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ABSTRACT

For self-organized multi-robot systems, one of the widely studied task domains is

object clustering, which involves gathering randomly scattered objects into a single

pile. Earlier studies have pointed out that environment boundaries influence the

cluster formation process, generally causing clusters to form around the perimeter

rather than centrally within the workspace. Nevertheless, prior analytical models

ignore boundary effects and employ the simplifying assumption that clusters pack

into rotationally symmetric forms. In this study, we attempt to solve the problem

of the boundary interference in object clustering. We propose new behaviors, twist-

ing and digging, which exploit the geometry of the object to detach objects from

the boundaries and cover different regions within the workplace. Also, we derive

a set of conditions that is required to prevent boundaries causing perimeter clus-

ters, developing a mathematical model to explain how multiple clusters evolve into

a single cluster. Through analysis of the model, we show that the time-averaged

spatial densities of the robots play a significant role in producing conditions which

ensure that a single central cluster emerges and validate it with experiments. We

further seek to understand the clustering process more broadly by investigating the

problem of clustering in settings involving different object geometries. We initiate

a study of this important area by considering a variety of rectangular objects that

produce diverse shapes according to different packing arrangements. In addition, on

the basis of the observation that cluster shape reflects object geometry, we develop

cluster models that describe clustering dynamics across different object geometries.

Also, we attempt to address the question of how to maximize the system perfor-
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mance by computing a policy for altering the robot division of labor as a function

of time. We consider a sequencing strategy based on the hypothesis that since the

clustering performance is influenced by the division of labor, it can be improved by

sequencing different divisions of labor. We develop a stochastic model to predict

clustering behavior and propose a method that uses the model’s predictions to select

a sequential change in labor distribution. We validate our proposed method that

increases clustering performance on physical robot experiments.
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1. INTRODUCTION

Studies of self-organized multi-robot systems aim at understanding how to coor-

dinate systems consisting of large numbers of simple robots. Each robot typically

has limited capabilities such as imperfect sensing, manipulation, communication,

and computational powers. Despite modest capabilities of individuals, self-organized

multi-robot systems have been shown to exhibit complex collective behaviors includ-

ing performing manipulation tasks such as object clustering and sorting (Beckers

et al., 1994; Holland and Melhuish, 1999; Gauci et al., 2014), and collective trans-

port of objects (Kube and Bonabeau, 2000; Decugniére et al., 2008a). Unlike the

more common deliberative distributed robot teams, the group’s functionality emerges

through positive and negative feedback mediated by the environment and is the

product of action rather than representation or calculated reasoning (Parker, 2008).

For self-organized multi-robot systems, the essential research challenge is to manage

emergence and harness it for engineering ends. A crucial ingredient in this is the

development of models to describe rich self-organization process.

Object clustering is a widely studied problem domain for self-organized multi-

robot systems that involves collecting spatially scattered objects into a single pile

within the restricted workplace by the boundary. Clustering has practical applica-

tions as an initial manipulation step in a pipeline to speed subsequent processing,

such as raking leaves into a pile in a yard, farming (Anil et al., 2015), or preparing

sites for the construction (Parker et al., 2003).

Within the existing clustering work, the robots typically execute a simple control

policy such as the following: each robot performs a random walk within the work-

place, turning a random direction once an obstacle is encountered, and resuming their
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random walk thereafter. Considering the simplicity of this collective strategy, it is

surprising that the robots form clusters reliably and repeatedly. Several researchers

have given explanations of how clusters emerge through this process (Beckers et al.,

1994; Martinoli et al., 1999a). Ultimately, all these explanations boil down to a ge-

ometric argument that the size of clusters is an important determinant of whether

the cluster will grow or shrink.

The classic works in multi-robot clustering either have focused on empirical

demonstrations or have developed a simple model in which environmental effects

or the cluster’s characteristics are not considered. We can summarize shortcomings

of the conventional explanations and overlooked issues as follows:

• Most previous work has pointed out that environmental boundaries affect the

cluster formation process, which the boundaries can cause cluster growth it-

self (Maris and Boeckhorst, 1996; Holland and Melhuish, 1999). However,

notwithstanding the significant influence of the boundary on the clustering

process, many authors ignored environmental effects that are caused by the

boundary in their models.

• Almost all previous work has not dealt with the importance of positions of

forming clusters in the workspace. Environmental boundaries effects that cause

not only cluster growth itself, but also an imbalanced amount of time spent by

robots on the boundary. It is still remain questions of how the development and

position of clusters changes the structure of the configuration for both central

clusters and boundary clusters and how this feedback affects where robots can

move, and the clustering dynamics.

• Many classic works focused on clustering cylindrical objects (e.g., pucks, fris-

bees, and the like). Using square objects makes the task rather challenging
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because flat edges exacerbate adhesion to the boundary. Once against the

boundary, it is difficult for a cylindrical robot to move a box into the center

of the environment. Clustering non-cylindrical objects brings to the challenge

that remains: to describe and understand how the clustering behaviors work

in different geometries of objects.

• Most still considered a simplified clustering model under the (strong) assump-

tion that the geometry of a cluster of items is rotationally symmetric and

well-packed. Moving beyond cylindrical objects, the shortcomings of this sim-

plification become acute. There can be a vast number of variables in the stabil-

ity of different arrangements of objects, and even the most stable configuration

is not a smooth function of size n.

• Since the robots in self-organized multi-robot systems have limited sensing and

manipulation capabilities, it can be difficult to improve the speed of collective

performance. It is already known that merely increasing the number of robots

will not improve the speed of the system above a certain threshold because of

the interference between team members. Principled methods for maximizing

system performance (in terms of speed and/or quality) remains challenging and

still overlooked for self-organized multi-robot systems.

1.1 Research Objectives and Contributions

This study aims at developing new models for understanding self-organized multi-

robot clustering via modeling, with a view toward improving the system performance.

Particularly, by considering environmental effects and geometric characteristics (like

the effect of the boundary, geometries of clusters and objects), ignored in the existing

works, we examine models to analyze and describe accurately the dynamics of a

3



multi-robot clustering system. The original contributions of this dissertation are the

following:

• Design of a novel approach for object clustering: Our practical approach in-

volves the implementation of a clustering system in which local densities of

robots are managed to prevent boundary cluster growth. We propose two

complementary behaviors, twisting and digging, having different manipulation

capabilities and cover regions. With a mix of robots executing the two comple-

mentary behaviors, we demonstrated that the robots successfully generated a

single central cluster and overcame the problem of boundary cluster formation.

Our approach exploits the mechanics of the object geometry: the boundary

objects are pried loose from the wall by striking the corner of the object. We

describe an effective solution which uses structured motion to take advantage

of the physical packing of the items rather than relying on sensing informa-

tion. Because this does not depend on the robot disambiguating particular

circumstances (i.e., the robot is unaware the distinction between a boundary

or any other obstacle), but rather it is the context within which the actions

are executed that produces the desired outcome, this resolution is particularly

satisfying from a self-organization perspective. ((Kim et al., 2011; Song et al.,

2012) and Section 4).

• Extension of existing models of the clustering system: In order to explain how

sets of clusters evolve into a single cluster without any boundary cluster being

formed, we enrich prior models by treating spatially the densities of robots,

specifically with respect to a difference between boundaries and the center of

the workspace. Many studies have ignored or simplified the influence of the

boundary when building a model by neglecting where the clusters are formed.
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This is fallacious because the boundaries themselves buttress clusters, making

them behave as if they are part of a much larger cluster. Thus, the boundary

effect is an important factor that should be considered in the clustering model

((Kim and Shell, 2015) and Section 4).

• Derivation of a condition to avoid the boundary interference: Through analysis

of our proposed model, we show that local spatial densities of the robots have

a key role in the evolution of clusters. Using this model, we derive a condi-

tion that the boundary interference in the clustering system will be eliminated

entirely. Since the condition prescribe circumstances to help achieve the en-

gineering goal, we can then design the robot behaviors whose real dynamics

satisfies the desired dynamics for evolution of the largest central cluster. We

verify it through our proposed clustering system ((Kim and Shell, 2015) and

Section 4).

• Investigation of the impact of the cluster’s shape on the clustering dynamics:

A common simplifying assumption underlies existing clustering models. It is

that a cluster containing n objects is well-packed and rotationally symmetric.

But, direct observation shows that clusters can often form into diverse shapes

in practice. Previously published work has also overlooked an important factor

that there can be a significant difference between two clusters of the same size

according to the cluster shape. In this work, we tackle the problem of clustering

objects which produce widely different packings. We examine closely how the

geometry of the cluster has an influence on the cluster evolution by treating

the cluster’s shape as a variable in a clustering model. We first introduce a

concise descriptor, a measure of compactness, to quantify the shape of clusters,

showing that it captures useful information and can result in improved models.
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Using the measure of the compactness, we propose probabilistic models (like

the geometric probability of cluster modification) to predict the geometry of

clusters that arise during the clustering process (Section 5).

• Extended analysis of clustering systems across different object shapes: We ex-

tend the analysis of the clustering system by considering various rectangular

objects beyond the regular polygonal objects. We build the geometric proba-

bility models that reflect the cluster shapes and the object geometry. An inter-

esting observation is that cluster shape reflects object shape. In other words,

while clustering objects with high aspect ratio (the ratio of the longest to the

shortest side) is more likely to produce clusters with high aspect ratios than

when clustering objects of more moderate shape. Based on this observation,

we develop probabilistic cluster occurrence models to describe the clustering

dynamics according to the object geometry. So far as we know, it is the first

in-depth study of the effects of the geometric characteristics of clusters and

objects on the clustering dynamics (Section 5).

• Sequencing strategy to maximize the system performance: The self-organized

multi-robot systems have two inevitable constraints. The first constraint is that

the interaction between robots and environment is uncertain. Consequently,

since a task progress is non-stationary, it is difficult to predict accurately the

system’s result. Therefore, a prediction model for such uncertain system is

necessary for forecasting the system’s result and improving the performance.

Second, due to the limited sensing capabilities of robots, the global state of the

system is usually unobservable or partially observable. Such a system can be

also regarded as a potentially sensorless robotic system because the robots with

limited sensing capabilities do not have a complete feedback loop to control

6



the system’s performance. Furthermore, a control policy through individual

units can be ineffective to manage the whole system’s performance. Therefore,

it is hard to control a self-organized system with local-level parameters. In

this work, we predict the clustering progress by applying the stochastic ap-

proach using a Markov chain model which captures the geometric state during

a clustering process. The stochastic model allows for optimizing a sequence

of changes to the division of labor to maximize the task performance in the

sensorless system. This reveals that managing global level behaviors like the

division of labor can control self-organized multi-robot systems. This method

will give insight and provide solutions to improve the system performance in

different collective manipulation tasks performed in self-organized multi-robot

systems ((Kim and Shell, 2013) and Section 6).

1.2 Outline

The remainder of this dissertation is organized as follows. In Section 2, we will

review related literature on object clustering with self-organized multi-robot systems.

Section 3 provides extended models of multi-robot clustering systems with a focus

on the matter of the boundary and conditions to prevent boundary cluster growth.

We also introduce a new method for clustering objects that could successfully cluster

square objects. In Section 4, we examine closely how the geometry of the cluster

affects the cluster evolution by treating the cluster’s shape as a variable in a clustering

model, and develop cluster occurrence models across different object shapes. In

Section 5, we address the question of how to maximize the clustering performance,

and propose a sequencing strategy to improve the performance. Section 6 concludes

this dissertation with a general discussion and describes our future work.
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2. RELATED WORK ∗

Studies of self-organized multi-robot systems consider multiple agents, each with

limited individual capabilities, but with the capacity for synergistic interaction in

order to collectively perform tasks. In general, self-organized multi-robot systems

have attractive potential advantages as follows. In the aspect of system configura-

tion, by designing the robots as a simple mechanism, hardware, and software, the

complexity of system is reduced. From these, the system is able to accomplish a

high level of redundancy as well as reduce the cost and the weight of the robot. In

addition, the system can be scalable because the individual robot has an identical

structure; robots can be interchanged flexibly with other robots without reorganiza-

tion (Sharkey, 2007).

Self-organized multi-robot systems are often called swarm robotic systems or

collective robotic systems because groups of simple robots can achieve collectively

team-level task. Swarm behavior is a collective behavior that is exhibited by large

numbers of insects or animals in nature such as aggregating together or moving into

same direction. Through the collective behavior, a group can perform a task beyond

individual’s capability (Dorigo and Roosevelt, 2004). Beni (2005) described that a

group in swarm is not just a simple group, but has particular characteristics, which

are found in social insects such as absence of synchronization, decentralized control.

The collective behaviors of self-organized systems are ubiquitous in biological sys-

tems (Okubo, 1986; Deneubourg and Goss, 1989; Bonabeau et al., 2000; Camazine,

2003; Fialkowski et al., 2006; Copeland and Weibel, 2009). The collective behaviors

∗Parts of this section are reprinted with permission from “Self-organized clustering of square 
objects by multiple robots” by Y. Song, J.-H. Kim, and D. A. Shell, Swarm Intelligence, 7461:308- 
315, Copyright[2012] by Springer.
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of social insects, such as the termites’ nest-building and the wasps’ construction, has

also been studied in biology (Garnier et al., 2007). Social insects dose not possess the

information about global status of their inhabited colony as well as there is no leader

to manage all individual entity to achieve their goals. Nonetheless, it is remarkable

that the group’s functionality emerges and accomplish their goal through the col-

lective behaviors. Franklin (1996) explained this phenomenon through stigmergy, a

term coined by Grassé (1959) in studying wasp nest construction. Stigmergy is an

indirect communication between individuals via their shared environment; a modified

environment affects the their next motions. Through the implicit communication, the

environment is changed, the change of the environment then cause again changing the

insect’s behavior, and finally complex, intelligent structures appear at the environ-

ment. This dynamical process is shown in the nest building of termites (Bonabeau

et al., 1999). Bonabeau et al. (1999) defined these collective behaviors emerging

through this dynamical process as self-organizing behaviors and explained how so-

cial insects create complex collective behavior for accomplishing their goal. Many

researchers has studied in various fields by applying the self-organizing behaviors to

inanimate entities which show parallel behaviors (Whitesides and Grzybowski, 2002;

Mondada et al., 2004; Soh et al., 2011).

Many researches based on self-organization theories have studied and published

in various fields of collective robotics: aggregation (Trianni et al., 2003; Bahgeçi,

2005; Garnier et al., 2005; Soysal and Şahin, 2007; Dimarogonas and Kyriakopou-

los, 2008), flocking (Turgut et al., 2008; Çelikkanat and Şahin, 2010; Ferrante et al.,

2012), pattern formation (Yamaguchi and Beni, 1996; Balch and Arkin, 1998; Desai

et al., 1999; Flocchini et al., 2008; Kaminka et al., 2008), construction (Wawerla et

al., 2002; Werfel and Nagpal, 2006; Stewart and Russell, 2006; Yun et al., 2011), ex-

ploration (Everett et al., 1994; Gage, 1995; Amat et al., 1997; Rekleitis et al., 1997;
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Damer et al., 2006), and mapping (Cohen, 1996; Ichikawa and Hara, 1996; Rother-

mich et al., 2005; Howard et al., 2006). In addition, researches on task allocation to

solve the complex task through the division of labor in swarm robotics have been

conducted (Jones and Matarić, 2003; McLurkin and Yamins, 2005; Groß et al., 2008;

Ducatelle et al., 2009).

For object manipulation tasks thorough collective behaviors, object transporta-

tion is a widely studied task. Through collective navigation behaviors, groups of

robots can cooperatively handle an heavy object or scattered multiple objects and

transfer them into a goal position. Groß and Dorigo (2009) proposed the self-

organized robotic system to transport objects of different sizes and shapes through

collective behaviors of robot teams. Kube and Bonabeau (2000) drew inspiration

from ants’ behaviors that they transport collectively preys, and demonstrated in

physical robot system that a group of six robots can push an heavy object towards

a goal in a distributed way. Besides those researches, many studies on collective

transport of objects have conducted (Campo et al., 2006; Decugniere et al., 2008b;

Berman et al., 2011; Ferrante et al., 2013).

Object clustering, this dissertation is focusing on, is a canonical task for self-

organized multi-robot systems. Deneubourg et al. (1991) first introduced a dis-

tributed clustering algorithm inspired by ants brood sorting behavior and demon-

strated how the ant’s behavior could be used in a simulated multi-agent system.

