
BIJECTIVE PARAMETERIZATION WITH FREE BOUNDARIES

A Dissertation

by

JASON DEAN SMITH

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Scott Schaefer
Committee Members, John Keyser

Jinxiang Chai
Ergun Akleman

Head of Department, Dilma Da Silva

December 2015

Major Subject: Computer Science

Copyright 2015 Jason Dean Smith

ABSTRACT

When displaying 3D surfaces onto computer screens, additional information is

often mapped onto the surface to enhance the quality of the rendering. Surface

parameterization generates a correspondence, or mapping, between the 3D surface

and 2D parameterization space. This mapping has many applications in computer

graphics, but in most cases cannot be performed without introducing large distor-

tions in the 2D parameterization. Along with problems of distortion, the mapping

of the 2D space to 3D for many applications can be invalidated if the property of

bijectivity is violated. While there is previous research guaranteeing bijectivity, these

methods must constrain or modify the boundary of the 2D parameterization. This

dissertation, describes a fully automatic method for generating guaranteed bijective

surface parameterizations from triangulated 3D surfaces. In particular, a new iso-

metric distortion energy metric is introduced preventing local folds of triangles in the

parameterization as well as a barrier function that prevents intersection of the 2D

boundaries. By using a computationally efficient isometric metric energy, the disser-

tation achieves fast and comparable optimization times to previous methods. The

boundary of the parameterization is free to change shape during the optimization to

minimize distortion. A new optimization approach is introduced called singularity

aware optimization and in conjunction with an interior point approach and barrier

energy functions guarantee bijectivity. This optimization framework is then modi-

fied to allow for an importance weighting allowing for customizable and more efficient

texel usage.

ii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Scott Schaefer for his mentorship. It was

Scott who originally peeked my interest in Computer Graphics. He has supported

and guided me throughout my studies and has always gone above and beyond to

help me and his students succeed. It was an absolute honor to work with Scott, and

I hope to continue working with him in the future. Second, I thank my committee,

John Keyser, Jinxiang Chai, and Ergun Akleman for the assistance and lessons they

have given me. Not only have their courses grown my interest in Computer Graphics,

I have developed many proffesional relationships and friendships from their research

groups. Next, I want to thank my parents, my mom, Tammy Smith, and dad, Ron

Smith. They have always supported my pursuit of higher education, and have given

me a loving home. Finally, thanks to my loving fiancée and soon to be wife, Adrienne

Gilligan. Without her constant support and motivation I would not be who I am

today. I look forward to our future together and returning the love she has shown

me.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Texture Mapping . 1
1.2 Parameterization . 3
1.3 Data Representation . 7
1.4 Dissertation Overview . 8

2. RELATED WORK . 9

2.1 Seam Creating Parameterization . 9
2.2 Constrained Boundary Parameterizations 10
2.3 Free Boundary Parameterization . 12

3. BIJECTIVE MAPS . 14

3.1 Distortion . 14
3.2 Local Injectivity . 18
3.3 Bijectivity . 22
3.4 Optimization . 26

3.4.1 Interior Point Optimization 27
3.4.2 Singularity Aware Optimization 29

3.5 Implementation . 32
3.6 Results . 37

4. VISIBILITY AWARE PARAMETERIZATION 45

4.1 Background . 45
4.2 Visibility-Aware Parameterization . 49

iv

4.2.1 Computing Visibility . 52
4.3 Results . 56

5. CONCLUSIONS . 64

5.1 Limitations . 65
5.2 Future Work . 67

REFERENCES . 69

v

LIST OF FIGURES

FIGURE Page

1.1 3D surface of a monster frog rendered using just lighting and geom-
etry(left). The surface split into several charts (top middle) and its
corresponding parameterization into 2D texture space (bottom mid-
dle). The surface rendered with texture mapping (top right), and the
corresponding texture image (bottom right). 2

1.2 Monster frog surface rendered using bump map with bump map image
(left), and normal map with bump map image (right). 3

1.3 From left to right: an image of a locally injective parameterization, an
example of a locally folded triangle highlighted in red, an image of a
bijective parameterization, an example of a non bijective parameteri-
zation where the boundary in blue intersects itself. 5

1.4 Cow mesh with seam in blue (left) with its corresponding Tutte’s
embedding where the boundary of the parameterization in blue is
constrained to a circle(right) . 6

3.1 Mapping a 3D triangle to 2D using a rigid transform R, which is then
affinely mapped via ϕ to the parameterization. 16

3.2 Injective optimization of ED using different metrics to produce a lo-
cally injective parameterization. The top row shows a checkerboard
mapped to the surface via the parameterization shown below. From
left to right the metric used with timings in seconds: conformal 95.97,
MIPS 3.42, maximal isometric 114.46, isometric 125.62, ours 1.29. . . 20

3.3 A simple example of a wavy cone with the seam shown in blue (left and
middle) isometrically flattened to a parameterization without folded
triangles (right) but still does not form a bijective map. A SIGGRAPH
symbol has been added to the texture space of the folded region to
show its effect of texture mapping. 21

3.4 Three examples of configurations demonstrating the boundary barrier
function ED. 22

vi

3.5 Examples of modifying ϵ. From left to right: ϵ = .1, ϵ = 2.5, ϵ = 5,
ϵ = 10. 24

3.6 Spatial Hash example for the function and gradient evaluation (left)
and the maximum step size computation (right). Blue vertices and
line segments correspond to boundary edges and vertices. The red
box is the size of the bounding box query with yellow points repre-
senting vertices possibly contributing to the evaluation and step size
computation. 25

3.7 Bijective optimization of ED+EB using different metrics to produce a
bijective parameterization. The top row shows a checkerboard mapped
to the surface via the parameterization shown below. From left to right
the metric used with timings in seconds: conformal 91.23, MIPS 19.5,
maximal isometric 230.36, isometric 136.71, ours 3.63. 26

3.8 Starting from Tutte’s parameterization (left), our optimization gen-
erates a parameterization that minimizes distortion and guarantees a
bijective map (right). We show intermediate stages of the optimization
where, at every step, the parameterization is bijective. As opposed to
previous techniques, we do not constrain the shape of the boundary,
which is free to change shape to minimize distortion. 27

3.9 A graph of a single step of the optimization. The x-axis measures
the magnitude along a search direction t, while the y-axis represents
the evaluated function ED (blue) at some the given search amount
t. Singularities (red) representing a triangle flipping its orientation.
Local minimum are shown with yellow dots, and the desired minimum
is highlighted green. 28

3.10 Visualization of a single triangle (black) during a line search with
search directions in (blue). A triangle with a flipped orientation is in
red. 30

3.11 Graph of multiple data set’s timings (y-axis) using L-BFGS normal-
ized to the timing of using gradient descent. The x-axis is the value
for the number of previous iterations m used inside of L-BFGS. . . . 36

3.12 Graph of multiple data set’s timings (y-axis) normalized to the timing
of the parallelized with 1 processor. The x-axis is the number of
processors used. 37

vii

3.13 Parameterization of a horse model without our boundary term EB

(top) and with (bottom). From left to right are zoom-ins on various
sections of the parameterization that demonstrate the lack of bijectiv-
ity (top) versus the results of our bijective parameterization (bottom). 38

3.14 Parameterization of a chart with multiple boundaries (left) and the
initial parameterization (left middle) via Tutte’s parameterization by
arbitrarily triangulating the holes in the eyes. The right shows the
results of our parameterization with the temporary triangles in the
eyes removed and a zoom-in on one of these boundary curves. 39

3.15 Triceratops optimized with ED (left) and ED+EB (right) color coded
by our isometric error for each triangle. 42

3.16 A comparison of widely used parameterization methods applied to dif-
ferent models. The methods from left to right are: spectral conformal
parameterization, ABF++, ARAP, and ours. 43

4.1 Different parameterizations shown using the same checkerboard tex-
ture to show relative texel density. Triangles are shaded by how often
they are seen from the different viewing models. From left to right:
an isometric parameterization and our method calculated with uni-
form visibility, visibility from the front hemisphere, viewed from a
turntable, and viewed from one direction on the side. 47

4.2 Visualization of the density and distortion of various parameteriza-
tions using a single viewpoint: the unmodified isometric parameter-
ization (Et, top left), weighting by Vt (EtVt, top right), scaling the
singular values (Êt/Vt, bottom left), and both scaling the singular
values and weighting by Vt (Êt, bottom right). 51

4.3 Different viewing models that we tested our parameterizations with.
View directions are represented as yellow-colored points on a unit sphere. 53

4.4 The models used to measure texel densities in Figure 4.8. 54

4.5 2D texture atlases showing the parameterization of the cow, holes, and
cup for different viewing models. The cow is cut down the neck and
belly. The holes model is cut into eight identical corners with a seam
on the inside. The cup is cut into four identical quadrants. The view
models are arranged from top to bottom: isometric, uniform, front, to
ring, side view. 55

viii

4.6 A mesh with different parameterizations from different views show
from the front, looking down (top row), and the back, looking up
(bottom row). Depending on the viewing model, opposite sides of a
mesh may have very different texel densities. 57

4.7 An example of a mesh seen from the side view. The mesh on the
left uses an Isometric parameterization and the mesh on the right is
parameterized for the side view. 58

4.8 Graphs showing the visible texel density of our parameterizations rel-
ative to the texel density of Isometric parameterization. Each graph
shows the average density of pixels from different distributions of
views. Clusters of bars are labeled below by the view type the mesh
parameterization was optimized for. 60

4.9 The Eurographics logo mapped onto the cow via an isometric parame-
terization (left), and our visibility-aware parameterization (right) from
the side viewing model. From top to bottom we downsample the tex-
ture successively by a factor of two which is shown on the outside
columns of the image. 61

4.10 Demonstration of the bijective property for a parameterization opti-
mized for the side-view. 63

5.1 A failure case for the method. From left to right: a space filling curve
on the surface of a cylinder, Tutte’s embedding with a zoom-in below
to show the poor triangulation, two intermediate steps during the
optimization, our result with default parameters taking 49.6 seconds
with an average error 13.238 and max 17.223, and the result using a
lower convergence tolerance taking 8472.14 seconds with an average
error of 4.210 and max 4.213. 65

ix

LIST OF TABLES

TABLE Page

3.1 The average error and maximum error using our isometric metric ED

for all of the models in the paper with and without enforcing bijectiv-
ity. The minimum possible error is 4. Note that, though EB is used in
the bijective optimizations, only the error ED is reported in the table
above. 41

3.2 The time taken in seconds for all of the results in Figure 3.16. Faces
give the number of triangles in the chart. Vertices gives the number
of vertices in the chart. Boundary gives the number of vertices on the
boundary of the chart. 44

x

1. INTRODUCTION

Surface parameterization can be viewed as producing a correspondence between

a 3D surface to another domain. Building these correspondences is a key research

problem in computer graphics. The parametric domain corresponding to the 3D

surface is generally a form of surface itself and the idea of surface parameterization

can be generalized to producing a mapping from one surface to another. Surface

parameterization, traces its origins back to Cartography when travelers wanted to

flatten the spherical earth into flat maps on a plane for visualization purposes. This

process of flattening was one of the first forms of parameterization and many various

approaches have been developed all with their advantages and disadvantages. Now,

in computer graphics, there is a wide variety of applications for parameterization

including, remeshing, inter-surface matching, tetrahedralization, detail-mapping and

transfer, shape-analysis, and most importantly texture mapping. In this dissertation,

I discuss my contributions to a new state of the art parameterization process to

guarantee bijectivity during the parameterization process.

1.1 Texture Mapping

Visualizing 3D surfaces is a main concentration of computer graphics. Represent-

ing these surfaces as well as rendering them to images or screen with high quality and

efficiency is an important research topic. It is common practice to discretize 3D sur-

faces into polygonal models allowing for efficient storage and rendering algorithms.

However, geometry is only one aspect of how we perceive an object. To achieve

better realism, more information is required to render surfaces such as textures and

lighting. To achieve this, typically artists must annotate discretized surfaces with

additional information such as color, transparency, specularity, and other attributes

1

Figure 1.1: 3D surface of a monster frog rendered using just lighting and geome-
try(left). The surface split into several charts (top middle) and its corresponding
parameterization into 2D texture space (bottom middle). The surface rendered with
texture mapping (top right), and the corresponding texture image (bottom right).

to make the surface appear more realistic and provide details beyond the resolution

of the geometry of the shape.

These annotations are usually performed via texture mapping, which maps 2D

data from images onto the surface of the 3D object. The 2D data encodes various

forms of information used to improve the rendering of the 3D surface. Figure 1.1

shows an example of a monster frog surface rendered with additional detail textures.

However, to perform texture mapping and add this detail, the surface must first be

parameterized into 2D texture space. Given a parameterization, texture mapping is

commonly used to generate more realistic renderings of objects and is not limited

to purely textures. In Figure 1.2 the monster frog is rendered with a bump map

2

Figure 1.2: Monster frog surface rendered using bump map with bump map image
(left), and normal map with bump map image (right).

