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ABSTRACT 

 

A reliable and cost-effective way to protect the hydrocarbon production modules 

in harsher environments has been crucial to the success of offshore oil and gas projects. 

Nevertheless, the excessive tension variations in the top-tensioned risers (TTRs) can 

lead to catastrophic structural integrity issues. Magneto-rheological (MR) damper is a 

controllable device which can reduce the tension variations. However, the integration 

and behaviors of MR damper are remained as significant challenge for floating 

platforms. The main purpose of this research is to develop numerical analysis tool to 

analyze the specific characteristics of MR damper in offshore structural dynamics and 

interactively changing the structural behaviors correspond to various external loadings. 

The research methodologies were initiated by modeling the hydro-pneumatic 

tensioner (HPT) of TTR in component-level, which included hydro-pneumatic 

components and viscous fluid frictional effect. The HPT model was numerically 

incorporated with MR damper. This numerical tool combined with CHARM3D, a fully-

coupled time-domain dynamic analysis program for floating bodies, mooring lines, and 

risers. The responses of combined numerical model were simulated by coupling with 

tension leg platform (TLP) and dry-tree semi-submersibles (DTS), respectively, under 

100-year extreme condition and 1000-year survival condition of central Gulf of Mexico 

(GOM).  The MR damper was controlled by using semi-active controllers that were 

developed in fuzzy-logic and skyhook schemes. Mathieu’s stability analysis was utilized 

to predict TTR’s parametric stability.  
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The results manifested that total required stroke length in DTS can be reduced by 

as much as 0.963 meter in the studied case after MR damper was incorporated with 

semi-active fuzzy logic controller. By providing damped and deformed contact surface, 

MR damper was able to redistribute the excessive tension in the tensioner cylinders 

during extreme bottom-out motion. Moreover, the dynamic tension variations of TTR 

can be suppressed by 94 percent in the case of TLP. In conclusion, these results are 

beneficial to assure service life span of TTR’s tensioner and moderate the relevant 

operational expenditure (OPEX). In addition, the reductions of the total required stroke 

length and tension variations in DTS have enabled the platform designer to be more 

flexible in the sizing of the DTS and TTR tensioners. 
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1. INTRODUCTION 

 

1.1 Background and Literature Reviews 

The exploration and extraction of offshore hydrocarbon as one of the significant 

energy sources has contributed large amounts of national revenue. Offshore floating 

structures are designed and treated separately from other existing land-based buildings 

due to the surrounded environments are the open sea and therefore these structures are 

prompted to harsher environment impacts and loadings, such as from wind, wave, and 

ocean current. Typically, the servicing life span of an offshore floating structure is more 

than twenty years without any significant structural failure. Moreover, the floating 

structures must be able to survive during the natural extreme conditions, the Hurricane, 

for instance, to prevent from catastrophic disaster and irreversible environmental and 

ecological impacts. Hence, the integrity of an offshore floating structure must comply 

strictly with the standards and regulations enforced by the Minerals Management 

Services (MMS), the Bureau of Ocean Energy Management, Regulation and 

Enforcement (BOEMRE), American Petroleum Institute (API), and classification 

societies. Nevertheless, there are currently stricter revised environmental criteria in the 

requirements of structural integrity of offshore platform. The dynamic motion control 

and integrity management of the offshore floating platforms in the United States are 

critical at this point, especially after this phase of high reoccurrences of 1000-year 

Hurricane, such as Katrina, Rita, and Ike, and the structural aging of conventional 
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floating structures and facilities. These risk factors increase the possibilities of the 

accident and the occurrence of catastrophic disaster.  

On the other hand, the newly developing offshore oil and gas fields to deeper 

water, as shown in Fig. 1.1, lead to different challenges from the previous experiences in 

the floating platform applicability, dynamic responses, structural integrity, and safety 

management. The production floaters have been increasing operational water depth from 

nearly 1,800 m (5,906 ft) to nearly 2,500 m (8,202 ft) over the last ten years. If there was 

a reliable and cost-effective way to protect the hydrocarbon production modules (such as 

marine risers) in unfamiliar harsher environments, the safety of these structures could be 

more assured while simultaneously providing the expansion of offshore water depth 

limits to more unconventional areas, with more effective expenditures. 

 

 

Figure 1.1 Worldwide progression of water depth capabilities for offshore drilling and 
production (Courtesy of Wood Group Mustang, and PennWell Corporation). 
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An increasing number of floating offshore production platforms are planned, 

designed, and built, as illustrated in Fig. 1.2. The main players are floating production 

storage offloading unit (FPSO), semi-submersible, tension leg platform (TLP), and Spar. 

With offshore oil field becoming deeper, being moved out further at sea and subjected to 

ever greater wind and wave forces, it is necessary to analyze the dynamics and minimize 

the responses of these structures (Colwell and Basu, 2009). According to Patil and 

Jangid (2005), the wave-induced dynamic force is one of the most important excitations 

to be dealt with in the design of offshore structures. Furthermore, the coupled motion 

between the TLP platform and the additional wind-wave-current loadings that induce the 

vibration in time domain and frequency domain become significant in order to provide 

an appropriate dynamical model for response mitigation.  

 

 

Figure 1.2 Growth in floating production system (1975-2015) (Courtesy of World 
Energy Report LLC, and PennWell Corporation). 
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One of the most attractive production selection is the dry-tree solution where the 

production system, such as blow-out preventor (BOP)-stack and production tree can be 

located on the platform, as illustrated in Fig. 1.3. The intervention and maintenance of 

the production tree can be directly accessed during the operation (instead of using subsea 

remote-operating vehicle (ROV) and maintenance vessel to access the production tree 

located on the seabed) which has significantly reduced the operational expenditures 

(OPEX). However, the dry-tree production system, which is accomplished with top-

tension risers (TTRs), is strictly restrained by the vertical motions of the host platform. 

Therefore, the dry-tree technology is currently well-proven only in TLP and Spar type 

platforms.  

 

 

Figure 1.3 Types of top tension risers (TTRs) dry-tree interface (Courtesy of Technip, 
and PennWell Corporation). 
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The direct-acting hydro-pneumatic (HP) tensioning systems have become 

dominant in the more recent offshore field developments. The direct-acting tensioners 

(DATs) are designed for relatively short strokes and therefore this system is 

predominately utilized in tension-leg platform (TLP) due to the low heave characteristics 

of the hull, combined with the relatively small riser length changes associated with small 

heave motion and set down due to the parallelogram arrangement formed by the 

platform, tendons, risers, and the seafloor well pattern (Crotwell and Yu, 2011). On the 

other hand, the ram-style (push style) tensioners with long stroke are to be considered in 

the newly developed dry-tree Semi-submersible concepts (Xiang et al., 2014). The 

dynamic interaction between the TLP hull and its tendon/riser system plays a significant 

role in the functionality and safety of the system (Kanda et al., 1998; Kim et al., 2001). 

As the water depth gets deeper and deeper and the inertia effect increases, the interaction 

effect greatly influences body and risers motions (Kim, 2004). One of the essential 

factors to consider is the riser tensioner stroke lengths increasing rapidly with larger 

vessel offsets and heave displacements in the survival conditions of ultra-deep water 

(Koos, 2013). A typical top tension riser (TTR) system with the TLP host floater is 

shown in Fig. 1.4.  

For a safer and more reliable design of a TLP in such large depths, the TLP 

heave-pitch responses and stroke of top tension riser (TTR) at its top joint are very 

critical issues and need to be seriously considered. In ultra-deep seas, the mass and 

length of tendons and risers become greater; thus, an accurate estimate of the damping 

and inertia effects of tendons and risers on the hull motions can only be achieved by 
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fully coupled analysis programs (Ran, 2000). Kim et al. (2001) have conducted 

nonlinear hull/tendon/riser coupled dynamic analyses of offshore platforms for the first-

order and second-order sum- and difference-frequency wave loads and other 

hydrodynamic coefficients.  

 

 

Figure 1.4 Top tension risers (TTRs) and steel catenary risers (SCRs) with TLP 
(Courtesy of Wood Group Kenney, and PennWell Corporation). 

 

Motion control is a critical part of mitigating the excessive dynamical responses 

of the modules in floating structures, such as the riser system. The interactive control of 

the motion of production modules can greatly improve the efficiency and reliability of 
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offshore hydrocarbon extraction and reduce the risk of system failures. Moreover, 

offshore floating structures are prompted to long term periodically excitation forces, 

there are many hidden defects, such as metallically fatigue, could be prevented. 

Mitigating the dynamic responses of production units in TLP and semisubmersible will 

require enormous efforts and significant breakthrough in real-time monitoring and 

structural integrity management; but it would do much to direct the offshore structures 

toward a safer and more reliable operational limits. If there is a reliable and cost-

effective way to monitor the real-time condition and control the vibration of platform 

and its operating modules, such as the stroke of drilling riser, the risk of system failures 

can be reduced.  

Compared to the TLP and Spar, there is an increasing interest from the industry 

for drilling with high-pressure risers and surface BOPs from the semi-submersible 

platform units (Zeng et al., 2013), this concept is named as Dry-Tree Semisubmersible 

(DTS), as illustrated in Fig. 1.5. The DTS has the advantages of (1) easy access to 

production tree for operations, maintenance, and inspections; (2) direct vertical access 

for drilling, completion, and workover operation; (3) improve recovery of hydrocarbons 

(Poll et al., 2013). Xiang et al. (2014) presented the overall design of a TTR system for a 

DTS interface including ram style tensioner, riser conductor, and riser top assembly 

design with keel joint. Zeng et al. (2013) discussed the development of DTS by 

addressing the total value and efficiency of the integrated system during entire life cycle 

of the product, including design, construction, integration, and installation, operation, 

and decommission, as well as component reliably and safety.  
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Nevertheless, the motions of typical semi-submersible platforms are not 

compatible with existing dry tree systems. All dry tree interface system, as illustrated in 

Fig. 1.3, must allow the TTR to move vertically relative to the hull within the allowable 

stroke limits. The amount of required stroke depends on the platform heave motion, 

offset, set-down, thermal growth of the risers, pressure growth across the riser wall, draft 

changes of the hull, deflection of the riser in the water column, and so on (Poll et al., 

2013). 

 

 

Figure 1.5 Semi-submersible with dry-tree interface (Courtesy of Aker Solution, and 
PennWell Corporation). 
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Recently, the latest development trend of DTS concepts includes both directions 

and trade-off in between the DTS heave motion and TTR stroke limits. However, the 

solution will be more complex when it involved the integration of these two systems (a 

deeper draft Semi and a longer stroke tensioner) into a fully coupled system. As riser 

tensioners increase in stroke length and capacity to accommodate high riser loads, well 

bay configurations and tensioner interfaces have a significant impact on the design of the 

Semi platform (Koos, 2013). The DTS hulls were configured considering the balance 

between the tensioner stroke-load characteristic, larger vessel offsets, platform heave 

displacements, hull draft, well-bay arrangement, quayside integration, transportation, 

installation, and updated Regulatory requirements for survival conditions (Koos, 2013; 

Xiang et al., 2014). The DTS heave motion is predominantly governed by its hull draft. 

An increase in the hull draft causes a commensurate reduction in heave motion and 

required tensioner stroke range (Zeng et al., 2013). As results, Zeng et al. (2013) 

proposed a deep draft DTS comprises a two-axis symmetrical hull with draft in the range 

of 100 ft to 155 ft (30.48 m to 47.24 m) to accommodate the tensioner stroke in the range 

of 35 ft to 45 ft (10.67 m to 13.72 m). Poll et al. (2013) designed a Paired-Column 

Semisubmersible Hull (PC-Semi) with draft of 175 ft (53.34 m) to accommodate the 

tensioner stroke of 28 ft (8.53 m). In addition, Bian and Xiang (2013) also suggested a 

DTS hull with the draft of 150 ft (45.72 m) to support the tensioner stroke within  35 ft 

(10.67 m), all under the Central GOM 1000-year survival condition with allowable 

occasional tensioner bottom out.  
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1.2 Objectives and Scopes 

The main objective of this research is to develop a coupled dynamic analysis tool 

for the TLP and DTS, incorporated with magneto-rheological (MR) dampers under 

various conditions. The specific characteristic of MR dampers in alternating the damping 

force exerted into the structural dynamics has demonstrated a great potential to 

interactively changing the structural behaviors correspond to various external loadings, 

and reduce the motion of the controlled modules, which is the top-tensioned risers 

(TTRs) in this research. As mentioned earlier, if there was a reliable and cost-effective 

way to protect the hydrocarbon production modules in unfamiliar harsher environments, 

the safety of these structures could be more assured while simultaneously providing the 

expansion of offshore water depth limits to more unconventional areas, with more 

effective expenditures.  

The innovation in this research is inspired from the successful engineering 

applications of MR dampers in land-based buildings as isolators against the earthquake 

and large-amplitude vibration. The system integration of MR dampers with the floating 

platforms is expected beneficial in the structural integrity management and to improve 

survivability in harsher environments, as per forecasted from the experiences of its 

applications in the land-based buildings. However, the implementation of MR dampers 

in offshore platform is currently very limited, and most of them concentrated on the 

fixed platforms (Ou et al., 2007; Yu et al., 2011; Wang et al., 2012) to the best of the 

author’s knowledge. Hence, an effective analysis tool for studying the applications of 

MR dampers in the floating platforms, equipment, and oil and gas production modules is 
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significant. For this reason, the first part of this research is focusing on the robust 

dynamic simulation of a top tension riser incorporating a MR damper system under 

extreme conditions. 

 

 

Figure 1.6 Research road map. 
 

The main issues of installing TTR into TLP and DTS are different, as illustrated 

in Fig. 1.6. Therefore, the functions of MR dampers to be incorporated into both 

platforms are different. In the TLP platform, since the heave motion is restrained by the 

high-stiffed tendons, the axial tension variations of TTR caused by the platform set-

down will be studied in more details. Since the TTR is originally designed for the host 

platform of TLP, the developed analysis tools to calculate the TTR tension are available. 

However, most of these tools were primarily used pneumatic-based equation to 
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approximate the tension variations of a hydro-pneumatic (HP) tensioner system, where 

the viscous fluid frictional effects in the HP tensioner system is not considered in the 

calculation of tension variations. In this research, a more comprehensive formulation, 

that considered the hydraulic viscous fluid effects as well, is developed to improve the 

reliability of TTR tension under certain circumstances. The exertion of excessive tension 

variations in the tensioner system leads to the necessity of reduction of tension variations 

which can be achieved by using magneto-rheological (MR) damper. The specific 

characteristics of MR damper in alternating the damping forces have great potential to 

interactively suppress the tension variations corresponding to various sea conditions. 

The DTS is potential to enlarge the issues of TTR which can be negligible in the 

application in the TLP. The DTS is vulnerable to larger heave motion; therefore deeper 

draft hull and long stroke tensioner are required for the reality of this concept. Safety 

prevention on the production modules during survival conditions is in critical concern. 

The MR damper will be incorporated with the Ram-style tensioner to provide more 

flexibility to the DTS developers in handling the trade-off for the dilemma of tensioner 

stroke / platform draft, and additional stiffness / platform motion. The research 

objectives in this dissertation include: 

(i) Dynamic coupling between numerical MR damper and CHARM3D; 

(ii) Development of coupled analysis tools for MR damper with the TLP and 

DTS platform; 

(iii) Implement the MR damper to reduce the riser tension variations; 

(iv) Integrate the MR damper to improve DTS survivability; 
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(v) Mathieu’s stability analysis for the riser. 

The merit of this research will be shown with the advancement in the structural 

integrity management and motion mitigation in the offshore structures. The cutting-edge 

knowledge regarding the dynamic response and structural integrity of TTR dry-tree 

interface will allow the extraction of offshore hydrocarbon to be operated more 

effectively within the requirements set forth by the authorities. The business impacts of 

this work can be seen in the wide variety of locations that this technology can be 

utilized. This research allows many offshore structures to benefit from a cost-effective 

and reliable solution with more effective management of existing structures and 

equipment. Since offshore hydrocarbon extraction is inherently a multi-disciplinary 

field, this research will also have a direct impact on the work being performed in the 

fields of ocean engineering and mechanical engineering and indirect effect on the work 

of environmentalists and oceanographers. Moreover, potential technology implication to 

other offshore structures and relevant engineering disciplines enable a huge 

enhancement in effectively motion control of offshore structures.  
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2. DYNAMICS OF THE OFFSHORE FLOATING PLATFORM, RISERS, AND 

MOORING LINES 

 

2.1 Introduction 

In this Section, the wave loads, dynamic responses, finite modeling, and time 

domain solution scheme of the offshore floating platform, risers and mooring lines in the 

CHARM3D are reviewed. The CHARM3D is a fully-coupled time-domain dynamic-

analysis program for floating bodies, mooring lines/tendons, and risers developed by 

Texas A&M University (Ran, 2000; Kang et al., 2014).  

There must be acknowledged that the CHARM3D were progressively developed 

by the researchers leaded by Professor Moo Hyun Kim in Texas A&M University (Ran, 

2000; Kim et al., 2001; Tahar and Kim, 2003; Yang and Kim, 2010; Bae, 2013). Hence, 

part of this Section which discusses the theoretical fundamentals in CHARM3D is 

highly relied on the previous works from Ran (2000) and Bae (2013).  

 

2.2 Wave Theory 

The wave theory in CHARM3D is derived from a Laplace’s equation with the 

assumptions of incompressible, inviscid and irrotational properties, as stated (Ran, 

2000): 

2 0    (2.1)

To solve this Laplace equation, water waves must satisfy the proper kinematic 

and dynamic boundary conditions on the free surface. For the kinematic boundary 



 

15 

condition, water particles on the free surface must remain on the free surface, the 

formulation can be stated as: 

0u v
t x y t

     
   

   
 at  , ,z x y t  

(2.2)

where  , ,x y t is the wave elevation on the free surface. For the dynamic boundary 

condition, the pressure along the free surface must be equal to the constant atmospheric 

pressure, and can be formulated as: 

 2 2 21
0

2 x y z gz
t

 
     


  at  , ,z x y t  

(2.3)

 For bottom boundary condition, the velocity of water particle in vertical direction 

is zero: 

0
z





 at z d   

(2.4)

where d is water depth. This boundary condition indicates that the water particles cannot 

penetrate the sea bottom. 

 There is noteworthy that the exact solution of above Laplace equation is difficult 

to solve due to the nonlinear terms of the free surface boundary conditions. Therefore, 

the perturbation method with small wave amplitude assumption is used to obtain an 

approximated solution of a certain order of accuracy (Ran, 2000). The first order 

velocity potentials and free surface elevations are stated as: 

     1 cos sincosh
Re

cosh
i kx ky tk z digA

e
kd

  


  

   
 

 
(2.5)
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   1 cos cos sinA kx ky t       (2.6)

and the second order velocity potential and free surface elevation are defined as: 

     2 2 cos 2 sin 22
4

cosh 23
Re

8 sinh
i kx ky tk z d

A e
kd

     
   

 
 

(2.7)

   2 2
3

cosh
cos 2 cos 2 sin 2

sinh

kd
A kx ky t

kd
       

(2.8)

where A is the wave amplitude,  is the wave frequency, k is the wave number, and  is 

the incident wave heading angle.  

 A fully developed wave condition in the random sea environment is modeled by 

using wave spectra. The simulated random wave time series from the given wave 

spectrum  S  can be expressed by superposition of a large number of linear wave 

components with random phases (Bae, 2013), 

     

1 1

, cos Re i i i

N N
i k x t

i i i i i
i i

x t A k x t Ae      

 

 
     

 
   

(2.9)

 2i iA S     (2.10)

where N  and  are the number of wave components and intervals of frequency 

division, and i is a random phase angle generated by random function. To avoid the 

repetition of random wave realization with a limited number of wave components, some 

modifications were made and rewritten as below (Ran, 2000): 

   

1

, Re i i i

N
i k x t

i
i

x t Ae    



 
  

 
  

(2.11)
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where i i i     and i is the random perturbation number uniformly distributed 

between / 2 and 2 . 

 

2.3 Wave Loads on Structures 

 The prediction of wave loads acting on the floating structure is crucial in the 

analysis of the structural static and dynamic behaviors. The diffraction of waves around 

the platform in the deep water causes important loading pattern on the floating platform. 

On the other hand, Morison’s formula is widely used for slender body. Therefore, the 

diffraction theory and Morison’s equation are studied in this Subsection.  

 

2.3.1 Diffraction and Radiation Theory 

 The total velocity potential   satisfies the Laplace equations, free surface 

boundary conditions, and the bottom boundary condition can be rewritten as 

combination of the incident potential I , diffraction potential D , and radiation 

potential R . By expressing the velocity potential   in a perturbation series with 

respect to the wave slope parameter   (Ran, 2000): 

        
1 1

n n n nn n
I D R

n n

 
 

 

          
(2.12)

where  n  denotes the n th order solution of  . In the CHARM3D, the solutions up to 

second order is considered. 

 The boundary condition on the floating structure body is needed in order to solve 

the wave-structure interaction problem. The body boundary condition can be defined as:  
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nV



n

 on body surface   (2.13)

where n  is the surface normal vector, and nV  is the normal velocity vector of the body at 

its surface. 

 Moreover, the diffraction potential D  and radiation potential R  must satisfy 

the Sommerfeld radiation condition at the far field boundary (Ran, 2000): 

,
,lim 0D R

D R
r

r ik
r

 
    

  
(2.14)

where r denotes the radial distance from the center of the floating body. 

 

2.3.2 First Order Boundary Value Problem 

 The first order potential can be rewritten by separating the time dependency 

explicitly as (Bae, 2013): 

                     1 1 1 1 1 1 1Re , , , , , , i t
I D R I D Rx y z x y z x y z e                (2.15)

and the first order incident potential  1
I is rewritten as: 

     1 cosh
, , Re

cosh
i

I

k z digA
x y z e

kd



 

  
 

K x  
(2.16)

where K denotes a vector wave number with Cartesian components  cos , sin , 0k k  , 

x  is the position vector in the fluid domain, and   is the angle of the incident wave 

relative to the positive x axis. 

 Hence, the boundary value problem governing the first order diffraction potential 

and radiation potential can be summarized as (Bae, 2013): 
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 12
, 0D R   in the fluid  0z   (2.17)

 12
, 0D Rg

z
      

 on the free surface  0z    (2.18)

 1
, 0D R

z





 on the bottom  z d   (2.19)

 
    

1
1 1R i

n





    


n r   on the body surface (2.20)

 1
,lim 0D R

r
r ik

r




    
 at far field (2.21)

where r  is the position vector on the body surface, r  is the radial distance from the 

origin, and n  represents the unit normal vector pointing into the fluid domain at the 

body surface. The first-order motions of the body in the translational (1) and rotational 

(1)
 directions have the forms (Bae, 2013): 

  1(1) Re i te       1 (1) (1) (1)
1 2 3, ,    (2.22)

  (1) 1Re i te        1 (1) (1) (1)
1 2 3, ,    (2.23)

where the subscripts 1, 2, and 3 represent the translational (surge, sway, and heave) and 

rotational (roll, pitch, and yaw) modes with respect to the x , y , and z axes respectively. 

The six degrees of freedom of first order motion can be rewritten as (Bae, 2013): 

(1)
i i   for 1,2,3i   (2.24)

(1)
3i i    for 4,5,6i   (2.25)
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 The radiation potential represents the fluid disturbance due to the floating body 

motion is decomposed as: 

   6
1 1

1
i iR

i

  


  (2.26)

where i is the first order velocity potential of the rigid body motion, under the 

conditions of unit amplitude in the i th mode and without incident waves. The body 

boundary condition of each mode can be further expressed by replacing  1
i  as (Bae, 

2013): 

 1
i

in
n





 1,2,3i   (2.27)

 
 

1

3
i

in





 


r n  4,5,6i   (2.28)

on the body surface. 

 The first order diffraction potential  denotes the disturbance to the incident 

wave caused by the existence of the structure body in its fixed position. The velocity 

potential of the wave diffraction must satisfy the body surface boundary condition as 

follow (Ran, 2000): 

   1 1
D I

n n

  
 

 
 on the body surface (2.29)
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2.3.3 First Order Potential Forces  

 By solving the first order diffraction potential  1
D and radiation potential  1

R , 

the first order hydrodynamic potential force exerted on the floating structure can be 

approximated. The hydrodynamic pressure  P t  can be expressed by using the 

perturbation method as (Ran, 2000): 

(1)
(1)P

t
  


 (2.30)

The total force and moment exerted on the floating structure body can be 

approximated by using integration over the instantaneous wetted body surface  S t  

(Bae, 2013): 

 
 

1,2,3

4,5,6

b

b

i
S

i
i

S

Pn dS i

t
P dS i

 

 

 





F

r n
 (2.31)

where bS  is the body surface at rest. 

 Therefore, the total first order force and moment can be represented as: 

(1) (1) (1)(1)
R EXHS  F F F F  (2.32)

where the subscript HS  represents the hydrostatic restoring force and moment, R

denotes the force and moment from the radiation potential, and EX represents the wave 

exciting force and moment from the incident and diffraction potentials. 
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The first order hydrostatic restoring force and moment (1)
HSF  are induced by the 

changes of hydrostatic pressure on the body caused by the motion of the floating 

structure, which can be defined as: 

 (1) (1)
HS  F K  (2.33)

where (1)  is the first order motion of the floating structure, and K is the hydrostatic 

restoring stiffness. 

 The first order force and moment on the floating body exerted from the radiation 

potential (1)
RF  can be represented as: 

   (1) (1)ReR F f  (2.34)

where 

b

i
ij j

S

f dS
n


 


  

f  , 1,2,...,6i j   (2.35)

and ijf  is complex variable depends on the frequency  . Its real and imaginary 

coefficients can be rewritten as: 

2 a
ij ij ijf M i C     (2.36)

Therefore, the force and moment from the radiation potential can be expressed as 

(Bae, 2013): 

     (1) (1) (1)Re a
R     F M C   (2.37)

where aM  is the added mass coefficients and C is the radiation damping coefficients. 
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 The term (1)
EXF  denotes the first order wave excitation forces and moments 

exerted from the incident and diffraction wave potentials can be defined as (Ran, 2000): 

 
0

(1) Re
ji t

I DEX
S

Ae dS
n

 
  

    
 
 

F  1, 2,..., 6j   (2.38)

where A  is wave amplitude. The first order wave excitation forces and moments are 

proportional to wave amplitude, which is frequency dependent, is called Linear Transfer 

Function (LTF) that represents the relationship between incident wave elevation and the 

first order diffraction forces on the floating body (Bae, 2013). 

 

2.3.4 Wave Loads in Time Domain  

In the CHARM3D, the linear wave forces are computed at a specified wave 

frequency, and the second order sum and difference frequency forces are obtained from 

the interactions of bi-chromatic waves (Bae, 2013). The linear and second-order 

hydrodynamic forces on a body due to stationary Gaussian random seas can be 

expressed as a two-term Volterra series in time domain (Ran, 2000): 

                 1 2
1 2 1 2 1 2 1 2,t t h t d h t t d d           

  

 

       F F  (2.39)

where  1h  and  2 1 2,h    are the linear and quadratic impulse response function, 

respectively, and  t  represents the ambient wave free surface position at the reference 

point.  
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For unidirectional seas with N wave components, the wave exciting forces from 

incident wave potential and diffraction potential in unidirectional waves can be 

expressed as (Bae, 2013): 

     1

1

Re i

N
i t

I i i
i

t A e 


 
  

 
F L  (2.40)

       ( ) ( )2 *

1 1 1 1

Re , ,j k j k

N N N N
i t i t

I
j k j k

j k j k j k j kt A A e A A e       

   

 
   

 
 F D S  (2.41)

where  * denotes the complex conjugate of the quantity,  jL is the linear force 

transfer functions (LTF),  ,j k D and  ,j k S  are the difference and sum 

frequency quadratic force transfer functions (QTF), respectively. 

For multi-directional waves, the wave exciting forces can be represented as (Bae, 

2013): 

     1

1 1

Re , i

N M
i t

I jl j l
j l

t A e   

 

 
  

 
F L  (2.42)

   
 

 

( )*

1 1 1 12

( )*

1 1 1 1

, , ,

Re

, , ,

j k

j k

N N M M
i t

km l
j k l m

I N N M M
i t

jl k

jl j k m

j k mm l
j k l m

A A e

t

A A e

 

 

   

   

 

   

 

   

 
 

 
 
 
  





D

F

S

 (2.43)

where jlA  is wave amplitude,  , lj L  is the linear transfer function (LTF) at 

frequency i  in l  direction,  , , ,j k l m   D  is the difference frequency quadratic 

transfer function (QTF), and  , , ,j lk m   S  is sum frequency QTF generated by unit 
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amplitude wave pair at frequency j  in l direction and at frequency k  in m  

direction. 

On the other hand, the force exerted from radiation potential, which is same for 

both first and second order motions, can be represented in time domain as (Ran, 2000): 

   ( ) ( )
t

R
a t dt    



    F RM    (2.44)

where ( )a M is the added mass at infinite frequency, the convolution integral represents 

the memory effects of the wave forces on the platform from the wave generated by 

platform motion prior to time t .  tR  is called the retardation function and is related to 

the frequency domain solution of the radiation problem as follow (Bae, 2013): 

   
0

2 sin t
t C d

 
 



 R  (2.45)

where  C   is the wave damping coefficient at frequency  . The ( )a M is a constant 

equivalent to the added mass of the body at infinite frequency (Ran, 2000): 

   
0

( ) cosa a t tdt 


   RM M  (2.46)

where ( )a M is the added mass at frequency  . 

The total wave loads in the time domain can be obtained by summing each force 

component as follows (Bae, 2013): 

     total I Rt t t F F F  (2.47)
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where      (1) (2)
total t t t F F F is the total wave exciting force,      (1) (2)

I II t t t F F F

is the sum of the Eqns. (2.40) - (2.41), and  R tF  is the radiation term from the Eqn. 

(2.44). 

 

2.3.5 Morison’s Formula  

The viscous effect is dominant on the slender cylindrical structures where the 

diffraction effect is usually negligible. The inertia effect of the slender body that 

includes the added mass and damping effect can be estimated by using Morison’s 

formula (Morison et al., 1950). The Morison’s formula states that the wave load per unit 

length of the structure normal to the elemental section with diameter D  which is small 

compared to the wave length is obtained by the sum of an inertial, added mass, and drag 

force (Bae, 2013): 

 
2 2 1

4 4 2 D Sm m n a n n n n n
D D

F C u C C D u u            (2.48)

where mF denotes Morison’s force, 1m aC C   is the inertia coefficient, aC is the 

added mass coefficient, DC is the drag coefficient, SD  is the breadth or diameter of the 

structure, nu and nu are the acceleration and the velocity of the fluid normal to the body, 

respectively, n and n are the normal acceleration and the velocity of the fluid body, 

respectively. In the right-hand-side (RHS) of Eqn. (2.48),  the first term is the inertia 

force exerted from the Froude-Krylov force, the second term is the inertia force 

generated from the added mass effect, and the last term is the drag force exerted on the 
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sleder body in the relative velocity form. The relative-velocity form indicates that the 

drag force contributes to both the exciting force and damping force on the motion of the 

structure (Bae, 2013). In this study, the viscous effects of slender members such as the 

cylindrical hull, TLP columns or truss members are computed by Morison’s formula and 

are combined with the potential forces to compute the wave forces on the platform (Ran, 

2000; Bae, 2013). 

 

2.3.6 Time Domain Solution of the Platform Motions 

The motion equation of platform in time domain can be represented by breaking 

down the total external force exerted on the platform as (Ran, 2000): 

       , ,I C mt t t          M M K F F F a  (2.49)

where  

   ,
t

C t t d 


  F R   (2.50)

where  I tF  denotes the first and second order wave exciting forces defined in Eqns. 

(2.40) – (2.41), and  ,m t F  represents the nonlinear drag forces from the Morison’s 

formula in Eqn. (2.48). 

The second-order Adams-Moulton method (or mid-point method) is used in the 

numerical modeling in this study. The reason for using this method is that the finite 

element analysis of the mooring lines in time domain is developed using the same 

method and eventually the coupled equations of mooring line-platform are formed and 
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solved together at each time step (Ran, 2000). The Eqn. (2.49) is firstly reduced to two 

first-order differential equations (Ran, 2000): 

     , ,I C mξ t t t     M F F F K   (2.51)

ξ   (2.52)

where  

    M M M a  (2.53)

 After integrating the above equations from time step  to ; 

   

 

 

      
 

 1 1
1 , ,

n n

t n

I C m

t n

t t

ξ ξ t t t dt dt  
 

      M M F F F Kn n  (2.54)

   

 

 1
1  

n

t n
n n

t

ξdt 


     (2.55)

and applying the Adams-Moulton scheme: 
 

 
   

1
1Δ

2n

t n
n n

t

t
xdt x x


     (2.56)

                
    

1 1 1 1

1

Δ

2
Δ

 
2

n n n n n n
I C mI C

n n

m

t
ξ ξ

t  

   



      

 

M M F F F F F F

K

n n

 

(2.57)

        1 1Δ
 

2
n n n nt

ξ ξ                  1 12
 

Δ
n n n n

t
    ξ ξ  (2.58)

 There is noteworthy that the Eqns. (2.57) and (2.58) are linear algebraic 

equations with unknown quantities  1nξ  and  1n  . Also, the convolution integral and 

drag force are functions of the platform velocity, which is unknown, at time step  1n  . 

Thus, in order to solve the equations, an iterative process is needed with an initial guess 
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of the  1nξ  in computing the  1
C

nF and  1
m

nF  (Ran, 2000). In this study, the iterative 

procedure is avoided by using the Adams-Bashforth scheme for the following nonlinear 

force terms (Ran, 2000): 

 

 
    

1
1Δ

3
2n

t n
n n

C C C

t

t
dt


  F F F  and = (0)

Ct F  for 0n   (2.59)

 

 
    

1
1Δ

3
2n

m m m

t n
n n

t

t
dt


  F F F  and =  0

mt F  for 0n   (2.60)

 The final form of platform motion equation in time domain can be obtained by 

combining the Eqns. (2.57)-(2.60): 

           
      

1

1
0

1

2

4 4
3

Δ Δ

3 2 2

n n n n
I I C C

n
m

n
m

n

t t




 



         






 

M K M F F

K F

F F

F F

nξ
 

(2.61)

where    1  n n      (2.62)

 There is noteworthy that the term 0F  is introduced into the Eqn. (2.61) to 

represent a constant force, such as a net buoyancy force on the platform which is used to 

balance the mooring load (Ran, 2000).  

