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ABSTRACT

The large-scale streaming data collected from the increasing deployed phasor mea-

surement unit (PMU) devices poses significant difficulties for real-time data-driven

analytics in power systems. This dissertation presents a dimensionality-reduction-

based monitoring framework to make better use of the streaming PMU data for early

anomaly detection and classification in power systems.

The first part of this dissertation studies the fundamental dimensionality of large-

scale PMU data, and proposes an online application for early anomaly detection using

the reduced dimensionality. First, PMU data under both normal and abnormal

conditions are analyzed by principal component analysis (PCA), and the results

suggest an extremely low underlying dimensionality despite the large number of

raw measurements. In comparison with prior work of utilizing multi-channel high-

dimensional PMU data for power system anomaly detection, the proposed early

anomaly detection algorithm employs the reduced-dimensional data from PCA, and

detects the occurrence of an anomaly based on the change of core subspaces of the

low-dimensional PMU data. Theoretical justification for the algorithm is provided

using linear dynamical system theory. It is demonstrated that the proposed algorithm

is capable to detect general power system anomalies at an earlier stage than would

be possible by monitoring the raw PMU data.

The second part of this dissertation investigates the classification of a special

anomaly in power systems, low-frequency oscillation, which may cause severe im-

pacts on power systems while at the same time is difficult to be accurately classi-

fied. We present a robust classification framework with online detection and mode

estimation of low-frequency oscillations by using synchrophasor data. Based on per-
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sistent homology, a cyclicity response function is proposed to detect an oscillation,

through the use of the low-dimensional features (pre-PCA features) extracted from

PCA. Whenever the cyclicity response exceeds a numerically robust threshold, an

oscillation can be detected. After the detection, PCA is applied again to extract the

low-dimensional features (post-PCA features) from the multi-channel transient PMU

data. It is shown that the post-PCA features preserve the underlying modal infor-

mation in a more robust way in comparison to raw synchrophasor measurements.

Based on the post-PCA features, fast Fourier transform (FFT) and Prony analysis

can be subsequently applied to extract modal information of the oscillation. The pro-

posed classification framework offers system operators a data-driven analytical tool

for fast detection of low-frequency oscillation and robust mode estimation against

high measurement noise.
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NOMENCLATURE

AC Alternating Current

AVR Automated Voltage Regulator

BPA Bonneville Power Administration

CAISO California Independent System Operator

DAEs Differential and Algebraic Equations

DFR Digital Fault Recorder

DFT Discrete Fourier Transform

DOF Degree of Freedom

ERCOT Electric Reliability Council of Texas

FDR Frequency Disturbance Recorder

EMS Energy Management System

FNET Frequency Monitoring Network

FFT Fast Fourier Transform

GPS Global Positioning System

IEDs Intelligent Electronic Devices

ISOs Independent System Operators

PJM Pennsylvania-New Jersey-Maryland

LTI Linear Time invariant

MRI Magnetic Resonance Imaging

NASPI North American SynchroPhasor Initiative

PCs Principal Components

PCA Principal Component Analysis

PDC Phasor Data Concentrator
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PMU Phasor Measurement Unit

PSS/E Power System Simulator for Engineering

RTDMS Real-time Dynamics Monitoring System

SCADA Supervisory Control And Data Acquisition

SMIB Single Machine Infinite Bus

UTC Coordinated Universal Time

WAMPAC Wide-area Monitoring, Protection and Control

WECC Western Electricity Coordinating Council
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1. INTRODUCTION∗

1.1 Motivation and Overview

Since the early 1960s, low-frequency oscillations have led to many system sep-

arations [1], and even system-wide blackouts such as the 1996 Western Electricity

Coordinating Council (WECC) Blackout induced by the undamped inter-area oscil-

lation of a 0.25 Hz mode [2]. Besides the 1996 WECC Blackout, there are many

other historical incidents induced by power system low-frequency oscillations. As

illustrated in Table 1.1, low-frequency oscillations have led to severe damages on

power system reliable operations. This drives both researchers and engineers to ex-

plore power system low-frequency oscillation and to develop effective ways for its

detection.

In power systems, there are typically two types of low-frequency oscillations: 1)

Inter-area oscillation, which refers to two coherent groups of generators swinging

against each other at 0.1-1.0 Hz. The reason for inter-area oscillations could be

either weak tie-line connections between the generating source and the load center,

or a forced oscillation at an inter-area mode. 2) Local oscillation, which corresponds

to one generator swinging against the rest of the system at 1.0-2.0 Hz. Typically,

when automatic voltage regulators (AVRs) operate at a high output and feed into

weak transmission networks, a local oscillation may occur.

∗This section is in part a reprint of the material in the following papers: (1) Reprinted with
permission from Le Xie, Yang Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor
Data for Early Event Detection: Linearized Analysis,” IEEE Transactions on Power Systems, vol.
29, no. 6, pp. 2784-2794, Nov. 2014. Copyright 2014, IEEE. (2) Reprinted with permission
from Yang Chen, Harish Chintakunta, Le Xie, Yuliy M. Baryshnikov, and P. R. Kumar, “Robust
Detection and Mode Estimation of Power System Low-frequency Oscillations using Synchrophasor
Data,” IEEE Transactions on Power Systems, to be submitted. (3) Reprinted with permission
from Yang Chen, Le Xie, and P. R. Kumar, “Dimensionality Reduction and Early Event Detection
Using Online Synchrophasor Data,” IEEE Power and Energy Society General Meeting 2013, pp.
1-5, 2013. Copyright 2013, IEEE.
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Table 1.1: Historical incidents related to low-frequency oscillations [3]

Time Location
Further

Consequences

Oscillating

Mode (Hz)

1980 United Kingdom 0.5

1984, 1989, 1990 Taiwan 0.78-1.05

1996
Western U.S.,

Canada

System

Separations
0.224

1997 Scandinavia 0.4

Mar. 6, 2003 China Blackouts 0.4

Aug. 14, 2003 U.S. Blackouts 0.17

Sep. 28, 2003 Italy Blackouts 0.55

To analyze low-frequency oscillations, traditional approaches start from a detailed

dynamic model of the entire interconnection for inter-area oscillations [4, 5, 6], and

a single-machine-infinite-bus (SMIB) representation for local oscillations [7]. Then

further modal analysis, eigen analysis, and participation factor matrix methods can

be applied for oscillation detection and analysis. However, the increasing penetration

of spatially dispersed and temporally variable resources into power grids poses dif-

ficulties in achieving an accurate dynamic model of the system, and further results

in an increasing modeling complexity for oscillation analysis. Even if an accurate

dynamic representation can be achieved with new modeling techniques, the corre-

sponding computational complexity will become another key issue that deteriorates

the accuracy of model-based oscillation analysis.

On the other hand, synchrophasors have shown great potentials for improving

wide-area monitoring, protection and control (WAMPAC) [8, 9]. The 30 Hz (and

2



higher) sampling rate and the synchronization provided by the global positioning

system (GPS) enable monitoring and control of low-frequency oscillations in power

grids through synchrophasor measurements [10, 11, 12]. As the synchrophasor tech-

nology exhibits great superiority in enhancing situational awareness, more and more

PMUs and other intelligent electronic devices (IEDs), such as frequency monitoring

network (FNET) [13] and frequency disturbance recorder (FDR) [14], are rapidly

being brought online. Correspondingly, the availability of massive data is increas-

ing significantly. Just one phasor data concentrator (PDC) collecting data from 100

PMUs of 20 measurements each at 30 Hz sampling rate generates over 50 GB data

one day [15]. With the increasing amount of PMU data, it has become a challenge

to determine how to best manage and leverage the increasing amount of data from

synchrophasors for real-time operational benefits.

Dimensionality reduction has been recognized recently in power systems for its

adaptive machine learning features [16, 17, 18]. PCA, as one of the premier linear

dimensionality reduction methods, reduces dimensionality by preserving the most

variance of the original data [19, 20, 21]. Its fast computational feature itself pro-

vides much attraction in the areas of coherency identification [22], extraction of fault

features [23], and fault location [24].

In this dissertation, PCA is applied to the raw synchrophasor measurements to

reduce the dimensionality for both early detection of general anomalies, and robust

monitoring of low-frequency oscillations. The key part of this dissertation is to ex-

tract the underlying dimensionality of massive PMU data in wide-area power systems

by use of PCA. The indication of operating condition changes from the change of un-

derlying dimensionality is utilized to develop an early anomaly detection algorithm.

The extracted pre-PCA and post-PCA features from PMU data are employed for

robust monitoring of low-frequency oscillations.

3



The contributions of this dissertation are as follows: (1) The underlying low-

dimensional characteristic of large-scale PMU data is investigated through PCA,

with an online application of early anomaly detection proposed. Theoretical justi-

fication using linear dynamical system theory is provided to present the connection

between PMU-based data-driven analytics and first-principle model-based analysis in

power systems. (2) PCA-based scatter plot is employed to visualize the topological

patterns during oscillatory and non-oscillatory anomalies. Built upon that, a ro-

bust monitoring framework for power system low-frequency oscillations is presented,

where cyclicity response calculated by pre-PCA features serves effectively in oscilla-

tion detection, and the post-PCA features provide high accuracy and robustness of

mode estimation against measurement noise. (3) A PMU-based data-driven analyti-

cal tool is developed for real-time anomaly detection and classification, requiring no

prior knowledge of system topology/model.

1.2 Synchrophasor-based Anomaly Detection in Power Systems

1.2.1 Prior Work

In power systems, any incident that violates system normal operating conditions

can be defined as an anomaly. Therefore, power system faults, islanding, genera-

tor/line outages, and oscillations, etc., can all be categorized as anomalies. Data

mining tools have shown great potentials for anomaly detection in power systems,

ranging from detection of cyber attacks [25, 26], voltage events [27], to predicting-

aided state estimation [28], circuit breaker maintenance [29], and detection of sensi-

tive buses [30]. Several conventional data mining techniques, including decision tree

(DT), artificial neural networks (ANNs) and neuro fuzzy models, are first summa-

rized in [31]. Each of these techniques is specifically associated with one or several

applications in power systems, such as security assessment, fault detection, stability

4



assessment, economic dispatch, etc. As indicated in [31], till the early 2000, DT is

the mainstream in data mining in power systems. Following [31], an overview on the

applications of data mining in power systems in terms of visualization, clustering,

outlier detection, and classification, is recently provided in [32], where it has been

emphasized that fast, easy and interpretable data mining methods is becoming more

and more attractive in power systems.

Among all the data sources in power systems, varying from geographic infor-

mation system (GIS), markets, dynamics, to smart meters, PMUs, IEDs, PMUs

provide time-synchronized measurements with high resolution (30 Hz and higher).

There have been a large body of literature discussing about utilizing PMUs data to

improve anomaly detection. [33] introduces FFT-, Yuly-Walker-, and matrix-pencil-

based methods to find power system events, and identify common characteristics

extracted from the events. The Lyapunov exponents of the voltage phasors are

utilized to monitor the short-term voltage stability [34]. A PMU-based adaptive

technique for transmission line fault detection and location is proposed using the

discrete Fourier Transform (DFT) [35, 36]. The phasor angle measurements are em-

ployed together with the system topology to detect line outages [37]. [38] applies

a Fourier-based ringdown analysis to detect electromechanical oscillatory modes in

real-time. By only using PMU measurements, a fully adaptive fault location algo-

rithm for series-compensated lines is proposed in [39], requiring no knowledge on the

models of series-compensation devices.

Given the large-scale streaming PMU data into power systems, it becomes more

and more significant for the system operators to be able to process and analyze these

data in real-time. Dimensionality reduction starts to play an important in such a

situation. In [40], PCA is first performed on synchrophasor data for dimensionality

reduction. Using the participation weights and principal components (PCs), the
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reconstruction errors are utilized to extract correlations of different variables and

therefore reduce the dimensionality. The reconstruction accuracy is very high for the

global variables such as bus frequency, due to the global characteristic. However, for

some local variables, such as voltage magnitude or reactive power, the reconstructions

may not exhibit high accuracy. Recently, PCA is applied in [41] for a combined

usage of event detection and data archival reduction. Both voltage magnitude and

real power events can be effectively detected using the real PMU data from a campus

microgrid [41]. However, the events considered all have large deviations from normal

operating conditions, and may easily be detected from the raw measurements. Under

this condition, the event detection seems to be unnecessary.

1.2.2 Main Contribution

In Section 3, we first explore the underlying dimensionality of large scale PMU

data, and then present a PCA-based algorithm, which lends itself to earlier anomaly

detection than would be possible by monitoring the raw measurements.

Motivated by the increasing deployment of synchrophasors and the resulting

large-scale PMU data, PCA is first applied on the high-dimensional PMU data to

select the “pilot PMUs.” Based on PCA, the dimensionality reduction analysis pro-

vides a significantly lower dimensional “signature” of the states in the overall power

system. At the occurrence of a system anomaly, an alert from the early anomaly de-

tection algorithm is issued whenever a large value of the proposed anomaly indicator,

induced by the change of the core subspaces of the PMU data, is detected.

The main contributions of the early anomaly detection algorithm in this section

are:

• It introduces an online data-driven analytical tool, which requires no knowledge

of the system model/topology;
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• It implements the dimensionality reduction at the adaptive training stage to

extract the key features of the embedded high-dimensional PMU data;

• It performs anomaly detection using a much reduced number of PMUs as “pi-

lots,” which is computationally desirable in real-time operations;

• It is theoretically justified using linear dynamical system theory;

• For the online anomaly detection, it does not require lengthy buffering of data,

which is required in the alternative approaches based on frequency-domain

analysis;

• It is capable of detecting system anomalies at an earlier stage than would be

possible by monitoring the raw PMU data.

1.3 Synchrophasor-based Monitoring of Low-frequency Oscillation in Power

Systems

1.3.1 Prior Work

Considering the severe impacts of low-frequency oscillations on power system

reliable operations, more and more efforts have been devoted into real-time low-

frequency oscillation monitoring and analysis. However, due to the integration of new

components in power grid, the accuracy of the model-based oscillation monitoring

and analysis approaches [4, 42, 43] has been deteriorated, with increasing modeling

and computational complexities. This results in a great significance of developing

data-driven analytics for low-frequency oscillation monitoring and analysis.

The 30 Hz (and higher) sampling rate and the synchronization provided by

GPS enable the monitoring and control of low-frequency oscillations in power grids

through synchrophasor measurements [10, 11, 12]. [44] summarizes and compares the

7



performance of three data-driven methods, subspace identification, spectral indepen-

dent component analysis, and wavelet transform, in their estimation of damping of

electromechanical oscillations. Fourier spectral analysis has been applied to syn-

chrophasor data to estimate the eigenvalues for monitoring the inter-area oscillation

[45]. In [46], an adaptive stochastic subspace identification algorithm is proposed

to estimate the mode and damping of low-frequency oscillations via a fast compu-

tational feature. Three distributed communication and computational architectures

with centralized coordination are introduced in [47] for wide-area oscillation moni-

toring with PMU measurements. Oscillation monitoring system (OMS) with three

signal processing engines, Prony’s method, matrix pencil method, and Hankel total

least squares (HTLS) method, is developed to extract the modal information and

mode shape of low-frequency oscillations [48], and a corresponding OMS test engine

is developed in Washington State University [49].