(left) to simulate normal information for lighting. On the right side of the image

the monster frog’s geometry is enhanced with a displacement map moving vertices

along the normal direction adding a significant amount of detail to the surface.

In this dissertation, I will concentrate primarily on the texture mapping application

where the desired goal is to produce surface parameterizations, to produce a mapping

function from 2D image space onto the 3D surface.

1.2 Parameterization

In computer graphics, the idea of producing mappings between surfaces was orig-

inally introduced by Catmull [7] and is now a standard technique for providing

additional information to 3D surfaces via 2D textured images by building a cor-

3

respondence between the 3D surface and 2D image space. The process of surface

parameterization takes a 3D surface and effectively flattens it into 2D and produces

such a mapping. First, given a 3D surface S, the shape is partitioned along a con-

nected set of edges, referred to as seams, into contiguous sets of polygons called

charts. Figure 1.1 shows a partitioning of the monster frog on the left into a set

of charts represented as different colors in the top middle image. Parameterization

flattens the charts to the two-dimensional domain and the seams of the charts in 3D

become the boundaries of the flattened charts in 2D as shown in the bottom middle

image. The flattening now provides a mapping from the R2 parameterization to the

R3 surface.

For surfaces other than developable surfaces, this flattening introduces distortion

into the shape and most parameterization methods are concerned with reducing this

distortion be it in terms of deviation of angles, area, or some combination thereof. To

measure the distortion of a parameterization, generally some form of error metric is

measured between the 3D surface and the 2D image mapping. Conformal distortion

is the measure of the deviation of angles between the 2D triangles to the 3D triangles.

An equiareal distortion measures the deviation between the areas of the 2D triangles

to 3D. If the triangle areas and angles match the parameterization is said to be

isometric. So, the isometric error measures the deviation of both the angles and

areas of the triangles.

While the quality of the parameterization and reducing distortion are certainly

important, the parameterization is of limited use for texture mapping and other

applications unless it forms a one-to-one mapping or a bijective map between the

3D surface and the 2D texture covered by the charts. Even if there is no distortion

in a parameterization, bijectivity may not be maintained. If the parameterization is

not bijective, then a single point in the texture could map to multiple, disconnected

4

Figure 1.3: From left to right: an image of a locally injective parameterization, an
example of a locally folded triangle highlighted in red, an image of a bijective pa-
rameterization, an example of a non bijective parameterization where the boundary
in blue intersects itself.

regions of the surface. The result is that we cannot annotate such regions of the

surface independently from one another causing the mapping of multiple positions

on the surface.

There are two primary ways in which the parameterization could fail to be bijec-

tive. First there is the problem of local injectivity, where a region of the surface can

“fold” in the parameterization. A folded region of the parameterization causes neigh-

boring portions of the surface to map to the same parameterization space. Figure

1.3 shows the problem of local injectivity where a single triangle in parameterization

space in the left image has flipped its orientation and locally folded onto other tri-

angles. The folded triangle is shown in red, and has caused neighboring triangles to

map to the same texture space.

Second, a parameterization could also violate the one-to-one mapping in a global

fashion if separate portions of the parameterization overlap. This problem is seen

if the boundaries of charts intersect themselves causing separate sections of the pa-

rameterization to overlap. The problem of bijectivity is shown in Figure 1.3 on the

right side the parameterization has globally intersected itself where the boundary

5

Figure 1.4: Cow mesh with seam in blue (left) with its corresponding Tutte’s em-
bedding where the boundary of the parameterization in blue is constrained to a
circle(right)

of the parameterization in blue has intersections. This again, causes separate sec-

tions of the parameterization to overlap in texture space invalidating the one-to-one

mapping.

While only a handful of previous methods guarantee that the parameterization

will be locally injective, almost none guarantee bijectivity. If bijectivity is guaran-

teed in these methods the boundary or seams of the surface are either constrained

in parameterization space to a non-intersecting shape, or the seams are modified

or increased in some fashion to insure no global folds. However, constraining the

boundary, either by user intervention or by choosing some arbitrary non-intersecting

boundary curve, will produce more distortion in the parameterization than necessary

since the optimization cannot modify the boundary to reduce the distortion of the

parameterization. The effect of constraining the boundary is shown in Figure 1.4

where the cow mesh is parameterized using a Tutte’s embedding [54] and the overall

6

distortion of the parameterization is poor due to the boundary constraint.

Instead of constraining the boundary of a parameterization to ensure bijectivity,

the other common practice is to modify the seams of the 3D surface, either changing

them or adding seams and charts. However, the seams of a surface tend to come with

their own issues outside of the parameterization problem. Often, they require special

consideration when attempting to use them for texture mapping. Either the seams

must be hidden in low visibility areas, or special filters and texture images must

be used to reduce the effect of discontinuities along the parameterization seams.

The seams of a surface are generally artist generated, however there has been a

large amount of research performed to automate and ensure that a better surface

partitioning is performed that can be used for various applications including texture

mapping. Even though the two problems of parameterization and seam generation

can be performed together, this dissertation believes it is important when performing

the parameterization, to preserve an artist or original input seam on the surface.

1.3 Data Representation

While there are a number of ways of representing a surface in graphics applica-

tions, in this dissertation I will restrict the discussion to discretized surface meshes

consisting of triangles. Specifically, a triangle mesh defined as M = (P,U,E),

where P = {P1, P2, . . . , Pn} is the set of n vertex positions in 3D space, U =

{U1, U2, . . . , Un} is the set of 2D texture space coordinates. Vertex positions have

corresponding 3D coordinates Pi = {xi, yi, zi} and 2D parameterized coordinates

Ui = {ui, vi}. E is the set of edges where an edge Eij = {Pi, Pj} connects the ver-

tices {Pi, Pj}. Figure 1.4 shows an example of a triangulated surface. The seams of

a mesh shown in blue are defined as a sub set of edges B ⊂ E which will form the

boundary of the parameterization in 2D. I will show results of the parameterization

7

applications on general meshes found on the internet, as well as synthetic meshes to

demonstrate the effectiveness of the algorithms. A simply connected domain Ω ⊂ R2

in parametric space. Let f be a function or parameterization of surface S ⊂ R3 over

Ω. If f uniquely maps points from Ω to unique points in R3, then f is a bijective

map forming a non unique one-to-one mapping between R2 and R3.

1.4 Dissertation Overview

This dissertation introduces a new method of parameterization which guarantees

bijectivity and allows for the optimization of boundary vertices to reduce distortion

in the resulting parameterization. The main contributions of this thesis are

• The introduction of a generalized parameterization framework capable of min-

imizing the distortion of a parameterization given a distortion energy metric.

• A new barrier energy metric designed to reduce distortion and ensure local

injectivity during the parameterization optimization.

• The introduction of a singularity aware interior point optimization, that com-

putes possible singularities during a line search to ensure invalid parameteriza-

tions are not possible.

• A bijective barrier energy term, that ensures the boundary of the parameteri-

zation will not intersect itself during the parameterization optimization.

• An extension to the energy function to allow for a weighting of the parame-

terization energy to optimize the amount of texture space given to important

regions of the 3D surface.

8

2. RELATED WORK

Surface parameterization is a well-studied problem with many surveys summa-

rizing its advances. The survey by Floater et al. [13] summarizes much of the early

progression before 2001. Floater and Hormann [14] summarize many of the recent

advances since their earlier publication. The survey by Sheffer et al. [48] analyzes

many of the current techniques at the time as well as applications, open problems,

and pre-processing steps such as chart generation. Hormann et al. [20] gave a thor-

ough course at SIGGRAPH analyzing many aspects of parameterization and many of

the core concepts. A common and important theme among these surveys and course

is that there are very few parameterization methods that can guarantee bijectivity.

If bijectivity is guaranteed, the methods require that the boundary of the parame-

terization either be constrained to a specified shape, or that the initial boundary be

modified in some fashion.

2.1 Seam Creating Parameterization

One class of methods interleaves the mesh segmentation process of dividing the

surface into a set of charts with parameterization [26, 63]. If the parameterization is

not bijective, these methods split the charts to form smaller charts. Levy et al. [26]

split charts based on boundary intersections, while Zhou et al. [63] split charts based

on a stretch based distortion metric. Such a splitting process continues until all charts

form bijective maps. This process is guaranteed to stop since individual polygons can

trivially form bijective maps, which reduces to per polygon texture mapping [4, 57].

Sander et al [38] merge charts of single faces into larger chart regions and perform

parameterizations of charts to allow for surface and parameterization simplification,

but require a constrained boundaries. Sorkine et al. [51] take a region growing

9

approach to chart creation where they detect if adding a new triangle to a chart will

cause an intersection in the boundary and modify the seam. Expanding upon this

idea Singh et al.[49] grow regions of triangles in a greedy fashion to allow for rapid

texturing by taking advantage of salient features, however produces highly visible

seams.

Springborn et al. [52] use a discrete conformal optimization for parameterization

and require no initially defined seam. Their method guarantees local injectivity by

changing the connectivity of the mesh performing edge flips or subdividing edges.

While this parameterization approach produces valid parameterization, this disserta-

tion is interested in taking into account the initially prescribed seam to allow for more

artist/application control of the resulting parameterization. Zhang et al. [61] build

charts of a surface based off of a protrusion analysis. This paper actually guarantees

bijective charts using “scaffold triangles” in a nonlinear minimization to guarantee

the line search never causes the boundary to intersect. While similar in spirit to

this dissertation, the scaffold criteria, while a sufficient condition to create bijective

parameterizations, is not necessary and slows down the optimization restricting the

possible solution space more than necessary. In contrast to these works, this dis-

sertation will take as input initially determined seams. Allowing users to input the

specific chart boundary and requiring that the boundary is constrained, gives more

control over the charts’ shapes.

2.2 Constrained Boundary Parameterizations

Another class of parameterization methods takes as input an initial seam and

attempts to flatten the 3D surface into parameterization space. The seams or bound-

aries of the charts in this class are constrained in some way or user prescribed to some

desired shape. While this restricts the overall solution space, often these methods

10

can guarantee bijectivity. Some of these parameterization methods guarantee local

injectivity through the use of distortion metrics that form barriers so that triangle

flips cannot occur. More detail is given about barrier energy metrics in Section 3.2.

Methods such as [28, 2, 1, 33, 36] bound the distortion of triangles to guarantee

locally injective parameterizations. In addition, all of these methods can guarantee

a bijective map if the user constrains the boundary of the charts to form a non-

intersecting curve, or performs a post processing of the parameterization to remove

boundary intersections. Lipman [28] and Bommes et al. [2] convexify the solution

space of their non-convex optimization problem to find injective solutions. Schuller

et al. [43] and Schneider et al. [41] use a barrier energy to deform an initial bijective

parameterization to match a target user prescribed boundary while maintaining in-

jectivity. Aigerman et al. [1] produce lifted bijections between two surfaces relying on

user defined correspondences, and can fail to produce a bijection if poor correspon-

dences are provided. Poranne and Lipman [33] build injective parameterizations for

deformation applications where soft and hard boundary constraints are introduced

by a user, however bijective maps are not a concern of the paper. Later, I will discuss

the idea of barrier distortion metrics in Section 3.2 and show that while injectivity

is guaranteed, there are large difference in computational efficiency between various

methods.

While such locally injective methods typically involve non-linear optimization,

some methods guarantee bijective maps by solving a linear set of equations if the

boundary of the charts are constrained to convex shapes such as circles [54, 12, 18].

The first discrete version of harmonic maps, based on the Dirichlet energy was pro-

posed in Eck et al. [11] to produce a linear solution for parameterization embeddings.

Gu and Yau [17] approximate the Laplace Beltrami operator using a discretized ver-

sion of the Dirichlet energy to produce conformal parameterizations over a unit 2D

11

square using a method similar in nature to the Floater’s embedding[12]. These ap-

proaches can guarantee bijections, however, as shown in Figure 1.4, the distortion for

these parameterizations can be severe. In the figure, the boundary of the parameter-

ization is constrained to a circle, and the interior vertices are embedded producing

a poor triangulation of the domain. Sheffer and Sturler [44] use a different strategy

to parameterization by adding triangles one at a time to the parameterization by

constraining previous triangles in place and solving for the angles needed to place

new triangles. The method does not produce bijective maps, but includes a post

processing step of further constraining boundary edges to correct their intersections.

Weber et al. [55] showed how to create a bijective map between two non-intersecting

boundaries by mapping to a common, convex domain. Unfortunately, this method

requires that the user specify a non-intersecting boundary curve and may still require

additional post processing to refine some triangles to guarantee a bijective map.

2.3 Free Boundary Parameterization

A third class or parameterization methods also takes as input an initial seam,

but instead of constraining it in parameterization space, the boundary is allowed to

freely move during the parameterization process. This type of method produces lower

distortion parameterization, they often have issues when producing bijective maps.

