorithm

(Algorithm 6) by comparing against other algorithms. The evaluations are performed

128

 50

 100

 150

 200

 250

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

SR=25m
SR=10m
SR=0m

Simple greedy

(a)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

40 30 20 10

#
 s

e
n

s
o

rs

FN [%]

SR=25m
SR=10m
SR=0m

Simple greedy

(b)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

SR=25m
SR=10m
SR=0m

Simple greedy

(c)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

SR=25m
SR=10m

SR=0m
Simple greedy

(d)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

SR=25m
SR=10m

SR=0m
Simple greedy

(e)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

40 30 20 10

S
e
n
s
in

g
 C

o
v
e
ra

g
e

FN [%]

SR=25m
SR=10m
SR=0m

Simple greedy

(f)

Figure 7.19: # sensors required to achieve FN for non-diffusive events, given SR
and: (a) I1; (b) I2; (c) I3. Achieved Sensing Coverage for different FN , SR in: (d)
I1; (e) I2; (f) I3.

for both diffusive and non-diffusive events. In case of diffusive events, τ is varied too.

For a given Zone of Interest, FN and SR, the number of sensors inserted is

deterministic, and is depicted in Figures 7.19(a,b,c) (i.e., without error bars). Results

129

 5

 10

 15

 20

 25

 30

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(a)

 20

 40

 60

 80

 100

 120

 140

40 30 20 10

#
 s

e
n

s
o

rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(c)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(d)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(e)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e
n
s
in

g
 C

o
v
e
ra

g
e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(f)

Figure 7.20: # sensors required to achieve FN , given SR and: (a) I1; (b) I2; (c) I3.
Achieved Sensing Coverage for different FN , SR in: (d) I1; (e) I2; (f) I3 when for τ
= 2 hours.

evaluating sensing coverage are shown in Figures 7.19(d,e,f). From Figures 7.19(a),

(b), and (c), as expected, we observe that the required number of sensors increases

as we decrease FN . We also notice that when SR is high (i.e., the event can be

130

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(a)

 10

 20

 30

 40

 50

 60

 70

 80

40 30 20 10

#
 s

e
n

s
o

rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(b)

 10

 20

 30

 40

 50

 60

 70

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(c)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(d)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(e)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e
n
s
in

g
 C

o
v
e
ra

g
e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(f)

Figure 7.21: # sensors required to achieve FN , given SR and: (a) I1; (b) I2; (c) I3.
Achieved Sensing Coverage for different FN , SR in: (d) I1; (e) I2; (f) I3 when for τ
= 4 hours.

detected from a longer distance from the source of the contaminant) the number of

sensors required to ensure a given FN dramatically reduces. In I3, increasing SR

from 10m to 25m for FN = 10% decreases the number of sensors by 91 times and

131

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(a)

 10

 20

 30

 40

 50

 60

 70

 80

40 30 20 10

#
 s

e
n

s
o

rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(b)

 5

 10

 15

 20

 25

 30

40 30 20 10

#
 s

e
n
s
o
rs

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(c)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(d)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e

n
s
in

g
 C

o
v
e

ra
g

e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(e)

 0.4

 0.6

 0.8

 1

 1.2

40 30 20 10

S
e
n
s
in

g
 C

o
v
e
ra

g
e

FN [%]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1 mg/l

(f)

Figure 7.22: # sensors required to achieve FN , given SR and: (a) I1; (b) I2; (c) I3.
Achieved Sensing Coverage for different FN , SR in: (d) I1; (e) I2; (f) I3 when for τ
= 6 hours.

increases the sensing coverage by 1%. Although a decrease is expected, it is very

interesting to note the factor of decrease. This means that investing a little more on

sensors to get a higher sensing range can translate to a dramatic cost reduction.

132

Figures 7.19(d), (e), and (f) show that Sensing Coverage improves for lower values

of FN . This is because we ensure that sensors inserted will cover every edge with

at least 1-FN probability. An interesting observation is that for the same FN

and SR, the number of sensors inserted in I2 is smaller, and the sensing coverage

achieved is higher than the number of sensors inserted and sensing coverage achieved,

respectively, in I3, although the number of edges in I2 is higher. This is because I2

has a lower badness than I3. Since I1 is significantly smaller, the number of sensors

inserted is smaller than I2 and I3.

In the older version of the CPWDSim simulator, we used a simpler greedy algo-

rithm, where the weights for the heuristic are represented for every vertex, rather

than vertex pairs, and SR is 0m (binary sensing). We call this the “simple greedy”

algorithm. Simple greedy has an additional tuning parameter α. We compare the

number of sensors deployed and sensing coverage achieved in Simple greedy for α = 0

and degree of coverage 1− FN to those obtained for SR = 0m in CPWDSim. The

sensing coverage of Simple greedy on I3, 45.6% lesser than CPWDSim using 17.7%

fewer nodes on an average. On the contrary, in I2, Simple greedy has a sensing

coverage of 8.2% lesser than CPWDSim using 166% more nodes on an average. This

erratic difference is due to the difference in badness of I2 and I3, making Simple

greedy unsuitable for large networks with high badness.

The number of sensors inserted, and the sensing coverage for for τ = 2, 4, and 6

hours for diffusive events are presented in Figures 7.20, 7.21, and 7.22 respectively.

For smaller τ , a larger number of sensors are inserted, since the event has not yet

propagated through the system. Very interestingly, the trend of reduction in number

of sensors with the decrease in FN is not apparent because, unlike the non-diffusive

sensing model, the event may not be propagated uniformly in the system. Another

very interesting result is that the trend of increasing Sensing Coverage is not appar-

133

 0

 20

 40

 60

 80

 100

 120

10 20 30 40

C
G

 [
%

]

CRs [m]

Insert all at once
Algorithm 6

Insert at random times
Insert periodically

(a)

 0

 20

 40

 60

 80

 100

 120

10 20 30 40

C
G

 [
%

]

CRs [m]

Insert all at once
Algorithm 6

Insert at random times
Insert periodically

(b)

 0

 20

 40

 60

 80

 100

 120

10 20 30 40

C
G

 [
%

]

CRs [m]

Insert all at once
Algorithm 6

Insert at random times
Insert periodically

(c)

Figure 7.23: Evaluation of number of possible contacts explored by the sensors de-
pending on their times of insertion, with the non-diffusive sensing model, for various
CRs and the algorithm used for: (a) I1; (b) I2; (c) I3

ent, and the results have a high variance because the number of sensors inserted is

fewer, and a single sensor failing to cover any edge leads to a larger number of edges

to remain uncovered. This is also the reason why the trends of increasing sensing

coverage and reduced number of nodes with decrease in FN is more noticeable when

the sensing threshold, ΘS is high.

We now compare the Time of Deployment algorithm (Algorithm 6) to three other

algorithms: (i) all sensors are inserted at the same time; (ii) the time of deployment

of a sensor is randomly chosen; (iii) sensors are grouped and inserted periodically;

the period is determined by the number of sensors inserted and the duration of the

134

 0

 20

 40

 60

 80

 100

 120

10 20 30 40

C
G

 [
%

]

CRs [m]

Insert all at once
Algorithm 2

Insert at random times
Insert periodically

(a)

 0

 20

 40

 60

 80

 100

 120

10 20 30 40

C
G

 [
%

]

CRs [m]

Insert all at once
Algorithm 2

Insert at random times
Insert periodically

(b)

 0

 20

 40

 60

 80

 100

 120

10 20 30 40

C
G

 [
%

]

CRs [m]

Insert all at once
Algorithm 2

Insert at random times
Insert periodically

(c)

Figure 7.24: Evaluation of number of possible contacts explored by the sensors de-
pending on their times of insertion, with the diffusive sensing model, for various CRs

and the algorithm for: (a) I1; (b) I2; (c) I3

simulation. We investigate how CRs affects our algorithm. The results are depicted

in Figure 7.23 for non-diffusive events, and Figure 7.24 for diffusive. Here, FN and

SR are set to 10% and 10m respectively.

From Figure 7.23, it is clear that Algorithm 6 outperforms the other algorithms

on I1, I2, and I3. We observe that increasing CRs increases CG, since sensors do not

need to be in close proximity to communicate, given a large communication range.

The importance of time of deployment and communication among sensors is clear in

this evaluation.

Figure 7.24 shows that except for I3, Algorithm 6 performs better than the other

135

algorithms. This is because the number of sensors is smaller, and concentrated in

a smaller area than the non-diffusive case. Also, we observed that the number of

possible contacts were low. Therefore, a single missed communication leads to a

large reduction in CG. As observed in the sensor deployment results, the variance

on the results are high.

 0.6

 0.7

 0.8

 0.9

 1

14 16 27 42 100 119 156 225

A
c
h
ie

v
e
d
 A

S
C

nodes

MNS

MASC

(a)

 0.6

 0.7

 0.8

 0.9

 1

83 84 248 287 522 683 919 1328

A
c
h

ie
v
e

d
 A

S
C

nodes

MNS

MASC

(b)

 0.6

 0.7

 0.8

 0.9

 1

79 138 209 299 552 719 997 1452

A
c
h
ie

v
e
d
 A

S
C

nodes

MNS

MASC

(c)

Figure 7.25: Comparison between MNS and MASC for achieved average sensing
coverage in MATLAB for (a) Zone I1, (b) Zone I2, (c) Zone I3

Now, we evaluate sensor deployment for the MLBSC and MASC problems.