 

2.4 Dynamics of Risers and Mooring Lines 

In this Subsection, the modeling of risers and mooring lines in the CHARM3D is 

discussed based on a three-dimensional elastic rod theory (Garrett, 1982). The coupling 

forces and moments from the mooring lines and top tensioned risers are important in this 

research. The tension-leg platform (TLP) is connected with taut vertical mooring lines or 
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tendons (which made of steel pipes) to the seabed under high pretension. If the tendons 

of the TLP lost the pretension, the TLP hull and topside structure are vulnerable to 

instability phenomenon. On the other hand, even though the dry tree semi-submersible 

(DTS) are installed with catenary mooring lines that have allowances to the larger 

vertical motion compared with the TLP tendons, however, the dry-tree interface 

equipped with top-tensioned risers can increase the total payload and vertical stiffness of 

the DTS and induce the vertical resonance if the vertical stiffness over the limits. Hence, 

a reliable modeling of risers and mooring lines is the essential part in this research. 

 

2.4.1 Theory of Rod  

The behavior of a slender rod can be described by the position and deformation 

of the rod’s centerline as a space curve  ,s tr , as shown in Fig. 2.1 (Ran, 2000; Bae, 

2013). The position vector r  of space curve is a function of the arc-length s  and time t . 

The rod is assumed to be inextensible where the arclength s  is identical in both 

deformed and undeformed states. Thus the unit tangent vector to the space curve is r  , 

and the principal normal vector is directed along ''r  and the bi-normal is directed along 

r r  , where the prime denotes the differentiation with respect to arclength (Garrett, 

1982; Ran, 2000). 
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Figure 2.1 Coordinate system of slender rod (Bae, 2013). 
 

The resultant force F  and moment M  acting along the rod’s centerline can 

change the internal state of point stress on the rod. The equilibrium of the linear force 

and moment for a rod’s segment with unit arclength can be represented by using the 

equations of motion (Garrett, 1982):  

 F q r  (2.63)

0   M r F m  (2.64)

where q  is applied force per unit length,   is rod’s mass per unit length, and m  is 

applied moment per unit length. 

For elastic rod with equal principal stiffness, the bending moment is proportional 

to curvature and is directed along the bi-normal (Garrett, 1982; Ran, 2000). The resultant 

moment M  is denoted as: 

EI H   M r r r  (2.65)
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where the EI  is the bending stiffness and H  is the torque. Substituting the Eqn. (2.65) 

into Eqn. (2.64) (Garrett, 1982): 

 EI H H        
    r r F r r m 0  (2.66)

and the scalar product of the Eqn. (2.66) with r  yields: 

H    m r 0  (2.67)

There is noteworthy that if no distributed torsional moment ( ) m r , the torque 

H  is independent with respect to the arclength s . The mooring lines, tethers, and riser 

mostly have circular cross sections thus there is no distributed torsional motion from the 

hydrodynamic forces (Ran, 2000). In addition, the torque in the lines are usually small 

and negligible (Garrett, 1982). Therefore, both H  and m  are assumed to be zero, so that 

the Eqn. (2.66) becomes (Ran, 2000): 

 EI    
 

r r F 0  (2.68)

 A scalar function  ,s t  is introduced into the above equation, where F  can be 

rewritten as: 

 EI    F r r  (2.69)

 EI      F r r r    2T EI    (2.70)

where T  is the line’s tension and   is line’s curvature. 

 Subsituting Eqn. (2.69) into Eqn. (2.63), the equation of motion for the rod can 

be defined as: 
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   EI       r r q r  (2.71)

 In addition, r must satisfy the inextensibility condition (Ran, 2000): 

1  r r  (2.72)

 If the rod is considered stretchable and the stretch is linear and small, the above 

inextensibility condition can be approximated by (Ran, 2000): 

 1
1

2

T

AE AE


   r r  (2.73)

 The scalar function   is a Lagrangian multiplier due to the assumption of 

inextensibility. The Eqns. (2.71) and (2.72) combined with initial conditions, boundary 

conditions and applied force q , are sufficient to determine the dependent variables 

 ,s tr  and  ,s t (Ran, 2000). The applied force on the rods (such as mooring line, 

riser, and tether) exerted from the hydrostatic force, hydrodynamic force, and the gravity 

force of the rod itself, therefore the applied force can be represented as: 

  s dq w F F  (2.74)

where w  is rod’s weight per unit length, sF  is hydrostatic force/unit length, and dF  is 

hydrodynamic force/unit length. The hydrostatic force can be calculated by: 

 P   sF B r  (2.75)

where B  is buoyancy force on the rod / unit length, and P  is scalar hydrostatic pressure 

at the point r on the rod.  

 On the other hand, the hydrodynamic force on the rod can be determined by 

Morison’s formula: 
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 
  

n n n n n
A

A

n

n

M DC C C

C

     

 

dF V V

r

r V r

F

r   

 d
 (2.76)

where AC  denotes the added mass coefficient (added mass / unit length), MC  is the 

inertial coefficient (inertial force / (unit length  unit normal acceleration)), DC  is the 

drag coefficient (drag force / (unit length  unit normal velocity)), nV  and nV  are the 

fluid velocity and acceleration normal to the rod centerline, respectively. The fluid 

velocity and acceleration can be determined from the total fluid velocity and the tangent 

vector of the line (Ran, 2000): 

   n        V V r V r r r   (2.77)

n      V V V r r    (2.78)

where V  and V  are acceleration and velocity, respectively, water particles at the rod’s 

centerline. The fluid field is assumed to be undisturbed by the presence of the rod. 

The terms nr  and nr  in Eqn. (2.76) are components of the rod’s acceleration and 

velocity normal to its centerline: 

 n     r r r r r    (2.79)

 n    r r r r r    (2.80)

Subsituting Eqns. (2.74)-(2.76) into Eqn. (2.71), the equation of motion for the 

rod can be represented as: 
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     

     

   
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A

n
a w
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C EI P

C EI

 

 

  

  

 

         

        

 



  

r r w B r r F r

r r r r r w B F

r r r w F

 

 

 

d

d

dr

 

(2.81)

where 

 A a wC C   (2.82)

w w B = +  (2.83)

 2 2 2

2

2 2

)

  

(

P T EI P T EI P T P EI

T P EI

T P EI T EI

    



  

            

  

     

  

(2.84)

where T  is the effective tension in the rod, and w  is the effective weight (or wet 

weight) of the rod. 

 

2.4.2 Finite Element Modeling of Rod in CHARM3D  

The governing equation and inextensibility condition of rod, Eqn. (2.81) and 

Eqn. (2.73), can be rewritten in subscript notation as: 

     0n
i i i i

d
A i iC EIr r wr r F 

           (2.85)

 1
1 0

2 n nr r
AE

      (2.86)

 The governing equation of rod is discretized into elements with finite length, by 

using finite element method, and the algebraic are developed in the element level. For an 
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element, the variables  ,s t  and  ,ir s t  along the rod with length L  are approximated 

as (Ran, 2000): 

     ,i l ilr s t A s U t  (2.87)

     , m ms t P s t   (2.88)

where 0 s L  , and kA  and mP  are interpolation functions. The Galerkin’s method is 

applied to the Eqn. (2.85) over the elemental length (Ran, 2000): 

   
0

 0
L

d
i A i

n
i ii ir rr C EIr r w F ds  

          
 

   i  (2.89)

 The Eqn. (2.89) is solved by using integration by parts and the ijU in 

 i l ilr A U t  is assumed to be independent: 

 
 

  00
0  

L
l A L

i

n
i

l
d

l l i

i

i

A C EIA r
ds EIr A r EIr A

A r A F

r

w

r




                 


  '' ''
l i L'' ' ''

i l i

i

 (2.90)

 Also, the stretching condition in Eqn. (2.73) is imposed by (Ran, 2000): 

 ' '

0

1
1 0

2

L

m n nP r r ds
AE

    
   (2.91)

and cubic interpolating functions are applied for  while quadratic functions for mP : 

2 3
1 1 3 2A      ,  2 3

2 2A L       , 2 3
3 3 2A     ,  2 3

4A L     , 

2
1 1 3 2P      ,  2 4 1P     ,  3 2 1P     (2.92)

where 
S

L
   (2.93)
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The position ir , tangent '
ir , and the Lagrangian multiplier   are selected to be 

continuous at the node in between the adjacent elements, thus the parameter ilU  and m  

are written as (Ran, 2000): 

 1 0,i iU r t ,  '
2 0,i iU r t ,  3 ,i iU r L t ,  '

4 ,i iU r L t  (2.94)

 1  0,t   , 2  ,
2

L
t     

 
 ,  3 ,L t   (2.95)

In this case, the unknown quantities need to be solved are the position vector ir  

and tangent vectors '
ir  at the two end nodes of the elements, and the scalar   (Ran, 

2000). By combining Eqns. (2.80), (2.87) and (2.88) with Eqn. (2.90), the equation of 

motion for the element can be represented as: 

   1 2 0a
ijlk ijlk ijlk n nijlkk jk iljM K FUM K U      (2.96)

where the derivation process from Eqn. (2.90) was conducted as: 

 
 

  00
0  

L
l A L

i

n
i

l
d

l l i

i

i

A C EIA r
ds EIr A r EIr A

A r A F

r

w

r




                 


  '' ''
l i L'' ' ''

i l i

i

 (2.90)

n
i i i ir rr r     

 
  r  (2.80)

     ,i l ilr s t A s U t  (2.87)

     , m ms t P s t   (2.88)

0 0

   
L L

l l k ij iji jk jlk kA ds A A ds Mr U U        (2.96)a
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     
0 0 0 0

0 0

  

     

L L L L

l A l A i i A l l i i

L L
a

A l k ij l k s t it j

n
i i i i

s ijlk

i

jk jk

AC ds AC r r ds C A ds A r r ds

C A A ds A A A A ds U U M

r r r r r

U U

                      
       
   

   

 

    

 

 

(2.96)b

1

0 0

 
L L

ij jk ijlk jkEIA r ds EIA A dsU K U  '' '' '' ''
l i l k  (2.96)c

' ' ' ' 2

0 0

   
L L

l i n n l k ij jk n nijlk jkA r ds P A A dsU K U       (2.96)d

 
0

  
L

d
l i ilA w F ds F  i  (2.96)e

and ij  is the Kronecker Delta function. There is noteworthy that the resultant forces 

(moments) at the ends of the element (RHS of Eqn. (2.90)) are not included in the Eqn. 

(2.96) for the reason that these forces (moments) will cancel out with the neighboring 

element in the final assembly equation. The coefficients of Eqn. (2.96) are defined as: 

0

 
L

ijlk l k ijM A A ds    = general mass term (2.97)

' '

0 0

 
L L

a
ijlk A l k ij l k s t it jsM C A A ds A A A A ds U U

  
  




  
   = added mass (2.98)

1

0

L

ijlk ijK EIA A ds  '' ''
l k  = the general stiffness from the bending stiffness EI  (2.99)

2 ' '

0

L

nijlk n l k ijK P A A ds   = the general stiffness from rod tension rod and curvature (2.100)
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 
0

  
L

d
il l iF A w F ds  i  (2.101)

 On the other hand, the Eqn. (2.91) which imposed the stretching condition can be 

written as: 

  m mil ik lk m mt tG A U U B C     (2.102)

where the derivation process from Eqn. (2.91) was performed as: 

 ' '

0

1
1 0

2

L

m n nP r r ds
AE

    
   (2.91)

 ' ' ' '

0 0

1 1
 

2 2

L L

m n n m i l ik lk mil ik lkP r r ds P A A dsU U A U U    
    (2.102)a

0

1

2

L

m mP ds B    (2.102)b

0 0

1 1
 

L L

m m t t mt tP ds P Pds C
AE AE

        (2.102)c

 

2.4.3 Formulation of Static Problem  

 To solve the static problem of the rod, the Eqn. (2.96) and Eqn. (2.102) can be 

formulated as: 

 1 2  0ijlk n nijlk jk il ijK K U F R     (2.103)

0mG   (2.104)

where ilF  is combination forcing term exerted from the gravity force, drag force from 

the steady current, and other applied static force on the rod (line). 
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Due to the nonlinearity in Eqn. (2.103) and Eqn. (2.104), the iterative method 

(Newton’s method) is used to solve these equations. Using Taylor series to expand the 

above two equations about the guessed solution, or solution from previous iteration,  nU  

and  n  (  is the iteration number) and neglect the higher order terms (Ran, 2000):  

       1 0n n il il
il il jk n

jk n

R R
R R U

U



  

     
 

 (2.105)

       1 0n n m m
m m jk n

jk n

G G
G G U

U



  

     
 

 (2.106)

 Rearranging these terms into matrix form: 

   

   

 

 

0 1

0 1

t n t n n
ijlk iln jk il

t n t n n
nmjk mn m

K K U R

D D G

                   
 (2.107)

where the derivation from Eqns. (2.105) and (2.106) are: 

 

 

il il
n

jk n jk il

n
nm m m

jk n

R R

U U R

G G G
U






  
                          

 (2.107)a

 1 2
ij ijlk n nijlk jk ilR K K U F    (2.107)b

   01 2  n t nil
ijlk n nijlk ijlk

jk

R
K K K

U


  


 (2.107)c

       12 ' ' ' '

0 0

   
L L

n n n t nil
nijlk jk n l k ij jk n l k ik iln

n

R
K U P A A ds U P A A ds U K


   

      
    

   (2.107)d
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(2.107)e
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 (2.107)f
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                 
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

 
 (2.107)g

In the CHARM3D, the global degree of freedom associated with the parameter 

jkU  and n  are re-numbered as (Ran, 2000): 

For two-dimensions: 

DOF of jkU  = DOF of 
1 2 7 8

3 4 9 10ilU





 
 

  for i  = 1, 2 and l  = 1, 2, 3, 4 (2.108)

DOF of n  = DOF of  5 6 11m    for m  = 1, 2, 3  (2.109)

and for three-dimensions: 

DOF of jkU  = DOF of 

1 2 9 10

3 4 11 12

5 6 13 14
ilU

 
 

 

 


 for i  = 1, 2, 3 and l  = 1, 2, 3, 4 (2.110)

DOF of n  = DOF of  7 8 15m    for m  = 1, 2, 3  (2.111)

 After the renumbering, the Eqn. (2.107) can be represented as (Ran, 2000): 
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      n nK y F  (2.112)

where the variables jkU  and n  form the vector y : 

 11 12 21 22 31 32 1 2 13 14 23 24 33 34 3, , , , , , , , , , , , , ,T U U U U U U U U U U U U  y  (2.113)

and K  is the stiffness matrix, F  is the force vector: 

 11 12 21 22 31 32 1 2 13 14 23 24 33 34 3, , , , , , , , , , , , , ,T R R R R R R G G R R R R R R G  F =  (2.114)

 From the RHS of Eqn. (2.90), the force vector can be defined as: 
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where the superscript 1 denotes the first end of the element  0s   and the superscript 2 

denotes the second end  s L  (Ran, 2000). From the definition of the resultant force 

and moment in Eqns. (2.64) and (2.69), there can be found that the 

 1 2 3, ,
T

N N NN  is the nodal resultant force and  1 2 3, ,
T

L L LL  is related to 

the nodal resultant moment   M M L r . After solving the model variables U  and   

(at iteration 1n  ), the resultant force at the end nodes of an element can be obtained 

from force vector rF  as (Ran, 2000): 

 1nr  F F  (2.116)

 

2.4.4 Formulation of Dynamic Problem – Time Domain Integration  

 To solve the dynamic problem of the rod motion, recalling the equation of 

motion (Eqn. (2.96)) and the stretch condition (Eqn. (2.102)): 

   1 2 0a
ijlk ijlk jk ijlk n nijlk jk ilM M U K K U F      (2.96)

  m mil ik lk m mt tG A U U B C     (2.102)

 The Eqn. (2.96) and Eqn. (2.102) can be rewritten as: 

   
   

1 2

1 2 0ˆ

a
ijlk ijlk jk ijlk n nijlk jk il

ijlk jk ijlk n nijlk jk il

M M U K K U F

M U K K U F





   

    




 

(2.117)

   1 2 1 2ˆ  ˆ
ijlk jk ijlk n nijlk jk il il il il ilM U K K U F F F F F         (2.118)

  0m mil ik lk m mt tG A U U B C      (2.119)

where: 
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1 1 2 2ˆ , ,a
ijlk ijlk ijlk il ijlk jk il n nijlk jkM M M F K U F K U     (2.120)

In order to derive the integration scheme, Eqn. (2.118) is rewritten into two first-

order differential equations (Ran, 2000): 

ˆ ˆ
ijlk jk ilM V F  (2.121)

jk jkU V  (2.122)

 These two first-order differential equations are integrated form time  (at time 

step n ) to  1nt   (at time step 1n  ): 

 

 

 

 1 1

ˆ ˆ
n n

n n

t t

ijlk jk il

t t

M V dt F dt

 

   (2.123)

 

 

 

 1 1n n

n n

t t

jk jk

t t

U dt V dt

 

   (2.124)

 There is noteworthy that the term  in Eqn. (2.123) is varying with respect to 

time because it consisted of the added mass term a
ijlkM , which is a function of the rod’s 

position. By approximating the time varying ˆ
ijlkM  in the time interval t  (=    1n nt t  ) 

to be a constant, 
1

2ˆ
n

ijlkM
  
   which is the mass at time  

2
n t

t


 , the integration of the LHS 

in Eqn. (2.123) can be simplified as follows while achieving second-order accuracy 

(numerical error is at  2O t ) (Ran, 2000): 
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 

 

 

 

   

 

 

1 1

11 1
12 2

ˆ ˆ

ˆ ˆ ˆ

n n

n n

n

n

t t

ijlk jk il

t t

tn n
n n

ijlk jk ijlk jk il

t

M V dt F dt

M V M V F dt

 

          



 

 





 

(2.125)

 The Eqn. (2.124) can be rearranged by using the trapezoidal method with second-

order accuracy, as: 

       

       

1 1

1 1

2

2

n n n n
jk jk jk jk

n n n n
jk jk jk jk

t
U U V V

t
U U V V

 

 

     

     

 

(2.126)

 Rearranging the Eqns. (2.125) and (2.126) to obtain: 

            1 12 2n n n n n
jk jk jk jk jk jkV U U V U V

t t
      

 
 (2.127)

   

 

 

     

 

 

     

 

 

1

1

1

1 1
12 2

1 1

2 2

1 1 1

2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

 

2
 

2

n

n

n

n

n

n

tn n
n n

ijlk jk ijlk jk il

t

tn n
n n

ijlk jk jk ijlk jk il

t

tn n n
n n

ijlk jk ijlk jk ijlk jk

t

M V M V F dt

M U V M V F dt
t

M U M V M V
t







          

       
   

            
     

 

      

   






   

 

 11 1

2 2
2

ˆ

ˆ4 ˆ4ˆ 2
n

n

il

tn n
n

ijlk jk ijlk jk il

t

F dt

M U M V F dt
t t t

       
     

  





 

(2.128)

where    1 n n
jk jk jkU U U   , and the integral term in Eqn. (2.128) is: 

 

 

 

 

 
 

 

 

 

 

 1 1 1 1 1

1 2 1 2ˆ  

n n n n n

n n n n n

t t t t t

il il il il il il il

t t t t t

F dt F F F dt F dt F dt F dt

    

            (2.129)
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 The trapezoidal rules is applied to the first and second terms at the RHS of Eqn. 

(2.129): 

 

 

         
             

  

1

1 1 1 11 1 1

1 11 1

1

  
2 2

  2
2 2

 2
2

n

n

t
n n n n

il il il ijlk jk ijlk jk

t

n n n n n
ijlk jk jk ijlk jk jk jk

n
ijlk jk jk

t t
F dt F F K U K U

t t
K U U K U U U

t
K U U



 

 

 
   

 
    

     



 

(2.130)

 

 

             

   

1

2 1 2 1 12 2 2

1 1
12 22 2

1 1 1 1

2 2 2 2

 
2 2

2

2 2 2

2

n

n

t
n n n n n n

il il il n nijlk jk n nijlk jk

t

n n
n n

n nijlk jk n nijlk jk

n n n n

n n n n nijl

t t
F dt F F K U K U

t
K U K U

K
t

 

 

   



  

          

                 
       

 
   

 
   

 

 
      



 

 

     

   

2

1
122

1 1 1
2 2 22 2 2

1 1
12 22 2

1

2

2 2 2

2

2

2

n
k jk

n
n

n nijlk jk

n n n
n n n

n nijlk jk n nijlk jk n nijlk jk

n n
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n nijlk jk n nijlk jk

n

n

U

K U

K U K U K Ut

K U K U

t



  

 



    

            
     

          

 


 
 
 
 
   
 

  
  

    




   

    
       

1 1
2 22 2

1
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1 1
2 2 22 2

2

2 2
2

n n
n n

nijlk jk n n nijlk jk

n
n n

n nijlk jk jk

n n
n n

n nijlk jk n nijlk jk n nijlk jk

K U K U

K U U

t
K U K U K U

 



  

         
    

    

       
   

  
      
 
 
   
 

      
 

 

(2.131)

where 

1 1

2 2
n n

n n n  
       
       (2.132)
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 The third term in the RHS of Eqn. (2.129), 
 

 1n

n

t

il

t

F dt



 , contains the applied force 

ilF  which is from gravity force and hydrodynamic forces,  
0

  
L

d
il l iF A w F ds

 
  

 
 i (Ran, 

2000). The hydrodynamic force is unknown at time step  n  due to it is a dependent of 

the rod’s position and velocity at time step  1n . Hence, the Adams-Bashforth explicit 

scheme for the integral is employed here to predict the value of: 

 

 

    
1

1Δ
3

2

n

n

t
n n

il il il

t

t
F dt F F



 
 0 Δ iltF  for step 1 (2.133)

By combining Eqns. (2.125), (2.126), (2.130), (2.131) and (2.133), the dynamic 

integration scheme for the motion equation, Eqn. (2.118) can be rewritten as: 

   

          

1 1
1 2 22 2

2

1 1
11 22 2

4
2

4

ˆ

ˆ 2 2 3

n n
n

ijlk ijlk n nijlk jk n nijlk jk

n n
n n n n n

ijlk jk ijlk jk n nijlk jk il il

M K K U K U
t

M V K U K U F F
t

 



       
   

           

 
     

  

    


 

(2.134)

where the derivation process is conducted as: 

   1 2 1 2ˆ  ˆ
ijlk jk ijlk n nijlk jk il il il il ilM K K U F F FU F F         (2.118)

   

 

 11 1
12 2ˆ ˆ ˆ

n

n

tn n
n n

ijlk jk ijlk jk il

t

M V M V F dt

              (2.125)

       1 1

2
n n n n

jk jk jk jk

t
U U V V        (2.126)
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 

 

  
1

1 1 2
2

n

n

t
n

il ijlk jk jk

t

t
F dt K U U



       (2.130)

 

 

       
1 1 1

2 2 2 22 22 2
2

n

n

t n n
n n

il n nijlk jk n nijlk jk n nijlk jk

t

t
F dt K U K U K U  

        
   

 
      

 
  (2.131)

 

 

    
1

1Δ
3

2

n

n

t
n n

il il il

t

t
F dt F F



   (2.133)

   

  
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 
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 



       
   

  
 

  
 



 
 

      
 

  
   

           
 
  
 

 

(2.134)a
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n nijlk jk n nijlk jk il il

M U M V K U K U K U
t t

K U K U F F



 

            
     

    

     
 

     

 

(2.134)c



 

49 

       

          

1 1
1 2 22 2

2

1 1
11 22 2

4
2

4

ˆ

ˆ 2 2 3

n n
n

ijlk jk ijlk jk n nijlk jk n nijlk jk

n n
n n n n n

ijlk jk ijlk jk n nijlk jk il il

M U K U K U K U
t

M V K U K U F F
t

 



       
   

           

      


    


 

(2.134)d

and the mass term 
1

2ˆ
n

ijlkM
  
   is approximated by using Adams-Bashforth method: 

    
1

12 1ˆ ˆ3
2

ˆ
n

n n
ijlk ijlk ijlkM M M
       (2.135)

 On the other hand, for the stretch condition Eqn. (2.119), the  at time step 

 1n  can be approximated from  n
mG  at time step n  by using Taylor expansion: 

  0m mil ik lk m mt tG A U U B C      (2.119)

   
   

   
   

     

     

     

1

1

0 1

1' '

0

12

0

0 2 2 2 2

2 2 2

2 2 2

 2 2 2

n n
n n m m

m m jk n
jk n

n n
n n m m

m m jk n
jk n

n t n t n
m mjk jk mn n

L
n n t n

m n l k ij jk jk mn n

n n t n
m nijlk jk jk mn n

G G
G G U

U

G G
G G U

U

G D U D

G P A A ds U U D

G K U U D









 







 
     

 

 
     

 

    

 
    

 

 











 

(2.136)

 Thus, the Eqns. (2.134) and (2.136) are rewritten in a form for time domain 

problem as (Ran, 2000): 

   

          

1 1
1 2 22 2

2

1 1
11 22 2

4
2

4

ˆ

ˆ 2 2 3

n n
n

ijlk ijlk n nijlk jk n nijlk jk

n n
n n n n n

ijlk jk ijlk jk n nijlk jk il il

M K K U K U
t

M V K U K U F F
t

 



       
   

           

 
     

  

    


 

(2.134)
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     122 2 20 n n t n
m mijlk il jk mn nG K U U D      (2.136)

   

   

 

 

0 1

0 1

ˆ ˆ ˆ

ˆ ˆ ˆ

t n t n n
ijlk iln jk il

t n t n n
nmjk mn m

K K U R

D D G

                  
 (2.137)

where 

 

    
    

1 1
0 1 22 2

2

1
1 1 22

2

1
1 1 22

2

4
 

4 1
 3

2

2
3

ˆ ˆ

ˆ ˆ

ˆ ˆ

n n
t n
ijlk ijlk ijlk n nijlk

n
n n

ijlk ijlk ijlk n nijlk

n
n n

ijlk ijlk ijlk n nijlk

K M K K
t

M M K K
t

M M K K
t







       
   

    

    

  


   

  





 

(2.138)

   1 2 ˆ 2t n n
iln nijlk jkK K U  (2.139)

   0 2 ˆ 2t n n
mjk mijlk ilD K U  (2.140)

   1 1 2ˆ t n t n
mn mnD D  (2.141)

            
               

        
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1 1
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 2 2 3

4 1
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ˆ ˆ

ˆ ˆ

ˆ ˆ

n n
n n n n n n

il ijlk jk ijlk jk n nijlk jk il il

n
n n n n n n n

ijlk ijlk jk ijlk jk n nijlk jk il il

n n n n
ijlk ijlk jk ijlk jk n

R M V K U K U F F
t

M M V K U K U F F
t

M M V K U
t







           

    



    


     


   


      
1

122 3
n

n n n
nijlk jk il ilK U F F

      

 

(2.142)

   ˆ 2n n
m mG G  (2.143)

 The formulation of these coefficients (such as 1
ijlkK , 2

nijlkK  and  n
mG ) are the same 

as that in the static analysis, with the superscript  indicating the nth time step instead of 

nth iteration, the final equation for a rod element can be written as (Ran, 2000): 
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     ˆ ˆ K y Fn n  at time step n (2.144)

where y  is defined in Eqn. (2.113) and the arrangement of the K̂  and F̂  is similar to 

that in the static problem. After solving the assembled element equations for time step 

 1n , the nodal resultant force can be obtained as: 

 1nr  F F  (2.145)

 

2.4.5 Spring Coupling Between the Platform and Mooring Line  

The numerical modeling of the connection between the rods/lines (mooring lines 

and risers) and the floating platform is modeled as a combination of linear spring and 

rotational spring. The linear spring defines the translational motion between the 

platform’s connecting point and the top of the line, while the rotational spring represents 

the rotation of the platform and the tangential direction of the line.  

In the formulation of the line element equation, the terms at the RHS of the 

motion integral Eqn. (2.90) are the nodal resultant forces and moments, as recalled in the 

following expression: 

 
 

  00
0  

L
l A L

i

n
i

l
d

l l i

i

i

A C EIA r
ds EIr A r EIr A

A r A F

r

w

r




                 


  '' ''
l i L'' ' ''

i l i

i

 (2.90)

and they are presented in the vector form in Eqn. (2.115), where  1 2 3, ,
T

N N NN  

is the nodal resultant force and  1 2 3, ,
T

L L LL  is related to the nodal resultant 

moment   M M L r  (Ran, 2000). The resultant force and moment of the 
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intermediate nodes are mutually canceled out when the adjacent elements are arranged 

into the assembly equation. On the other hand, for the node at the end of the line which 

is connected to the floating platform, the resultant force and moment are equal to the 

force and moment applied to the node from the springs. Under the assumption of small 

angular motions of the platform, the force exerted on the node at the end of line caused 

by the linear spring connector can be defined as (Ran, 2000): 

 L       N K X p p r  (2.146)

where L  K  denotes a 3 3  diagonal stiffness matrix of the linear spring with the 

nontrivial diagonal terms, 1 2 3, ,L L LK K K  are the spring stiffness in , ,x y z  direction, 

respectively; X  is the translational motion of the rigid body at its origin of the body 

coordinate system;   is the angular motion of the rigid body; p  represents the position 

vector (in body coordinate system) of the point on the platform where the springs are 

attached to; and r  is the position of the end node of the line which is attached to the rigid 

body by springs. 

 The node attached to the platform is numbered as node ( s L ) in the 

CHARM3D. Hence, Eqns. (2.94) and (2.95) can be labeled as: 

 1 0,i iU r t ,  '
2 0,i iU r t ,  3 ,i iU r L t ,  '

4 ,i iU r L t  (2.94)

 1  0,t   , 2  ,
2

L
t     

 
 ,  3 ,L t   (2.95)

     13 1 23 2 33 3, , , , ,U r L t U r L t U r L t    (2.147)
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 Contributed from the linear spring connector, the force and moment exerted on 

the platform are: 

 L F N  (2.148)

L M = p N  (2.149)

 On the other hand, the moment applied on the end node caused by the rotational 

spring connector is proportional to the angle between the direction vector of the spring 

and the tangent of the line at the connection. Under the assumption of small angular 

motions of the platform (Ran, 2000): 

K K 
   

        


   
 




θ θr r
L E e e

r r
 (2.150)

where r  is tangent to the riser centerline. The 



r

r
 is used to ensure the unity of the 

tangent; E  denotes a unit vector in the direction of the spring reference; e is E  in the 

rigid body coordinates; and Kθ  is the rotational spring constant. 

 Contributed from the rotational spring connector, the force and moment exerted 

on the platform are: 

 0 F  (2.151)

   M = L r L e  (2.152)

 The connector force on the end node of the line can be rewritten in subscript 

notation as: 

 L
i i i i j ji iN K X p C r     (2.153)
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 
'

1/2' '

i
i i j ji

k k

r
L K e D

r r

 
 
   
 
 

 (2.154)

and the connector force and moment on the platform (which is regarded as rigid body) 

are: 

 L
i i i i i j ji iF N K X p C r        (2.155)

L
i k ki k kiM M M N C L D     (2.156)

where 

 
3 2

3 1

2 1

0

0

0

p p

C p p

p p

 
   
  

 (2.157)

 
3 2

3 1

2 1

0

0

0

e e

D e e

e e

 
   
  

 (2.158)

for the three dimensional case. 

In the static analysis of the mooring line where the Newton’s method is used, the 

connector force at the end node (line element) connected to the springs in iteration 1n   

form iteration n  can be approxiamated as (Ran, 2000): 

Equations for ir : 

   

 

1 ...

...

n n i i i
i i j j

rX

j
j j j

r
ij

n rr
i ij j ijj j

N N N
N N r X

r X

N K r XK K 






 
  

      
  

      

 

(2.159)

Equations for ir  :  
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   

 

1 ...

...

n n i i
i i j j

jj

n r r r
ij iji j j

L L
L L r

r

L K Kr 








  

     




  

 

(2.160)

 The equation of the line at the connected node (r  and r  ) is coupled with the 

unknown motion of the platform by using symbol AB
ijK  to indicate the tangential 

stiffness coefficient for degree of freedom jB  in equation iA  (Ran, 2000): 

  rr L Li
ij i i i j ji i i ij

j j

N
K K X p C r K

r r
            

 (2.161)

  rX L Li
ij i i i j ji i i ij

j j

N
K K X p C r K

X X
             

 (2.162)

  r L Li
ij i i i j ji i i ij

j j

N
K K X p C r K C 

 
            

 (2.163)

     
' ''

1/2 1/2 3/2' ' ' ' ' ' ' '
 ij i jr r i i

ij i j ji
j j k k m m n n

r rL r
K K e D K

r r r r r r r r

  
 

                
     
     

 (2.164)

 
'

1/2' '
 r i i

ij i j ji ij
j j k k

L r
K K e D K D

r r

  
 


            
   
   

 (2.165)

 The Newton’s method is also applied to solve the equations of the platform (rigid 

body), which is coupled with the lines. The connector force exerted on the rigid body at 

iteration 1n  can be approximated by (Ran, 2000): 

Equations for iX :  
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   

 

1 ...

...

n n i i i
i i j j

Xr XX

j

X

j j j

n
i j jij ij jij

F F F
F

K

F r X
r

K K

X

F r X 






 
  

      
  

      

 

(2.166)

Equations for i : 

   

 

1 ...

...

n n i i i i
i i j j j j

r r X
ij ij

j j jj

n
i j j j jij ijK K

M M M M
M M r r X

r Xr

M r r XK K   






      

    

       
  

   

 

(2.167)

where the coefficients are: 

    Xr L Li
ij i i i j ji i i ij

j j

F
K K X p C r K

r r
             

 (2.168)

    XX L Li
ij i i i j ji i i ij

j j

F
K K X p C r K

X X
             

 (2.169)

    X L Li
ij i i i j ji i i ij

j j

F
K K X p C r K C 

 
            

 (2.170)

 
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(2.171)

 
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





 

  
   

 
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(2.172)
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(2.173)

 In the iterative process, the line (rod) stiffness coefficients: rr
ijK  and r r

ijK  
 will be 

included in the elemental equation (Eqn. (2.112)), the rigid body stiffness coefficients 

XX
ijK , X

ijK  , ijK  will be included in the motion equation of the platform, and the rX
ijK , 

Xr
ijK , r

ijK  , r
ijK  , r

ijK , r
ijK 

are the coupling stiffness coefficients that will be included 

to a coupling matrix. In addition, the force vectors  n
iN ,  n

iL ,  n
iF , and  n

iM  are added 

to the force vector at the RHS of the equations of the line element and the platform (Ran, 

2000). 