The MIPS [19] and AMIPS [16] parameterization are nonlinear methods that aims

to reduce angular distortion. However, the energy functions used by these methods

are nonlinear and non-convex. Labsik et al. [25] accelerate the MIPS algorithm to

use a multiresolution parameterization and apply MIPS to surface remeshing appli-

cations. Desbrun et al. [10] used a discretization of the Dirichlet energy derived in

Pinkall and Polthier [32] to construct harmonic maps that do not require boundary

constraints. This method does not guarantee local injectivity in the presence of very

12

obtuse angles. As-rigid-as-possible (ARAP) and as-similar-as-possible (ASAP) pa-

rameterizations [50, 29] measure the deviation of the Jacobian from being a rotation

matrix. The energy minimized is non-convex and finding a global minimum does

not guarantee local injectivity. Chen et al. [8] use local coordinate frames and local

geometry to flatten the 3D surface into the plane, but the method can cause lo-

cally folded triangles. Kharevych et al. [24] build parameterizations based on circle

patterns that produces natural looking boundaries and guarantees injectivity, but

bijectivity is not guaranteed without user intervention. Zayer et al. [59] perform

several linear optimizations to produce conformal free boundary parameterizations,

however the method has no guarantee of bijectivity and in poor starting positions

has problems preserving triangle areas.

The computationally intensive angle based flattening (ABF) [45] directly solves

for angles of the parameterized triangles and then finds an embedding compatible

with those angles. The authors attempt to create a bijective map by performing

a local post-processing step to the angles after the initial parameterization though

such a procedure can significantly increase distortion. Liesen et al. [27] and Zayer et

al.[60] discuss methods for speeding up ABF, but still take a considerable amount of

time for even medium size meshes with 10 thousand polygons. Later ABF++ [47]

created a much faster form of angle base flattening using a hierarchical optimization

procedure that guarantees local injectivity but fails to produce bijective parameteri-

zations. Continuing to improve upon the efficiency of ABF is work by Zayer et al. [58]

who reformulate the non linear constraints of ABF into linear approximations. How-

ever, this approximation opens up the possibility for the parameterization to not be

injective. Another method similar to ABF by Cartade et al. [6] uses an alternat-

ing optimization to optimize the boundary and interior of the parameterization to

generate ”natural” boundaries, but has no specific guarantees of injectivity.

13

3. BIJECTIVE MAPS∗

The primary goal of this dissertation is to produce a bijective map from a 3D

triangulated surface to a 2D domain that minimizes a distortion metric without

modifying or constraining the boundary. We begin with a 3D triangulated surface

that is partitioned into a set of charts. For the moment, I restrict the discussion

to a single chart consisting of a set of triangles that are topologically equivalent to

a disk. A map for such a triangulated surface is bijective if two properties hold.

First, the mapping must be locally injective, where no triangles reverse orientation

in the parameterization. The second property is that no separate pieces of the pa-

rameterization overlap. Overlap is detected if the boundary of the parameterization

intersects itself.

3.1 Distortion

The majority of parameterization methods minimize some form of distortion met-

ric between the 3D surface and its corresponding 2D parameterization. To build a

distortion metric, look at an infinitesimally small displacement (û, v̂) from a position

(u, v) in parameter space. The new surface point can be approximately represented

through a first order Taylor expansion f̃ as,

f̃(u+ û, v + v̂) = f(u, v) + fu(u, v)û+ fv(u, v)v̂.

This function f̃ maps the surrounding parameterization around (u, v) into the

tangent plane at f(u, v). This same function will map infinitesimally small circles

∗Part of this chapter is reprinted with permission from “Bijective Parameterization with free
boundaries” by Jason Smith and Scott Schaefer, 2015. ACM Transactions on Graphics, 34, 70:1–
70:9, Copyright 2015 by the Association of Computing Machinery

14

around (u, v) into ellipses around the corresponding position in 3D at f(u, v). This

deformed ellipsoid can be thought of as a representation of the distortion in pa-

rameterization space. The distortion can be represented through a rewriting of the

previous equation

f̃(u+ û, v + v̂) = f(u, v) + J(u, v)

 û

v̂

 .

The Jacobian J of f is the partial derivatives of f as column vectors. Using a

singular value decomposition of the Jacobian we generate J as a decomposition into

three matrices with the form,

J = XΣY T = X

σ1 0

0 σ2

0 0

Y T

Where, matrices X, and Y T are orthogonal matrices representing rotations. Since

X and Y are simply rotations, there is no distortion present in these matrices. Also,

we obtain two singular values {σ1, σ2} in the middle matrix corresponding directly

to the stretch of the ellipsoid in the tangent plane. Now {σ1, σ2} can be used to

measure the distortion of the parameterization at specific positions.

However, in the setting of a discrete triangulated surface, the distortion of in-

dividual triangles is of interest. Consider a 3D triangle shown in Figure 3.1 (left)

with vertices P1, P2, P3 ∈ R3. This triangle is isometrically flattened to 2D with zero

distortion using a rigid transformation Rt (top). Producing the isometrically flat-

tened triangle F1, F2, F3 ∈ R2 is a simple operation where the vertex P1 is mapped

to the origin of the 2D plane. Vertex P2 is positioned along the x-axis as to match

the length of the 3D edge ¯P1P2. The final vertex P3 is positioned in such a way as

15

Figure 3.1: Mapping a 3D triangle to 2D using a rigid transform R, which is then
affinely mapped via ϕ to the parameterization.

to maintain the angles and edge lengths of the 3D triangle. The formatting of the

isometric triangle is

F1 = {0, 0}, F2 = {wt, 0}, F3 = {xt, yt},

This isometric triangle is then mapped to the parameterized shape with vertices

U1, U2, U3 ∈ R2 via the affine transformation ϕt (right). This affine transformation

contains the distortion of a single triangle when transformed into 2D parameteriza-

tion space. Now, similar to the surface distortion measurement we want to find a

way to quantify distortion. For a single triangle, the singular values of the 2x2 linear

16

portion Lt of the affine transformation ϕt =

 Lt mt

0 1

 define the distortion of the

triangle in the parameterization. Here, mt represents a simple translation and does

not contribute to the distortion.

The common approach to representing the affine transformation ϕt is for a triangle

t with vertices P1, P2, P3,

ϕt =

x1 x2 x3

y1 y2 y3

z1 z2 z3

0 wt xt

0 0 yt

1 1 1

−1

However, we can write Lt in a simpler fashion. Let the linear portion of ϕ be

given by the matrix

Lt =

 a b

c d

 .

The singular values of this matrix are

σ1 = 1
2

(√
(b+ c)2 + (a− d)2 −

√
(b− c)2 + (a+ d)2

)
σ2 = 1

2

(√
(b+ c)2 + (a− d)2 +

√
(b− c)2 + (a+ d)2

)
where σ2 > σ1. When σ1 = σ2, the scale is uniform and corresponds to a conformal

flattening of the triangle. Furthermore, when σ1 = σ2 = 1, the flattening is isometric.

One more important property is found from the singular values when σ1 = 0 the

triangle is degenerate. A triangle is degenerate when the vertices of the parameterized

triangle are collinear.

Most common parameterization methods measure distortion using a function

of these singular values. For example, a linear form of conformal energy is used

17

in least squares conformal maps (LSCM) [26] given by (σ1 − σ2)
2, which tends to

shrink the chart since minimizing the scale also minimizes the distortion energy.

As-rigid-as-possible parameterization [29] measures isometric error by minimizing

(σ1 − 1)2 + (σ2 − 1)2. However, both of these functions have the problem that they

allow triangles to reverse orientation since the energy is finite for σ1 = 0.

3.2 Local Injectivity

To begin this section, an introduction into barrier functions is necessary. Barrier

functions are commonly used to force a minimization to push away from undesirable

solutions. A barrier will cause a functions value to smoothly but rapidly approach

∞. For example, in parameterization, to produce locally injective maps, triangles

cannot change orientation. If a triangle does flip its orientation, this would break the

local injectivity property. Therefore a type of barrier function is necessary in combi-

nation with the distortion energy. A simple way of preventing triangles from flipping

orientation is to require a distortion measurement per triangle Et that approaches

∞ as σ1 approaches 0 given that this is when the triangle would flip orientation.

Since σ1 is the smaller of the 2 singular values, functions inversely proportional to

σ1 approach ∞ as σ1 approaches zero.

Several previously used distortion functions already satisfy this property includ-

ing conformal [9]
(

σ2

σ1

)
, MIPS [19]

(
σ2

σ1
+ σ1

σ2

)
, maximal isometric distortion [51](

max(σ2,
1
σ1
)
)
, and a form of isometric energy [1]

√
σ2
2 + σ−2

1 . Note, that all of

these functions contain a term of 1
σ1
. To compute the total distortion of these mea-

surements, the functions must be integrated over the 3D surface. Since the singular

values are constant per triangle, the total distortion is simply the sum of the distor-

tion evaluated at each triangle weighted by the area of the 3D triangle.

While all of these distortion measurements can be used to ensure local injectivity,

18

their computational efficiency can vary significantly. For example, MIPS computes

a quantity similar to conformal energy but yields a very simple expression and is

much faster to optimize. In the spirit of computational efficiency, this dissertation

proposes a new form of isometric distortion energy.

Et = σ2
1 + σ2

2 + σ−2
1 + σ−2

2 , (3.1)

which simplifies to

Et =
(
1 + σ−2

1 σ−2
2

) (
σ2
1 + σ2

2

)
. (3.2)

The distortion metric in Equation 3.2 has the property that its minimum is

achieved when σ1 = σ2 = 1. Moreover, σ2
1σ

2
2 has an extremely simple expression given

as the ratio of the squared area of the parameterized triangle ∆2
U to the squared area

of the 3D triangle ∆2
P . In addition, σ2

1 +σ2
2 is the Dirichlet energy and is a quadratic

function of the texture coordinates given by

σ2
1 + σ2

2 = |U3−U1|2|P2−P1|2+|U2−U1|2|P3−P1|2
4∆2

P

− ((U3−U1)·(U2−U1))((P3−P1)·(P2−P1))

2∆2
P

.

Integrating this energy over the 3D triangle gives the distortion of that triangle as

Et =
(
1 +

∆2
P

∆2
U

)(
|U3−U1|2|P2−P1|2+|U2−U1|2|P3−P1|2

4∆P

− ((U3−U1)·(U2−U1))((P3−P1)·(P2−P1))
2∆P

)
.

(3.3)

To get the distortion error for the entire mesh, Et is summed for every triangle

and multiplied by the area of its 3D triangle ED =
∑

t∈T ∆PEt.

Most optimization methods also require the gradient of the error function, which

19

Figure 3.2: Injective optimization of ED using different metrics to produce a locally
injective parameterization. The top row shows a checkerboard mapped to the surface
via the parameterization shown below. From left to right the metric used with
timings in seconds: conformal 95.97, MIPS 3.42, maximal isometric 114.46, isometric
125.62, ours 1.29.

is also easy to calculate for Equation 3.3. Without loss of generality, we only con-

sider the partial derivative of Equation 3.3 with respect to a single vertex U1. Given

that Equation 3.3 is the product of two terms, its derivative is given by the product

rule and only the derivatives of each of the terms in the product need to be con-

sidered. The partial derivative with respect to U1 of the first term of Equation 3.3

corresponding to
(
1 + ∆2

P∆
−2
U

)
is simple and is given by

−∆2
P

∆3
U

(U2 − U3)
⊥

where (U2 − U3)
⊥ indicates a rotation of (U2 − U3) by 90 degrees in the plane.

Taking the partial derivative of the second term of Equation 3.3 yields the cotangent

weights [32] that correspond to a discrete harmonic function where θi corresponds to

angles of the 3D triangle shown in Figure 3.1

− cot(θ2)U3 − cot(θ3)U2 + (cot(θ2) + cot(θ3))U1.

20

Figure 3.3: A simple example of a wavy cone with the seam shown in blue (left and
middle) isometrically flattened to a parameterization without folded triangles (right)
but still does not form a bijective map. A SIGGRAPH symbol has been added to
the texture space of the folded region to show its effect of texture mapping.

Moreover, quantities involving the Pi are constant in both the gradient and dis-

tortion metric in Equation 3.3 and can be precomputed. Figure 3.2 shows an example

of using the optimization from Section 3.4.1 on a cow model composed of a single

chart with different metrics that all produce locally injective parameterizations.

Unfortunately, such local injectivity does not guarantee a bijective map. For ex-

ample, Figure 3.3 shows an example of a cone that is flattened without any isometric

distortion. No triangles reverse orientation in the parameterization. However, the

surface folds on itself. The second property needed to construct a bijective map is

that the boundary of the parameterized chart does not intersect itself. The impor-

tance of bijectivity is shown in the Figure, where the SIGGRAPH symbol is added

to a single flap of the cone model. However, because of the folded texture space,

the SIGGRAPH symbol appears on both sides of the flap. There is no way of mod-

ifying this region of the surface’s texture without modifying the other using texture

21

Figure 3.4: Three examples of configurations demonstrating the boundary barrier
function ED.

mapping. The bijectivity property is much more difficult to maintain as it is not a

quantity that can be locally computed.