The placement of sensors is determined using the MNS problem, CPLEX in

MATLAB for theMLBSC problem, and a greedy heuristic implementation in MAT-

LAB for the MASC problem. The analytical results were obtained by calculating

136

 0.6

 0.7

 0.8

 0.9

 1

14 16 27 42 100 119 156 225

A
c
h
ie

v
e
d
 A

S
C

nodes

MNS

MASC

(a)

 0.6

 0.7

 0.8

 0.9

 1

83 84 248 287 522 683 919 1328

A
c
h

ie
v
e

d
 A

S
C

nodes

MNS

MASC

(b)

 0.6

 0.7

 0.8

 0.9

 1

79 138 209 299 552 719 997 1452

A
c
h
ie

v
e
d
 A

S
C

nodes

MNS

MASC

(c)

Figure 7.26: Comparison between MNS and MASC for achieved average sensing
coverage over 100 runs in CPWDSim for (a) Zone I1, (b) Zone I2, (c) Zone I3

LBSC and ASC for a given sensor configuration using equations 5.1 and 5.3 respec-

tively. The simulations were run on CPWDSim.

Mobile sensors have a clear advantage over static sensors in terms of locating the

leaks/backflows. However, to achieve this end, we need to ensure that the mobile

sensors traverse through the pipe with the leak/backflows. This work addresses the

issue of covering all the edges in a given zone of interest with mobile sensors, since

it is an essential prerequisite for locating leaks/backflows. Comparing the solution

against static sensor networks will therefore be unfair. On the other hand, other

mobile sensor solutions assume that the path followed by the sensors is deterministic.

Therefore comparing against these solutions is also unfair.

137

The parameters that we varied are: (i) Number of sensors; (ii) zone of interest - I1,

I2, I3. For comparison, the metrics we use are: (i) average sensing coverage (ASC);

(ii) lower bound sensing coverage (LBSC). We set the total number of sensors to 8

different values based on 8 degrees of coverage inputs to MNS (0.2, 0.3, ... 0.9) for

3 different zones of interest. The three zones of interest are as shown in Figure 7.2.

All three zones of interest have different number of vertices, number of edges, and

flow distributions at junctions. The ASC and LBSC calculated analytically using

MATLAB are plotted in Figure 7.26 and Figure 7.27. The ASC and LBSC achieved

in simulation using MNS is presented in Figure 7.25 and Figure 7.28. Here, each

scenario is simulated 100 times, and the figures plot the mean and one standard

deviation (if applicable).

As the number of sensors is increased, the achieved ASC uniformly increases for

both MASC and MNS problems in both simulation and analytically, as shown in

Figure 7.25 and Figure 7.26. It is interesting to observe in Figure 7.25 that the

achieved ASC with the MASC is usually higher than that of MNS, except in one

case (Zone I2, number of sensors 1328). This is because the algorithm in MASC

is a greedy heuristic and does not always achieve the optimal solution. However, in

most cases, MASC performs better than MNS.

It is interesting to observe Figure 7.28 that as the number of sensors is increased,

the achieved LBSC does not show any discernable trend in simulations. However, the

LBSC shows an increasing trend in theory, as shown in Figure 7.27. This is because

of the random movement of sensors at junctions. The randomness has a lower effect

on an average in the case of ASC, but when movement of sensors through individual

edges is considered in calculating the LBSC, the results become less predictable. In

the analytical results in Figure 7.27, it is clear that LBSC from MNS is lower than

that of MLBSC, since the MLBSC problem is designed to maximize LBSC, and

138

 0

 0.2

 0.4

 0.6

 0.8

 1

14 16 27 42 100 119 156 225

A
c
h
ie

v
e
d
 L

B
S

C

nodes

MNS

MLBSC

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

83 84 248 287 522 683 919 1328

A
c
h

ie
v
e

d
 L

B
S

C

nodes

MNS

MLBSC

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

79 138 209 299 552 719 997 1452

A
c
h
ie

v
e
d
 L

B
S

C

nodes

MNS

MLBSC

(c)

Figure 7.27: Comparison between MNS and MLBSC for achieved lower bound sens-
ing coverage in MATLAB (a) Zone I1, (b) Zone I2, (c) Zone I3

the CPLEX solver is used to obtain the optimal solution.

7.4.2 Beacon Placement and Event Localization

We evaluate the beacon placement algorithm by calculating the number of bea-

cons placed when LE, CRb and SR are varied. The results are depicted in Fig-

ures 7.29, and 7.30. For diffusive events, the τ is 2 hours. Figure 7.29 shows that SR

and Θ does not have a large impact on the number of beacons deployed. However,

the input LE greatly affects the number of beacons. To calculate the achieved LE,

we ignore false negative cases, i.e., if the event was not detected by the sensors, we

discard that result. Therefore, evaluating event localization against parameters that

affect only the false negatives (I and FN) is unnecessary.

139

 0

 0.2

 0.4

 0.6

 0.8

 1

14 16 27 42 100 119 156 225

A
c
h
ie

v
e
d
 L

B
S

C

nodes

MNS

MLBSC

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

83 84 248 287 522 683 919 1328

A
c
h

ie
v
e

d
 L

B
S

C

nodes

MNS

MLBSC

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

79 138 209 299 552 719 997 1452

A
c
h
ie

v
e
d
 L

B
S

C

nodes

MNS

MLBSC

(c)

Figure 7.28: Comparison between MNS and MLBSC for achieved lower bound sens-
ing coverage over 100 runs in CPWDSim for (a) Zone I1, (b) Zone I2, (c) Zone
I3

The beacon placement algorithm was run for varying LE and CRb on I3 for non-

diffusive events. It is important to study the effects of large CRb (i.e., larger than the

length of a pipe). We evaluate our beacon placement algorithm for higher values of

CRb, since CRb may be higher with a higher transmit power. The results are plotted

in Figure 7.30 (a) and (b). In each run, an event was placed in a different edge of

I3. The plotted result is the average localization error achieved, which is lower than

expected LE in all cases. Figure 7.30(c) shows that the achieved localization error

depends on where the events are present. As expected, higher expected LE yields

higher achieved localization error. But in some edges, the localization error can be

much smaller.

140

 10

 12

 14

 16

 18

 20

 22

50 70 90 100

#
 b

e
a
c
o
n
s

Expected LE [m]

SR=10000m
SR=40m
SR=10m
SR=0m

(a)

 15

 20

 25

 30

 35

50 70 90 100

#
 b

e
a

c
o

n
s

Expected LE [m]

SR=10000m
SR=40m
SR=10m

SR=0m

(b)

 25

 30

 35

 40

 45

50 70 90 100

#
 b

e
a
c
o
n
s

Expected LE [m]

SR=10000m
SR=40m
SR=10m
SR=0m

(c)

 10

 12

 14

 16

 18

 20

 22

50 70 90 100

#
 b

e
a

c
o

n
s

Expected LE [m]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1mg/l

(d)

 15

 20

 25

 30

 35

50 70 90 100

#
 b

e
a

c
o

n
s

Expected LE [m]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1mg/l

(e)

 25

 30

 35

 40

 45

50 70 90 100

#
 b

e
a
c
o
n
s

Expected LE [m]

Θ = 20 mg/l
Θ = 10 mg/l

Θ = 5 mg/l
Θ = 1mg/l

(f)

Figure 7.29: Number of beacons deployed for non-diffusive events, varying LE and
SR on (a) I1; (b) I2; and (c) I3. Number of beacons deployed for the diffusive sensing
model, varying LE and Θ, for τ = 2 hours on (d) I1; (e) I2; and (f) I3.

In this set of simulations we investigate how Pd and Dc affect the accuracy of

event localization. Events to be detected and localized were randomly placed in 15

edges in I3, for different runs. This was repeated 15 times for different values of Dc

141

 30

 40

 50

 60

 70

 80

 90

 100

 110

50 70 90 100

A
c
h
ie

v
e
d
 L

E
 [
m

]

Expected LE [m]

CRb=10m
CRb=50m

CRb=100m

(a)

 30

 40

 50

 60

 70

 80

 90

 100

 110

50 70 90 100

A
c
h

ie
v
e

d
 L

E
 [

m
]

Expected LE [m]

CRb=10m
CRb=50m

CRb=100m

(b)

 0

 10

 20

 30

 40

 50

 60

Edge 1 Edge 2 Edge 3 Edge 4

A
c
h
e
iv

e
d
 L

E
 [
m

]

Edge containing event

Expected LE = 50m
Expected LE = 70m
Expected LE = 90m

Expected LE = 100m

(c)

Figure 7.30: The actual localization error for different communication ranges varying
with LE on zone of interest I3 with (a) FN=0.2 and (b) FN=0.1 and the event type
is non-diffusive. (c) Localization error LE when events are placed in different edges
on I3.

and Pd and the results were averaged.

Table 7.2: Number of beacons corresponding to a given Pd in I3
Pd #beacons
0.75 34
0.85 36
0.95 41
0.99 70

The algorithms evaluated for Event Localization, for different values of Dc, are:

142

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.75 0.8 0.85 0.9 0.95 1

E
ve

nt
 L

oc
al

iz
at

io
n

A
cc

ur
ac

y

Pd

Dc=0.60

Dc=0.70

Dc=0.80

Dc=0.90

Figure 7.31: Evaluation of event localization as a function of Pd and Dc for estimated
flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

34, 0.75 37, 0.85 41, 0.95 70, 0.99

E
ve

nt
 L

oc
al

iz
at

io
n

A
cc

ur
ac

y

beacons, Pd

Alg9-A
Rnd9-A
Alg9-E

Rnd9-E

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

34, 0.75 37, 0.85 41, 0.95 70, 0.99

A
cc

ur
ac

y
of

 E
ve

nt
 L

oc
al

iz
at

io
n

beacons, Pd

Alg9-A
Rnd9-A
Alg9-E

Rnd9-E

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

34, 0.75 37, 0.85 41, 0.95 70, 0.99

E
ve

nt
 L

oc
al

iz
at

io
n

A
cc

ur
ac

y

beacons, Pd

Alg9-A
Rnd9-A
Alg9-E

Rnd9-E

(c)

Figure 7.32: (a) Evaluation of event localization as a function of Pd for: (a) Dc=0.6;
(b) Dc=0.8; and (c) Dc=0.9

i) Alg9-A, which executes Algorithm 9 if actual flows are known; ii) Alg9-E, which

executes Algorithm 9 with flows being estimated; iii) Rnd9-A, which randomly de-

143

ploys a given number of beacons and sensors, if flow information is known; and iv)

Rnd9-E, which randomly deploys a given number of beacons and sensors, with flows

being estimated. We note here that Dc influences the coverage of the zone of interest,

i.e., if the event is detected or not. When the event is not detected, event localization

is not possible.