Clustering was achieved with a simple algorithm with only a local density sensor

and without any direct communication between robots and hierarchical organiza-

tion. Thereafter, inspired by earlier biological models (Franks and Sendova-Franks,

1992), Beckers et al. (1994) conducted a physical robot experiment and demonstrated

clustering without needing a density sensor by employing a binary threshold sensor.

They also explained the emergence of clusters on the basis of the geometry of the
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clusters.

Holland and Melhuish (1999) extended the task of object clustering to spatial

sorting, requiring the classification of objects based on their types. Most relevant to

this paper, they had a detailed description of the effect of environment boundaries.

They conducted several experiments in which clusters formed at the edge of their

arena. Flat boundaries, after all, have all the properties of a very large cluster. We

believe that their paper is the most systematic empirical study of this boundary effect

and how it might be overcome to date. They proposed an algorithmic solution to the

problem: since their U-bots can detect and measure the distance to the boundary,

the robots opted not to deposit frisbees (the objects they cluster) if they are too

close to the boundary. Since our robots are unable to distinguish objects, robots,

and boundaries, their solution cannot be applied to our scenario.

Several of the preceding studies (Deneubourg et al., 1991; Beckers et al., 1994;

Holland and Melhuish, 1999) explained clustering through stigmergy, as we already

explained. It describes how an environment, modified by agents’ actions previously,

affects subsequent task performance by the agents. Although far from being a con-

crete engineering principle, the observation that this idea is applicable in several con-

texts is powerful. More connections between robot clustering and biological models

have been published (Scholes et al., 2005).

Parker and Zhang (2006) examined a site preparation task in which their approach

has several elements of the original clustering algorithms: simple robots employ a

threshold-based sensing system in order to push several items. The force threshold

is exceeded once piles of a sufficient size have been created. That work, and research

in the multi-robot construction domain using square building-blocks (e.g., Jones and

Matarić (2004)) suggest that if such self-organized systems are to be used, a broader

class of objects should be clustered.
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Almost all previously published work in robotic clustering considers cylindrical

pucks. Using square objects makes the task rather challenging because flat edges

exacerbate adhesion to the boundary wall. Once against the wall, it is particularly

difficult for a cylindrical robot to move a box into the center of the workspace. This

can be observed in the video posted by Vaughan’s Autonomy Laboratory (Vaughan,

2007) in which 36 iRobot Creates successfully created clusters of square objects

running only their default demonstration program. Most of the clusters form on the

boundary.

Table 2.1 is a comparative summary with robots’ capabilities and experimental

environments in the most closely related work, most papers employ richer sensing:

including sensors to detect and differentiate other robots, objects, and boundaries.

Many of the robots are equipped with manipulation mechanisms of one sort or an-

other (grippers, C-shaped scoops, shovel, etc.) that pick up or hold objects.

In this research, we consider simpler robots than prior published accounts. The

robots are only equipped a front bumper and a single IR proximity sensor without

any object manipulator. The robots are able to recognize the existence of an obstacle

in the IR sensor, but cannot recognize its type. Interestingly, the most simple robots

either produce boundary clusters or give them special treatment. For example, Maris

and Boeckhorst (1996) considered objects to be lost once they were pushed against

a wall.

This research describes an effective solution that uses structured motion to take

advantage of the physical packing of the items rather than relying on sensing in-

formation. Because this does not depend on the robot disambiguating particular

circumstances (i.e., the robot is unaware the distinction between a boundary or any

other obstacle), but rather it is the context within which the actions are executed

that produces the desired outcome, this resolution is particularly satisfying from a
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self-organization perspective. The approach is more consistent than prior work in

that the clustering process is also described as depending primarily on the physics

of the robot-environment interaction for its success.

In general, the robots in self-organized multi-robot systems typically do away

with adaptive planning, representation, or calculated reasoning at run-time. In con-

trast, producing desirable behavior in such systems often focuses on design decisions,

employing theory and analysis off-line. One successful approach is to model such sys-

tems mathematically as a stochastic processes, which can be a natural fit given the

non-determinism often inherent to such systems. The Rate Equation (Lerman and

Galstyan, 2004; Martinoli et al., 2004; Lerman et al., 2001; Agassounon et al., 2004)

has been used as a useful tool for analysis of collective dynamics of swarm robotic

systems.

In a mathematical analysis of clustering dynamics, Martinoli et al. (1999b) intro-

duced a probabilistic model to quantify this geometric notion under the assumption

of rotationally symmetric piles. The idea is essentially that in order to draw a puck

away from a cluster, a robot must move past it at a particular angle. Small clusters

have more angles from which pucks will be removed than big clusters and, addi-

tionally, larger clusters are proportionately more likely to be encountered for puck

deposits. Kazadi et al. (2002) also proposed a mathematical model of clustering dy-

namics with rate equations, describing cluster growth properties and arguing along

similar geometric lines to Martinoli. Both studies assume that a cluster is rotation-

ally symmetric, a fact often violated in practice especially as one explores objects

with a variety of shapes.

The previous work in robotic clustering mentioned above either focused on em-

pirical demonstrations or considered a simple model in which environmental effects

(like boundaries, the characteristics of clusters and objects) play no role. In this
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dissertation, we address this challenge by considering environmental effects as well

as geometries of clusters and objects.

14



W
o
r
k

P
u

c
k
s/

S
e
e
d

s/
C

u
b

e
s/

B
o
x
e
s

E
n
v
ir

o
n

m
e
n
t

N
o
te

s
S

en
si

n
g

M
a
n

ip
u

la
ti

o
n

S
en

si
n

g
B

o
u

n
d

a
ry

&
E

ff
ec

ts
B

ec
k
er

s
et

a
l.

(1
9
9
4
)

♦
D

et
ec

t
ci

rc
u

-
la

r
p

u
ck

s
w

it
h

fo
rc

e
se

n
so

r
in

C
-s

h
a
p

ed
sc

o
o
p

♦
P

u
sh

ci
rc

u
la

r
o
b

je
ct

s
♦

C
o
n
tr

o
l

th
e

n
u

m
b

er
o
f

ca
rr

ie
d

p
u

ck
s

w
it

h
a

m
ic

ro
sw

it
ch

♦
T

w
o

IR
se

n
-

so
rs

fo
r

o
b

st
a
cl

e
a
v
o
id

a
n

ce

♦
A

sq
u

a
re

a
re

n
a

♦
S

id
e-

st
ep

s
th

e
eff

ec
t

o
f

b
o
u

n
d

-
a
ry

b
y

u
si

n
g

a
d

ef
o
rm

a
b

le
b

o
u

n
d

a
ry

♦
T

h
e

ro
b

o
ts

ca
n

p
u

sh
p

u
ck

s
tr

a
p

p
ed

o
n

th
e

b
o
u

n
d

a
ry

d
u
e

to
a

d
ef

o
rm

a
b

le
w

a
ll

M
a
rt

in
o
li

et
a
l.

(1
9
9
9
b

)

♦
D

is
cr

im
in

a
te

b
et

w
ee

n
ci

rc
u

-
la

r
se

ed
s

a
n

d
o
b

st
a
cl

es
w

it
h

d
is

ti
n

ct
IR

se
n

so
r

si
g
n

a
tu

re
s

♦
G

ra
sp

,
ca

rr
y

a
n

d
re

le
a
se

se
ed

s
♦

S
ix

IR
p

ro
x
im

-
it

y
se

n
so

rs
fo

r
d

e-
te

ct
in

g
o
b

st
a
cl

es

♦
A

sq
u

a
re

a
re

n
a

♦
E

ff
ec

t
o
f

th
e

b
o
u

n
d

a
ry

ig
n

o
re

d

♦
T

h
e

ro
b

o
ts

ca
n

re
co

g
n

iz
e

a
n

d
a
cc

es
s

cl
u

st
er

s
g
eo

m
et

ri
ca

ll
y

H
o
ll
a
n

d
a
n

d
M

el
h
u

is
h

(1
9
9
9
)

♦
D

et
ec

t
ci

rc
u

la
r

p
u

ck
s

b
y

se
n

si
n

g
b

a
ck

w
a
rd

fo
rc

e
o
n

g
ri

p
p

er

♦
G

ri
p

,
re

ta
in

,
a
n

d
re

le
a
se

ci
r-

cu
la

r
p

u
ck

s
w

it
h

se
m

ic
ir

cu
la

r
g
ri

p
p

er

♦
F

o
u

r
IR

p
ro

x
-

im
it

y
se

n
so

rs
fo

r
se

n
si

n
g

th
e

b
o
u

n
d

a
ry

♦
A

n
o
ct

a
g
o
n
a
l

sh
a
p

ed
a
re

n
a

w
it

h
ri

g
id

b
o
u

n
d

-
a
ry
♦

U
se

th
e

p
ro

b
a
-

b
il
it

y
o
f

d
et

ec
ti

n
g

a
w

a
ll

♦
R

o
b

o
ts

ca
n

n
o
t

d
is

cr
im

in
a
te

b
e-

tw
ee

n
o
th

er
ro

b
o
ts

a
n

d
th

e
b

o
u

n
d

a
ry

♦
T

h
e

st
ra

te
g
y

o
f
v
a
ry

in
g

th
e

w
a
ll

p
ro

b
a
b

il
it

y
in

tr
o
d

u
ce

s
th

e
fa

ls
e

p
o
si

ti
v
e

♦
T

h
e

ro
b

o
ts

o
v
er

co
m

e
th

e
eff

ec
t

o
f

b
o
u

n
d

a
ry

w
it

h
se

n
so

rs
M

a
ri

s
a
n

d
B

o
ec

k
-

h
o
rs

t
(1

9
9
6
)

♦
N

o
se

n
si

n
g

o
f

th
e

cu
b

es
♦

C
u

b
es

p
u

sh
ed

u
n
ti

l
o
b

st
a
cl

e
d

et
ec

te
d

♦
S

ix
IR

p
ro

x
im

-
it

y
se

n
so

rs
fo

r
o
b

-
st

a
cl

e
d

et
ec

ti
o
n

♦
A

sq
u

a
re

a
re

n
a

♦
C

o
n

si
d

er
p

u
sh

ed
cu

b
es

a
g
a
in

st
th

e
b

o
u

n
d

a
ry

a
s

”
lo

st
”

♦
T

h
e

ro
b

o
ts

m
a
n

ip
u

la
te

cu
b

es
b
y

o
n

ly
p

u
sh

in
g

b
eh

a
v
io

r
fo

r
cl

u
s-

te
ri

n
g

ta
sk

♦
R

o
b

o
ts

p
a
ss

o
v
er

cu
b

es
o
n

th
e

b
o
u
n

d
a
ry

V
a
u

g
h

a
n

(u
n

p
u

b
l-

is
h

ed
)

♦
D

et
ec

t
sq

u
a
re

b
o
x
es

w
it

h
b

u
m

p
er

s

♦
P

u
sh

a
n

d
le

a
v
e

a
b

o
x

b
y

a
b

u
m

p
er

’s
th

re
sh

o
ld

♦
N

o
se

n
so

r
fo

r
d

et
ec

ti
n

g
o
b

je
ct

s
ex

ce
p

t
fo

r
b

o
x
es

♦
A

re
ct

a
n

g
u

la
r

a
re

n
a

♦
E

ff
ec

t
o
f

th
e

b
o
u

n
d

a
ry

ig
n

o
re

d

♦
S

ev
er

a
l

cl
u

st
er

s
fo

rm
ed

o
n

th
e

b
o
u

n
d

a
ry

T
h

is
d

is
-

se
rt

a
ti

o
n

♦
D

et
ec

t
sq

u
a
re

b
o
x
es

w
it

h
b

u
m

p
er

s

♦
P

u
sh

a
n

d
le

a
v
e

a
b

o
x

b
y

a
b

u
m

p
er

’s
th

re
sh

o
ld

♦
A

si
n

g
le

IR
p

ro
x
im

it
y

se
n

so
r

fo
r

se
n

si
n

g
th

e
o
b

je
ct

s
o
n

th
e

ri
g
h
t

si
d

e

♦
A

n
o
ct

a
g
o
n
a
l

sh
a
p

ed
a
re

n
a

w
it

h
ri

g
id

b
o
u

n
d

-
a
ry
♦

O
v
er

co
m

e
th

e
eff

ec
t

o
f

b
o
u

n
d

-
a
ry

u
si

n
g

m
o
ti

o
n

st
ra

te
g
ie

s

♦
N

o
p

u
ck

m
a
n

ip
u

la
to

r
♦

U
se

fe
w

se
n

so
r

in
fo

rm
a
ti

o
n

(1
-b

it
IR

se
n

so
r,

1
-b

it
b

u
m

p
er

)
♦

T
h

e
r
o
b

o
t

u
n

k
n

o
w

in
g
ly

o
v
e
r
c
o
m

e
s

th
e

e
ff

e
c
t

o
f

b
o
u

n
d

a
r
y

w
it

h
o
u

t
th

e
se

n
so

r
fo

r
d

is
ti

n
g
u

is
h

in
g

b
o
u

n
d

a
r
y

T
ab

le
2.

1:
A

co
m

p
ar

is
on

of
ro

b
ot

ca
p
ab

il
it

ie
s

w
it

h
in

re
la

te
d

re
se

ar
ch

.

15



3. SCOPE AND LIMITATIONS

In this section, we describe precisely the experimental testbed used in this research

to investigate how clustering occurs, and report assumptions and limitations in our

approach.

3.1 Environmental Setting

While classic works considered only cylindrical objects (e.g., pucks, frisbees), our

work has been exploring the task with square and rectangular objects. For a problem

where the conventional wisdom explaining the clustering process hinges on geometric

arguments, it is somewhat surprising that no consideration has been given to varying

the shape of the objects. Using square objects makes the task rather challenging

because flat edges exacerbate adhesion to the boundary wall. Once against the wall,

it is particularly difficult for a cylindrical robot to move a box into the center of

the workspace. This can be observed in the video posted by Vaughan’s Autonomy

Lab in which 36 iRobot Creates robots successfully created clusters of square objects

running only their default demo program (Vaughan, 2007). As shown in Figure 3.1,

most of the clusters form on the boundary. We call the interference of boundaries

with single central cluster growth “the boundary effect”.

To address the problem of the boundary effect in object clustering, we studied

the experimental setting as follows.

• Robot platform – we use iRobot Create platforms. Since we attempt to im-

plement the clustering system with simple robots without any object manip-

ulator and richer sensing information, the device is a suitable platform for

our clustering system. The robot (about 32 cm in diameter) similar in size

to the autonomous vacuum cleaning devices made by the same company in
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Figure 3.1: Demonstration for object clustering [by Autonomy Lab at the Simon
Fraser University]. Many clusters form on the workspace perimeter (See the yellow
circles).

widespread use (See Figure 3.2). The robots are equipped with two wheels

operated via a differential drive mechanism and a passive caster. This allows

the robot platform to move forward, or backward, perform turns while moving,

and also to turn in place. Two kinds of sensors are used in our object clustering

experiments:

1. The robot has left and right bumpers, which are used to detect the pres-

ence of objects in front of the robot. The bumpers operate independently

and are only depressed when the pushing force against them exceeds a

threshold.

2. The robot has an IR sensor on its right side, which is used for sensing

the distance to the wall to the right side of the robot and enables it to

perform simple wall following.

This constitutes a minimalist multi-robot system: simple control algorithms,

few sensors and no explicit communication nevertheless suffice to produce coop-

erative box pushing and cluster formation. Unlike the majority of the existing

work, the robots employed do not have a specially shaped scoop, or shovel,
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Figure 3.2: iRobot Create platform

for manipulating the objects used for clustering. Without this specifically con-

structed apparatus (sometimes they also include a specialized puck sensor), and

given the role physics play in the collection process itself, these experiments

may be considered to use fewer structured resources to execute the clustering

task.

• Objects – We consider square boxes whose size is 35 cm×35 cm, similar to a

robot’s size, as the object for clustering. For practicable operation with our

robots the boxes have the following crucial property: two boxes together have

sufficient mass to depress the bumper although an individual box is inadequate

to activate the sensor. Later in this work, we consider various rectangular

objects by varying its aspect ratio.