3.3 Bijectivity

While the admissible metrics in Section 3.2 will produce locally injective pa-

rameterizations, the boundaries of these parameterizations may intersect themselves

meaning that they do not form a bijection. It is possible to create a bijection by

constraining the boundaries of the shape [54, 12, 28, 41, 43, 33, 55]. However, do-

ing so typically requires the user to specify the boundary of the chart independent

of the distortion metric, which leads to greater distortion in the parameterization.

Yet generating an intersection free boundary while minimizing ED is a difficult com-

putational problem because of the global nature of the boundary; that is, unlike

Section 3.2, the criteria to prevent intersections is not simply a local property of a

triangle.

Keeping in mind the global nature of the problem, a similar approach as the one

to guarantee injectivity is taken to ensure the parameterization forms a bijective

22

map. Again, to make sure bijectivity is upheld, the boundaries of the parameteriza-

tion must not intersect themselves. To enforce intersection free boundaries we must

formulate a barrier function for the boundary that approaches ∞ as the bound-

ary approaches an intersecting configuration. For each boundary edge with vertices

U1, U2, we associate a barrier function

max(0,
ϵ

dist(U1, U2, Ui)
− 1)2

where dist(U1, U2, Ui) measures the distance from a boundary point Ui̸=1,2 to the

edge (U1, U2). Figure 3.4 demonstrates, this function as it shows three configurations

of boundary vertices and edges and their function value. The function (a) is 0 for

dist(U1, U2, Ui) > ϵ. When dist(U1, U2, Ui) = ϵ the function and gradient go to

0 allowing for a smooth function when dist(U1, U2, Ui) < ϵ (b) transitioning from

(a),and the function approaches ∞ as dist(U1, U2, Ui) approaches 0 (c). As ϵ shrinks,

so too will the gaps between the boundary curves. Because of this, ϵ can have a

significant effect on the converged parameterizations and is very dependent on the

scale. In practice, ϵ is chosen to be the average length of the chart’s 3D seam edges

divided by 4. Figure 3.5 demonstrates the effect of changing ϵ on the resulting

parameterization. On the left we show the default value of ϵ used for the results in

this dissertation, then moving to the right ϵ increases to show the overall effect of

the boundary barrier EB. While, smaller increases add some extra spacing between

the boundary, values of ϵ larger than the size of parameterization’s features have

significant effect on the converged result as the boundaries begin to influence more

and more pieces of the boundary. Our total boundary energy EB is then given by

summing, for each boundary edge, this function evaluated over all boundary vertices

not part of this edge.

23

Figure 3.5: Examples of modifying ϵ. From left to right: ϵ = .1, ϵ = 2.5, ϵ = 5,
ϵ = 10.

This choice of barrier function creates a number of advantages. First, it is compu-

tationally efficient given its local support as an offset of size ϵ from the current bound-

ary of the chart. Typical barrier functions use − log(dist(U1, U2, Ui)) or
1

dist(U1,U2,Ui)

as barriers, but the global support of these functions means that a large number of

vertices are affected by each boundary edge and the gradient becomes dense. Second,

the smaller support also means that much of the optimization of ED is unaffected

by the boundary whereas edges in a globally supported function would cause some

distortion in ED for even far away vertices. Finally, though the function is locally

supported, it is a smooth function to avoid discontinuous changes in the gradient

during optimization.

The local support of our barrier function allows for significant acceleration of the

computation of EB. Instead of checking every boundary edge to every boundary

vertex, the left side of Figure 3.6 shows a spatial hashing technique allowing for the

evaluation of a small subset of boundary edges and vertices. Before evaluating EB, a

grid (black) is constructed ϵ larger than the current bounding box of the chart. For

each function evaluation, first, insert boundary vertices (blue) into the grid. After

all boundary vertices are placed in the grid, each boundary edge, queries all grid

cells within the bounding box (red)of the edge enlarged by ϵ (dark red) disregarding

24

Function and Gradient Maximum Step

Figure 3.6: Spatial Hash example for the function and gradient evaluation (left) and
the maximum step size computation (right). Blue vertices and line segments corre-
spond to boundary edges and vertices. The red box is the size of the bounding box
query with yellow points representing vertices possibly contributing to the evaluation
and step size computation.

vertices that are part of this edge. Remember that, at a distance of ϵ, the function

is 0 meaning that, outside of the bounding box, EB will have no influence. The

bounding box queries return a set of vertices (yellow) which are the only vertices

that need to be evaluated with respect to the current edge. Such a simple change

greatly enhances the speed of evaluating EB as well as its gradient by resulting in a

85% reduction in overall timings of the total optimization time.

Figure 3.7 shows an example of optimizing the same nonlinear metrics from Fig-

ure 3.2 with the addition of EB. The optimization times almost uniformly increase

due to the extra computations involved, although it is possible to reduce optimiza-

tion times if EB causes the optimization to terminate early as was the case for the

conformal metric. However, each of these parameterizations now forms a bijective

map. In addition, the parameterizations appear similar to their unconstrained coun-

25

Figure 3.7: Bijective optimization of ED + EB using different metrics to produce
a bijective parameterization. The top row shows a checkerboard mapped to the
surface via the parameterization shown below. From left to right the metric used
with timings in seconds: conformal 91.23, MIPS 19.5, maximal isometric 230.36,
isometric 136.71, ours 3.63.

terparts despite requiring that the parameterizations form a bijective map at every

stage of the optimization.

3.4 Optimization

The same distortion metrics that enforce local injectivity in Section 3.2 also yield

a difficult optimization problem. There are several common approaches to opti-

mizing parameterizations. A common early tactic was to constrain the vertices of

the parameterization and optimize a single vertices at a time [19]. Other methods

concentrate on optimizing subsets of vertices [16] allowing for larger sets of vertices

to be optimized at once. Other techniques optimize distortion error using random

search directions [42]. Lipman [28] bounds distortion using inequality constraints and

decompose the problem into maximal convex subsets, although such an approach re-

quires repeated optimization for each subset. A main idea of this dissertation is to

remove these restrictions and take a more natural approach to optimize all of the

vertices at the same time like shown in Figure 3.8 where a parameterization of a

camel’s vertices are iteratively repositioned at the same time without the need for

26

Figure 3.8: Starting from Tutte’s parameterization (left), our optimization generates
a parameterization that minimizes distortion and guarantees a bijective map (right).
We show intermediate stages of the optimization where, at every step, the parame-
terization is bijective. As opposed to previous techniques, we do not constrain the
shape of the boundary, which is free to change shape to minimize distortion.

any constraints.

3.4.1 Interior Point Optimization

While there are many possible approaches to minimizing ED + EB, the mini-

mization must not break the bijectivity property. An interior point method [15]

guarantees that, at every step, the map remains a bijection. Therefore, an initial pa-

rameterization is required to guarantee the optimization begins in the valid solution

space of a bijective map. Fortunately, Tutte’s embeddings [54] and Floater’s pa-

rameterization [12] both provide valid starting points, although the distortion of the

parameterization is likely to be extreme since both methods constrain the boundary

to a convex shape such as a circle as shown on the left of Figure 3.8.

So, to minimize the distortion of the parameterization, the vertices need to be

moved in a direction which reduces distortion. Figure 3.8 shows an iterative pro-

cess of minimizing the distortion of a camel model’s parameterization with Tutte’s

method. From left to right, vertices are moved in parameterization space to where

each consecutive image reduces distortion. To move the vertices in such a manner,

we need a search direction to move the vertices, which could be found from any

27

Figure 3.9: A graph of a single step of the optimization. The x-axis measures the
magnitude along a search direction t, while the y-axis represents the evaluated func-
tion ED (blue) at some the given search amount t. Singularities (red) representing
a triangle flipping its orientation. Local minimum are shown with yellow dots, and
the desired minimum is highlighted green.

Quasi-Newton optimization technique.

However, Quasi-Newton approaches begin with the current location of the pa-

rameterized vertices U and repeatedly finds a search direction V to search in the

given energy function

min
t,t>0

f(U + V t)

Where f = ED +EB is the total distortion function. Such methods typically rely on

a backtracking line search starting from some maximal parameter tmax and decrease

t until f is minimized or sufficiently decreases as measured by various criteria such

as the Wolfe condition [56].

28

3.4.2 Singularity Aware Optimization

Being an interior point method, simply using common line searches will not work

without modification. In the case of parameterization, interior point methods must

consider the singularities of the function to ensure that the method does not leave

the valid solution space. Luckily, all of the injective distortion metrics ED considered

above have the same set of singularities, namely when each individual triangle be-

comes degenerate. This problem can be seen in Figure 3.9, where a single line search

is shown with ED evaluated in blue along the search direction with magnitude t. The

problem with taking a step during a line search is that we could accidentally pass

one of the multiple singularities in ED and find any of the local minimum shown

in yellow, while the green minimum is the desired step size. This means that the

method could step outside of the valid solution space. Normally, given an initial

step size, an interior point method must detect that it has left the valid solution

space and then undue the step and then shrink step size, repeating this process until

finding a minimum. In this work, instead of the time consuming process of detecting

invalid states and backtracking the line search, the interior point method will take

advantage of the structure of the singularities. For all of the triangles, we explicitly

compute the minimum singularity, and use it as the maximum allowed step size to

guarantee that we do not cross a singularity.

However, care must be taken when computing the singularities as the number

of singularities can be quite large. As shown in Figure 3.10, each triangle can con-

tribute up to two singularities for a single search direction yielding hundreds or

even thousands of singularities along a single search direction for even modest sized

charts. From left to right, we move a triangle’s vertices along its search direction

in blue showing two possible triangle flips. The triangle in the Figure is red when

29

(a) (b) (c) (d) (e) (f) (g)

Figure 3.10: Visualization of a single triangle (black) during a line search with search
directions in (blue). A triangle with a flipped orientation is in red.

the triangle’s orientation has been flipped, and even though the triangle corrects its

orientation, there is no way to guarantee the immediate neighborhood of triangles

has not flipped as well. Consider a non-degenerate 2D triangle with vertices U1, U2,

U3 with corresponding search direction vectors V1, V2, V3. The singularities in ED are

given when the triangle becomes degenerate, which is when its signed area becomes

zero. To compute when the area becomes zero we can solve for the magnitude t

along a search direction using a simple determinant.

det

 (U2 + V2t)− (U1 + V1t)

(U3 + V3t)− (U1 + V1t)

 = 0 (3.4)

Fortunately, Equation 3.4 is quadratic in t and the parameters that yield a singular-

ity in ED are simply given by the roots of this quadratic matching the two possible

singularities demonstrated by Figure 3.10. We only search along the positive direc-

tion and can ignore negative parameters and only need the minimum parameter per

triangle. Computing the minimum singularity over all triangle gives the maximum

value tmax for the line search with respect to ED.

Now, the singularities of EB must also be computed with respect to the line

search. In this case, singularities are given by intersections of line segments of the

boundary versus other boundary vertices. Let U1, U2 be boundary vertices that form

30

an edge of the boundary and Uj be any other boundary vertex with V1, V2, Vj be their

respective search direction vectors. Luckily, the exact same test in Equation 3.4 where

now the virtual triangle formed by vertices U1, U2, Uj gives the potential parameters

associated with singularities for this combination of edge/vertex corresponding to

when the edge and given vertex are all collinear. The new singularity computation

is given by,

det

 (U1 + V1t)− (Uj + Vjt)

(U2 + V2t)− (Uj + Vjt)

 = 0. (3.5)

The only complication is that the roots of the quadratic may not necessarily

correspond to singularities. It is possible that, while the vertex and edge are collinear,

the vertex lies outside the extents of the edge. However, such a test is trivial, and

we discard roots of the quadratic that do not correspond to singularities. For the

remaining roots, if any, we use the smallest, positive root. Computing the minimum

of this quantity over all combination of boundary edges and boundary vertices along

with the parameter tmax from ED gives the maximal possible parameter such that f

contains no singularities between t ∈ [0, tmax).

The only issue with the computation of the singularities of EB is how many

cases must be checked. If there are m boundary vertices, the complexity of simply

choosing the maximal parameter for the line search is O(m2) as there are O(m)

boundary edges, each of which must be compared against O(m) boundary vertices.

Fortunately, we can use a similar spatial hashing tactic in Section 3.3 to accelerate

this computation. Assume that we have first computed the maximal parameter tmax

for ED. In the extremely unlikely case that tmax = ∞, it is set to a large positive

value. The right image of Figure 3.6 demonstrates the maximum step size spatial

hash. For each boundary vertex Uj with search direction Vj (blue arrows), the vertex

31

is inserted into each grid cell intersecting the line segment between Uj and Uj+Vjtmax.