The results for accuracy of event localization, given different Dc and Pd, are

depicted in Figure 7.31. As shown, the achieved event localization accuracy is smaller

than the Pd, for lower Dc. Nevertheless, this result is expected, since the sensing

coverage is not 100% (for 60% sensing coverage, with 75% detection probability of

detection, the expected event localization accuracy is ∼45%). We remark here again

that, although Dc does not affect the placement of beacons, the event localization

accuracy depends on Dc. The reason for this is the fact that for localization, edges

with events need to be covered.

As presented in Table 7.2, which shows the number of beacons inserted for a

given value of Pd in I3, a higher Pd requires a higher number of beacons. To achieve

a Pd=99% we would require 70 beacons, placed in all 70 vertices of I3. For a Pd=95%,

we would only require 41 beacons.

The results comparing event localization accuracy of Alg9-A, Alg9-E, Rnd9-A and

Rnd9-E, for Pd=0.6, 0.8 and 0.9, are presented in Figures 7.32(a), 7.32(b) and 7.32(c),

respectively. The number of beacons placed by Rnd2-A and Rnd2-E are those men-

tioned in Table 7.2, for different Pd.

As expected, Rnd9-E and Rnd9-A have large standard deviations. These random

deployments always performed worse than Alg9-E and Alg9-A, for all values of Pd

and Dc. As shown in Figure 7.32, for smaller Dc the standard deviations are also

large for Alg9-A and Alg9-E, since some of the edges with events are not covered.

The results depicted in Figure 7.32 (a), (b), and (c) consistently show that for

144

higher Pd, the accuracy of event localization is higher for all Alg9-A and Alg9-E.

Interestingly, the improvement in event localization accuracy for Alg9-A and Alg9-E

is significantly larger when Dc is small (e.g., for Dc=0.6, event localization accuracy

improves from 62.2% to 91.8%, whereas, when Dc=0.9, event localization accuracy

improves from 77.9% to 92.1%).

When Pd=0.99, beacons are placed on all vertices. The event localization accu-

racy is still not 100% since the sensing coverage is not 100%. The results validate

that increasing Pd increases the event localization accuracy for all values of Dc. We

verified (but not depicted here) that when beacons were placed on all vertices, and

when sensing coverage was 100%, the accuracy of event localization was 100%.

To compare LE and localization accuracy, we map Pd to LE by calculating

the radius of the circle covering the midpoints of these edges. For a given number

of beacons, the LE achieved with the Pd requirement is very high compared to our

solution (average of 36% lower LE by CPWDSim). E.g., when 34 beacons are placed,

we achieve a LE of less than 90m, whereas the best result with the Pd requirement

was 202m (55.44% decrease). Mapping LE to the event localization accuracy shows

that CPWDSim yields lower accuracy for the same number of beacons. However, we

believe that practically, it is more useful to provide a radius of error rather than a

set of edges distributed over a large area.

The sensor and beacon placement formulation determined in the same formula-

tion (joint formulation) is solved using a mixed integer nonlinear solver MINLP [30],

which implements a Branch and Bound(minlpBB) algorithm. Two separate solu-

tions, denoted as greedy, and linear, are implemented in AMPL [31]. The sensor

deployment algorithm aims to minimize the esle in greedy and to minimize ubele in

linear. All formulations are solved by a MINLP solver, an online service for solv-

ing numerical optimization problems [20] [23] [33]. The MINLP solver is capable of

145

solving a wide range of linear and nonlinear optimization problems.

The evaluation of sensing coverage solutions is done to compare our algorithms

with MNS. We note here that to the best of our knowledge, there is no current

work in localizing leak/backflow events using static access points in the manner in

which it is used in this work. Models are run on a desktop with 3.7GiB Ram and

Intel Core 2 Duo CPU E8400@3.00GHz × 2.

The input parameters of our algorithms are the price of devices and cost budget.

To simplify the calculations, these parameters are expressed as integer multiples

of the price of sensors and beacons. We assume the price of a beacon to be an

integer (say, c) times the price of of a sensor. A sensor’s price is normalized to

be 1, thereby making the price of a beacon c. Throughout this evaluation, unless

otherwise mentioned, the price of a beacon is 3. The total cost budget varies from

10 to 70 units with an interval of 10. When generating the data file for each zone

in Micropolis example, we use the flow rates generated at hour 7 of the EPANET

simulation, and eliminate edges whose flow probability is less than 1%.

In order to compare the performance of an algorithm on different networks, we

use the normalized sle instead of the absolute sle we defined before. Normalized sle

is calculated by dividing absolute sle over the sum of leak probabilities of all edges.

We denote normalized sle as normalized sle in subsequent discussion. The same

applies to ale. The normalization is done so as to make the metric uniform among

all network sizes.

When comparing our separate solutions to the joint solution, the cost budget is

an input parameter. The metrics we use are the normalized sle, sensing coverage,

detection rate, and normalized ale. For the Micropolis example, we run simulations

on a group of edges (covering more than 75% edges) for each zone. For each run,

we set an event on an edge and measure the detection rate, sle and other metrics

146

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o
v
e
ra

g
e

Cost

Joint
Greedy
Linear

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o

v
e

ra
g

e

Cost

Joint
Greedy
Linear

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o
v
e
ra

g
e

Cost

Joint
Greedy
Linear

(c)

Figure 7.33: Comparison of average sensing coverage determined mathematically for
(a) Zone I1, (b) Zone I2, (c) Zone I3

among the group of edges. Each point is the average of 30 runs.

We finally address the issue of maximizing sensing coverage in a given zone

of interest with mobile sensors, since it is an essential prerequisite for locating

leaks/backflows. It is also important when the utility manager is interested only

in determining the presence, not the location of the leak/backflow. We compare our

solution of MLBSC with MNS. The placement of sensors concerning the sensing cov-

erage is determined using CPWDSim for the MNS problem, CPLEX in MATLAB

for the MLBSC problem, and a greedy heuristic implementation in MATLAB for the

MASC problem.

For the three sensor deployment algorithms, the parameter that we varied is

147

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 s

le

Cost

Joint
Greedy
Linear

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

N
o

rm
a

liz
e

d
 s

le

Cost

Joint
Greedy
Linear

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 s

le

Cost

Joint
Greedy
Linear

(c)

Figure 7.34: Comparison of normalized sle determined mathematically for (a) Zone
I1, (b) Zone I2, (c) Zone I3

the number of sensors. For comparison, the metrics we use are: (i) average sensing

coverage (ASC); (ii) lower bound sensing coverage (LBSC). We set the total number

of sensors to 8 different values based on 8 degrees of coverage inputs to MNS (0.2,

0.3, ... 0.9) for the 3 different zones of interest in the Micropolis example.

Once the sensor and beacon placements (i.e., S and B) are obtained from the

MINLP solver, we plug in the values in the expression for sle from Equation 5.6 to

obtain a theoretical value of the sle using the expression of esle from Equation 5.14

to obtain the theoretically expected sensing coverage. Figures 7.33 and 7.34 indicate

average sensing coverage and normalized sle obtained mathematically for each of the

three zones of interest in Micropolis network.

148

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 s

le

Cost

Joint
Greedy
Linear

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10 20 30 40 50 60 70

N
o

rm
a

liz
e

d
 s

le

Cost

Joint
Greedy
Linear

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 s

le

Cost

Joint
Greedy
Linear

(c)

Figure 7.35: Comparison of achieved normalized sle in CPWDSim for (a) Zone I1,
(b) Zone I2, (c) Zone I3

As Figure 7.34 shows, the sle reduces when more budget is available. This is

expected in all the formulations because the objective in the joint formulation is

to minimize ale, and ale is directly related to sle. The term sle only places more

emphasis on coverage as compared to ale. Minimizing only ale can also have a similar

effect on sle. In case of the linear formulation, we select the best distribution of

cost between sensors and beacons at each step of the exhaustive search. However,

sle decreases with increasing budget except in a very few outlier cases (only 1 in

this case). This may be attributed to the difference in where the same number of

sensors are placed as compared to the case with lower cost. As Figure 7.33 shows,

the coverage at a cost of 40 units in Zone 2 is lower than that for cost of 30. This

149

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 a

le

Cost

Joint
Greedy
Linear

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10 20 30 40 50 60 70

N
o

rm
a

liz
e

d
 a

le

Cost

Joint
Greedy
Linear

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10 20 30 40 50 60 70

N
o
rm

a
liz

e
d
 a

le

Cost

Joint
Greedy
Linear

(c)

Figure 7.36: Comparison of average normalized ale for (a) Zone I1, (b) Zone I2, (c)
Zone I3

is possible because the linear formulation maximizes the minimum edge coverage,

thereby placing more emphasis on those edges with smaller flows and leak probability.

Also, some of the extra cost is spent on placing more beacons. The lower coverage has

a direct impact, therefore, on sle. However, as the figures indicate, such variations

are more of an outlier than the norm.