Besides the research work, [50] describes the basic principles of the oscillation trig-

ger in the BPA disturbance monitor. Modal analysis for grid operation (MANGO)

tool is developed by Pacific Northwest National Laboratory (PNNL) for mode esti-

mation and damping improvement [51].

1.3.2 Main Contribution

In Section 4, a novel framework based on persistent homology and PCA is pro-

posed for low-frequency oscillation monitoring. PCA-based scatter plot is first ap-

plied to visualize power system low-frequency oscillations. Then a robust monitoring

algorithm is proposed, which lends itself to purely data-driven oscillation detection

and mode estimation. Compared with existing literature, the proposed mode esti-

mation approach utilizes both the pre-PCA and post-PCA features, and therefore

provides a faster oscillation detection, and avoids the channel selection issues of
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traditional Fourier-based analysis methods.

The main contributions of this section are as follows.

• Visualization of power system low-frequency oscillations is presented to differ-

entiate oscillations from other types of anomalies by use of the topological-

pattern-based approach.

• Cyclicity response with pre-PCA features provides high accuracy in detecting

low-frequency oscillations from other non-oscillatory anomalies, and benefits

real-time data analytics in power systems.

• Mode estimation with post-PCA feature preserves robustness of mode estima-

tion against high measurement noise.

• The proposed robust monitoring algorithm is purely online data-driven, requir-

ing no knowledge of system model or topology.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. Section 2 presents an overview

of synchrophasor technology, including synchrophasor concept, device, network, ap-

plications in power systems, and deployment. The linear and nonlinear techniques

of dimensionality reduction are then introduced. Traditional model-based anomaly

detection and classification techniques are briefly reviewed.

In Section 3, dimensionality reduction is considered for power system early anomaly

detection using PMU data. We first analyze the dimensionality of the synchrophasor

data sampled during both normal operating conditions and contingencies. With the

extremely low dimensionality of PMU data obtained from PCA, we propose an online

application for early anomaly detection. The change of core subspaces of the PMU
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data in the low-dimensional space indicates the occurrence of an anomaly. Theo-

retical justifications are provided for the proposed algorithm using linear dynamical

system theory.

In Section 4, the scatter-plot-based visualization of oscillations is first introduced.

Secondly, a persistent-homology-based cyclicity response is proposed, lending itself

to oscillation detection through the use of the pre-PCA features. A pre-defined

threshold can be determined by using historical eventful PMU data. Cyclicity re-

sponse exceeding the threshold indicates the occurrence of an oscillation. After an

oscillation is detected, PCA is applied again to extract the post-PCA features from

multi-channel transient PMU measurements. Theoretical justification is provided to

show that the post-PCA features still retain the modal information as is in the raw

measurements. FFT and Prony analysis are finally applied to the resulting post-PCA

features for mode estimation.

In Section 5, we summarize our main contributions in this dissertation and provide

some future research directions.
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2. BACKGROUND∗

2.1 Synchrophasor Technology

2.1.1 Synchrophasor Measurement Concept

A phasor is a complex number representing both the magnitude and phase an-

gle of voltage and current sinusoidal waveforms (50 or 60 Hz) at a specific point

in time. Synchrophasors are the phasor measurements time stamped against the

coordinated universal time (UTC) time by GPS. By precisely time-aligning mea-

surements in different locations, the GPS synchronization enables synchrophasors to

provide an interconnection-wide comprehensive view of the entire power grid stress

and dynamics.

Compared to the traditional supervisory control and data acquisition (SCADA)

system, the synchrophasor technology has three main advantages:

• High resolution. With a 30 Hz (and higher) sampling rate, synchrophasors

provide a much detailed visibility of power systems than the traditional SCADA

system, which samples the system every 2-4 seconds. This “magnetic resonance

imaging (MRI) quality [52]” high-resolution technology enables synchrophasors

for wide area monitoring, real-time dynamics and stability monitoring, and

improvements in state estimation, protection, and controls.

• Synchronization by GPS. This feature further enables the wide-area monitoring

∗This section is in part a reprint of the material in the following papers: (1) Reprinted with
permission from Yang Chen, Le Xie, and P. R. Kumar, “Integrating PMU-data-driven and Physics-
based Analytics for Power System Operations,” 2014 48th Asilomar Conference on Signals, Systems,

and Computers, 2014. Copyright 2014, IEEE. (2) Reprinted with permission from Le Xie, Yang
Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor Data for Early Event Detec-
tion: Linearized Analysis,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 2784-2794,
Nov. 2014. Copyright 2014, IEEE.
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applications of synchrophasors.

• Phase angle measurements. Synchrophasors can directly provide the phase an-

gle measurements at the high hub-second resolution. This has greatly improved

the accuracy of phase angle measurements from traditional state estimator, and

further enables the PMU-based state estimation with higher accuracy.

IEEE standard C37.118.1 [53, 54] specifies synchrophasor measurement defini-

tions and performance requirements.

2.1.2 Synchrophasor Device and Network

2.1.2.1 Synchrophasor Device

A PMU is a standalone electronic device that uses the state-of-the-art digital

signal processors to measure the 50/60 Hz alternating current (AC) voltage and/or

current signals to provide synchrophasor measurements. Typical sampling rate of

PMUs is 48 samples per cycle (2880 samples per second). An analog to digital

converter is first utilized to digitize the analog AC waveforms for each phase. Then

high-speed synchronized samples are created by a phase-lock oscillator along with a

GPS reference source with 1 microsecond accuracy [55]. After that, the voltage and

current phasors are computed by digital signal processing techniques.

Besides the PMU devices, the synchrophasor measurement functionality can be

achieved by any device incorporating the PMU functionality, such as digital fault

recorders (DFRs) and digital relays, i.e., the PMU-enabled IEDs. Other unrelated

functions of the device must be shown not to affect the performance of the PMU

component, and equally importantly the PMU functions must not affect the other

functions of the device. The main components of a PMU or PMU-enabled IED

include analog input signal interface, data acquisition system, phasor estimation

module, and post-processing module for output data [15].
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PMUs and PMU-enabled IEDs are typically installed in a substation or at a

power plant. Figure 2.1 illustrates a typical installation of a PMU device.

Figure 2.1: Traditional PMU installation [56].

2.1.2.2 Synchrophasor Network

As shown in Figure 2.2, a simple synchrophasor network consists of several PMUs

and one PDC.

Typically, many PMUs located at various key substations gather data and send

it in real time to a PDC at a location where the data is aggregated and analyzed. If

multiple IEDs in a substation provide synchrophasor measurements, a PDC may be

locally deployed at the substation. Software, such as real-time dynamics monitoring

system (RTDMS), is utilized to compute and display the synchronized measurements,

such as frequencies, primary voltages, currents, MWs and MVARs for reliability

engineers. If there are many PDCs belonging to different utilities, a common central

PDC, i.e., SuperPDC, will be employed to aggregate data across the utilities, in
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order to provide an interconnection-wide snapshot of the power grid measurements

[55].

Figure 2.2: Traditional phasor measurement system [57].

2.1.3 Synchrophasor Applications in Power Systems

According to [15], the synchrophasor-based applications can be classified into

three categories:

• Online applications to support real-time operations. California Independent

System Operator (CAISO) started to implement synchrophasor data into con-

trol room and use RTDMS for WECC wide-area visualization and monitoring

from 2008 [58]. Proposed in [59], the Mode Meter has been tested with field

measurement data [51] from WECC, and has been utilized as a supplemen-

tary online oscillation monitoring tool. The PSGuard wide-area monitoring

and control system [60] from ABB is capable to monitor phase angle stability,

voltage stability, and line thermal limits, etc.

• Offline applications to improve system planning and analysis. The synchro-

nized wide-area data are essential for disturbance analysis, as evidenced by
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the 2003 U.S. Eastern blackout investigation and the 2006 European distur-

bance investigation [61]. The high-speed observations from PMUs can also be

employed by planners to improve static and dynamic system models through

model calibration and validation [62].

• Response-based applications to enable wide-area control. With the instanta-

neous and high-resolution measurements, PMUs can be used to activate local

or centralized control of corrective measures for angular stability, voltage sta-

bility, and low-frequency oscillation.

From the perspective of different users, Figure 2.3 summarizes the potential pha-

sor data applications.

Figure 2.3: Phasor applications [15].
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2.1.4 Synchrophasor Deployment

As reported in [63, 64], there are about 1400 (pure) PMU devices installed across

North America from 2009 to 2014, let alone the number of PMU-enabled IEDs, and

the micro-PMUs in the distribution system. Figure 2.4 illustrates the PMU map

with synchrophasor data flows in North America as of October 2014. Besides, as

reported in [65], from 2014 to 2023, the utilities are expected to invest nearly $107

billion in the development of synchrophasors and wider-area situational awareness

systems.

Figure 2.4: PMU map in North America as of Oct. 2014 [66].

Given the increasing deployed synchrophasor devices, it has become a challenge

to determine how to best manage and leverage the increasing amount of data from

synchrophasors for real-time operational benefits. Just one PDC collecting data from

100 PMUs of 20 measurements each at 30-Hz sampling rate generates over 50 GB of
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data one day [15].

2.2 Dimensionality Reduction

With the high-dimensional streaming data from PMUs, it is advantageous for us

to discover or impose the true structure on the data for real-time analysis. Therefore,

it is of great significance to explore the intrinsic dimensionality of the PMU data.

The transformation of the high-dimensional datasets into a meaningful represen-

tation of the reduced dimensionality, ideally, the intrinsic dimensionality of the data,

is referred as the dimensionality reduction [67]. The intrinsic dimensionality is de-

fined as the minimum number of parameters required to account for the observed

properties of the data [68]. Dimensionality reduction is important in many domains,

since it facilitates classification, visualization, and compression of high-dimensional

data, by mitigating the curse of dimensionality and other undesired properties of

high-dimensional spaces [67].

The problem of dimensionality reduction can be defined as follows. Define a

dataset matrix Y ∈ RN×n, which consists of N data vectors yi, i = 1, 2, . . . , N , and

has dimensionality n. Assume the intrinsic dimensionality of dataset Y is d, where

d < n, and often d≪ n. In geometric terms, the intrinsic dimensionality means that

the points in dataset Y are lying on or near a manifold with dimensionality d that

is embedded in the n-dimensional space [21]. A dimensionality reduction technique

aims to transform Y into a new dataset Ynew with dimensionality d, while preserving

as much geometry of the data as possible.

There are mainly two categories of the dimensionality reduction techniques: 1)

linear techniques, which are famous for the fast computational feature; and 2) nonlin-

ear techniques, which are capable to capture the nonlinear degree of freedom (DOF)

of the data. This section only introduces the two dimensionality reduction tech-
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niques that are utilized in this dissertation. The readers are referred to [67] for more

techniques.

2.2.1 Principal Component Analysis

PCA, as one of the premier linear dimensionality reduction methods, reduces di-

mensionality by preserving the most variance of the original data [19, 21]. Its fast

computational feature alone is greatly attractive in the areas of coherency identifi-

cation [22], extraction of fault features [23], and fault location [24], aside from its

considerable benefits for visualization.

Mathematically, PCA is defined as an orthogonal linear transformation, aiming

at finding a linear transformation U from the original high-dimensional dataset to a

new coordinate system such that the largest variance by some projection of the data

lies on the first coordinate (first principal component, or PC1), the second largest

variance on the second coordinate (second principal component, or PC2), and so on.

Equivalently, for a high-dimensional dataset Y ∈ RN×n, PCA is designed to find a

linear transform U such that

argmax
U

UT · ΣY−µ · U, (2.1)

where ΣY−µ represents the covariance matrix of the zero mean dataset (Y−µ), and

µ = E[Y] is the mean of Y.

This linear mapping U is formed by the d principal eigenvectors of the covariance

matrix ΣY−µ as the columns, and each column is called a principal component (PC).

The low-dimensional representations Ynew of the original high-dimensional data can

be computed by a linear mapping on the transformation U, i.e.,

Ynew = (Y − µ) ·U. (2.2)

18



The main drawback of PCA is that the size of the covariance matrix is propor-

tional to the dimensionality of the dataset. Therefore, for very high-dimensional

dataset, the computation of the eigenvectors might be infeasible. Furthermore, sim-

ple PCA [69] and probabilistic PCA [70] have been proposed to address this problem.

2.2.2 Isometric Feature Mapping

Isometric Feature Mapping (Isomap) is a global nonlinear technique that at-

tempts to preserve the global properties of the data, while in the meantime constructs

the nonlinear transformation between the high-dimensional dataset Y and the low-

dimensionality representation Ynew. Based on Multidimensional Scaling (MDS),

which only captures the Euclidean distance, Isomap aims to preserve the intrinsic

geometry of the data, as captured in the geodesic manifold distances [71]. Geodesic

distance is defined as the distance between two points measured over the manifold

[71].

Given dataset Y, Isomap [71] can be summarized in the following three steps:

(1) Construct neighborhood graph G. For each data point yi, connect it with its

k nearest neighbors.

(2) Compute shortest paths. With the neighborhood graph G, the shortest path

between two data points, which forms a good estimate of the geodesic distance, can

be computed using some algorithm. A pairwise geodesic distance matrix DG can be

obtained when all data points have been processed.

(3) Construct d-dimensional embedding. The low-dimensional representation

Ynew can be computed by applying MDS on the resulting distance matrix.

Some major drawbacks of Isomap are: 1) it is computationally inefficient; 2) it is

topological instable; 3) it may fail when the manifold is nonconvex [67].
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2.3 Power System Anomaly Detection and Classification

In the area of data mining, anomalies are defined as patterns in data that do not

belong to a well-defined notion of normal behavior [72]. The problem of anomaly

detection refers to find such abnormal patterns that deviate from the expected be-

haviors in the datasets.

To better study the anomalies in power systems, it is worthwhile to understand

the normal behaviors in power systems, namely, the normal operating conditions.

According to [73], under normal operating conditions, the power system is charac-

terized by:

• Almost symmetrical three-phase voltages and currents;

• Operational currents remaining below the pre-set levels (including some per-

missible overload);

• Voltage level within permissible range around the nominal value;

• Frequency of the signals equal or very close to the nominal 50/60 Hz;

• Harmonics content within permissible limits.