Then, for each boundary edge with vertices U1, U2 and search direction vectors V1,

V2 (dark red arrows), we query the grid for all boundary vertices that intersect the

bounding box (red) given by U1, U2, U1 + V1tmax, U2 + V2tmax. The union of those

boundary vertices (minus those of the edge) gives the only boundary vertices that

need to be checked versus the given edge and reduces the amount of computation

substantially. Moreover, as tmax is updated during this computation, the size of the

query bounding box shrinks as well. Including this spatial hashing and using both

spatial hasing techniques for the evaluation and maximum parameter reduces the

timings of the overall optimization by approximately 92%.

3.5 Implementation

In this section I will give a brief overview of the implementation of our bijective

parameterization algorithm.

First, the input is a triangulated surface with an initially prescribed seam. The

triangles are preprocessed through an isometric flattening, and a precomputation

of the areas and cotangent weights for the 3D triangles needed in the function and

gradient evaluations.

Second, the initial starting parameterization is found using Tutte’s method [54]

for graph embedding. For the interior point method to work, any starting position

can be used as long as it is guaranteed to produce a bijective mapping between the

parameterization space and the 3D surface.

Next, we optimize the parameterization using a nonlinear Quasi-Newton approach

optimization approach. The following steps are looped until the parameterization

converges in terms of some threshold of error.

1. Evaluate the function and gradient.

32

2. Calculate the search direction.

3. Calculate the maximum step size tmax.

4. Perform the line search.

5. Update vertex positions and check convergence.

Step 1 of the optimization is to evaluate the function and gradient of ED+EB at

the current position of the parameterization. To produce the function and gradient

of our distortion energy ED, we evaluate the set of triangles in parallel. Since a

triangle’s distortion evaluation is independent of other triangles, the total evaluation

of ED is trivially parallelized. This parallelization using 4 processors speeds up the

evaluation of ED by an average of approximately 64% on the tested data sets. Next,

the function and gradient is evaluated for the boundary barrier energy EB. First, the

vertices are binned to the grid of the spatial hash. Querying the spatial hash gives

another opportunity for parallelization as each boundary edge with their bounding

box expanded by ϵ can query and evaluate all vertices found within its bounding

box. Even with the additional overhead of building the spatial hash, parallelizing

the edge queries and evaluations using 4 processors speeds up the evaluation of EB

by an average of approximately 57% on the tested data sets.

In step 2, we now need to calculate the search direction of the vertices to best min-

imize the distortion. Any Quasi-Newton approach can be used to generate a search

direction. We did multiple experiments using various Quasi-Newton approaches

specifically, gradient descent, L-BFGS [31], and Levenberg-Marquardt[35]. Gradi-

ent descent uses the negative gradient V = −1 ∗ G as the search direction. While,

gradient descent quickly computes the search direction, we found that using just

the negative gradient causes a slow convergence and increases the number of itera-

33

tions required to converge. Using gradient descent for the camel data set causes the

parameterization to converge in over 20 thousand iterations. Levenberg-Marquardt

computes the search direction using the Hessian H of the function with the follow-

ing formula, V = (H + λDiag(H))−1G. Where Diag(H) gives the diagonal of the

matrix and λ is a non-negative damping factor adjusted at each iteration depending

on the speed of convergence. When λ is small the search directions is closer to the

Gauss-Newton algorithm, and when λ is large, the search direction is closer to gradi-

ent descent. The Levenberg-Marquardt algorithm converges with significantly fewer

iterations, approximately 400 for the camel example. However the computation of

the Hessian and sparse matrix inversion is computationally expensive and causes a

large increase in timings with the computation of the search direction taking two

orders of magnitude more time to compute.

A good mix of convergence rate and computational complexity is found using L-

BFGS. L-BFGS approximates the inverse Hessian Hk for iteration k of the function

V = H−1
k G using information from previous m iterations of the optimization. To

estimate the Hessian, store information from previous iterations of sk = Uk+1 − Uk,

yk = Gk+1−Gk, and compute ρ = 1
yTk sk

. To produce the search direction, we perform

Algorithm 1

The search direction computed from this process is significantly faster, about two

orders of magnitude, than the computation of the search direction from Levenberg-

Marquardt. While the search direction for L-BFGS is, about twice as slow as gradient

descent, the number of iterations it takes to converge is approximately an order of

magnitude lower. Through experimentation L-BFGS tended to perform with a good

mix of speed and memory usage.

The number of previous iterations m used in our implementation was determined

from experimental runs of all of our data sets. In Figure 3.11 the graph displayed

34

Algorithm 1 L-BFGS search direction
1: q = G
2: for i = k − 1, i >= k −m, i = i− 1 do
3: αi = ρis

T
i V

4: q = q − αiyi
5: end for
6: H0

k =
yTk−1sk−1

yTk−1yk−1

7: V = H0
kq

8: for i = k −m, i <= k − 1, i = i+ 1 do
9: βi = ρiy

T
i z

10: V = V + s(αi − βi)
11: end for

shows the timings (y-axis) of running the full optimization with a varying number

of past iterations stored (x-axis) to approximate the inverse Hessian. The timings

shown are normalized to the number of past iterations m = 1, corresponding to

gradient descent. The general trend in the graph is that all of the timings decrease

and come to a minimum then increase from this minimum the more iterations that

are added past 10. To correctly choose the number of previous iterations m to store

we ran the optimization for several test meshes and found that setting m to 4-7

produces the best timings for all of the test meshes. All timings in this dissertation

are set to store 5 previous iterations of the optimization.

Step 3 is to calculate the maximum step size tmax by explicitly computing the

singularities along the search direction vector for EB using Equation 3.4 and ED using

Equation 3.5. To compute the singularities associated with ED the points must be

binned to the spatial hash like described in Section 3.4.1. Then in parallel, sets of

edges and vertices are queried from the spatial hash to compute singularities. The

minimum singularity found is used as the maximum step size in the line search of

the next step. The computation of the maximum step size is parallelized similarly to

35

Figure 3.11: Graph of multiple data set’s timings (y-axis) using L-BFGS normalized
to the timing of using gradient descent. The x-axis is the value for the number of
previous iterations m used inside of L-BFGS.

the evaluation of the function and gradient, and the singularities can be computed in

parallel with 4 processors saving approximately 60% of the time of this computation.

Figure 3.12 demonstrates the overall scaling when combining all of the parallelization

together. The graph shows the timings of the overall optimization of the data sets

normalized to using 1 processor.

Using the maximum step size tmax and the search direction, the next step is

to perform a line search to minimize the distortion. After computing a step in

the direction along the search direction, we update the vertex positions by moving

them along the search direction and check convergence tolerances. To check if a

parameterization is converged, we simply check if the difference between consecutive

36

Figure 3.12: Graph of multiple data set’s timings (y-axis) normalized to the timing
of the parallelized with 1 processor. The x-axis is the number of processors used.

iterations’ error metric is below a specified threshold

3.6 Results

Figure 3.8 shows the optimization in progress starting from Tutte’s embedding

of the camel model on the left. Each image from left to right shows different steps

of the minimization process showing the convergence of a highly distorted parame-

terized camel and ending in the low distortion parameterization on the right. The

optimization minimizes the isometric distortion ED guaranteeing no triangles reverse

orientations, as well as the bijective term EB and at every step of the optimization,

the parameterization remains a bijective map despite the highly intricate boundary

interactions that occur during the optimization.

While our method uses a particularly simple form of isometric distortion in Sec-

37

Figure 3.13: Parameterization of a horse model without our boundary term EB

(top) and with (bottom). From left to right are zoom-ins on various sections of the
parameterization that demonstrate the lack of bijectivity (top) versus the results of
our bijective parameterization (bottom).

tion 3.2, any injective barrier distortion function can be used in the described opti-

mization framework. Figure 3.2 shows an example of five different metrics within the

injective optimization framework without adding the boundary term EB; conformal

and MIPS measure conformal distortion followed by maximal isometric, isometric,

and ours measuring a form of isometric distortion. The timings of the optimization

are shown in seconds with each metric on an Intel Core i7-3770k CPU running at

3.5 GHz. The difference in timings shown here are due to the differences in im-

plementation of the function and gradient evaluation, all other operations of the

algorithm remain the same. Changes in timings maybe due to the complexity of

the gradient and function evaluation, or the quality of search directions produced

affecting the speed of convergence and the number of iterations. Both MIPS and

our isometric metric have a simple distortion metric that is easy to compute. While

the timings are implementation dependent, the simple form of these distortions yield

fast optimization times.

While there are no flipped triangles in any of the examples in Figure 3.2, none of

38

Figure 3.14: Parameterization of a chart with multiple boundaries (left) and the
initial parameterization (left middle) via Tutte’s parameterization by arbitrarily tri-
angulating the holes in the eyes. The right shows the results of our parameterization
with the temporary triangles in the eyes removed and a zoom-in on one of these
boundary curves.

these parameterizations are bijective since the boundary intersects itself in each ex-

ample. Figure 3.7 shows the same optimization and metrics except with the boundary

barrier term, EB, to each of the distortions. In this case, all of the parameterizations

are bijective. However, the optimization takes longer in all cases except for the con-

formal metric where the optimization was terminated earlier and did not spend as

much time optimizing over the folded configurations due to the bijective constraint.

An interesting aspect of these comparisons is that adding the boundary term

still produces similar converged results as the non-bijective parameterizations. Fig-

ure 3.13 shows another example with the injective and bijective distortion metrics of

a much more complex model of a horse with 20,636 vertices. The top of the figure

demonstrates the optimization without the boundary term EB. While there are no

flipped triangles, the shape folds on itself in several places. Adding the boundary

term to the optimization on the bottom row eliminates these intersections. In some

cases, such as the left zoom-in, the boundaries form complex, matching curves but

still remain intersection free.

39

Another advantage of this bijective optimization approach is that it is not lim-

ited to charts that are topologically equivalent to a disc. Most parameterization

approaches require charts to be equivalent to discs. However, this framework can

easily incorporate charts with holes. The only difficulty with incorporating holes

is finding a valid starting point that contains no intersecting boundaries or folded

triangles. The general strategy here is to simply find and fill the holes with arbi-

trary triangulations. By triangulating the holes, arbitrarily, Tutte’s embedding or

Floater’s parameterization will now produce a valid starting configuration. Then

the extra polygons are simply removed from the parameterization, and the original

boundaries and mesh topology input into the method are now guaranteed to be in

a valid bijective parameterization. From here, the optimization is run like normal.

Each of the boundaries, the original and hole boundaries, are independent from one

another since interior triangles would have to collapse causing a singularity for the

separate boundary curves to intersect. Therefore, during the optimization, separate

spatial hashes are used for each boundary curve, which lowers the boundary term’s

computational cost.

Figure 3.14 shows a challenging chart from a face model with three boundary

curves, one for each eye and one around the neck, that creates a significant amount

of distortion. To perform a bijective parameterization of this chart, first a boundary

must be picked to be the primary boundary mapped to the circle for Tutte’s embed-

ding. In practice we choose the longest boundary which is the neck in this example.

The other boundaries of the chart, the two eye holes, are then filled in with a simple

triangulation. The holeless chart is then parameterized with Tutte’s embedding. Af-

ter the initial starting position is found, the temporary triangles are removed. The

upper right image shows the resulting Tutte’s embedding using triangulated holes

for the eyes (with the artificial triangles removed). After the removal of the added

40

Method Ours ED Ours ED + EB

avg max avg max
Cow 5.466 14.763 5.843 14.751
Camel 9.203 28.082 9.351 27.216
Triceratops 4.327 17.465 4.455 12.669
Horse 7.280 26.499 7.300 39.890

Table 3.1: The average error and maximum error using our isometric metric ED for
all of the models in the paper with and without enforcing bijectivity. The minimum
possible error is 4. Note that, though EB is used in the bijective optimizations, only
the error ED is reported in the table above.

triangles, we can run our optimization shown on the bottom left. The holes remain

intersection free and the parameterization forms a bijection which is demonstrated

by the zoom in on the bottom right.

Note that such a hole-filling strategy has been used previously in parameteriza-

tions [19, 36]. However, in these cases the triangles were left in the optimization and

optimized with the same distortion metric as the actual surface triangles. Such a

strategy simplifies the optimization since the topology of the interactions between

boundaries is known and fixed, but this choice increases the distortion of the remain-

ing chart triangles unnecessarily. In this case, the geometry of these holes and the

arbitrary triangulation chosen affect the resulting parameterization despite having

no corresponding surface triangles.

Table 3.1 shows a table of both the average area, calculated as an area-weighted

sum and normalized by total area, as well as the maximum error for an individual

triangle using our bijective isometric metric for the different models. The minimum

value of our error metric is 4, which corresponds to a perfect isometric flattening. In

all cases the average error increases slightly when adding our boundary term EB to

the optimization to make the parameterization bijective. Figure 3.15 shows a color

41

Figure 3.15: Triceratops optimized with ED (left) and ED + EB (right) color coded
by our isometric error for each triangle.

map of the error of a parameterization without our boundary barrier term (left) and

with our boundary barrier term (right). The image clearly shows that the error of

the parameterization increases when forced to be bijective, particularly in the areas

of large overlap from the injective optimizations.