• Arena – Similar to Holland and Melhuish (1999) we use an octagonal shaped

arena, because a square arena would result in square boxes getting stuck in

the 90◦ corner. Our arena has a size of 4.5 m×4.5 m. To analyze the robots’

spatial distribution, we divide the octagonal arena into center and boundary
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Figure 3.3: Octagonal shaped arena.

Figure 3.4: An example of object clustering scenario: 20 square objects (brown
boxes) and 5 robots (white round devices).

regions. The boundary line between regions is drawn 70 cm from the boundary,

which approximately the same as the width of the sum of width of a robot and

a box, and ratio of center to boundary areas is 52:48. Figure 3.3 illustrates the

octagonal shaped arena’s size and regions.

Figure 3.4 shows the experimental set-up and the box clustering behavior.
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3.2 Assumptions

We list here assumptions underlying our clustering system.

• Bounded workspace: Robots perform the clustering task within a finite workspace

bounded by a non-deformable boundary.

• Homogeneous robots: All robots move at a constant speed and push only a

single object because two objects together have sufficient mass to activate the

bumper sensor.

• Identical objects: Clustering objects have identical frictional coefficients and

mass. Thus, we assume that all objects have the same physical characteristics

such as a sliding friction and static friction force.

On the basis of these assumptions, we analyze the clustering dynamics and de-

velop clustering models. The first assumption permits treating the spatial densities

of robots and modeling the clustering dynamics with respect to a difference between

the central region and the boundary region of the workplace. Also, the second as-

sumption implies that a group of more than two objects can be a seed of the cluster.

3.3 Limitations

In this study, we focus on solving the problem of the boundary interference.

Accordingly, we consider square objects that exacerbate the adhesion against a wall

because of their flat edge, and design the motion behavior that is applicable to the

manipulation of the square objects. For clustering other types of objects such as

triangular and hexagonal objects, one may have to devise different motion strategies

to manipulate them.

For the analysis of the clustering dynamics, we only consider interactions between

robots and objects. We assume that our clustering results will be interpretable with-
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out considering any consequences of the robot-to-robot interactions in our experi-

mental setting. The size of a group can be a critical factor in the system performance

since interactions between robots increase with greater numbers of robots (Lerman

and Galstyan, 2002). In order to grasp the general effects of the number of robots

on the clustering performance, it is necessary to explore additional experimental

conditions.

Another limitation is that our experimental setting fixes the proportion of the

arena’s area to the occupied area of objects. Thus, our work does not deal with the

relationship between the densities of objects and the arena’s scale. (Note: when we

conducted the clustering experiments with the same area ratio the arena to objects

(e.g. an arena twice the original size and double objects), the clustering dynamics

in each case showed the same results).
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4. A NEW STRATEGY AND MODELS FOR OBJECT CLUSTERING:

A MATTER OF THE BOUNDARY∗

Several earlier studies have pointed out that clustering along the boundary of

the workplace harms central clustering performance; a wide range of solutions have

been proposed for producing such central clusters despite the boundaries. For ex-

ample, Holland and Melhuish (1999) conducted empirical study of this boundary

effect and proposed a method that the robots opted not to deposit the objects by

measuring the distance to the boundary. Since our robots are unable to recognize

boundaries, their sensor-based solution cannot be applied to our scenario. Also,

despite the significant influence of the boundary on the clustering process, many re-

searchers have still ignored or simplified the effect of the boundary when building a

clustering model. One standard way is to ignore consideration of where the clusters

are formed, ignoring their positions. This is fallacious because the boundaries them-

selves buttress clusters making them behave as if they are parts of a much larger

(even infinite) cluster.

In this section, we design a clustering system to generate a single central cluster.

We use simpler robots than previous approaches and propose an effective solution

that is able to overcome the boundary effect by managing the spatial densities of

robots. we also introduce an extended analysis of the clustering system by consid-

ering the effect of the boundary and derive a condition that is required to avoid

the boundary interference. To be specific, we will enrich prior models by treating

∗Parts of this section are reprinted with permission from “Self-organized clustering of square
objects by multiple robots” by Y. Song, J.-H. Kim, and D. A. Shell, Swarm Intelligence, 7461:308-
315, Copyright[2012] by Springer Berlin Heidelberg and “A new model for self-organized robotic
clustering: Understanding boundary induced densities and cluster compactness” by J.-H. Kim
and D. A. Shell, 2015 IEEE International Conference on Robotics and Automation, 5858-5863,
Copyright[2015] by IEEE.
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spatially the densities of robots, with respect to a difference between boundaries and

the central region of the workspace, and seek the solution that the boundary inter-

ference in the clustering system is negligible or eliminated entirely. We then validate

the derived condition for evolution of the largest central cluster through analysis of

the local densities of the robots in our approach.

4.1 A Novel Approach for Object Clustering

Almost all previous works employ richer sensing: including sensors to detect and

differentiate other robots, objects, and boundaries. Many of the robots are equipped

with manipulation mechanisms of one sort or another (C-shaped scoops, grippers,

shovel, etc.) that pick up or hold objects. In this study, by using the simple robots,

iRobot Create platform (See Section 3), we attempt to implement the clustering

system in which the robot unknowingly overcomes the boundary effects with only

motion behavior without the sensor for distinguishing boundaries.

4.1.1 Motion Strategies

We first implemented a strategy based on examples in the literature, called the

basic mode, as a Baseline for comparison. We then introduce a new approach we call

the mixed strategy, so named because it involves two complementary behaviors that

the robots in the group execute concurrently. These two novel behaviors twisting

and digging are described below. We stress that both are simple modes of operation,

and since a single square object is effectively invisible, both overcome partial sensor

blindness through open-loop control strategies. These local rules depend on the

geometry of the objects being clustered: manipulation and contact uses the shape

and size of the items under consideration, configuration of the boxes depends on the

packing, itself a function of the object geometry.
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Figure 4.1: Flowchart of the basic mode.

4.1.1.1 Basic Strategy

Based on previously reported controllers, we designed a simple mechanism shown

in Figure 4.1. Robots employ their bumpers in order to avoid any object that they

encounter and which they cannot push. The robot’s bumpers only detect box clusters

and walls. Thus, in the basic mode, the robot drives straight, and if it detects either,

it will make a random turn. The details are below.

Rule 1:

if (Left bumper pressed or Right bumper pressed) then

Make a random turn and go forward

Rule 2:

Go forward

4.1.1.2 A Geometry Aware Strategies

In this section, we propose two new strategies in order to increase the perfor-

mance of robots at the task, i.e., at forming a central cluster with square objects

by overcoming the boundary effects. Our approach exploits the mechanics of square
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Figure 4.2: Prying motion to detach an object from the wall.

objects: as shown in Figure 4.2, striking the corner of a square object can pry it loose

from a tight packing. This reduces the area in contact with the wall and makes sub-

sequent separation more likely, especially if repetitive motions are used. Figure 4.3

shows a progress that square object is separated from the boundary by the sequence

of repetitive prying motions.

Based on this concept, we introduce two new behaviors, twisting or digging. Ei-

ther of them have the prying motion. The next sub-sections show details of those

behaviors. Each robot employs either the twisting behavior of operation or the dig-

ging behavior of operation. But because they involve two complementary behaviors

that the robots in the group execute concurrently, we call the overall approach the

mixed strategy. We name a robot in the twisting behavior a twister and a robot in

the digging behavior a digger. Compared to the basic strategy, only one IR proximity

sensor is added to the robots.

Twisters are likely to push objects against the boundary or bring objects into the

center. On the other hand, diggers further separate twisted objects from the bound-

ary, but there is comparatively little chance that twisted objects will be brought

into the center because those robots stay near the boundary. We simplify this by
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Figure 4.3: Square object detaching progress by repetitive prying motions.

assuming that diggers only interact with boundary objects by performing the prying

action, whereas twisters interact with all objects by randomly moving in the en-

tire workplace. Data in Figure 4.4 provides the evidence that supports this idea by

showing a spatial distribution of a twister and a digger.

4.1.1.2.1 Twisting Behavior The algorithm of a twister is detailed below.

Rule 1 :

if ( Left bumper pressed or Right bumper pressed ) then

if ( Timer is on ) then

Rotate and push the object

Disable timer

else

Make a random turn and go forward

Rule 2 :
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Figure 4.4: Spatial distribution of (a) a twister and (b) a digger. 1200 positions
of a single twister and a single digger are plotted in the workplace, without any
object, every second. In the ideal case without any interactions with other objects,
the twister covers most areas of the workplace, while the digger moves around the
perimeter of the boundary.

if ( Wall is detected and Timer is off ) then

Enable timer

Follow the wall

Rule 3:

if ( Timer is on ) then

Follow the wall

Reduce timer

if ( Timer has timed out ) then

Rotate and push the object

The essential idea is that a single robot’s twisting motion is to strike the box at

45 degree (which it does for 3 seconds). The box is shifted through this twisting

motion. Other robots that contact the box subsequently push the twisted box, and,

through consecutive contacts, will robot completely detach the box from the wall,

as shown in Figure 4.5. At best, two trials will affect this operation, which itself is
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Figure 4.5: Twisting behavior on the boundary.

sufficient to increase the likelihood of central clusters. Since the bumper will not be

pressed if there is a single box at the boundary, the robot will simply keep pushing

the box. In this case the box is pushed into the corner of the arena. Also, since

it can be counter-productive to continue wall following, the robot uses a timer to

follows the wall for a maximum of 5 seconds. The twister then performs a prying

motion and moves in the interior of the arena. Figure 4.6 shows the flowchart of the

twister’s detailed algorithm.

4.1.1.2.2 Digging Behavior Although the twisting behavior alone is able to detach

the boundary objects from the wall, the majority of the boxes remained close to the

boundary. Thus, we developed a digging behavior to improve separation of the boxes

from the wall. The main purpose of this behavior is to clear up twisted boxes from

the walls; it does this by having the robot steadily follow the wall. This method

increases the probability that a robot will contact a box and separate the box from

the wall. The robot finds a wall by moving in a curved path. The details are below.

Rule 1 :

if ( Left Bumper pressed or Right Bumper pressed ) then
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Figure 4.6: Flowchart of the twisting behavior.

if ( timer is on ) then

Rotate and push the object

Disable timer

else

Make a random turn and go forward

Rule 2 :

if ( Wall is detected and Timer is off ) then

Enable timer

Follow the wall
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Figure 4.7: Digging behavior on the boundary.

Rule 3:

if ( Timer is on ) then

Follow the wall

else

Move along curved arc

Figure 4.7 shows the concept of separating the box by digging behavior. Since

no timer is employed during wall following, the probability that the robot contacts

with the box on the wall is increased. If there is an object in front of the robot, the

diggers perform the same as the prying motion as twisters. The flowchart detailing

the digging behavior is in Figure 4.8.

Figure 4.9 depicts scenarios possible with the robot behaviors during a clustering

process.

4.1.2 Resulting Cluster Dynamics

In order to analyze the cluster dynamics by motion strategies, three trials, each

lasting 90 minutes, were conducted for each experimental condition. Experiments

used 5 robots and 20 objects. All experiments were recorded on a video camcorder
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Figure 4.8: Flowchart of the digging behavior.

and annotated by observing frames at intervals of 5 seconds. We employed the

following criteria for analyzing cluster dynamics. The size of a cluster was defined as

a group of more than three boxes. Additionally, we distinguish between boundary

clusters and central clusters.

4.1.2.1 Resulting Cluster Dynamics in the Basic Strategy

Figure 4.10 (b) shows the final configuration of the first execution of the basic

strategy. In all three trials, the robots produced clusters of square objects, but most

clusters formed on the boundary. Figure 4.11 (a), (c), and (e) show the development

and changes in the number of objects in each cluster in the basic strategy. Notice,

however, that several central clusters were formed initially. Continuous collisions

with robots resulted in them being broken down within 15 minutes. By the end of

the allotted time, no central cluster had formed, while several boundary clusters had

emerged. The results underscore the earlier statement: the boundary has a critical

effect on the cluster formation since a wall has all the properties of a large cluster.
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Figure 4.9: Pictorial representation of the clustering process. (a) Prying objects
away from the boundary. Both the twister and the digger can pry an object loose
from the boundary by hitting the corner of the square. (b) Twisting behavior on the
boundary. A twister pushes the box shifted through the prying motion and brings it
into the central region. (c) Digging behavior on the boundary. A digger forms gaps
between boxes and boundaries and assist the prevention of boundary cluster growth.
(d) Trajectories of the twister and the digger after the prying motion. Twisters move
into the center, while diggers proceed along curved path to detect the boundary.
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Figure 4.10: Physical experiments. (a) Initial configuration. (b) Final configuration
using the basic strategy. (c) Final configuration using the mixed strategy (2 twisters
and 3 diggers).

The workspace walls buttress the partial structures, and the box’s flat edge means

that the motion required to dislodge such boxes occurs only infrequently. Once a

box is attached on the boundary, it is unlikely to move into the central region.

4.1.2.2 Resulting Cluster Dynamics in the Mixed Strategy

We also carried out three experimental trials under the conditions identical to

the basic strategy case in order to verify the clustering performance of the mixed

strategy. Five robots were used in our trials for the mixed strategy, two employed

the twisting behavior and three the digging behavior. Although the twisting and

the digging operations are complementary, the division of labor affects the overall

performance. We present the details of the performances and clustering dynamics

under different divisions of labor in next section. Figure 4.10 (c) shows the final

configuration of the first trial in the mixed strategy. Unlike to the basic strategy, a

single large cluster emerged in the middle of the arena in all three trials, as shown

in Figure 4.11 (a), (c), and (e). The robots successfully detached the boxes in the

boundary clusters and conveyed them to the central region. Figure 4.12 shows the

average size of the biggest central clusters and their standard deviations through

the time for the basic and mixed strategies. Although several clusters were formed
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Figure 4.11: Cluster dynamics in basic and mixed strategy (2 twisters and 3 diggers).
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initially in the central region, frequent collisions with the robots, in the basic strategy,

provoked the collapse of central clusters within 20 minutes in any of the trials. At

the end, no central cluster had been constructed, while several boundary clusters

emerged in the workspace. In contrast, the average size of the remaining clusters

with the mixed strategy after 90 minutes was 19.33 while no boundary cluster had

formed.

In addition, the lifetimes of all boundary and central clusters were recorded in

seconds throughout the experiments. Compared to basic mode, boundary clusters

had much shorter lifetimes in mixed mode, and central clusters had much longer

lifetimes in mixed mode (Table 4.1). There are multiple aspects which contribute to

this: robots spent more time on the boundary due to the wall following behavior; they

were not only taking out boxes from the boundary either in twisting or digging mode,

also blocking out-going boxes. Also, the longer lifetime of central cluster in mixed

mode means a dominant cluster remains in the center of the arena for a long time.

The average lifetimes of all boundary clusters were 2298.13 and 719.00 seconds, and

standard deviations were 2083.71 and 403.01 seconds for basic and mixed strategies.

The results verify that our proposed motion strategy can overcome successfully the

boundary effect and collect spatially distributed objects into only one pile at the

designated position.

4.1.3 Analysis of Division of Labor

The successful results of the mixed strategy caused us to broaden our scope to

consider the problem of improving the overall efficiency by tuning the division of

labor. Therefore, we extended the experiments to various cases with the different

ratios of twisters to diggers, and then analyzed experimental results in each case.

The most significant difference between twisting and digging behaviors is the spatial
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Figure 4.12: A comparison of clustering performance between basic and mixed strate-
gies. Vertical axis is the size of the largest central cluster (essentially the same per-
formance metric employed by Beckers et al. (1994).) The horizontal axis is time
measured in minutes.

Table 4.1: Lifetime of clusters in basic and mixed strategies.
Central cluster Boundary cluster
Max Mean Max Mean

Basic
(h:m:s)

1st 0:15:00 0:07:50 1:22:25 0:35:51
2nd 0:11:35 0:04:07 1:22:20 0:43:45
3rd 0:12:40 0:04:48 1:28:35 0:38:26

Mixed
(h:m:s)

1st 1:28:50 0:20:44 0:21:50 0:12:26
2nd 1:29:15 0:11:01 0:15:20 0:08:28
3rd 1:23:15 0:11:28 0:20:10 0:14:53
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Figure 4.13: Averaged spatial distributions of the robots for particular divisions of
labor (Central regions vs. boundary regions).

distribution of the robots. Due to the low probability of detecting a wall for the

twister, twisters end up going around the workspace, while diggers spend compar-

atively more time near walls. Figure 4.13 shows the averaged spatial distributions

of the robots for particular divisions of labor (these data were collected without any

boxes as a baseline.) Note: we assume that the robots in basic strategy are uniformly

distributed due to their random turn. The numbers of robots for each case are nor-

malized by the number of robots in the basic case. As the ratio of diggers increases,

a box on the boundary is more likely to be separated from the wall. However, it does

not guarantee that the separated object will be brought into a central cluster since

a digger will remain along the wall after the prying operation. From those analyses,

we next consider how these differences in spatial distribution might affect clustering

task progress.