Violations of any of the above normal operating conditions may result in the

occurrence of one or more anomalies, for which particular procedures and approaches

are of great necessity in power system for detection and classification. Several power

system anomalies with one or more violations of normal operating conditions are

classified as follows:

- Asymmetrical three-phase conditions in power systems are often associated

with power system faults, of which protective relays are mainly utilized for
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the indication and detection of the faults and location. However, the existence

of the mis-operations of the protective relays, and the delayed update of the

relay status sometimes fail the accurate detection of such faults in a timely

manner.

- Generator or line tripping usually results in the operational currents ex-

ceeding the pre-set levels, and/or the voltage or frequency exceeding certain

range around the nominal values. Such tripping anomalies can be indicated

by the open/closure status of the equipped circuit breakers. Similarly, the de-

layed update of the status and mis-operations also exist for the circuit breakers,

which make the traditional detection method inaccurate for timely detection.

- The harmonics content exceeding certain limits will result in power system

oscillations , where low-frequency oscillations attract the most attention be-

cause of the severe damage to the components and the whole system, and the

difficulty for detection.

Power system low-frequency oscillations contains the following two main types:

* Inter-area oscillation, which refers to one generator/plant group oscillates

against other groups at a frequency of 0.1 to 1.0 Hz. It usually occurs

in the weak interconnected power systems through long tie lines. Some-

times, a forced oscillation may occur, with a bad control action driving an

oscillation at an inter-area mode. In the early era of power system anal-

ysis, inter-area oscillations were analyzed and controlled by modal and

eigen-analysis with a detailed representation of the entire interconnection

[1, 4, 5] .

* Local oscillation, in which one generator oscillates against the rest of the
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whole system at a mode of 1.0 to 2.0 Hz. Such oscillations are usually

caused by the AVRs of generators operating at high outputs and feeding

into weak transmission networks [74]. The SMIB model is well applied

in the local oscillation analysis, with a dynamic model for the oscillating

generator, and the rest of the system being modeled as a constant voltage

source with constant frequency [1].

Nowadays, with the increasing penetrations of renewable energy, electric vehi-

cles, energy storage, and other new components into the power grid, it is of

great difficulty to obtain an accurate dynamic representation of the entire in-

terconnection for one power system to study the inter-area oscillation. Even for

local oscillation analysis, only using the SMIB model is not accurate enough.

Even though an accurate dynamic representation can be achieved by advanced

modeling techniques, the resulting increasing computational complexity will

also deteriorate the accuracy of the model-based analytics. Therefore, new

approaches are of great necessity to capture the properties of oscillations.

All the drawbacks of traditional approaches and procedures in the ineffective de-

tection and classification of power system anomalies drive us to explore in a parallel

aspect of traditional model-based analytics, and to research on the measurement-

based approaches for early anomaly detection and classification with the synchropha-

sor technology.
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3. PMU-BASED EARLY ANOMALY DETECTION VIA DIMENSIONALITY

REDUCTION∗

3.1 Introduction

This section describes the synchrophasor based algorithm for early detection of

system-wide anomalies by use of dimensionality reduction techniques.

With the increasingly deployed synchrophasors and the massive data it generated

as discussed in Section 2.1.4, it becomes a major challenge for large-scale power

system operators to utilize the data in a timely manner. As an example, with only

120 PMUs installed, the Tennessee Valley Authority (TVA) needs to manage 36 GB

data per day [40]. It becomes very difficult for the system operators to directly use

the raw data for real-time decision making.

The increasing deployment of synchrophasors and the large volume of PMU data

raise several open questions: 1) What is the underlying dimensionality of the mas-

sive PMU data in wide-area power systems? 2) Does the underlying dimensionality

change as the system operating conditions change? 3) Can such a change of dimen-

sionality indicate the occurrence of an anomaly in power system real-time operations?

4) Is there any fundamental connection between the PMU data-driven analytics and

the model-based analysis of power systems? These are the new questions that conven-

tional model-based approaches alone cannot address. It is therefore an urgent need

to leverage inherent correlations among the PMU data for dimensionality reduction.

∗This section is in part a reprint of the material in the following papers: (1) Reprinted with
permission from Le Xie, Yang Chen, and P. R. Kumar, “Dimensionality Reduction of Synchrophasor
Data for Early Event Detection: Linearized Analysis,” IEEE Transactions on Power Systems, vol.
29, no. 6, pp. 2784-2794, Nov. 2014. Copyright 2014, IEEE. (2) Reprinted with permission
from Yang Chen, Le Xie, and P. R. Kumar, “Dimensionality Reduction and Early Event Detection
Using Online Synchrophasor Data,” IEEE Power and Energy Society General Meeting 2013, pp.
1-5, 2013. Copyright 2013, IEEE.
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The dimensionality reduction method has been recognized in power systems for its

adaptive machine learning features. In this section, by exploring the underlying di-

mensionality of PMU data, we propose theoretical justifications for an early anomaly

detection algorithm. Based on PCA, the dimensionality reduction analysis provides

a significantly lower dimensional “signature” of the states in the overall power system

[17]. At the occurrence of a system anomaly, an alert from the early anomaly detec-

tion algorithm is issued whenever a large value of the proposed anomaly indicator,

induced by the change of the core subspaces of the PMU data, is detected.

The main contributions of this section are:

• It proposes an online data-driven approach without requiring any knowledge

of the system model/topology;

• It implements the dimensionality reduction at the adaptive training stage to

extract the key features of the embedded high-dimensional PMU data;

• It performs anomaly detection using a much reduced number of PMUs as “pi-

lots,” which is computationally desirable in real-time operations;

• It is theoretically justified using linear dynamical system theory;

• For the online anomaly detection, it does not require lengthy buffering of data,

which is required in the alternative approaches based on frequency-domain

analysis;

• It is capable of detecting system anomalies at an earlier stage than would be

possible by monitoring the raw PMU data.
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3.2 Dimensionality Analysis of Synchrophasor Data

In this section, we explore the underlying dimensionality of streaming PMU data

by use of dimensionality reduction. Both the linear technique, PCA (introduced in

Section 2.2.1), and the nonlinear technique, Isomap (introduced in Section 2.2.2),

are applied.

The notations utilized in this section are described as follows. Let p denote

the number of available PMUs across the whole power network, each providing ℓ

measurements. It is anticipated that there could be up to thousands of PMUs in

interconnected power systems, with each PMU providing up to 20 different measure-

ments† at each sample [15, 75, 76]. At each time sample, a total of NT := p × ℓ

measurements are collected, indicating the difficulty of online data analytics. Define

the measurement matrix Yn×N := [y(1), . . . , y(N)] containing the N measurements.

Each measurement has n past samples, i.e., y(i) := [y
(i)
1 , . . . , y

(i)
n ]T , i = 1, . . . , N .

3.2.1 Linear Dimensionality Analysis of Synchrophasor Data

This part describes the results from PCA on the synchrophasor data and the

demonstration of results by use of real PMU data from Western U.S.

3.2.1.1 Results from PCA

When performing PCA on the measurement matrix Y, a loading plot, a score

plot, and cumulative variances will be produced to interpret the results.

On the loading plot, the projected data “sitting together” indicates the similarity

in the behaviors among the N variables. The axes of the loading plot are formulated

by the loading of PC1, PC2, etc.

†Considering the different numbers of measurements provided by different types of IEDs, this
dissertation utilizes the industry grade PMU devices, which provide 20 measurements at each sample
[40].
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The score plot is also called the scatter plot, where the projected data “sitting

together” indicates the similarity in the behaviors of the n samples in the time

history. The axes of the score plot are formed by PCs. Usually in order to visualize

the scatter plot, a 2D plot with PC1 and PC2 as the axes, or a 3D plot with PC1,

PC2 and PC3 can be utilized.

As discussed in Section 2.2.1, the linear mapping from PCA is formed by the

principal eigenvectors of the covariance matrix. Consider the eigenvectors form a

basis for the data. Then the eigenvalues represent the distribution of the source

data’s energy among each of the eigenvectors. The cumulative energy content or

cumulative variance for the jth eigenvector is the sum of the energy contents across

all of the eigenvalues from 1 through j. In other words, the cumulative variance

preserved by the jth PC has an added value of the variances from 1 to j [77].

3.2.1.2 Case Studies

In this part, the real PMU data from Western U.S. are utilized to demonstrate

the results from PCA. A total number of 44 PMUs are utilized, with measurements

of bus frequency and voltage magnitude at a sampling rate of 60 Hz.

The purpose of the analysis is to

• demonstrate why the dimensionality of large-scale PMU data can be reduced

by PCA, and

• illustrate how PCA can indicate the occurrence of a system-wide anomaly with

PMU data.

3.2.1.2.1 Analysis with Bus Frequency Measurements

5 minutes of bus frequency data under normal operating conditions are depicted in

Figure 3.1(a.1), with the corresponding cumulative variance shown in Figure 3.1(a.2).
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As can be observed, only the first 2 or 3 PCs can preserve over 99% cumulative vari-

ance, indicating the high redundancy of the bus frequency measurements. Similarly,

from the loading plot in Figure 3.1(b), the end points of all the radials cluster as a

line, indicating the similar behaviors among the 44 measurements.
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Figure 3.1: Demonstration of PCA-based dimensionality reduction with bus fre-
quency measurements under normal condition.

Figure 3.2 illustrates the results using eventful data. 5 minutes of bus frequency

data starting from a wind-farm oscillation are utilized. Similarly as the case with

normal PMU data, the first 2 or 3 PCs still preserve a high amount of cumulative

variance, above 99.5% as shown in Figure 3.2(a.2). Even with an oscillation, the

loading plot in Figure 3.2(b) still clusters as a line, indicating the redundancy.

From Figures 3.1 and 3.2, it can be observed that PCA can significantly reduce

the dimensionality of the bus frequency data by preserving a large amount of cumu-

lative variance, i.e., preserving most of the information contained in the original high

dimensional data. In other words, PCA performs well in reducing the dimensionality
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of the bus frequency measurements.

Time (s)
0 50 100 150 200 250 300

ω
 (

p.
u.

)

0.999

0.9995

1

1.0005

1.001

(1) Bus Frequency Profile during Oscillation

Number of PCs
0 5 10 15 20 25 30 35 40 45

P
er

ce
nt

ag
e 

(%
)

99

99.2

99.4

99.6

99.8

100

100.2
(2) Cumulative Variance for Bus Frequency ω

(a) Profile and cumulative variance.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
2D Loading Plot for Bus Frequency during Oscillation

Loading of PC
1

Lo
ad

in
g 

of
 P

C
2

(b) 2D loading plot.

Figure 3.2: Demonstration of PCA-based dimensionality reduction with bus fre-
quency measurements during an oscillation.

Figure 3.3 illustrates the bus frequency profile before, during and after the os-

cillation and the corresponding scatter plot. The change of color in the scatter plot

Figure 3.3(b) indicates the time trajectory. As can be observed, before the anomaly,

the bus frequency measurements in Figure 3.3(a.1) are around nominal values of

1.0005 p.u., while the scatter plot in Figure 3.3(b.1) shows a small cluster in the

2D space. With the occurrence of the oscillation in Figure 3.3(a.2), the scatter plot

starts to deviate from the original cluster with a changing color to pink. After the

anomaly, when the system recovers to a new operating condition in Figure 3.3(a.3),

the scatter plot again comes back to a new cluster as shown in Figure 3.3(b.3) in

cyan. The change of subspace with the pink color clearly indicates the occurrence

of the anomaly, further illustrating the capability of PCA to detect system-wide

anomalies.
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Figure 3.3: Raw profile and scatter plot comparison of PCA-based oscillation detec-
tion with bus frequency measurements.

3.2.1.2.2 Analysis with Voltage Magnitude Measurements

In this part, we illustrate the PCA results by use of voltage magnitude measure-

ments. Similarly as the bus frequency case, 5 minutes data under normal condition

and following an oscillation are utilized.

Different from the bus frequency case, the first 2 PCs for voltage magnitude only

preserve about 80% cumulative variance in Figure 3.4(a) with normal data, and

87% in Figure 3.5(a) with oscillatory data. From the corresponding loading plots in

Figures 3.4(b) and 3.5(b), the separability of the radials, compared to the ones in

Figures 3.1(b) and 3.2(b), indicates that the voltage magnitude measurements have

much less redundancy compared to the bus frequency. One reason for this is that

bus frequency is well-known to be a global variable in power system, while voltage

magnitude is a local variable because of the voltage levels.

Figure 3.6 demonstrates the PCA results for the scatter plot of voltage magni-

tude measurements with the raw profile plot. Similarly, the change of subspace in
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Figure 3.4: Demonstration of PCA-based dimensionality reduction with voltage mag-
nitude measurements under normal condition.
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Figure 3.5: Demonstration of PCA-based dimensionality reduction with voltage mag-
nitude measurements during an oscillation.
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Figure 3.6: Raw profile and scatter plot comparison of PCA-based oscillation detec-
tion with voltage magnitude measurements.

the scatter plot indicates the occurrence of the anomaly. However, because of the

localized property of voltage magnitude, this indication is not as clear as the ones

from bus frequency measurements. Therefore, in the following case studies, the bus

frequency measurements will be utilized for demonstrations.

3.2.2 Nonlinear Dimensionality Analysis of Synchrophasor Data

In this part, Isomap will be utilized to explore the nonlinear dimensionality of

the synchrophasor data.

As discussed in [71], Isomap is capable to capture the intrinsic DOF from high-

dimensional data by the “knee point” of the residual variance.

The same set of data from Western U.S. are utilized for both bus frequency and

voltage magnitude analysis. The nonlinear dimensionality will be analyzed with data

from both normal conditions and oscillations.

Figure 3.7(a) illustrates the residual variances for the bus frequency measurements

under both normal condition and oscillation. As can be observed, the “knee point”
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occurs at Isomap dimensionality of 3. This demonstrates that given the 44 PMU

measurement sets, the intrinsic DOF of the data tends to be 3.

Similarly as the bus frequency case, the “knee point” obtained from the residual

variance using the voltage magnitude measurements in Figure 3.7(b) also occurs

around Isomap dimensionality of 2 or 3.
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Figure 3.7: Residual variance using Isomap.

3.2.3 Choice of Dimensionality Reduction Technique

Sections 3.2.1 and 3.2.2 have illustrated that the dimensionality of high-dimensional

PMU data can be significantly reduced by use of both linear and nonlinear techniques.

As shown by PCA in Section 3.2.1.2, only 2 or 3 PCs can preserve a high amount of

cumulative variance from both bus frequency and voltage magnitude measurements.

Similarly, the “knee point” in the residual variance in Isomap in Section 3.2.2 also

suggests the intrinsic DOF of the high-dimensional PMU data is around 3. In other

words, the results from PCA match the ones from Isomap, indicating both linear
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and nonlinear techniques are effective in reducing the dimensionality of PMU data.