In the time-domain integration, the connector force on the end node of the line is 

added to motion equation Eqn. (2.129) and is integrated from time  nt  to  1nt   (Ran, 

2000): 

 

 

 

 

 
 

 

 

 

 

 1 1 1 1 1

1 2 1 2ˆ
n n n n n

n n n n n

t t t t t

il il il il il il il

t t t t t

F dt F F F dt F dt F dt F dt

    

             (2.129)

Equations for ir :  
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 
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(2.174)

Equations for ir  :  
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(2.175)

and for the connector force on the rigid body,  

Equations for iX :  
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
 

(2.176)

Equations for i :  
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

   
            

       


 

(2.177)

 

2.4.6 Modeling of the Damper Connection  

In the original version of CHARM3D, a linear damper is modeled as a damping 

force linearly related to the relative translational velocity between the platform’s 
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connecting point and the top node of the line. The damping force ( DN ) on the 

connected node of the line element is defined as: 

 D
i i j ji iN D X C r     (2.178)

where D  is linear damping coefficient, X  and   are translational and rotational 

velocities of the rigid body, respectively, r is velocity of the attached node, and 

 
3 2

3 1

2 1

0

0

0
ij

p p

C C p p

p p

 
    
  

 (2.179)

 On the other hand, the damping force exerted on the rigid body is D D
i iF N  . In 

the time-domain simulation, the integration of the connector force yields (Ran, 2000): 

Equations for ir :  
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(2.180)

Equations for iX :  

 

 

 

 

     
1 1

  

n n

n n

t t
D D

i i i ji j i

t t

F dt N dt D X DC D r
 

          (2.181)

The damping coefficients are added to the equations of the line and the platform 

in the same way as the stiffness coefficients. There is noteworthy that there is no forcing 

term from the linear damping to be added to the RHS of the equation (Ran, 2000). The 
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finite element modeling of the linear damper connection by using another method which 

provides the same results can be found in the Appendix A. 

 

2.4.7 Coefficient Matrix of Hull, Riser and Mooring Line Coupled Dynamics 

For a 3-dimensions simulation, the assembled matrix has 8×(N+1)-1 rows (where 

N is the total number of element in a single line). In the CHARM3D, a line (mooring line 

or riser) is divided into N elements and n nodes (where n=N+1). In each step, the six 

degree-of-freedom motions of both end-nodes ( 0,S L ) in an element are represented 

by jkU , and the tensions at ( 0, 2,S L L ) are represented by n , as stated in Eqn. 

(2.137).  

   

   

 

 

0 1

0 1

ˆ ˆ ˆ

ˆ ˆ ˆ

t n t n n
ijlk iln jk il

t n t n n
nmjk mn m

K K U R

D D G

                  
 

(2.137)

where  ,
T

jk nU    is defined in Eqn. (2.113). The nodes in a line are labeled in 

sequence from 1st for the first node which is connected to the seabed anchoring point, to 

n-th for the last node that attached to the platform, as illustrated in Fig. 2.2.  
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Figure 2.2 Arrangement of 15×15 stiffness matrix  K̂ n in the Eqn. (2.144) of Nth-
elements.  
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 The stiffness matrix for each element is arranged into a 15×15 matrix according 

to the Eqn. (2.144) and Eqn. (2.137). For example, the stiffness matrix for Nth element is 

shown in Fig. 2.2 and the parts from (a) to (h) are represented by the following 

coefficients in Eqn. (2.137), as 

       

       

6 6 6 2 2 6 2 2

1 1 1 1

6 6 6 1 1 6 1 1

0 1 0 1

0 1 0 1

ˆ ˆ ˆ ˆ(a) ; (b) ; (c) ; (d) ;

ˆ ˆ ˆ ˆ(e) ; (f) ; (g) ; (h)

t n t n t n t n
ijlk iln mjk mn

t n t n t n t n
ijlk i

n n n n

n n n
ln mjk mn

n

K K D D

K K D D

   

   

   

   

   
 

(2.182)

where the values of these coefficients can be calculated from Eqns. (2.138) to (2.141). 

In a single line, the 15×15 stiffness matrix for each elements are assembled into a 

8×(N+1)-1 square matrix as shown in Fig. 2.3. 

 

 

Figure 2.3 Stiffness matrix of single leg with assembly of Nth-elements, where each 
15×15 stiffness matrix is based on  K̂ n in the Eqn. (2.144).  
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 From the Eqns. (2.159) and (2.160), the element tangential stiffness matrix that 

needs to be added into the end node of the line is: 

0

0

rr
jij i

r r
j LS ii j

rK N

LrK  

           
       




 

(2.183)

where the subscript LS is referred to ‘Linear Spring’ connection. Similarly, from the 

Eqns. (2.166) and (2.167), the element tangential stiffness matrix that needs to be added 

into the rigid body equation is: 

XX X
ij ij

X
ij ij

j i

jLS i

K K

K K

X F

M



  
    

     
      




 
(2.184)

 Finally, from Eqns. (2.159), (2.160), (2.166) and (2.167), the coupling terms of 

element tangential stiffness matrix that to be added into the global stiffness matrix is: 
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rX r
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    
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

 

(2.185)

The global stiffness after coupled the single line with the platform is illustrated in 

Fig. 2.4.  
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Figure 2.4 Global stiffness matrix of single leg with assembly of Nth-elements after 
coupled with host platform. 

 

The matrix (e) is the 6×6 rod stiffness of the node which is attached to the 

platform and can be obtained by using Eqns. (2.161) and (2.164).  
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(2.186)

The matrix (L) is the 6×6 platform body stiffness which is a combination of the 

stiffness terms on the LHS of Eqn. (2.61) and from the connector forces acting on the 

body in Eqns. (2.169), (2.170), and (2.173); 
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(2.187)

The matrix (J) is the 7×6 coupling stiffness in between the platform and lines 

(mooring lines / risers) that can be obtained from Eqns. (2.162), (2.163), and (2.165). On 

the other hand, the 6×7 matrix (K) is the inverse matrix of (J). 
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(2.188)

 

2.4.8 Force Vector of Hull, Riser and Mooring Line Coupled Dynamics 

For a 3-dimensions simulation, the RHS of Eqn. (2.137) is the forcing vector of 

single line-element.  
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t n t n n
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(2.137)

where the     ˆˆ ,n
l

T
n

i mR G can be obtained from Eqns. (2.115) and (2.145).  
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After coupled with the platform, the force vector on the RHS for the nth node 

must be modified with the forces/moments residue terms on the RHS of the Eqns. 

(2.174), (2.175), (2.176), and (2.177). 

The global stiffness matrix and forcing vector after coupled the lines with 

platform is shown in Fig. 2.5.  

 

 

Figure 2.5 Global stiffness matrix and forcing vector. 
 

The sub-matrices (e), (J), (K), and (L) are same as the descriptions in Subsection 

2.4.7. The other matrices are: 
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(M)  = 15×1 matrix that represents the  ,
T

jk nU   of the last line element as 

defined in Eqn. (2.113); 

(N)  = 6×1 matrix that represents the displacement of platform body  of the Eqn. 

(2.61); 

(P)  = 15×1 force vector of line that represents the     ˆˆ ,n
l

T
n

i mR G as per derived 

from Eqn. (2.115); 

(Q)  = 6×1 force vector that represents the total RHS forces in the Eqn. (2.61); 

(R)  = 6×1 force vector that represents the connector forces on the end node of the 

line to be added to motion equation of line element,  ,i i

T
N L as per stated in 

the RHS of Eqn. (2.183); 

(S)  = 6×1 force vector that represents the connector forces on the end node of the 

line to be added to motion equation of line element,  ,i iF M  as per stated 

in the RHS of Eqn. (2.184). 
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3. MODELING OF MAGNETO-RHEOLOGICAL DAMPER3 

 

3.1 Introduction and Literature Reviews 

In this Section, the structural integration of magneto-rheological (MR) damper 

with a top-tension riser was modeled in a coupled hull/risers/mooring lines analysis tool, 

CHARM3D. The behaviors of a MR damper were studied and to be represented into a 

mathematical formulation. Parameter identification of a MR damper was conducted in 

order to identify the process for obtaining the mathematical variables in the numerical 

model. The mathematical model of MR damper was integrated with the top tension riser, 

by deriving it into a finite element coupling model.  

The advanced new materials have been applied to improve the performance of 

structures. Dominguez et al. (2008) reported that magneto-rheological (MR) dampers are 

devices that employ rheological fluids to modify their mechanical properties by 

changing the stiffness and damping coefficients when the rheological fluid is exposed to 

a magnetic field. The schematic and configuration of a MR damper is illustrated in Fig. 

3.1. One special advantage of the MR damper is that its damping characteristics can be 

adaptively and quickly altered by a varying magnetic field (Tse and Chang, 2002). The 

rheological fluid is in a fluid state, and acting as a normal damper, when it is under the 

un-magnetized condition. On the other hand, if the rheological fluid is magnetized by a 

magnetic field induced by the electromagnetic coils built in the piston, the fluid particles 

across the piston passage surrounded by the electromagnetic coils will be rearranged into 

formation and temporary transformed into semi-solid state, which has higher resistance 
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force. Their mechanical simplicity, high dynamic range, lower power requirements, 

large force capacity, robustness and safe manner operation in case of fail have made 

them attractive devices to semi-active control in civil, aerospace and automotive 

applications (Dominguez et al., 2008).  

 

 

Figure 3.1 Schematic and configuration of a MR damper (Jiang et al., 2010; Lee and 
Jang, 2011)(Courtesy of Audi AG). 

 

The technology of installing MR dampers in land-based building to minimize the 

structural vibration, especially during the earthquake (Hurlebaus and Gaul, 2006; Kim, 

2007; Osman et. al, 2011), and the response reduction on the bridges (Duan et al., 2002; 

Yang et al., 2011) have gained successful results. The force response analysis is 
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performed and a phenomenological model based on the Bouc–Wen model was employed 

to estimate the MR damper behavior under dynamic loading (Spencer Jr et al., 1997; 

Yang et al., 2004). This model accommodates the MR fluid stiction phenomenon, as 

well as fluid inertial and shear thinning effects. Jansen and Dyke (2000) presented the 

results of various control algorithms used in semi-active control studies including the 

Lyapunov controller, decentralized bang-bang controller, modulated homogeneous 

friction algorithm, and a clipped optimal controller. Bahar et al. (2010) investigated a 

new inverse model, which considered a hybrid seismic control system, of semi-active 

devices for mitigation of structural vibrations by using magneto-rheological (MR) 

dampers. Bitaraf et al. (2010) developed a control strategy that combined Simple 

Adaptive Control (SAC) method and a genetic-based fuzzy control method to effectively 

control both displacement and acceleration response of a structure. 

 (3.0)

3.2 Model of Magneto-Rheological Damper 

In this research, the Nonlinear Hysteretic Arctangent Function (NHAF) Model 

(Yang et al., 2011) is employed to model the nonlinear hysteretic model of MR damper. 

The schematic diagram of this model is shown in Fig. 3.2. The MR damper is 

represented by the combination of stiffness and damping components along with the 

hysteresis loop effects. The MR damper is arranged with the riser tensioner to form a 

Kelvin-Voigt element. This hysteresis model possesses an appealing mathematical 

simplicity and is able to represent a large class of hysteretic behavior, inelastic stress-
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strain relationships of MR behavior. The force exerted by the MR damper MRf  can be 

represented by the following equation: 

MR MR MR MRf cx kx z    (3.1)

  1 tan sgnMR MR MRz x x    (3.2)

where c  is the viscous damping coefficient of the MR damper, k  is the stiffness 

coefficient of the MR damper, MRx  and MRx  are the displacement and velocity of the 

piston of the MR damper, respectively.  

 

 

Figure 3.2 Schematic diagram of the incorporation of MR damper (NHAF model) into 
the conventional hydro-pneumatic tensioner system (HP+MR). 

 

 The hysteretic behavior of MR damper is expressed by the adjustable shape 

parameters of the hysteresis loops for the yielding element in the MR damper:  ,  , 

and  . The coulomb force describing the hysteretic behavior is represented by MRz . The 
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  is the scale factor,   is the slope factor, and   is the width factor (Kwok et al., 

2006) of the hysteresis respectively, as illustrated in the Fig. 3.3 where increment of 

these parameters will cause increment of force-velocity hysteresis in the direction as 

indicated by the arrowhead. These parameters can control the linearity in the unloading 

and the smoothness of the transition from the pre-yield to the post-yield region.  

 

 

Figure 3.3 Hyteresis variables (Kwok et al., 2006). 
  

 The model parameters of the MR damper governing equation c , k ,  ,  , and 

  are functions of the applied electric current i  (Wang and Liao, 2011), and the 

parameter identification can be conducted by the post-processing of the experimental 

data of MR damper. The nonlinear least square method in MATLAB is utilized to 

determine the corresponding parametric coefficients as proposed by Yang et al. (2013b). 
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In this study, the proposed output force of MR damper is augmented in the following 

coefficients:  

2 75 68.5 10 14.4 10 6.0 10c i i       (3.3)

5 31.2 10 9.8 10k i     (3.4)

6 42 62.571 10 4.11 10 8.0 10i i        (3.5)

1 12.205 10 1.782 10i      (3.6)

2.6 2.3i    (3.7)

 There is noteworthy that these coefficients are proposed here to verify the 

effectiveness of the NHAF model in large scale force modeling. The idealistic capacity 

of this numerical MR damper based on the proposed coefficients from Eqns. (3.3) – (3.7) 

is up to ~4500 kN (~1012 kips) when sinusoidal excitation amplitude is 1.5 m (4.92 ft) 

and input current is 1.0 A. Nevertheless, the physically well-built large scale single unit 

MR damper is able to exert force up to 500 kN (112 kips) (Tu et al., 2011), while the 

very large output force requirement in the applications of offshore engineering can be 

achieved by multiplying the unit of MR damper in a group. Therefore, the exact output 

force scale and coefficients to be utilized in the later Sections (Section 5 and Section 7) 

will be further fine-tuned with respect to the required force sizing of the particular cases.  

 The force-displacements and force-velocities loops for different electric currents, 

frequencies, and amplitudes generated by the NHAF model with these coefficients from 

Eqns. (3.3) – (3.7) are depicted in Figs. 3.4 – 3.6. The characteristics of these figures are: 
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(i) the damping force increases with respect to the increasing electric current 

in the electromagnetic coils, and approaches a limiting value when the 

electric current reaches a certain value;  

(ii) the ratio of the maximum damping force a 0.4 A to 0 A is about 2.5 times, 

which indicates that the adjustability of the damping force is preferable;  

(iii) the force-displacement loops are close to an elliptical shape, and the 

force-velocity loops are nonlinear hysteretic, which demonstrate that the 

energy dissipation ability of the damper is adequate (Yang et al., 2013b); 

(iv) the frictional lagging effects is not represented in these force-velocities 

plots based on the selection of fine-tuned coefficients employed in this 

NHAF model in order to simplify this model. 
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Figure 3.4 Variations of damping force with input currents, for (a) force vs. 
displacement, and (b) force vs. velocity; with sinusoidal excitation amplitude = 1.5 m 
(4.92 ft) and sinusoidal excitation frequency = 0.4 rad/s.  
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Figure 3.5 Variations of damping force with excitation frequencies, for (a) force vs. 
displacement, and (b) force vs. velocity; with sinusoidal excitation amplitude = 1.5 m 
(4.92 ft) and input current = 1.0 A.  
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Figure 3.6 Variations of damping force with excitation amplitudes, for (a) force vs. 
displacement, and (b) force vs. velocity; with sinusoidal excitation frequency = 0.4 rad/s 
and input current = 1.0 A.  
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3.3 Parameter Identification of MR Damper 

The dynamic responses of a physical MR damper must be modeled adequately in 

the numerical simulation in order to simulate the correct damping force to be exerted by 

the physical MR damper. In the general practice, the dynamic responses of a physical 

MR damper is collected by using data acquisition technique where the experimental 

data, including the damper displacement MRx , velocity MRx  and the generated damping 

force MRf  are collected under a wide range of operating conditions. These experimental 

data are post-processed to construct a numerical MR damper model (Kwok et al., 2006).  

In this study, an adequate parameter identification method was developed for 

constructing a numerical MR damper model based on the experimental data of the 

physical MR damper. The experimental data was deliberately designed for a large scale 

MR damper which has the capability of output damping force as shown in Figs. 3.4 – 

3.6. There is noteworthy that the actual experimental data for such a large scale MR 

damper is not available and, therefore, a set of pseudo-experimental data was designed 

as the input of parameter identification based on the parameters as listed in Eqns. (3.3)-

(3.7). The test conditions are listed in Table 3.1. There are six combinations of different 

frequency and displacement, and for each combination there are six current settings. 

These pseudo-experimental data sets were stored in corresponding data files and the 

damper model parameters were then numerically identified based on these data files by 

using the Parameter Estimation method in the Design Optimization toolbox in 

MATLAB/SIMULINK.  
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Table 3.1 Test conditions of parameter identification of MR damper. 
Frequency (rad/s) Displacement Current (A) 

 0.4 0.2 m (0.656 ft) [0.0, 0.2, 0.4, 0.6, 1.0, 1.2] 

0.4 0.5 m (1.640 ft) [0.0, 0.2, 0.4, 0.6, 1.0, 1.2] 

 0.4 0.8 m (2.625 ft) [0.0, 0.2, 0.4, 0.6, 1.0, 1.2] 

0.8 1.0 m (3.281 ft) [0.0, 0.2, 0.4, 0.6, 1.0, 1.2] 

0.8 1.5 m (4.921 ft) [0.0, 0.2, 0.4, 0.6, 1.0, 1.2] 

0.8 2.0 m (6.562 ft) [0.0, 0.2, 0.4, 0.6, 1.0, 1.2] 

 

The identified parameters ( ,  , c,  , and k) were grouped according to their 

parameter estimation results and were plotted against the electric command current i  as 

shown in Fig. 3.7. These plots were identified by the non-linear least square method 

using the Curve Fitting toolbox in the MATLAB/SIMULINK (Yang et al., 2013b) to 

find a polynomial that represents the averaged values of each parameter under various 

tested conditions, as listed in the following equation:  

2
1 2 3

2
1 2 3

2
1 2 3

2
1 2 3

2
1 2 3

c c i c i c

k k i k i k

i i

i i

i i

   

   

   

  

  

  

  

  

 

(3.8)

The results of the parameter identification (the dotted lines in the Fig. 3.7) 

reproduce the following set of MR damper model parameters as tabulated in Table 3.2: 
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Table 3.2 Parameter identification of variables in MR damper model. 
Variables Pseudo-Experiment Data Parameter Identification Deviation (%) 

1c  58.5000 10  58.4456 10  -0.64 

2c  71.4400 10  71.4475 10  0.52 

3c  66.0000 10  66.0005 10  0.01 

1k  0 0 0 

2k  51.2000 10  51.4069 10  17.24 

3k  39.8000 10  41.4117 10  44.05 

1  62.571 10  62.572 10  0.04 

2  64.1100 10  64.0986 10  -0.28 

3  48.0000 10  47.9691 10  -0.39 

1  0 0 0 

2  12.2050 10  12.2388 10  1.53 

3  11.7820 10  11.8015 10  1.09 

1  0 0 0 

2  2.6000  2.6307  1.18 

3  2.3000  2.3222  0.97 
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 As shown in Fig. 3.7, the parameters  , , and k  can be approximated by using 

a first-order polynomial (the relationships between the parameters and the electric 

current is linear) while the parameters   and c  are approximated by the second-order 

polynomial. There is noteworthy that the deviation of parameters k is apperantly larger 

than the other parameters, as listed in Table 3.2. It can be found that this deviation was 

caused by a larger offset of the plot in large displacement amplitude input (at 2.0 m 

(6.562 ft)). Technically, the effects of this deviation can be minimized in the models of 

MR damper where the total output is dominant by the damping coefficient, c  which has 

at least two-order larger in magnitude than the k , in this case. 

 The set of polynomial fitted parameters in Table 3.2 were substituted back into 

Eqn. (3.8) and Eqns. (3.1) - (3.2) to reconstruct the hysteretic responses and compared to 

the one obtained from the pseudo-experimental data as shown in Fig. 3.8. The hysteretic 

responses obtained by the pseudo-experimental data and the reconstructed hysteresis 

using identified parameters in Table 3.2 are matching well. Therefore, the parameter 

identification method proposed here is adequate for numerically modeling MR damper 

based on the experimental data of a physical MR damper. 
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Figure 3.7 Parameter identification results (-) and polynomial fitted coefficients (…): (a) 
parameter-  , (b) parameter-   , (c) parameter-c, (d) parameter-  , and (e) parameter-
k. 
  

(a) (b) 

(c) (d) 

(e) 
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Figure 3.8 Pseudo-experimental data (markers) and the reconstruction of hysteresis from 
polynomial fitted parameters (solid line) for: (a) frequency = 0.4 rad/s, displacement = 
0.8 m; and (b) frequency = 0.8 rad/s, displacement = 1.5 m (4.92 ft). 
  

(a) (b) 
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3.4 Riser Tensioner Equipped with MR Damper 

In this Subsection, the free body diagrams (FBD) and equation of motion (EOM) 

in vertical direction of a riser tensioner and riser tensioner equipped with MR damper 

were derived. A direct-acting style tensioner, as illustrated in Fig. 3.9, is modeled as a 

lumped mass-spring-damper (MSD) system, the mass of host platform 1m  and tensioner 

2m  are lumped, and the stiffness tk and damping tc  of the tensioner are modeled as a 

spring and a dashpot, respectively. For conceptual simplicity, this model was assumed 

here to be in the vertical translation only while the rotations are assumed to be 

negligible. However, there is noteworthy that the rotational effects will be considered 

again in the CHARM3D numerical modeling in Subsection 3.5. 

 

 

Figure 3.9 Schematic mass-spring-damper system of direct-acting style tensioner and 
free body diagram. 
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In Fig. 3.9, wx  denotes the displacement (elevation) of the wave, which is the 

external force acting on the platform, bk is the stiffness of the platform body, and rk  is 

the stiffness of the riser which is connected to the tensioner ring on one end and the 

seabed on the other end. The 1x  and 2x  denote to the displacements of platform and 

tensioner ring, respectively. The equations of motion, as derived from the free-body 

diagram and Newton’s second law are: 

     1 1 1 1 2 1 2
body

z b w t tF m x k x x k x x c x x           (3.9)

   2 2 1 2 1 2 2
t ring

z t t rF m x k x x c x x k x           (3.10)

Rearranging the Eqns. (3.9) and (3.10), the equation of motion for direct-acting 

style tensioner in vertical direction can be represented as: 

     
   

1 1 2 1 2 1 1

2 2 2 1 2 1 2

0

0
t t b w

t t r

m x k x x c x x k x x

m x k x x c x x k x

       
      

  

  
 

(3.11)

For the ram-style tensioner, the schematic MSD system and the free-body 

diagram is illustracted in Fig. 3.10. The equations of motion can be derived, from Fig. 

3.10, as: 

     1 1 1 1 2 1 2
body

z b w t tF m x k x x k x x c x x           (3.12)

   2 2 1 2 1 2 2
t ring

z t t rF m x k x x c x x k x           (3.13)

and,  

     
   

1 1 2 1 2 1 1

2 2 2 1 2 1 2

0

0
t t b w

t t r

m x k x x c x x k x x

m x k x x c x x k x

       
      

  

  
 

(3.14)
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It can be found that the equations of motion for the ram-style tensioner are same 

as the direct-acting style tensioner.  

 

 

Figure 3.10 Schematic mass-spring-damper system of ram-style tensioner and free body 
diagram. 

 

In this study, the MR damper is integrated into the tensioner system. The MR 

damper is working incoporately with the tensioner in order to reduce the required stroke 

on the tensioner with the trade-off of local tension increment, as to be discussed in more 

detailed in Section 4 and Section 7. The MSD system of direct-acting style tensioner 

equipped with MR damper and the corresponding free-body diagram are illustrated in 

Fig. 3.11. The equations of motion for this case can be derived as: 

     
1 2

1 1 1 1 2 1 2
body

z b w t t MR x x
F m x k x x k x x c x x f


            (3.15)

   
1 2

2 2 1 2 1 2 2
t ring

z t t r MR x x
F m x k x x c x x k x f


           (3.16)
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Recalling the force exerted by the MR damper MRf  can be represented by the 

following equations: 

MR MR MR MRf cx kx z    (3.1)

  1 tan sgnMR MR MRz x x    (3.2)

 

 

Figure 3.11 Schematic mass-spring-damper system of direct-acting style tensioner 
equipped with MR damper and free body diagram. 
 

Therefore, the term 
1 2

MR x x
f


in Eqns. (3.15) and (3.16) can be represented as: 

     1 21 2
1 2 1 2MR x xMR MRx x

f x x xc zxk  
    

   (3.17)

      
1 2 1 2 1 2

1 tan sgnx x x x x xz  
    

   (3.18)

and the equations of motion for direct-acting style tensioner equipped with MR damper, 

which is matching with the two-DOFs model with MR damper (Yao et al., 2002): 
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         

        

2 1

2 1

1 1 2 1 2 1 1

2 2 2 1 2 1 2

t MR t MR b w x x

t MR t MR r x x

m x k k x x c c x x k x x

m x k k x x c

z

zc x x k x








         


        

 

 

  

  
 

(3.19)

The schematic MSD system of ram-style tensioner equipped with MR damper 

and the corresponding free body diagram are depicted in Fig. 3.12. The equations of 

motion can be defined as: 

     
1 2

1 1 1 1 2 1 2
body

z b w t t MR x x
F m x k x x k x x c x x f


            (3.20)

   
1 2

2 2 1 2 1 2 2
t ring

z t t r MR x x
F m x k x x c x x k x f


           (3.21)

and the rearranged form is: 

         

        

2 1

2 1

1 1 2 1 2 1 1

2 2 2 1 2 1 2

t MR t MR b w x x

t MR t MR r x x

m x k k x x c c x x k x x

m x k k x x c

z

zc x x k x








         


        

 

 

  

  
 

(3.22)

which is same as the one obtained in Eqn. (3.19) for the case of direct acting tensioner.  

 

 

Figure 3.12 Schematic mass-spring-damper system of ram-style tensioner equipped with 
MR damper and free body diagram. 
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There can be found that the 1x  and 2x  are the displacements of platform and 

tensioner ring, respectively. By compared the 1x  and 2x  to the relative displacement 

terms in the Eqns. (2.146), (2.153) and (2.155), there can be found that the term 

 i i j ji iX p C r   is equivalent to the term  1 2x x under the assumption that the 

rotational effects is negligible. Therefore, the Eqn. (3.22) can be further rearranged by 

separating the terms with relative displacement  1 2x x on the RHS, for the platform 

body: 

         1 21 1 1 1 2 1 2b w t MR t MR x xm x k x x k k x x c c x x z            
    (3.23)

     
     1 2

1 1 1 1 2 1 2

1 2 1 2

b w t t

MR MR x x

m x k x x k x x c x x

k x x c x zx  

      

      

  

 
 

(3.24)

where if the damping 1c is zero as assumed in the Subsection 2.4.5, the equation of 

motion for the platform body can be rewritten as: 

 1 1 1b w i MRm x k x x F f     (3.25)

On the other hand, for the riser rod (on the tensioner ring); 

       1 22 2 2 1 2 1 2r t MR t MR x xm x k x k k x x c c x zx           
    (3.26)

   
     1 2

2 2 2 1 2 1 2

1 2 1 2

r t t

MR MR x x

m x k x k x x c x

z

x

k x x c x x  

    

      

  

 
 

(3.27)

where if the damping 1c is zero as assumed in the Subsection 2.4.5, the equation of 

motion for the riser rod (on the tensioner ring) can be rewritten as: 

2 2 2r i MRm x k x N f    (3.28)
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3.5 Modeling of MR-Damper Coupling with Platform/Lines (Risers) Connection 

In this Subsection, the finite element modeling of a MR damper is integrated into 

the connection between the mooring lines (risers) and the platform as discussed in 

Subsection 2.4.5 and Subsection 3.4. Recalling the force exerted by the MR damper MRf  

can be represented by the following equations: 

MR MR MR MRf cx kx z    (3.1)

  1 tan sgnMR MR MRz x x    (3.2)

The static modeling of the MR damper can be conducted by rewriting the 

equation of MR damper force Eqn. (3.1) with Eqn. (2.146): 

   
    1 tan sgn

MR i j ji i i i j ji i

i j ji i i i j ji i

f c X C r k X p C r

X C r X p C r

 

    

      

        

 

 
 

(3.29)

The MR damper can be represented by the combination of spring and damping 

force. Under the static analysis, the relative velocities in between the connected node 

and rigid body are equal to zero and only the static part remain, therefore the MR 

damper force MRf  is represented by the static part S
MRf  is: 

    1

 

 tan sgn

S
MR MR

i i j ji i i i j ji i

f f

k X p C r X p C r   



         
 

(3.30)

 The Newton’s method is used to approximate the additional connector force 

exerted by the MR damper at the end node of line element connected to the springs in 

iteration ( 1n  ) from iteration ( n ) by expanding the static part of MR damper force in 

Taylor series expansion, 
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Equations for ir : 

   
     

1

...

n n n

n n
i i i

i i

S S S
MR MR MRS S

MR MR j j j
j j j

f f f
f f r X

r X



   
     




 
 (3.31)

where 

    1 tan sgnS
MR i i j ji i i i j ji if k X p C r X p C r               (3.32)

Since the signum function  sgn 1i i j ji iX p C r     , the above equation can 

be further written as: 

    1 tanS
MR i i j ji if k X p C r         (3.33)

 The derivatives of 
 n

i

S
MRf  with respect to the position vector are:  

 

   

n

i

S
MR

j

f
k

r


 


; 

 

  

n

i

S
MR

j

f
k

X





; 

 n

i

S
MR

ji
j

f
kC







 (3.34)

where 3i   because the MR damper is arranged to act in the vertical direction to the rod 

(riser).  In the iterative process, using symbol AB
ijK to indicate the tangential stiffness 

coefficients for freedom jB  in equation iA , therefore the tangential stiffness coefficients 

of the rod, rigid-body and coupling after including the static MR-damper effects are 

shown as follows: 
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  i

S
MRrr

ij
j

f
K k

r


  


;    i

S
MRrX

ij
j

f
K k

X


   


;  

       i

S
MRXX

ij
j

f
K k

X


 


;  i

S
MRr

ij ji
j

f
K kC




   


; 

       i

S
MRX

ij ji
j

f
K kC




 


;  ij i ij ki i ij kiD
K K C C K D D    

(3.35)

where    i

S
MR

i ij jiD
j

f
K C kC




 


 (3.36)

 In the time-domain simulation, the Average Acceleration Method (AAM) (San 

Andrés, 2008) is used to approximate the numerical time integration of an equation of 

motion from time interval ( )nt to ( 1)nt  , which can be represented as: 

 n n n nM X D X K X F t         (3.37)

where, M is the mass matrix, D is the damping matrix, and K is the stiffness matrix of 

equation of motion. Also, 

1n n nX X X   ; 1n n nX X X     ;  

1n n nX X X     ; 1n n nF F F    (3.38)

 The detailed derivation of AAM is refered to Appendix B. The Eqn. (3.37) is 

rearranged to a form of Eqn. (2.144): 

ˆ ˆ
n n nK X F    (3.39)

where 
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2

2 4ˆ
n

n n

K K D M
t t

 
     

 (3.40)

4ˆ 2 2n n n n
n

F F MX D M X
t

 
       

   (3.41) 

The ˆ
iK  and îF are known as pseudo dynamic stiffness and dynamic force respectively.  