4.1.3.1 Clustering Performances of Differing Divisions of Labor

We conducted three trials for all possible combinations of the twister (T) and

the digger (D), from no twisters and five diggers (0T5D) to five twisters and no

diggers (5T0D), under identical conditions as the previous experiments. Figure 4.14
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Figure 4.14: A comparison of averaged clustering performance between divisions of
labor.

shows the averaged size of the largest central clusters for each case. Contrary to our

expectation that all cases could achieve a satisfactory clustering performance, only

three trials succeeded in forming a single central cluster having all 20 objects within

90 minutes except for 2T3D case. The successful cases were the first and second trials

in 1T4D, and the third trial in 0T5D. Because Figure 4.14 is a comparative summary

of many experiments and shows the means of the three trials for each division of labor,

it hides a few interesting facts. For example, the 1T4D case appears to perform poorly

compared to 2T3D. In fact, it was a very capable division of labor and once form

a complete central cluster in the shortest observed time of 25 minutes. However,

1T4D also failed in one of its three trials. This illustrates that while 2T3D is to be

preferred for reliable clustering, 1T4D may be preferred for efficient clustering.

This suggests that, given a preference between reliability and efficiency, an appro-

priate mix could be determined. Based on this observation, we will also address the

question of how to improve the system performance by sequencing different divisions

of labor in Section 6.
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Figure 4.15: A comparison of clustering performance between the basic and mixed
strategies (20 boxes and 10 robots).

4.1.4 The Effect of the Number of Robots

We also explored the effect of additional robots on the characteristics of the clus-

tering task performance. Maris and Boeckhorst (1996) showed that the size of a robot

group is a critical factor in system performance since robot-to-robot interactions in-

crease with greater numbers of robots. They presented data showing that the mean

time to achieve a single central cluster first decreases with additional robots, but

then increases after the certain point. Although interactions can improve the overall

performance, it can also be harmful, potentially breaking down existing clusters. In

order to understand the effect of the number of robots, we carried out experiments

with 10 robots, maintaining proportions consistent with the previous case for 2T3D.

In other words, we used four twisters and six diggers. The basic strategy was also

evaluated.

Figure 4.15 shows a clustering performance of the basic strategy and the mixed

strategy (4T6D). Compared to the 5 robot cases (see Figure 4.12), the task perfor-
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mances of both the basic and mixed strategies had qualitatively similar tendencies.

In the basic strategy, few small central clusters were formed initially, but no central

cluster emerged. In contrast, in the mixed strategy, the clustering performance in-

creased gradually with time and formed the cluster having 19 boxes in the end in

two of the three runs; the third run produced two central clusters, but no boundary

clusters. However, some interesting differences between 5 and 10 robots experiments

should be noted: the progress of clustering task was faster. With 10 robots, central

clusters, in basic strategy, were easily broken down compared to the 5 robots case,

taking an average time of 17 minutes (compared to 10 minutes) until all central

clusters were disappeared. On the other hand, in the mixed strategy, less time was

required to reach a single central cluster having 16 boxes (80%) as the number of

robots changes from 5 to 10: the average time decreases from 48 minutes to 33 min-

utes. Although the greater numbers of robots reduce the required time, it appeared

to cause the performance to fluctuate more.

4.2 New Models of Robotic Clustering Systems

In this section, we introduce new models that describes the clustering dynamics.

Our models treat the spatial densities of robots by dividing the workplace into the

boundary region and the central region.

First of all, we need to investigate clustering models that were developed in earlier

studies. Figure 4.16 illustrates an abstract state diagram of the clustering system

in the conventional model. The existing clustering model explains the clustering

process without distinction of the formed locations of clusters in the workplace. But

since this model ignored the interactions between the boundary objects and robots

(the part shown within a dotted line), which occur in practice, it cannot address the

problem of boundary effects in clustering systems. In order to analyze the clustering
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Figure 4.16: An abstract state diagram of the clustering system shown in the con-
ventional model.

system with consideration of the boundary interference, we divide the workplace into

a central region and a boundary region. In practice, multiple clusters emerge in the

central region or the boundary through interactions between robots and objects in

the workplace. We now extend the clustering model to consider the effect of the

boundary.

4.2.1 A Model for the Boundary Region

If we assume that the robots possess a special treatment to release stuck boxes

from the boundary, we can model a transition back toward the center region. (If not,

this flux will work out to be zero, as expected).

Figure 4.17 shows the abstract state diagram of our clustering scenario. The

robots are capable of pushing an object, and depositing or removing an object from

any cluster. This means that robots can be thought of as a medium in which the

clusters occur. Here, we consider one form of robot media for the boundary and

another for the central region. We also assume that the objects in the workplace

belong to one of four possible states: the object on the boundary (Ob), an object
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Figure 4.17: An abstract state diagram of the proposed clustering system.

pried away from boundary (Op), the unclustered object in the central region (Ou),

and the object belonging to any central cluster (OCi).

Let us first examine the robot medium and objects in the boundary region (we

will investigate the central region in the following section). While clustering work

proceeds from the efforts of multiple robots, the unclustered objects in the central re-

gion Ou can be transferred to the boundary Ob through the boundary robot medium.

On the other hand, objects belonging to Ob may still stick on the boundary of the

workplace or be detached from the boundary region by robots special treatment.

We define Op as an intermediate transition state (transition from Ob to Ou), which

represents objects pried away from the boundary by a special operation of robots.

The objects in Op, which are transferred from Ob, can be transferred to Ou or revert

to the boundary Ob by interactions with robots moving into the boundary.

Lerman et al. (2001) assumed that the robots complete the state transitions on a

short enough time scale in order to construct a model of collaboration in a multi-robot

system. Under this assumption, they described how the dynamic variables change
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in time as a series of differential rate equations. We here use the same assumption,

proposed by Lerman et al. Let δ be the number of objects transferred between states

during a single time interval. According to the diagram in Figure 4.17, the rates of

change of the objects in the boundary region will be

dOu

dt
= δ2 − δ1, (4.1)

dOp

dt
= δ4 − δ3 − δ2, (4.2)

dOb

dt
= δ1 + δ3 − δ4. (4.3)

In general, self-organized clustering progress is non-stationary because the robots

in the medium randomly interact with objects within the workplace. On the basis

of this characteristic, we assume that the rate of change of objects in each state

depends on the averaged frequency of interactions between individual robots and

objects in the same region. That is, the more frequent contacts between scattered

objects and the robots available to manipulate them, the greater the number of the

state transitions of objects. Then δ can be expressed in terms of the local densities

of robots available to remove an object and the likelihood of object removal. Let

ρ◦(·) be the time averaged local densities of robots capable of removing objects in a

certain state (or a condition causing a state transition). Also, let L−(·) denote the

likelihood of object removal in a certain state by robots. With this notation, each δ
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can be written as

δ1 = ρ◦(Ou → Ob) · L−(Ou), (4.4)

δ2 = ρ◦(Op → Ou) · L−(Op), (4.5)

δ3 = ρ◦(Op → Ob) · L−(Op), (4.6)

δ4 = ρ◦(Ob → Op) · L−(Ob). (4.7)

4.2.2 The Synthesis of an Entire Model

We developed an extended model that reflects the dynamics of boundary objects.

With this extension, we can explain how clustering systems operate, including the

effect of the boundary.

Now suppose the entire workplace is partitioned into a central region and a bound-

ary region. The clustering process in the central region can be treated with models

such as those by Martinoli et al. (1999b) or Kazadi et al. (2002). As shown in Fig-

ure 4.17, multiple central clusters interact with each cluster and unclustered objects

in the central robot medium. By picking subscripts, without loss of generally, we

assume that the sizes of central clusters are C1 > · · · > Ci > · · · > Cm. That is, C1

is the largest central cluster and Cm is the smallest one. The rate of change of the

ith central cluster will be

dOCi

dt
= Φ+

i − Φ−i , (4.8)

where Φ+
i is the number of unclustered objects that are deposited into the ith central

cluster and Φ−i is the number of objects that are removed from the ith central cluster.

According to a probabilistic analysis based on geometric characteristics of clusters,

larger clusters will be more likely to obtain objects and less likely to lose objects
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than smaller clusters.† That means

dOCi

dt
= Φ+

i − Φ−i > 0, (4.9)

dOCm

dt
= Φ+

m − Φ−m < 0. (4.10)

Under a recurrence of this clustering process, the large clusters grow bigger, while

the smallest cluster becomes smaller and will eventually disappear. The model for

central clusters will also be extended by the notion of the compactness of the clusters

in the next section.

By considering clustering dynamics not only in the central region but also in

boundary clusters, we can understand the evolution of the largest central cluster

more precisely, and also the decay of boundary clusters.

4.2.3 Conditions to Prevent the Problem of Boundaries

So far, we have developed rate equations to describe the extended clustering

system. We now turn to examine a condition to prevent boundary clusters from

growing.

A net flow of objects between the boundary region and the central region is

determined by interactions between the boundary robot medium and Ou. That is, if

dOu

dt
= δ2 − δ1 > 0 in the boundary region, the number of objects in Ob will decrease

and the quantity of Ou will increase, as time progresses. If we assume that the

number of objects in Op is stationary, existing in an intermediate state, we obtain

dOp

dt
= δ4 − δ3 − δ2 = 0. Rearranging δ2 − δ1 > 0 and δ4 − δ3 − δ2 = 0, we can find

that δ2 > δ1 and δ2 = δ4 − δ3.

Thus, a condition required for Ou to grow and for Ob to shrink may be written

†The basic argument is that it is easier to strike a smaller cluster at an oblique angle that draws
away an object than a large one. A very large cluster has only tangents to the cluster perimeter.
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as

δ4 − δ3 − δ1 > 0 (4.11)

and so

δ1 + δ3 < δ4. (4.12)

Equation (4.12) is ultimately the same as dOb

dt
< 0.

From Equations (4.4), (4.6), (4.7), and (4.12) we obtain

ρ◦(Op → Ob) · L−(Op) + ρ◦(Ou → Ob) · L−(Ou) < ρ◦(Ob → Op) · L−(Ob). (4.13)

If the majority of robots, possessing a special treatment for boundary objects, that

encounter objects on the boundary successfully pry them away from the wall, we can

assume that L−(Ob) ' 1. Furthermore, if robots can always push a single object,

such as an unclustered or a pried object without loss, we assume that L−(Op) ' 1

and L−(Ou) ' 1. Under these assumptions, in order for boundary objects to be

removed from the boundary region,

ρ◦(Op → Ob) + ρ◦(Ou → Ob) < ρ◦(Ob → Op). (4.14)

We hypothesize that if the time averaged local densities of employing robots sat-

isfy (4.14), the boundary interference in the clustering system will be negligible or

eliminated entirely.

4.3 Robot Spatial Distribution with Respect to Division of Labor

In the previous section, we showed that the spatial density of robots can be an

important factor that should be considered in clustering tasks. Structures in an
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environment involve the mechanics of subsequent cluster formation and the distri-

bution of robots. The position of robots in basic mode is less sensitive to a change

of environments, but robots in mixed mode actually reflect environmental changes

(more objects in the central region, fewer robots in the central region). This latter

aspect may contribute to the successful movement of all the objects to the workspace

center.

Through theoretical models, we also derived the condition to be able to prevent

boundary cluster growth by managing the time averaged local densities of robots. In

this section, we investigate our clustering systems meet the requirements for evolution

of the largest central cluster in order to verify our hypothesis that if the time averaged

local densities of robots satisfy the condition (4.14), the boundary interference in the

clustering system will be negligible or eliminated entirely.

In order to examine how the local densities of the robots influence the formation

and destruction of boundary objects, we implemented a simulator to measure the

spatial densities of robots by divisions of labor. The simulator is implemented with

Box2D, which is a widely used physics simulator engine‡. The simulation environ-

ment is designed to the scale of our real environment, which we conducted in the

previous section. We performed simulations for all mixes of the Twister (T) and

the Digger (D) with 5 robots: 1T4D, 2T3D, 3T2D, and 4T1D. We also used 20

objects, and 20 runs, each lasting 20 minutes, for each experimental condition (sim-

ulation speed is six times faster than the physical experiment). Figure 4.18 shows

our simulator that conducts clustering 20 square objects with 5 robots (2T3D).

In the previous section, for our clustering system composed of twisters and dig-

gers, we explained that diggers only interact with boundary objects Ob, whereas

‡Box 2D is a 2D physics engine for games and an open source C++ engine for simulating rigid
bodies in 2D (Catto, 2009).
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Figure 4.18: Simulator for multi-robot clustering systems with Box2D (Circles are
robots, and squares are objects.)

twisters interact with all objects in the entire workplace. Thus, ρ◦(Op→Ob) = ρ◦T (Op→Ob),

ρ◦(Op→Ou) = ρ◦T (Op→Ou), ρ
◦
(Ou→Ob) = ρ◦T (Ou→Ob). Since prying motions by diggers more

frequently occur than twisters, we can assume that ρ◦(Ob→Op) = ρ◦D(Ob→Op). Accord-

ingly, each δ in Equations (4.4), (4.5), (4.6), and (4.7) can be written as

δ1 = ρ◦D(Ob→Op) · L−D(Ob), (4.15)

δ2 = ρ◦T (Op→Ob) · L−T (Op), (4.16)

δ3 = ρ◦T (Op→Ou) · L−T (Op), (4.17)

δ4 = ρ◦T (Ou→Ob) · L−T (Ou). (4.18)

Since almost all diggers that encounter objects on the boundary successfully de-

tach them from the boundary, we assume that L−D(Ob) ' 1. Furthermore, since

twisters can always push a single object and deposit it into a cluster, such as an

unclustered or a pried object without any loss, we also assume that L−T (Op) ' 1
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Figure 4.19: The time averaged local densities with respect to the ratio of twisters
to diggers.

and L−T (Ou) ' 1. Hence, the condition to prevent boundary cluster growth in our

clustering system will be

ρ◦T (Op→Ob) + ρ◦T (Ou→Ob) < ρ◦D(Ob→Op). (4.19)

Here we obtain the local densities of available robots capable of manipulating

objects, ρ◦T (Op→Ob), ρ
◦
T (Ou→Ob), and ρ◦D(Ob→Op), which only affect the condition (4.19).

To measure the sum of ρ◦T (Op→Ob) and ρ◦T (Ou→Ob), we observe the frequency of the

twisters moving from the central region to the boundary region through the interme-

diate region during all trials of each mixed strategy. Then, we can obtain the sum

of ρ◦T (Op→Ob) and ρ◦T (Ou→Ob) by dividing the frequency by the perimeter of the central

region. And ρ◦D(Ob→Op) is computed by counting the number of diggers passing on

one point in the boundary region during the same period of time.

Figure 4.19 shows the time averaged local densities for the particular ratio of

twisters to diggers in the simulation. According to our hypothesis, 1T4D and 2T3D
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Figure 4.20: A number of objects located on the boundary region over time during
the clustering process. Observed data of three of 20 trials for each labor mix are
plotted.

Figure 4.21: Boundary objects observed over time in physical experiments
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Figure 4.22: Simulation experiments. (a) Initial configuration (10 unclustered objects
and 10 boundary objects). (b) Configuration using 1T4D (at 16 min). (c) Final
configuration using 4T1D (at 20 min).

Figure 4.23: Physical experiments. (a) Initial configuration. (b) Final configuration
(1T4D). (c) Final configuration (4T1D). Each trial lasted 90 minutes, with 5 robots
and 20 objects.

Table 4.2: Averaged object distribution (The average of 20 trials in each mixed
strategy).