Figures 7.35 - 7.38 indicate that results obtained through simulations match the

mathematically determined values. Figures 7.35 and 7.36 indicate that normalized

sle decreases with increasing the available budget as expected, except for one case of

Zone 1 when the cost is 60 units. Zone 1 has a relatively higher uneven distribution

of flows at the junctions. For a cost of 60, there are only 11 beacons placed as

150

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

D
e
te

c
ti
o
n
 r

a
te

Cost

Joint
Greedy
Linear

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

D
e

te
c
ti
o

n
 r

a
te

Cost

Joint
Greedy
Linear

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

D
e
te

c
ti
o
n
 r

a
te

Cost

Joint
Greedy
Linear

(c)

Figure 7.37: Comparison of detection ratio in CPWDSim for (a) Zone I1, (b) Zone
I2, (c) Zone I3

opposed to 16 beacons placed when a 50 unit budget is available. Theoretically,

from Figure 7.34, the sle has to reduce. However, the budget put into increasing

the coverage, so as to improve sle, has a smaller impact than the number of beacons

might have had, as can be seen in Figures 7.38 and 7.37. This is because the flow

distribution at junctions in Zone 1 has more variance than in Zones 2 or 3, and the

increase in number of sensors is not sufficient to cover pipes with low flow rates. The

increased cost invested in sensor placement is not sufficient to reduce sle as much as

expected. This is also more of an outlier than the norm.

In general we notice that all three formulations present an increasing trend in

coverage and detection rate and a decreasing trend in sle and ale, which is expected.

151

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o
v
e
ra

g
e

Cost

Joint
Greedy
Linear

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o

v
e

ra
g

e

Cost

Joint
Greedy
Linear

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70

C
o
v
e
ra

g
e

Cost

Joint
Greedy
Linear

(c)

Figure 7.38: Comparison of coverage in CPWDSim for (a) Zone I1, (b) Zone I2, (c)
Zone I3

The greedy performs nearly as good as and sometimes better than the joint formu-

lation although the joint formulation is more rigorous. The linear formulation is

the computationally fastest of the three methods. However, it comes at a cost of not

being as accurate or effective as the others. In simulations as well, greedy and joint

solutions perform very well. Additionally, the greedy solution has consistent results

with no outliers.

152

7.5 Performance Evaluation of Control

7.5.1 Evaluation of Flow Learning

To evaluate the performance of our flow learning algorithm, we executed 16 sim-

ulation runs on I3 with Pd=0.95 and Dc=0.6, 0.7, 0.8 and 0.9.

 50

 52

 54

 56

 58

 60

 1 2 3 4 5 6 7 8

C
om

pa
ris

on
 m

et
ric

 ∆

Run #

Figure 7.39: Evaluation of flow learning with a Pd=0.95, averaged over Dc=0.6, 0.7,
0.8, 0.9.

The results are presented in Figure 7.39. As shown, the difference between the

actual and estimated flow networks reduces with the run number. For the first run,

since the algorithm is executed with no flow learning, the difference ∆ is the same,

regardless of the Dc used (i.e., error bar is 0). As the algorithm learns actual flows

from path synopses, the difference between the two flow networks (i.e., the actual

flow network, versus the learned flow network) reduces. We have observed that when

Dc is higher, ∆ reduces, i.e., we learn the flows more quickly. We explain this result

by the fact that more beacon pairs are covered, since more sensors are inserted (i.e.,

higher Dc). We are also noting an expected behavior of our flow learning algorithms.

As the estimated flow gets closer to the actual flow, flow learning ceases to make an

impact.

153

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1268

0.2536

0.3805

0.5073

0.6341

0.7609

0.8878

S
e
n
s
o
r

p
re

d
ic

ti
o
n
 a

c
c
u
ra

c
y

Beacon density

CRb = 20m
CRb = 10m
CRb = 1m

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1268

0.2536

0.3805

0.5073

0.6341

0.7609

0.8878

S
e

n
s
o

r
p

re
d

ic
ti
o

n
 a

c
c
u

ra
c
y

Beacon density

CRb = 20m
CRb = 10m
CRb = 1m

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1268

0.2536

0.3805

0.5073

0.6341

0.7609

0.8878

S
e
n
s
o
r

p
re

d
ic

ti
o
n
 a

c
c
u
ra

c
y

Beacon density

CRb = 20m
CRb = 10m
CRb = 1m

(c)

Figure 7.40: Sensor position accuracy for varying number of beacons and communi-
cation ranges with (a) Flow scenario 1 with average badness of the WDS 6.03, and
of I, 19.484, (b) Flow scenario 2 with average badness of the WDS 5.984, and of I,
16.921, (c) Flow scenario 3 with average badness of the WDS 5.88, and of I, 16.847

A

B

E

C

D

v1

v2

Figure 7.41: Part of the Micropolis virtual city used to demonstrate flow reversal

7.5.2 Evaluation of Sensor Position Estimation Algorithm

We first evaluate the sensor position estimation algorithm described in Algo-

rithm 17. The results are depicted in Figure 7.40. The parameters varied here are

154

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5

V
a
lv

e
 v

1
 S

e
tt
in

g

Time (minutes)
(a)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

V
a
lv

e
 v

2
 S

e
tt
in

g

Time (minutes)
(b)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1 2 3 4 5

E
rr

o
r

(L
P

S
)

v
1

Time (minutes)
(c)

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 1 2 3 4 5

E
rr

o
r(

L
P

S
)

v
2

Time (minutes)
(d)

Figure 7.42: Valve settings for (a) v1, (b) v2, and error in valve setting for (c) v1,
(d) v2 over time

the communication range from sensors to beacons, the number of beacons as repre-

sented by the beacon density (i.e., number of beacons divided by number of vertices),

and different flow distributions. We quantify the flow distribution by a metric called

badness, defined earlier.

We observe that having a higher beacon density improves the accuracy of sensor

position estimation. Since the movement of sensors in the WDS is random, we sample

the flow distribution at the vertices to predict the sensor’s path (Lines 6 and 8 of

Algorithm 17). Also, having a higher communication rate decreases sensor prediction

accuracy. This is due to the fact that from a given position, a sensor may be able to

communicate with multiple beacons. One of them is randomly chosen as the position

155

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(a)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(b)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(c)

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(d)

-5

-4

-3

-2

-1

 0

 1

 2

 0 5 10 15 20 25 30 35 40 45 50

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(e)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.05 0.1 0.15 0.2 0.25

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(f)

Figure 7.43: Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 1

of the sensor. We note here that the use of received signal strength to determine

the approximate position of the sensor is also inaccurate here because the signal

propagation is dependent on a variety of factors such as pipe and soil properties that

cannot be modeled accurately.

An interesting observation here is that the accuracy dips for a beacon density of

0.2536. This is because at a density of 0.1268, the beacons are spaced out enough to

ensure that sensors are in range of one beacon most of the time. However, increasing

the beacon density make it more likely that the sensors see more than one beacon.

From practical experiments, we know that the communication rate is bound to be

low. This experiment benefits from having a low communication range from sensors

to beacons.

156

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V29

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(b)

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(e)

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(f)

Figure 7.44: Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 1

7.5.3 Evaluation of CPWDS Flow Control

For evaluating our control component, we used a modified version of Micropolis

WDS with two valves added, as shown in Figure 7.41. In this network, section

ABCDE is the area of interest. We chose this section of Micropolis WDS because

the flow in the pipes do not change direction during extended periods of time without

throttling any valves.

As presented in Section 6, our solution uses a PID controller to throttle valves

and change the flows. Throttling valve v1 reverses the flow in the pipe section AE,

and throttling valve v2, reverses flow in the section BDCE. The metrics used here

are valve settings, error, and convergence time.

Figure 7.42 shows the valve setting and their corresponding error plots for valves

v1 and v2. The valve settings are the control variables, as described in Section 6.

157

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(b)

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(c)

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(d)

-700

-600

-500

-400

-300

-200

-100

 0

 100

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(e)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(f)

Figure 7.45: Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 2

We observe that valve setting for v1 converged to ∼66 and v2 converged to ∼93.

The valve setting in v2 is higher due to flow reduction, which requires more valve

throttling than v1. Controlling v2 reached a steady value faster than v1 due to the

change in the hydraulic behavior of the system. The error approached zero faster

with v2 than with v1. We observe that in both cases, the error approaches zero within

5 minutes (convergence time ∼ 5 minutes), indicating that the controller action is

satisfactory.

With this preliminary result, we further evaluate the outer feedback loop on the

entire Micropolis city model [10]. We simulate the WDS for 24 hours with and

without the control system. When we use the flow controller, we run the simulation

for 1 hour, and collect the estimated sensor positions to determine the reference flows.

Using these reference flows, we run the PID controller until the total error reaches

158

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V29

(a)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(f)

Figure 7.46: Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 2

0 (with an error margin), or until five minutes, whichever is sooner. The reason to

put a time limit is because at times, the reference flows cannot be achieved. Also,

we foresee using this flow controller in a WDS. The controller should then be able

to give us a quick result. Since the reference flows are set without considering the

physical limitations of the WDS, we remark that the flow controller may not always

be able to achieve the reference flows.

Figures 7.43, 7.45, 7.47, and 7.49 depict the total errors over time for four different

runs. During each run, the sensors move differently, and hence, the reference flows

differ. For select valves, the valve settings are also shown in Figures 7.44, 7.46, 7.48,

and 7.50. From these results, it is observed that the errors do not always reach 0.

We note here that the valves in Micropolis are throttle control valves. Their settings

are the friction factor. A higher friction factor implies that the valve is still open,

159

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(a)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(b)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(c)

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(d)

-600

-500

-400

-300

-200

-100

 0

 100

 0 1 2 3 4 5 6 7 8 9

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(e)

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 0 10 20 30 40 50 60 70

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(f)

Figure 7.47: Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 3

but offers high friction, thereby restricting the flow. Hence, in few cases, we see that

the valve setting keeps increasing.

The desired result of the flow controller is that the coverage of the zone of interest

should be ensured in long term. To demonstrate this, we study the coverage at every

hour when the WDS is controlled, and when it is not. The results are depicted in

Figure 7.51(a) and 7.51(b). The four runs for the controlled cases correspond to

the figures depicting errors and valve settings. As we observe, without control, the

coverage of the zone of interest reduces to 0 eventually, since the sensors may move to

pipes from which they do not return to the zone of interest without valve throttling.