In order to couple the MR damper force into the spring-platform connection, the 

Eqn. (3.29) is derived to a form of pseudo dynamic stiffness and dynamic force as in 

Eqns. (3.40) and (3.41): 

   
    1 tan sgn

MR i j ji i i i j ji i

i j ji i i i j ji i

f c X C r k X p C r

X C r X p C r

 

    

      

        

 

 
 

(3.29)

where the ip is a constant value and therefore ip is zero. The signum function 

 sgn 1i i j ji iX p C r     , the above equation can be further written as: 

   
  1 tan

MR i j ji i i i j ji i

i j ji i

f c X C r k X p C r

X C r

 

   

      

     

 

 
 

(3.42)

By using the linear approximation of multivariable Tylor series expansion, the 

equation with respect to ir and ir  (on the rod side) is:  

   
     

     

1

...

n n n

n n
i i i

i i

n n n

i i i

MR MR MR
MR MR j j j

j j j

MR MR MR
j

jj
j

j
j

f f f
f f r X

r X

f

X
r

f

r

f
X







   
      

  

  
     

  
 




 

(3.43)
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By using Adams-Moulton implicit method, the connector force on the end of the 

line contributed by MRf  can be ontained from the integration from ( )nt to ( 1)nt  : 

 

 
    

     

     
 

1

1

 2

Δ
 
2

Δ

2

n

n n

i i i
n

n n n

i i i

n n n

i i
n

i

i

t

MR MR MR

t

MR MR MR
j j j

j j j

MR MR
j j MR

j

MR
j

j j

t
f dt f f

f f f
r X

r Xt

f f f
X

r X
r f













 

   
     
   

  
   

          









 

(3.44)

where the change of velocities are (refer to Eqns. (A.1) - (A.4) in Appendix A):  

 (n)

(n)
(n)

 
Δ

j

j

X
X

t

 
   , 

 (

n)

( )
n)

(

n
 
Δj

jr

t
r

 
  , and 

 (n)

(n)
(n)

 
Δ

j

j t




 
   (3.45)

therefore, the Eqn. (3.44) can be rewritten as: 

 

 

     
 

           

     
 

 

1  2

 
2

Δ Δ Δ

  2
2

1

2

n n n

n
i i i

n i

n n ni
n

i i i

n n n

n
i i i

i

n

i

MR MR MR
j j j MRt

j j j

MR

t j j jMR MR MR

j j j

MR MR MR
j j j MR

j j j

MR

f f f
r X f

r Xt
f dt

r Xf f f

r t X t t

f f ft
r X f

r X

f













   
       
   

  
        

      
           
    









 
 

 
 

 (n) (n) (n)

n n

i iMR MR
j j j

j j j

f f
r X

r X




  
        
   



 

(3.46)
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 

       
 

 

    
 

    
 

    

1

1 1

1

  2
2

1 1
 

2 2

1

2

n n nn

n
i i i

i i
n

n n

i i

n

i

t
MR MR MR

MR j j j MR
j j jt

MR MRn n n n
j j

j j

MR n n

j

j j

j j

f f ft
f dt r X f

r X

f f
r r X X

r X

f




 




 



           
    

                

       







 

(3.47)

where the tangential stiffness coefficients can be derived as: 

     
  1

 
 tan  

n

i
i j ji i i i j ji i

MR

j j i j ji i

c X C r k X p C rf
k

r r X C r

 

   

                     

 

 
 

(3.48)

     
  1

    
 tan  

n

i
i j ji i i i j ji i

MR

j j i j ji i

c X C r k X p C rf
k

X X X C r

 

   

                    

 

 
 

(3.49)

     
  1 tan  

n

i
i j ji i i i j ji i

MR
ji

j j i j ji i

c X C r k X p C rf
kC

X C r

 

     

                    

 

 
 

(3.50)

     
  

 

1

2

 tan  

 
1

n

i
i j ji i i i j ji i

MR

j j i j ji i

i j ji i

c X C r k X p C rf

r r X C r

c
X C r

 

   



  



                    

  
     

 

   

 

 

(3.51)

     
  

 

1

2

 tan  

  
1

n

i
i j ji i i i j ji i

MR

j j i j ji i

i j ji i

c X C r k X p C rf

X X X C r

c
X C r

 

   



  



                    

 
     

 

   

 

 

(3.52)
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     
  

 

1

2

 tan

1

n

i
i j ji i i i j ji i

MR

j j i j ji i

ji
ji

i j ji i

c X C r k X p C rf

X C r

C
c C

X C r

 

     



  



           
         

  
     

 

   

 

 

(3.53)

Let, 
  2

1i j ji iX C r


  


     

 
 (3.54)

and therefore the tangential stiffness coefficients in the above equations can be 

simplified as: 

 

 

n

iMR

j

f
k

r





;      

 

  

n

iMR

j

f
k

X





;   

 n

iMR
ji

j

f
kC







 

 

 

n

iMR

j

f
c

r



  

 
;  

 

 

n

iMR

j

f
c

X



 

 
;   

 

  

n

iMR
ji

j

f
c C




  
 

 
(3.55)

Substituting these tangential stiffness coefficients into Eqn. (3.47): 

 

 
  

             

      
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1 1
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2

1 1
  

2 2

1

2
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i i
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t

MR ij MR

t
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n

j j j
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j j
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t
f dt k r k X k C f

c r r c X X

c C



 

  



 




        

                 
       






 

(3.56)

 

 

 

             

        
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1
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2

1

2

2

n

n

i
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j j

t
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j j j j
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j

t

n

j MR
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c C t f
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

 
















       

 

       

 

    

              



 

(3.57)
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and examine the term 
 n

iMRt f  on the right hand side of Eqn. (3.57); 

     
  

 

 

1

1

 tan
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n
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i j ji i i i j ji i
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i j ji i
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i j

i i i
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X r
c
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r

t t t

 

   



   







         

            
       

    

     



 

 

 

 

 

(3.58)

Rewrite 
 n

iMRt f   in the following form: 

          
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(3.59)

and substituting Eqn. (3.59) into Eqn. (3.57): 
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By approximating the time varying jr , j , and jX in the time interval 

( 1) ( )n nt t  to be a constant 
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        , and so on, the Eqn. (3.60) can be 

approximated as: 
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(3.61)

where the last term on the right hand side of Eqn. (3.61) can be rewritten as (refer to 

Eqns. (A.1) to (A.4) in Appendix A): 
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Therefore, Eqn. (3.61) can be rearranged as: 
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(3.64)
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It can be found that the Eqn. (3.65) can be rearranged in the following form as: 
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(3.66)
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which is exactly same in the form of pseudo dynamic stiffness and dynamic force as in 

Eqns. (3.40) and (3.41). 

Following from the Eqn. (3.65), the tangential stiffness coefficients and the 

connector force on the end of the line 
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and the connector force on the rigid body 
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There can be found that the second term on the right hand side (RHS) of Eqn. 

(3.68) (for the riser line) and Eqn. (3.69) (for the platform body), are the residue forcing 

terms after coupling with the MR damper. Therefore, these terms are to be included into 

the matrix (R) and (S) in Fig. 2.5, respectively, to modify the forcing terms in Charm3D. 

The total element tangential stiffness matrix, after considering the MR damper and 

spring coupling with the platform, on the end node of the riser (line), as modified from 

Eqn. (2.183) is: 
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 The element tangential stiffness matrix that needs to be added into the platform 

body, as modified from Eqn. (2.184) is: 
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and the coupling terms of element tangential stiffness matrix that need to be added into 

the global matrix is: 
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4. SEMI-ACTIVE CONTROL SCHEMES 4 

 

4.1 Introduction and Literature Reviews 

The semi-active control schemes is utilized to control the riser tensioner system 

integrated with MR damper, as proposed in Subsection 3.4 and Subsection 3.5. The 

versatility and adaptability of active devices and the realiablity of passive devices are 

offered by semi-active devices (Hurlebaus et al., 2011), such as magneto-rheological 

(MR) damper. The mechanical properties of these systems may be adjusted based on 

feedback from the excitation and/or from the measured response, where a controller 

monitors the feedback measurements and generates an appropriate command signal for 

the semi-active devices (Symans and Constantinou, 1999). The semi-active control 

concept involves the use of control theory to augment the damping properties of devices 

in real time and offers considerable advantages in performance over passive damping 

elements. On the other hand, semi-active system cannot deliver the level of performance 

of a fully active system, however, semi-active system requires much less energy than 

active system (Symans and Constantinou, 1999). As energy can only be dissipated, 

spillover phenomena are avoided (Hurlebaus and Gaul, 2006). The control forces are 

developed through appropriate (based on a pre-determined control algorithm) adjustment 

of the mechanical properties of the semi-active control system. Furthermore, the control 

forces in many semi-active control systems primarily act to oppose the motion of the 

structural system and therefore promote the global stability of the structure (Symans and 

Constantinou, 1999). 



 

104 

The technology of installing MR dampers in land-based building to minimize the 

structural vibration especially during the earthquake has gained successful results (Duan 

et al., (2002). Jansen and Dyke (2000) presented the results of a study to evaluate the 

performance of a number of semi-active control algorithms for use with multiple 

magneto-rheological (MR) dampers, including the Lyapunov controller, decentralized 

bang-bang controller, modulated homogeneous friction algorithm, and clipped-optimal 

controller. Each algorithm uses measurements of the absolute acceleration and device 

displacements for determining the control action to ensure that the algorithms could be 

implemented on a physical structure. Yao et al. (2002) proposed a semi-active control of 

MR damper in a two degree-of-freedoms system by using a Skyhook control scheme. 

Kim (2007) developed a multiple autoregressive exogenous inputs-based Takagi-Sugeno 

fuzzy model, to identify nonlinear behavior of structure-magnetorheological damper 

systems. It was demonstrated from the numerical simulation that the proposed algorithm 

is effective to control responses of seismically excited building structures equipped with 

MR dampers. Bahar et al. (2010) proposed an inverse model of an MR damper to 

overcome the difficulty of commanding the MR damper to output the desired control 

force. The inverse model of MR dampers consider a hybrid seismic control system for 

building structures, which combines a class of passive nonlinear base isolator with a 

semi-active control system. In this application, the damper is used as a semi-active 

device in which the voltage is updated by a feedback control loop. The management of 

MR dampers is performed in a hierarchical way according to the desired control force, 

the actual force of the dampers and its capacity to react.  
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Bitaraf et al. (2010) developed an effective control strategy by utilizing two 

semi-active control methods for seismic protection of structures using MR dampers. The 

first method is the Simple Adaptive Control method which tracks the response of the 

system with desired behavior and deals with the changes that occur in the characteristics 

of the structure. The second controller is a genetic-based fuzzy control method whose 

rule-base is determined by a multi-objective genetic algorithm to determine the 

command voltage of MR dampers. The developed controllers was reported can 

effectively control both displacement and acceleration response of the considered 

structure. Yu et al. (2010) developed a semi-active control strategy by using the Linear 

Quadratic Regulator (LQR) method to integrate with a modified inverse dynamic model 

to evaluate the value of evolutionary variable based on the Bouc-Wen model (Spencer 

Jr., et al., 1997) of MR dampers. This control strategy is applied to the dynamic response 

control of a fixed jacket offshore platform.  

 (4.0)

4.2 Semi-Active Skyhook Control Strategy  

 The semi-active skyhook control is studied in this Subsection.  The input 

variables to the skyhook control are selected as the velocity of the tensioner ring and the 

host platform, while the output is the control force of the MR damper as follows (Yao et 

al., 2002; Yang et al., 2011): 
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 

1 2 1
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(4.1)
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where 1x and 2x  are the velocity of platform and tension ring, respectively, as illustrated 

in Figs. 3.9 – 3.12, and cF is the control output force. If the relative velocity  2 1x x   

between the tensioner ring and the platform is in the same direction of the velocity of the 

platform 1x , an electric current is applied to the MR damper, otherwise no damping 

force is required (Yao et al., 2002).  

 

4.3 Fuzzy-Logic Control 

 The fuzzy logic control (FLC) scheme is studied in this Subsection. The input 

variables to the FLC are selected as the vertical displacement 2x  and velocity 2x of the 

tensioner ring, as refered to the cases in Figs. 3.9 – 3.12, while the output is the 

command electric current (t)i , as stated in Eqns. (3.3) – (3.7), to the MR damper. For 

the inputs and output membership functions, seven identical triangles with 50% overlap 

are defined on the normalized universe of discourse in the range of [-1, 1] as illustrated 

in Fig. 4.1 (Wang and Song, 2013; Wilson, 2005). 

 

 

Figure 4.1 Membership functions of inputs (displacement and velocity of tensioner ring) 
and output (command current). 
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 The linguistic variables of membership function are defined as Negative Large 

(NL), Negative Medium (NM), Negative Small (NS), Zero (ZO), Positive Small (PS), 

Positive Medium (PS), and Positive Large (PL), respectively. The triangular curve is a 

function of a vector x  and depends on three scalar parameters , ,a b c . For example, the 

membership function if of triangular for case NL  can be determined by (Lewis, 2004): 

 ; , , max min  , ,0NL NL
i NL NL NL

NL NL NL NL

x a c x
f x a b c

b a c b

   
      

 
(4.2)

where 

x  = normalized input variables (vertical displacement and velocity, respectively) 

NLa = lowest value of triangular feet at the degree of membership equals to zero 

NLb = value of triangular peak at the degree of membership equals to one 

NLc = highest value of triangular feet at the degree of membership equals to zero 

 The block diagram of fuzzy logic controller is depicted in Fig. 4.2. According to 

Lewis (2004), a rule-base contains a fuzzy logic quantification of the expert’s linguistic 

description of how to achieve good control. The inference mechanism emulates the 

expert’s decision making in interpreting and applying knowledge about how best to 

control the system. The fuzzification interface converts controller inputs into information 

that the inference mechanism can easily use to activate and apply rules while the 

defuzzification interface converts the conclusions of the inference mechanism into actual 

inputs for the process. The centroid defuzzification method is used in this research and is 

given as (Lewis, 2004): 
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(4.3)

where 

iz  = control representative values 

 ij jx  = membership functions of the components of the n -vector x   

 

 

Figure 4.2 Block diagram of fuzzy logic controller. 
 

 The inference rules for computing the command current (t)i into the MR damper 

is based on the works of Wang and Song (2013) are listed in Table 4.1. The response 

surface of fuzzy logic controller based on this inference rules is shown in Fig. 4.3. There 

is noteworthy that a negative command current (t)i is potential to be produced based on 
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this inference rules. Nevertheless, the physical nature of MR damper is a device that 

only provides dissipative damping force, therefore, the negative command current is 

regarded as zero current input in this control scheme.  

 

Table 4.1 Control rules base of fuzzy logic controller (Wang and Song, 2013). 
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Figure 4.3 Response surface of fuzzy logic control scheme. 
 

4.4 Control Performance Evaluation 

 The performance of the discussed control schemes were evaluated in this 

Subsection. The simulation was conducted to examine the dynamic responses of a two-

DOFs system, as illustrated in Figs. 3.9 – 3.12. A typical two-DOFs system based on the 

works of Yao et. al (2002) and Sathishkumar et al. (2014), was studied in this 

Subsection. The parameters of a scaled-down two-DOFs system is modified from the 

works of Sathishkumar et al. (2014) and tabulated in Table 4.2. 
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Table 4.2 Parameters for a two-DOFs system. 
Sprung mass 2m  290 kg (19.8713 slug)

Unsprung mass 1m  60 kg (4.1113 slug)

Stiffness tk  16200 N/m (1.11 kips/ft)

Stiffness bk  39100 N/m (2.68 kips/ft)

Damping tc  1000 Ns/m (0.0685 kips.s/ft)

Stiffness rk  0 N/m (0 kips/ft)

 

 There is noteworthy that the sprung mass is equivalent to the tensioner ring, and 

the unsprung mass is equivalent to the platform mass, as illustrated in Figs. 3.9 – 3.12. 

Generally, the mass of the host platform 1m is much larger than the mass of the tensioner 

ring 2m . However, since the purpose of this Subsection is to study the effectiveness of 

each discussed control schemes, therefore, the sprung mass / unsprung mass values were 

followed identically from the works of Sathishkumar et al. (2014).  

 The accelecration of the sprung mass is shown in Fig. 4.4. The passive control is 

the case where the motion is restrained by a damper with constant damping coefficient 

tc . While the active control is the benchmark case when an active force actuator is 

installed into the two-DOFs system and fully follow the control scheme in Table 4.1, 

where the negative command current was regarding as the non-dissipative active forces 

to be actively transferred into the system.  
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Figure 4.4 Acceleration of the sprung mass by using different types of control scheme. 
 

 There can be found that the semi-active control schemes, Skyhook and fuzzy-

logic, had significantly reduced the sprung mass responses in the frequency range of 

body resonance (Yao et. al, 2002) from the uncontrolled passive condition, even though 

the performance in the reduction of sprung mass motion is not as much as performed by 

the active control.  

 The relative stroke response in between the sprung mass and unsprung mass is 

shown in Fig. 4.5. The semi-active control schemes and active control can significantly 

reduce the stroke in the body resonance range, however, increase the stroke outside this 

range. 
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Figure 4.5 Relative stroke response by using different types of control scheme. 
 

 The deflection of the unsprung mass  1wx x  is shown in Fig. 4.6. The fuzzy 

logic control and skyhook control perform better than the active control in the body 

resonance range. However, the semi-active control schemes generates higher responses 

in the high-frequency region (second peak). 
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Figure 4.6 Deflection of the unsprung mass by using different types of control scheme. 
 

 From the simulation of two-DOFs system, it can be found that the semi-active 

control provides improved performances compared with the passive control (Yao et. al, 

2002). Also, the semi-active control schemes have a comparable performance with the 

active control scheme, but the semi-active control scheme can reduce the complexity and 

avoid the spillover phenomena inherent form the active control (Hurlebaus and Gaul, 

2006).  

 The semi-active control schemes of Skyhook control and fuzzy logic control are 

further utilized in Section 7 to control the stroke of tensioner ring. On the other hand, an 

active control scheme, Equivalent Force Compensation Control (EFCC), is conceptually 
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proposed in Section 5 (refer to Subsection 5.7) to compensate the force deviations in 

between the actual tensioner ring tension and the desired pretension by using a 

combination of MR dampers and force actuators.  
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5. REDUCTION OF FORCE VARIATIONS ON RISER TENSIONER BY USING 

MAGNETO-RHEOLOGICAL DAMPER 

 

5.1 Introduction 

The top tensioned risers (TTR) must have a heave compensator system that 

maintains a near constant axial tension. However, a near constant tension can only be 

obtained under very small heave motions and requires for large and sophisticated 

tensioner system. In real-world sea environments, excessive dynamic axial tension 

variations can be exerted on the TTR and lead to structural integrity issues. The 

traditional riser tension variations analysis, however, by using parametric formulation is 

only conditionally valid under certain strict limits and potentially underestimate the total 

magnitudes of the tension variations. This phenomenon is especially important for the 

offshore operations where the dynamic axial tension of riser must be closely monitored, 

such as in the offshore drilling operation and excessive fatigue loads prevention on the 

connection points in between the riser and dry-tree production system. This Section is 

focusing on the simulations and analysis of tension variations of a TTR, as illustrated in 

the Fig. 5.1. The TTR is modeled in detailed component-level which includes a set of 

hydraulic and pneumatic components. Moreover, the viscous fluid frictional effect in the 

hydro-pneumatic (HP) tensioner system is considered in the calculation of tension 

variations. The exertion of excessive tension variations in the tensioner system leads to 

the necessity of reduction of tension variations which can be achieved by using magneto-

rheological (MR) damper.   
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Figure 5.1 Overview of MR damper applications in ocean engineering. 
 

The specific characteristics of MR damper in alternating the damping forces have 

great potential to interactively suppress the tension variations corresponding to various 

sea conditions. The main objectives of this Section are: 

(i) to develop a detailed tension variations model of the HP tensioner 

(Subsection 5.3 and Subsection 5.5);  

(ii) to identify the deviations in between the parametric formulation and 

component-level formulation in the analysis of TTR axial tension 

(Subsection 5.4);  

(iii) to implement the MR damper and its control scheme in order to suppress 

the riser tension variations (Subsections 5.6 - 5.8). 
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The formulation and analysis of marine riser tensioning system which includes 

the hydraulic-pneumatic (HP) tensioner and the effects of magneto-rheological (MR) 

damper were studied. The tensioner system of a top-tensioned riser (TTR) is designed to 

maintain a nearly constant axial tension on the contact point with the TTR so that the 

host platform is able to move relatively to the risers. The TTR must be tensioned so that 

the riser does not buckle under its own weight. Hydro-pneumatic (HP) tensioner systems 

are a form of riser tensioning mechanism used to support TTRs on various dry tree (in 

which drilling and production equipment is disposed above the waterline) platforms. 

Conventionally, a plurality of hydraulic cylinders with hydro-pneumatic accumulators 

are connected between the platform and the riser to provide and maintain the necessary 

riser tension. Platform responses to environmental conditions, mainly heave and 

horizontal motions causing hull set-down (in the case of TLP), necessitate changes in 

riser length relative to the platform, which causes the tensioning cylinders to stroke in 

(up-stroke) and out (down-stroke). The spring effect caused by the gas compression or 

expansion in the tensioner (accumulator and gas bank) during riser stroke partially 

isolates the riser from the low heave platform motions while maintaining a nearly 

constant riser tension. However, when the platform, in case of TLP, takes a significant 

horizontal offset, the compression of the gas in the tensioner causes increased internal 

pressure and thus increased riser tension (Crotwell and Yu, 2011).  

In this Section, the formulation of riser tensioner is developed to identify the 

deviations in between the following two approaches in the marine tensioner-riser 

dynamic analysis:  
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(i) parametric formulation (Yang, 2009), and  

(ii) component-level formulation, which is the integrated component-level 

effects that considers the total component effects of the HP tensioner 

(Gallagher et al., 2012; Kozik, 1975; Kozik and Noerager, 1976; Sten et 

al., 2010).  

The effects of dynamic tension variations acting on the TTR based on these two 

approaches were identified. The tension variations are important in the tensioner fatigue 

issue (Trent, 2012) and sometimes can potentially be underestimated if only using the 

conventional parametric formulation (Gallagher et al., 2012). Finally, the incorporation 

of MR dampers into the TTR tensioning system has demonstrated its effectiveness in the 

reduction of TTR’s tension variations. 

 

5.2 Riser Tensioner 

There are three most common types of tensioner systems in the offshore industry, 

as illustrated in Fig. 5.2. The wire-rope type had once been popular for decades in the 

offshore field developments. However, due to the complexity and limited payload ability 

of the wire-rope type system, the hydro-pneumatic (HP) types have become predominant 

in the more recent offshore field developments. The direct-acting (DAT, pull-style) 

tensioner and ram-style (push-style) tensioner can be categorized as the hydro-pneumatic 

(HP) tensioner.  
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Figure 5.2 The types of riser tensioner (Courtesy of DTI, LLC, USA). 
 

The DAT riser tensioner system is illustrated in Fig. 5.3. The tensioner cylinders 

are symmetrically mounted under the well deck and angled inboard to riser attachment 

points on a tensioner ring. The surface production tree or flow control device at the top 

of the riser on a host floating platform can be mounted closer to the tensioning point of 

the riser so that the well spacing inside the platform can be reduced. This reduces the 

bending loads induced in the portion of the riser above the tension point from the 

dynamic motions of the surface production equipment. Generally, the direct-acting 

tensioners (DATs) are designed for relatively short strokes and therefore this system is 

predominately utilized in tension-leg platform (TLP) due to the low heave characteristics 

of the hull, combined with the relatively small riser length changes associated with small 
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heave motion and set down due to the parallelogram arrangement formed by the 

platform, tendons, risers, and the seafloor well pattern (Crotwell and Yu, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3 The riser tensioner system (Courtesy of National Oilwell Varco, USA). 

 

On the other hand, the ram-style (push style) tensioners with long stroke are to be 

considered in the newly developed dry-tree Semi-submersible (DTS) concepts (Xiang et 

al., 2014). There is noteworthy that the discussion of the hydro-pneumatic system of a 

DAT tensioner can be generalized to the ram-style tensioner as well for the reason that 

both of these two systems are developed from an identical hydro-pneumatic principle. 

The main component is the tensioner cylinder that generates a pulling force (or pushing 
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force in ram-style) on the tensioner ring. The pulling force (or pushing force) is 

generated by a hydro-pneumatic pressure in a closed volume. The cylinder of each 

tensioner is fluidly coupled, at its lower end (piston rod side) to a hydraulic fluid 

reservoir pressurized by a high pressure hydro-pneumatic accumulator, as illustrated in 

Fig. 5.3. The top manifold is for pressurized nitrogen connected to the low pressure 

nitrogen pressure vessels (NPVs) (Sten et al., 2010). On the other end, a gas (such as 

nitrogen or dry air) at relatively high pressure is applied from the high pressure hydro-

pneumatic accumulator to hydraulic fluid in the cylinder rod-side chamber, driving the 

hydraulic fluid to push the piston upwardly in the cylinder to retract the rod, thus pulling 

up the slip joint through the tensioner ring and, in turn, tensioning the riser (Crotwell and 

Yu, 2011).  

The schematic diagram of hydro-pneumatic (HP) components is shown in Fig. 

5.4 for a DAT system. There is noteworthy that the discussion of the hydro-pneumatic 

system of a DAT tensioner can be directly generalized to the ram-style tensioner for the 

reason that both of these two systems are developed from an exact basic hydro-

pneumatic principle. The main component is the tensioner cylinder that generates a 

pulling force on the tensioner ring. The pulling force (or pushing force in the case of 

ram-style tensioner) is generated by a hydro-pneumatic pressure in a closed volume. The 

cylinder of each tensioner is fluidly coupled, at its lower end (piston rod side) to a 

hydraulic fluid reservoir pressurized by a high pressure hydro-pneumatic accumulator. 

The top manifold is for pressurized nitrogen connected to the low pressure nitrogen 

pressure vessels (NPVs) (Sten et al., 2010). On the other end, a gas (such as nitrogen or 
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dry air) at relatively high pressure is applied from the high pressure hydro-pneumatic 

accumulator to hydraulic fluid in the cylinder rod-side chamber, driving the hydraulic 

fluid to push the piston upwardly in the cylinder to retract the rod, thus pulling up the 

slip joint through the tensioner ring and, in turn, tensioning the riser (Crotwell and Yu, 

2011). The stroke for these cylinders needs to be sufficiently long and the volume of 

high pressure NPVs must be sufficiently large in order to provide nearly constant riser 

tension and compensate for relative motions between the platform and the upper riser 

end (Sten et al., 2010).  
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Figure 5.4 The schematic diagram of direct-acting tensioner (DAT) system. 
 (5.0) 
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5.3  Formulation of Riser Tension Variations 

The high pressure vessels (NPVs), as illustrated in Fig. 5.4, are designed to give 

the hydraulic cylinder a nearly constant force at the required pressure setting. The 

pressure variations can have a range from few bars to over 100 bars (1450.38 psi) 

(Grønevik, 2013). The relative motion between the floating platform and the riser causes 

the extension and retraction of the tensioner piston rod. The inflow of hydraulic fluid 

from the accumulator to the tensioner cylinder causes retraction (up-stroke motion) of 

the piston rod and therefore exerted pulling force on the tensioner ring. The outflow of 

hydraulic fluid from the tensioner cylinder to the accumulator during the extension 

(down-stroke motion) of cylinder exerted large nonlinear air spring force caused by the 

compression of the air volume in the accumulator and pressure vessels. Due to the large 

dimensions of the tensioner system, the retracting and extending motion of tensioner 

cylinder involves large volumes of hydraulic oil flow. Therefore, having large volumes 

of compressed nitrogen in the pressure vessels will reduce the pressure variations (Sten 

et al., 2010). 

 

5.3.1 Zone 1: Pressure Variation in the Nitrogen Pressure Vessel (NPV) 

The high-pressure nitrogen pressure vessels (NPVs) are connected, by using 

pipes and hoses, to the accumulator under a constant preload pressure 
0AP  controlled by 

the nitrogen compressor as shown in Zone 1 in Fig. 5.4. The ball valves connected on 

these gas conduits are assumed to be kept open during normal operation to maintain 

small tension variations (Grønevik, 2013). The total gas volume in the boundary from 
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the NPV to the gas domain inside the accumulator is regarded as single volume 
0AV  and 

the variation of gas volume change is represented by the volume ratio of 
0A AV V . 

The local pressure variation in the high pressure NPV is a function of riser stroke 

length and that can be calculated when the internal area and initial pressure 
0AP  at the 

equilibrium mid-position are known. The upstroke/down-stroke motion of the tensioner 

rod gives a change of volume in the oil/nitrogen accumulator and NPV. This change of 

volume AV  is assumed as an adiabatic process (without the change of heat in between 

the system and its environment) (Grønevik, 2013). The pressure variation AP  in the 

high pressure gas domain (from NPV to accumulator) due to the variation of gas volume 

can be represented as (Kozik, 1975):  

 0

0

1
1

1
A A

A A

P P
V V



 
   
    

 

(5.1)

where  is the initial pressure in the high pressure NPV and   is adiabatic gas 

constant, which is 1.4 for adiabatic process (Li et al., 2013) of nitrogen at 15°C. The 

decrement of volume AV  (compression of high pressure NPV gas domain during 

downstroke motion) leads to the increment of pressure variation AP  in the high pressure 

NPV (gas bank). the details derivation from the first law of thermodynamics of ideal gas 

can be refered to Appendix C.   

0AP
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5.3.2 Zone 2: Pressure Variations from NPV to Accumulator 

The high-pressure nitrogen pressure vessels (NPVs) are located at a certain 

distance away from the accumulator on the production / drilling deck (30-feet (9.144 m), 

for instance (Sten et al., 2010)) and to be connected in gas flow connection through the 

pipes and valves. The frictional losses HA
plP  , as illustrated in Fig. 5.4, can be occurred 

as fluid (nitrogen in this case) moves through the pipes and conduits at a flow rate HA
gasq  

and lead to the variations in pressure applied by the tensioner system. The pressure 

variations caused by the flow friction in the pipes and conduits is modeled by using 

Darcy-Weisbach equation (Manring, 2005). This model is derived with the assumptions 

that the fluid/gas flow is fully developed along the pipe length and the effects due to the 

fluid/gas inertia and fluid/gas compressibility are not taken into account, which implies 

that features such as water hammer and the end effects of piping are not considered in 

this steady state fluid momentum conditions (Mathworks, 2009). In order to account for 

local resistances, such as bends, fittings, inlet and outlet losses, and so on, all the 

resistances are converted into their equivalent lengths HA
eqL , and then the total length of all 

the resistances is added to the pipe geometrical length HAL . Therefore, the flow pressure 

losses HA
plP  attributed by the pipes friction, according to Darcy-Weisbach equation, are 

defined as: 

22

HA HA HA
gas eqHA HA HA

pl gas gas
HA HA

f L L
P q q

A D

  
    

 
 

(5.2)
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where gas is the density of gas, while  HAf , HAA , and HAD  are the friction factor, cross 

sectional area, and diameter of the pipe from high pressure NPV (superscript H) to 

accumulator (superscript A), respectively. 

Pressure losses due to friction are proportional to the flow regime-dependable 

friction factor HAf and the square of the flow rate HA
gasq . The friction factor HAf  in Eqn. 

(5.2) can be calculated based on Moody diagram by using the Haaland’s approximation 

(Haaland, 1983; Mathworks, 2009) as shown in the following expression: 
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(5.3)

Re
HA
gas HA

HA gas

q D

A 


  
(5.4)

where SK  is the shape factor that characterizes the pipe cross section, Re is the 

Reynolds number, Lf  and Tf  are friction factor at laminar border and turbulent border, 

respectively,  ReL and ReT are maximum Reynolds number at laminar flow and turbulent 

flow, respectively, hHAr  is the height of the internal surface roughness on the pipe from 

high pressure NPV (subscript H) to accumulator (subscript A), and gas is the kinematic 

viscosity of gas. Note that the ball valves on the conduits from high pressure NPVs to 
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accumulator in this study are assumed to be initially fully opened and have the same 

flow diameter with the pipes in connection during the normal operation.  

 The preload pressure in the accumulator prP  after considered as the total effects 

of the pressure variation AP  in high pressure NPV and the pressure losses HA
plP due to 

pipeline and valve flow friction, as represented from the combination of Eqns. (5.1) and 

(5.2) is stated as: 

0

HA
pr A A plP P P P      (5.5)
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(5.6)

 

5.3.3 Zone 3: Pressure Variation from Accumulator to the Piston 

In the hydro-pneumatic tensioner system, the accumulator consists of a pre-

charged gas domain (connected to the high pressure NPVs) and a fluid domain 

(connected to the hydraulic part in the tensioner cylinder), as illustrated in Fig. 5.4. If the 

hydraulic fluid pressure at the accumulator inlet inletP becomes higher than the preload 

pressure prP , which is acting on the gas-oil interface boundary, the hydraulic oil is going 

to enter the accumulator chamber and compress the gas domain, thus storing hydro-

pneumatic energy. On the other hand, a drop in the inlet fluid pressure inletP  during riser 

up-stroke motion is going to restore the hydraulic oil back into the tensioner cylinder.  

The flow rate of hydraulic oil oilq  flows in / out the accumulator is calculated by using 

the volumetric of fluid changes induced by the motion of tensioner piston. Note that the 
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shut-off valve on the conduit from the accumulator to the tensioner cylinder in this study 

are assumed to be initially fully opened and has the same passage diameter with the 

pipes in connection during the normal operation. Therefore, the pressure a
pP  at the 

piston-side chamber after considered the pressure variation in high pressure NPV, 

pressure variation from high pressure NPV to accumulator HA
plP , and pressure losses 

AP
plP  due to pipes friction and valve flow friction can be represented as: 

a AP
p pr plP P P   (5.7)

0

a HA AP
p A A pl plP P P P P      (5.8)
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(5.9)

where oil  is the density of hydraulic oil, oilq is the flow rate of hydraulic oil , APf , APA , 

and APD  are the friction factor, cross sectional area, and diameter of the pipe from the 

accumulator (superscript A) to the tensioner piston (superscript P), respectively. The 

method to calculate the oil friction factor APf is same with finding the gas friction factor 

HAf in the Eqn. (5.3), by modifying the Reynold number in Eqn. (5.4) to the 

corresponding hydraulic oil inputs. 

In general, the pressure loss HA
plP due to the friction of gas is around three orders 

of magnitudes smaller than the liquid AP
plP , in the case of nitrogen/oil, due to the 
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density of the fluid (Van de Ven and Li, 2009). Hence, the Eqn. (5.9) can be simplified, 

under a reasonable level of accuracy, into: 
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(5.10)

 The industrial practices normally assumed that the fictional losses of hydraulic 

oil in between the accumulator and the tensioner cylinder, which is the second term of 

the right hand side of Eqn. (5.10), to be neglected (Yang, 2009). Therefore, the Eqn. 

(5.10) is further approximated, as the parametric formulation, into:  

 0

0

1

1

a
p A

A A

P P
V V



 
 
    

 

(5.11)

The pressure at the piston-side chamber a
pP  is highly dependable with respect to 

the ratio of volume change in the gas domain 
0A AV V . The Eqn. (5.11) can be rewritten 

into the form of tension force T exerted from the tensioner cylinder piston as in the 

following equation (Yang, 2009) (refer to Appendix C): 

0
0

1
z

T T
z


 

  
 

 
(5.12)

where 0T  is the pretension of tensioner, 0z  is the equivalent length of cylinder (which is 

the ratio of total fluid volume to cylinder piston-side cross-sectional area). The z  is 

the change of platform-riser relative displacement, which is defined as the counterpart of 

the change of riser stroke, as: 
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ZSz    (5.13)

and the stroke ZS of tensioner is defined from Eqn. (2.153) as: 

 Z i i j ji iS X p C r      (5.14)

where,  

Down-stroke motion:  z i i j ji iS X p C r      (5.15) 

Up-stroke motion:  z i i j ji iS X p C r       (5.16) 

which is assumed that the downstroke motion leads to the compression of gas and 

hydraulic oil domain in the high-pressure NPVs and accumulator, and upstroke motion 

leads to the extension of this domain. 