The number of objects
Ou Op Ob

1T4D 18.345 1.3708 0.3006
2T3D 17.712 1.6706 0.6344
3T2D 15.431 2.2206 2.3647
4T1D 11.995 2.3119 5.7097
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are strategies that satisfy the condition (4.14) to stop boundary cluster growth. In

order to validate our hypothesis, we analyzed the frequency of boundary objects over

time. Figure 4.20 presents the number of boundary objects with respect to the robot

division of labor during the clustering process in the simulation. As hypothesized,

all trials for 1T4D and 2T3D successfully detached objects from the boundary. In

contrast, the robots of 3T2D and 4T1D failed to eliminate the boundary objects

and even made the boundary clusters grow. Table 4.2 shows the averaged object

distribution of 20 trials in each mixed strategy. We can observe that since the

average size of Ob in 1T4D and 2T3D is below 1, those strategies can prevent forming

boundary clusters. However, 3T2D and 4T1D struggled to eliminate the boundary

objects. The results support our hypothesis, and are also reflected in simulation

experiments.

In physical experiments, the results are similar to simulation results. As shown

in Figure 4.21, all trials of 1T4D and 2T3D successfully prevented forming boundary

clusters. However, 3T2D and 4T1D failed to remove objects from the boundary and

eventually formed only boundary clusters. Figure 4.22 and Figure 4.23 show the

results of each mixed strategy in the simulation and the physical experiments. We

observe in both environment that 1T4D successfully forms a single central cluster,

but 4T1D failed throughout.

In short, if we can control the local densities of each robot having a different

purpose (here, twisting and digging behaviors), we can prevent the boundary inter-

ference in the clustering system which harms central clustering performance. We

are not aware of other work which has influenced the density of robots in order to

influence cluster formation, let alone in some systematic way.
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4.4 Summary and Contributions

In this section, we proposed two complementary behaviors, twisting and digging,

for clustering square objects. Through physical robot experiments, we also demon-

strated that the mix of two behaviors permits the robots to overcome the boundary

effect and successfully form only a single central cluster. Our approach focused on

managing spatially the densities of robots, executing only motion behavior without

any special manipulator.

We also developed a mathematical model to describe the dynamics of a multi-

robot clustering system. We contribute a model which considers heterogeneity in

different behavior as a function of location. Through this model, we can capture a

notion of local spatial density, and enable us to analyze the clustering system with

consideration of the boundary interference. Also, using this model, we can find out

the solution that the problem of the boundary in the clustering system is negligible

by the appropriate local densities of robots.

Additionally, we investigated how different proportions of the diggers and the

twisters affect the clustering progress and verified that selection of the appropriate

ratio is important for the cluster evolution. This shows a new task domain for

division of labor problems. In this regard, it is a departure from the focus within

the literature, which assumes a uniform distribution of robots. It suggests that one

way to direct such self-organized systems might be to influence where they spend

their time in the environment. This simple idea can be a new approach to implicitly

coordinate self-organized multi-robot robot systems.
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5. THE IMPACT OF CLUSTER SHAPE AND OBJECT GEOMETRY ON THE

CLUSTERING DYNAMICS ∗

Thus far, we extended prior models by dealing with the spatial densities of robots

and cluster’s position. Many studies pointed out that the cluster’s geometry is an

important determinant of whether the cluster will grow or shrink. A common simpli-

fying assumption underlies existing clustering models, including the classic work (see

Section 2) and our previous work. It is that a cluster containing n objects is well-

packed and rotationally symmetric. Yet there are no a priori limits on the specific

arrangement of objects and direct observation shows that clusters can often form a

diverse set shapes in practice. Few would dispute that the clustering process depends

on the geometric characteristics of clusters, but perhaps the conventional explanation

falls short: the explanation for the emergent phenomenon proffered hinges exactly

that aspect —cluster geometry— which is also approximated in only the grossest way.

In truth, the existing research has focused on cylindrical objects such as pucks

and frisbees and these are settings where the rotationally symmetric and well-packed

assumption is probably most innocuous. Here we tackle the problem of clustering

square and rectangular objects which produce widely different packings. This study

first analyzes the clustering system of square objects to investigate the impact of

the cluster’s geometry on the clustering dynamics. Then we extend the analysis of

the clustering system by considering various rectangular objects beyond the regular

polygonal objects, developing the cluster occurrence models based on a probabilistic

method.

∗Parts of this section are reprinted with permission from “A new model for self-organized
robotic clustering: Understanding boundary induced densities and cluster compactness” by J.-H.
Kim and D. A. Shell, 2015 IEEE International Conference on Robotics and Automation, 5858-5863,
Copyright[2015] by IEEE.
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Figure 5.1: An example of an asymmetric cluster in an experiment. The cluster is
elliptical in shape (see red oval).

5.1 Existing Mathematical Models of Clustering Dynamics

Two influential mathematical models of clustering dynamics relate to our work

for object clustering. First, Martinoli et al. (1999a,b, 2004) proposed a method

of building probabilistic clustering models in collective robotics, applying it to an

aggregation experiment. They focused on describing the clustering process with nu-

merical models rather than by statistical analysis of clustering progress and results.

In contrast, Kazadi et al. (2002, 2004a,b)’s mathematical model of clustering dy-

namics described cluster growth properties by connecting geometric characteristics

of the clusters to the probability of cluster modification such as object deposit or

removal in the cluster. Both studies assume in common that a cluster is rotationally

symmetric and circular, a fact often violated in practice especially as one explores

objects with a variety of shapes. Figure 5.1 indicates an example of an asymmetric

and loosely packing cluster in a physical clustering experiment, motivating closer ex-

amination of the geometries involved in order to better understand what influences

the cluster modification probability. First, let us take a look closely at mathematical

clustering models in existing studies.
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5.1.1 Martinoli’s Probabilistic Model for the Prediction of the Clustering

Performance

Martinoli (1999) proposed a method of developing probabilistic models to predict

clustering dynamics. In order to understand the aggregation experiment with a

group of autonomous robots, he attempted to explain the clustering process by the

numerical and probabilistic models rather than by descriptions of clustering results

based on statistical analysis. He pointed out that the statistical analyses in existing

clustering studies can not identify the systems parameters which affect the clustering

performance as well as high variability in the clustering performance by random

interactions in the non-deterministic environment.

His approach is to predict the clustering performance with probabilistic simula-

tions by modeling parameters that are influential on clustering progress. As shown

in Figure 5.2, the simulation based on the probabilistic model is made up parallel

processes of multiple robots, while updating the change of the environmental state

in every step. This clustering model is flexible since the parallel processes or the

probabilistic blocks can be easily added in the model.

In this model, a robot’s behavior is also implemented to a probabilistic model

based on a control policy in a robot controller and interactions between robots and

the environment. The probabilities that robots encounter an object or a cluster

are calculated by the ratio of their area to the area of the whole workplace; the

probabilities of modifying clusters is computed by the geometric characteristics of

the cluster.

In calculating the cluster modifying probabilities, he considered three modifying

probabilities: 1) the probability of incrementing the cluster’s size, 2) the probability

of decrementing the cluster’s size, and 3) the probability of leaving the cluster un-
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Figure 5.2: A flowchart illustrates Martinoli’s simulation model by parallel processes
of individual robots’ behaviors.

modified. These probabilities are calculated under an assumption that the cluster’s

size is increased or decreased by one object through interactions with robots. The

probability of incrementing the cluster can be easily obtained by considering only

robot’s holding state since robots carrying an object always deposit successfully it

into a chosen cluster. Whereas, for computing the geometric probability of decre-

menting cluster’s size, the approaching angle and the contact point between a robot

and cluster are important factors. For example, when an empty robot strikes an edge

of a cluster, the cluster can be more likely to loose an object than hitting at middle

points of the cluster. Figure 5.3 illustrates the method that is used to calculate the

geometric probability of decreasing a cluster, denoted P−(C). The main idea to

compute P−(C) is that all possible approaching points, where robots can remove an

object from the cluster, integrate. If the cluster is rotationally symmetric, P−(C)

can obtain by integrating all possible points on one side of a cluster over 360◦ in

polar coordinates. Then, the geometric probability of decreasing a cluster P−(C)

can be expressed as
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Figure 5.3: A method for calculating the geometric probability of object removal in
a rotationally symmetric cluster. Rc is a cluster’s radius and d is a diameter of an
circular object. A shaded region shows the area that an object can be removed by a
robot’s pushing behavior.

P−(C) =

∫ 2π

0

∫ Rc

Rc−d
p(r, ϕ)∂r∂ϕ, (5.1)

where, Rc is a radius of a cluster, d is a diameter of an circular object.

Therefore, depending on the robot’s holding state and robot’s approaching di-

rection into the cluster, the chosen cluster can be increased or decreased. With

the logical flow by these probabilities, the clustering model predicts the clustering

dynamics.

However, since this probabilistic model can analyze clustering dynamics within a

limited range of the shape of the cluster (only considering symmetric forms), it has

a still limited explanation on the specific arrangement of objects or a diverse shapes

in practice.
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Figure 5.4: An abstract clustering systems. Each cluster is considered as effectively
reservoirs of objects, and robots are considered as pathways for objects to transfer
between clusters.

5.1.2 Kazadi’s Mathematical Model for Clustering Dynamics

Kazadi et al. (2002) also proposed the mathematical model to explain clustering

dynamics. They examined the clustering systems of robots and clusters in which

robots are considered as a transport media which is able to randomly select clusters

and interact with them (See Figure 5.4).

The interactions between robots and clusters are dictated by the state whether the

robots are capable of removing an object in the selected cluster or carrying an object

to be able to deposit it in the cluster. They then explained clustering dynamics by

mathematically describing a iterative process whereby an individual robot interacts

with a randomly selected cluster at each time step. They also pointed out that the

size of the chosen cluster is also a variable that can affects the consequence for clus-

tering dynamics through the robots’ interactions. In particular, they attempted to

derive conditions to generate a single cluster by approaching the question of whether

a cluster will evolve or degrade or not depends on the interactions with the other

clusters. To be specific, through the interaction between clusters via robot medium,
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each cluster can produce unclustered objects which may be deposited into any clus-

ter as well as absorb evaporated objects. On the basis of these assumptions, they

developed the rate equations of change of objects in a system of m clusters (clusters

C1, ..., Ci, ..., Cm contain NC1 , ..., NCi
, ..., NCm objects) as follows,

dNC1

dt
= N•robot · P+(C1)−N◦robot · P−(C1), (5.2)

dNC2

dt
= N•robot · P+(Ci)−N◦robot · P−(Ci), (5.3)

...

dNCm

dt
= N•robot · P+(Cm)−N◦robot · P−(Cm), (5.4)

where, P−(Ci) is the probability of object removal in the cluster Ci, P
+(Ci) is the

probability of object deposit in the cluster Ci, N
◦
robot is the number of available robots

to remove an object from a cluster, and N•robot is the number of robots carrying an

object.

If it is assumed that the number of transfered objects in the robot media is

stationary, then

dNC1

dt
+ · · ·+ dNCi

dt
+ · · ·+ dNCm

dt
= 0. (5.5)

From equations (5.2), (5.3), (5.4), and (5.5), solving for NCm gives

dNCm

dt
= (N◦robot +N•robot)

∑
i 6=m(P+(Cm)P−(Ci)− P+(Ci)P

−(Cm))∑
i P

+(Ci) +
∑

i P
−(Ci)

. (5.6)

If Cm is the smallest among clusters, then the condition required for Cm to shrink

given that C1 > · · · > Ci > · · · > Cm can be written as
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Figure 5.5: When P−(Cm)
P+(Cm)

is a monotonically decreasing function, it is a sufficient
condition to grow for the largest cluster.

dNCm

dt
< 0. (5.7)

Therefore, from equations (5.6) and (5.7), if a system of multiple m-clusters

satisfies the condition that

P−(Cm)

P+(Cm)
>

∑
i 6=m P

−(Ci)∑
i 6=m P

+(Ci)
, (5.8)

the smallest cluster will shrink and finally be extinct as time passes. That means, by

repeating the degeneration of the smallest cluster, a single cluster finally emerges in

the clustering system. In addition, they claimed the cluster growth property that if

P−(Cm)
P+(Cm)

is monotonically decreased, it is a sufficient condition for the growth for the

largest cluster. Figure 5.5 is an example that the characteristics of P−(Cm)
P+(Cm)

satisfies

the sufficient condition.

However, since Kazadi et al. developed the clustering model only with the size of

61



Figure 5.6: Differing degrees of compactness for clusters of the same size (n = 4).
The more compact cluster is stable and strong because direction of contact, that the
robot can remove the object, is small.

the cluster without regard to the physical geometry of the cluster in the workplace,

the model has limited to explain the clustering process according to the cluster’s ge-

ometry, including the physical shape of the cluster. For example, if multiple clusters

exist as the same size but are formed into different shapes, the dynamics of those

clusters cannot be predicted by Kazadi’s clustering model.

5.2 Extended Analysis of Clustering Systems: The Shape of Clusters

As mentioned in Section 5.1, prior studies have attempted to develop theories

to understand how clustering systems work and, necessarily, the theories introduced

simplifying assumptions. The shape of an existent cluster affects subsequent ar-

rangements of objects by either forming a buttress for subsequent accretive actions,

or surrounding objects which are then less likely to be removed. In this section, we

will examine closely how the geometry of the cluster affects the cluster evolution by

treating the cluster’s shape as a variable in a clustering model.
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Figure 5.7: Differing shapes of the clusters of the same size Nc. Nc is the size of
the cluster, cl and cs are the lengths of the major and minor axes of the cluster,
respectively.

5.2.1 The Compactness of Clusters

First, a concise descriptor of cluster shape is needed. We begin by introducing a

measure that reflects the degree of dispersion of the items packed within the cluster

because, as we now argue, this is the essential information that is necessary for the

clustering process.

Consider two clusters each containing n objects. Despite having the same size,

the clusters may be formed into a variety of shapes depending on the particular

arrangement of objects. Whatever the shape, the probability of modifying a cluster

is determined by a cluster’s persistence against external impulses provided by the

robots. Intuitively, if objects in a cluster are distributed as closely to the cluster’s

centroid as possible, the cluster is more likely to persist. Conversely, clusters with

objects dispersed far from the centroid are more easily broken by impulses from

outside. Figure 5.6 shows the relationship between a cluster’s compactness and its

persistence. We clearly observe that the compactness relates to the number of ways

that objects can be removed from the cluster.

To quantify the degree of compactness, we compute the ratio of the cluster’s
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major axis to its minor axis, measuring how much the cluster deviates from being

truly circular. Then, the compactness of a cluster, denoted Γc, is defined as

Γc =
cl
cs
, (5.9)

where, cl is the length of the major axis (the longest diameter of a cluster) of the

cluster of the size Nc, and cs is the length of the minor axis (the shortest diameter)

of the cluster of the size Nc. In particular, the compactness of a circular cluster is 1

because cl = cs, and the compactness of an elliptical cluster is greater than 1 since

cl > cs.

As shown in Figure 5.7, a cluster of Nc objects has area equal to the sum of the

area of Nc objects. If we use a× a square objects, the area of Nc objects is Nc · a2.

For the most compact cluster, cl = cs, the area of the cluster will be approximately

π( cl
2

)2 (or π( cs
2

)2), the area of a circle with a diameter of cl (or cs). Assuming that a

cluster’s area is the sum of the area of Nc objects, we have π( cl
2

)2 = π( cs
2

)2 = n · a2,

hence cl and cs of the most compact cluster is approximately 2
√

n·a2
π

. For the least

compact cluster, since the square objects are arranged in a line, we obtain cl = Nc ·a

and cs = a.

More generally, let Γcmin
and Γcmax denote the minimum and maximum compact-

ness of Nc size cluster, respectively. From Equation (5.9), the most compact cluster’s

compactness Γcmic
is 1 because cl = cs. Whereas, Γcmax of the least compact cluster of

Nc square objects will be Nc because cs = a and cl = Nc ·a. Thus, the minimum and

maximum compactness of the cluster containing Nc square objects may be written
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as

Γcmin
= 1, (5.10)

Γcmax = Nc. (5.11)

All clusters of size Nc would be formed into any shapes between the least and

the most compact clusters, so we quantify the degree of compactness by scaling the

ratio of the cluster’s axes into a value between Γcmin
and Γcmax , [1, cl

cs
].

5.2.2 Clustering Dynamics with Cluster Compactness

5.2.2.1 Modifying a Single Cluster

While prior probabilistic models use P (C(Nc)) to explain the dynamics of clusters

formed symmetrically, we can now supplement this with the compactness descriptor.