Considering the purpose of utilizing PMU data to improve power system real-time

monitoring and control, the computational efficiency of the selected technique should

be high. PCA, as a traditional linear technique, is famous for its fast computational

feature. For Isomap, although it’s capable to capture the intrinsic DOF, it is very

computational time-consuming. Therefore, PCA is utilized to further develop the

early anomaly detection algorithm by use of the streaming PMU data.

3.3 Proposed Early Anomaly Detection Algorithm

If the massive PMU data essentially lie in a much reduced dimensional space,

independent system operators (ISOs) or vendors can leverage the change in the un-

derlying subspaces of the PMU data to visualize and detect system anomalies at an

early stage. In this section, we propose such an algorithm with the following features:

(a) only a reduced number of PMUs are needed; (b) it is online implementable; (c)

it is theoretically justified using linear dynamical system theory; (d) the implemen-

tation of the algorithm can be done without knowledge of any underlying physical

model of the system; (e) it can detect a system anomaly at a very early stage. Figure

3.8 provides an overview of the proposed early anomaly detection algorithm to be

implemented in power systems.

This proposed early anomaly detection algorithm with two parts is shown in

Figure 3.9.

3.3.1 PCA-based Adaptive Training

The PCA-based adaptive training stage is presumed to have been taken in normal

operating conditions. Assume the training period is Ttrn.

The PCA-based dimensionality analysis is described as follows:

1) Form the PMU measurement matrix Y.
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Figure 3.8: Overview of the early anomaly detection algorithm.
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Figure 3.9: Implementation of the early anomaly detection algorithm.
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At current time t0, the PMU data in Ttrn, under normal operating conditions,

are employed to form the measurement matrix Yn×N(t0) for training.

2) Perform PCA on Y.

3) Identify “pilot” PMUs.

Pilot PMUs are defined as the PMUs whose projections in the low-dimensional

space are as orthogonal as possible. In other words, the projections of pilot PMUs

form the linear basis in the low-dimensional space. The approaches to determine the

pilot PMUs and the number of them are described as follows.

• Out of the N PCs from PCA, select the highest m, which preserve a cumulative

variance satisfying
∑m

i=1 vari ≥ τ . τ is a pre-defined variance threshold, and

m≪ N . For the purpose of visualization, m is usually selected as 2 or 3.

• Form a new m-dimensional subspace from the top m PCs.

• Project the original N -dimensional data onto the m-dimensional PC-based

space. Select m projected variables such that for projections p(i) and p(j),

cos θ =
p(i) · p(j)

|p(i)| · |p(j)| ≈ 0, (3.1)

where i, j = 1, . . . , m, i.e., the m projections should be as orthogonal to each

other as possible. Then the m PMUs corresponding to the m projections are

denoted as “pilot‡” PMUs. The remaining (N − m) PMUs are denoted as

“non-pilot§” PMUs.

‡In reality, some practical concerns could also be included in the determination of the pilot
PMUs. For example, for some topologically and physically significant buses, their installed PMUs
can be enforced to be pilot PMUs.

§Excluding the pilot PMUs from the total N available PMUs, the rest are denoted as non-pilot
PMUs. In reality, some PMUs can also be enforced to be non-pilot PMUs if they are historically
eventful.
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4) Form the basis matrix YB.

Define YB := [y
(1)
b , . . . , y

(m)
b ] ∈ Rn×m, containing m pilot PMUs as columns.

YB forms a linear basis for the original N measurements.

5) Calculate linear regression coefficients v(i).

Represent the non-pilot PMUs y(i) in terms of YB by linear regression, where

y(i) ⊆ Y and y(i) * YB, i = 1, . . . , N −m. Let v(i) := [v
(i)
1 , . . . , v

(i)
m ]T be the vector

of the linear regression coefficients for the approximation, i.e.,

y(i) ≈
m
∑

j=1

v
(i)
j · y(j)

b = YB · v(i). (3.2)

Considering the large number of training PMU data in the dimensionality analysis,

it follows that n≫ m. Therefore, using y(i) and YB from the training data, v(i) can

be calculated by solving the over-determined problem (3.2) as

v(i) := (YB
TYB)−1YB

Ty(i), (3.3)

in which the squared approximation error ‖y(i) − YB · v(i)‖2 is minimized [78].

Using (3.3), each non-pilot PMU measurement vector can be represented in terms

of the pilot PMUs. The dimensionality of the PMUs across the whole network can

therefore be reduced from N to m, where m ≪ N . In such a case, ISOs or the

vendors can utilize the pilot PMUs to approximate some selected non-pilot PMUs

and detect the changes of system operating conditions in real-time operations.

6) Adaptive update.

The update signal is sent from the second stage of robust online monitoring.

Denote the update period as Tup. Tup is a system-dependent variable, and usually

can be chosen as 3-5 minutes. The adaptive update mechanism is designed as follows:
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• If there is no anomaly occurring during a period of Tup, the training procedure

is adaptively updated every Tup time units.

• If an anomaly is detected within Tup, the training procedure is updated imme-

diately after the system recovers from the anomaly.

3.3.2 Robust Online Monitoring

The robust online monitoring utilizes the basis matrix YB at current time t and

the coefficients v(i)’s calculated from the adaptive training stage to approximate

the measurements of some selected non-pilot PMUs at the same time. Under normal

operating conditions, the predictor coefficients v(i)’s provide accurate approximations

of non-pilot y(i)’s because of the usage of normal-operating-condition data in the

training procedure. Whenever an anomaly occurs, the spatial dependencies inside

the power system will change, resulting in the deterioration of the approximations,

leading to large approximation errors. Whenever a significant approximation error

is noticed, an anomaly alert is declared for the purpose of corrective control.

Assume that the real-time approximation of the ith non-pilot PMU is

ŷ(t)(i) := Ymeas
B (t) · v(i), (3.4)

where Ymeas
B (t) is the real-time measurements of YB at time t, and v(i) is adopted

from the adaptive training in Section 3.3.1.

Define the relative approximation error of the ith non-pilot PMU as

e(t)(i) :=
ỹ(t)(i)

y(t)(i),meas
× 100%, (3.5)

where y(t)(i),meas represents the real-time measurement of the ith non-pilot PMU at

time t, and ỹ(t)(i) := ŷ(t)(i) − y(t)(i),meas is the absolute approximation error. The
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occurrence of anomalies can be monitored by using e(t) of some selected non-pilot

PMUs.

Numerically, because of the per unit scale of power system variables, e(t)(i)’s may

be too small to be accurately identified at the occurrence of anomalies. We therefore

propose a real-time anomaly indicator η(t)(i) for the ith non-pilot PMU, for the

purpose of early anomaly detection, as

η(t)(i) :=
e(t)(i)

e
(i)
normal

, (3.6)

where e
(i)
normal is the mean value of e(t)(i) calculated under normal operating condi-

tions. η(t) represents the normalized relative approximation error. Whenever η(t)

becomes larger than a pre-specified threshold γ, an anomaly alert is issued. Given

the fact that the PMU samples at a rate of 30 Hz or higher, an alert can be issued

within several samples after the occurrence of an anomaly. Such a swift alert is

capable of quickly identifying system anomalies in real-time situations.

Proposition 1 (PCA-based Early Anomaly Detection). Using the proposed anomaly

indicator (3.6), a system anomaly can be detected within several samples of PMUs,

whenever, for some selected non-pilot PMU i, the anomaly indicator satisfies

∣

∣η(t)(i)
∣

∣ ≥ γ, (3.7)

where γ is a system-dependent threshold that can be calculated using historical event-

ful PMU data.

Proof

A system anomaly is generalized in this dissertation as a change of system topol-

ogy (such as the generator or line tripping), operating conditions or control inputs.
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Large-scale power systems can be described by a coupled set of nonlinear DAEs

[79]

ẋ(t) = f(x(t),uo(t),h(t),q), (3.8)

0 = g(x(t),uo(t),h(t),q), (3.9)

where x(t) and uo(t) represent the power system dynamic state and input vectors,

respectively. h(t) defines the algebraic variables, i.e., the real and reactive power in-

jections. q denotes the time invariant system parameters. Differential equation (3.8)

consists of all the system dynamics including generators, wind turbines, loads, etc.

Algebraic equation (3.9) represents the real and reactive power balance equations.

We linearize the nonlinear DAEs (3.8)-(3.9) around one system equilibrium point

(one operating condition), and eliminate the algebraic equations by Kron Reduction

[80]. The resulting continuous linear time invariant (LTI) state space model is

ẋ(t) = Ax(t) + Bu(t) + α(t), (3.10)

y(t) = Cx(t) + Du(t) + ε(t), (3.11)

where x(t) and y(t) are the state and measurement vectors, respectively, with corre-

sponding system matrices A, B, C, and D, which usually satisfies D ≈ 0 in power

systems. u(t) is the augmented input vector including the original system inputs

uo(t) with the net injections h(t) of real and reactive power [80]. α(t) ∼ N(0, Q)

and ε(t) ∼ N(0, R) are assumed to be uncorrelated white noises representing the

modeling and measurement errors, respectively.

Assume: 1) A zero-order hold of u(t); 2) A continuous integration of ε(t); 3)
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D ≈ 0. The discretization of (3.10) and (3.11) with sampling time T yields [81]

x[k + 1] = eAT x[k] + A−1
(

eAT − I
)

Bu[k] + α[k], (3.12)

y[k] = Cx[k] + ε[k], (3.13)

where

α[k] ∼ N (0, Qd) , Qd =

∫ T

τ=0

eAτQeA
T τdτ,

ε[k] ∼ N (0, Rd) , Rd = R.

(3.14)

Recursively substituting (3.12) into (3.13), the general expression for the mea-

surement column vector at time k can be represented as

y[k] = C(eAT )k−1x[1] +

k−1
∑

l=1

C(eAT )l−1A−1(eAT − I)Bu[k − l] + ε[k]

= yx[k] + yu[k] + yε[k], (3.15)

where x[1] stands for the first system state in the training data, and u[·] represents

the inputs at each time step before time k.

To generalize the proof, we further assume: a) Each measurement represents one

PMU; b) A total number of N measurements are analyzed, each having n samples for

training, i.e., Y(t0) ∈ Rn×N . Therefore, the kth sample/row of Y can be represented

as Y(k) := [y(1)[k], . . . , y(N)[k]] ∈ R1×N . Denote the observation matrix as C :=

[c(1), . . . , c(N)]T , where c(i) := [c
(i)
1 , . . . , c

(i)
M ]. M is the total number of system states,

usually huge and unknown in reality. Correspondingly, y(i)[k] = c(i)x[k] + ε
(i)[k],

i = 1, . . . , N .

In order to prove the capability of the proposed algorithm for early anomaly
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detection, assume: (i) All the PMU data for adaptive training are under normal

operating conditions. Equivalently, (i.1) u[k] = u0 is a constant input vector for

k = 0, . . . , N − 1; (i.2) the initial condition x[1] stays the same; (i.3) the system

matrices A, B, and C stay the same. (ii) Only one system anomaly¶ occurs at time

t > N + 1.

Using (3.15), the general form for the ith measurement/column in Y can be

represented as

y(i) =



















y(i) [1]

y(i) [2]

...

y(i) [n]
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= c(i)
x x[1] + y(i)

ε
+ c(i)

u U0, (3.16)

where c
(i)
u, j = c(i)

(

eAT
)j−1

A−1
(

eAT − I
)

B.

Without loss of generality, assume the m basis vectors in YB are the first m

¶We only consider the detection of a single anomaly using the early anomaly detection algorithm.
The analysis and detection of multiple anomalies or cascading anomalies is a future avenue of
research.
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columns in Y(t0). Therefore, using (3.3) and (3.4), y(i) can be represented as

y(i) ≈
m
∑

j=1

v
(i)
j · y(j)

b

≈
m
∑

j=1

v
(i)
j [c(j)

x x[1] + y(j)
ε

+ c(j)
u U0]

= c(i)
x x[1] + y(i)

ε
+ c(i)

u U0,

(3.17)

where i = m+ 1, . . . , N . Equivalently,

[c(i)
x −

m
∑

j=1

v
(i)
j c(j)

x ]x[1] + [y(i)
ε

−
m
∑

j=1

v
(i)
j y(j)

ε
] + [c(i)

u −
m
∑

j=1

v
(i)
j c(j)

u ]U0

= ∆cxx[1] + ∆yε + ∆cuU0 ≈ 0. (3.18)

As stated in (3.3), the v(i)’s are calculated by minimizing the squared error.

Assume the calculation of v(i)’s is of absolute accuracy. Therefore, (I) the errors in

the calculations of the v(i)’s are zero; (II) e
(i)
normal in (3.6) is almost zero. Consequently,

for high dimensional training data, the three terms in (3.18) can be assumed to be

zero, respectively, i.e.,

∆cxx[1] ≈ 0, ∆yε ≈ 0, ∆cuU0 ≈ 0. (3.19)

Now using (3.18) and (3.19), we will prove the capability of the early anomaly

detection algorithm to detect the following three types of system anomalies:

Control Input Changes: For the control inputs U0 in (3.18), there are n×M

linear equalities. These equalities, which are not necessarily linearly independent,

form an over-determined condition. Under this over-determined condition, the initial

input vector u0 can be theoretically calculated by minimizing the squared error.
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Under normal operating conditions, ∆cuU0 ≈ 0 holds from (3.19). When one

of the control inputs changes, the new input vector Unew will not lie in the null

space of ∆cu. Consequently, a large nonzero term ∆cuUnew will violate the zero

approximation of (3.18), and thus impact the approximation error (3.5).

Initial Condition Changes: Consider the term related to x[1] in (3.18). There

are n linear equalities to solve for x[1], in an over-determined manner, n≫M . Under

normal operating conditions, ∆cxx[1] ≈ 0 holds as assumed in (3.19). A change of

the initial condition will make the new condition x[1]new lie outside the null space

of ∆cx. This will result in a large nonzero term ∆cxx[1]new, which violates the zero

approximation of (3.18) and results in a large approximation error in (3.5).

System Topology Changes: During normal operating conditions, x[1] and U0

can be theoretically calculated by the over-determined (n + n ×M) equalities. In

other words, they lie in the null space of ∆cx and ∆cu, respectively. A change of

topology from A into Anew will yield changes of ∆cx, new and ∆cu, new, as shown in

(3.16). These changes will further induce changes in the corresponding null spaces,

in which x[1] and U0 will consequently not lie. As a result, a large nonzero term

(∆cx, newx[1] + ∆cu, newU0) will violate the zero approximation of (3.18), and the

approximation error (3.5) will be large.

For the above three types of system anomalies, the occurrence of any one anomaly

will result in a nonzero approximation error (3.5), which serves as the numerator

of the anomaly indicator η(t) in (3.6). With an almost zero denominator e
(i)
normal

calculated from normal operating conditions, η(t) will become huge at the occurrence

of any one of the system anomalies.