The parametric formulation (as stated in Eqns. (5.11) and (5.12)) is reasonable if 

the length of connection pipes APL  is sufficiently short (Trent, 2012) or the relative 

velocity of the riser in the heave direction is sufficiently small, such as in the case of 

connecting to the TLP host platform. However, it is noteworthy that the hydraulic 

pressure losses AP
plP  through the pipes in between the accumulator and the piston in the 

second term of RHS of the Eqn. (5.10) must be evaluated if the velocity of riser stroke is 

sufficiently large, such as under the operations of drillship, dry-tree semi-submersible, 

and during the anti-recoiling and disconnection of TTR.  

Finally, if the fluid compressibility and leakages inside the tensioner cylinder are 

assumed to be negligible, the equation of force equilibrium on the both side of tensioner 

piston tenF  in the hydraulic cylinder, from Fig. 5.4, can be represented as: 
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a a b b
ten p p p p HSF A P A P F      (5.17)
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(5.18)

 After considered the reciprocal relationship of the stroke on the both sides of the 

piston, where the stroke-in to the piston-side is equal to the stroke-out from the cap-side, 

and vice versa, the Eqn. (5.18) can be rewritten as: 
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(5.19)

where the superscript ( S  ) and ( S  ) denote the both strokes of opposite directions. 

The Eqn. (5.19) is further rearranged in the same direction of stroke ( S  ), as: 
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(5.20)

where 0Az  and 0Bz are the equivalent length of tensioner in piston-side and cap-side, 

respectively, 
0

a
HPF  and  

0

b
HPF  are the initial forces acting on the piston at the piston-side 

and cap-side, respectively, a
pA  and b

pA  are the cross sectional area of the piston at the 
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rod-side and cap-side, respectively, LPA  and LPD  are the cross sectional area and 

diameter of the pipe, respectively, from the tensioner piston (subscript P) to the low 

pressure NPV (subscript L). The HSF is the hard-stop force when the piston is 

approaching very close to the upper/lower limits of the cylinder length, which can be 

modeled as a cubic spring force (Yang, 2009), 

for

0 for

for

csp upper

HS lower upper

csp lower

F z z

F z z z

F z z

 
  
 

 

(5.21)

where cspF is the cubic spring force, and the upperz and lowerz  denote the upper and lower 

limits of the cylinder length, respectively. 

 Since the density of nitrogen is around three orders of magnitudes smaller than 

the hydraulic oil (Van de Ven and Li, 2009), the pressure losses due to the friction of gas 

can be neglected in the Eqn. (5.20) under a reasonable level of accuracy: 
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(5.22)

There is noteworthy that the third term in the RHS of Eqn. (5.22) is normally 

acting as an air spring for the up-stroke motion and, in general, the
0

b
HPF which is 

connected to the low-pressure NPV is much smaller than the 
0

a
HPF .  

 

5.4 Simulation of Dynamic Pressure/Tension Variations  

In order to identify the deviations in between the parametric formulation (Eqn. 

(5.11) and Eqn. (5.12)) and component-level formulation (Eqn. (5.10) and Eqn. (5.22)) in 
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the analysis of TTR axial tension, the effects of dynamic pressure / tension variations on 

a numerical model of HP tensioner, as illustrated in Fig. 5.4, were simulated in this 

Subsection under the following two settings: 

(i) a conventional nonlinear hydro-pneumatic (HP) tensioner was simulated 

under a preset dynamic displacement z  and velocity inputs (Fig. 5.6);  

(ii) the length of hydraulic pipe is varied in order to simulate the pressure 

variations attributed by the frictional fluid effects (Figs. 5.7~5.9);  

The simulation was conducted by using the Simulink software package 

(Mathworks, 2009). The dimensions and data of the HP tensioner in this simulation are 

tabulated in Table 5.1. 
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Table 5.1 Hydraulic-pneumatic tensioner data (Sten et al., 2010). 
Pressure at LNPV 10 bar (145.0 psi)

Volume of LNPV 4.0 m3 (141.3 ft3)

Pressure at HNPV 60 bar (870.2 psi)

Volume of HNPV 9.0 m3 (317.8 ft3)

Length of Pipe from LNPV to Cylinder 30.0 m (98.4 ft)

Diameter of Pipe from LNPV to Cylinder 0.1 m (0.328 ft)

Length of Pipe from HNPV to Accumulator 30.0 m (98.4 ft)

Diameter of Pipe from HNPV to Accumulator 0.1 m  (0.328 ft)

Diameter of Pipe from Accumulator to Cylinder 0.2 m (0.656 ft)

Cylinder Inner Diameter 0.560 m (1.837 ft)

Piston Rod Diameter 0.230 m (0.755 ft)

* Note: LNPV = low pressure nitrogen pressure vessel, HNPV = high pressure nitrogen pressure 
vessel 

 

The characteristic responses of the hydro-pneumatic (HP) tensioner are shown in 

Fig. 5.5. The tensioner was excited by a sinusoidal dynamic displacement z  (from -

0.50 m to 4.25 m (-1.64 ft to 13.94 ft), positive side is referred to down-stroke motion as 

indicated in Eqns. (5.13) and (5.15)) and dynamic velocity (from -1.0 m/s to 1.0 m/s (-

3.28 ft/s to 3.28 ft/s)) in this case. This is noteworthy that the velocity of the HP 

tensioner piston is normally far below 1.0 m/s (3.28 ft/s) when the host platform is the 

tension-leg platform (TLP).  However, the dynamic velocity inputs in this simulation are 

reasonable for the cases of drillship and dry-tree Semi-submersible, in which the 
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platform heave motion is no longer constrained by the high stiffed tendons, and for the 

case of instantaneous velocity during the anti-recoiling and TTR disconnection.  

The position of piston after taking the overall static loadings into account is at 

around +2.0 m (+6.56 ft) (positive sign is referred to downward direction of tensioner 

ring from its nominal position, in this case).  If the dynamic loadings are included, it can 

be seen that the piston dynamic displacement and piston velocity are out of phase, with 

maximum velocity occurring as the piston reaches static equilibrium position, as 

matched with the findings of Sten et al. (2010). The pressure in the piston-side chamber, 

based on Eqn. (5.9), has the phase in between the piston displacement and piston 

velocity. 

 

 

Figure 5.5 Dynamic response of HP tensioner. 
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The effects on the pressure variations in tensioner cylinder due to the fictional 

losses in the pipe are shown in Fig. 5.6. The contribution of frictional losses to the 

pressure variations is stated by the second term of the right hand side of Eqn. (5.10). It 

can be found that the effects of friction for the 30 m (98.43 ft) length APL  long pipe is 

significant compared to the one with 3 m (9.84 ft) short length APL pipe. The percentage 

of dynamic pressure variation for long pipe is ~43% while the pressure variations for the 

short pipe is ~11%, with respect to the mean pressure. It can be found that the dynamic 

pressure (and tension) variation is very sensitive to the length of hydraulic fluid pipe. 

Therefore, in order to reduce dynamic tension variation, the hydraulic pipe must be 

designed as short as possible, which means that the location of the accumulator and the 

tensioner cylinder is recommended to be as close as possible.  

 

 

Figure 5.6 Pressure variations due to the fictional losses in the pipe. 
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The validity and accuracy of the parametric formulation of HP tensioner, as 

stated in Eqn. (5.11) (Yang, 2009; Yang and Kim, 2010), is analyzed and shown in Fig. 

5.7. The pressure variations of the 3 m (9.84 ft) short pipe is compared with the case that 

the fictional losses of hydraulic oil in between the accumulator and the tensioner 

cylinder AP
plP  to be neglected. It can be found that the simplified parametric 

formulation is conditionally valid if the length of connection pipes APL   is sufficiently 

short (3 m to 0 m (9.84 ft to 0 ft)), even though the dynamic velocity is large (~-1.0 m/s 

to 1.0 m/s (-3.28 ft/s to 3.28 ft/s)). Therefore, this is noteworthy that the accuracy of the 

parametric formulation (Eqn. (5.11)), which is a popular riser tension analysis method in 

the industry, is very dependent on the physical length of the hydraulic pipe APL  of the 

HP tensioner system. The excessive dynamic tension variation is potentially to be 

underestimated if the HP tensioner is built with long hydraulic conduits and very long 

stroke.  

 



 

140 

 

Figure 5.7 Pressure variation due to the frictional pipe length. 
 

The pressure-displacement and pressure-velocity plot with respect to the 

different lengths of pipes caused by the effects of fluid friction are shown in Fig. 5.8. It 

is apparent that the pressure is a function not only of piston displacement but also of the 

the piston velocity. Throughout the loops (in the clock-wise direction) the pressure is 

greater when the extension of tensioner cylinder (positive sign is referred to down-stroke 

motion in this case). The variations of hysteresis are smallest at the displacement 

amplitude points (at ~-0.50 m (~-1.64 ft) and ~4.25 m (~13.94 ft), respectively, in this 

case) and is most pronounced at the static equilibrium point (which is at around +2.0 m 

(+6.56 ft), in this case). It is noteworthy that the pressure variation is very dependable to 

the frictional length of pipe conduits. If the length of hydraulic flow pipe is sufficiently 

short and can be neglected ( APL = 0 m (0 ft)), as expressed in Eqn. (5.11), the pressure-

displacement loop is reduced to a curve line (the blue line in Fig. 5.8), which normally 

represents the HP tensioner characteristics in the industrial manufacturer manuals. 
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Figure 5.8 Pressure variation in the piston-side chamber, positive displacement is 
referred to down-stroke motion in this case.  
 

5.5 Finite Element Coupling of Hydro-Pneumatic Tensioner, Platform, and 

Riser after Considered the Dynamic Tension Variation 

In this Subsection, the finite element modeling of the dynamic tension variation 

is considered into the connection between the risers, hydro-pneumatic (HP) tensioner, 

and the platform. Recalling from the Eqn. (5.10) and Fig. 5.4, the pressure at the piston-

side chamber a
pP after considered the pressure variation in high pressure NPV, 

accumulator, and pressure losses due to pipes friction and valve flow friction can be 

represented, under a reasonable level of accuracy, as: 
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(5.10)

By assuming the air-spring reaction force on the cap-side is much smaller than 

the pulling force from the piston-side (this assumption is reasonable when the low-
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pressure NPV is much lower pressurized than the high-pressure NPVs), hence, the 

tension HPF  generated by the hydro-pneumatic tensioner (HPT) can be approximated 

from Eqn. (5.22) as: 
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(5.24)

where the APv  is the fluid velocity in the HPT connector pipe, and 
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(5.25)

where Zv is the velocity of piston in the HPT cylinder, by considering the Eqn. (5.13) 

and Eqn. (5.15), which is equal to the first-order time-derivative of the platform-riser 

relative displacement,  i i j ji iX p C r   as the combined effects of the host platform 

motion and riser tension ring motion, and it is represented as  i j ji iX C r   . Hence, 

the Eqn. (5.24) can be stated as: 
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(5.26)
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 The tensioner force HPF can be further divided into the static component 
staticHPF

and dynamic component
dynHPF , respectively: 

static dynHP HP HPF F F   (5.27)
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(5.28)
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(5.29)

 The static analysis and time domain analysis of static tension part 
staticHPF is 

identical with the derivation of linear spring connector coupling in the Subsection 2.4.5. 

Once the dynamic part 
dynHPF that causes by the frictional effects of the viscous fluid is 

taken into consideration, the tangential stiffness matrices and total external forcing terms 

will be modified in the numerical simulation.  

In the time-domain simulation, the Average Acceleration Method (AAM) (San 

Andrés, 2008) is used to derive the numerical integration. Since the Eqn. (5.29) is a 

nonlinear function of the velocity term  i j ji iX C r   , the Taylor series expansion of 

the nonlinear function and local linearized stiffness K  and damping coefficients D  must 

be defined at every time step before being arranged into the forms in Eqns. (3.40) and 

(3.41). The detailed derivation of AAM for nonlinear function can be refered to 

Appendix B. The dynamic tension variation 
dynHPF of HPT is represented by: 
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a oil

HP a
Ap

A f
A

A


 

   
 

 and  sgn
AP AP

eq
HP i j ji i

AP

L L
X C r

D
 

 
     
 

  . This is 

noteworthy that the frictional factor term APf in HP is a dependent of the Reynold 

Number as stated in Eqn. (5.3), in which the Reynold number is defined by the riser 

velocity  i j ji iX C r   as shown in Eqn. (5.4). In this research, the velocity component 

in defining the frictional factor term APf is treated separately from the velocity-square 

term  2

i j ji iX C r   in the dynamic tension part 
dynHPF as stated in Eqn. (5.30). This 

simplification is reasonable because the riser velocity  i j ji iX C r   in the frictional 

factor APf  is used in the curve-fitting of the Moody diagram, which value is normally 

not varying significantly in between the two steps of time interval if the time interval is 

sufficiently small. Moreover, this assumption is compliant with the numerical scheme 

which has the second-order accuracy.  

By using the linear approximation of multivariable Tylor series expansion, the 

equation for ir and ir  (rod side) is:  
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(5.31)

In time-domain analysis, by using Adams-Moulton implicit method, the 

connector force on the top end of the riser (tension ring) contributed by ( 1)

dyn

n
HPF   is 

integration from ( )nt to ( 1)nt   is: 
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(5.32)

where the change of velocities are: 
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(5.34)

By refering to Eqns. (A.1) - (A.4) in Appendix A, the Eqn. (5.34) can be 

rewritten as: 
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(5.35)

where the tangential stiffness coefficients in Eqn. (5.35) can be derived as: 
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Examine the term ( )

dyn

n
HPFt  on the right hand side of Eqn. (5.35); 
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(5.39)

Let  i j ji iX C r   = Zv , (5.40)

 Substituting the tangential stiffness coefficients into Eqn. (5.35),  
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By approximating the time varying jr , j , and jX in the time interval 

( 1) ( )n nt t  to be a constant 
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j j
n nr r r

        , and so on, the Eqn. (5.44) can be 

rewritten as: 
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It can be found that the Eqn. (5.45) can be rearranged in the following form as: 
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(5.49)

By referring to the Eqn. (5.30), the RHS of the Eqn. (5.49) can be further 

rearranged as: 
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which is identical to the form of pseudo dynamic stiffness and dynamic force as stated in 

Eqns. (3.40) and (3.41).  

Following from the Eqns. (5.48), (5.30), and (5.32), the tangential stiffness 

coefficients and the connector force on the end of the line 
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dynamic tension variation in the tensioner are: 
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 The dynamic tension force, after considered the frictional losses effects, 

generated by the hydro-pneumatic tensioner at the end node of riser from time ( )nt to 

( 1)nt   is obtained in Eqn. (5.52). In the n-line direct-acting HPT system, the total 
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dynamic tension variation will be multiplied by the number of cylinders cynn , therefore 

the Eqn. (5.52) can be further modified as: 
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and the connector force on the rigid body 
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where  
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 There can be found that the second term on the right hand side (RHS) of Eqn. 

(5.54) (for the riser line) and Eqn. (5.55) (for the platform body), are the residue forcing 

terms after coupling with the effects of dynamic tension variations in the tensioner. 

Therefore, these terms are to be included into the matrix (R) and (S) in the Fig. 2.5, 

respectively, to modify the forcing terms in the CHARM3D. The total element tangential 

stiffness matrix, after considering the dynamic tension variation, MR damper and spring 

coupling with the platform, on the end node of the riser (line), as modified from Eqn. 

(2.183) is: 
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 The element tangential stiffness matrix that needs to be added into the platform 

body, as modified from Eqn. (2.184) is: 
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and the coupling terms of element tangential stiffness matrix that need to be added into 

the global matrix, as modified from Eqn. (2.185) is: 

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0

rX r rX r rX r
ij ij ij ij ij ij

r
ij

Xr Xr Xr
ij ij ij

r r r r
ij ij ij ij

j

j

j

jLS TV MR

K K K K K K

Kt

K K K

K K K

X

K

r

r

  



    





       
       

                                   



 










 

 

2 2( )

00

2 2 2 2( )

0

22

2

2 2

0

2
2

dyn

dyn

MR jcy HP

HP

TV M

ni

i

R

i cyn MR j

i

f c rnN

L

F n f

F

t t

c
M

F X

t





                      
     

    

  

 
     

 





 

(5.60)

 

5.6 Reduction of Riser Tensioner Force Variation by Using MR-Damper 

The proposed MR damper is acting as a smart-device that works corporately with 

the conventional hydro-pneumatic (HP) tensioner, as illustrated in Fig. 5.5, and is able to 

provide controllable damping force to the TTR to reduce the variation of axial tension 

force. The MR damper is connected to the production deck of the platform in one end 

and to the tensioner ring on the other end. There is noteworthy that this is a conceptual 

design, hence, the dimension (length) of the MR damper is assumed here to be 

commensurate with the size of the HP tensioner. After the tension variation is 
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compensated with the MR damper force, the tensioner force equilibrium tenF  in Eqn. 

(5.22) can be modified as: 

0

0

2
0

0

1
2

1 MR

AP APAP
eqa a oil

ten HP p oil oil
A AP AP

b
HP HS

B

f

L Lfz
F F A q q

z A D

z
F F

z










  
           

 
    

 

 

(5.61)

The free body diagram (FBD) of the settings in Fig. 5.5 can be refered to Fig. 3.9 

and Fig. 3.10. A scheme based on the Gaussian distribution function, which has the 

characteristics of high command current signal ( )i t  near the piston mid-position, and 

very low command signal at the extremely end-positions is utilized to control the MR 

damper. The command current ( )i t generated by the controller can be represented in the 

following function: 
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( ) exp
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(5.62)

where   is the standard deviation,   is the mean of position, and d  is the offset of the 

function that can be adjusted to manipulate the performance of the controller. The 

command current ( )i t  is tunable with respect to the dynamic displacement MRx of the 

riser and then to be feedback into the MR damper model to determine the coefficients in 

Eqns. (3.3)-(3.7) and damping force based on Eqn. (3.1). The idealistic capacity of this 

numerical MR damper based on the proposed coefficients from Eqns. (3.3) – (3.7) is up 

to ~4.5 MN (~1012 kips) when sinusoidal excitation amplitude is 1.5 m (4.92 ft) and 

input current is 1.0 A. The numerical model of a HP tensioner was simulated by 
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incorporating the MR damper to identify the effectiveness of the reduction of tension 

variations. The simulation was conducted by using the Simulink software package 

(Mathworks, 2009) based on the dimensions and data of HP tensioner as tabulated in 

Table 5.1. 

 

 
Figure 5.9 The integration of MR damper in the HP tensioner system. 
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The reduction of the tension variation after the HP tensioner is incorporated with 

the MR damper, as proposed in Fig. 5.9, is shown in Fig. 5.10. The green loop is the 

base case with which is the uncontrolled tension variation of a tensioner system for a 

long pipe with length APL = 30 m (98.43 ft). The multiple red loops are the tension 

reduction effects achieved by adding different values of fixed damping force. Generally, 

a larger damping force can reduce the tension variation in the range near the equilibrium 

mid-position (approximately at +2.0 m (+6.56 ft) in this case) but enlarge the tension 

variation on the extreme end-positions (~ -0.5 m and ~4.25 m (~ -1.64 ft and ~13.94 ft), 

respectively). This phenomenon leads to the necessity of employing a tunable damper 

(such as MR damper) instead of a fixed damper for a wide range of dynamic tension 

reduction control in the TTR tensioner. Finally, the blue loop is the result when a 

controllable MR damper is incorporated into the HP tensioner system. A 'Gaussian' 

control function, which has the characteristics of high command current inputs near the 

mid-position and very low command current inputs at the extremely end-positions, as 

stated in Eqn. (5.62), is utilized to control the MR damper.  
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Figure 5.10 Tension reduction (blue line) in the piston-side chamber after the HP 
tensioner is incorporated with the MR damper. 
 

From the results in Fig. 5.10, there can be further inferred that a controllable MR 

damper is able to compensate the excessive tension variations that are induced from the 

following sources:  

(i) The hydraulic fluid flow rate oilq  which is induced by the velocity of 

tensioner piston, as stated in Eqn. (5.61). The larger tension variation 

caused by the larger velocity factor is reasonable for the cases of drillship 

and dry-tree Semi-submersible, where the platform’s heave motion is no 

longer constrained by the high stiffed tendons, and for the cases of 

instantaneous velocity during anti-recoiling and TTR disconnection. 
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(ii) The geometrical dimension, especially the length of hydraulic pipe 

conduits APL , as stated in Eqn. (5.61). The incorporated of controllable 

MR damper can be considered as an effective solution to compensate the 

excessive tension variations when the longer hydraulic fluid travel in 

between the accumulator and tensioner cylinder is required, such as in the 

case of long-stroke HP tensioner, which is the most popular tensioner 

solution in the development of the conceptual dry-tree Semi-submersible. 

(iii) The ratio of gas volume 
0A AV V  in between the displaced volume and 

the total gas volume stored in the high pressure NPVs, as stated in the 

Eqns. (5.10) and (5.11). This volume ratio must be designed as small as 

possible in order to minimize the dynamic tension variation. Therefore, a 

very large volume 
0AV  of high pressure NPVs must be stored nearby the 

well bay, as illustrated in Fig. 5.4. For the long-stroke HP tensioner to be 

developed in the dry-tree Semi-submersible platform, the required storage 

of high-pressurized gas volume is even larger. Therefore, the incorporated 

of controllable MR damper can potentially reduce the total volume of 

NPVs to be stored on the deck and lead to more flexible well-bay spacing 

and arrangement. 

 

5.7 Equivalent Force Compensation Control (EFCC) 

The Equivalent Force Compensation Control (EFCC) is conceptual scheme to 

compensate the force deviations in between the actual TTR tension and the desired 
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pretension by using a combination of MR dampers and force actuators. The working 

principle of EFCC is shown in Fig. 5.11, and the conceptual system is illustrated in Fig. 

5.12. The two pairs of MR damper and force actuator are working in the opposite 

directions, as shown in the Fig. 5.12. There is noteworthy that this is a conceptual 

design, hence, the dimension (length) of the MR dampers and force actuators are 

assumed here to be commensurate with the size of the HP tensioner. The optimization of 

the equipment sizing, reducancy, and layout are not in the scope of the current study and 

can be conducted in the future work. 

As illustrated in Fig. 5.11, a constant force actuator provides constant force CAF

in the same direction of tensioner ring displacement z (where displacement z is opposite 

in direction with the tensioner cylinder stroke ZS , as stated in Eqn. (5.13)). The MR 

damper always provides tunable resistive force MRf in the counter-direction of tensioner 

ring displacement . The constant force is then to be fine-tuned by the combination 

of MR damper force in the opposite direction to produce a net force netf  on the 

tensioner ring. The net force netf is designed to compensate the dynamic axial tension 

variations T exerted on the tensioner ring, as stated in the second terms on the RHS of  

Eqn. (5.22), by the HP tensioner with respect to certain given displacement and 

velocity z .  

 

z CAF

MRf

z
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Figure 5.11 Schematic diagram for the working principle of EFCC. 
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Figure 5.12 Equivalent force compensation control (EFCC). Proposed integration of 
MR dampers and force actuators in the direct acting tensioner (DAT) system. 
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The constant force actuator can either be the pneumatic actuator, hydraulic 

actuator, or any other type of force actuators which force outputs is not required to be in 

very high precision. The accuracy of net tension acting on the tensioner ring is fully 

adjustable by the MR damper. The reduction of tension variation can be achieved cost 

effectively, in this method, as an alternative to the high-cost precision active force 

compensator. Moreover, the capacity for very large compensated force outputs, 

especially in the offshore applications, is not readily available for precision active force 

actuators. The MR damper has the advantage to react very fast and therefore it is 

appropriate to be used in the EFCC. 

The relationsip of riser tension, MR damper force, and actuator force in the 

EFCC is illustrated in Fig. 5.13. If the riser tension is over the threshold value ThF for 

activating the EFCC, the deviation of the riser tension tenF and pretension prT  is 

calculated as:  

net ten prF F T   (5.63)

The direction of constant actuator force CAF  is always in the same direction of the 

tensioner ring displacement, and is determined by the value of netF in the following 

equation: 

if 0

if 0
CA net

CA
CA net

F F
F

F F

 
  

 
(5.64)

The required force reqF  to be generated by the MR damper is therefore: 

netf
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 req CA netF F F    (5.65)

The required force reqF  of the MR damper at any given displacement and 

velocity can be determined by identifying the input command current of the primary 

MR damper P
MRi  and the secondary MR damper S

Ci . The primary MR damper is regarded 

as the one moving in the same direction with the tensioner ring, and the secondary MR 

damper is the one in the opposite direction of the tensioner ring. Therefore, the primary 

and secondary MR damper is changing with respect to the stroke motion, in back and 

forth.  

The iterative bi-section method is developed to approximate the command 

current and to be fed into the primary and secondary MR dampers, respectively, as 

stated in Eqns. (3.3)-(3.7). For example, the iterative bi-section method for the primary 

MR damper can be represented as: 

For MR reqF F : 
mid

P
L i

i i


  ;  
max

P
U i
i i


  ;    / 2P P P

C L Ui i i   (5.66)

For MR reqF F :  
min

P
L i

i i


  ;  
mid

P
U i
i i


  ;    / 2P P P

C L Ui i i   (5.67)

where P
Li , P

Ui  , and P
Ci are refered to the lowest current limit, highest current limit, and 

control current of the primary MR damper, respectively. The 
mini

i


, 
maxi

i


, and 
midi

i


denote the minimum current input (normally less than 0.001 A), maximum current input 

(normally less than 3.0 A), and mid-point of these two current inputs, respectively.  
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z

P
MRi S

Ci
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Figure 5.13 Relationship of riser tension, MR damping force, and actuator force. 
 

The criterion of accuracy for the command current input for the primary MR 

damper is:  

1.0 /P
dev MR reqF F F   (5.68)

and the MR damper force for each iteration is therefore stated as: 
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where the P
MRF  and S

MRF  are refered to the primary and secondary MR damper forces, 

respectively. In this study, the targeting MR damper force  is iterated until its 

deviation from the required force reqF is less than two percents. 

If the MR damper force from the primary MR damper P
MRF  is not sufficient to 

achieve the required force reqF , the secondary MR damper will be activated in the 

similar way and total force will be added to the required force . Finally, the total 

force acting on the tensioner ring TRF can be represented as: 

TR ten MR CAF F F F    (5.70)

This total force is comparable with the HP tensioner force tenF  by the tension 

variation has been fine-tuned after taking the MRF and CAF into account. In the ideal 

condition, the total force acting on the tensioner ring is very close, less than 2% 

deviation, to the pretension prT of the riser. There is noteworthy that the pretension prT is 

chosen in this study as the targeting force for the simulation. However, the value of 

targeting force can be customized case-by-case in future works. For example, some 

cases may require a higher constant tension than the pretension under certain loading 

conditions. 

Since the MR damper force in this EFCC is used to fine-tune the required tension 

on the tensioner ring, therefore, the large output force is not required in this case. The 

coefficients of MR damper are modified from Table 3.2, as tabulated in the Table 5.2, 

are proposed in this simulation. The capacity of this MR damper based on the proposed 

MRf

reqF

TRF

TRF
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coefficients in Table 5.2 is up to ~150 kN (~33.7 kips) when at the displacement 

amplitude of 1.0 m (0.3048 ft), frequency at 0.6 rad/s, and displacement offset at -17.0 m 

(-5.1816 ft). The variations of MR damper output forces under different combinations of 

amplitudes, frequencies, and controlled currents are shown in Figs. 5.14 - 5.19. The 

displacement offset is refered to the adjustment of the nominal position of MR damper 

with respect to the mean of the tensioner ring dynamic displacement in the particular 

cases.  

 

Table 5.2 Coefficients of MR damper in EFCC simulation. 
Coefficients 2i  1i  0i  

c  8500 5400 50 

k  0 540 50 

  2500 8100 40 

  0 52.05 2.82 

  0 2.6 0.25 
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Figure 5.14 Variation of MR damper force at amplitude = 1.0 m (3.28 ft), frequency = 
0.6 rad/s.  
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Figure 5.15 Variation of MR damper force at amplitude = 1.0 m (3.28 ft), frequency = 
0.08 rad/s. 
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Figure 5.16 Variation of primary MR damper force at amplitude = 1.0 m (3.28 ft), 
frequency = 0.6 rad/s, displacement offset = -17.0 m (-55.77 ft).   
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Figure 5.17 Variation of secondary MR damper force at amplitude = 1.0 m (3.28 ft), 
frequency = 0.6 rad/s, displacement offset = +17.0 m (55.77 ft). 
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Figure 5.18 Variation of secondary MR damper force at amplitude = 1.0 m (3.28 ft), 
frequency = 0.6 rad/s, displacement offset = +19.0 m (62.34 ft). 
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Figure 5.19 Variation of secondary MR damper force at amplitude = 1.0 m (3.28 ft), 
frequency = 0.6 rad/s, displacement offset = +12.0 m (39.37 ft).   
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5.8  Hull-Riser-Tendon Coupled Analysis for EFCC 

The coupling of dynamic tension variation and MR damper into the conventional 

HP tensioner after considered the viscous frictional fluids condition was developed in 

this Subsection by using the CHARM3D numerical scheme as developed in the 

Subsection 5.5.  The modeling of host platform to be used in this coupling analysis is a 

generic type tension-leg platform (TLP) as illustrated in Fig. 5.20.  

The principal dimensions of the TLP platform are tabulated in Table 5.3 (Kim et 

al., 2001; Yang, 2009) and the hull load condition are listed in Table 5.4 (Yang, 2009). 

In this research, the FE equations for the line members are coupled with the TLP 

platform dynamics by using the linear and rotational spring and dashpot (Garrett, 1982) 

for the eight tendons, hydro-pneumatic riser tensioner (Yang and Kim, 2010) for the 

seven production TTRs, and single top tensioned drilling riser, as listed in Table 5.5. The 

MR dampers, with the capacity of single unit is up to ~150 kN (~33.7 kips) as proposed 

in Table 5.2, are working corporately with the drilling riser as conceptually illustrated in 

the Fig. 5.12.  

The hull-riser-tendon coupled analysis for EFCC are conducted are the following 

settings: 

(i) TLP host platform with sinusoidal wave input (as the base-case) 

(ii) TLP host platform with sea condition input, as tabulated in Table 5.6. 
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Figure 5.20 The layouts of generic tension leg platform (TLP). 
 

Table 5.3 Principal dimensions of the generic TLP model. 
Water Depth 914.36 m (3000 ft) 

Number of column 4 

Column cross section diameter 16.46 m (54 ft) 

Column center to center distance 60.96 m (200 ft) 

Column freeboard 20.42 m (67 ft) 

Pontoon breadth 8.23 m (27 ft) 

Pontoon height 7.31 m (24 ft) 

Height of deck bottom from MWL* 22.86 m (75 ft) 

Deck height 12.19 m (40 ft) 

Draft 24.38 m (80 ft) 

Total weight 24,157 MT (53,257 kips) 
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Table 5.3 Continued. 
Tendon pretension at the top 7,040 MT (15,520 kips) 

Riser pretension at the top 1,972 MT (4,348 kips) 

Displacement 32,775 MT (72,257 kips) 

*MWL = Mean water level 

 

Table 5.4 Hull load condition at in-place draft. 
Vertical center of gravity from MWL 8.56 m (28.08 ft) 

Vertical center of buoyancy from MWL -15.18 m (-49.80 ft) 

Roll radius of gyration 33.19 m (108.89 ft) 

Pitch radius of gyration 33.19 m (108.89 ft) 

Yaw radius of gyration 32.40 m (106.30 ft) 

Wind load coefficient 3.18 kN/(m/sec)2  

(0.664 kips/(ft/sec)2) 

Center of pressure from MWL 38.10 m (125.00 ft) 
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Table 5.5 Configurations of the tendons and TTRs. 
 Top-end Coordinate Bottom-end Coordinate  

 No. X (m) 

(ft) 

Y (m) 

(ft) 

Z (m) 

(ft) 

X (m) 

(ft) 

Y (m) 

(ft) 

Z (m) 

(ft) 

To (MT) 

(kips) 

T
en

d
on

 

1 33.01 

(108.3) 

39.90 

(130.9) 

-22.10 

(-72.5) 

33.01 

(108.3) 

39.90 

(130.9) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 

2 39.90 

(130.9) 

33.01 

(108.3) 

-22.10 

(-72.5) 

39.90 

(130.9) 

33.01 

(108.3) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 

3 39.90 

(130.9) 

-33.01 

(-108.3) 

-22.10 

(-72.5) 

39.90 

(130.9) 

-33.01 

(-108.3) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 

4 33.01 

(108.3) 

-39.90 

(-130.9) 

-22.10 

(-72.5) 

33.01 

(108.3) 

-39.90 

(-130.9) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 

5 -33.01 

(-108.3) 

-39.90 

(-130.9) 

-22.10 

(-72.5) 

-33.01 

(-108.3) 

-39.90 

(-130.9) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 

6 -39.90 

(-130.9) 

-33.01 

(-108.3) 

-22.10 

(-72.5) 

-39.90 

(-130.9) 

-33.01 

(-108.3) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 

7 -39.90 

(-130.9) 

33.01 

(108.3) 

-22.10 

(-72.5) 

-39.90 

(-130.9) 

33.01 

(108.3) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 

8 -33.01 

(-108.3) 

39.90 

(130.9) 

-22.10 

(-72.5) 

-33.01 

(-108.3) 

39.90 

(130.9) 

-921.26 

(-3022.5) 

880.0 

(1940.0) 
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Table 5.5 Continued. 
 Top-end Coordinate Bottom-end Coordinate  

 No. X (m) 

(ft) 

Y (m) 

(ft) 

Z (m) 

(ft) 

X (m) 

(ft) 

Y (m) 

(ft) 

Z (m) 

(ft) 

To (MT) 

(kips) 

D
. R

is
er

*  1 -2.29 

(-7.5) 

-2.29 

(-7.5) 

0.00 

(0.0) 

-2.29 

(-7.5) 

-2.29 

(-7.5) 

-914.36 

(-3000) 

330.7 

(729.0) 

P
ro

d
u

ct
io

n
 R

is
er

 

1 2.29 

(7.5) 

2.29 

(7.5) 

0.00 

(0.0) 

2.29 

(7.5) 

2.29 

(7.5) 

-914.36 

(-3000) 

234.5 

(517.0) 

2 6.86 

(22.5) 

2.29 

(7.5) 

0.00 

(0.0) 

6.86 

(22.5) 

2.29 

(7.5) 

-914.36 

(-3000) 

234.5 

(517.0) 

3 6.86 

(22.5) 

-2.29 

(-7.5) 

0.00 

(0.0) 

6.86 

(22.5) 

-2.29 

(-7.5) 

-914.36 

(-3000) 

234.5 

(517.0) 

4 2.29 

(7.5) 

-2.29 

(-7.5) 

0.00 

(0.0) 

2.29 

(7.5) 

-2.29 

(-7.5) 

-914.36 

(-3000) 

234.5 

(517.0) 

5 -6.86 

(-22.5) 

-2.29 

(-7.5) 

0.00 

(0.0) 

-6.86 

(-22.5) 

-2.29 

(-7.5) 

-914.36 

(-3000) 

234.5 

(517.0) 

6 -6.86 

(-22.5) 

2.29 

(7.5) 

0.00 

(0.0) 

-6.86 

(-22.5) 

2.29 

(7.5) 

-914.36 

(-3000) 

234.5 

(517.0) 

7 -2.29 

(-7.5) 

2.29 

(7.5) 

0.00 

(0.0) 

-2.29 

(-7.5) 

2.29 

(7.5) 

-914.36 

(-3000) 

234.5 

(517.0) 

*D. Riser = Drilling Riser 
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Table 5.6 Wave and current profiles of the extreme condition. 
Significant wave height, Hs 15.79 m (51.8 ft) 

Peak period, Tp 15.4 s 

Overshooting parameter, γ 2.4 

Main direction of waves 0 deg 

Direction of current 0 deg 

Current 

profile 

Depth Velocity 

0 m (0 ft) 2.41 m/s (7.9 ft/s) 

-50.44 m (-165.5 ft) 1.80 m/s (5.9 ft/s) 

-100.89 m (-331.0 ft) 0.00 m/s (0.0 ft/s) 

-914.36 m (-3000.0 ft) 0.00 m/s (0.0 ft/s) 
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5.8.1  TLP Hull-Riser-Tendon Coupled Analysis with EFCC under Sinusoidal Wave 

The simulated characteristic dynamic responses of the hydro-pneumatic (HP) 

tensioner with TLP platform are shown in Fig. 5.21. The HP tensioner was excited by a 

sinusoidal wave loadings input.  