Let the probability of object removal and object addition to a cluster with Nc and

Γc be written as P−(C(Nc,Γc)) and P+(C(Nc,Γc)), respectively. Next, we argue for

reasonable values for these two probability functions.

When a robot carrying an object encounters a cluster in the workplace, it always

successfully deposits the objects into the cluster. Under this observation, we can

assume that

P+(C(Nc,Γc)) = 1. (5.12)

On the other hand, if a robot without any object strikes a cluster, the robot may

draw away an object from the cluster, but this depends on the striking direction

relative to the cluster’s perimeter (in Figure 5.6, we already captured this notion

with external forces around the perimeter of the cluster). As illustrated graphically

in Figure 5.8, since the area of the removable region depends on the cluster’s com-

pactness, the probability of object removal is also determined by the compactness of
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Figure 5.8: Removable regions of (a) the least cluster and (b) the most compact clus-
ter. The compactness relates to the removable region that items can be eliminated
from the cluster.

the cluster.

For the least compact cluster illustrated in Figure 5.8 (a), the objects are readily

removed since the robots only make contact by approaches from any point on the

long side of the cluster. Thus, the probability of object removal of the least compact

cluster can be expressed as cl
cl+cs

. Whereas for the most compact cluster shown in

Figure 5.8 (b), the robots must strike the edge of the cluster to remove the object,

because if the robot hits the middle region of the cluster, the cluster is likely to

withstand the pushing force of the robots. Since the shape of the most compact

cluster is circular and symmetric, we can estimate the probability by considering one

side of the cluster; the probability of object removal of the most compact cluster of

size will be 2a
cl

.

Let P−min(C(Nc,Γc = Γcmin
)) and P−max(C(Nc,Γc = Γcmax)) be the probability of

object removal of the most and the least compact cluster of size Nc, respectively. In

Figure 5.7, we estimated cl and cs of the most and the least compact cluster. With

these estimates, the minimum and maximum probabilities of object removal may be

written as
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P−min(C(Nc,Γc = Γcmin
)) =

2a

cl
=

a√
Nc·a2
π

=

√
π

Nc

, (5.13)

P−max(C(Nc,Γc = Γcmax)) =
cl

cl + cs
=

Nc · a
Nc · a+ a

=
Nc

Nc + 1
. (5.14)

To estimate the probability of object removal a cluster, P−(C(Nc,Γc)), we com-

pute its eccentricity, a measure of how much a conic section† deviates from being

circular (Ayoub, 2003). The eccentricity of an elliptical cluster εc is defined as

εc =

√
1− c2

s

c2
l

, (5.15)

hence,

εc =

√
1− (

1

Γc
)2. (5.16)

A circle (i.e. cl = cs) has an eccentricity of zero and an ellipse with a high ratio of a

major axis to a minor axis (i.e. cl � cs) has an eccentricity of approximately one,

εcmin
= 0 ≤ εc < εcmax = 1. (5.17)

To estimate P−(C(Nc,Γc)) of any cluster, we measure εc —a value in the range

[0, 1], we then scale it to a value between P−min(·) and P−max(·):

P−(C(Nc,Γc)))− P−min(C(Nc,Γc = Γcmin
))

P−max(C(Nc,Γc = Γcmax))− P−min(C(Nc,Γc = Γcmin
))

=
εc − εcmin

εcmax − εcmin

.

(5.18)

†A conic section is a taken slice through a cone. We here consider the ellipse and the circle that
is a special case of the ellipse.
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Figure 5.9: (a) The probability distribution of object removal according to the clus-
ter’s size and compactness. (b) A top view of the 3-dimensional graph (a). The color
map represents the probability values.

From Equations (5.13), (5.14), (5.16), (5.17), and (5.18), we obtain

P−(C(Nc,Γc))) =

√
1− (

1

Γc
)2(

Nc

Nc + 1
−
√

π

Nc

) +

√
π

Nc

. (5.19)

Figure 5.9 presents a plot of this function over a range of cluster size and com-

pactness. As the cluster is more compact (approaching 1) and its size increases,

the probability of object removal is decreased monotonically. Thus, the largest and

the most compact cluster among multiple clusters evolves into the dominant cluster

with high probability. Figure 5.9 (b) shows how clusters of a variety shapes occur as

cluster size increases (see, specifically, the yellow region). We can also observe that

our extended geometric probability in the various shapes of clusters can represent

numerically.
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5.2.2.2 Clustering Dynamics with Multiple Clusters

The previous section used geometric arguments to estimate the probability of a

modification being made to a given cluster. By comparing these probabilities for the

various clusters forming in the workplace, a prediction of the stochastic dynamics

of the system can be produced. Although it does not capture the individual accre-

tion and attrition actions that occur between clusters as mediated by the robots, it

describes the broader collective behavior of the cluster system as a whole.

To analyze the dynamics of the multiple clusters, we extend the probabilistic

model proposed by Martinoli (1999) to include richer characteristics of the cluster’s

geometry, modeling the evolution of the system as characterized by two coordinates

Nc and Γc. Like Martinoli’s model conduct the Monte Carlo trials based on the

parallel probabilistic processes. Figure 5.10 shows an abstract flowchart of robotic

clustering with this probabilistic model, and Figure 5.11 provides the flowchart for an

individual robot’s behavior as used for the probabilistic processes. The probability

that a robot encounters a cluster is calculated from the ratio of the area of the

selected cluster to the area of all clusters.

We conducted simulations of clustering systems composed of multiple clusters,

which are formed into various shapes and sizes. We used 20 objects and three robots

with a simple behavior (the robots move straight, when they encounter obstacles

they turn to a random direction, and then return to moving straight). We formed

six different geometries of clusters shown in Figure 5.12 as initial conditions, and

compared the clustering dynamics of four combinations of the multiple clusters, con-

ducting 15 trials in each case. A summary of the results appears in Table. 5.1, which

contrasts predictions of the existing model (based on cluster size alone) with the

proposed model. The plots in Figure 5.13 show that one cluster grows to become the
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Figure 5.10: An abstract flowchart of robotic clustering. The simulation consists of
multiple iterations of parallel processes for each of the multiple robots, following the
methodology of Martinoli (1999). States are updated every iteration.

Figure 5.11: A flowchart of an individual robot’s behavior.
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Figure 5.12: A variety of cluster geometries, Ci(Nc,Γc). (Six different geometries
of clusters) C1(5, 1): a compact, small-sized cluster, C2(10, 1): a compact, medium-
sized cluster, C3(15, 1): a compact, large-sized cluster, C4(5, 5): a less compact,
small-sized cluster, C5(10, 5): a less compact, medium-sized cluster, and C6(15, 5): a
less compact, large-sized cluster.

Table 5.1: Comparison of cluster model predictions.

Cases
Experimental

result
Existing
model

Proposed
model

Case 1:
C1, C3

C1 : 0%,
C3 : 100%

C1 : 6.7%,
C3 : 93.3%

C1 : 3.3%,
C3 : 96.7%

Case 2:
C1, C6

C1 : 93.3%,
C6 : 6.7%

C1 : 6.7%,
C6 : 93.3%

C1 : 93.3%,
C6 : 6.7%

Case 3:
C2, C5

C2 : 6.7%,
C5 : 93.3%

C2 : 53.3%,
C5 : 46.7%

C2 : 3.3%,
C5 : 96.7%

Case 4:
C1, C4, C6

C1 : 96.7%,
C4 : 0%,
C6 : 3.3%

C1 : 3.3%,
C4 : 3.3%,
C6 : 93.4%

C1 : 93.4%,
C4 : 3.3%,
C6 : 3.3%

dominant cluster and the final result is a single cluster. Examining the dynamics, it

is observed that the cluster with the lowest relative P−(C(Nc,Γc)) finally becomes

the single dominant cluster.

5.3 The Effect of Object Geometry

Thus far, we have examined the clustering dynamics of square objects only. From

the perspective of model extension, an important question is: how robustly can the
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Figure 5.13: The clustering dynamics of the combinations of multiple clusters. Each
result is obtained from simulations through our extended probabilistic clustering
model by considering the cluster’s shape.
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Figure 5.14: The different ratios of rectangles, bl : bs = k : 1
k
, where bl is the length

of the object’s long side and bs is the length of the object’s short side. R1 is a square.
R2,R3 and R4 are rectangles having the different ratios, 2 : 1

2
, 3 : 1

3
, and 4 : 1

4
,

respectively. All rectangles have the same area, a2.

preceding geometric arguments be carried over to predict the behavior of clustering

systems if the shape of the objects is altered? In this section, we vary the aspect

ratio of the rectangles being clustered, extending the preceding analysis to account

for rectangular objects with different sides length ratios.

5.3.1 The Effect of the Object’s Geometry on Cluster Shape

We explore these possibilities with four rectangles (depicted in Figure 5.14) with

equal area but different side ratios: 1 : 1, 2 : 1
2
, 3 : 1

3
, and 4 : 1

4
(which we label R1,

R2, R3 and R4).

Figure 5.15 through Figure 5.18 show (simulated) clustering performance over

time with the four different objects (the vertical axis of the plots tracks cluster size

as a function of time, there are multiple data series because there frequently multiple

clusters in the workspace). As shown in Figure 5.15, square objects form a single
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cluster. In contrast, rectangles produces the different results according to object

shape. Figure 5.16, Figure 5.17, and Figure 5.18, show patterns of repeated cluster

creation and destruction. Although thinner rectangles do sometimes have fairly large

clusters, those clusters fail to become the stable, dominant cluster. Also, this lack of

robustness appears to be worse with more extreme aspect ratios.

Following the ideas from the previous section, properties related to object packing

density appear worthy of closer consideration. The distance d between two objects’

centroids in a cluster certainly depends how the objects marry with one another and

with other neighboring objects, itself depending on object geometry. Consider two

rectangular objects whose sides are ka and a
k
. When the two objects are adjacent

to each other on the long side, dmin will be a
k
. But dmax will be ka in a case of

contact on the shorter side. Figure 5.19 illustrates that the minimum contact dis-

tance dmin and the maximum contact distance dmax between objects belonging to a

same cluster relates to their geometry. This range of the contact distance varies in

pairwise arrangement of packing objects and, taken collectively, affects the cluster’s

compactness too. As aspect ratio increases, the possible variability in the contact

distance will also increase. This link is suggestive so next we follow through on this

line of thinking, by relating the aspect ratio to the clustering properties via cluster

compactness.

The range of possible values for cluster compactness is altered by changes in

object geometry. Continuing our geometric reasoning, Figure 5.20 shows how both

the least and the most compact clusters are influenced by the ratio of the rectangles’

sides. For example, the longer the long side length of rectangle, the longer the least

compact cluster as well: the cl for square objects is na, whereas cl for thin rectangular

objects is n · ka (See Figure 5.20 (b) and (d)). Likewise, the shorter bs of objects,

the shorter cs. Using Equation (5.9), we might predict that weaker clusters can be
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Figure 5.15: Clustering experiments with square objects, R1.
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Figure 5.16: Clustering experiments with rectangular objects, R2.
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Figure 5.17: Clustering experiments with rectangular objects, R3.
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Figure 5.18: Clustering experiments with rectangular objects, R4.
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Figure 5.19: The contact distance between neighboring objects in a cluster. The
contact distance is varied by the arrangement of two objects.

Figure 5.20: Differing the ranges of the cluster’s compactness according to the object
geometry. (a) The most compact cluster of n square objects. (b) The least compact
cluster of n square objects. (c) The most compact cluster of n rectangular objects.
(d) The least compact cluster of n rectangular objects.
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Figure 5.21: The probabilities of object removal by (a) R1, (b) R2, (c) R3, and (d)
R4. The most thin rectangle R4 can be formed into the longest line-shaped cluster
whose long side lmax can be up to 160 (In Figure 5.20, we estimated lmax. Here, we
used that n=20, k=4 and a=2).
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formed by rectangles than squares. A shaded region in Figure 5.20 represents that

the extent of the range of Γc for rectangular objects is a superset of those Γc for

square objects, i.e., clusters of rectangular objects can form in greater variety than

clusters of squares.

However, from Equation (5.19) the probability of object removal P−(C(Nc,Γc))

includes cluster length as a variable. Thus, the probability values will change to scale

to the range of the cluster’s long side length, which is itself related to the object’s

geometry. Figure 5.21 shows the probability of the object removal P−(C(Nc,Γc))

across different rectangular geometries. We can observe that as the rectangular object

grows in length, the range of possible compactness values of the cluster increases too.

5.3.2 Cluster Occurrence Model

Generally, the largest and the most compact cluster in a certain state evolves

by absorbing unclustered objects through the destruction of small clusters. On the

basis of this observation, one can predict that the strongest cluster among existing

clusters at any point in time has the highest likelihood of evolving into a larger

and more compact cluster. The implication is that the distributions of shapes of

clusters are spread (with some variance) around the shape of the most compact

cluster. This section develops a model describing the frequency of occurrence of

clusters’ shapes. We model the joint probability distribution for clusters’ size Nc

and compactness Γc, namely P (Nc,Γc). We express the joint probability with lower-

dimensional probability models, P (Γc) and P (Nc|Γc), via the product P (Nc,Γc) =

P (Nc|Γc) · P (Γc).

5.3.2.1 Probability Models for the Cluster’s Compactness

Cluster size and shape certainly varies with aspect ratio, as can be seen in Fig-

ure 5.20. We hypothesize that cluster shape reflects object geometry. In other words,
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while clustering objects with high aspect ratio (e.g., thin rectangles, R4) one is more

likely to produce clusters with high aspect ratios than when clustering objects of

more moderate shape (e.g. R1, R2, or R3).

We model the distribution of the cluster’s compactness at any size as a gamma-

distributed random variable with a shape parameter k and a scale parameter θ,

denoted by Γc ∼ Gamma(k; θ). The properties of the Gamma distribution imply

µΓc = kθ and σΓc =
√
kθ (Schmetterer, 2012). We suppose that µΓc at fixed cluster

size is the same as the ratio of the clustered object’s long side length to its short side

length, bl
bs

, and its standard deviation varies in the range of the difference between

the object’s long side and short side. Under these assumptions, we develop models

for µΓc and σΓc as follows,

µΓc =
bl
bs
, (5.20)

σΓc

 ≈ 0, if bl = bs,

= (bl − bs), if bl 6= bs,
(5.21)

where, bl and bs are the object’s long side and short side length, respectively. Equa-

tions (5.20) and (5.21) mean that the larger the aspect ratio of the rectangular object,

the larger the mean of compactness of the most compact cluster as well as the larger

its standard deviation. We will examine and compare results of four kinds of the

rectangular objects: 2 × 2 square objects, 4 × 1, 6 × 2
3
, and 8 × 1

2
rectangular ob-

jects. We can estimate µΓc and σΓc , and build the compactness model with those

parameters.

To validate this model, we conducted clustering experiments with four kinds of

rectangles R1, R2,R3, and R4 as shown in Figure 5.14 and measured the occurrence

frequencies of clusters in experiments. We counted the number of times clusters of
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Table 5.2: Comparison of obtained µΓc and σΓc from the probability model and the
experimental data vs. object geometry.

Objects
Probability model Experimental data
µΓc σΓc µΓc σΓc

R1 1 ≈0 1.28 0.25
R2 4 3 4.21 2.74
R3 9 5.33 8.91 5.11
R4 16 7.5 15.82 7.82

Figure 5.22: The estimated compactness modeled via the Gamma distribution jux-
taposed against the experimental data.

each compactness value occurred, averaging over fifteen trials each of which lasted

30 min.

Table 5.2 shows that the measured µΓc and σΓc from the experiments are close to

the value estimated using our hypotheses. Figure 5.22 also shows the distributions of

P (Γc) vs. rectangle shape, obtained from the model and from the experimental data.

Although the apparent similarity in the distributions is promising, it is important to

look more closely at the probability distributions.
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5.3.2.2 Conditional Probability Model for the Cluster’s Size

To build a model for the conditional probability P (Nc|Γc), we hypothesize that if

highly compact clusters can form shapes with low compactness, then large clusters

will have much longer lifetimes as they are much more robust to external perturba-

tions than smaller ones, and so will be most persistent. Thus, for a given compactness

Γc, clusters of larger size occur more frequently because they persist so they feature

in counts again and again. Whereas for less compact clusters all clusters, regard-

less of size, are feeble when pitted against the robot’s pushing behavior and hence

frequencies are evenly spread across all sizes.