However, when we include the flow controller, we are able to ensure a good coverage

by bringing the sensors back into the zone of interest.

160

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V29

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.05 0.1 0.15 0.2 0.25

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(c)

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0 0.01 0.02 0.03 0.04 0.05 0.06

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(d)

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(e)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(f)

Figure 7.48: Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 3

7.5.4 Evaluation of CPWDS Sensor Control

Sensor control mechanism is evaluated on a small WDS example in EPANET,

as shown by Figure 7.52. We simulated the WDS with and without sensor control

for 10 runs each, for a period of 1 hour. We observed that with sensor control, the

sensing coverage achieved is 84.9% with a standard deviation of 10.86%, and without

sensor control, the achieved sensing coverage is 69.1% with a standard deviation of

10.21%. This shows us that the sensor control mechanism is beneficial and there is

a need to develop sophisticated models for the same.

161

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(a)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(b)

-20

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(c)

-700

-600

-500

-400

-300

-200

-100

 0

 100

 0 20 40 60 80 100 120

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(d)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(e)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
o
ta

l
E

rr
o
r

(L
P

S
)

Time(seconds)

(f)

Figure 7.49: Total control error over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 4

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V29

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(d)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(e)

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25

V
a
lv

e
 s

e
tt
in

g

Time (seconds)

V27
V23
V30
V34
V26

(f)

Figure 7.50: Select valve settings over number of iterations after (a) 0 hour, (b) 4
hours, (c) 8 hours, (d) 12 hours, (e) 16 hours, (f) 20 hours through the day during
run 4

162

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
o

v
e

ra
g

e

Hour

Controlled run 1
Uncontrolled run 1

Controlled run 2
Uncontrolled run 2

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
o
v
e
ra

g
e

Hour

Controlled run 3
Uncontrolled run 3

Controlled run 4
Uncontrolled run 4

(b)

Figure 7.51: Comparison of coverage with and without flow control

163

Figure 7.52: Sample WDS on which sensor control is evaluated

164

8. CONCLUSIONS AND FUTURE WORK

In this section, we conclude the dissertation and present future work in this field.

8.1 Conclusion

Water distribution systems (WDS) are posed with threats such as chemical con-

tamination, leaks, and backflow events. Considering the importance of WDS, mon-

itoring them to identify the presence and location of the threats is essential. In

this dissertation, we tackle the problem of WDS monitoring from a cyber-physical

systems approach.

We propose a Cyber-Physical Water Distribution System (CPWDS) comprising

of free-flowing mobile sensors that move along with the flow of water in the pipes. To

obtain information from mobile sensors, and to aid in localization of the threats, we

propose the use of static access points, called beacons, at strategic locations outside

the pipeline. The sensors communicate among themselves using the underwater

acoustic medium, and to beacons placed outside through RF. To ensure that sensors

continuously sense a region of interest, we control the flows in the pipes by throttling

valves.

Every CPS has three key components, namely, communication, computation,

and control. We have contributed to all three components of the CPWDS. From

the communications perspective, it is challenging to design protocols for underwater

acoustic communication due to the high propagation delays. We have overcome this

challenge and presented a cross-layer group management/MAC protocol for commu-

nication among sensors. Computation challenges in our CPWDS are mainly due to

the complexity of the problems (e.g., the problem of optimally deploying sensors is

NP-hard). The computation problems tackled in this dissertation are: deployment

165

of sensors, placement of beacons, and a global view algorithm. We have presented

heuristics and optimal algorithms for computational problems of the CPWDS. To

the best of our knowledge, there is no state of the art work that solves these problems

for our CPWDS. Finally, flow control in WDS is challenging due to the non-linear

nature of the WDS, and since most WDS are extremely large and complex. We have

designed a flow controller that uses input from the data collected at beacons, and

decides the valves to throttle through a PID controller. We have also presented an

algorithm to track the position of the sensors based on their communication with

beacons, and a heuristic to determine the desired flows to ensure coverage to support

the control system.

We have classified WDS monitoring based on the nature of monitoring (on-

demand and continuous), and the level of knowledge about the WDS (flow-aware

and flow-unaware). We have studied how each of our contributions fits into these

classifications.

Finally, we have validated our proposed ideas through proof-of-concept testbeds,

and extensive large scale simulations on a simulator called Cyber Physical Water

Distribution System Simulator (CPWDSim). CPWDSim is designed to mimic the

movement of sensors through the pipes of a WDS. It uses input from EPANET [27],

a software that solves the hydraulics for a WDS. We have implemented most of the

algorithms in CPWDSim (e.g., some optimization problems were solved using MAT-

LAB and other non-linear solvers), and equipped CPWDSim to accept the result of

other solvers. It also simulates the communication among sensors and between sen-

sors and beacons. From our proof of concept testbeds in communication, we validated

that the path loss exponent assumed in our design is valid. Through our simulations,

we have evaluated the different algorithms for sensor deployment, beacon placement,

sensing models, communication models, and the group management protocol using

166

global knowledge. Mainly, we notice that sensing range has a huge impact on the

number of sensors. Also, we observe that the number of beacons and communication

ranges impact the event localization and estimation of sensor locations. Our control

system is observed to converge and improve the coverage over time.

8.1.1 Realism of Our CPWDS

We envision a long lasting CPWDS continuous monitoring the WDS, and hence

we require that the batteries of these devices last long. Since the water in the pipes

are pressurized, the energy from the flow of water may be harvested, especially when

the sensors are temporarily stuck in some part of the WDS. Preliminary designs have

studied for the same [15]. The process of harvesting the energy from the water is

bound to slow down the sensors. To overcome this challenge, recently the use of

magnetic induction [36] is explored. These works support that long-term continuous

monitoring of the WDS using our CPS approach is feasible.

Some questions about the realism also arise with respect to sensor control. We

assume that sensors spinning in a particular direction modifies their mobility model.

This is predicated on the sensor spinning around a fixed axis. In the WDS, the

orientation of the sensor may be fixed by reducing the density in a part of the sensor

(e.g., by introducing a small air bubble).

A relevant concern is that we may not be able to place sensors and beacons

at all points in the WDS. Such restrictions may be introduced into the model by

appropriately eliminating the vertices in our algorithms. We have performed some

preliminary evaluations of the restriction on a small example network in EPANET,

and observed that slightly restricting the placement of sensors and beacons does not

harm the performance greatly.

167

8.2 Future Work

8.2.1 Flow-based Cyber Physical Systems

Flow-based systems are physical systems that contain an inherent flow in them

(e.g., human circulatory systems, oil & gas pipelines) that also need to be moni-

tored. A majority of the theoretical foundations of this dissertation is generic to any

flow-based system. The communication and sensing models in our CPWDS may be

designed for the specific physical system. Also, the challenges and requirements of

each flow-based system is different. For example, oil & gas pipelines are long, and

beacon placement at junction may not be sufficient to localize the events precisely.

Mechanisms need to be designed to improve the monitoring in each flow-based sys-

tem. Additionally, the design of the mobile sensor in each flow-based system will

be different (e.g., recent advancement in nanotechnology is applicable for human

circulatory system monitoring).

8.2.2 Implementation of the Cyber-Physical Water Distribution System

In this dissertation, our evaluations are mostly in simulation, with very few proof

of concept experiments. To realize a real world CPWDS, it is necessary to evaluate

and validate the theory on a testbed. We envision a testbed where mobility of sensors

through different structures of junctions, communication among sensors and between

sensor and beacons, sensing models, and flow control mechanisms may be evaluated.

Further, there are several engineering questions relating to the design of the sen-

sors that are not fully addressed in this dissertation. The size, structure, sensing

modality, sensitivity, form factor, and communication capabilities are important de-

sign issues that need to be addressed. E,g., we need to design the sensor such that

it moves freely through the main pipes without constricting the flow of water, but

does not enter pipes of smaller diameter.

168

The models presented in this dissertation are approximate, and validated through

simulation. Such a testbed also gives way to designing more sophisticated sensing

and mobility models.

8.2.3 Making Water Distribution Systems Controllable

Water Distribution Systems are typically complex and large. Assuming that it

is possible to reverse the flows on every pipe in any WDS is unrealistic. On the

other hand, adding redundancy to WDS by introducing more tanks that act as both

sources and sinks is desirable. With several paths of pipes leading to each consumer,

the failure of some components will not cause disruption in services. Placing control

points at strategic locations is necessary. With the addition of redundant tanks, flow

control on all pipes may be done with valve throttling alone. It is worthwhile to

investigate where to include sources, controllable sinks, and valves in the WDS to

improve the failure tolerance and the controllability of the WDS.

8.2.4 Improving the Accuracy of the CPWDSim

In a complex WDS, any new algorithms need to be evaluated in simulations,

since real world implementations and testbeds are tedious. However, our simulator

makes assumptions about several physical parameters. E.g., we have assumed that

the propagation speed of the acoustic waves in the pipes is uniform. There has been

research in studying the propagation delays in pipes of various materials. Given that

the WDS data about a city also includes the information about the pipe materials,

we may be able to dynamically decide the speed of propagation of the sound waves in

our simulation. We leave the analysis and implementation of this simulation feature

for future work.

169

REFERENCES

[1] W. Abbas, N. Ahmed, Usama C., and A. A. Syed. Design and evaluation of a

low-cost, diy-inspired, underwater platform to promote experimental research

in UWSN. Ad Hoc Networks, 2014.

[2] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George,

L. Gu, T. He, S. Krishnamurthy, et al. Envirotrack: Towards an environmental

computing paradigm for distributed sensor networks. In Proceedings of the

International Conference on Distributed Computing and Networking (ICDCS),

2004.