For some selected non-pilot PMUs, historical data with known system anomalies

can be utilized to calculate the system-dependent threshold γ. Whenever
∣

∣η(t)(i)
∣

∣ ≥ γ

in (3.7), a system anomaly will be issued, and an alert will be declared for the purpose

43



of further corrective control. �

Remark 1. The achievement of the early detection depends on the choice of the

system-sensitive threshold. With numerous simulations and engineering experience,

a threshold of γ = 10 is effective for an early detection.

3.3.3 Accuracy of Early Anomaly Detection

It is worthwhile to discuss the accuracy and robustness of the early anomaly

detection algorithm.

3.3.3.1 Mis-detection (True-Negative)

Because PCA is a linear dimensionality reduction method, the deterioration of

the approximation becomes severe in face of system anomalies. Therefore, with the

proposed anomaly indicator based on the approximation error, the online anomaly

detection yields high robustness. With the real PMU data from Texas, Eastern and

Western Interconnections and synthetic PMU data from power system simulator for

engineering (PSS/E), there is no mis-detection occurring.

3.3.3.2 False Alarm (False-Positive)

From previous studies with both real and synthetic PMU data, the proposed

indicator has created false alarms when it encounter 1) missing data issues and 2)

system high-stress conditions. Therefore, it is assumed that the PMU data utilized

here are pre-processed without any missing data issues. When the system is in

high stressed conditions, the high fluctuations in the PMU data may result in false

alarms. However, considering the low probability of the occurrence of high-stressed

conditions, the proposed algorithm still has high accuracy and robustness in achieving

the detection of system anomalies.
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3.3.4 Choice of Measurements

In this part, we will discuss how to choose appropriate measurements for the

proposed algorithm.

PCA aims at finding out the low-dimensional embedding from the high-dimensional

variables by preserving the most variances. As illustrated in Figure 3.9, PCA is uti-

lized to determine both the pilot PMUs and the linear regression coefficients, which

are essential to achieve an accurate online anomaly detection. Therefore, choosing a

correct set of variables is significant for the performance of the proposed algorithm.

Commercial-grade PMU is capable of providing 20 measurements at each sample

[40], including bus frequency, real power, reactive power, sequence and phase values

of voltage and current, etc. In the following, two possible choices of variables will be

discussed, of which the latter is chosen in this dissertation.

3.3.4.1 Measurements from Multiple Categories

Assume a measurement category corresponds to one kind of power system vari-

ables, such as bus frequency, voltage magnitude, etc.. This case discusses that such

mixed categories of measurements will deteriorate the performance of the mode es-

timation.

Consider the physical meanings of power system variables. Each measurement

category has a unique variance profile. For example, bus frequency, as a global

variable, has a similar behavior throughout the whole power grid, yielding a small

variance. For voltage magnitude, as a local variable, it has different profiles on

different voltage-levels, resulting in a large variance. This can be demonstrated from

the separation of the radials in the loading plots in Figures 3.1(b), 3.2(b), 3.4(b), and

3.5(b). Therefore, combination of multiple categories will change the variance of each,

even though these categories are sampled by the same set of PMUs. The performance
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of PCA on such combined categories will be deteriorated, and the accuracy of online

anomaly detection will be further affected.

3.3.4.2 Measurements from Single Category

Based on the discussion above, in this dissertation, we apply measurements from

a single category for the proposed algorithm. Considering the variance differences

among the categories of power system variables, we conduct PCA on each category

of measurements independently. In other words, we assume that at each round of

analysis, N := p.

3.4 Numerical Examples

In this section, we illustrate the efficacy of the PMU-based early anomaly detec-

tion algorithm, including the dimensionality reduction, the adaptive training, and the

early anomaly detection. Both synthetic PMU data generated from Siemens PSS/E

[82] and real PMU data from Western and Texas Interconnections are utilized.

3.4.1 Linear Dimensionality Reduction

Synchrophasor data from normal operating conditions are utilized in the adaptive

training procedure. Assume that the length of the training data is T PSSE
trn = 250 s

for PSS/E PMU data, Twest
trn = 300 s for the western PMU data, and T TX

trn = 250 s

for the Texas PMU data‖.

3.4.1.1 Dimensionality Reduction of Synthetic PSS/E Data

A 23-bus 6-generator system in PSS/E is utilized to generate PMU data. Figure

3.10 serves as a demonstration of the system topology, which is not necessary in the

early anomaly detection algorithm. Table 3.1∗∗ lists the dynamic models [82] for

‖In reality, more synchrophasor data under normal operating conditions could be utilized in the
adaptive training to obtain more accurate and robust training models.

∗∗GENROU: Round rotor generator model.
GENSAL: Salient pole generator model.
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Figure 3.10: Topology of PSS/E 23-bus system [82].

the 6 generators employed in the PSS/E system. Assume each bus has one PMU

installed, and the sampling rate is 30 Hz. To mimic the industry-grade PMUs, noise

is added to the synthetic training data so that the signal-to-noise ratio (SNR) is

92dB.

The cumulative variance calculated from PCA is shown in Figure 3.11. The

results of the dimensionality reduction analysis are shown in Table 3.2 including

1) the original number of PMUs, indicating the high dimension of PMU data, 2)

the threshold of the cumulative variance, 3) the number of pilot PMUs, and 4) the

basis matrix. As can be observed, by selecting certain threshold for the cumulative

IEEET1: 1968 IEEE type 1 excitation system model.
SCRX: Bus or solid fed SCR bridge excitation system model.
SEXS: Simplified excitation system model.
TGOV1: Steam turbine-governor model.
HYGOV: Hydro turbine-governor model.
N/A: No model for the component.
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Table 3.1: Dynamic models in PSS/E system

Bus No. Generator Model Exciter Model Turbine/Governor Model

101 GENROU IEEET1 TGOV1

102 GENROU IEEET1 TGOV1

206 GENROU IEEET1 TGOV1

211 GENSAL SCRX HYGOV

3011 GENROU SEXS N/A

3018 GENROU SEXS N/A
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Figure 3.11: Cumulative variance preserved by PCs for PSS/E data.

variances, two pilot PMUs can be identified in the basis matrix for online anomaly

detection.
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Table 3.2: Results of dimensionality reduction analysis

Anomaly

Original

No. of

PMUs

Threshold of

Cumulative

Variance

No. of

Pilot

PMUs

Basis Matrix

PSS/E 23 99.99% 2 Yω

B, PSS/E = [ω206, ω102]

Oscillation 44 99.65% 2 Yω

B, OS = [ω10, ω18]

Line Fault 45 99.85% 2 Yω

B, LF = [ω10, ω26]

Unit

Tripping 1
7 99.9% 2 Yω

B, UT1 = [ω5, ω3]

Unit

Tripping 1
7 99.97% 2 Yω

B, UT2 = [ω5, ω3]

3.4.1.2 Dimensionality Reduction of Real PMU Data

Three types of anomalies, oscillation from western data, line faults from west-

ern data, and unit tripping from Texas data, are utilized as illustrations. Neither

system topology nor model could be obtained due to the confidentiality of the in-

terconnected areas and the modeling complexity of the system components. The

cumulative variances of ω for the anomalies are shown in Figures 3.12-3.15. The

results of the dimensionality reduction analysis are shown in Table 3.2 with specified

basis matrices.

3.4.2 Online Anomaly Detection

In this section, the eventful data of the above anomalies are utilized to demon-

strate the early anomaly detection algorithm with respect to its purely data-driven

capability, i.e., without the knowledge of system topology or model.
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Figure 3.12: Cumulative variance of an oscillation.
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Figure 3.13: Cumulative variance of a line fault.
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Figure 3.14: Cumulative variance of the 1st unit tripping.
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Figure 3.15: Cumulative variance of the 2nd unit tripping.
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3.4.2.1 Online Anomaly Detection of Synthetic PSS/E Data

Three types of system anomalies, line tripping, unit tripping, and control input

change, are simulated in the PSS/E 23-bus system, with the anomaly details shown

in Figure 3.16.

t i m e / s2 5 0 0 1 0 7 0L i n e t r i p p i n g1 5 2 ¿ 2 0 2T r a i n i n gS t a g e L i n e c l o s u r e1 5 2 × 2 0 2( a ) L i n e T r i p p i n g

t i m e / s2 5 0 0 4 0U n i t t r i p p i n g3 0 1 1T r a i n i n gS t a g e ( b ) U n i t T r i p p i n g

t i m e / s2 5 0 0 1 0 7 0T r a i n i n gS t a g e ( c ) C o n t r o l I n p u t C h a n g e2 1 1r e f 0 . 0 1 p . u .V 1 0 02 1 1r e f 0 . 0 1 p . u .V
1 0 0

1 0 0
Figure 3.16: Timeline of three simulated system anomalies in PSS/E.

In order to demonstrate the efficacy of the adaptive training, assume: 1) The

training procedure conducted in Section 3.4.1.1 works for all the three types of system

anomalies before the first adaptive training takes place; 2) It takes 10 s for the system

to return to normal operating conditions after an anomaly; 3) The updating period

is Tup = 40 s; 4) If update is needed, the retraining period is the same as the original

training period, i.e., Tretrn = Ttrn = 250 s.
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3.4.2.1.1 Line Tripping

As shown in Figure 3.16(a), assume the transmission line connecting buses 152

and 202 (Line 152-202) is tripped at t = 10 s, following by a closure of Line 152-202

at t = 70 s. The total length of data is 100 s.

The bus frequency profile for bus 153 during the anomalies is shown in Figure

3.17(a). As can be observed, it takes about 10 s for the system to recover from either

anomaly, i.e., the system recovers to normal operating conditions at t = 20 s and

t = 80 s, respectively. With Tup = 40 s, the training model is updated at time t = 60

s with the latest 250 s data. The updated basis matrix is Yω

B,PSS/E = [ω3011, ω101].

The Line 152-202 closure is detected using the updated basis matrices.

Figure 3.17(b) illustrates the anomaly indicator ηω
153 of bus 153, which can detect

both anomalies. A zoomed-in view of the early detection of the tripping is presented

in Figures 3.17(b.2) and 3.17(b.3), showing the capability to detect the anomaly

almost instantly, within 40 ms. Line 152-202 tripping at t = 10 s results in a huge

value of ηω
153 at the next step t = 10.033 s. This indicates a large approximation

error of the linear representation. Comparatively, as can be seen from the frequency

profile in Figure 3.17(a.2), at time t = 10.033 s, the bus frequency deviation is

∆ω153 ≈ 0.00005 p.u., which is too small to be identified as an anomaly. When a

relatively large deviation ∆ω153 ≈ 0.0004 p.u. is detected, it is already 250ms later

than the occurrence time of the anomaly. Similar results can be observed for the line

closure at time t = 70 s. In this sense, the advantage of the proposed algorithm is

illustrated.

Another observation is from the comparison of Figures 3.17(b.2) and 3.17(b.3):

the maximum deviation of the anomaly indicator in Figure 3.17(b.3) is much smaller

than that in Figure 3.17(b.2). The reason comes from the adaptive training, i.e.,
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the retraining takes the eventful data into consideration, and therefore improves

the accuracy of the training model. However, from Figure 3.17(b.3), the capability

to early detect system anomalies is not affected by this improvement. In reality,

two system anomalies will not occur as close as those in this case. Therefore, the

retraining data will not always contain the eventful data. In addition, by choosing

an appropriate length of training data, this kind of improvement can also be avoided,

and the training model can be accurate and robust enough to detect the anomaly at

an early stage, as shown in Figure 3.17(b.3).
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Figure 3.17: Line 152-202 tripping & closure in PSS/E.

3.4.2.1.2 Unit Tripping

As shown in Figure 3.16(b), a unit at bus 3011 is tripped at t = 40 s. Figure

3.18(a) shows the bus frequency profile of bus 3002, with the anomaly indicator ηω
3002

in Figure 3.18(b).

In Figure 3.18(a.2), from the bus frequency deviation ∆ω3002 ≈ 0.0005 p.u. at
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Figure 3.18: Unit 3011 tripping in PSS/E.

t = 40.033 s, it is difficult to directly detect the unit tripping. However, from

Figure 3.18(b.2), unit 3011 tripping yields a huge value of the anomaly indicator

ηω
3002 provided by bus 3002 at t = 40.033 s. This clearly demonstrates that the

proposed anomaly indicator is capable of early anomaly detection by magnifying the

difference between the quantities for the normal condition and the contingency.

3.4.2.1.3 Control Input Change

As shown in Figure 3.16(c), the voltage regulator set-point of bus 211 is changed

by 0.01 p.u. and −0.01 p.u. at t = 10 s and t = 70 s, respectively. In this case, the

training models are updated at time t = 60 s with the latest Tretrn = 250 s data.

The updated basis matrix is Yω

B,PSS/E = [ω211, ω3011]. The second anomaly with

∆V 211
ref = −0.01 p.u. is detected using the updated basis matrix.

In Figure 3.19(b.1), the anomaly indicator ηω
201 provided by bus 201 is capable

of indicating both anomalies. From Figure 3.19(b.2), the control input change by

∆V 211
ref = 0.01 p.u. is detected around t = 10.1 s with ηω

201 ≈ 108, while from the bus

frequency profile in Figure 3.19(a.2), the bus frequency deviation ∆ω201 < 0.0001
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p.u. at t = 10.1 s cannot be detected efficiently. Similar results can be observed

from Figures 3.19(a.3) and 3.19(b.3).

In this case, because of the adaptive training, the maximum deviation of the

anomaly indicator in Figure 3.19(b.3) is smaller than that in Figure 3.19(b.2). How-

ever, this does not impact the efficacy and capability of the anomaly indicator for

the early anomaly detection, as shown in Figure 3.19(b.3).
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Figure 3.19: Bus 211 input change in PSS/E.

3.4.2.2 Online Detection of Oscillation

The oscillation shown in Figure 3.20(a) is induced by the uncertainties from the

wind farm generations in the western interconnection, while Figure 3.20(b) illustrates

the anomaly indicator of PMU #13. As can be observed from Figure 3.20(b.2), with

a threshold of γ = 10, the anomaly can be detected at time t = 2798.52 s. However,

at the same time, from Figure 3.20(a), the frequency deviation from the normal

operating condition is less than 0.0001 p.u., which is too small to be considered as
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an anomaly. Therefore, the benefit of utilizing the proposed indicator is shown for an

effective anomaly detection at an earlier stage than would be possible by monitoring

the raw measurements.

Time (s)
2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830

ω
 (

p.
u.

)

0.999

0.9995

1

1.0005

1.001

Bus frequency profile during an oscillation.
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Figure 3.20: Oscillation in Western U.S..