Assuming that the peak of the distribution is located at 90% of total objects,

we propose a conditional probability model for P (Nc|Γc) with a Gamma distribution

that is symmetric with respect to the vertical axis at center point on the horizontal

axis. Let us consider the first sliced probability distribution of P (Nc|Γc = 1) for the

most compact cluster. Since we have 20 objects, we model a gamma distribution

having Nc = 18 as a mode. By the characterization of parameters k and θ in the

Gamma distribution, the mode of the distribution is (k− 1) · θ for k ≥ 1. If a shape

parameter k = 2, a scale parameter θ = 2 because when the mode of the probability

distribution is 18 at the symmetric Gamma distribution, the mode is 2 in the original

Gamma distribution. In order to obtain P (Nc|Γc = γ) for Γcmin
≤ γ ≤ Γcmax , if we

assume that a scale parameter θ is inversely decreased as much as the increment

of compactness, we obtain the distribution of the conditional probability P (Nc|Γc)

shown in Figure 5.23.

5.3.2.3 Joint Probability Model for the Cluster’s Size and Compactness

After building models for the marginal probability P (Γc) and the conditional

probability P (Nc|Γc), finally, we obtain the joint probability P (Nc,Γc) for the cluster
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Figure 5.23: Conditional probability model for P (Nc|Γc).

occurrence model. Figure 5.24 and Figure 5.25 show the joint probabilities as the

object geometry changes, being remarkably close to the measured values from the

experiments.

These cluster occurrence distributions give a different view of the processes that

helps explain why the clustering dynamics in Figure 5.15 through Figure 5.18 vary

with rectangle shape in the way they do. For the clustering of R4 rectangles, since

the clusters in any size do not pack compactly enough, the pattern of the creation

and the destruction is repeated (the joint probability distribution is flat). But when

the object’s geometry is closer to square, the clustering dynamics are more stable

since the peak of the joint probability is located in the region of the large, compact

cluster. The next section provides a further account of the dynamics in Figure 5.15

through Figure 5.18.

85



Figure 5.24: Comparison of the joint probabilities P (Nc,Γc) by the object’s geometry.
(a) and (c) is the estimated joint probabilities from probability model for R1 and R2.
(b) and (d) is the measured joint probabilities from experiments.
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Figure 5.25: Comparison of the joint probabilities P (Nc,Γc) by the object’s geometry
(continue). (a) and (c) is the estimated joint probabilities from probability model
for R3 and R4. (b) and (d) is the measured joint probabilities from experiments.
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5.3.3 Predicting Clustering Dynamics given an Object Geometry

In the previous section, we described development of a cluster occurrence model

as a function of object geometry. Prior to that, we proposed a probabilistic model

that characterizes cluster modification. In this section, we use both to describe the

expected clustering dynamics for a given object geometry. The main idea is that

if we can predict the probability distribution that describes how shapes of clusters

occur and we can estimate the likelihood of an object being removed for each cluster

shape, we can obtain the expected probability of cluster modification E[P−(C(Nc))]

as follows.

E[P−(C(Nc))] =

Γcmax∑
Γc=Γcmin

P−(C(Nc,Γc)) · P (Nc,Γc). (5.22)

The averaging here allows for P−(·) to account for the effects of object geometry

indirectly. The form of this expectation permits direct comparison with existing

models in the literature, since they characterize the dynamics in terms of cluster size

Nc alone.

Figure 5.26 (a) shows the expected probabilities of object removal for each rect-

angular object on the basis of geometrical considerations, and Figure 5.26 (b) shows

estimates from averages of experiments. We can observe that the contributions of

the compactness considerations are favorable, especially by comparison to Martinoli’s

model.

The derivatives of the curves in Figure 5.26 also provide important information.

Kazadi et al. (2002) proposed that a necessary condition for clusters to emerge is that

the probability of object removal be a monotonically decreasing function of cluster

size. Generalizing that statement slightly, one might expect that the degree to which

clustering is reliably observed is proportional to the rate of decrease of that same
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Figure 5.26: Comparison between the geometric probabilities of object removal. (a)
Probability of object removal (Expected value). (b) Probability of object removal
obtained (Simulation experiment).

function. We see in Figure 5.15 and Figure 5.18 that R1 is more reliable than R4,

the latter nearly failing to show a decreasing at all in Figure 5.26 (a). When aspect

ratios are exaggerated, churn seems to cause clusters to be destroyed before they can

be packed more compactly.

5.4 Summary and Contributions

In this section, we described the clustering process more broadly by investigating

various shapes of the cluster according to the object geometries. So far as we know,

it is the first in-depth study of the effects of the geometric characteristics of clusters

and objects on the clustering dynamics. This study introduced a measure of com-

pactness to quantify the degree of dispersion of the objects packed within the cluster

to represent the geometric shape of the cluster. We improved the clustering model

by using the compactness as a variable. Using the measure of the compactness, we

also proposed probabilistic occurrence models to predict the shapes of clusters that

emerge during the clustering process. Through cluster occurrence models, we were
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able to explain how the clustering dynamics are impacted by the geometry of the

object. Future work could include the analysis of clustering of mixes of different

objects.
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6. IMPROVING THE PERFORMANCE OF SELF-ORGANZIED

MULTI-ROBOT CLUSTERING∗

Thus far, we focused on the clustering model to describe the clustering dynamics

and implementation of a clustering system. In this section, we turn it toward improv-

ing the clustering performance by managing the group’s functionality. As mentioned

in Section 1, since the individual robot in self-organized multi-robot systems has

limited capabilities, it can be difficult to improve the collective performance. It is

already known that merely increasing the number of robots will not improve the

speed of the system above a certain threshold because of the interference between

members in a group (Lerman and Galstyan, 2002; Hayes, 2002; Lein and Vaughan,

2008).

Self-organized multi-robot systems have two inevitable constraints. The first

constraint is that the dynamics between robots and the task environment is not

deterministic. Consequently, since a task progress is non-stationary, it is difficult to

predict accurately the system’s performance. Second, because of the limited sensing

capabilities of the robots, the global state of the system is usually partially observable.

Such a system can be also regarded as a potentially sensorless robotic system because

the robots with limited sensing capabilities do not have a complete feedback loop

to control the system’s performance. Furthermore, since a control policy through

individual units can be inappropriate to manage the whole system’s performance,

it is hard to control a minimalist system with local-level parameters. Thus, an

important question in minimalist multi-robot systems is how to accomplish system-

∗Parts of this section are reprinted with permission from “Improving the performance of self-
organized robotic clustering: Modeling and planning sequential changes to the division of labor”
by J.-H. Kim and D. A. Shell, 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 4314-4319, Copyright[2013] by IEEE.
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level coordination with robots that have limited capabilities and improve the system’s

performance.

Therefore, principled methods for managing the overall task progress and max-

imizing system performance (in terms of speed, quality, and/or reliability) still re-

mains challenging for self-organized multi-robot systems.

In our previous work (Song et al., 2012), we introduced a novel approach for

object clustering, one of the most widely studied task domains for self-organized

multi-robot systems. In Section ??, we described the approach, we demonstrated,

consisted of two complementary behaviors: twisting and digging (Figure 6.1 illus-

trates both). Each robot was assigned with one of these behaviors for the duration

of a clustering experiments. With a mix of robots executing the two complementary

behaviors, the robots separated the objects from the boundary and successfully gen-

erated a single central cluster as shown in Figure 6.2. Certain mixes of the behaviors

outperformed other mixes and in different respects. For example, the mix of 2T3D (2

Twisters and 3 Diggers) had reliable performance compared to other cases while mix

1T4D (1 Twister and 4 Diggers) formed a cluster efficiently in the shortest observed

time although it failed in one of its trials. This suggests that, given a preference

between reliability and efficiency, an appropriate mix (or distribution of labor) could

be determined. In this section, we attempt to address the question of how to maxi-

mize the system’s performance by computing a policy for altering the robot division

of labor as a function of time.

This research considers a sequencing strategy based on the hypothesis that since

clustering performance is influenced by the division of labor, it can be improved by

sequencing different divisions of labor. We construct a model in order to predict clus-

tering behavior (in terms of likelihood of success and speed) and propose a method

that uses the model’s predictions to select a sequential change in labor distribution.

92



Figure 6.1: Trajectories of Twisters and Diggers on the boundary region. Basically
the trajectories differ by the way they move away from the boundary wall.

Figure 6.2: The clustering process with robots executing our proposed novel behav-
iors. (a) initial configuration and (b) final configuration.
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Figure 6.3: A sequencing strategy for improving the clustering performance.

Both of these aspects are performed off-line at design time. The model is calibrated

with values from experiments in which robots maintain a constant distribution of

labor. Then the analysis step is conducted in order to produce a labor policy for

the robots. This is then executed on-line at run time. The system under this study

involves robots that are unable to observe the global state like the environment’s

current state; fortunately, although there is a deal of stochasticity, task performance

does have a degree of predictability. We constructed a Markov chain model which

abstracts away many of the details of the robots but which captures the important

geometric state for the clustering task. The model is used to predict task progress

as a function of time, which allows for planning and evaluation of different sequences

of workload division.

In this section, we will develop a practical model that we calibrate with actual

data from initial experiments, and then use in order to make predictions about be-

havior in order to produce a division of labor policy to improve the overall clustering

performance.

6.1 Approach: From a Stochastic Model to Planned Sequences

In our object clustering system, objects can be successfully clustered using a

mix of robots, each employing one of the two complementary behaviors. We first
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compare the clustering performance between the divisions of labor by analyzing the

clustering dynamics with a low dimensional characterization. Figure 6.4 depicts a low

dimensional characterization through a ternary plot describing the cluster dynamics.

The system begins at an initial state in the lower left (a yellow sector), with no

clusters formed. The goal is for the system to form a single central cluster of 20

objects, which is the state represented on the lower right corner (a blue sector).

The top corner (a red sector) represents a trap state that objects are located on the

boundary. Since any intermediate states during a clustering process can be marked

as a point on the two dimensional ternary plot, this will facilitate the spatio-temporal

analysis of clustering dynamics.

Figure 6.5 shows the object cluster dynamics for each of the three 90 minute runs

of five physical robots for mixes 1T4D and 2T3D on a ternary plot. The axes of the

ternary plot reflects the fact that groups of objects behave in qualitatively different

ways depending on whether they are part of a cluster on the boundary, or are part

of a cluster in the center, or are not part of any cluster.

The spread in each trial reflects changes in the clustering configuration and gives

an indication of how goal-directed the cluster formation dynamics are. The plot also

illustrates how fluctuations and randomness in the system become manifested as

stochasticity in the evolution of the task-performance measure. This view suggested

that a discrete-time Markov chain model may allow one to predict the configuration

of clustering based on the current transition probabilities.

We observed that certain labor mixes outperformed others. As shown in Fig-

ure 6.5, the blue trial for 1T4D was extremely efficient, while the magenta trial

ended with some objects on the boundary. The reliability (but comparatively longer

time, visible in the meandering trajectory) is visible in the 2T3D case as all the paths

converge to the lower right corner, the goal state. These observations suggest that an
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Figure 6.4: Low dimensional characterization through a ternary plot describing the
cluster dynamics.

appropriate sequence of the different labor divisions might improve clustering per-

formance. That is, by planning the sequence of labor mixes, the system can produce

reliable quality and fast object clustering performance too. Table 6.1 summarize the

clustering results by the division of labor.

Therefore, our sequencing strategy for improving the clustering performance is

developed by following hypotheses.

• Hypothesis 1: Changing the division of labor as a function of time affects

clustering performance.

• Hypothesis 2: Clustering performance can be improved by sequencing different

divisions of labor.

In the remainder of this section, a state transition matrix is first computed from
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Figure 6.5: Ternary plots detailing the cluster dynamics for each trial for two divi-
sions of labor: (a) 1T4D and (b) 2T3D.

Table 6.1: Comparison the clustering results between two divisions of labor.

Clustering results Reliability Efficiency

2T3D
Success rate: 100%,

Average time: 85 minutes
∨

1T4D
Success rate: 66%,

Average time: 49 minutes
∨
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empirical data obtained from calibrated experiments. Then, given an initial state

condition, the state after n time-steps can be predicted by using the model. Based

on a Markov chain model of single strategies, we can further find a better strategy

composed of the sequence of different strategies.

6.1.1 The Transition Matrix

In our problem, the system state is describes the progress of the clustering task.

During the clustering process, each object in the workplace may be part of a central

cluster, a boundary cluster, or neither (unclustered objects). We define the state

in the Markov chain model as the number of objects in central cluster(s) and the

number of objects in boundary cluster(s) St = {Nc(t), Nb(t)}, where Nc(t) and Nb(t)

are the number of objects in central clusters and boundary clusters respectively at

time t. Then, Nc(t) + Nb(t) = N0 − Nu(t) where N0 is the total number of objects

and Nu(t) is the number of objects that do not belong to any of the clusters. The

number total states is d = N0(N0+1)
2

, and the matrix describing transitions between

states has dimension d× d.

As a simplification, we assume that the environment may stay in the same state

or change to another state by one-state increments or decrements. Then a state

transition can only occur in five directions such as (i, j) → (i, j), (i, j) → (i + 1, j),

(i, j)→ (i− 1, j), (i, j)→ (i, j − 1), and (i, j)→ (i, j + 1). The transitions between

states is illustrated as a right-angled triangle in Figure 6.7.

For each edge, a transition probability is computed by the frequency counts of

the objects moving between states in each time interval. In order to measure the

frequency of each state transition, we define an alternative formula which assigns a

certain weight in the transited state. The total weight of 1 is assigned when one

transition occurred in a time interval. If the transition of the state is varies with a
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Figure 6.6: Five directions occurring state transitions at a state S(i, j). The state is
varied by only one-state increment or decrements.

Figure 6.7: State diagram for a clustering task. Since we used 20 objects, total states
are 231 states.
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Figure 6.8: All paths from St0 to St1 . (t1 − t0 = 30 seconds).

Table 6.2: The weight of the state transition.

Edges Weight Note
S(i, j)→ S(i, j + 1) 2/9 Edges included

S(i+ 1, j + 1)→ S(i+ 1, j + 2) 2/9 in two paths
S(i, j + 1)→ S(i+ 1, j + 1) 1/9
S(i, j + 1)→ S(i, j + 2) 1/9

S(i+ 1, j)→ S(i+ 1, j + 1) 1/9 Edges included
S(i, j)→ S(i+ 1, j) 1/9 in one path

S(i, j)→ S(i+ 1, j + 2) 1/9

Total 1
Assigned in

one transition

single increment, decrement, or stayed in the same, the total weight of 1 is allotted

to the transition.

Let St0 be the starting state (i0, j0) at time t0, and Stn be the state (in, jn) after

n time intervals from t0. If we assume that the state transition occurs along edges

in the state diagram, the number of steps to approach from St0 to Stn is computed

by the difference of absolute values of the state grid, |in − i0| + |jn − j0|. Let x be

|in− i0| and y be |jn− j0|. With empirical data, it is possible that x > 1 or y > 2 in
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a single time interval. In this case, the weight is divided equally all possible paths.

That is, by considering all paths that reach from the current state to the next state

via transitions, we assign a proportional weight to the number of possible routes

connecting the states.

Figure 6.8 illustrates all paths that approach St1 from St0 after one time interval.

The number of the shortest paths in an x × y grid type is (x + y)!/x!y!. All edges

of each path have the weight divided by the number of edges in the shortest path,

x+ y. In other words, the weight of the edge in a selected path is as follows,

Wedge =
x!y!

(x+ y)!
× 1

x+ y
. (6.1)

In addition, since the edges can be selected multiple times as a path, the final

weight of the edges will be

Wtotal =
x!y!

(x+ y)!
× 1

x+ y
×Ns, (6.2)

where Ns is the number of times selected as a path.

The weight of all edges of the state transition in Figure 6.8 is shown in Ta-

ble 6.2. With the rule above assigning weights, a transition matrix is generated

by integrating the weighted frequencies of all state transitions that occur over the

duration of the calibration experiments. The weighted frequencies are then normal-

ized to calculate the transition probability. That is, if a transition from one state

to another state occurs frequently, the probability of the transition is large. In our

scenario, the matrix has 231 states, where each state has transition probabilities

for 5 directions. We order the 231 states along the rows and columns of the tran-

sition matrix as (0, 0), (0, 1), · · · , (0, 20), (1, 0), · · · , (1, 19), · · · , (19, 0), (19, 1), (20, 0)

(See Figure 6.9).
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Figure 6.9: 231× 231 transition matrix in our scenario.