 

 

Figure 5.21 The dynamic response of HP tensioner for the case of TLP. 
 

The position of tensioner ring (TR) after achieving the steady-state is at around -

17.0 ft (-5.18 m) (negative sign is referred to that the TR is traveling back-and-forth in 

the range below the initial mid-point position which is at 0 ft (0 m)). The dynamic 

displacement is from -16.1 ft (-4.91 m) to -17.7 ft (-5.39 m) and the velocity of tensioner 

ring is from ~ -0.125 ft/s (~ -0.038 m/s) to ~0.175 ft/s (~0.053 m/s). It can be found that 
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the displacement and velocity are out of phase, with the maximum velocities occurring 

as the tensioner ring reaches its steady-state equilibrium position at ~ -17.0 ft (~ -5.18 

m). There is noteworthy that the velocity of the tensioner ring is far below 1.0 ft/s (0.305 

m/s) in the tension-leg platform (TLP) for the reason that the platform heave motion is 

constrained by the highly stiffed tendons.  

In this TLP case, the static equilibrium tension is around 572 kips (2544 kN), 

which is lower than the pretension listed in the Table 5.5 because the total weights, 

payloads, and offset effects have been considered into this static equilibrium tension. 

The dynamic tension variations (from ~569 kips (~2531 kN) to ~576 kips (~2562 kN)) is 

mainly caused by the changing ratio of gas volume 
0A AV V  in between the displaced 

volume and the total gas volume stored in the high pressure NPVs, as stated in the Eqn. 

(5.11).  
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Figure 5.22 Axial Tension on TLP tensioner ring. 
 

It can be found that the dynamic tension variations in the TLP case is minor 

because the velocity of the tensioner ring is very small, as shown in Fig. 5.21. The EFCC 

is proposed to further reduce the variations of dynamic tension. The controlled effects on 

of EFCC scheme on the dynamic tension is shown in Fig. 5.22 and the tension-stroke 

curve is shown in Fig. 5.23. In this case, the dynamic tension can be suppressed as much 

as ~88% (tension variation from ~7 kips (~31.14 kN) to less than 1 kips (4.45 kN)) by 

using the EFCC scheme.  
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Figure 5.23 Tension-stroke curve of TLP-riser at the tensioner ring under steady-state 
(for the TR’s position range from ~ -16.05 ft  (~ -4.89 m) to ~ -17.70 ft (~ -5.39 m)). 

 

The tension-stroke curve for the simulation started from initial position (transient 

state) to the steady-state is shown in Fig. 5.24. The EFCC was activated at a threshold 

value ThF , which is set to the targeting tension in this case. The incorporation of MR 

dampers with constant force actuators (CFA), as conceptually illustrated in Fig. 5.12, are 

acting as high-capacity force compensator. Since the EFCC scheme is proposed for 

precise tension control, therefore it will be activated only under the situation when the 

axial tension variation must be controlled in very strict limits, such as during the 

offshore precision drilling. Therefore, a practical EFCC system can be designed as a 

separated module that can be mounted / dismounted on the conventional HP tensioner. 
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Figure 5.24 Tension-stroke curve of TLP-riser at the tensioner ring from initial 
condition of simulation. 

 

The required force reqF and combined MR damper (MRD) output forces 

( P S
MR MRF F ) in time series after the EFCC was activated are shown in Fig. 5.25. A 

certain range from 1170 sec to 1250 sec is magnified in Fig. 5.26. This can be found that 

the combined magneto-rheological damper (MRD) forces from primary MRD and 

secondary MRD matched with the required force reqF with the deviation less than 2%. 

The combined MRD force is acting in the opposite direction of constant actuator force in 

order to fine-tune the compensated force to be transfered to the tensioner ring. 
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Figure 5.25 Controlled force outputs and control current. 
 

In this case, as shown in Fig. 5.26, the primary MRD is the predominant resistive 

force provider while the secondary MRD is activated only if the limitation of primary 

MRD is met. This is noteworthy that the combined MRD force is a trade-off in between 

the tensioner properties (force variation), the capacity of the selected MR dampers, the 

targeting tension, and the characteristics of constant force actuator. Therefore, the 

combined damping force limits must be identified for each application and the MR 

dampers with appropriate operational limits.  
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Figure 5.26  Controlled force outputs and control current (for the range from 1170 sec to 
1250 sec). 
 

5.8.2  TLP Hull-Riser-Tendon Coupled Analysis with EFCC under Sea-Conditions 

The characteristic dynamic responses of the hydro-pneumatic (HP) tensioner 

with TLP host platform, under the excitation of sea conditions (in Table 5.6), are shown 

in Fig. 5.27. The position of tensioner ring (TR) was traveling from -16.00 ft (-4.88 m) to 

-12.25 ft (-3.73 m) (in the simulation time range from 4520 sec to 4660 sec) and the 

velocity of tensioner ring was from ~ -0.210 ft/s (~ -0.064 m/s) to ~0.175 ft/s (~0.053 

m/s). It can be found that the position changes and velocity of the tensioner ring were out 

of phase, with the velocities reach at zero when the tensioner ring reaches its local 

extrema. The velocity of the tensioner ring is far below 1.0 ft/s (0.305 m/s) in the 
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tension-leg platform (TLP) for the reason that the platform heave motion is constrained 

by the highly stiffed tendons.  

 

 

Figure 5.27 Dynamic responses of HP tensioner for the case of TLP under sea-
conditions. 

 

In the TLP case, the dynamic tension variations, from ~551 kips (~2450 kN) to 

~569 kips (~2531 kN), (in the time range from 4520 sec to 4660 sec) is mainly caused by 

the changing ratio of gas volume 
0A AV V  in between the displaced volume and the 

total gas volume stored in the high pressure NPVs, as stated in the Eqn. (5.11). The 

EFCC is proposed to further reduce the variations of dynamic tension. The controlled 

effects on of EEFC scheme on the dynamic tension is shown in Fig. 5.28 and the 
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tension-stroke curve is shown in Fig. 5.29. In this case, the dynamic tension can be 

suppressed as much as ~94%, where the tension variations reduced from ~18 kips (~80 

kN) to less than 1 kips (4.45 kN)) by using the EFCC scheme.  

 

 

Figure 5.28 Axial tension on TLP tensioner ring under sea-conditions. 
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Figure 5.29 Tension-stroke curve of TLP-riser at the tensioner ring under sea 
conditions. 

 

The tension-stroke curve for the simulation started from the initial position 

(transient state) to the steady-state is shown in Fig. 5.30. This result implied that the 

axial tension on the tension ring can be controlled more precisely in the TLP. The EFCC 

was activated at a threshold value ThF , which is the targeting tension in this case.  
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Figure 5.30 Tension-stroke curve of TLP riser at the tensioner ring, under the sea 
condition, from initial condition. 

 

The required force reqF and combined MR damper output forces ( P S
MR MRF F ) in 

time series after the EFCC was activated are shown in Fig. 5.31. A certain range from 

4520 sec to 4660 sec is magnified in Fig. 5.32. It can be found that the combined 

magneto-rheological damper (MRD) force from primary MRD and secondary MRD 

matched with the required force reqF with the deviation less than 2%. The combined 

MRD force is acting in the opposite direction of actuator constant force in order to fine-

tune the compensated tension to be transferred to the tensioner ring. 
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Figure 5.31 Controlled force outputs and control current under the sea conditions. 
 

 

Figure 5.32 Controlled force outputs and control current (for the range from 4520 sec to 
4660 sec), under the sea conditions.  
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6. PARAMETRIC RESONANCE AND STABILITY ANALYSIS OF TOP TENSION 

RISER 

 

6.1  Introduction  

The API RP 2RD suggests that TTRs with relatively stiff tensioning systems may 

experience tension fluctuations that are significant relative to the mean tension, leading 

to significant changes in the lateral stiffness  (API, 1998; Xiao and Yang, 2014). The 

parametric resonance occurs when a system is parametrically excited and oscillates at 

one of its resonant frequencies. Parametric excitation differs from forcing since the 

action appears as a time varying modification on a system parameter (Radhakrishnan et 

al., 2007). A small excitation can produce a large response even when the frequency of 

the excitation is significantly different from the linear natural frequencies of the system 

(Nayfeh and Balachandran, 2008).  

Patel and Park (1991) reported on the investigation in to the dynamics of tethers 

with reduced pretension to facilitate payload increase over conventional design of a TLP 

and found that the wave induced time-varying axial tension becomes important in its 

dynamics when the pretension is reduced. They revealed that the time-varying axial 

tension variation cause the tether to undergo parametric oscillations described by the 

Mathieu equation. Simos and Pesce (1997) conducted a dynamic modeling of TLP’s 

tethers considering the tension variation along the length due to the submerged weight. 

Chatjigeogiou and Mavrakos (2002) studied then nonlinear dynamic response in the 

transverse direction of long slender structures subjected to parametric excitation at the 
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top of the host platform. The analytical approach shows that the dynamic lateral 

response is governed by the effects originated from the coupling of modes in transverse 

direction.  

Mathieu’s equation was applied by Zhang et al. (2002) in the investigation of the 

parametric response excited by the interactions of tension variation and lateral dynamics 

of tendons. Mathieu’s instability could be triggered at a certain model of tendon lateral 

motion dependent on the magnitude of fluctuation of the tendon tension and damping of 

tendon transverse motions. Chandrasekaran et al. (2006) studied effects of tension 

variation due to the increased on water depth on the stability of TLP and found that the 

increased tendon tension leads to platform stability and also improves the stability due to 

the increased hydrodynamic loading contributing to added mass. Wang and Zou (2006) 

discussed the approach of finding the maximum allowable tension variations by using 

the Mathieu’s instability diagram for a robust tendon design in the industry practice. 

Radhakrishnan et al. (2007) studied the motion of a tethered spherical buoy subjected to 

incident regular waves in a wave tank. They reported that the parametric instability was 

observed when the period of the wave generated was close to one-half of the natural 

period of the buoy. Yang et. al (2013a) studied the parametric resonance of a TTR in 

irregular waves based on multi-frequency excitation and a more general Hill’s equation. 

They concluded that the single-frequency excitation method, by Mathieu’s equation, 

predicts that the lower vibration mode is more likely to be excited, whereas the multi-

frequency excitation method, by Hill’s equation, predicted that the higher vibration 

mode is more likely to fall into an unstable zone.  
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The main objectives of this Section are: 

(i) to study Mathieu’s stability diagram and coefficients for the prediction of 

TTR’s stability;  

(ii) to identify effects of dynamic tension variation in the stability prediction;  

(iii) to determine TTR’s stability improvement after implementing the MR 

damper and its control scheme in order to suppress the riser tension 

variations.  

 (6.0)

6.2  Mathieu’s Stability Diagram 

The Mathieu equation is a special case of Hill’s equation that is a linear equation 

with a periodic coefficient. The standard form for Hill’s equation is (Koo et al., 2004): 

   0z a p t z    (6.1)

when  p t is periodic, then it is known as Hill’s equation. For the special case; 

  cosp t b t  (6.2)

 cos 0z a b t z    (6.3)

It is referred to as the un-damped Mathieu’s equation. A general damped 

Mathieu’s equation is shown as follows: 

 cos 0z cz a b t z      (6.4)

This kind of nonlinear ordinary differential equation (ODE) cannot be solved 

explicitly. However, by fixing the damping coefficient c , zeros of infinite determinants 

can be found by specifying a (or b ) and searching for the corresponding b  (or a ) that 
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gives a set of results sufficiently close to zero. The stability of solution of the Mathieu’s 

equation can be graphically represented in the Mathieu stability diagram (which is also 

commonly known as the Ince-Strutt diagram) (Moideen, 2010). There are two methods 

available to find the stability boundaries for the parametric plane. The first is using the 

perturbation method (Stoker, 1950) and the second is using Hill’s infinite determinants 

method.  

By using Hill’s infinite determinants, the stability boundaries can be obtained by 

the complex Fourier series representation of the 2 or 4 periodic solutions to 

determine the transition values of a and b  (Moideen, 2010). For the case of the 2

periodic solution, the response is approximated as: 

      
0

cos sinn n
n

z a n b n  



   (6.5)

and for the 4 periodic solution, the response is approximated as: 

  0
0
odd

cos sin
2 2n n

n
n

n n
z a a b

 





          
    

  
(6.6)

After substituting Eqns. (6.5) and (6.6) into the damped Mathieu’s equation, Eqn. 

(6.4), and setting the secular terms to zero, a set of linear homogeneous equations can be 

obtained in na and nb . The resulting equations can be arranged in matrix form as 

(Moideen, 2010): 

   0P A   (6.7)

where  P is the parametric matrix consisting of parameters a and b , and damping c .  
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 The determinant of  P is referred to as the Hill’s determinant and  A is the 

matrix consisted of the Fourier coefficients of response na and nb . This infinite set of 

homogeneous equations has non-zero solutions if the infinite determinant  P formed by 

the coefficients is zero. Hence, the infinite determinants for 2 and 4 are formed as, 

for 2 (Palazzoro, 2011): 

0 0 0 0 0 0 0 ...
2

1 0 0 0 0 0 ...
2

0 1 0 0 0 0 0 ...
2

0 0 4 2 0 0 0 ...
2 2

0 0 2 4 0 0 0 ...det 02 2
0 0 0 0 9 3 0 ...

2 2
0 0 0 0 3 9 0 ...

2 2
0 0 0 0 0 0 16 4 ...

2
0 0 0 0 0 0 4 16 ...

2
. . . . . . . . . ...

b
a

b
b a c

b
c a

b b
a c

b b
c a

b b
a c

b b
c a

b
a c

b
c a



 



  



 



 

 

(6.8)

and for 4 : 

1
0 0 0 0 ...

4 2 2 2
1

0 0 0 0 ...
2 4 2 2

9 3
0 0 0 0 ...

4 2 2
3 9

0 0 0 ...det 02 2 4 2
25 5

0 0 0 ...
2 4 2 2

5 25
0 0 0 0 ...

2 2 4
49

0 0 0 0 0 ...
2 4

. . . . . . . ...

b c b
a

c b b
a

c b
a

b c b
a

b c b
a

b c
a

b
a

 

  



  



 



 

(6.9)
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A particular characteristic of the Mathieu equation is that it contains a 

periodically varying coefficient as a special case of the Hill equation. This means that 

the solutions of the Mathieu equation can be stable or unstable according to the 

combination of na and nb (Patel and Park, 1991). Thus the approach to the Mathieu 

equation is to obtain a general solution and stability chart which shows whether the 

system is in a stable or unstable condition. By setting the Hill’s determinants to zero as 

in the Eqns. (6.8) and (6.9), the implicit relationship between a , b , and c can be 

obtained. The boundary obtained separates the stable and unstable region. The stability 

diagram generated by Hill’s infinite determinant method for damped Mathieu’s equation 

are obtained by plotting the implicit relationship between the parameters and is shown in 

Fig. 6.1.  
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Figure 6.1 Mathieu stability diagram and behaviors of stability condition. 
 

The Fig. 6.1 shows the characteristics of Mathieu stability diagram (MSD). For 

instance, point A denotes a normal operating condition of a riser (the point’s coordinate 

in Mathieu’s diagram is discussed in the next Subsection). If the pre-tension of this riser 

was reduced, the operating point A would shift towards B and encounter the unstable 

region. Line AC denotes movement of the operating point for increasing riser length (or 

water depth) (Patel and Park, 1991). For longer riser length in deep water, very small 

values of the parameters na and nb are potential to trigger the lateral vibration of riser. As 

the riser’s length increases, the operation point A in the Mathieu stability chart tends to 
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the region near its origin (where the na and nb are smaller). The dynamic behavior is 

very sensitive to small variations in the parameters na and nb in this low mode region. 

The deep water case is critical concerning riser dynamics, not only due to the common 

sense fact of being larger the vibration amplitudes as larger is the span, but also because 

its inherent response instability (Simos and Pesce, 1997). The line DAE indicates the 

tension variations of operating point A. If the tension variation is large, the operating 

point A would shift towards D and encounter the unstable region. The reduction of 

dynamic tension variation on the top tension riser can move the operating point A 

towards E, which provides an important control mechanism to maintain the stability of 

TTR, even if under the condition of low lateral damping. The second unstable region is 

more influenced by the damping coefficient, compared to the first unstable region.  

 

6.3  Derivation of Mathieu’s Instability Coefficients 

The stability of a TTR can be identified by calculating its location (the 

combination of na and nb ) on the Mathieu’s stability diagram, as in Fig. 6.1, to obtain a 

general solution which shows whether the system is in a stable or unstable zone. The 

location is a sets of Mathieu’s coefficients na and nb  with respect to the mode n . The 

derivation of Mathieu’s coefficients of a TTR is discussed in this Subsection, based on 

the following assumptions: 

(i) The weight of the TTR is considered, and it is assumed that the axial 

tension varies linearly along the water depth (Xiao and Yang, 2014);  
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(ii) the direction of the current propagation is assumed to be fixed, and the 

velocity varies linearly from the bottom to the surface of the sea (Xiao 

and Yang, 2014);  

(iii) the stiffness and material properties of the TTR are constant and 

homogenuous along the length of the riser (Xiao and Yang, 2014);  

(iv) the top-end of riser do not move in the horizontal direction (Patel and 

Park, 1991). 

The configuration of the TTR and the force distribution of the corresponding 

infinitesimal element are described in Fig. 6.2,  

 

 

Figure 6.2 Schematic diagram of TTR model with the force distribution of infinitesimal 
element (Xiao and Yang, 2014).  
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where v  is the horizontal coordinate, z  is vertical coordinate, L  is the water depth, 

 T t  is the top tension,  v z  is the lateral motion function, and dz  is the length of a 

finite element.  

Considering the horizontal balance of the forces in the infinitesimal element 

(Xiao and Yang, 2014),  

 2 1 0S fdz Fmdz S     (6.10)

where, 

2

S
S S dz

z


 


, 1S S  = shear forces, 

2

2
ˆ 

v
Fm m

t





= inertia force where the direction of 

which is opposite to the velocity of lateral motion, 21

4
ˆ s w i im Dh D A        = mass 

per unit length, D  = outer diameter, h  = wall thickness, s  = density of steel, w  = 

density of seawater, i  = density of internal fluid, iA  = internal area, dC  = drag 

coefficient, and 
1
 
2 d w

v v
f C D

t t
  


 

 = hydrodynamic drag force. Therefore, from Eqn. 

(6.10); 

   

   

2 1 1 1

  

0

S
S fdz Fmdz S S dz fdz Fmdz S

z
S S

dz fdz Fmdz f Fm
z z


       


 

     
 



 

(6.11)

and  S
f Fm

z


 


 (6.12)

 Then, taking into consideration the balance of the bending moments; 
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   1 1 2 1 0S dz M M T dv     (6.13)

where: 

2

M
M M dz

z


 


, 

2

1 2

v
M M EI

z


  


 = bending moments, 2

T
T T dz

z


 


, 

   1 0 wT T T L z m T t      = tensions in the TTR, w

T
m

z





 = TTR wet weight per 

unit length, 
v

dv dz
z





 = the difference between the displacements of the upper and 

lower points of the infinitesimal element dz . From Eqn. (6.13); 

     

   

1 1 2 1 1 1 1 1

1 1 1

 

  

0

M
S dz M M T dv S dz M M dz T dv

z

M v M v
S dz dz T dz S T

z z z z

          
                    



 

(6.14)

 
M v

S T
z z

 
 

 
 (6.15)

 By substituting Eqn. (6.15) into Eqn. (6.12), the coupling equation of the force 

and moment are: 

 
2

2

2

2

2 2 2

2 2 2

1
     

2

1
   0

2

ˆ

ˆ

1
 

2
ˆ 0

d w

d w

d w

S M v v v v
f Fm T C D m

z z z z t t t

v M v v v
m T C D

t z z z t t

v v v v v
m EI T C D

t z z z z t t







                    
                 

                       

 

(6.16)

and Eqn. (6.16) can be further rearranged as: 
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   
2 4

02 4

1
0

2
ˆ d w w

v v v v v
m C D EI T L z m T t

t t t z z z
                       

 
(6.17)

2 4 2

2 4 2

1
0

2
ˆ d w w

v v v v v v
m C D EI T m

t t t z z z
     

    
     

 (6.18)

 The time varying axial tension causes the TTR to undergo parametric 

oscillations. However, even if it is in an unstable condition, the quadratic fluid damping 

force limits the amplitude of the lateral motion (Patel and Park, 1991). The variation of 

the axial tension is modeled by the following irregular process: 

   
0

cosn n n
n

t a t  




   (6.19)

 The wave induced axial tension is assumed to be sinusoidal. This assumption is 

based on the fact that even if ocean waves are irregular, the time-varying axial tension 

become more regular (that is a more narrow banded spectrum) due to the transfer 

function from wave action to TTR forces. Despite irregular incident waves, the inertia of 

a TLP can cause the resultant TTR axial tension to tend towards near sinusoidal 

oscillations (Patel and Park, 1991). The riser tension can therefore be defined as: 

   

   

0

0
0

 cos

w

w n n n
n

T T L z m T t

T L z m T a t



 




    

     
 

(6.20)

where 0T  = top pretension of the TTR, and T  = amplitude of the tension variation 

 Taking the fundamental mode (the largest amplitude mode of the model) only 

and using the method of separation of variables (Patel and Park, 1991), according to the 

Nayfeh and Mook (1977), the expansion of each linear vibration mode is: 
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     , m m
m

v z t t u z  (6.21)

 By substituting Eqn. (6.21) into Eqn. (6.18); 

2 4 2

2 4 2

1
0

2
ˆ d w w

v v v v v v
m C D EI T m

t t t z z z
     

    
     

 (6.22)

               

       

2 4

2 4

2

2

ˆ
1

2

0

m m m m m m m mm m m m
d w

m m m mm m
w

t u z t u z t u z t u z
m C D EI

t t t z

t u z t u z
T m

z z

   


 

   
 

   

 
  

 

   

 
 

(6.23)

           

             4

2 0
ˆ

1
m m d w m m m m

m
m m m m w m m

m t u z C D t u z t u z

EI t u z T t u z m t u z

   

  

      
     

  

(6.24)

 Considering that the boundary conditions of both ends are assumed to be pinned-

pinned connection (Xiao and Yang, 2014), the special function that satisfies the 

boundary conditions is: 

   sinm

n
u z z

L

   
 

 (6.25)

 Because of mu  is mutually orthogonal when m  varies, by applying Galerkin’s 

method on Eqn. (6.24) (Brugmans, 2005): 

           

             40

1

2 0
ˆL

m m d w m m m m

n
m

m m m m w m m

m t u z C D t u z t u z
u dz

EI t u z T t u z m t u z

   

  

      
     

  

(6.26)
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            

                
0 0

4

0 0 0

1

2

 0

ˆ
L L

m m n d w m m m m n
m m

L L L

m m n m m n w m m n
m m m

m t u z u dz C D t u z t u z u dz

EI t u z u dz T t u z u dz m t u z u dz

   

  

       
 

      

  

    
 

(6.27)

         

   

42 2

0 0 0

0 0

1
 

2

0

ˆ

 

L L L

n n d w n n n n n n n

L L

n n n w n n n

m t u dz C D t t u u dz EI t u u dz

t Tu u dz m t u u dz

    

 

    

     

  

 
 

(6.28)

     

 

 

2 2

0 0

4

0 0

0

1

2

 

ˆ

 0

L L

n n d w n n n n

L L

n n n n

nL

w n n

m u dz t C D u u dz t t

EI u u dz Tu u dz

t

m u u dz

   



  

 
   

   
   
 

 

 



 

(6.29)

     

 

 

4

0 0

2

0 0

2 2

0 0
ˆ

 

1
2  

ˆ
0

L L

n n n n

L L

d w n n w n n

n n n nL L

n n

EI u u dz Tu u dz

C D u u dz m u u dz
t t t t

m u dz m u dz


   

    
 
       

 
 
 

 

(6.30)

 It is convenient to introduce a dimensionless time variable, t  (Xiao and 

Yang, 2014), therefore, 

     

 

 

4

0 0

2

0 0

2 2 2

0 0

 

1
2  

ˆ ˆ
 0

  

L L

n n n n

L L

d w n n w n n

n n n nL L

n n

EI u u dz Tu u dz

C D u u dz m u u dz

m u dz m u dz


       

 

    
 
       

 

 
 

 
 

(6.31)

 The Eqn. (6.31) can be rewritten in the following form in order to determine the 

Mathieu’s coefficients na , nb , C ;  
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     '

0

co  0sn n nC


     


           
 n

n n n n
n

ω
a b a τ ε

ω
 

where 1, 2,3n   . 

(6.32)

 Therefore, the damping coefficient C in Eqn. (6.32) can be derived as (Patel and 

Park, 1991): 

     
2

0 ' ' '

2

0

1
48 1

  2
ˆ ˆ

 
2 3 3ˆ

L

d w n n
d w d w

n n nL

n

C D u u dz C D C D
C

m mm u dz

       
   

       





 (6.33)

and the stiffness term in Eqns. (6.31) and (6.32) can be further derived as: 

  

 

4

0 0 0

2 2

0

4

0 0 0

2 2 2 2 2 2

0 0 0

ˆ

ˆ

 

 

  
ˆ ˆ

 
   

L L L

n n n n w n n

L

n

L L L

n n n n w n n

L L L

n n n

EI u u dz Tu u dz m u u dz

m u dz

EI u u dz Tu u dz m u u dz

m u dz m u dz m u dz



  

     



   
  

  

  


  
  

 

(6.34)

 By using the following derivative of special function in Eqn. (6.25): 

   sinn

n
u z z

L

   
 

;     cosn

n n
u z z

L L

        
   

;   
2

 sinn

n n
u z z

L L

        
   

;

   
3

3  cosn

n n
u z z

L L

       
   

;      
4

4  sinn

n n
u z z

L L

       
   

 
(6.35)

 Substituting into the coefficients in Eqn. (6.34), we obtain: 
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 
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 The first term on RHS of Eqn. (6.34), 

 

4 4

4

0
2 22 2

0

1
ˆˆ ˆ

2
 

2

L

n n

L

n

n L n
EI EIEI u u dz L L

L mm u dz m

 

 

     
             

   
 




 (6.38)

 For the second term on RHS of Eqn. (6.34), 
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where 
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 Therefore, Eqn. (6.39) can be rearranged as: 
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 The second term on RHS of Eqn. (6.34) is: 
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 For the third term on RHS of Eqn. (6.34), 
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since 

 

   

0 0

0

2

0

2 2

 cos  sin

 cos  sin

  cos
2

 cos cos 0
2 2

L L

n n

L

L

n n n
u u dz z z dz

L L L

n n n
z z dz

L L L

n L n
z

L n L

n L L
n

L n n

  

  

 


 
 

             
     

              
       

                  

               

 



0

 
  



 

(6.45)

 The stiffness term in Eqn. (6.34) can be rewritten as: 
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 By compared to Eqn. (6.32), the Mathieu’s coefficient na is: 
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where the n is the natural frequency of the lateral vibration of the riser, and   is the 

basic frequency of the outer excitation (1st mode of free vibration of a loaded riser). 

Also, the Mathieu’s coefficient nb is: 
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 In summary, the Mathieu’s coefficients of top tension riser (TTR), as a slender 

rod based on Euler-Bernoulli theory, are: 
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(6.54)

 The damping coefficient C is dependent of the maximum velocity of the riser in 

transverse motion maxv (Wang and Zou, 2006).   

 

6.4  Mathieu’s Instability Prediction for TTR  

The prediction of Mathieu stability was conducted for single top-tension riser as 

discussed in the Subsection 5.8.2. The configuration of the particular drilling TTR is 
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tabulated in the Table 6.1. The prediction of stability was conducted under a hull-riser-

tendon coupled analysis in the following settings: 

(i) TLP was excited with a regular wave loading input (as in the base-case); 

(ii) the sensitivity tests of pretension, riser length, and tension variation were 

conducted by calculating the Mathieu’s coefficients, as in Eqns. (6.51) 

and (6.52) for each variation case, as tabulated in Table 6.2, respectively.  

 

Table 6.1 Configuration of a single top-tension riser. 
Design water depth  914.36 m (3000 ft)  

Top pretension ( 0T ) 330.67 MT (729.0 kips) 

Riser outer diameter  0.3508 m (1.1509 ft) 

Riser wall thickness  0.01905 m (0.625 ft) 

Riser length (L) 914.36 m (3000 ft) 

Riser wet weight  124.096 MT (273.58 kips) 

Wet weight per unit length ( wm ) 0.1357 MT/m (0.0912 kips/ft) 

Mass per unit length of riser ( m̂ ) 320.2 kg/m (0.2152 kips/ft) 

Bending stiffness (EI) 5.79E+03 MT.m2 (1.32E+05 kips-ft2) 

Excitation frequency ( ) 0.4080 rad/s 

Density of steel 7.86 MT/m3 (15.25 slug/ft3)  

Density of Sea water 1.025 MT/m3 (1.99 slug/ft3) 
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Table 6.2 Sensitivity test of Mathieu stability for TTR. 
 Variations of Sensitivity Test 

Top pretension ( 0T ) 

(MT) 

(kips) 

 

200 

(440.9) 

 

250 

(551.2) 

 

330.67* 

(729.0) 

 

500 

(1102.3) 

 

1000 

(2204.6) 

Riser length (L)  

(m) 

(ft) 

 

200 

(656.2) 

 

500 

(1640.2) 

 

914.36* 

(3000.0) 

 

1500 

(4921.3) 

 

3000 

(9842.5) 

Ten. var. ( T )!  

(kN) 

(kips) 

 

500 

(112.4) 

 

3,000 

(674.4) 

 

5,500* 

(1236.4) 

 

8,000 

(1798.5) 

 

10,000 

(2248.1) 

* Base-case values; ! Ten. var. = Tension variations. 

 

The Fig. 6.3 shows the characteristics of Mathieu stability diagram (MSD) for 

the TTR with variations of pretension. The first two vibration modes which have larger 

amplitudes (Wang and Zou, 2008) were studied by using the Mathieu stability diagram, 

which predicts more conservative results in the lower modes than the Hill’s equation 

(Yang et al., 2013a). It can be found that the pretension oT  of the top tension riser must 

be examined nearby the first unstable zone. Starting from the base-case (where the 

pretension oT = 330.67 MT (3242 kN, 728.8 kips)), if the pretension of the riser was 

reduced, the operating point would shift towards the first unstable zone on the left-hand 

side. Neverthelss, if the pretension was increased, the operating point would potentially 
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shift towards the second unstable zone on the right-hand side. There is noteworthy that a 

slight damping coefficient ( 0.10C  , for instance) on the second unstable zone can 

transform the unstable condition to a stable condition. This is reasonable for the riser to 

be more stable when it is affected by the hydrodynamic damping in the water. However, 

the first unstable zone is less influenced by the damping coefficient, compared to the 

second unstable region, a very large damping coefficient is needed to change the 

unstable condition on the first unstable zone. Therefore, this can be concluded that, in 

general, smaller pretension oT increases the tendency of instability for the TTR.  

There is noteworthy that the damping coefficient C  is dependent of the 

maximum velocity maxv of the riser in the transverse motion (Wang and Zou, 2006). The 

parameters that can be controlled by the riser designer to adjust the damping coefficient 

C  are riser drag coefficient dC , riser diameter D , and mass per unit length m̂ as shown 

in the Eqn. (6.53) (Yang et al., 2013a). The damping coefficient C  for the riser as 

tabulated in Table 6.1 is max1.17 dC C v  , where it is highly influenced by the drag 

coefficient dC  and maximum lateral velocity maxv of the riser. For instance, if the drag 

coefficient of the riser is in the range of [0.7, 1.2], the range of damping coefficient C  is 

from max0.82v to max1.40v . Hence, maximum velocity maxv must be at least 0.305 m/s 

(1.000 ft/s) and 0.178 m/s (0.584 ft/s), for 0.7dC  and 1.2dC  respectively, in order to 

have the damping coefficient 0.25C  . 
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Figure 6.3 Mathieu stability assessment of a single TTR with variations of pretension. 
 

The Mathieu stability assessment of single TTR with the variations of riser 

length is shown in Fig. 6.4. For longer riser length in deep water, very small values of 

the parameters na and nb are potential to trigger the lateral vibration of riser. As the 

riser’s length increases, the operation point in the Mathieu stability diagram tends to the 

region near its origin (where the na and nb are smaller). The dynamic behavior is very 

sensitive to small variations in the parameters na and nb in this low mode region.  