This leads to a discussion about an initial requirement of this dissertation. We

originally make it a point to ensure that the input seam is never modified or con-

strained in any way. However, if the increase in error is too significant, we could

modify the seam unless it is a requirement of the problem. If the error is above a

specified threshold, charts could be split into multiple pieces similar to [26] or [63]

and re-optimized using the bijective approach. The advantage now is that we al-

ways guarantee the bijective map and don’t require any seam modifications, with

the tradeoff for increased distortion error.

Figure 3.16 shows a comparison of our isometric metric and boundary term versus

several popular parameterization algorithms including a spectral form of LSCM [30],

42

Figure 3.16: A comparison of widely used parameterization methods applied to differ-
ent models. The methods from left to right are: spectral conformal parameterization,
ABF++, ARAP, and ours.

43

Method Faces Vertices Boundary Spec ABF++ ARAP Ours ED + EB

Cow 3195 5804 584 .69 .004 1.99 3.63
Camel 2032 3576 486 .409 .006 2.12 6.13
Triceratops 3163 5660 664 .98 .008 3.76 4.45
Horse 20636 39698 1572 8.34 .028 118.31 35.48

Table 3.2: The time taken in seconds for all of the results in Figure 3.16. Faces give
the number of triangles in the chart. Vertices gives the number of vertices in the
chart. Boundary gives the number of vertices on the boundary of the chart.

ABF++ [47], and ARAP parameterization [29]. All of these parameterizations are

nonlinear in nature. The first two methods (LSCM, ABF++) optimize a form of

conformal distortion, while the last two (ARAP, ours) optimize a form of isometric

distortion. The parameterizations are somewhat similar in nature despite optimizing

different distortions except for the LSCM-based solution that causes shrinking due to

the choice of distortion metric. We also show a zoom-in of the same area below each

shape. All parameterization methods but ours fail to produce a bijective map. The

only exception was ABF++ on the dinosaur example. Such parameterization meth-

ods can produce bijective maps (rarely for complex examples), but cannot guarantee

the bijectivity. In contrast, all of our results are guaranteed to be bijections.

Table 3.2 shows the time taken in seconds for all of these methods. While our

method is almost always the slowest in these comparisons, our method is still fast

and computes parameterizations of charts with several thousand vertices within a

few seconds. Even for large charts of tens of thousands of vertices our optimization

still finishes within about half a minute.

44

4. VISIBILITY AWARE PARAMETERIZATION

When producing mappings for texturing we must also consider the usage of tex-

ture space. A texture image is generally a square 2D array of color values representing

a pixel or ”texel” of the image. The parameterization maps these color values onto

the 3D surface, and the more texel’s inside of the parameterized shape, the more

detail achievable for this piece of the 3D surface. An isometric flattening produces

mappings where the surface area of the 3D surface and the area of the 2D parame-

terization be equivalent. Having equivalent areas gives equal texture density to the

entirety of the mesh. Another way to approach the problem of parameterization

is that important regions of the model should have higher texel density than other

regions, allowing an artist to create sharper, more detailed textures in regions of

interest.

While many different metrics can be used to measure ”importance”, this disser-

tation proposes using visibility to measure how important a surface region is. We use

visibility for importance because it is simple to precompute, doesn’t require knowl-

edge of the texture, and there is no need for user intervention. The visibility of a

surface is different depending on how the surface will be used and different viewing

models will change how often triangles in the mesh are seen thus modifying their

texel density in parameterization space. The idea is to optimize the parameteriza-

tion for the views from which a mesh is seen and in turn increase the average density

of texels drawn in visible regions while using the same texture area.

4.1 Background

A parameterization determines how texels in a texture appear on the 3D surface.

Parts of the texture that do not map to the 3D surface, or are rarely seen, use

45

memory without providing any benefit to the visualization of the surface. Another

issue is that while memory is becoming less expensive, textures consume a significant

amount of GPU memory, and there are several strategies to reduce memory usage,

such as compression. There are several texture packing algorithms which attempt to

minimize the area of unused space in the texture image by packing multiple charts

together in a single texture image. The survey by Jylänki [23] gives a recent analysis

of several techniques for packing textures together. The other main concept for

improving memory efficiency is to compress the texture images themselves. Methods

such as the DXTC format [21] compress textures for on-the-fly GPU decompression.

This chapter considers an approach to improve the efficiency of texture usage

to supplement compression. Texture detail in a region of a surface is proportional

to the ratio of the texture area to surface area in the region. Parts of the surface

that are less visible should store less detail because they are less important to a

rendered image. The general goal is to create a parameterization such that more

visible regions are given more texture area. Within a chart, the texture space may

be used inefficiently because some parts of the surface will distort more than others.

Conformal surface methods, for example, preserve angles but do not constrain the

scale of triangles. The result is that large surface areas on an object will often map

to small areas in the texture. This small texture area causes low detail texels to map

to the surface, even when the surface is prominently visible.

Large differences in scale are undesirable because high-resolution textures are

needed in order to have sufficient detail over the entire surface. When a chart with

positive Gaussian curvature is flattened, the center of the chart shrinks relative to the

boundary of the chart. But, the centers of charts often contain the most important

parts of the object because artists will hide the texture seams at chart the boundary

from view. Thus, the most important parts of an object often have the least texture

46

Isometric Uniform Front half Top ring Side point

Figure 4.1: Different parameterizations shown using the same checkerboard texture
to show relative texel density. Triangles are shaded by how often they are seen from
the different viewing models. From left to right: an isometric parameterization and
our method calculated with uniform visibility, visibility from the front hemisphere,
viewed from a turntable, and viewed from one direction on the side.

detail. Cutting a surface into more charts decreases the distortion within each chart,

but the number of texture seams increases. It is therefore desirable to use a param-

eterization method that controls usage of texture area within a chart in addition to

minimizing conformal error.

Ideally we want an error metric that uses additional importance information to

modify the area of texture space to match the importance value. Importance in this

work will be described as visibility because meshes are often viewed under specific

viewing transformations depending on the various applications the surface could be

used in. This means that some regions of a mesh are more visible than others. Even

when viewing a model from all directions with equal probability, not every region is

viewed equally. For example, concave features of a mesh will be seen less frequently.

While, visibility is the main importance metric of discussion for this dissertation,

other metrics of importance could also be used, like texture complexity, geometric

complexity, or even artist driven weightings.

47

This dissertation modifies the previously discussed isometric distortion energy

ED to use texture space based on the importance of the 3D triangles. Visibility

is reduced both by a mesh occluding itself from some viewing directions and from

tangentially viewing unoccluded triangles in the mesh. The best parameterization

therefore depends on what angles the mesh is viewed from, which, in-turn, depends

on the context in which the mesh is used. Figure 4.1 shows an example comparing

our visibility-aware parameterization against the isometric parameterization under

a variety of viewing scenarios. We draw portions of the surface seen more often in

a light color and less frequently seen in a dark color. We use the same number of

texels in all of the parameterizations, but our method allocates texture space so that

texture density matches the visibility of the surface.

In terms of previous work, there are a few works on modifying parameterizations

based on metric other than local geometry. For example, signal specialized parame-

terization [37, 53] assigns more texture area to parts of a mesh that have high levels

of detail. This weighting of texture area increases the fidelity of texture samples.

Signal specialization can also increase texture detail as needed while painting a tex-

tured surface [5]. The principle of changing texture area based on texture detail is

similar in nature to the goal of this chapter, except that it requires knowing the

texture before parameterization. Our visibility metric is independent of the image

mapped to the surface. In addition, such weighting can cause significant folds in the

parameterization both locally and globally. However, using the optimization from

the previous chapter, bijectivity will be guaranteed and folds will not be able to

happen.

Localized parameterization can be thought of as a method for non-uniformly

distributing error in parametric distortions. Rather than parameterizing an entire

mesh, a parameterization is only generated around a region of interest such as a

48

decal [40] or a drawn stroke [39]. These methods employ exponential maps, which

map radial geodesic curves to polar lines in the parametric space only defined within

the radius around a point. These maps have the property that parametric error is

zero at the point of interest and distortion increases with distance from the point

of interest. Using the importance can also be thought of as increasing the quality

in regions of interest, but instead of simply reducing distortion error more texture

space is allocated.

While visibility has been used for many aspects of Computer Graphics such as

the construction of chart seams [46] or even surface simplification [62], we found only

one instance where parameterizations are modified by visibility. Diffusion curves, a

vector-based primitive used to create smooth-shaded images, require solving a linear

system of equations over an image or a texture. In order to accelerate the calculation

of diffusion curves in a texture, it is possible to decrease texture resolution for unseen

parts of a surface [22]. Decreasing the texture space reduces the computation required

to generate diffusion curves. The reparameterization algorithm used is designed

to be very simple because it was intended to update the parameterization in real-

time. Whenever the camera moves, the surface parameterization is updated and the

diffusion curves are recalculated.

4.2 Visibility-Aware Parameterization

A mesh is typically seen from more than one direction. However, if there is no

prior knowledge about where a camera is relative to the mesh, every triangle should

be given equal importance as there is no prior knowledge about how an object will

be viewed. If the importance of the mesh is all the same, ideally the method will

compute an isometric parameterization, but if prior knowledge is known about how a

surface will be viewed, we want to specialize the parameterization to better distribute

49

texture space. This process will give more texels to more visible regions of the surface

allowing for clearer and sharper textures.

The goal is to allocate texture area in such a way that the apparent texel density

is as high as possible. If we were to increase the scale of every triangle in the

texture, the texel density over the surface would increase, but would also increase

the overall number of texels required as the chart would take more room in texture

space. To compare parameterizations fairly, they should contain equal texture area

and normalize the total texture area used by the mesh. This approach allows the

comparison of how well different parameterizations allocate texture space to different

parts of the mesh.

Assuming the visibility for a triangle Vt is computed a priori, as discussed in

Section 4.2.1, we will modify Equation 3.1 in two ways. First, we scale Equation 3.1

by Vt. This modification has the effect of reducing distortion in highly visible regions

and hiding/increasing distortion in less visible regions. Second, we scale each of the

singular values by V
−1/2
t . Previously, the energy metric ED had a minimum when

σ1 = σ2 = 1, but this modification changes the minimum to where σ1 = σ2 =
√
Vt effectively making the ideal area in parameterization space for each triangle

proportional to the visibility. Remember that σ1σ2 is the ratio of areas between the

3D triangle and the 2D parameterization and now with this change to the energy

metric σ1σ2 is equal to V at the minimum. The modified energy is then

Êt = Vt

(
σ2
1

Vt

+
σ2
2

Vt

+
Vt

σ2
1

+
Vt

σ2
2

)
. (4.1)

Note that this energy is similar in nature to [37], where the authors modified

the stretch metric (1/σ2
1 + 1/σ2

2). In the case of importance, measured per triangle,

the signal-specialized parameterization simply becomes a weighted version of the

50

Isometric Weight

Scale Scale & Weight

Figure 4.2: Visualization of the density and distortion of various parameterizations
using a single viewpoint: the unmodified isometric parameterization (Et, top left),
weighting by Vt (EtVt, top right), scaling the singular values (Êt/Vt, bottom left),
and both scaling the singular values and weighting by Vt (Êt, bottom right).

51

stretch metric. However, the authors note that the stretch metric is not scale in-

dependent and becomes zero as σ1, σ2 approach ∞. To combat this problem, the

authors multiply the error by the chart area. In the case of a single polygon, this

area is proportional to σ1σ2, which is equal to the ratio of areas between the 2D and

3D triangles. Multiplying this area by the stretch error yields σ1

σ2
+ σ2

σ1
, which is a

weighted approximation to the conformal MIPS energy [19].

In contrast, the error Êt is more than a weighted form of isometric error. The

weight factor of Vt helps to hide distortion in less visible regions while the individual

scaling of the singular values controls the local scaling of the chart in parametric

space. Figure 4.2 shows the results of our modifications for the viewing model of a

single viewpoint. The upper left image illustrates the unmodified, isometric param-

eterization. When weighting the energy function Et by the visibility Vt, distortion

is reduced in the visible regions; although the distortion increases in less visible re-

gions. Scaling the singular values (bottom left) produces an increased pixel density

over visible regions. However, the distortion of the parameterization can be extreme.

Both scaling the singular values and weighting by visibility (bottom right) produce

high pixel density in visible regions as well as low distortion.

4.2.1 Computing Visibility

To determine how important a point on the surface corresponds to an infinites-

imally small disk, which means that the area of p projected onto the screen is

v(p, r) = np · r. Where np is the surface normal at point p and r is the direction

to the camera. The projected area is maximal when the camera faces the surface

straight-on, and goes to zero when the surface is viewed tangentially. Occlusions

must also be considered during this computation, as other pieces of the surface may

occlude p. When p is occluded it has zero importance to the view and we adapt the

52

Uniform Front half Top ring Side point

Figure 4.3: Different viewing models that we tested our parameterizations with.
View directions are represented as yellow-colored points on a unit sphere.

occlusion testing used in ray-tracing for our purposes.

v(p, r) =

np · r if visible

0 if occluded

We evaluate the visibility Vt of a triangle by integrating surface visibility over a

hemisphere, which is given by

Vt =

∫
p∈tri

∫
r∈hemispherem(r)v(p, r) dr dp∫

p∈tri

∫
r∈hemispherem(r) dr dp

. (4.2)

The view model m(r) weights how often the camera will view the scene from the

direction r. We approximate the integrals in Vt using Monte-Carlo integration by

choosing random points p in the triangle, and shooting random rays r from those

points to the camera.