We constructed a model for all combinations of twisters and diggers, producing

transition probability matrices for six divisions of labor from calibrated experiments

with 0T5D, 1T4D, 2T3D, 3T2D, 4T1D and 5T0D.

6.1.2 Prediction of State Transition

After the transition matrix is obtained, Stn can be predicted by a discrete-time

Markov chain (Ross, 2003). Let M be the state transition matrix of our system. The

ij-th entry mij of M provides the probability of going from state i to state j in one

time-step. Figure 6.10 illustrates an example of moving one state into other state

after a time interval by the Markov chain process. Then the n-step transition matrix

can be determined by M (n) = (mij)
n. Thus, we can predict the state distribution of

Stn by

P {Stn = (in, jn) |St0 = (i0, j0)} = St0M
n. (6.3)

A sequence of ternary plots in Figure 6.11 illustrates the variation of the prob-

ability distribution of states at particular time intervals, where the Markov chain
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Figure 6.10: The state transition in a time interval.

Figure 6.11: Variation of the probability distribution of states in n time-steps (n=0,
9, 19 and 180). The probability of large point is relatively higher than the probability
of small point.
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provides the possible states at each time step. The distribution spreads out be-

cause the number of entries having non-zero probability grows gradually with each

transition, as time increases.

6.1.3 Selecting Sequence of Strategies

Having constructed a Markov chain model that predicts the clustering task per-

formance for each of the twister versus digger mixes, we now turn to selection of the

sequence of labor mixtures which accomplishes the best performance of the cluster-

ing task; we seek a sequence that is both reliable and efficient. As a proof of this

concept in this research, we consider the most basic sequence comprised of only two

mixes but, as will be seen below, more complex varieties follow the same procedure

directly.

From the Markov chain theorem, the state distribution of the sequence of two

mixed strategies after n time-steps where they switch at time k is

Mseq = [MA]k [MB]n−k , (6.4)

where MA and MB are the transition matrices of labor mix A and labor mix B,

respectively, and k is the time at when the strategy is switched where 0 ≤ k ≤ n.

With Equations. (6.3) and (6.4), the probability of a configuration during the

clustering task, given the switching time, can be predicted. For example, if the

initial configuration is (0, 0) in which is no objects in the central clusters or the

boundary clusters, the initial vector, X0 = [1, 0, · · · , 0], here X0 has size 1× d. That

is, the probability distribution of the final state after n time-steps can be computed

by X0Mseq. We can use the probability distribution of the final states to determine

the best strategy for the clustering task.

To quantify the clustering performance, we introduce a performance metric.

104



Figure 6.12: An example of the clustering result of a sequence having high perfor-
mance.

Given an initial configuration, a perfect central cluster has state (N0, 0), and ought

to be assigned a high weighting factor for quantifying the clustering performance.

Smoothing this function, weights are assigned up to clusters composed of more than

90% objects in a central cluster. For example, since we use 20 objects in our ex-

periment, we consider up to the states, (18,0), (18,1), and (18,2) for measuring the

clustering performance. Let P {St180 = (i, j)|St0 = (0, 0)} be Mseq(i, j). Then, the

performance metric is defined as follows.

Performance Metric = Mseq(20, 0) + 0.9 (Mseq(19, 0) +Mseq(19, 1)) +

0.8 (Mseq(18, 0) +Mseq(18, 1) +Mseq(18, 2))

=

N0∑
u=b0.9×N0c

u

N0

N0−u∑
v=0

Mseq(u, v).

(6.5)

Figure 6.12 provides an example of a result from a sequence having high perfor-

mance. For example, as shown in Figure 6.12, if the objects are located in the central

region of the arena at the final time step, we can assume that the sequence of mixed

strategies produce a good result with high probably.
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6.2 Physical Robot Experiments

We first describe how the Markov chain model is built based on data obtained

from calibration runs. Next, we validated our Markov chain model by comparing the

model prediction with physical robot experiments.

6.2.1 The Markov Chain Model

In order to build the Markov chain model, we first conducted a calibrated run

for all possible combinations of Twister(T) and Digger(D) with five robots: 0T5D,

1T4D, 2T3D, 3T2D, 4T1D, and 5T0D. Each trial lasted 90 minutes, with 20 objects.

All experiments were videotaped and annotated with n = 180 moments by observing

frames every 30 seconds. For each division of labor, a total number of 540 transi-

tions between states was observed. From this statistical data, we obtained the state

transition matrix.

In order to find the best sequence of strategies having the maximum clustering

performance, we compared the performance by varying the switching time from k = 0

to k = 180. Figure 6.13 shows the performance metric for all sequences of motion

strategies. The Markov chain model predicts that the best sequence of strategies was

switching from 2T3D to 0T5D, and it outperformed the clustering performance of a

single strategy between 22 to 89 minute. The switching sequences of 2T3D→1T4D

and 1T4D→0T5D also outperformed the clustering performance of a single strategy

between 55 to 89 minute, and between 17 to 89 minute, respectively. Note that the

end points of each line, k = 180, shows the performance of a pure strategy where no

switching occurs.
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Figure 6.14: A comparison the predicted performance between the best two se-
quences.

6.2.2 Model Validation

The model suggests that the best strategy is a sequence where 2T3D is switched

to 0T5D after 25 minutes (shown in Figure 6.14). We examined the ordering by

comparing the clustering performance predicted by the Markov chain with an actual

experiment. We selected the two best sequences: the sequence from 2T3D to 0T5D

and the sequence from 2T3D to 1T4D, and carried out physical experiments for both

cases, switching at 25 minutes. Each set of sequences was conducted five times under

the same initial configuration with 5 robots and 20 objects. We assumed that the

average size of a single central cluster at the final step, 180 time-step, is a good

measurement of the task performance.

Table 6.3 shows the average size of a single central cluster at the final step in

each sequence, and represents the clustering results of each experiments after 90

minutes. Since the average size of a single central cluster in the sequence from 2T3D

to 0T5D is larger than the average size of the sequence from 2T3D to 1T4D, the
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result supports that idea that the ordering predicted from the model at 25 minutes,

is also reflected in physical experiments.

This observation is further confirmed with a statistical test. We assumed that

the gap in performance between two sequences in physical experiment is identical to

the difference of the statistical mean. In order to test a statistical hypothesis, we

conducted the two-sample t-test with unequal variance based on experimental data.

The two-sample t-test is used to determine if two population means are equal or not.

The two-sample t-test is defined as

H0 : µa = µb,

Ha : µ are not equal.

We then select the level of significance to be used in the test as 0.05. After

performing the hypothesis test, we could get the P-value. Since the P-value, 0.0425,

is below 0.05 in one-tailed test, we can reject the null hypothesis of no difference

between the means from the two samples in favor of the alternative. In other words,

we accept that the mean of the size of a single central cluster between the sequence

from 2T3D to 0T5D and the sequence from 2T3D to 1T4D are unequal with 95%

confidence. That is, the difference of the performance between two sequences in

physical experiments has significant difference. Consequently, the ordering of the

clustering performance predicted by the Markov chain model corresponds to the

ordering of the clustering performance by physical robots.

6.3 Summary and Contributions

In this section, we verified that the Markov chain model is effective in predicting

the clustering progress and performance of self-organized multi-robot clustering sys-
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Table 6.3: Experimental results and Two-sample t test.

2T3D → 0T5D
(Switching @25min)

2T3D→ 1T4D
(Switching @25min)

1 18 objects 11 objects
2 19 objects 20 objects

Trials 3 19 objects 9 objects
4 18 objects 17 objects
5 20 objects 14 objects

Average size of a
single central cluster

at the final step

18.8 objects
(95% collecting rate)

14.2 objects
(70% collecting rate)

P(T ≤ t) one-tail 0.0425

tems. Through the stochastic model, we obtained an optimal sequence of changes to

the division of labor and validated it with a statistical test. The experiments pro-

vide practical suggestion that the model’s predictions permits to infer the clustering

performance of physical robots.

This work showed that a sequence of one division of labor followed by another

improves clustering performance over a single strategy. It might be a good exam-

ple that group level behaviors can be control parameters for improving the system

performance.
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7. CONCLUSION

7.1 Summary of Contributions

In this dissertation, we developed models to understand accurately the self-

organized multi-robot clustering developing, with a view toward improving the clus-

tering performance.

Our clustering system is differentiated from previous work by two key aspects:

first, we cluster square objects. These are both more challenging and potentially

more useful than previous cases. Secondly, we employ less capable robots than ear-

lier clustering work. We attempted to implement the more challenging clustering

system since the object geometry causes radically different packings and sensitivity

to environmental boundaries which cause existing approaches to interfere to form

spatially centralized clusters. We proposed an effective solution that simple robots

can pry loose the boundary objects from the wall by exploiting the mechanics of the

object geometry. Repetitive prying motions resolve partial sensor blindness prob-

lem via open-loop control strategies because a single object is imperceptible to the

robots. The approach we have taken uses mechanical interactions with boxes on the

perimeter, and emphasizes action rather than sensing. In this regard, it is closer to

the spirit underlying the self-organized clustering process itself.

We also proposed two complementary behaviors for object clustering, twisting and

digging, and demonstrated that the robots executing proposed behaviors overcome

the effect of the boundary and successfully form only one central cluster. Addition-

ally, we examined the effect of different ratios of diggers and twisters, illustrating

that managing the local densities of robots is important. This represents a new task

domain for the division of labor problems. It implies that one way to control such
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self-organized systems might be to manage where they spend their time in the en-

vironment. This simple idea, it seems, has not been the focus of existing implicitly

coordinated self-organized multi-robot systems.

We contribute a model which considers heterogeneous behaviors differing with the

location. To prevent boundary cluster growth, we focused on managing the spatial

distribution of robots, executing simple motion behavior, rather than specialized

manipulation of the objects. Through this we can acquire a notion of local spatial

density, and also enrich prior clustering models by treating state transitions of the

objects being clustered (in this study, a transition of the object into a pried object),

and context dependency (boundary objects are modeled as behaving differently from

one in the central region). Using this model, we derived a condition not only for

evolution of the largest central cluster but for also degeneration of boundary clusters.

Through physical robot experiments, we verified that the robot team, satisfying the

condition to avoid the boundary interference, achieve the clustering goal.

This study is also the first to attempt to investigate the impacts of the geometric

characteristics of clusters and objects on the clustering dynamics. We explored a

measure of compactness to quantify the shape of clusters, showing that it captures

useful information and can result in improved models. Using the measure of the

compactness, we proposed probabilistic models to predict the geometry of clusters

that arise during the clustering process and examined how the clustering dynamics

are affected by changes in object geometries. Interestingly, we observed that the

shape of the cluster reflects the geometry of the object. This observation was used

to allow the better development cluster occurrence models.

Also, we proposed a sequencing strategy to improve the system performance by

managing global level behavior. We showed that a stochastic model is useful at

predicting the performance of self-organized robots performing an object clustering
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task, and the model permits planning of a sequence of changes to the division of labor

for the maximum performance. The experiments suggest that the model’s predictions

of the relative performance of different switched strategies of the labor mix are useful

for reasoning about the performance of physical robots. This study showed that a

particular sequence of one division of labor followed by another improves clustering

performance over a single strategy.

7.2 Future Work

Future work could include the analysis of clustering of mixes of different objects.

It can provide a solution for the problem of object separation. For example, if

robots executing our proposed behaviors cluster mixes of squares and rectangles,

one might expect that square objects are collected into a single central cluster by

prying motions whereas the rectangles are located on the boundary because the

robots cannot separate the boundary rectangles from the wall. Unlike collective

sorting with multiple robots, depending on sensing (Wang and Zhang, 2004), this

may form a solution to the problem of spatially sorting the different objects only with

simple behaviors without any sensor to distinguish an object’s type. We also expect

that those behaviors may be applicable to other cases, such as triangular objects or

hexagonal objects. Generalization to other shapes is important for the application

to construction tasks and, also will allow a better understanding of the role played

by the packing configurations of the objects.

For improving the clustering performance, future work include sequences of more

than two strategies. In addition, since the results verify the utility of the stochastic

model with the object clustering, our method will be able to adapt to different

self-organized multi-robot systems for collective manipulation tasks such as object

transportation.
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and M. Birattari. Enhancing the cooperative transport of multiple objects. In

Proceedings of the 6th International Conference on Ant Colony Optimization and

Swarm Intelligence, pages 307–314, 2008.

115



A. Decugniere, B. Poulain, A. Campo, C. Pinciroli, B. Tartini, M. Osée, M. Dorigo,

and M. Birattari. Enhancing the cooperative transport of multiple objects. In Ant

Colony Optimization and Swarm Intelligence, pages 307–314. Springer, 2008.

J.-L. Deneubourg and S. Goss. Collective patterns and decision-making. Ethology

Ecology & Evolution, 1(4):295–311, 1989.

J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and

L. Chrétien. The dynamics of collective sorting robot-like ants and ant-like robots.

In Proceedings of Simulation of Adaptive Behavior, pages 356–363, 1991.

J. P. Desai, V. Kumar, and J. P. Ostrowski. Control of changes in formation for

a team of mobile robots. In Robotics and Automation, 1999. Proceedings. 1999

IEEE International Conference on, volume 2, pages 1556–1561 vol.2, 1999.

D. V. Dimarogonas and K. J. Kyriakopoulos. Connectedness preserving distributed

swarm aggregation for multiple kinematic robots. Robotics, IEEE Transactions

on, 24(5):1213–1223, 2008.

M. Dorigo and A. F. Roosevelt. Swarm robotics. In Special Issue, Autonomous

Robots. Citeseer, 2004.

F. Ducatelle, A. Förster, Gianni A. Di C., and L. M. Gambardella. New task alloca-

tion methods for robotic swarms. In 9th IEEE/RAS Conference on Autonomous

Robot Systems and Competitions, 2009.

H. R. Everett, G. A. Gilbreath, T. A. Heath-Pastore, and R. T. Laird. Coordinated

control of multiple security robots. In Optical Tools for Manufacturing and Ad-

vanced Automation, pages 292–305. International Society for Optics and Photonics,

1994.

E. Ferrante, A. E. Turgut, C. Huepe, A. Stranieri, C. Pinciroli, and M. Dorigo. Self-

organized flocking with a mobile robot swarm: a novel motion control method.

Adaptive Behavior, 2012.

116



E. Ferrante, M. Brambilla, M. Birattari, and M. Dorigo. Socially-mediated negoti-

ation for obstacle avoidance in collective transport. In Distributed Autonomous

Robotic Systems, pages 571–583. Springer, 2013.

M. Fialkowski, K. JM Bishop, R. Klajn, S. K Smoukov, C. J. Campbell, and

B. A. Grzybowski. Principles and implementations of dissipative (dynamic) self-

assembly. The Journal of Physical Chemistry B, 110(6):2482–2496, 2006.

P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation

by asynchronous, anonymous, oblivious robots. Theoretical Computer Science,

407(1):412–447, 2008.

S. Franklin. Coordination without communication. University of Memphis, 1996.

N. R. Franks and A. B. Sendova-Franks. Brood sorting by ants: distributing the

workload over the work-surface. Behavioral Ecology and Sociobiology, 30(2), March

1992.

D. W. Gage. Many-robot mcm search systems. In Proceedings of Autonomous Vehi-

cles in Mine Countermeasures Symposium, pages 9–55, 1995.

S. Garnier, C. Jost, R. Jeanson, J. Gautrais, M. Asadpour, G. Caprari, and G. Ther-

aulaz. Aggregation behaviour as a source of collective decision in a group of

cockroach-like-robots. In Advances in artificial life, pages 169–178. Springer, 2005.

S. Garnier, J. Gautrais, and G. Theraulaz. The biological principles of swarm intel-

ligence. Swarm Intelligence, 1(1):3–31, 2007.

M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß. Clustering objects with robots

that do not compute. In Proceedings of the 2014 International Conference on Au-

tonomous Agents and Multi-agent Systems, AAMAS ’14, pages 421–428, Richland,

SC, 2014.
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