 

First  

Second 
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Figure 6.4 Mathieu stability assessment of a single TTR with variations of riser length. 
 

The Mathieu stability assessment of single TTR with dynamic tension variations 

T is shown in Fig. 6.5, and the results of first nine vibration modes is tabulated in 

Table 6.3. From the second mode as illustarated in the Fig. 6.5, if the tension variation 

T is larger, the operating point would shift towards the unstable zone. Most 

importantly, the reduction of dynamic tension variation T on the top tension riser can 

move the operating point towards a stable zone. This finding provides an important 

control mechanism to maintain the stability of TTR, even if the lateral damping is low.  
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Figure 6.5 Mathieu stability assessment of a single TTR with variations of tension. 
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Table 6.3 First nine vibration modes of a single TTR with tension variations. 
  Tension variations, ΔT  

  500 kN 

(112.4 kips) 

3,000 kN 

(674.4 kips) 

5,500 kN 

(1236.4 kips) 

8,000 kN 

(1798.5 kips) 

10,000 kN 

(2248.1 kips) 

ωn 

(rad/s) 
an bn 

0.366 0.804 0.055 0.332 0.609 0.886 1.107

0.712 3.047 0.221 1.329 2.436 3.544 4.430

1.059 6.734 0.498 2.990 5.482 7.973 9.966

1.406 11.873 0.886 5.315 9.745 14.174 17.718

1.754 18.478 1.384 8.305 15.226 22.148 27.685

2.103 26.564 1.993 11.960 21.926 31.893 39.866

2.453 36.152 2.713 16.278 29.844 43.409 54.262

2.805 47.263 3.544 21.262 38.980 56.698 70.872

3.158 59.925 4.485 26.909 49.334 71.758 89.698

 

Since the Mathieu instability for riser is significant in lower order instability 

zones and most of a system’s vibration energy is distributed in the first few vibration 

modes (Xiao and Yang, 2014), the present study considers only the first two vibration 

modes on the Mathieu’s stability diagram.  
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There is noteworthy that the analysis of the Mathieu instability of top tension 

riser is more important when the host platform has larger motion, such as in the cases of 

drillship and dry-tree semisubmersible (DTS).  

For the TLP host platform coupled with TTR, the dynamic tension variation T

is generally small due to the small vertical velocity of the platform motion. Followed the 

TLP-riser case in the Subsection 5.8.2, the uncontrolled base-case dynamic tension 

variation T is 7 kips (31.1376 kN), and the reduction of dynamic tension variation by 

activating the EFCC is until 1 kips (4.4482 kN). The Mathieu stability assessment of the 

case in Subsection 5.8.2 is shown in Fig. 6.6, and the results of first nine vibration modes 

are tabulated in Table 6.4. This can be found that the first two vibration modes of TTR 

were far below the unstable zones. Moreover, the reduction of dynamic tension variation 

by using EFCC can further reduce the values of nb , which leads to the stability of TTR. 
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Table 6.4 First nine vibration modes of a single top tension riser in TLP host platform 
with EFCC control scheme. 

Tension variation,  

ΔT = 31.1376 kN (7 kips) 

Tension variation,  

ΔT = 4.4482 kN (1 kips) 

ωn an bn ωn an bn 

0.366 0.804 0.003 0.366 0.804 0.000 

0.712 3.047 0.014 0.712 3.047 0.002 

1.059 6.733 0.031 1.059 6.733 0.004 

1.406 11.872 0.055 1.406 11.872 0.008 

1.754 18.477 0.086 1.754 18.477 0.012 

2.103 26.562 0.124 2.103 26.562 0.018 

2.453 36.148 0.169 2.453 36.148 0.024 

2.805 47.259 0.221 2.805 47.259 0.032 

3.158 59.919 0.279 3.158 59.919 0.040 
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Figure 6.6 Mathieu stability assessment of a single TTR in the TLP host platform with 
EFCC control scheme. 
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7. SEMI-SUBMERSIBLE DRY-TREE INTERFACE BY USING MAGNETO-

RHEOLOGICAL DAMPER  

7 

7.1 Introduction 

There is an increasing trend for drilling with high-pressure risers and surface 

BOPs from semi-submersible (knowned as Semi) platform units (Zeng et al., 2013), this 

concept is named as Dry-Tree Semisubmersible (DTS). The DTS has the advantages of 

(1) easy access to production tree for operations, maintenance and inspections, (2) direct 

vertical access for drilling, completion and workover operation, (3) improved recovery 

of hydrocarbons (Poll et al. 2013). Xiang et al. (2014) presented the overall design of a 

TTR system for a DTS interface including ram style tensioner, riser conductor, and riser 

top assembly design with keel joint. Zeng et al. (2013) discussed the development of 

DTS by addressing the total value and efficiency of the integrated system during entire 

life cycle of the product, including design, construction, integration, and installation, 

operation, and decommission, as well as component reliably and safety.  

The motions of typical Semi-submersibles are not compatible with existing dry 

tree systems. All dry tree support system must allow the TTR to move vertically relative 

to the hull within the allowable stroke limits. The amount of required stroke depends on 

the platform heave motion, offset, set-down, thermal growth of the risers, pressure 

growth across the riser wall, draft changes of the hull, deflection of the riser in the water 

column, and so on (Poll et al., 2013). Therefore, there are two main directions in the 

developments of technology readiness of the DTS as follows:  
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(i)  Improving the Semisubmersible hull characteristics so that its heave 

motion can be reduced within the range of technology well-proven 

tensioner stroke length;  

(ii)  Increasing the manufacturing ability and technological maturity of longer 

stroke TTR tensioner so that the tensioner can support for larger heave 

motion sea conditions. 

The latest development trend includes both directions and trade-off in between 

the Semi heave motion and riser stroke limits. However, the solution will be more 

complex when it involved the integration of these two systems (a deeper draft Semi and 

a longer stroke tensioner) into a fully coupled system. As riser tensioners increase in 

stroke length and capacity to accommodate high riser loads, well bay configurations and 

tensioner interfaces have a significant impact on the design of the Semi platform (Koos, 

2013). The DTS hulls were configured considering the balance between the tensioner 

stroke-load characteristic, larger vessel offsets, platform heave displacements, hull draft, 

well-bay arrangement, quayside integration, transportation, installation, and updated 

Regulatory requirements for survival conditions (Koos, 2013; Xiang et al., 2014). The 

DTS heave motion is predominantly governed by its hull draft. An increase in the hull 

draft causes a commensurate reduction in heave motion and required tensioner stroke 

range (Zeng et al., 2013). As illustrated in Fig. 7.1, Zeng et al. (2013) proposed a deep 

draft DTS comprises a two-axis symmetrical hull with draft in the range of 100 ft (30.48 

m) to 155 ft (47.24 m) to accommodate the tensioner stroke in the range of 35 ft (10.67 

m) to 45 ft (13.72 m). Poll et al. (2013) designed a Paired-Column Semisubmersible Hull 
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(PC-Semi) with draft of 175 ft (53.34 m) to accommodate the tensioner stroke of 28 ft 

(8.53 m). In addition, Bian and Xiang (2013) also suggested a DTS hull with the draft of 

150 ft (45.72 m) to support the tensioner stroke within 35 ft (10.67 m), all under the 

Central GOM 1000-year survival condition with allowable occasional tensioner bottom 

out.  

 

 

Figure 7.1 Proposed DTS hull draft and accommodated tensioner stroke length. 
 

The interface between the platform and TTR is further complicated by the 

changes of vertical stiffness. The addition of TTRs’ vertical stiffness to the global 

system of TLP, which is assumed as a beneficial factor in TLP design experience is no 

longer valid in the integrated design of TTR and DTS. The heave natural period of 

Semisubmersible is typically larger than the peak wave natural period. Therefore, 
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additional TTR stiffness into the Semi system will reduce the overall DTS system heave 

natural period toward the peak wave natural period and potentially trigger heave 

resonance of the DTS (Poll et al., 2013). The heave natural period of the platform is 

recommended to be maintained with a range of 5 sec to 8 sec longer than a peak period 

of the predetermined governing design storm with all riser installed (Zeng et al., 2013). 

Also, the TTRs with push or pull tensioners of suggested with a combined vertical 

stiffness less than 30% - 35% of the host platform water plane stiffness (Zou, 2008; 

Zeng et al., 2013).  

Therefore, it can be found that the main challenges in the integration of DTS with 

TTR system are: 

(i) Larger stroke requirements increase the complexity of the DTS 

technology readiness. Access to the dry tree equipment is more 

challenging because larger relative motion of mechanical equipment in 

the deck which may cause potential personnel safety issue. Also, longer 

stroke may affect deck spacing and arrangement. In addition, the design 

of flexible jumpers that required for production fluids, power and control 

are more challenging when the stroke is longer (Poll et al., 2013). 

(ii) The combined tensioner system stiffness is limited so that the heave 

natural period is sufficiently longer than the dominant wave energy 

periods (Zeng et al., 2013). 

The objectives in this Section are: 
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(i) A numerical analysis of hull/risers/mooring lines coupled motion of a 

conventional generic Semisubmersible will be conducted as the Base 

case; the hydro-pneumatic TTR system was added to a conventional 

(normal-draft) semi-submersible in order to simulate the dynamic 

responses of DTS. In this case, the geometrical data, includes draft, of the 

Semi hull will not be modified. The required TTR tensioner stroke will be 

determined under the 100-year extreme condition and 1000-year Central 

GOM survival condition; 

(ii) The tension variation effects on the long-stroke tensioner interfaced with 

the DTS is studied; 

(iii) The MR damper is incorporated with the long stroke tensioner in order to 

(a) provide a damped and deformed contact in between the tensioner ring 

and MR dampers during bottoming-out motion, (b) redistribute the high 

tension which in the tensioner cylinders during bottoming-out, and (c) 

further optimize the total stroke length needed for the DTS. 

 

7.2 Coupled Hull-Mooring Lines-Risers Analysis of Dry-Tree Interface in a 

Generic Type Conventional Draft Semi-submersible (Base Case) 

A coupled hull-mooring lines-risers analysis was carried out for conventional 

(normal-draft) semisubmersible with dry-tree interface to study the dynamic behaviors 

and maximum required riser stroke for the DTS. A generic type of DTS model, as 

illustrated in Fig. 7.2, with 12 chain-polyester-chain mooring lines, 4 steel catenary 
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risers (SCRs), 2 dual-barrier top tension risers (TTRs) with top tension factor 1.34 is 

selected for the numerical analyses of tension variations in irregular sea condition. The 

principal dimensions, displacement and weight distributions of the DTS platform and 

topside modules are tabulated in Table 7.1 and Table 7.2. In the development of deep-

draft semi-submersible, the platform unit may be configured such that a pontoon to 

platform total displacement ratio is maintained in a range in between 0.3 to 0.5 (Zeng et 

al., 2013). The deck vertical layout, quayside / in-place stability and hull dynamic 

motions are important for DTS configuration design iterations (Bian and Xiang, 2013). 

The large topside and riser payload requires a larger hull than typical wet tree 

applications. The primary trend in the design is an increased draft to reduce the heave 

motion to the point that market ready tensioners can be used (Bian and Xiang, 2013). In 

this numerical case, as illustrated in Fig. 7.3, two top-tensioned risers (TTRs) are 

proposed to be installed from the DTS symmetrically from the platform geometrical 

origin with locations of (-5, 0) m (-16.40 ft, 0 ft) (labeled as Leg #17) and (5, 0) m (16.40 

ft, 0 ft) (labeled as Leg #18), respectively. The TTRs are connected to HP-tensioner and 

simulated with parametric equation, in this base-case, as stated in Eqn. (5.12): 

0
0

1
z

T T
z


 

  
 

  (5.12) 
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Figure 7.2 Model of generic type DTS platform. 
 

 

Figure 7.3 Locations of proposed top-tensioned risers in DTS platform. 
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Table 7.1 Principal dimensions of the generic semi-submersible model. 
 SI Unit  British Unit 

Water depth 1,219.2 m  4000 ft

Number of column 4 4

Number of pontoon 4 4

Draft 28.96 m 95 ft

Total weight 29,840 ST (265,470 kN) 59,680 kips

Hull group 10,928 ST (97,220 kN) 21,856 kips

Deck facility 10,000 ST (88,964 kN) 20,000 kips

Drilling group 3,000 ST (26,689 kN) 6,000 kips

Riser pretension at the top 2,216 ST (19,715 kN) 4,432 kips

Mooring load 3,624 ST (32,241 kN) 7,248 kips

Single BOP tree weight 10 ST (88.96 kN) 20 kips 

Displacement 34,810 MT (309,685 kN) 76,743 kips
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Table 7.2 Principal geometries of generic semi-submersible model*. 
SI Unit  British Unit 

Pontoon Width 10.67 m 35.0 ft

Height 6.72 m 22.1 ft

Length 43.89 m 114.0 ft

Column Width 12.50 m 41.0 ft

Height 28.96 m 95.0 ft

Length 12.50 m 41.0 ft

Draft 28.96 m 95.0 ft

Volume Pontoon 3,148 m3 111,170 ft3

Column 4,524 m3 159,764 ft3

Total Pontoon 12,591 m3 444,647 ft3

Total Column 18,098 m3 639,125 ft3

Hull (under MWL) 30,689 m3 1,083,772 ft3

Total displacement 34,810 ST 69,620 kips

  Hull group 10,928 ST 21,856 kips

  Deck facility 10,000 ST 20,000 kips

  Drilling group 3,000 ST 6,000 kips

  Total TTR tension 2,216 ST 4,432 kips

  Mooring load 3,624 ST 7,248 kips

Total weight 29,840 ST 59,680 kips

*Data from estimation and not related to any well-existed dry-tree semi-submersible. 
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The DTS can support for large payloads, however, its vertical motion is 

relatively large compared to Spar and TLP, thus requiring longer stroke tensioners to 

support the vertical TTRs. The tensioner stroke is identified as one of the most dominant 

design factor to determine the deck layout, hull form, mooring system and the overall 

floater configuration (Bian and Xiang, 2013). The common material properties of TTR 

for varying steel grades are listed in Table 7.3. The proposed steel to be used in the TTR 

is P110 in this case study. Higher grade steel, such as Q125, is suggested for the 

condition where higher tension is required especially during the bottoming-out period of 

the tensioner cylinder.  

Table 7.3 TTRs and material properties. 
Q125 P110 L80 M65 

Elastic modulus  MPa 

(ksi) 

2.07E+05 

(30,022)

2.07E+05 

(30,022)

2.07E+05 

(30,022) 

2.07E+05 

(30,022)

Area Outer 

casing 

m
2 

(ft2) 

0.0199 

(0.2142)

0.0199 

(0.2142)

0.0199 

(0.2142) 

0.0199 

(0.2142)

Inner 

casing 

m
2 

(ft2) 

0.0149 

(0.1604)

0.0149 

(0.1604)

0.0149 

(0.1604) 

0.0149 

(0.1604)

Tubing m
2 

(ft2) 

0.0067 

(0. 0721)

0.0067 

(0. 0721)

0.0067 

(0. 0721) 

0.0067 

(0. 0721)

Yield strength MPa 

(ksi) 

862 

(125)

758 

(110)

552 

(80) 

448 

(65)
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Q125 P110 L80 M65 
S

tr
et

ch
in

g 
st

if
fn

es
s 

(E
A

) 

Outer 

casing 

N 

(kips) 

4.11E+09 

(923,964)

4.11E+09 

(923,964)

4.11E+09 

(923,964) 

4.11E+09 

(923,964)

Inner 

casing 

N 

(kips) 

3.08E+09 

(692,411)

3.08E+09 

(692,411)

3.08E+09 

(692,411) 

3.08E+09 

(692,411)

Tubing N 

(kips) 

1.39E+09 

(312,484)

1.39E+09 

(312,484)

1.39E+09 

(312,484) 

1.39E+09 

(312,484)

Total N 

(kips) 

8.59E+09 

(1.93E+06)

8.59E+09 

(1.93E+06)

8.59E+09 

(1.93E+06) 

8.59E+09 

(1.93E+06)

A
re

a 
m

om
en

t 
of

 in
er

ti
a,

 I
 

Outer 

casing 

m
4 

(ft4) 

0.00027 

(2.33E-06)

0.00027 

(2.33E-06)

0.00027 

(2.33E-06) 

0.00027 

(2.33E-06)

Inner 

casing 

m
4 

(ft4) 

0.00012 

(1.04E-06)

0.00012 

(1.04E-06)

0.00012 

(1.04E-06) 

0.00012 

(1.04E-06)

Tubing m
4 

(ft4) 

0.00001 

(8.63E-08)

0.00001 

(8.63E-08)

0.00001 

(8.63E-08) 

0.00001 

(8.63E-08)

B
en

d
in

g 
st

if
fn

es
s 

(E
I)

 

Outer 

casing 

Nm
2 

(kips.ft2) 

5.67E+07 

(1.37E+05)

5.67E+07 

(1.37E+05)

5.67E+07 

(1.37E+05) 

5.67E+07 

(1.37E+05)

Inner 

casing 

Nm
2 

(kips.ft2) 

2.51E+07 

(6.07E+04)

2.51E+07 

(6.07E+04)

2.51E+07 

(6.07E+04) 

2.51E+07 

(6.07E+04)

Tubing Nm
2 

(kips.ft2) 

2.65E+06 

(6.41E+03)

2.65E+06 

(6.41E+03)

2.65E+06 

(6.41E+03) 

2.65E+06 

(6.41E+03)

Table 7.3 Continued.  
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Table 7.3 Continued. 
 Q125 P110 L80 M65 

Density of steel kg/m
3 

(slug/ft3) 

7860 

(15.25)

7860 

(15.25)

7860 

(15.25) 

7860 

(15.25)

M
as

s 
p

er
 u

n
it

 le
n

gt
h

 

Outer 

casing 

kg/m 

(slug/ft) 

1.56E+02 

(3.26)

1.56E+02 

(3.26)

1.56E+02 

(3.26) 

1.56E+02 

(3.26)

Inner 

casing 

kg/m 

(slug/ft) 

1.17E+02 

(2.44)

1.17E+02 

(2.44)

1.17E+02 

(2.44) 

1.17E+02 

(2.44)

Tubing kg/m 

(slug/ft) 

5.28E+01 

(1.10)

5.28E+01 

(1.10)

5.28E+01 

(1.10) 

5.28E+01 

(1.10)

Density of 

seawater 

kg/m
3 

(slug/ft3) 

1025 

(1.99)

1025 

(1.99)

1025 

(1.99) 

1025 

(1.99)

Density of 

nitrogen gas 

kg/m
3 

(slug/ft3) 

23.965285 

(0.0465)

23.965285 

(0.0465)

23.965285 

(0.0465) 

23.965285 

(0.0465)

D
is

p
la

ce
d

 m
as

s 
p

er
 u

n
it

 le
n

gt
h

 Outer 

casing 

kg/m 

(slug/ft) 

20.35 

(0.425)

20.35 

(0.425)

20.35 

(0.425) 

20.35 

(0.425)

Inner 

casing 

kg/m 

(slug/ft) 

0.36 

(7.52E-03)

0.36 

(7.52E-03)

0.36 

(7.52E-03) 

0.36 

(7.52E-03)

Tubing kg/m 

(slug/ft) 

0.16 

(3.34E-03)

0.16 

(3.34E-03)

0.16 

(3.34E-03) 

0.16 

(3.34E-03)

Inertial 

force 

coef. 

Outer 

casing 

N/m-acc. 198.18 198.18 198.18 198.18
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Table 7.3 Continued. 
 Q125 P110 L80 M65 

Drag 

force 

coef. 

Outer 

casing 

N/m-vel. 215.77 215.77 215.77 215.77

Cd Outer 

casing 

 1.2 1.2 1.2 1.2

Section 

area  

Outer 

casing 

m
2 

(ft2) 

0.0199 

(0.2142)

0.0199 

(0.2142)

0.0199 

(0.2142) 

0.0199 

(0.2142)

Break 

line 

tension  

Outer 

casing 

N 

(kips) 

1.00E+10 

(2.25E+06)

1.00E+10 

(2.25E+06)

1.00E+10 

(2.25E+06) 

1.00E+10 

(2.25E+06)

 

Three-hour time-simulations were carried out in a Central Gulf of Mexico 

(GOM) 100-year extreme environmental condition, and GOM 1000-year survival 

condition, where the metocean profiles are listed in Table 7.4. Wave, wind, and current 

are collinear with a 180° of incident angle. The time series and spectrum density of wave 

elevation are shown in Fig. 7.4. 
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Table 7.4 Wave, current, and wind profiles of the central-GOM 100-year and 1000-year 
return period (RP) conditions in base case simulation. 

 100-RP 1000-RP

Significant wave height, Hs 15.8 m 

(51.84 ft) 

19.8 m

(64.96 ft)

Peak period, Tp 15.4 sec 17.2 sec

Overshooting parameter, γ 2.40 2.40

Main direction of waves 180 deg 180 deg

Direction of current 180 deg 180 deg

Current profile Surface speed 2.40 m/s 

(7.874 ft/s) 

3.00 m/s

(9.843 ft/s)

Speed at mid-profile 1.80 m/s 

(5.906 ft/s) 

2.25 m/s

(7.382 ft/s)

Zero-speed depth 100.80 m 

(330.71 ft) 

126.00 m

(413.39 ft)

Wind 10 m elevation  

(1 hour mean speed)  

48.00 m/s 

(157.48 ft/s) 

60.00 m/s

(196.85 ft/s)



 

234 

 

Figure 7.4 The wave elevation of central GOM condition for (a) 100-year return period; 
and (b) 1000-year return period. 

 

The finite element (FE) model of the nonlinear hydro-pneumatic tensioner and 

the hull motion is implemented in CHARM3D, a fully-coupled time-domain dynamic-

analysis program for floating bodies, mooring lines/tendons, and risers (Ran, 2000; Kang 

et al., 2014). The DTS platform motions are shown in frequency domain in Fig 7.5 and 

time domain in Fig. 7.6. These results are compared with the platform motions of 

conventional semi-submersible (SEMI) settings, where the TTRs are not installed on the 

platform. It can be found that the motions of DTS are generally smaller than the motions 

of SEMI. Also, the responses of 1000-year return period (1000-H) is large than the 

responses of 100-year return period (100-H) in the wave frequency (WF) and low 
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frequency (LF) regions but there are not apparent differences for both conditions in the 

high-frequency (HF, low period) region.  

 

 

Figure 7.5 Platform motions in frequency domain. 
 

The main concern is the characteristics of dynamic heave responses (in Fig. 7.5) 

where there are two major peaks in its amplitude spectrum: one is around the period of 

15 sec which is near the wave peak period, and the other is around the period of 19 sec 

which is near the platform heave natural period. Similar multi-peaks spectrums are found 

in the motions of other directions where roll/pitch motion at around the period of 30 sec 

and surge/sway motion at around the period of 85 sec. Since the platform heave natural 
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period and wave peak period is very close, the increased vertical stiffness associated 

with the additional TTRs must be validated robustly because this change reduces the 

heave period of the semi-submersible closer to the dominant wave period and induces 

heave resonance (Poll et al., 2013, Bian and Xiang, 2013).  

The extreme factor distributions for 100-H and 1000-H conditions are shown in 

Fig. 7.7. The extreme factor is calculated as the ratio of extrema with respect to the 

standard deviation of the data series. It can be found that the heave extreme factor 

distribution agrees well with the Gaussian distribution, which means typical Gaussian 

characteristics containing almost all wave frequency components in the time series (Zou, 

2008).  
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Figure 7.6 Platform motions in time domain. 
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Figure 7.7 Extreme factor distribution of DTS platform motions for (a) 100-year return 
period, and (b) 1000-year return period. 
  

(a) 

(b) 
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The response amplitude operators (RAO) of DTS platform and SEMI platform in 

this case study are shown in Fig. 7.8. In the RAO of heave motion, the cancellation 

period DTS is located at ~17.5 sec The RAO in heave direction is very sensitive to the 

additional tensioner stiffness after the top-tensioner risers are incorporated into the 

system. A softer tensioner (lower stiffness) is better for overall platform heave natural 

period and global motions. However, the trade-off to increase the softness is by 

increasing the size of accumulators and NPVs in the hydro-pneumatic system, as 

illustrated in Fig. 5.3, which increases overall equipment size, complexity and cost (Poll 

et al., 2013).   

 

 

Figure 7.8 RAO of platform motions.  
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The RAO of DTS platform heave motions for variations of tensioner stiffness is 

studied in more detailed in Fig. 7.9 and compared to the findings of Bian and Xiang 

(2013). A higher tensioner stiffness (where the equivalent length of cylinder, 0z  in Eqn. 

5.12 is shorter) causes slightly increment of RAO in the first peak (coincident with wave 

peak) and reduces the RAO in the second peak (which after the cancellation period at ~ 

17.5 sec, in this case). There is noteworthy that in this numerical analysis, the mass 

matrix of semi-submersible is remained unchanged in order to observe the effects 

contributed only by the variations of tensioner stiffness. It can be achieved, in real 

practice, by rearranging the topside modules payload after considered the additional 

payloads caused by the higher tensioner stiffness so that the total payload is remained 

unchanged.  
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Figure 7.9 RAO of DTS platform motions for variations of tensioner stiffness. 
 

The trajectories of DTS in surge-heave direction are shown in Fig. 7.10. It can be 

found that the maximum horizontal offset under collinear (from direction of 180°) wave-

wind-current condition is ~26 m (~85.30 ft) and ~36 m (~118.11 ft) for 100-H and 1000-

H return period conditions, respectively. The range of platform heave motion is [~ + 4.2 

m, - 6.5 m] (~13.78 ft to -21.33 ft) for 100-H return period and [~ + 6.5 m, - 8.5 m] (~ 

21.33 ft to -27.88 ft) for 1000-H return period. However, it can also be observed from the 

probability density spectrum of the DTS motion trajectory in Fig. 7.10 that the 

probability of extreme positions are very low; the high occurrences are happened in a 

short range nearby its static equilibrium position. Nevertheless, the envelopes of 

platform motion are important for the calculation of the required TTR stroke lengths in 

the 100-H and 1000-H return period conditions.  
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Figure 7.10 Trajectory of DTS platform motions in X-Z plan for (a) 100-year return 
period, and (b) 1000-year return period. 
  

(a) 

(b) 
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The dynamic riser strokes for unbounded limits of TTR tensioner are illustrated 

in Fig. 7.11 (frequency domain) and Fig. 7.12 (time domain). The riser stroke in 1000-H 

condition is large than the stroke in 100-H return period condition in the wave frequency 

(WF) and low frequency (LF) regions but there are not apparent differences for both 

conditions in the high-frequency (HF) region.  

 

 

Figure 7.11 Spectrum density of stroke of TTR interface in DTS platform for (a) 100-
year return period, and (b) 1000-year return period. 
 

For 100-H extreme condition, the maximum required riser stroke length in this 

case study is 9.727 m (~ 32 ft), as shown in the Fig. 7.12, and the heave peak period is 

around 19 sec. For 1000-H; the maximum required riser stroke length is 13.342 m (~ 44 
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ft) and the heave peak period is around 19 sec. There is noteworthy that the dynamic 

stroke value will be further enlarged after considered the mean offset (sagging) and tidal 

height effects that are assumed to contribute nearly additional 50% of stroke, majority in 

down-stroke, during the survival condition (Bian and Xiang, 2013).  

 

 

 

Figure 7.12 Stroke of TTR interface in DTS platform in time domain for (a) 100-year 
return period, and (b) 1000-year return period. 

(a) 

(b) 



 

245 

The top-tension of TTR interface in DTS platform with respect to the variations 

of strokes and velocities are shown in Fig. 7.13 for 100-H condition and Fig. 7.14 for 

1000-H condition. The top-tension acting on the tensioner ring are ranged in [~2.75 MN 

to ~8.25 MN] (~618.22 kips to ~1854.67 kips) and [~2.50 MN to ~11.80 MN] (~562.02 

kips to ~2652.75 kips) for 100-H and 1000-H return period conditions, respectively. The 

velocities of riser stroke interfaced with the DTS are from ~ -2.3 m/s (~ -7.55 ft/s) to ~ 

+2.0 m/s (~ +6.56 ft/s) for 100-H return period and from ~ -2.5 m/s (~ -8.20 ft/s)  to ~ 

+2.6 m/s (~ +8.53 ft/s) for 1000-H return period. It can also be found from the 

probability density spectrum contours of tension-velocity that the probabilities of 

extreme velocities are in the low occurrences.  

 

 

Figure 7.13 Top-tension of TTR interface in DTS platform with respect to the variations 
of strokes and velocities for 100-year return period. 
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Figure 7.14 Top-tension of TTR interface in DTS platform with respect to the variations 
of strokes and velocities for 1000-year return period. 

 

The extreme dynamic profiles of TTR upstroke and down-stroke are shown in 

Fig. 7.15 for 100-H condition and Fig. 7.16 for 1000-H condition. The maximum 

inclination occurred at the location of tension ring (top-end node) for this case study 

where the keel guide is not installed. There is noteworthy that the scales in x- and z- 

directions in the plots in Figs. 7.15 - 7.16 are different in order to clearly represent the 

deflections of the riser. The segments in the yellow-boxes are located inside the zone of 

DTS, which are spanned from the tensioner ring (top-end node) to the location at the 

bottom of platform’s hull pontoons. The segments from tensioner ring to the bottom of 

ram-style tensioner are lined linearly because these nodes are restrained by the structure 



 

247 

of tensioner. The maximum horizontal-deflections inside the DTS platform are ~1.5 m 

(~4.92 ft) for 100-H condition and ~3.0 m (~9.84 ft) for 1000-H condition, respectively. 

This values are significant in the determination of well-spacing in order to prevent 

collision with neighboring riser. For the overall length of riser, the maximum offset of 

riser segments are 1.8% WD (water depth) and 2.5% WD, for 100-H and 1000-H 

conditions respectively.  

 

 

Figure 7.15 Extreme dynamic profiles of TTR in DTS platform for 100-year return 
period. 
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Figure 7.16 Extreme dynamic profiles of TTR in DTS platform for 1000-year return 
period. 

 

The envelopes of axial tension, bending moments, and von-Mises stress of the 

TTR in the 100-H condition and 1000-H condition are shown in Fig. 7.17. The axial 

tension is increased proportionally from the bottom of riser to the tensioner ring. The 

maximum bending moment is found in the location of tension ring (top-end node) where 

the maximum inclination was occurred. The von-Mises stresses are within the limits 

(~0.75 utilization for 100-H condition, and ~0.85 utilization for 1000-H condition) for 

the case of steel grade P110.  
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Figure 7.17 Axial tension, bending moment and von-Mises stress of TTR (Leg #17) 
interfaced with DTS platform for (a) 100-year return period, and (b) 1000-year return 
period.  

(b) 

(a) 
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The statistical analysis of top-tension for TTRs, SCRs, and mooring lines of DTS 

platform for 100-year return period, and 1000-year return period is shown in Fig. 7.18. 

There are 12 mooring lines (4 column × 3 lines/column). Under the collinear wave, 

wind, and current from 180° of incident angle, the upstream catenary mooring lines (#1 

to #6) experiences higher axial tension force and higher tension variations than the 

downstream counterparts (#7 to #12). The 4 SCRs (#13 for water injection, #14 for oil 

production, #15 for gas production, and #16 for flow line) are inherited from a 

conventional type of semi-submersible platform design. It can be found that the axial 

tension in gas production riser is the lowest, which is around ~0.5 MN (~112.40 kips).   

 

 

Figure 7.18 Statistical analysis of top-tension for TTRs, SCRs, and mooring lines of 
DTS platform motions for (a) 100-year return period, and (b) 1000-year return period.
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The additions of two TTRs generated highest top-tension, as shown in Fig. 7.18. 

These two risers are supported by tensioners, instead of in natural catenary form. The 

inclusion of single TTR can contribute the axial tension exertion of nearly two upstream 

mooring lines, equivalently, in this case study. The Mathieu stability for the first two 

modes of the TTR was studied and the results are shown in Fig. 7.19. It was found that 

the TTR first mode for both 100-H and 1000-H cases are in the stable zone and the 

second mode for 100-H condition are close to the marginal zone. However, it can be 

inferred that the second mode for 100-H condition is stable as well because the existence 

of slight lateral damping, which normally above zero in the wet-condition, can 

significantly enlarge stable zone in the Mathieu diagram.  

 

 

Figure 7.19 Mathieu stability analysis of TTR (Leg #17) interfaced with DTS platform.
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7.3 Tension Variations of Hydro-Pneumatic Tensioner (HPT) for Dry-Tree 

Interface in Semi-submersible 

From the numerical analyses in the regular wave condition in Subsection 5.6, it 

can be found that the tension variations of HPT is a dependent of the length of hydraulic 

fluid traveling per cycle, and the relative velocity in between the platform and TTR. 

These two factors contribute minor effects in the TLP because the tensioners in TLP are 

short stroke with typically in the range from 6 ft (1.829 m) to 10 ft (3.048 m) (Leverette 

et al., 2013), hence the maximum allowable traveling length per cycle is small. 

Moreover, the relative vertical velocity of TLP-TTR is much smaller than one in the 

semisubmersible platform. These two key factors in tension variations, however, become 

very significant in the developments of dry-tree interface in the semi-submersible. The 

heave motion of industrially proposed dry-tree semisubmersible (DTS) is large and long 

stroke tensioner is required to compensate this heave motion. Zeng et al. (2013) 

proposed a deep draft DTS comprises a two-axis symmetrical hull with draft in the range 

of 100 ft (30.48 m) to 155 ft (47.24 m) to accommodate the tensioner stroke in the range 

of 35 ft (10.67 m) to 45 ft (13.72 m). Poll et al. (2013) designed a Paired-Column 

Semisubmersible Hull (PC-Semi) with draft of 175 ft (53.34 m) to accommodate the 

tensioner stroke of 28 ft (8.53 m). In addition, Bian and Xiang (2013) also suggested a 

DTS hull with the draft of 150 ft (45.72 m) to support the tensioner stroke within 35 ft 

(10.67 m), as illustrated in Fig. 7.1. From these reported data of the long stroke tensioner 

to be installed in the DTS, even if the accumulator is designed to be located just beside 
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the cylinder (Trent, 2012), the hydraulic fluid is allowed to flow at least from 8.53 m (28 

ft) to 13.72 m (45 ft) inside the length of tensioner cylinder.  