Viewing models used for testing are shown in Figure 4.3. The cameras in these

models are infinitely far from the object so that the projections onto the camera

are orthographic. The individual viewing models consider different ways an object

may be viewed in specific applications. The uniform viewing model considers an

object is viewable from all directions corresponding to calculating visibility over an

53

Camel Cow Triceratops

Holes Cylinder Sphere Cup

Figure 4.4: The models used to measure texel densities in Figure 4.8.

entire sphere. The front half model corresponds to a restricted view of the object

represented by a region of the sphere. In some applications, the viewing model can

be further restricted to a curve on the sphere like in the top ring viewing model. The

most extreme of the viewing models is that of the side view corresponding to a single

point on the sphere. Calculating visibility from all directions as shown in the uniform

viewing model is equivalent to calculating the global ambient occlusion of points on

the surface and tends to produce similar results to an isometric parameterization.

However, the results can be significantly different for meshes with large cavities, like

the cup shown in Figure 4.4 and its resulting parameterization shown in Figure 4.5,

where the concave regions of the surface have smaller visibility values causing these

regions of the surface to be given less texture space.

Further restricted viewing models, like the front model, requires the viewer to

be in front of the object. This situation might occur for a scene viewed through a

54

Figure 4.5: 2D texture atlases showing the parameterization of the cow, holes, and
cup for different viewing models. The cow is cut down the neck and belly. The holes
model is cut into eight identical corners with a seam on the inside. The cup is cut
into four identical quadrants. The view models are arranged from top to bottom:
isometric, uniform, front, to ring, side view.

55

window, like a display in a store. Valid views in this scenario can be visualized as a

hemisphere in front of the object. Another possibility is that meshes are viewed from

a fixed angle and rotated on a turn-table, as in an isometric drawing. This model,

the top ring, can be found in some video game where the player is limited to just

rotating the character. Because the view is determined from one parameter, valid

views trace a curve over the surface of a sphere. The most restricted case is if a mesh

is viewed from only one direction, such as being viewed from the side in a platforming

game. This view is visualized as a single point on the sphere. Other viewing models

are, of course, possible, but we consider these models as representative since they

encompass the entire sphere, a region, a curve, and a point.

4.3 Results

We tested several example meshes, shown in Figure 4.4, that occlude the view

in different ways. The top row is freely available meshes found on the web, and the

bottom row are a collection of dramatically different shapes that we created. The

camel, cow, and triceratops are composed of a single chart. The mesh with holes

has complex topology and self-occlusion, the cylinder has ripples that cause rapid

fluctuations in visibility, the sphere has a large and smooth change in visibility, and

the cup is strongly self-occluding with the interior of the cup not seen by some

viewing models.

Parameterizations in texture space are shown in Figure 4.5. Each row corresponds

to the viewing model used to calculate the parameterization. For the cow, uniform

visibility produces nearly the same result as the isometric parameterization. Viewing

the cow from the front exaggerates the area of the cow, like the head and front

shoulders which have been given much larger texture space, from that viewpoint

while minimizing the area of regions like the tail, which are less visible. When viewed

56

Isometric Uniform Front half Top ring Side point

Figure 4.6: A mesh with different parameterizations from different views show from
the front, looking down (top row), and the back, looking up (bottom row). Depending
on the viewing model, opposite sides of a mesh may have very different texel densities.

from a ring above the model, the area of the underside of the cow, which contains the

chart seams, is minimized, while the top of the cow or interior of the parameterization

is allowed to grow in texture space. Viewing the model only from the side produces

a highly distorted, but still bijective, parameterization that exaggerates the area of

the cow along the visible region.

The cup is interesting because there is a large difference between the unmodified

isometric parameterization and ours using a uniform distribution of viewing angles.

Specifically, the interior of the cup is difficult to see from most angles. In Figure 4.5,

the cup’s parameterization is shown in the right column. The top parts of the charts

are the interior of the cup, and given a large amount of texture area in the isometric

parameterization. However, the inside of the cup is occluded, causing the uniform

viewing model to shrink the top parts of the charts.

We demonstrate the effect of different viewing models on texel density by showing

the holes mesh with a checkerboard texture from different angles in Figure 4.6. In the

first column, the isometric parameterization has uniform texel density everywhere.

57

Isometric Side point

Figure 4.7: An example of a mesh seen from the side view. The mesh on the left
uses an Isometric parameterization and the mesh on the right is parameterized for
the side view.

The uniform distribution of views shown in the second column looks the same from

the front and back, but the interior is partially occluded and has lower texel density.

In the third column, we optimized for viewing anywhere in the front hemisphere so

that the front and sides have higher texel densities than with the isometric parame-

terization. The back side, however, is unseen and has low density. Similarly, the top

ring view in the fourth column has high densities on the top and low densities on the

bottom. The view from a single point on the side is the most extreme optimization

and has very high texel density on one side, but low density for all five other sides.

Although the exterior in the +x direction has high texel density, the interior facing in

the +x direction is low density, because the view of the interior surface is occluded.

It can be difficult to imagine how a parameterization like the side point distri-

bution looks in practice, so we show the result from the viewpoint for which we

58

optimize in Figure 4.2 and Figure 4.7. Figure 4.2 can be compared with Figure 4.6

where the same parameterization is seen from non-optimal viewing angles. The side

point distribution is the only distribution that optimizes for a single viewing angle

and is therefore the only result we can show in a single image. Although some parts

of the texture are very low resolution, only high-resolution texels are drawn from

this viewpoint. The texel density is clearly higher for our parameterization than for

the isometric parameterization.

To evaluate if our parameterization is effective at increasing texture density in

the view distributions for which we optimize, we measure the average determinant of

the Jacobian of the mapping from texture space to screen space. This measurement

is more robust than measuring the Jacobian from screen to texture because triangles

that project to zero area on the screen would have infinite texel density. The bars

measuring texel densities in Figure 4.8 are arranged in a matrix, where the rows

correspond to the view distributions we sample from and the columns correspond

to the views for which we optimize our parameterization. Densities are reported

relative to the unmodified, isometric parameterization. Hence, improved density

yields a number greater than one. Because results depend on the model, we show the

results for seven different models in all combinations of views and parameterizations.

Higher densities are better, and a clear trend is that densities are greater than one

and highest on the diagonal, which demonstrates that optimizing for a viewing model

increases the texel density for that viewing model.

Although our method outperforms the unmodified isometric parameterization

when we optimize for a predefined view model, isometric parameterization performs

the best when the view model is not known. This effect is part of a larger trend

where the benefit increases with the restrictiveness of the viewing model. From left

to right in Figure 4.8, the view models are more specialized, up to the extreme case

59

Figure 4.8: Graphs showing the visible texel density of our parameterizations relative
to the texel density of Isometric parameterization. Each graph shows the average
density of pixels from different distributions of views. Clusters of bars are labeled
below by the view type the mesh parameterization was optimized for.

60

Figure 4.9: The Eurographics logo mapped onto the cow via an isometric parameter-
ization (left), and our visibility-aware parameterization (right) from the side viewing
model. From top to bottom we downsample the texture successively by a factor of
two which is shown on the outside columns of the image.

61

of a side view from a single angle. Parameterizing for the side view performs the

best of any method when viewed from the side, but the worst for any other viewing

model. We can also see that the uniform viewing model tends to have similar results

to isometric, because most meshes do not have a large degree of self-occlusion. The

cup is the only mesh we tested that had significant benefits from parameterizing for

uniformly distributed viewing angles, because the inside of the cup is occluded from

many angles.

Figure 4.9 demonstrates the benefit of increased texel density using our method.

In this example, the texture from an isometric parameterization is resampled to cre-

ate a texture using our visibility aware parameterization. Both textures contain the

same number of texels except ours has much higher resolution in the visible regions.

Downsampling the images by a factor of 2 and 4 demonstrates much higher image fi-

delity with our parameterization. Hence, the visibility aware parameterization leads

to higher quality images or, conversely, similar quality with smaller textures, which

requires less storage and bandwidth.

Our error metric in Equation 4.1 and optimization prevents the parameterization

from folding since Êt → ∞ as min(σ1, σ2) → 0. Adding the boundary barrier

term from the previous chapter guarantees charts will not intersect and produces a

bijective map. Figure 4.10 demonstrates the bijective nature of our parameterization.

In this case, two of the charts have one side that is more visible from the selected

viewing model than the other. The optimal solution is to increase the arc length

of the visible chart boundary and minimize the arc length of the opposite, invisible

boundary, which leads to a curling effect. Our method ensures that the resulting

parameterization does not fold or intersect itself while being able to naturally curl.

62

Figure 4.10: Demonstration of the bijective property for a parameterization opti-
mized for the side-view.

63

5. CONCLUSIONS

This dissertation has presented a generalized optimization framework that pro-

duces globally bijective parameterizations that optimize various injective distortion

metrics. To further improve the parameterization’s distortion, we allow for the

boundaries of the parameterization to be freed during the optimization removing

the need to constrain or modify any of the boundaries. To ensure there are no global

fold overs, we introduce a barrier energy function to allow for global bijective pa-

rameterizations. We introduce a singularity aware optimization framework allowing

for the explicit computation of singularities of energy metrics to guarantee that our

interior point approach remains in a valid solution space. Adding the additional

barrier energy term to the optimization guarantees that the parameterizations are

bijective and produce very similar parameterizations in terms of overall appearance

and distortion.

Texture space is limited, and so, the space should be used preferentially for im-

portant parts of a mesh. We propose an automated method for determining which

parts of a mesh are most important based on how often they are seen. If restrictions

are known beforehand on how a mesh will be viewed, we can achieve a significant

increase in perceived texture quality. The idea of weighting importance by visibility

can be combined with other weighting metrics. For example, visibility could be com-

bined with texture detail, as in signal-specialized parameterization, if the texture is

known before calculating a parameterization. It may also be useful to allow artists

to paint the relative importance of triangles on a mesh when importance cannot be

algorithmically determined. For example, when parameterizing a mesh of a person,

the face of the person should have higher weight than any other part of the mesh,

64

Figure 5.1: A failure case for the method. From left to right: a space filling curve
on the surface of a cylinder, Tutte’s embedding with a zoom-in below to show the
poor triangulation, two intermediate steps during the optimization, our result with
default parameters taking 49.6 seconds with an average error 13.238 and max 17.223,
and the result using a lower convergence tolerance taking 8472.14 seconds with an
average error of 4.210 and max 4.213.

although the visibility is similar.

5.1 Limitations

This bijective parameterization technique uses a non-convex energy function.

Given this fact, there is no guarantee of finding the global minimum of the given

distortion energy. However, it is important to note we start all of the optimiza-

tions with Tutte’s parameterization. While this initial starting position is bijective

and quick to compute, it may contain significant distortion as many of the triangles

can be close to a degenerate state, and is typically quite far from the minimum the

optimization finds. Even though, we start all of our examples we tested for this

dissertation at a Tutte’s parameterization, the optimization for all of our practical

examples tends to find very reasonable solutions that appear to be close to optimal

solutions.

To determine if the optimization can indeed get stuck in local minimum we con-

struct a difficult example in Figure 5.1 as a failure case. In this example, we wrap a

polygonal Hilbert space filling curve around a cylinder. Given the cylinder is a ruled

65

surface, the global minimum of the parameterization should be an unwrapped space

filling curve with no distortion. The starting configuration of Tutte’s embedding is

far from the global minimum and every triangle embedded in the circle is almost de-

generate producing a very high error. The figure shows several intermediate stages of

the optimization before the optimization terminates in the second to the last image,

taking 49.6 seconds. Obviously, at this point the parameterization is not the global

minimum although the optimization made significant progress from the starting con-

figuration. To verify the optimization is actually stuck in a local minimum using our

default convergence parameters, we reduced the convergence tolerance and contin-

ued the optimization. The shape on the right is the local minimum our optimization

finally reached after 8472 seconds. At this point the optimization is truly stuck al-

though it stopped extremely close to the global minimum, but we could not lower the

convergence tolerances any more. However, in the far less challenging cases in the

rest of the paper, lowering our convergence tolerance did not significantly affect the

parameterization. In addition, despite starting from the distorted initial parameteri-

zation provided by Tutte’s embedding, all of the shapes we have tried have generated

low distortion mappings comparable to other parameterizations methods with the

important exception that we always create bijective maps.