3.4.2.3 Online Detection of Line Fault

Figure 3.21(a) illustrates the bus frequency profile during a line fault, while the

anomaly indicator of PMU #2 is shown in Figure 3.21(b). As can be observed

from Figure 3.21(b.2), with a threshold of γ = 10, the anomaly can be detected at

time t = 1807.72 s. However, at the same time, from Figure 3.21(a), the frequency

deviation from the normal operating condition is only 0.0002 p.u., which is too small

to be considered as an anomaly. Again, the benefit of utilizing the proposed indicator

is shown for an effective anomaly detection.
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Figure 3.21: Line fault in Western U.S..

3.4.2.4 Online Detection of Unit Tripping

As can be observed from Figure 3.22(a), there are two unit tripping occurring

around t = 104 s and t = 863 s. We demonstrate the adaptive training scheme in

this case.

After the first anomaly, it takes about 300 s for the system to recover to normal

operating conditions. In this case, assume the updating period is Tup = 100 s and

the retraining period is Tretrn = 250 s. Therefore, according to the early anomaly

detection algorithm, the adaptive training results in Section 3.4.1 will work only

for the first anomaly. The latest training model before the second anomaly will be

updated at time t = 800 s with the latest 250 s data. The detection of the second

anomaly will be achieved using the latest training model. In this case, the retraining

data do not contain any anomalies and therefore can better demonstrate the efficacy

of the adaptive training. The cumulative variances preserved by PCs for the two

times of training are shown in Figures 3.14 and 3.15.
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The anomaly indicator of PMU #4, ηω
4 , is shown in Figure 3.22(b). In the zoomed-

in Figures 3.22(b.2) and 3.22(b.3), the changes of system operating conditions can

be detected at t = 103.7 s and t = 863 s, respectively with a threshold of γ =

10. However, from the bus frequency profile in Figure 3.22(a.2), the bus frequency

deviation ∆ω4 ≈ 0.00001 p.u. at t = 103.7 s is too small to be detected early or

accurately. Similar conclusions can be drawn for ∆ω4 ≈ 0.00001 p.u. at t = 863 s in

Figure 3.22(a.3).
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Figure 3.22: Unit trippings in TX.

Table 3.3 summarizes the comparisons of detection time for the simulated cases.

From the above analysis, the efficacy of the proposed algorithm is demonstrated for

the considered anomalies. Further studies are conducted to test the robustness and

accuracy of the detection.
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Table 3.3: Comparison of detection time for bus frequency cases

Case
Detection Time from

Direct Profile

Detection Time from

Proposed Algorithm

PSS/E Line

152-202 Tripping

10.25 10.033

PSS/E Unit

3011 Tripping

40.5 40.033

PSS/E V 211
ref

Input Change

11 10.1

Oscillation 2799.2 2798.52

Line Fault 1807.83 1807.72

Unit Tripping 1 104.5 104

Unit Tripping 2 864 863
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4. PMU-BASED ROBUST MONITORING OF LOW-FREQUENCY

OSCILLATIONS∗

4.1 Introduction

The impact of power system low-frequency oscillations has been discussed in

Section 1. The severe system separation and blackout bring special attentions to the

analysis of power system low-frequency oscillations [4, 5, 6, 7]. However, traditional

approaches requires a detailed dynamical representation of the system to conduct

modal analysis. The increasing penetration of spatially dispersed and temporally

variable resources into power grids introduces difficulties in achieving an accurate

dynamic model of the system. This further deteriorates the accuracy of model-based

oscillation analysis, and therefore a data-based analytical approach is of great need.

Synchrophasor measurement, with the high sampling rate and the synchroniza-

tion provided by GPS, becomes more and more attractive in monitoring and control

of low-frequency oscillations in power grids [10, 11, 12]. Three data-driven meth-

ods, subspace identification, spectral independent component analysis, and wavelet

transform, are compared in [44] for damping estimation of electromechanical oscil-

lations. [45] utilizes Fourier spectral analysis on synchrophasor data to estimate the

eigenvalues for monitoring inter-area oscillation.

Although the existing methods perform well in mode estimation for power sys-

tem low-frequency oscillations, there are still several gaps between low-frequency

∗This section is in part a reprint of the material in the papers: (1) Reprinted with permission
from Yang Chen, Le Xie, and P. R. Kumar, “Power System Event Classification via Dimensionality
Reduction of Synchrophasor Data,” Sensor Array and Multichannel Signal Processing Workshop,

2014. SAM 2014. 8th IEEE, pp. 57-60, 2014. Copyright 2014, IEEE. (2) Reprinted with permission
from Yang Chen, Harish Chintakunta, Le Xie, Yuliy M. Baryshnikov, and P. R. Kumar, “Robust
Detection and Mode Estimation of Power System Low-frequency Oscillations using Synchrophasor
Data,” IEEE Transactions on Power Systems, to be submitted.
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oscillation monitoring and its online applications:

• Robust Early Detection of Oscillation. Most existing approaches recursively

estimate the modes using PMU measurements. However, recursive estimation

by use of uneventful ambient data will increase the computational burden.

• Online Efficient Estimation of Oscillation Parameters. The increasing deploy-

ment of synchrophasors has resulted in high-volume PMU data injecting into

power grid. Such data will also increase the computational burden. The high

measurement noise in such data may also deteriorate the estimation perfor-

mance.

With such gaps, an effective approach to monitoring power system low-frequency

oscillations with robustness against noise using large-scale synchrophasor data is of

great need.

In this section, by continuing exploring the low-dimensional characteristics of

high-volume synchrophasor data, we propose a robust data-driven framework to

enhance the detection and mode estimation of power system low-frequency oscil-

lations, without requiring any knowledge of system model/topology. Scatter plot is

first applied to visualize oscillations using the topological patterns. Secondly, PCA

is applied to extract the pre-PCA features from the high-volume raw measurements.

Then a persistent-homology-based cyclicity response is proposed by using the pre-

PCA features for oscillation detection. A pre-defined threshold can be determined by

historical eventful PMU data. Cyclicity response with a value exceeding the thresh-

old indicates the occurrence of an oscillation. After an oscillation is detected, PCA is

applied again to extract the post-PCA features from the transient oscillatory PMU

data. Theoretical justification shows that the post-PCA features retain the modal

information that is present in the raw measurements. FFT and Prony analysis are
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finally applied to the post-PCA features for mode estimation.

The main contributions of this section are as follows.

• Visualization of power system low-frequency oscillations is presented to differ-

entiate oscillations from other types of anomalies by use of topological patterns.

• The cyclicity response provides high accuracy in detecting low-frequency oscil-

lations, and benefits real-time operations in power systems.

• The mode estimation with post-PCA features preserves robustness of mode

estimation against high measurement noise.

• The proposed robust monitoring algorithm is purely online data-driven, requir-

ing no knowledge of system model or topology.

4.2 Scatter Plot based Visualization of Power System Oscillations

In this section, a scatter-plot-based approach is presented for visualization of

power system oscillations using the trajectory of measurements from PMUs. Scat-

ter plot is briefly introduced in Figures 3.3(b) and 3.6(b). In this section, we will

systematically propose an oscillation visualization algorithm.

The definitions below follow those in Section 3.2. Define the measurement ma-

trix Yn×N = [y(1), . . . , y(N)] with N measurements of ambient PMU data. Each

measurement has n samples constituting a time history, i.e., y(i) = [y
(i)
1 , . . . , y

(i)
n ]T ,

i = 1, . . . , N .

The proposed oscillation visualization algorithm is described as the following two

parts, with the flowchart shown in Figure 4.1.

4.2.1 PCA based Adaptive Training

As the first part, the PCA-based dimensionality reduction is utilized for the

adaptive training. The adaptiveness refers to the update of measurement matrix Y
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m n NY iy tn NY
Figure 4.1: Flowchart of oscillation visualization algorithm.

after an oscillation is visualized as shown in Figure 4.1.

1) Form the PMU measurement matrix Y with ambient data.

2) Perform PCA on Y.

3) Construct the m-dimensional (m-D) pre-event space.

Select the top m out of N PCs, which preserve a cumulative variance satisfying

∑m
i=1 vari ≥ τ . τ is a pre-defined variance threshold and m ≪ N . From synthetic

and realistic PMU data analysis, the value of τ usually satisfies τ ≥ 99.9% for bus

frequency. For the purpose of visualization, m is selected as 2 or 3 in this dissertation.

Then, construct an m-D pre-event space with the bases being the m selected PCs.

4) Find pre-event projections.

At each of the n time steps, the original N -dimensional (N -D) sample can be

reduced to m-D by a projection from the raw data space to the pre-event space.

These n projections are part of the pre-event projections.

Three types of projections onto the pre-event space are defined as follows:

(1) Pre-event projections: projections of pre-event data, including training data,

and any real-time ambient data before the occurrence of an anomaly.
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(2) Transient projections: projections of transient data, sampled right after the

occurrence of an anomaly, usually within several seconds.

(3) Post-event projections : projections of data when the system reaches a new

operating condition after the occurrence of an anomaly.

4.2.2 Scatter Plot based Visualization

The pre-event space from the adaptive training will be utilized as prerequisites

for the online oscillation visualization using the scatter plot.

1) Calculate transient projections.

For the real-time measurement y(t)(i) of the ith PMU, calculate the transient

projection ȳ(t)(i).

2) Construct the scatter-plot topology.

Project all calculated transient projections into the pre-event space to construct

the scatter-plot topology.

3) Visualize the oscillation based on the topological pattern.

4) Adaptive update.

The update signal is sent from the second stage of visualization.

Denote the update period as Tup. Tup is a system-dependent variable, and usually

can be chosen as 3-5 minutes. The adaptive update mechanism is designed as follows:

• If there is no oscillation detected† during a period of Tup, the training procedure

is adaptively updated every Tup time units with new ambient data.

• If an oscillation is visualized within Tup, the training procedure is updated im-

mediately with new ambient data after the system operates at a new condition.

†The oscillation detection will be described in Section 4.3 using cyclicity response.

65



4.3 Cyclicity Response based Oscillation Detection

In this section, we describe cyclicity response, which is used to quantify the os-

cillatory behavior of the power grid. The oscillation detection procedure takes the

pre-PCA features as inputs, and calculates the corresponding cyclicity responses as

outputs. Cyclicity response is based on:

1. Takens’ delay embedding theorem [83], which implies that a mapping g :

X → R2 from the phase space [84] of an oscillatory system to R2 contains a cyclic

structure, and

2. Persistent homology [85], which quantifies the cyclic structure of a point cloud.

In the context of the application considered here, X represents the phase space of

the power grid, and the mapping g represents the projection of PMU measurements

on to the two significant PCs, which yields a scatter plot. The premise here is that

when the power grid shifts into an oscillatory condition, the projection of the PMU

measurements will start to behave cyclically (either circularly or elliptically), which

can be detected using persistent homology computation as described in Section 4.3.2.

4.3.1 Delay Embedding Theorem

Consider a discrete-time dynamical system f : X → X, which has a strange

attractor [86]. Then for sufficiently large k, and for any generic function g : X → Rk,

the delay embedding theorem states that the map

G(x) =
(

g(x), g (φ(x)) , g
(

φ2(x)
)

, . . . , g
(

φk−1(x)
))

(4.1)

is an embedding. The dimension k is determined by the structure of the attractor.

For an attractor with dimension d, k > 2d is usually sufficient. Readers may refer to

[83, 87] for a formal treatment of the delay embedding theorem.
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Figure 4.2: Bus frequency profile and scatter plot during a ringdown oscillation.

We model the power grid as a discrete-time dynamical system f , where the time

points are determined by the sampling rate of the PMUs. When the power grid

is in an oscillatory state, the phase of the system exhibits cyclic behavior, and by

the delay embedding theorem, so does the mapping g. Figure 4.2 illustrates this

phenomenon in the power grid. Figure 4.2(b) shows the scatter plot when the power

grid is not undergoing oscillations, and Figure 4.2(c) shows the case of an oscillation.

The task then is to distinguish between these two cases automatically, which is what

we aim to accomplish using persistent homology computation.

4.3.2 Persistent Homology and Cyclicity Response

We now give a brief introduction to persistent homology. The purpose here is to

provide the reader an intuition for what the tool computes. A formal introduction to

the theory is beyond the scope of this dissertation, and we refer the readers to [85] for
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a thorough exposition. Persistent homology may be viewed as a generalization of tra-

ditional hierarchical clustering to other topological features. We first briefly describe

hierarchical clustering, followed by how this is paralleled by persistent homology to

cyclic structures.

4.3.2.1 Hierarchical Clustering

Given a point cloud, hierarchical clustering is a traditional tool for obtaining a

multi-scale summary of how the points are clustered. Figure 4.3 illustrates single

linkage clustering where the output, either a “dendrogram” or a “barcode” as de-

scribed below, provides a multi-scale summary of the clustering. The algorithm is

as follows: for each value ǫ, draw an edge between any two points (vi, vj), where

the distance between the two points d (vi, vj) ≤ ǫ. The vertices corresponding to

connected components in the resulting graph are the clusters. One can then follow

how these connected components merge as we increase the value of ǫ. This pattern

in which the connected components merge can be described by either a dendrogram

(as in Figure 4.3(b)) or by a barcode (as in Figure 4.3(c)). Each vertical line segment

in the dendrogram corresponds to a connected component, and these segments are

joined as the connected components merge. Equivalently, we may view the points

as connected components “born” at ǫ = 0, and whenever two components merge

together, we may say one of the connected components has “died” at that ǫ value.

This birth-death pattern is represented in the “barcode” where each bar represents

the birth and death of a connected component. For example point cloud in Figure

4.3(a), it is quite apparent from the output that there are two clusters.

4.3.2.2 Persistent Homology

We now describe how to generalize the above hierarchical clustering to cyclic

structures. For this purpose, we use the example of the point cloud shown in Figure
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Figure 4.3: Demonstration of hierarchical clustering.
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Figure 4.4: Demonstration for the computation of persistent homology.

4.4(a). In the case of clustering described above, we have followed the “birth” and

“death” of connected components in the graph. Here, we instead follow the birth

and death of cycles.

As in the case of clustering, we increase the value of ǫ, and for each ǫ value, we

add all the edges in the Delaunay triangulation [88] whose length is less than or equal

to ǫ.
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At ǫ1, we see the birth of two cycles in red: c1 and c2. If there is a triangle in

the resulting graph, we consider that triangle to be “filled in.” Therefore, a cycle is

considered “filled in”, and therefore dead, if it bounds a set of triangles. We see that

c1 dies at ǫ2, and c2 dies at ǫ3, resulting in the barcode shown in Figure 4.4(e). It

is straight forward to infer from the barcode that the point cloud exhibits two cyclic

structures, one of which is larger than the other.

Given a point cloud, the cyclicity response is defined as the length of the largest

bar in the barcode. As evidenced in the above example, the longest bar represents

the biggest cyclic structure in the point cloud, and we see a cyclic structure when the

system is undergoing oscillations. For the sake of concreteness, we will now provide

some algebraic background which gives rise to these bars.