[3] N. Ahmed, W. bin Abbas, and A. A. Syed. A low-cost and flexible underwa-

ter platform to promote experiments in uwsn research. In Proceedings of the

International Conference on Underwater Networks and Systems (WuWNet),

2012.

[4] N. Aitsaadi, N. Achir, K. Boussetta, and G. Pujolle. Differentiated underwater

sensor network deployment. In Proceedings of OCEANS Conference, 2007.

[5] R. Ali, S. S. Lor, R. T. Benouaer, and M. Rio. Cooperative leader election

algorithm for master/slave mobile ad hoc networks. In Proceedings of the 2nd

IFIP conference on Wireless days (WD), 2009.

[6] American Water Works Association. Buried no longer: confronting america’s

water infrastructure challenge. http://www.awwa.org/infrastructure. [On-

line; accessed 30-Oct-2013].

[7] American Water Works Association. Reinvesting in drinking water infrastruc-

ture. http://www.win-water.org/reports/infrastructure.pdf. [Online;

170

accessed 30-Oct-2013].

[8] M. K. Banks, A. Brovont, S. Pekarek, M. Porterfield, A. Salim, and R. Wu.

Development of mobile self-powered sensors for potable water distribution. In

EPA Grant Number: R834868, 2012.

[9] B. Benson, Y. Li, B. Faunce, K. Domond, D. Kimball, C. Schurgers, and

R. Kastner. Design of a low-cost underwater acoustic modem. IEEE Embedded

Systems Letters, 2(3), 2010.

[10] K. Brumbelow, J. Torres, S. Guikema, E. Bristow, and L. Kanta. Virtual cities

for water distribution and infrastructure system research. In World Environ-

mental and Water Resources Congress, 2007.

[11] R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: An Integrated Package

for Nonlinear Optimization. In Large-Scale Nonlinear Optimization, 2006.

[12] Canadian commercial newswire. Pure technologies awarded multi year leak

detection contract in qatar. http://www.newswire.ca/en/story/1369537/

pure-technologies-awarded-multi-year-leak-detection-contract-in-qatar.

[Online; Published 9-June-2014].

[13] M. Cardei, M. T. Thai, Y. Li, and W. Wu. Energy efficient target coverage

in wireless sensor networks. In Proceedings of the International Conference on

Computer Communications (INFOCOM), 2005.

[14] D. Chatzigeorgiou, K. Youcef-Toumi, and R. Ben-Mansour. Design of a novel

in-pipe reliable leak detector. IEEE/ASME Transactions on Mechatronics,

20(2), 2015.

[15] D. M. Chatzigeorgiou. Analysis and design of an in-pipe system for water leak

detection. Master’s thesis, Massachusetts Institute of Technology, 2010.

171

[16] X. Che, I. Wells, G. Dickers, P. Kear, and X. Gong. Re-evaluation of RF

electromagnetic communication in underwater sensor networks. IEEE Com-

munications Magazine, 48, 2010.

[17] Y-J. Chen and H-L. Wang. Ordered CSMA: a collision-free MAC protocol for

underwater acoustic networks. In Proceedings of OCEANS Conference, 2007.

[18] C. Copeland and M. Tiemann. Water infrastructure needs and investment:

review and analysis of key issues. Technical report, US Congressional Research

Service (Report RL31116), 2010.

[19] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3(3),

1989.

[20] J. Czyzyk, M. P. Mesnier, and J. J. Moré. The neos server. IEEE Computa-

tional Science and Engineering, 1998.

[21] R.J. de Araujo MacEdo, A.E.S. Freitas, and A.S. de Sa. A self-manageable

group communication protocol for partially synchronous distributed systems.

In Proceedings of the Latin-American Symposium on Dependable Computing

(LADC), 2011.

[22] S.C. Dhongdi, K.R. Anupama, and L.J. Gudino. Review of protocol stack

development of underwater acoustic sensor network (uasn). In Proceedings of

Underwater Technology (UT), 2015.

[23] E. D Dolan. Neos server 4.0 administrative guide. arXiv preprint cs/0107034,

2001.

[24] S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-stabilizing group

communication in ad hoc networks. Transactions on Mobile Computing, 5(7),

2006.

172

[25] C. D. D’Souza and M.S. M. Kumar. Integrated approach in the quantitative

and qualitative control of water distribution systems through control systems.

Journal of Hazardous, Toxic, and Radioactive Waste, 16(2), 2012.

[26] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic effi-

ciency for network flow problems. Journal of the ACM, 19, 1972.

[27] Environmental Protection Agency. EPANET v2.0. Technical report, Environ-

mental Protection Agency, 2006.

[28] G. Fan, H. Chen, L. Xie, and K. Wang. An improved cdma-based mac pro-

tocol for underwater acoustic wireless sensor networks. In Proceedings of the

International Conference on Wireless Communications, Networking and Mo-

bile Computing (WiCOM), 2011.

[29] F. H. Fisher and V. P. Simmons. Sound absorption in sea water. The Journal

of the Acoustical Society of America, 62(3), 1977.

[30] R. Fletcher and S. Leyffer. Numerical experience with lower bounds for miqp

branch-and-bound. SIAM Journal on Optimization, 8(2), 1998.

[31] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A mathematical pro-

gramming language. AT&T Bell Laboratories Murray Hill, NJ 07974, 1987.

[32] S.M. George, Wei Zhou, H. Chenji, M. Won, Y. O. Lee, A. Pazarloglou,

R. Stoleru, and P. Barooah. DistressNet: a wireless ad hoc and sensor network

architecture for situation management in disaster response. Communications

Magazine, 48(3), 2010.

[33] W. Gropp and J. Moré. Optimization environments and the neos server. Ap-

proximation Theory and Optimization, 1997.

173

[34] X. Han, J. Yin, G. Yu, and P. Du. Experimental demonstration of single carrier

underwater acoustic communication using a vector sensor. Applied Acoustics,

98, 2015.

[35] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,

T. Yan, and L. Gu. An energy-efficient surveillance system using wireless sensor

networks. In Proceedings of the International Conference on Mobile Systems,

Applications, and Services (MobiSys), 2004.

[36] D. Hoffmann, A. Willmann, R. Göpfert, P. Becker, B. Folkmer, and Y. Manoli.

Energy harvesting from fluid flow in water pipelines for smart metering appli-

cations. Journal of Physics: Conference Series, 476(1), 2013.

[37] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,

H. Balakrishnan, and S. Madden. CarTel: a distributed mobile sensor comput-

ing system. In Proceedings of the Conference on Embedded Networked Sensor

Systems (SenSys), 2006.

[38] O. Hunaidi, A. Wang, M. Bracken, T. Gambino, and C. Fricke. Acoustic

methods for locating leaks in municipal water pipe networks. In International

Conference on Water Demand Management, pages 1–14, 2004.

[39] K.P. Hunt, J.J. Niemeier, and A. Kruger. RF communications in underwa-

ter wireless sensor networks. In Proceedings of the Internation Conference on

Electro/Information Technology (EIT), 2010.

[40] R. Ingram, T. Radeva, P. Shields, S. Viqar, J. E. Walter, and J. L. Welch. A

leader election algorithm for dynamic networks with causal clocks. Distributed

Computing, 26(2), 2013.

174

[41] R. Ingram, P. Shields, J.E. Walter, and J.L. Welch. An asynchronous leader

election algorithm for dynamic networks. In Proceedings of the International

Symposium on Parallel Distributed Processing (IPDPS), 2009.

[42] J.H. Kim, G. Sharma, N. Boudriga, and S.S. Iyengar. Spamms: a sensor-based

pipeline autonomous monitoring and maintenance system. In Proceedings of the

International Conference on COMmunication Systems & NETworkS (COM-

SNETS), 2010.

[43] G. Kokosalakis, A.M. Gorlov, E. Kausel, and A.J. Whittle. Communications

and power harvesting system for in-pipe wireless sensor networks. US Patent

App. 20,070/209,865.

[44] K. B. Kredo, II and P. Mohapatra. A hybrid medium access control proto-

col for underwater wireless networks. In Proceedings of the 2nd workshop on

Underwater networks (WuWNet), 2007.

[45] P. M. Kumar and M. Kumar. Comparative study of three types of controllers

for water distribution networks. Journal American Water Works Association,

101(1), 2009.

[46] T.T. Lai, Y.T. Chen, P. Huang, and H. Chu. Pipeprobe: a mobile sensor

droplet for mapping hidden pipeline. In Proceedings of the Conference on

Embedded Networked Sensor Systems (SenSys), 2010.

[47] T.T.T. Lai, W.J. Chen, K.H. Li, P. Huang, and H.H. Chu. Triopusnet: au-

tomating wireless sensor network deployment and replacement in pipeline mon-

itoring. In Proceedings of the International Conference on Information Pro-

cessing in Sensor Networks (IPSN), 2012.

175

[48] U. Lee and M. Gerla. A survey of urban vehicular sensing platforms. Computer

Networks, 54, 2010.

[49] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Corradi.

Mobeyes: smart mobs for urban monitoring with a vehicular sensor network.

Wireless Communications, 13(5), 2006.

[50] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and

N. Glance. Cost-effective outbreak detection in networks. In Proceedings of the

International Conference on Knowledge Discovery and Data Mining (KDDM),

2007.

[51] X. Li, W. Yu, X. Lin, and S.S. Iyengar. On optimizing autonomous pipeline

inspection. IEEE Transactions on Robotics, 28(1), 2012.

[52] J. Ma and W. Lou. Interference-aware spatio-temporal link scheduling for

long delay underwater sensor networks. In Proceedings of the International

Conference on Sensing, Communication and Networking (SECON), june 2011.