Additionally, The parameterizations produced by our method may be more dis-

torted than an unmodified isometric parameterization, especially in the case of very

restrictive viewing models. However, our parameterizations purely using visibility

may still be useful in compressing the space used by textures because the texture

density is better distributed giving more texture space to more visible regions of the

surface.

66

5.2 Future Work

In terms of future work, the method could greatly benefit from a better start-

ing position other than the Tutte’s embedding. Unfortunately, few methods can

currently guarantee a bijection without user intervention. Questions to research in-

clude, are their better embedding techniques like [12] which may take additional

computation to produce, but in the end improve the amount of iterations required

for convergence? Are there better starting shapes to constrain the initial boundary

to instead of just a circle? In this work, we choose a circle because it is a symmetric

choice where no decisions must be made about what parts of the boundaries are

located where. For example, if we constrain the boundary to a square, there is now

the problem of assigning which vertices are constrained in the corners of the square.

Another possibility and common strategy to improve the speed of parameteri-

zations is the use of multi-resolution methods [19]. While the method is relatively

fast for smaller charts; for very large charts consisting of hundreds of thousands or

even millions of vertices, better optimization approaches are needed. Not only are

there challenges with deciding which type of hierarchical approach to take, whether

we use a simplification style hierarchy, or some type of spatial decompositioning, we

must adapt the multi resolution techniques to guarantee bijectivity. For example,

maintaining a bijective map as a simplification structure re-expands to the full reso-

lution mesh is quite challenging with respect to boundary intersections and injective

triangle flips.

Another area of future research is to incorporate other properties into param-

eterizations using barrier energy functions to guarantee that they are upheld. For

example, adding the requirement that the parameterization be seamless [34] would

be useful for adding multiple applications to the resulting parameterization such as

67

requadrangulation. Such a modification would tie the optimization of all charts to-

gether since corresponding boundary edges would be required to be the same length

and a multiple of a 90 degree rotation. Such methods can rely on integer con-

straints [3] and are difficult optimizations even without the injective and bijective

constraint.

The idea of weighting importance by visibility can be combined with other weight-

ing metrics. For example, visibility could be combined with texture detail, as in

signal-specialized parameterization, if the texture is known before calculating a pa-

rameterization. It’s also possible to incorporate geometry information, like geometry

complexity. To allow even further control over the resulting parameterization it may

be useful to allow artists to paint the relative importance of triangles on a mesh

when importance cannot be algorithmically determined. For example, when param-

eterizing a mesh of a person, the face of the person should have higher weight than

any other part of the mesh, although the visibility is similar.

Finally, this dissertation makes the assumption that the meshes are static. In

reality, many surfaces are animated. It is unlikely that using the visibility from a

single pose will produce optimal results for all poses. To incorporate animations into

the importance weighting we would need to sample the visibility through the time

of the animation. Future work would include incorporating time into the impor-

tance weighting for both self occlusions and possibly extra scene interactions with

additional objects.

68

REFERENCES

[1] Noam Aigerman, Roi Poranne, and Yaron Lipman. Lifted bijections for low

distortion surface mappings. ACM Transactions on Graphics, 33(4):69:1–69:12,

2014.

[2] David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif

Kobbelt. Integer-grid maps for reliable quad meshing. ACM Transactions on

Graphics, 32(4):98:1–98:12, 2013.

[3] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangu-

lation. ACM Transactions on Graphics, 28(3):77:1–77:10, 2009.

[4] Brent Burley and Dylan Lacewell. Ptex: Per-face texture mapping for produc-

tion rendering. In Eurographics Symposium on Rendering, pages 1155–1164,

2008.

[5] Nathan A. Carr and John C. Hart. Painting detail. In ACM SIGGRAPH, pages

845–852, 2004.

[6] Colin Cartade, Rémy Malgouyres, Christian Mercat, and Chafik Samir. A simple

and flexible mesh parameterization method. In Proceedings of the International

Conference on Combinatorial Image Analysis, pages 157–167, 2011.

[7] Edwin Earl Catmull. A Subdivision Algorithm for Computer Display of Curved

Surfaces. PhD thesis, 1974.

[8] Zhonggui Chen, Ligang Liu, Zhengyue Zhang, and Guojin Wang. Surface pa-

rameterization via aligning optimal local flattening. In Symposium on Solid and

Physical Modeling, pages 291–296, New York, NY, USA, 2007. ACM.

69

[9] P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization

method. In Proceedings of the International Meshing Roundtable, pages 201–213,

2003.

[10] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameterizations

of surface meshes. In Computer Graphics Forum, volume 21, pages 209–218,

2002.

[11] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Louns-

bery, and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In

Proceedings of the Annual Conference on Computer Graphics and Interactive

Techniques, pages 173–182, 1995.

[12] Michael Floater. Parametrization and smooth approximation of surface trian-

gulations. Computer Aided Geometric Design, 14:231–250, 1997.

[13] Michael Floater and Kai Hormann. Parameterization of triangulations and un-

organized points. In Principles of Multiresolution in Geometric Modelling, pages

127–154. Springer, 2001.

[14] Michael Floater and Kai Hormann. Surface parameterization: a tutorial and

survey. In Advances in Multiresolution for Geometric Modelling, Mathematics

and Visualization, pages 157–186, 2005.

[15] Anders Forsgren, Philip E. Gill, and Margaret H. Wright. Interior methods for

nonlinear optimization. SIAM Review, 44(4):525–597, 2002.

[16] Xiao-Ming Fu, Yang Liu, and Baining Guo. Computing locally injective map-

pings by advanced mips. ACM Transactions on Graphics, 34(4):71:1–71:12, July

2015.

70

[17] Xianfeng Gu and Shing tung Yau. Computing conformal structures of surfaces.

Communications in Information and Systems, 2:121–146, 2002.

[18] Steven Haker, Sigurd Angenent, Allen Tannenbaum, Ron Kikinis, Guillermo

Sapiro, and Michael Halle. Conformal surface parameterization for texture map-

ping. IEEE Transactions on Visualization and Computer Graphics, 6(2):181–

189, 2000.

[19] Kai Hormann and Günther Greiner. MIPS: An efficient global parametrization

method. In Curve and Surface Design: Saint-Malo 1999, pages 153–162. 2000.

[20] Kai Hormann, Bruno Lévy, and Alla Sheffer. Mesh parameterization: Theory

and practice. In ACM SIGGRAPH Courses, 2007.

[21] Konstantine. Iourcha, Krishna. Nayak, and Zhou Hong. System and method for

fixed-rate block-based image compression with inferred pixel values. US Patent

5956431, 1999.

[22] Stefan Jeschke, David Cline, and Peter Wonka. Rendering surface details with

diffusion curves. In ACM SIGGRAPH Asia, pages 117:1–117:8, 2009.

[23] Jukka Jylänki. A thousand ways to pack the bin-a practical approach to two-

dimensional rectangle bin packing. 2010.

[24] Liliya Kharevych, Boris Springborn, and Peter Schröder. Discrete conformal

mappings via circle patterns. In ACM SIGGRAPH Courses, SIGGRAPH ’05,

New York, NY, USA, 2005. ACM.

[25] Ulf Labsik, Kai Hormann, and Günther Greiner. Using most isometric pa-

rameterizations for remeshing polygonal surfaces. In Proceedings of Geometric

Modeling and Processing, pages 220–228, 2000.

71

[26] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares

conformal maps for automatic texture atlas generation. ACM Transactions on

Graphics, 21(3):362–371, 2002.

[27] J. Liesen, E. De Sturler, Y. Aydin, and C. Siefert. Preconditioners for indefinite

linear systems arising in surface parameterization, 2001.

[28] Yaron Lipman. Bounded distortion mapping spaces for triangular meshes. ACM

Transactions on Graphics, 31(4):108:1–108:13, 2012.

[29] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. A

local/global approach to mesh parameterization. In Symposium on Geometry

Processing, pages 1495–1504, 2008.

[30] Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. Spectral con-

formal parameterization. In Symposium on Geometry Processing, pages 1487–

1494, 2008.

[31] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathe-

matics of Computation, 35(151):773–782, 1980.

[32] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and

their conjugates. Experimental Mathematics, 2:15–36, 1993.

[33] Roi Poranne and Yaron Lipman. Provably good planar mappings. ACM Trans-

actions on Graphics, 33(4):76:1–76:11, 2014.

[34] Budirijanto Purnomo, Jonathan D. Cohen, and Subodh Kumar. Seamless tex-

ture atlases. In Symposium on Geometry Processing, pages 65–74, 2004.

[35] Sam Roweis. Levenberg-marquardt optimization. Notes, University Of Toronto,

1996.

72

[36] Patrick David Sanan. Geometric elasticity for graphics, simulation, and com-

putation. PhD thesis, Caltech, 2014.

[37] Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe. Signal-

specialized parametrization. In Proceedings of the Eurographics Workshop on

Rendering, pages 87–98, 2002.

[38] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture

mapping progressive meshes. In ACM SIGGRAPH, pages 409–416, 2001.

[39] Ryan Schmidt. Stroke parameterization. Computer Graphics Forum, 32(2):255–

263, 2013.

[40] Ryan Schmidt, Cindy Grimm, and Brian Wyvill. Interactive decal compositing

with discrete exponential maps. In ACM SIGGRAPH, pages 605–613, 2006.

[41] T. Schneider, K. Hormann, and M. Floater. Bijective composite mean value

mappings. In Symposium on Geometry Processing, SGP ’13, pages 137–146.

Eurographics Association, 2013.

[42] John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. Inter-surface

mapping. In ACM SIGGRAPH, pages 870–877, 2004.

[43] Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-

Hornung. Locally injective mappings. In Symposium on Geometry Processing,

pages 125–135, 2013.

[44] Alla Sheffer and Eric de Struler. Surface parameterization for meshing by tri-

angulation flattening. In Proceedings of the International Meshing Roundtable,

pages 161–172, 2000.

[45] Alla Sheffer and Eric de Sturler. Parameterization of faceted surfaces for meshing

using angle-based flattening. Engineering with Computers, 17(3):326–337, 2001.

73

[46] Alla Sheffer and John C. Hart. Seamster: Inconspicuous low-distortion texture

seam layout. In Proceedings of the IEEE Conference on Visualization, pages

291–298, 2002.

[47] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bogomyakov.

Abf++: Fast and robust angle based flattening. ACM Transactions on Graph-

ics, 24(2):311–330, 2005.

[48] Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh parameterization meth-

ods and their applications. Foundation and Trends in Computer Graphics and

Vision, 2(2):105–171, 2006.

[49] R. Vikram Pratap Singh and Anoop M. Namboodiri. Efficient texture mapping

by homogeneous patch discovery. In Proceedings of the Indian Conference on

Computer Vision, Graphics and Image Processing, pages 37:1–37:8, New York,

NY, USA, 2012. ACM.

[50] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Sym-

posium on Geometry Processing, pages 109–116, 2007.

[51] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski.

Bounded-distortion piecewise mesh parameterization. In Proceedings of the Con-

ference on Visualization, pages 355–362, 2002.

[52] Boris Springborn, Peter Schröder, and Ulrich Pinkall. Conformal equivalence of

triangle meshes. ACM Transactions on Graphics, 27(3):77:1–77:11, 2008.

[53] Geetika Tewari, John Snyder, Pedro V. Sander, Steven J. Gortler, and Hugues

Hoppe. Signal-specialized parameterization for piecewise linear reconstruction.

In Symposium on Geometry Processing, pages 55–64, 2004.

74

[54] William T. Tutte. How to draw a graph. Proceedings of the London Mathematical

Society, 13(3):743–768, 1963.

[55] Ofir Weber and Denis Zorin. Locally injective parametrization with arbitrary

fixed boundaries. ACM Transactions on Graphics, 33(4):75:1–75:12, 2014.

[56] Philip Wolfe. Convergence conditions for ascent methods. SIAM Review,

11(2):226–235, 1969.

[57] Cem Yuksel, John Keyser, and Donald H. House. Mesh colors. ACM Transac-

tions on Graphics, 29(2):15:1–15:11, 2010.

[58] Rhaleb Zayer, Bruno Lévy, and Hans-Peter Seidel. Linear angle based parame-

terization. In Symposium on Geometry Processing, pages 135–141, 2007.

[59] Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel. Setting the boundary

free: A composite approach to surface parameterization. In Symposium on

Geometry Processing, pages 91–100, 2005.

[60] Rhaleb Zayer, Christian Rssl, and Hans peter Seidel. Variations on angle based

flattening. In Proceedings of Multiresolution in Geometric Modelling, pages 285–

296, 2003.

[61] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Feature-based sur-

face parameterization and texture mapping. ACM Transactions on Graphics,

24(1):1–27, January 2005.

[62] Eugene Zhang and Greg Turk. Visibility-guided simplification. In Proceedings

of the IEEE Conference on Visualization, pages 267–274, 2002.

[63] Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. Iso-charts:

Stretch-driven mesh parameterization using spectral analysis. In Symposium on

Geometry Processing, pages 45–54, 2004.

75