For a triangulation Kǫ, as in Figure 4.4, one can define an abstract vector space

H1(Kǫ), called the first homology space, where the basis elements are equivalence

classes of cycles in Kǫ. All cycles which bound triangles are considered to be equiv-

alent to 0. For example, the equivalence class of [c1] 6= 0 in Kǫ1, where as [c1] = 0

in Kǫ2 . Also, since ǫ2 is the smallest value for which [c1] = 0, we say that [c1]

persists in the interval [ǫ1, ǫ2), and this is represented as bar from ǫ1 to ǫ2 in the

output. More generally, the homology which persists in the interval [a, b] is given by

Img
(

H1(Ka)
i∗−→ H1(Kb)

)

, where i∗ is the map induced by the inclusion i : Ka → Kb.

In other words, the number of bars in any interval [a, b] in the barcode is equal to

the dimension of Img
(

H1(Ka)
i∗−→ H1(Kb)

)

.

From a data analysis perspective, each bar of interval [a, b] in the barcode corre-

sponds to a cyclic structure which is present in the triangulations corresponding to

thresholds in that interval. The length of the longest bar corresponds to the largest

cyclic structure present in the point cloud, which is the basis of cyclicity response.

For further technical details behind the computation of the barcode, we refer the
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readers to [85].

4.4 PCA-enabled Mode Estimation Approach

Based on the proposed cyclicity response in Section 4.3, oscillations can be effec-

tively detected. An efficient approach is of great necessity to further estimate the

mode and damping ratio of an oscillation. In this section, a novel mode estimation

approach is developed upon the frequency-domain analysis of the post-PCA features

extracted from large-scale transient oscillatory data.

4.4.1 Post-PCA on Oscillatory Data

With the increasing deployment of PMUs in the power grid with the high sampling

rate, the resulted large amount of PMU data brings new challenges to the online

applications in terms of the processing and computational burden.

Considering the issues from the high-volume PMU data, in the proposed mode

estimation approach, PCA is applied to the oscillatory PMU measurements after an

oscillation is detected using cyclicity response.

Mathematically, PCA aims at finding a low-dimensional embedding from a high-

dimensional space by preserving the most variance. Therefore, the modal properties

of the low-frequency oscillation do not change through the PCA process. This prop-

erty of PCA is the reason for the feasibility of the proposed framework that reduces

the dimensionality before extracting the modal information. Besides, by conducting

singular value decomposition on a zero-mean measurement matrix, PCA has a de-

noising functionality, which further improves the robustness of the proposed approach

with regard to the high measurement noise.

Assume an oscillation occurs at time td. A measurement matrix is formulated

afterwards with the oscillatory data as Ye := [y(1), . . . , y(N)] ∈ Rn×N , which

includes a total number of N measurements. Each measurement has n samples
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constituting a time history, i.e., y(i) := [y
(i)
1 , . . . , y

(i)
n ]T , i = 1, . . . , N .

One can apply PCA on Ye to extract the first two PCs as

F1 = (Ye(t) − µ)u1, F2 = (Ye(t) − µ)u2, (4.2)

where the ui’s, i = 1, . . . , N , are the orthonormal eigenvectors for the covariance

matrix of Ye corresponding to the nonnegative eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN .

µ = E [Ye]. F1 is PC1, having the maximal variance in the direction of u1. PC2,

F2, has the maximal variance in a direction perpendicular to u1.

4.4.2 Mode Estimation with Post-PCA Feature

Since PCA retains the modal property of the raw PMU measurements, the post-

PCA features F1 and F2 will be utilized in the mode estimation. Fourier analysis

is employed as a primary tool to estimate the mode of an oscillation, while Prony

analysis, as a supplementary of the mode estimation, provides an extra estimate of

damping ratio.

4.4.2.1 Fourier Analysis

Suppose that an oscillation is detected at time td. Then we construct a mea-

surement matrix Ye (t) with the latest n = 2M samples starting from td. Then the

ith measurement vector y(i)(t) in Ye (t), which contains n samples with sampling

interval of t = k∆t, k = 0, 1, . . . , n − 1, can be represented by a finite Fourier

series as

y(i) (k∆t) =
a

(i)
0

2
+

M−1
∑

j=1

(

a
(i)
j cos

πk

M
j + b

(i)
j sin

πk

M
j

)

+
aM

2
cosπk, (4.3)
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where

a
(i)
j =

1

M

n−1
∑

k=0

y(i) (k∆t) cos

(

πj

M
k

)

, j = 0, 1, . . . , M,

b
(i)
j =

1

M

n−1
∑

k=0

y(i) (k∆t) sin

(

πj

M
k

)

, j = 1, 2, . . . ,M − 1.

We can convert the trigonometric Fourier series in (4.3) into complex Fourier

series as

y(i) (k∆t) =
M
∑

j=0

c
(i)
j cos

(

πk

M
j + ψ

(i)
j

)

, (4.4)

where

c
(i)
0 =

a
(i)
0

2
, c

(i)
M =

a
(i)
M

2
, ψ

(i)
0 = ψ

(i)
M = 0,

and for j = 1, 2, . . . , M − 1,

c
(i)
j =

√

(

a
(i)
j

)2

+
(

b
(i)
j

)2

, ψ
(i)
j = arctan

(

−
b
(i)
j

a
(i)
j

)

.

Equivalently, (4.4) can be rewritten as

y(i) (k∆t) =
M
∑

j=0

c
(i)
j cos

(

πj

M∆t
k∆t+ ψ

(i)
j

)

, (4.5)

or equivalently,

y(i) (t) =
M
∑

j=0

c
(i)
j cos

(

ω
(i)
j t+ ψ

(i)
j

)

, (4.6)
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where ∆t is the reciprocal of the sampling frequency fs. The quantities c
(i)
j , ω

(i)
j , and

ψ
(i)
j are the amplitude, frequency, and phase, respectively, with

ω
(i)
j =

2π

n∆t
j. (4.7)

Equations (4.6) and (4.7), together with FFT, are widely used to efficiently extract

the modal information from synchrophasor data in order for oscillation analysis [45].

Next, we provide theoretical justification to show that the modal information is

preserved by post-PCA features. This further establishes the feasibility of using the

post-PCA features for mode estimation.

Proposition 2 (Preservation of Modal Information by Post-PCA Features). Given

measurement matrix Ye (t) constructed with oscillatory data, assume a set of modes

ω(i) can be identified from every measurement vector y(i) (t) in Ye (t) by single-

channel Fourier analysis as in (4.7). Then these modes can also be identified by

Fourier analysis from any of the N PCs as shown in (4.2) up to resolution on n-

samples.

Proof

Assume there is a set of modes ω(i) := [ω
(i)
1 , . . . , ω

(i)
M ] that can be identified from

each measurement vector by Fourier analysis as

y(i) (t) =

M
∑

j=1

c
(i)
j cos

(

ω
(i)
j t+ ψ

(i)
j

)

, (4.8)

where i = 1, 2, . . . , N , and M = n/2.

Let Fi be the ith PC of Ye after applying PCA, i.e.,

Fi = (Ye(t) − µ)ui, (4.9)
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according to (4.2). ui satisfies

Σui = λiui, (4.10)

where

Σ = E
[

(Ye(t) − µ)T (Ye(t) − µ)
]

∈ RN×N (4.11)

is the covariance matrix of Ye(t).

From (4.9), the Fourier transform of Fi can be represented as

F (Fi) = F ((Ye (t) − µ)ui) . (4.12)

The expectation in (4.11) eliminates the time dependence of the covariance matrix

Σ. As a result, its ith eigenvector ui is also time independent, i.e., F (ui) = ui.

Therefore, (4.12) becomes

F (Fi) = F (Ye (t) − µ)ui = [F (Ye (t)) − F (µ)]ui. (4.13)

The Fourier transform of the constant value of the mean µ is F (µ) = δ (ω), which

has a value of ∞ only at ω = 0. In other words, for any ω 6= 0, F (µ) = 0, yielding

(4.13)

F (Fi) = F (Ye (t))ui. (4.14)

Assume that a single-channel Fourier analysis is applied to the ith measurement

vector to identify the set of modes, as shown in (4.8). Then (4.14) indicates that the

same set of modes can also be identified from the ith PC of the measurement matrix.

�
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4.4.2.2 Prony Analysis

Compared to Fourier analysis, Prony analysis has the advantage of estimating

the damping ratio in addition to the mode, phase, and amplitude, and therefore is

becoming more attractive in power system oscillation monitoring [51]. Mathemat-

ically, Prony analysis fits a time series signal y(t) with a sum of damped complex

exponentials:

ŷ(t) =
L
∑

i=1

Aie
jφie(σi+j2πfi)t, (4.15)

where the results represent the identifications of the amplitude Ai, the phase φi, the

mode fi, and the damping −σi√
(σi)2+(2πfi)2

.

Similar to Fourier analysis, Prony analysis applied to any PC is also capable of

identifying the same set of modes that are present in the raw measurements.

4.5 Robust Monitoring Framework of Low-frequency Oscillation

In this section, by integrating the cyclicity response based oscillation detection

in Section 4.3, and the PCA-based mode estimation in Section 4.4, we propose a

robust monitoring algorithm for low-frequency oscillations in power systems. The

implementation flowchart is presented in Figure 4.5. The issue of missing data is not

considered in this dissertation. The algorithm is described as follows:

0) Offline training.

Calculate the threshold for oscillation detection using historical eventful PMU

data.

1) Perform PCA to extract the pre-PCA features.

2) Construct cyclicity response using pre-PCA features.

3) Issue oscillation detection command based on comparison with thresh-

old.
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Figure 4.5: Implementation of the robust monitoring algorithm.

If the resulting cyclicity response has a value exceeding the threshold, then issue

an oscillation detection command to Step 4. Otherwise, return to Step 2.

4) Perform PCA on oscillatory data to extract post-PCA feature.

Only upon a command from Step 3, perform PCA on the oscillatory signals to

extract the post-PCA feature vector F2. The reason for choosing F2 is discussed in

Remark 3.

5) Mode estimation.

Perform frequency-domain analysis, FFT and Prony analysis, on F2 to estimate

the mode and damping ratio.

Remark 2. Steps 1-5 correspond to online monitoring. Steps 1-3 are for oscillation

detection, while mode estimation is conducted in Steps 4-5.

Next, some practical issues for implementing the algorithm are discussed.
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4.5.1 Choice of Measurements

Similarly as in Section 3.3.4, this part discusses how to choose appropriate mea-

surements for the proposed algorithm.

Considering the deterioration of mode estimation using the PCA-based approach

on multiple categories, again in this dissertation, we apply measurements from a

single category for the proposed algorithm. Specifically, voltage magnitude measure-

ments are utilized for pre-PCA feature extraction, and bus frequency measurements

are employed to obtain the post-PCA feature. With such choices, the PCA retains

the original variance, and therefore the modal information. This will further benefit

the mode estimation, as shown in Proposition 2.

Remark 3 (Choice of PC2 in Mode Estimation). The global property of bus frequency

is reflected by the similar values of PC1 in PCA. The similarities among PC1 will

not contain much useful modal information. Therefore, PC2 is employed instead for

mode estimation.

4.5.2 Accuracy of Oscillation Detection

In this part, we discuss the robustness of the threshold for an accurate oscillation

detection.

The oscillation detection is based on a threshold calculated from historical event-

ful PMU data. Currently, with real eventful PMU data from the Western and Texas

Interconnection, 30 anomalies are analyzed with a threshold of 2. With such a thresh-

old, the apparent error of detection is 13.33%, including a mis-detection rate of 10%,

and a false-alarm rate of 3%.

With the availability of more eventful data, the detection threshold can be refined

to achieve higher accuracy of detection.
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4.6 Numerical Examples

This section illustrates the efficacy of the PMU-based approaches, including oscil-

lation visualization, detection, and mode estimation. Synthetic PMU data generated

from PSS/E and MATLAB [89] are utilized for the demonstration together with real

data from the Western U.S. and Texas.

4.6.1 Scatter-plot-based Oscillation Visualization

In this part, the oscillation visualization will be demonstrated using the scatter

topological patterns with PCA. Only bus frequency measurements are utilized.

4.6.1.1 Oscillation Visualization using Synthetic PSS/E Data

The 23-bus system in PSS/E [82] is utilized to generate synthetic PMU data with

added noise of 92dB SNR. The topology is shown in Figure 3.10. Assumed each bus

has one PMU installed, with a sampling rate of 30 Hz. The total length of training

data is 250s. For the purpose of visualization, a 2D pre-event space is employed for

the scatter plot.

In the rest of this section, we will use non-oscillatory and oscillatory anomalies

to demonstrate two different scatter topological patterns. The probability of false

alarms is also discussed.

4.6.1.1.1 Visualization of Non-Oscillatory Anomalies

Figure 4.6 illustrates a case where unit 3011 in Figure 3.10 is tripped. Figure

4.6(a) shows the bus frequency profile before, during and after the unit tripping,

while Figure 4.6(b) presents the scatter plot accordingly. In the scatter plot, the blue

dots in Figure 4.6(b.1) represent the pre-event projections, the color-changing dots in

Figure 4.6(b.2) from pink to purple illustrate the transient projections, and the cyan

dots in Figure 4.6(b.3) correspond to the post-event projections. Comparing Figures
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4.6(b.1) and 4.6(b.2), the deviation of the transient projections from the pre-event

ones indicates the occurrence of the anomaly. As can be observed, this non-oscillatory

anomaly presents an open pattern with fast convergence in the transient projections.

This open pattern can be classified as a simple line in the topology theory.

Another non-oscillatory anomaly is shown in Figure 4.7, corresponding to the

control input change of unit 101 in the topology of Figure 3.10. Similarly as Figure

4.6, the scatter plot in Figure 4.7(b) indicates an open-line pattern for this non-

oscillatory anomaly.
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Figure 4.6: Scatter plot visualization of unit 3011 tripping.

4.6.1.1.2 Visualization of Oscillatory Anomalies

In this section, we illustrate the visualization of oscillatory anomalies using scatter

plot.

Figure 4.8 corresponds to a tripping of unit 211. As can be observed from Figure

4.8(a), the bus frequency starts the oscillatory behavior following the unit tripping.
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Figure 4.7: Scatter plot visualization of control input change of unit 101.

Consequently, in the scatter plot, the transient projections form a circular pattern.
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Figure 4.8: Scatter plot visualization of unit 211 tripping.

Similarly, the transmission line connecting units 151 and 201 is tripped with the

visualization presented in Figure 4.9. Again, a circular pattern can be observed from
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Figure 4.9: Scatter plot visualization of line 151-201 tripping.

the scatter plot in Figure 4.9(b).

4.6.1.2 Oscillation Visualization using Real Data

In this part, the visualization is demonstrated by use of the real PMU data.