[53] E. Magistretti, J. Kong, U. Lee, M. Gerla, P. Bellavista, and A. Corradi. A

mobile delay-tolerant approach to long-term energy-efficient underwater sen-

sor networking. In Proceedings of the International Conference on Wireless

Communications and Networking Conference (WCNC), 2007.

[54] U. Manohar and M.S. M. Kumar. Modeling equitable distribution of water:

Dynamic inversion based controller approach. Journal of Water Resources

Planning and Management, 140(5), 2013.

[55] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Cover-

age problems in wireless ad-hoc sensor networks. In Proceedings of the Inter-

national Conference on Computer Communications (INFOCOM), 2001.

176

[56] S. Mekid, A. Khalifa, R. Mansour, S. Ho, and S. Sarma. Water leaks detec-

tion: Assessment of wireless communication through water and sand media in

buried supply pipes. In International Conference on Environmental Science

and Technology (ICEST), 2012.

[57] F. Miao, S. Lin, S. Munir, J. A. Stankovic, H. Huang, D. Zhang, T. He, and

G. J. Pappas. Taxi dispatch with real-time sensing data in metropolitan ar-

eas: A receding horizon control approach. In Proceedings of the Internation

Coference on Cyber-Physical Systems (ICCPS), pages 100–109, 2015.

[58] C. Ocampo-Martinez, V. Puig, G. Cembrano, and J. Quevedo. Application

of predictive control strategies to the management of complex networks in the

urban water cycle [applications of control]. IEEE Control Systems, 33(1), 2013.

[59] K. Ogata and Y. Yang. Modern control engineering. Prentice-Hall Englewood

Cliffs, 1970.

[60] A. Ostfeld and et al. The battle of the water sensor networks (BWSN): A

design challenge for engineers and algorithms. Journal of Water Resources

Planning and Management, 134(6), 2006.

[61] G. Owojaiye and Y. Sun. Focal design issues affecting the deployment of

wireless sensor networks for pipeline monitoring. Ad Hoc Networks, 11(3),

2012.

[62] L. Perelman and A. Ostfeld. Operation of remote mobile sensors for security

of drinking water distribution systems. Water Research, 47(13), 2013.

[63] L. Perelman and A. Ostfeld. Operation of remote mobile sensors for security

of drinking water distribution systems. Water Research, 47(13), 2013.

177

[64] L. Perelman, W. Salim, R. Rouxi Wu, J. Park, A. Ostfeld, K.M. Banks, and

D.M. Porterfield. Enhancing water distribution system security through water

quality mobile sensor operation. In World Environmental & Water Resources

Congress (WEWRC), 2013.

[65] Pure Technologies. Pipediver. http://www.puretechltd.com/products/

pipediver/pipediver-pccp.shtml. [Online; accessed 30-Nov-2013].

[66] Pure Technologies. Sahara leak & gas pocket detection. http://www.

puretechltd.com/products/sahara/sahara_leak_gas_pocket.shtml. [On-

line; accessed 30-Oct-2013].

[67] Pure Technologies. Smartball for water and wastewater pipelines.

http://www.puretechltd.com/products/smartball/smartball_leak_

detection.shtml. [Online; accessed 30-Oct-2013].

[68] R. Puust, Z. Kapelan, D.A. Savic, and T. Koppel. A review of methods for

leakage management in pipe networks. Urban Water Journal, 7(1), 2010.

[69] A. Rasekh and K. Brumbelow. A dynamic simulation-optimization model

for adaptive management of urban water distribution system contamination

threats. Applied Soft Computing, 32, 2015.

[70] I. Rhee, A. Warrier, M. Aia, J. Min, and M.L. Sichitiu. Z-MAC: A hybrid

MAC for wireless sensor networks. IEEE/ACM Transactions on Networking,

16, 2008.

[71] A. Richa, C. Scheideler, S. Schmid, and J. Zhang. Self-stabilizing leader elec-

tion for single-hop wireless networks despite jamming. In Proceedings of the

International Symposium on Mobile Ad Hoc Networking and Computing (Mo-

biHoc), 2011.

178

[72] S. A. Samad, S. K. Shenoy, G. Santhosh Kumar, and P.R.S. Pillai. A sur-

vey of modeling and simulation tools for underwater acoustic sensor networks.

International Journal of Research and Reviews in Computer Science, 2, 2011.

[73] A.K. Singh and S. Sharma. Elite leader finding algorithm for manets. In

Proceedings of the International Symposium on Parallel and Distributed Com-

puting (ISPDC), 2011.

[74] J. B. Stephenson. Drinking water: Experts’ views on how federal funding can

be spent to improve security. U.S. Government Accountability Office, Sept.

2004.

[75] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline. PIPENET: A wire-

less sensor network for pipeline monitoring. In Proceedings of the International

Conference on Information Processing in Sensor Networks (IPSN), 2007.

[76] R. Stoleru, T. He, and J. A. Stankovic. Range-free localization. In Secure Local-

ization and Time Synchronization for Wireless Sensor and Ad Hoc Networks,

volume 30 of Advances in Information Security. Springer US, 2007.

[77] Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan, and I. F.

Akyildiz. MISE-PIPE: Magnetic induction-based wireless sensor networks for

underground pipeline monitoring. Ad Hoc Networks, 9, 2011.

[78] M. Suresh, U. Manohar, A. G R, R. Stoleru, and M. Kumar M S. A cyber-

physical system for continuous monitoring of water distribution systems. In

Proceedings of the International Conference on Wireless and Mobile Comput-

ing, Networking and Communications (WiMob), 2014.

[79] M.A Suresh, L. Smith, A Rasekh, R. Stoleru, M.K. Banks, and B. Shihada.

Mobile sensor networks for leak and backflow detection in water distribution

179

systems. In Proceedings of the International Conference on Advanced Informa-

tion Networking and Applications (AINA), 2014.

[80] M.A Suresh, R Stoleru, R Denton, E Zechman, and B Shihada. Towards

optimal event detection and localization in acyclic flow networks. In Proceed-

ings of the International Conference on Distributed Computing and Networking

(ICDCN), 2012.

[81] M.A. Suresh, R. Stoleru, E.M. Zechman, and B. Shihada. On event detection

and localization in acyclic flow networks. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 43(3), 2013.

[82] M.A. Suresh, W. Zhang, W. Gong, A. Rasekh, R. Stoleru, and M.K. Banks.

Towards optimal monitoring of flow-based systems using mobile wireless sensor

networks. ACM Transactions on Sensor Networks, 11(3), 2015.

[83] A. A. Syed and J. Heidemann. Time synchronization for high latency acoustic

networks-extended technical report. Technical Report ISI-TR-2005-602b, ISC,

2005.

[84] A.A. Syed, W. Ye, and J. Heidemann. T-lohi: A new class of mac protocols

for underwater acoustic sensor networks. In Proceedings of the International

Conference on Computer Communications (INFOCOM), 2008.

[85] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An

analysis of a large scale habitat monitoring application. In Proceedings of the

Conference on Embedded Networked Sensor Systems (SenSys), 2004.

[86] A. Tahbaz-Salehi and A. Jadbabaie. Distributed coverage verification in sen-

sor networks without location information. IEEE Transactions on Automatic

Control, 55(8), 2010.

180

[87] D. Trinchero and R. Stefanelli. Microwave architectures for wireless mobile

monitoring networks inside water distribution conduits. IEEE Transactions

on Microwave Theory and Techniques, 57(12), 2009.

[88] D. Trinchero and R. Stefanelli. Microwave mobile sensor networks within un-

derground conduits filled of fluids. In International Symposium on Electromag-

netic Theory, 2010.

[89] R.J. Urick and R.J. Urick. Principles of underwater sound, volume 3. McGraw-

Hill New York, 1983.

[90] U.S Environmental Protection Agency. Aging water infrastructure research.

http://www.epa.gov/awi/. [Online; accessed 30-Oct-2013].

[91] U.S. Environmental Protection Agency. Response protocol toolbox: Planning

for and responding to contamination threats to drinking water systems. Water

Utilities Planning Guide-Module 1, 2003.

[92] U.S Environmental Protection Agency. Control and mitigation of drinking

water losses in distribution systems. Publication No. EPA 816-D-09-001, 2009.

[93] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM

Journal on Computing, 8(3), 1979.

[94] S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader elec-

tion algorithm for mobile ad hoc networks. In Proceedings of the International

Conference on Network Protocols (ICNP), 2004.

[95] L.F.M. Vieira, U. Lee, and M. Gerla. Phero-trail: a bio-inspired location service

for mobile underwater sensor networks. IEEE Journal on Selected Areas in

Communications, 28(4), 2010.

181

[96] M. Wälchli, P. Skoczylas, M. Meer, and T. Braun. Distributed event localiza-

tion and tracking with wireless sensors. In Wired/Wireless Internet Commu-

nications. Springer, 2007.

[97] Y. Wang and H. Wu. Delay/fault-tolerant mobile sensor network (dft-msn):

A new paradigm for pervasive information gathering. IEEE Transactions on

Mobile Computing, 6(9), 2007.

[98] M. K. Watfa, S. Selman, and H. Denkilkian. Uw-mac: An underwater sen-

sor network mac protocol. International Journal of Communication Systems,

23(4), 2010.

[99] A. J. Whittle, L. Girod, A. Preis, M. Allen, H. B. Lim, M. Iqbal, S. Srirangara-

jan, C. Fu, K. J. Wong, and D. Goldsmith. WATERWISE@SG: A testbed for

continuous monitoring of the water distribution system in singapore. In Pro-

ceedings of the Conference on Water Distribution Systems Analysis (WSDA),

2010.

[100] R. Wu, W. Salim, A. Rasekh, J. Park, A. Brovont, S. Pekarek, M. Porterfield,

and K. Banks. Mobile sensor technology for monitoring water quality in drink-

ing water distribution. In World Environmental & Water Resources Congress,

2014.