Similarly, both non-oscillatory and oscillatory anomalies are employed to illustrate

the scatter topological pattern summarized in Section 4.6.1.1.

4.6.1.2.1 Visualization of Non-Oscillatory Anomalies

Two unit trippings are recorded by the PMUs from Texas Interconnection. Fig-

ures 4.10(a) and 4.11(a) present the bus frequency profiles for these two anomalies

before, during and after the unit trippings. Correspondingly, Figures 4.10(b) and

4.11(b) show the scatter plots. As can be observed from both cases, the transition

from the pre-event projections in blue to the transient projections in pink indicates

the occurrences of such anomalies. The one-directional transient projections suggest

the open-line pattern of these two non-oscillatory anomalies.

4.6.1.2.2 Visualization of Oscillatory Anomalies
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Figure 4.10: Scatter plot visualization of a unit tripping.
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Figure 4.11: Scatter plot visualization of another unit tripping.
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Figure 4.12 corresponds to a ringdown oscillation recorded from the Western

Interconnection, with Figure 4.12(a.2) clearly showing the oscillatory behaviors. As

indicated in the scatter plot in Figure 4.12(b), the transient projections form a closed

circle pattern.

Similarly, in Figure 4.13, a brake insertion anomaly is presented with PMU data

from the Western Interconnection. A similar closed-circle pattern is indicated in

Figure 4.13(b).
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Figure 4.12: Scatter plot visualization of a ringdown oscillation.

4.6.2 Cyclicity Response based Oscillation Detection

The visualization of the oscillatory behaviors has already been illustrated in Sec-

tion 4.6.1.

In this part, we illustrate how the cyclicity response detects the oscillations.

Figure 4.14 demonstrates the case for a sustained oscillation in (a.1) and several

ringdown oscillations in (b.1). As a comparison, in Figure 4.15, the cyclicity responses
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Figure 4.13: Scatter plot visualization of a braking anomaly.

for two non-oscillatory anomalies are presented.
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Figure 4.14: Classification of oscillations using cyclicity response.
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Figure 4.15: Classification of non-oscillatory anomalies using cyclicity response.

The threshold for detection is selected as 2. It can be observed from Figures 4.14

and 4.15 that the occurrence of an oscillation is indicated by the cyclicity response

with a value exceeding the threshold.

4.6.3 PCA-based Mode Estimation

This section illustrates the efficacy of the PCA-based mode estimation approach.

Both real PMU data [90] and synthetic PMU data generated from MATLAB are

utilized.

4.6.3.1 Early Mode Estimation

The sustained oscillation in Figure 4.14(a.1) is utilized to demonstrate the ca-

pability of early mode estimation for the robust monitoring algorithm. The bus

frequency measurements of this oscillation are shown in Figure 4.16, with a 60 Hz

PMU sampling rate. Observing the raw measurements, the anomaly starts around
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time t = 220 s. The official results published by North American SynchroPhasor

Initiative (NASPI) are listed in TABLE 4.1, which indicates that this oscillation can

be detected at time t = 245 s, with a mode of 1.25 Hz and a damping ratio of 0.
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Bus frequency profile during a sustained oscillation.

Figure 4.16: Bus frequency measurements during a sustained oscillation.

Table 4.1: Official NASPI results of the sustained oscillation

NASPI Results

Time When Oscillation Detected (s) 245

Mode (Hz) 1.25

Damping Ratio 0

Signal Used Frequency, Real Power
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TABLE 4.2 presents the mode estimation results using the proposed algorithm,

with NASPI “benchmark” results shown in the last column. The first row presents

the detection time using Step 2 in Figure 4.5, which is at t = 228.3833 s. Then for

the FFT-based and Prony-based approaches, we define window sizes of 10 s and 4 s

respectively for mode estimation.

Table 4.2: Results comparisons of the sustained oscillation

FFT Prony Benchmark

Detection Time (s) 228.3833 228.3833 NA

Window Size (s) 10 4 NA

Estimation Time (s) 238.3833 232.3833 245

Time Saving (s) 6.6167 12.6167 0

Estimated Mode (Hz) 1.23 1.2457 1.25

Estimated Damping Ratio NA 0.64% 0

The FFT-based approach is capable of estimating a mode of 1.23 Hz at time

t = 238.3833 s. The total time saved is 6.6167 s in this case compared with the

benchmark. The Prony-based approach estimates a mode of 1.2457 Hz, and a damp-

ing ratio of 0.64% at time t = 232.3833 s, with time saving of 12.6167 s. These time

savings indicate that the mode estimation can be achieved by the proposed algorithm

at an earlier stage.

The estimated damping ratio from the Prony-based approach is not exactly zero.

This is potentially due to the vulnerability of Prony analysis to the high measurement

noise. Our future work will explore more robust and accurate approaches to improve

mode estimation.
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4.6.3.2 Robust Mode Estimation

This part illustrates the robustness of the proposed algorithm on mode estimation.

4.6.3.2.1 Case 1: Real Data of Sustained Oscillation

The sustained oscillation shown in Figure 4.16 is utilized in this case.

A single-channel FFT is first applied on the raw PMU measurement. The results

shown in Figure 4.17(a) indicate that the benchmark mode of 1.25 Hz is mis-detected.

Potential reasons could be: 1) the high measurement noise, and 2) an incorrect choice

of the channel. To handle these problems, we instead adopt the proposed FFT-

based approach on the post-PCA feature. As indicated in Figure 4.17(b), a 1.23 Hz

mode can be estimated directly from the frequency spectrum. Therefore, it can be

concluded that the proposed approach retains more robustness in the presence of high

measurement noise than the traditional single-channel FFT, and in the meantime

avoids the channel-selection issue.

4.6.3.2.2 Case 2: Real Data of Ringdown Oscillation

Figure 4.18 illustrates the bus frequency profile during a ringdown oscillation.

The data from 5 PMUs are provided by NASPI, with benchmark information shown

in TABLE 4.3.

Figure 4.19 demonstrates the results of applying single-channel FFT on the 5

PMU measurements, respectively. As can be observed, the first mode estimated

from the spectrum is 0.3516 Hz for all the 5 measurements. In other words, the

benchmark mode of 0.233 Hz is mis-detected, no matter which measurement channel

is selected. This indicates the invalidity of the single-channel FFT in face of high

measurement noise.

Instead in Figure 4.20, a mode of 0.2344 Hz can be estimated from the spectrum

by applying FFT to the post-PCA feature. This again demonstrates the robustness
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Figure 4.17: FFT results for the sustained oscillation on: (a) raw PMU measure-
ments, and (b) post-PCA feature.
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Figure 4.18: Bus frequency measurements during a ringdown oscillation.
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Table 4.3: Official NASPI results of the ringdown oscillation

NASPI Results

Time Start (s) 114.6

Signal Used Power

Mode 1 Frequency (Hz) 0.233

Mode 1 Damping 11.05%

Mode 2 Frequency (Hz) 0.386

Mode 2 Damping 10.9%
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Figure 4.19: FFT results of raw PMU measurements for ringdown oscillation.
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of the proposed algorithm against high measurement noises.

Frequency (Hz)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

R
el

at
iv

e 
P

ow
er

0

0.005

0.01

0.015

0.02

0.025

0.03
FFT of Post-PCA Feature

X: 0.2344
Y: 0.01611

Figure 4.20: FFT of post-PCA feature for ringdown oscillation.

4.6.3.2.3 Case 3: Synthetic Data of Ringdown Oscillation

In this case, synthetic PMU data is generated from the 4-generator system

in MATLAB [5], with topology shown in Figure 4.21. Assume each generator is

equipped with 1 PMU and the sampling rate is 30 Hz.

Figure 4.22 presents the frequency deviations of the four generators in response to

an impulse signal. The four measurements are then analyzed by single-channel FFT,

respectively, with the corresponding frequency spectrums shown in Figure 4.23. As

can be observed, an oscillatory mode of 1.221 Hz can only be estimated from FFT

on ∆ω1, while the spectrums of the other three measurements lead to mis-detection
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Figure 4.21: Topology of 2-area system [5].

of such a mode. This indicates a problem in that the mis-detection probability using

single-channel FFT is 75% even for such a small system with 4 PMUs. Given the

large amount of PMUs implemented in real power systems, the risk of mis-detection

will be even higher if the choice of measurement channel is incorrectly selected.

By using the proposed algorithm, we can effectively avoid the channel selection

problem. The frequency spectrum shown in Figure 4.24 clearly demonstrates the
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Figure 4.22: Bus frequency deviation for synthetic case.
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Figure 4.23: FFT of raw PMU measurements for synthetic case.
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Figure 4.24: FFT of post-PCA data for synthetic case.
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detection of the oscillatory mode at 1.221 Hz.

Comparing Figures 4.23 and 4.24, it can be observed that: 1) the modal infor-

mation is retained in the post-PCA features; 2) the proposed algorithm is capable

of effectively estimating the oscillatory mode by avoiding the issue from measure-

ment channel selection. With such a capability, the risk of mis-detection is therefore

reduced.
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5. CONCLUSIONS

This dissertation introduces a dimensionality-reduction-based framework for early

detection and robust classification of power system anomalies by use of synchropha-

sor data. PCA plays the key role in reducing the dimensionality of the large-scale

synchrophasor data.

In Section 2, we introduce background on synchrophasor technology, dimension-

ality reduction, and power system anomaly detection and classification. In Section 3,

we present a PMU-based early anomaly detection algorithm with theoretical justifi-

cation using linear dynamical system theory. In Section 4, we discuss the PMU-based

visualization, followed by robust monitoring of low-frequency oscillations. The con-

clusions and proposed future work for both of these problems are discussed in the

following two subsections.

5.1 PMU-based Early Anomaly Detection

5.1.1 Summary

In Section 3, by exploring the dimensionality reduction of large-scale PMU data,

we propose an early anomaly detection algorithm, which lends itself to early detection

of general anomalies in power systems, including oscillations, outages, and control

input changes, etc.

Dimensionality reduction techniques, including PCA and Isomap, are utilized to

examine the underlying dimensionality of large-scale PMU data. With tests using

both synthetic and real PMU data, the cumulative variance preserved by the top

several PCs yield a high percentage. This indicates an extremely low dimensionality

of high-volume PMU data when power system is under either normal operating

conditions or contingencies.
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Based on the results from dimensionality reduction, a PCA-based dimensionality

reduction method with PMU data is implemented with an adaptive training proce-

dure. A basis matrix, consisting only of the pilot PMUs, can be employed to linearly

approximate the non-pilot PMUs. The value of the approximation error is utilized to

form an anomaly indicator (3.6), which is designed for the robust data-driven early

anomaly detection in online monitoring. With the assumption of no consideration

of missing data issues, the proposed early anomaly detection algorithm in Figure 3.9

yields high accuracy in early detection of general anomalies. Theoretical justification

based on linear dynamical system theory is provided to show the capability of the

proposed algorithm in detecting any system anomaly.

Both synthetic PMU data generated from PSS/E and real PMU data collected

from the Western, Eastern, and Texas Interconnections suggest the efficacy of the

early anomaly detection algorithm in detecting events in an online setting. Such

detection is much faster than would be possible by monitoring the raw measurements.

5.1.2 Future Work

Section 3 is only a first step towards understanding and utilizing dimensionality

reduction of online PMU data for real-time monitoring. Much more research could

be done along this direction. First, with the accumulation of more real eventful data,

we plan to continue investigating the efficacy of the proposed algorithm. Considering

the false alarms from system high-stressed conditions, another research direction is to

improve the robustness of the early anomaly detection algorithm. Given the fact that

PCA is capable of reducing the dimensionality and detecting anomalies, other linear

dimensionality reduction techniques, such as linear discriminant analysis (LDA) and

independent component analysis (ICA), will be the candidates in our future research

in improving the robustness. Last but not least, given the fact that some types of
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anomalies may have much severer impacts on power system operations than others,

our future research avenue will focus on the PMU-based monitoring and analysis of

specific anomalies, such as low-frequency oscillation, sub-synchronous resonance, etc.

5.2 PMU-based Robust Monitoring of Low-frequency Oscillations

5.2.1 Summary

In Section 4, a scatter-plot-based visualization approach is first presented to il-

lustrate the characteristics of the topological patterns for the oscillations and non-

oscillatory anomalies. From the scatter-plot visualization, the non-oscillatory anoma-

lies behave in an open-line pattern, while oscillations present a closed-loop pattern.

After oscillation visualization, we propose a PMU-based framework for online

robust detection and mode estimation of low-frequency oscillations. This framework

consists of two stages, where in the first stage, oscillation detection is achieved by

use of the persistent-homology-based cyclicity response. By comparing the cyclicity

response value calculated from the pre-PCA features in a sliding window with a

pre-defined threshold, the low-frequency oscillation can be effectively detected much

faster than conventional approaches. After the detection, PCA is applied to extract

the post-PCA features from multi-channel oscillatory PMU data. With theoretical

justification of Proposition 2, the post-PCA features are shown to preserve the modal

information in a more robust way comparing with raw PMU measurements. FFT and

Prony analysis are applied on the post-PCA features for mode estimation. Numerical

simulations based on both real and synthetic PMU data suggest that the proposed

framework is capable in early oscillation detection and robust mode estimation, and

at the same time it avoids the channel selection issues of traditional Fourier-based

analysis methods.
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5.2.2 Future Work

Built upon our preliminary work in Section 4, one of our future research avenues

plans to test the oscillation detection approach and train a more robust threshold

with more eventful PMU data from the real world. Besides, we plan to continue

exploring persistent homology for the application of general anomaly classification in

power systems. Considering the oscillation detection errors discussed in Section 4.5.2,

another research direction would be to improve the accuracy and robustness of mode

estimation by considering advanced approaches in frequency-domain analysis.

Besides the extension of the work in Section 4, we also plan to integrate the work

in Sections 3 and 4 in the following aspect:

• Development of online PMU-based automated anomaly detection,

classification, and control scheme.

With effective detection from Section 3 and robust classification from Section 4,

our next research direction would be the development of a data-driven control and

mitigation scheme for low-frequency oscillations to close the loop. In order to effec-

tively mitigate oscillations with certain modes, an accurate estimate of the modes

will be required. Two aspects will be pursued along this direction:

- More advanced approaches of frequency-domain analysis will be applied to di-

rectly estimate the mode and/or damping ratio from real PMU measurements.

In the presence of high measurement noise, modified Prony algorithm [91] and

matrix pencil algorithm [92] will be good candidate approaches to achieve a

more robust estimate of mode and damping ratio.

- System identification techniques [93, 94] will be utilized to estimate the dy-

namic model of a power system. A preliminary work has been done in [95]
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using system identification with available system-wide modal information. We

plan to continue this work in developing piecewise linear dynamic models within

certain frequency ranges of interest. With prior knowledge of system operat-

ing conditions, parameter estimation and tuning can also be achieved from the

identified system model.
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