[101] S. Xiong, L. Yu, H. Shen, C. Wang, and W. Lu. Efficient algorithms for sensor

deployment and routing in sensor networks for network-structured environ-

ment monitoring. In Proceedings of the International Conference on Computer

Communications (INFOCOM), 2012.

[102] A. Yazdani and P. Jeffrey. Complex network analysis of water distribution

systems. Arxiv preprint arXiv:1104.0121, 21(1), 2011.

182

[103] E.M. Zechman. Agent-based modeling to simulate contamination events and

evaluate threat management strategies in water distribution systems. Risk

Analysis, 31, 2011.

[104] E.M. Zechman and S. Ranjithan. Evolutionary computation-based methods

for characterizing contaminant sources in a water distribution system. Journal

of Water Resources Planning and Management, 135, 2009.

[105] J. Zhang, K. Premaratne, and P.H. Bauer. A distributed self-organization

algorithm for ad-hoc sensor networks. In Proceedings of the International Con-

ference on Wireless Communications and Networking Conference (WCNC),

2003.

[106] Z. Zhou, Z. Peng, J-H Cui, Z. Shi, and A.C. Bagtzoglou. Scalable localization

with mobility prediction for underwater sensor networks. IEEE Transactions

on Mobile Computing, 10(3), 2011.

183

APPENDIX A

PROOF THAT THE MNS PROBLEM IS NP-HARD

Minimization of Number of Sensors Problem (MNS): Given an acyclic

WDS, represented as a flow network F , a zone of interest I in F , and degree of

coverage Dc, find the set S = {(si, qi) | si ∈ V ∧ qi ∈ N} of insertion points si

(sources) where sensors need to be deployed, and the number qi of sensors to be

deployed at si, such that their sensed paths cover each edge of I with a probability

≥ Dc and the number of sensors inserted,
∑|S|

i=1 qi, is minimized.

Theorem 1: MNS is NP-Hard.

Take an instance of the Weighted Set Cover (WSC) problem (E ,V ,S, w) where:

E = {ei | i = 1, 2, . . . , n}

V = {Vj | j = 1, 2, . . . ,m;Vj ⊆ E};
m∪
j=1

Vj = E

S ⊂ V |
∪
Vj∈S

Vj = E

ω : V → R

W =
∑
Vj∈S

ωj

where E is a set of n elements, V is a set of m subsets of E covering all elements of

E , S is a subset of V that contains all elements of E . Each subset Vj has a weight

ωj. S is constructed such that E can be covered with cost W .

184

We construct f : WSC → MNS

V = {wj | j = 1, 2, . . . ,m} ∪ {ui | i = 1, 2, . . . , n}

∪ {vi | i = 1, 2, . . . , n}

E = E1 ∪ E2 where

E1 = {(wj, ui) | ei ∈ Vj; j = 1, 2, . . . ,m; i = 1, 2, . . . , n}

E2 = {(ui, vi) | i = 1, 2, . . . , n}

I = E2 ; Dc = 1

F(ui, vi) = 1 | i = 1, 2, . . . , n if ∃(wj, ui) | j = 1, 2, . . . ,m

F(ui, vi) = 0 otherwise.

F(wj, ui) = 1 | i = 1, 2, . . . , n if ui ̸= first element inVi

F(wj, ui) =
1

ωj

| i = 1, 2, . . . , n if ui = first element in Vi

where V , E, I, and Dc represent the vertices, edges, zone of interest and degree

of coverage of FSN, respectively. F defines the flow in any edge. I should be covered

with W sensors. Here, the set of edges E can be divided into two sets - E1 represents

the mapping of E and V using elements of the sets in V , and E2 represents the set

of elements E . The corresponding vertices are represented by the three subsets of V

with labels u, v and w, as shown in the above construction.

The flows in F are such that if ωj sensors are inserted in wj, the edges in E1

starting at wj are covered, i.e., (wj, ui) | ei ∈ Vj; i = 1, 2, . . . , n. Any sensor that

reaches ui also covers the edge (ui, vi) in E2.

Note that V is constructed in O(m) time, E and I in O(n+m) time, F in O(n+m)

185

time and Dc in constant time. Hence, this construction occurs in polynomial time.

Equivalence: S covers E with cost W ⇐⇒ ∀e ∈ I, e is covered by W sensors

with Dc probability in F .

⇒ Given S covers E with cost W . Since Dc = 1, all edges in I need to be covered

with 100% probability. The number of sensors to be inserted in wj, j = 1, 2 . . .m

such that all edges incident on it are covered is ωj | j = 1, 2 . . .m. Any sensor

that reaches ui will cover the edge (ui, vi). Since S covers E with cost W , selecting

the corresponding vertices in F covers all edges in I with 100% probability. So, if S

covers E with cost W , inserting W sensors in the corresponding vertices in F , ∀e ∈ I,

e is covered by the W sensors with Dc probability in F .

⇐ Given all edges of I in F can be covered by W sensors with Dc probability.

By our definition of E, all ui’s are covered by at least one wj. Hence, any set of ui in

the set of insertion points can be replaced by an existing wj without increasing the

cost. Note that using our definition of E, each vertex wj can be used to uniquely

identify Vj ∈ V . Further, each wj covers a set of edges in I and each corresponding

Vj covers a set of elements in E . So, the sets corresponding to the insertion points

ensure that V covers E with cost W .

186

APPENDIX B

APPROXIMATION RATIO OF THE GREEDY ALGORITHM FOR MASC

PROBLEM

In this appendix, we prove that the approximation ratio of the greedy algorithm

for Maximizing Average Sensing Coverage Problem (MASC) is (1 + 1
e−1

). Before

the proof, we define four operations “∩”, “∪”, “+”, “−”, and one relation “∈” on

vectors:

A ∩B = [min{a1, b1}, . . . ,min{an, bn}]

A ∪B = [max{a1, b1}, . . . ,max{an, bn}]

A+B = [a1 + b1, . . . , an + bn]

A−B = [max{0, a1 − b1}, . . . ,max{0, an − bn}]

whereX ∈ A for ai ≥ xi for 0 ≤ i ≤ n, and A and B are vectors in n-dimensional

space, X is a base vector in n-dimensional space.

The objective function f : S→ R is given by:

f(S) = m−
m∑
j=1

n∏
i=1

psiij

where pij = βij ∈ [0, 1] are constants, S = [s1, s2, . . . , sn] is a vector and si

specifies the number of sensors inserted at vertex vi. The vectors in the standard

basis for n-dimensional space comprise the basic elements in S.

Let Sk denote the first k elements selected by the greedy algorithm and let S∗

denote the actual optimum, f(S∗) = OPT . The greedy algorithm will select exactly

187

c elements, i.e. Sc is the vector returned by the algorithm. We claim by induction

that the inequation B.1 holds for 0 ≤ k ≤ c, where c is the given number of sensors.

f(S∗)− f(Sk) ≤ (1− 1

c
)kf(S∗) (B.1)

The base case k = 0: f(S∗)− f([0, . . . , 0]) ≤ f(S∗) holds.

Suppose the inequation B.1 holds true for the kth step. We now prove it also

holds for the (k + 1)th step. First, we prove three basic inequations:

f(A ∪B) ≥ f(A) or f(B) (B.2)

Proof of Inequation B.2:

f(A ∪B)

= m−
m∑
j=1

n∏
i=1

p
max{bi,ai}
ij

≥ m−
m∑
j=1

n∏
i=1

paiij

= f(A) or f(B)

(A ∩B) ≤ f(B) or f(A) (B.3)

Proof of Inequation B.3: Please refer to the proof of inequation B.2.

f(A+B) ≤ f(A) + f(B) (B.4)

Proof of Inequation B.4:

f(A+B)

188

= m−
m∑
j=1

n∏
i=1

pai+bi
ij

=
m∑
j=1

(1−
n∏

i=1

paiij ∗ p
bi
ij)

=
m∑
j=1

(1−
n∏

i=1

paiij ∗ p
bi
ij +

n∏
i=1

paiij −
n∏

i=1

paiij)

=
m∑
j=1

(1−
n∏

i=1

paiij +
n∏

i=1

paiij ∗ (1−
n∏

i=1

pbiij)

≤
m∑
j=1

(1−
n∏

i=1

paiij + 1−
n∏

i=1

pbiij)

= 2m−
m∑
j=1

n∏
i=1

paiij −
m∑
j=1

n∏
i=1

pbiij

= f(A) + f(B)

We define the marginal value of element E with respect to S as fS(X) = f(S +

X)− f(S). Now we can prove inequation B.5:

f(A)− f(B) ≤
∑

X∈A−B

fB(X) (B.5)

f(A)− f(B)

≤ f(A ∪B)− f(B)

≤ f(B) + f(A−B)− f(B)

≤
∑

X∈A−B

fB(X)

According to the greedy Algorithm 7, the element Xk+1 selected in the (k + 1)th

step maximizes fSk
(Xk+1) among the remaining elements, including all the elements

189

in S∗ − Sk. This implies that the element Xk+1 has the marginal value:

fSk
(Xk+1) ≥

1

|S∗ − Sk|
∑

X∈S∗−Sk

fSk
(X)

≥ 1

c
(f(S∗)− f(Sk))

Finally, we can prove inequation B.1 at the k + 1 step:

f(S∗)− f(Sk+1)

= f(S∗)− f(Sk)− fSk
(Xk+1)

≤ f(S∗)− f(Sk)−
1

c
(f(S∗)− f(Sk))

= (1− 1

c
)(f(S∗)− f(Sk))

≤ (1− 1

c
)k+1f(S∗)

Using the claim for k = c, we get

f(S∗)− f(Si) ≤ (1− 1

c
)cf(S∗) ≤ 1

e
f(S∗)

then we have approximation ratio:

r =
f(S∗)

f(Si)
≤ 1 +

1

e− 1

190