The dimensions and data of HPT has been modified from Table 5.1 to customize 

the DTS setting where the stiffness of long-stroke tensioner at zero-displacement is 40 

kips/ft (54 kN/m) and are tabulated in Table 7.5. There is noteworthy that two different 

settings with different volume sizes of NPVs were studied. The option TV-A has 

relatively smaller volume of low-pressure NPV and larger high-pressure NPV than 

option TV-B.  

Three-hour time-simulations were carried out in a Central Gulf of Mexico 

(GOM) 100-year extreme environmental condition, and GOM 1000-year survival 

condition, where the metocean profiles are listed in Table 7.6. Wave, wind, and current 

are collinear with a 180° of incident angle. 
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Table 7.5 Hydraulic-pneumatic tensioner data for DTS. 
Total Number of Cylinders 6

Pressure at LNPV 8.30 bar (120.4 psi)

Pressure at HNPV 49.3 bar (715.04 psi)

Length of Pipe from LNPV to Cylinder* 0.1 m (0.3281 ft)

Diameter of Pipe from LNPV to Cylinder 0.1524 m (0.5000 ft)

Length of Pipe from HNPV to Accumulator* 0.1 m (0.3281 ft)

Diameter of Pipe from HNPV to Accumulator 0.1524 m (0.5000 ft)

Length of Pipe from Accumulator to Piston 10.0 m (32.81 ft)

Diameter of Pipe from Accumulator to Cylinder 0.1524 m (0.5000 ft)

Cross-sectional Area of Cylinder 0.2463 m2 (2.6512 ft2)

Hydraulic Fluid Area of Piston-Side 0.2048 m2 (2.2044 ft2)

Density of hydraulic oil 850 kg/m3 (1.649 slug/ft3)

Viscosity of hydraulic oil 84.2416 cSt (×10-6 m2/s) 

(906.77×10-6 ft2/s) 

Option A (TV-A) Option B (TV-B)

Volume of LNPV 2.5 m3 (88.3 ft3) 8.0 m3 (282.5 ft3)

Volume of HNPV 8.0 m3 (282.5 ft3) 2.5 m3 (88.3 ft3)

   * Note: to be negligible in long-stroke tensioner case 
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Table 7.6 Wave, current, and wind profiles of the central-GOM 100-year and 1000-year 
return period (RP) conditions in tension variations simulation. 

 100-RP 1000-RP

Significant wave height, Hs 15.8 m 

(51.84 ft) 

19.8 m

(64.96 ft)

Peak period, Tp 15.4 sec 17.2 sec

Overshooting parameter, γ 2.40 2.40

Main direction of waves 180 deg 180 deg

Direction of current 180 deg 180 deg

Current profile Surface speed 2.40 m/s 

(7.874 ft/s) 

3.00 m/s

(9.843 ft/s)

Speed at mid-profile 1.80 m/s 

(5.906 ft/s) 

2.25 m/s

(7.382 ft/s)

Zero-speed depth 100.80 m 

(330.71 ft) 

126.00 m

(413.39 ft)

Wind 10 m elevation  

(1 hour mean speed)  

48.00 m/s 

(157.48 ft/s) 

60.00 m/s

(196.85 ft/s)
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The tension-stroke curve of single cylinder at piston side chamber under 100-H 

condition, in Fig. 7.20, and 1000-H condition, in Fig. 7.21, respectively, are simulated 

for option A (TV-A, lower pressure-NPV is smaller) and option B (TV-B lower 

pressure-NPV is larger). The maximum allowable traveling length of the long-stroke 

tensioner is set to 10 m (32.8 ft) for the case of DTS under irregular sea, extreme (100-

H), and survival (1000-H) environmental conditions. There is noteworthy that the 

negative sign in the DTS case is referred to the down-stroke motion.  

The tension acting in a single cylinder at piston side chamber are ranged in 

[~0.84 MN to ~1.17 MN] (~188.83 kips to ~263.03 kips) (in TV-A) and [~0.60 MN to 

~1.70 MN] (~134.89 kips to ~382.18 kips) (in TV-B) for 100-H, and [~0.65 MN to 

~1.30 MN] (~146.13 kips to ~292.25 kips) (in TV-A) and [~0.55 MN to ~2.30 MN] 

(~123.64 kips to ~515.06 kips) (in TV-B) for 1000-H, respectively. This can be found 

that if the volume size of low-pressure NPV is small, the total acting tension on the 

tensioner ring (after considered all of the six cylinders) is in compression and potentially 

causes the buckling on the riser, as illustrated in Fig. 7.22. The total force balance (the 

first and third terms in Eqn. 5.22) on the tensioner ring (without considered the tension 

variation) is [<0 MN to ~7.20 MN] (<0 kips to ~1618.63 kips) (in TV-A) and [~1.50 

MN to ~12.50 MN] (~337.21 kips to ~2810.11 kips) (in TV-B) for 1000-H. Therefore, 

the option TV-A which has smaller volume size settings in low-pressure NPV must be 

verified robustly, with respect to its volume, pressure, and stiffness changes, in the real-

world application.  
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The tension exerted in single HPT cylinder piston side (which is equaled to the 

tension at TTR’s tension ring per each cylinder) for setting TV-B varies from -9.0 % to 

11.0 % for 100-H condition (as shown in Fig. 7.23), and from -13% to +13 % for 1000-

H condition (as shown in Fig. 7.24), with respect to the parametric formulation results 

after taking the hydraulic effects (the second term in Eqn. 5.22) into account. 

From the results in Figs. 7.20 – 7.24, there can be further inferred that the 

excessive tension variations are induced from the following sources and the effects to the 

DTS:  

(i) The hydraulic fluid flow rate oilq  which is induced by the velocity of 

tensioner piston, as stated in Eqn. 5.22. The larger tension variations 

caused by the larger velocity factor are reasonable for the cases of DTS, 

where the platforms heave motion are no longer constrained by the high 

stiffed tendons. 

(ii) The geometrical dimension, especially the length of hydraulic pipe 

conduits APL , as stated in Eqn. 5.22. The excessive tension variations is 

exerted when the longer hydraulic fluid travel in between the accumulator 

and tensioner cylinder is required, such as in the case of long-stroke 

tensioner. 

(iii) The ratio of gas volume 
0A AV V  in between the displaced volume and the 

total gas volume stored in the high pressure NPVs, as stated in the Eqn. 

5.18. This volume ratio must be designed as small as possible in order to 

minimize the dynamic tension variations. Therefore, a very large volume 
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0AV  of high pressure NPVs must be stored nearby the well bay. For the 

long-stroke tensioner to be developed in the dry-tree Semi-submersible 

platform, the required storage of high-pressurized gas volume is even 

larger. 

(iv) The volume size and initial pressure of the low-pressure NPV is 

equivalently important in the DTS. The improper setting can cause the 

total tension acting on the tensioner ring become too low during the 

extreme up-stroke motion. If the compression (negative tension) is found 

in the segment of the riser, the buckling on the riser structure is a critical 

issue (Sparks, 2007). 
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Figure 7.20 Tension-stroke curve of single cylinder at piston side under 100-H condition 
for (a) high pressure-NPV is larger (TV-A), and (b) low pressure-NPV is larger (TV-B). 

(a) 

(b) 
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Figure 7.21 Tension-stroke curve of single cylinder at piston side under 1000-H 
condition for (a) high pressure-NPV is larger (TV-A), and (b) low pressure-NPV is 
larger (TV-B). 

(a) 

(b) 
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Figure 7.22 Tension-stroke curve of total six cylinders at tensioner-ring under 1000-H 
condition for (a) high pressure-NPV is larger (TV-A), and (b) low pressure-NPV is 
larger (TV-B). 

(a) 

(b) 
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Figure 7.23 Tension variations (TV-B) in the piston-side chamber for single cylinder in 
the long-stroke tensioner (L=10 m (32.8 ft)) for dry-tree semisubmersible case, under 
condition 100-H, with respect to (a) variations of stroke; (b) variations of velocity. 
  

(a) 

(b) 
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Figure 7.24 Tension variations (TV-B) in the piston-side chamber for single cylinder in 
the long-stroke tensioner (L=10 m (32.8 ft)) for dry-tree semisubmersible case, under 
condition 1000-H, with respect to (a) variations of stroke; (b) variations of velocity. 
  

(a) 

(b) 
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The extreme dynamic profiles of TTR, and envelopes of axial tension, bending 

moments, and von-Mises stress are shown in Figs. 7.25 – 7.28. The maximum 

inclination occurred at the location of tension ring (top-end node) for this case study 

where the keel guide is not installed. There is noteworthy that the scales in x- and z- 

directions in the plots in Figs. 7.25 - 7.28 are different in order to clearly represent the 

deflections of the riser. The segments from tensioner ring to the bottom of ram-style 

tensioner are lined linearly because these nodes are restrained by the structure of 

tensioner. The maximum horizontal-deflections inside the DTS platform are ~1.5 m 

(~4.92 ft) (TV-A) and ~1.5 m (~4.92 ft) (TV-B) for 100-H condition, and ~5.0 m 

(~16.40 ft)  (TV-A) and ~4.1 m (~13.45 ft)  (TV-B) for 1000-H condition, respectively. 

This values are significant in the determination of well-spacing in order to prevent 

collision with neighboring riser. For the overall length of riser, the maximum offset of 

riser segments are 1.39% WD (water depth) (TV-A) and 1.23% WD (TV-B) for 100-H 

condition, and 2.13% WD (TV-A) and 2.03% WD (TV-B)for 1000-H condition, 

respectively. The bottom segments in the case of 1000-H for TV-A is in bended mode, 

Fig. 7.28, and potential in buckling. The axial tension is increased proportionally from 

the bottom of riser to the tensioner ring. The maximum bending moment are found in the 

location of tension ring (top-end node) in these cases except for the 1000-H TV-A, 

where high bending moment is found on the segments nearby the bottom of the TTR. 

The von-Mises stresses are ~0.66 utilization (TV-A) and ~0.70 utilization (TV-B), for 

100-H condition, and ~1.65 utilization (TV-A) and ~0.85 utilization (TV-B) for 1000-H 

condition, for the case of steel grade Q125.  
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Figure 7.25 TTR (Leg #17) with dynamic tension variation (TV-B) interfaced with DTS 
platform for 100-year return period for (a) extreme dynamic profiles of TTR, and (b) 
axial tension, bending moment and von-Mises stress. 
  

  

Zone inside DTS Zone inside DTS 

Zone inside DTS Zone inside DTS 

(a) 

(b) 
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Figure 7.26 TTR (Leg #17) with dynamic tension variation (TV-B) interfaced with DTS 
platform for 1000-year return period for (a) extreme dynamic profiles of TTR, and (b) 
axial tension, bending moment and von-Mises stress. 

Zone inside DTS Zone inside DTS 

Zone inside DTS Zone inside DTS 

(a) 

(b) 
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Figure 7.27 TTR (Leg #17) with dynamic tension variation (TV-A) interfaced with DTS 
platform for 100-year return period for (a) extreme dynamic profiles of TTR, and (b) 
axial tension, bending moment and von-Mises stress. 

Zone inside DTS Zone inside DTS 

Zone inside DTS Zone inside DTS 

(a) 

(b) 
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Figure 7.28 TTR (Leg #17) with dynamic tension variation (TV-A) interfaced with DTS 
platform for 1000-year return period for (a) extreme dynamic profiles of TTR, and (b) 
axial tension, bending moment and von-Mises stress. 

Zone inside DTS Zone inside DTS 

Zone inside DTS Zone inside DTS 

Large Bending Moment 

(a) 

Potential  
Buckling 

(b) 
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The Mathieu stability for the first two modes of the TTR, with dynamic tension 

variation, was studied and the results are shown in Fig. 7.29. The TTR first mode for 

both 100-H and 1000-H cases are in the stable zone and the second mode for the case 

TV-B are in the unstable zone due to the large tension variation. However, the second 

mode for TV-B can be stabilized if the lateral damping ratio is larger than 0.25, in the 

case of 1000-H condition. 

 

 

Figure 7.29 Mathieu stability analysis of TTR (Leg #17, integrated with TTR dynamic 
tension variations) interfaced with DTS platform. 

 

The dynamic riser strokes, with dynamic tension variations, for unbounded limits 

of TTR tensioner are depicted in frequency domain in Fig. 7.30. The riser stroke in 
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1000-H condition is larger than the stroke in 100-H return period condition in the wave 

frequency (WF) and low frequency (LF) regions but there are not apparent differences 

for both conditions in the high-frequency (HF) region. The responses of TV-A is almost 

identical with the case without taking the dynamic tension variations into account 

(labeled as PT). The response of TV-B is smaller than the others in the frequency range 

of heave resonance peak.  

 

 

Figure 7.30 Spectrum density of stroke of TTR interface (integrated with dynamic 
tension variations) in DTS platform. 
 

The maximum up stroke, maximum down stroke, and required riser stroke length 

for the cases with dynamic tension variations are compared to the base-case without the 
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dynamic tension variation (labeled as PT), as tabulated in Table 7.7. The time series of 

TTR stroke are shown in Figs. 7.31 – 7.32. There is noteworthy that the existence of 

dynamic tension variation is able to reduce the total required stroke length as much as 

0.27 m (0.886 ft) in 100-H condition, and 0.74 m (2.428 ft) in 1000-H condition. The 

reason is that the hydraulic friction in the conduit pipes of HP tensioner acting as 

additional damping effects. Also, the setting TV-B can reduce more of the total required 

riser stroke length than the setting TV-A.  
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Table 7.7 Maximum upstroke, maximum down stroke, and required riser stroke length. 
  PT TV-A TV-B 

100-H Maximum upstroke 5.978 m

 (19.6 ft)

5.573 m 

 (18.24 ft) 

5.712 m

 (18.73 ft)

Maximum down stroke -3.749 m 

(-12.3 ft)

-4.098 m  

(-13.33 ft) 

-3.746 m

 (-12.29 ft)

Total required stroke length 9.727 m

(31.91 ft)

9.671 m 

(31.73 ft) 

9.458 m

(31.03 ft)

1000-H Maximum upstroke 7.667 m

 (25.2 ft)

6.413 m 

 (21.04 ft) 

7.257 m

 (23.81 ft)

Maximum down stroke -5.675 m 

(-18.6 ft)

-6.464 m 

 (-21.21 ft) 

-5.345 m

 (-17.54 ft)

Total required stroke length 13.342 m

(43.77 ft)

12.877 m 

(42.25 ft) 

12.602 m

(41.35 ft)
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Figure 7.31 Stroke of TTR interface (with dynamic tension variation, TV-A) in DTS 
platform in time domain for (a) 100-year return period, and (b) 1000-year return period. 

(a) 

(b) 
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Figure 7.32 Stroke of TTR interface (with dynamic tension variation, TV-B) in DTS 
platform in time domain for (a) 100-year return period, and (b) 1000-year return period. 

(a) 

(b) 
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The effects of dynamic tension variation on the platform global motion are 

studied in Figs. 7.33 – 7.34. The DTS platform motions are shown in frequency domain 

in Fig 7.33. It can be found that the motions of DTS are slightly affected by the dynamic 

tension variation (in setting TV-B), where the amplitude of heave resonance peak is 

reduced, in Fig. 7.33. Besides, there are not apparent differences for both conditions 

(with- and without dynamic tension variations) in the high-frequency (HF, low period) 

region.  

 

 

Figure 7.33 Platform motions (integrated with TTR dynamic tension variations) in 
frequency domain. 
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The response amplitude operators (RAO) of DTS platform, with- and without 

dynamic tension variations, in this case study are shown in Fig. 7.34. In the RAO of 

heave motion, the cancellation period DTS is located at ~17.5 sec. The RAO in heave 

direction is very sensitive to the additional tensioner stiffness. The setting of TV-B 

reduces the second peak of heave RAO. 

 

 

Figure 7.34 RAO (integrated with TTR dynamic tension variations) of platform 
motions. 
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7.4 Long Stroke Ram Style (LSRS) Tensioner with MR Dampers 

A typical ram style tensioner with a total range of 28 ft and the stiffness is non-

linear over the stroke range, as shown in Fig. 7.35 is suggested by Poll et al. (2013) for 

the use of a deep-draft DTS. The tensioner is incorporated with a hard-stop at upper-end 

(~ +11 ft, +3.353 m) and bottom-end (~ -17 ft, -5.182 m) that can be simulated in the 

performance curve as an abrupt change in stiffness. In the development of DTS, the 

piston of ram tensioner to hit the cylinder bottom wall (named as bottom-out) is 

allowable in the 1000-year return period extreme environment conditions (Bian and 

Xiang, 2013). However, the bottoming out scenario is a trade-off to minimize the total 

required stroke length with the cost of occasionally hard-contact (Koos, 2013). 

Tensioner bottom-out can generates very large tension loads at the tensioner ring and 

consequently at the wellhead near the sea floor as well (Yu et al., 2008). It can be found 

from Fig. 7.35, during bottom-out as stroke moves below -17 ft (-5.182 m), the stiffness 

increases abruptly so that the tensioner cylinders and tensioner ring experience a large 

increment of tension change. The change in riser stiffness can be up to ten times from 

the normal operation stiffness of a riser (Koos, 2013). This phenomenon causes the axial 

tension of riser increases significantly so that the stress and strength of riser must be 

verified to be within the allowable limits. On the other hand, when the tensioner piston 

top-out at stroke nearly +11 ft (+3.353 m), the tension exerted by tensioner cylinders 

decreases significantly far below the nominal tension and this is potential for buckling at 

the riser lower end (Spark, 2007).  
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Figure 7.35 Tensioner performance curve (Poll et al., 2013). 
 

Since tensioner bottom-out is a very critical progress, especially to the structural 

health and integrity, and it has not been considered as one criterion in the experience of 

TLP-TTR applications, the tensioner cylinders must be fully protected from mechanical 

failures after the experiencing of bottom-out. One of the proposed precautions (Koos, 

2013) is to incorporate hydraulic cushion in the bottom of the tensioner cylinder to 

decelerate the riser and tensioner when the piston approaches to its fully down-stroke 

limit (near the cylinder bottom end-wall). In addition, a fixed support deck structure is 

proposed (Koos, 2013) to isolate the cylinder piston rod from excessive buckling stress 

by rigidly restraining the tensioner ring prior to the cylinder rod contacting the cylinder 

bottom end-wall. The suggestions from Koos (2013) lead to an important direction to 
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extend the safety margin of long-stroke tensioners bottom-out in DTS while there are 

several further considerations must be taken into account: 

(i) the nearly rigid contact behaviors in between the tensioner ring and a 

fixed support deck structure (which acts as a hard-stopper) during 

bottom-out exerts very sheer increment of impact load on the tensioner 

ring and riser-end; the energy dissipation is fully relied on the 

deceleration caused by cylinders cushioning and, eventually, the clash in 

between two rigid hard surfaces (tensioner ring and hard stopper). This 

solution is not considered as favorable from the structural health and 

integrity point of view because it can cause the damage of the tensioner 

ring and piston rod; 

(ii) the tensioner need to experience a nearly fully bottom-out condition 

where large tension force will be exerted in between the piston and 

cylinder blind-end wall during cushioning. The change in riser stiffness 

can be up to ten times from the normal operation stiffness of a riser 

(Koos, 2013). The significant sheer changes of tensioner tension have 

potential detrimental effects to the cylinder wall structures, seals, bearings 

and alignment. Also, the very high loads acting on the tensioner piston 

rod during bottom-out can causes buckling on the piston rod. 

After considered the challenges as mentioned above, a long stroke ram-style 

(LSRS) tensioner incorporated with an innovative type of protector which is consisted of 

MR dampers is proposed here in order to provide effective solutions to the bottom-out in 
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DTS.  The proposed LSRS-MR system is illustrated in Figure 7.36. A group of magnate-

rheological (MR) dampers is installed to replace the fixed-rigid support deck structure. 

The MR dampers can: 

(i) perform as a Kelvin-Voigt model when the down-stroke position is lower 

than the threshold limit in order to provide a damped and deformed 

contact (instead of rigid and hard contact) in between the tensioner ring 

and MR dampers, and to dissipate energy caused by the tensioner 

cylinder bottom-out motion, as illustrated in Fig. 7.37(c)-(d); 

(ii) redistribute the high tension which originally to be withheld solely by the 

tensioner cylinders during bottom-out by adding the total MR dampers’ 

stiffness and damping forces to the tensioner ring. Therefore, a major part 

of the required tension to be generated by tensioner cylinders can be 

transferred to the MR dampers. The tensioner cylinders can be protected 

from extreme cushioning and excessive tension increment, as illustrated 

in Fig. 7.37(d); 

(iii) further optimize the total stroke length needed for the DTS. The down-

stroke limits of LSRS tensioner can be fine-tuned by MR dampers to 

reduce the total required stroke length by the tensioner. There is 

noteworthy that this optimization is a trade-off in between the riser 

tension/stress and the piston/tensioner ring position. As long as the stress 

and strength is within the allowable limits, the MR dampers are able to 
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enhance the flexibility of the platform designer in sizing the draft of the 

DTS. 

 

 

Figure 7.36 LSRS tensioner incorporated with MR dampers as protector. 
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Figure 7.37 Mechanism of MR damper (MRD) tensioner protector. The MRD is in idle 
condition when the long stroke tensioner operating in the allowable stroke ranges, as 
shown in (a) and (b); the MRD tensioner protector are activated to dissipate additional 
energy caused by the TTR’s bottom-out motion and prevent high impact load exerted 
directly in the tensioner cylinders when the piston compressing the cylinder’s bottom 
end-wall, as shown in (c) and (d). 
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7.5 Numerical Simulation of LSRS-Tensioner with MRD Protector 

A numerical simulation for long stroke ram-style (LSRS) tensioner with MR 

dampers was conducted to study the behaviors of this proposed system. This simulation 

follows exactly the data as listed in Tables 7.1 – 7.6, with focusing on the setting of TV-

B (tension variation with low-pressure NPV has larger volume), and 1000-year return 

period survival condition (1000-H). The base-case in this simulation is the 1000-H case 

with tension variation as per discussed in Subsection 7.3. The MR damper, as proposed 

in Table 7.8, is simulated under (i) passive mode, (ii) semi-active Skyhook control 

(Subsection 4.2), (iii) semi-active fuzzy logic control (Subsection 4.3),  respectively. The 

threshold limit to activate the MR damper is set as -2.0 m (-6.5617 ft) of the tensioner 

ring position.  

 

Table 7.8 Coefficients of MR damper in LSRS-MRD simulation. 
Coefficients 2i  1i  0i  

c  8.5×105 1.44×108 2.0×104 

k  0 1.2×106 6.8×104 

  2.571×104 4.11×104 1.2058×106 

  0 22.05 17.82 

  0 2.6 2.3 
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The tension-stroke curve on the tensioner ring are illustrated in Figs. 7.38 – 7.40.  

The additional tension exerted by the MRD when the riser strokes were below -2.0 m (-

6.5617 ft). The tension exerted by the total HP tensioner cylinders are restrained below 

~12.5 MN (~2810.11 kips) in these three controlled cases. It can be found that the 

passive mode generates unintentional tension while the Skyhook scheme requires larger 

MR damper force than the fuzzy logic scheme.  

The spectrum density of total tension acting on tensioner ring under different 

control schemes is shown in Fig. 7.41. The control schemes are effective in the wave 

frequency (WF) and heave resonance peak region. The time series results of the total 

tension on tensioner ring are shown in Figs. 7.42 - 7.43. 

In a conventional LSRS tensioner system, the high tension is withheld solely by 

the tensioner cylinders when the piston is approaching the cylinder bottom-limit, as 

shown in Fig. 7.37. From the tension-stroke curves in Figs. 7.38 – 7.40, the additions of 

tension exerted by the MRD were acting on the tensioner ring after the threshold values 

had been reached. Since the cylinders of LSRS tensioner are very complex system that 

sensitive to the structure integrity and alignment, very large abrupt tension increment 

(the red dash line) during cushioning is an unfavorable factor to the tensioner cylinders’ 

integrity management. The spikes of tension are exerted by the MRD to replace and/or 

redistribute the spike that need to be generated by tensioner cylinders during the 

cushioning, as shown in Fig. 7.37(c)-(d), to protect the structural integrity of LSRS 

tensioner. The threshold stroke limits can be further determined by the platform designer 

according to the trade-off in between the maximum allowable stroke length and the 
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maximum allowable tension exerted on the tensioner ring. Asymmetric up and down 

stroke can be mitigated by resetting the tensioner nominal position in order to make the 

best use of the tension capacity and it requires careful analysis of the load cases to be 

robust (Bian and Xiang, 2013).  

The total MR damper force output under different control schemes are illustrated 

in Figs. 7.44 – 7.45.  The passive mode requires the largest MR damper output force 

while the fuzzy logic is good in the required output force control. This is an important 

factor during identifying the capacity and size of MR damper that can support in the 

purposed system. This result implies that a relatively smaller scale MR damper with 

fuzzy-logic controller is comparable , in performance, to a larger scale MR damper with 

the Skyhook controller. The command current inputs to MR damper is shown in Fig. 

7.46. The Skyhook control scheme is activated with 0.5 A while the command current by 

fuzzy logic controller is inferred interactively with respect to the displacement and 

velocity of tensioner ring and platform. 
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Figure 7.38 Tension-stroke curve on tensioner ring for passive control. 
 

 

Figure 7.39 Tension-stroke curve on tensioner ring for semi-active Skyhook control.
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Figure 7.40 Tension-stroke curve on tensioner ring for semi-active fuzzy logic control. 
 

 

Figure 7.41 Spectrum density of total tension acting on tensioner ring under different 
control schemes.  
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Figure 7.42 Total tension acting on tensioner ring for (a) uncontrolled base-case, (b) 
passive control mode. 

(a) 

(b) 
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Figure 7.43 Total tension acting on tensioner ring for (a) semi-active Skyhook control 
mode, (b) semi-active fuzzy logic control mode. 

 

(a) 

(b) 
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Figure 7.44 Total MR damper force output under different control schemes. 
 

 

Figure 7.45 Total MR damper force output under different control schemes (from 2000 
sec to 3000 sec).  
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Figure 7.46 Command current inputs to MR damper under different control schemes. 
 

The strokes of TTR after incorporated with MRD protector are shown in 

frequency domain (Fig. 7.47) and time domain (Figs. 7.48 – 7.49) for different control 

scchemes. The MRD responses as a damped and deformed contact (instead of rigid hard 

stopper) in between the tensioner ring and MR dampers so that the tensioner ring was 

allowed to further compress the MR dampers in more gradual form of energy dissipation 

cycles. There is noteworthy that the total required stroke length has been reduced as 

much as 0.963 m (3.16 ft), from 13.342 m (43.77 ft) to 12.379 m (40.61 ft), in the fuzzy 

logic control scheme as tabulated in Table 7.9. In the frequency domain as shown in Fig. 

7.47, the heave displacement for heave resonance period at around 19 sec were reduced 

from ~1.4 m (~4.59 ft) in the base-case to ~1.3 m (~4.27 ft) in by using the MR dampers, 
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while the heave displacement for the wave peak period is remained unchanged at around 

1.0 m (3.28 ft).  

 

 

Figure 7.47 Spectrum density of TTR stroke under different control schemes. 
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Figure 7.48 Stroke of TTR interface in DTS platform in time domain for (a) 
uncontrolled base-case, (b) passive control mode. 

(a) 

(b) 
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Figure 7.49 Stroke of TTR interface in DTS platform in time domain for (a) semi-active 
Skyhook control mode, (b) semi-active fuzzy logic control mode. 
 

(a) 

(b) 



 

295 

Table 7.9 Maximum up-stroke, maximum down-stroke, and required riser stroke length 
under different control schemes 

 PT TV-A TV-B TV-B 

+Passive 

TV-B 

+Skyhook 

TV-B 

+FLC 

M
ax

im
u

m
 

u
p

st
ro

k
e 

7.667 m 

 (25.2 ft) 

6.413 m

 (21.04 ft)

7.257 m

 (23.81 ft)

7.141 m

 (23.43 ft)

7.305 m 

 (23.97 ft) 

7.306 m

 (23.97 ft)

M
ax

im
u

m
 

d
ow

n
 

-5.675 m  

(-18.6 ft) 

-6.464 m

 (-21.21 ft)

-5.345 m

 (-17.54 ft)

-4.563 m 

(-14.97 ft)

-5.058 m 

 (-16.59 ft) 

-5.073 m

 (-16.64 ft)

T
ot

al
 r

eq
u

ir
ed

 

st
ro

k
e 

le
n

gt
h

 13.342 m 

(43.77 ft) 

12.877 m

(42.25 ft)

12.602 m

(41.35 ft)

11.704 m

(38.40 ft)

12.363 m 

(40.56 ft) 

12.379 m

(40.61 ft)

 

The extreme dynamic profiles of TTR, and envelopes of axial tension, bending 

moments, and von-Mises stress for different control schemes are shown in Figs. 7.50 – 

7.52. For the passive control scheme, the von-Mises stress is over the limit (~1.1 

utilization) where the steel grade is Q125. There is noteworthy that the deviations in 

von-Mises stress is affected significantly by the bending moment in the passive control 

case (Poll et al., 2013). According to Poll et al., (2013), in the ram style tensioner, the 

top portion TTR does not rotate relative to the platform in roll and pitch angle because 

the volumetric envelope required to accommodate all possible combinations of stroke 

and angular motion would require too much clear area in the well bay and large spacing 
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between the risers. The only relative motion that must be accommodated by the jumper 

systems and vertical access structures is the vertical motion, hence, significant bending 

moment can be found in specific sections of the TTR that requires for structural 

reinforcement (typically by tapered stress joint forgings) (Poll et al., 2013).  

The semi-active control schemes (Skyhook, and fuzzy logic) are better than the 

passive control in the structural integrity where the von-Mises stresses are within the 

limits (~0.9 utilization for both Skyhook and fuzzy logic schemes). Therefore, a suitable 

semi-active controller is important in the implementation of MR dampers in the LSRS 

tensioner system.  
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Figure 7.50 TTR (Leg #17) interfaced with DTS platform under passive control mode 
for (a) extreme dynamic profiles of TTR, and (b) axial tension, bending moment and 
von-Mises stress. 

(a) 

(b) 
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Figure 7.51 TTR (Leg #17) interfaced with DTS platform under semi-active Skyhook 
control mode for (a) extreme dynamic profiles of TTR, and (b) axial tension, bending 
moment and von-Mises stress. 

(a) 

(b) 
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Figure 7.52 TTR (Leg #17) interfaced with DTS platform under semi-active fuzzy logic 
control mode for (a) extreme dynamic profiles of TTR, and (b) axial tension, bending 
moment and von-Mises stress. 
 

(a) 

(b) 
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The Mathieu stability diagram for the first two modes of the riser is shown in 

Fig. 7.53. The TTR first mode for all the tested control schemes are in the stable zone. 

Nevertheless, the second mode for the uncontrolled case is in the unstable zone if the 

damping ration is less than 0.25. There is noteworthy that the semi-active control 

schemes are able to significant stabilize the second mode by reducing the maximum 

tension variation.  

 

 

Figure 7.53 Mathieu stability analysis of TTR (Leg #17) interfaced with DTS platform 
under different control schemes. 
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The effects on platform global motion under different control schemes are 

studied in Figs. 7.54 – 7.55. The DTS motions in 1000-year return period condition after 

TTR incorporated with MRD protector are shown in frequency domain (Fig. 7.54). In 

this case study, the DTS motions in sway, roll, and yaw directions are very small, with at 

least two-order smaller than the platform motions in surge, heave, and pitch directions. It 

can be found that the motions of DTS are slightly affected by the controlled cases, where 

the amplitude of heave resonance peak is reduced. Besides, there are not apparent 

differences in the high-frequency (HF, low period) region.  

 

 

Figure 7.54 Platform motions in frequency domain under different control schemes. 
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The response amplitude operators (RAO) of DTS platform, under different 

control schemes, in this case study are shown in Fig. 7.55. In the RAO of heave motion, 

the cancellation period DTS is located at ~17.5 sec. The RAO in heave direction is very 

sensitive to the additional tensioner stiffness. The controlled cases slightly reduce the 

second peak of heave RAO. 

 

 

Figure 7.55 RAO of platform motions under different control schemes. 
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From the results of numerical analysis of LSRS-Tensioner with MRD as 

protector, there can be further concluded that: 

(i) when the rigid hard stopper is replaced with a Kelvin-Voigt model, the 

tensioner ring is able to compress the MRD in more gradual form of 

energy dissipation cycles during the tensioner cylinder bottom-out 

motion. A suitable semi-active controller of MRD is crucial to obtain 

optimum stroke length, stress, tension, and stability as required; 

(ii) the ability of MRD to redistribute the high tension in the tensioner 

cylinders during bottom-out can protect the cylinders from excessive 

cushioning and very sheer tension increment, as illustrated in Fig. 7.37, 

which is beneficial to the service life span of LSRS tensioner and the 

operational/maintenance expenditure (OPEX). In the worst-case scenario, 

the replacement of a MRD protector is more effective than 

replace/repair/realign the damaged LSRS tensioner cylinders, with the 

latter can cause significant operation down-time and technical difficulties; 

(iii) a tunable MRD force can optimize and reduce the total stroke length 

needed for the development of DTS (stroke length is reduced 0.963 m 

(3.16 ft) in this case). However, there is noteworthy that this optimization 

is a trade-off in between the riser tension/stress and the piston/tensioner 

ring position and the stress and strength must be checked robustly to be 

within the allowable limits, the total stress is also dominant by the 

bending moment so that the coupled hull-mooring lines-risers analysis 
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must be conducted to comprehensively check the total stress (as in Figs. 

7.51 – 7.52) and the dynamic response stability (as in Fig. 7.53). Any 

reduction of required tensioner length (or draft length) in DTS is able to 

enhance the flexibility of the platform designer in sizing and fabrication of 

the DTS and its LSRS tensioners. For instance, as highlighted by Koos 

(2013), tensioner rods and barrels for a 35 ft (10.67 m) stroke, 6 cylinder, 

and 1000 ton (2204.62 kips) ram tensioner would require ingots nearly 8 

tons (17.64 kips), which put these components at the limit of what can be 

produced at pipe mills. Larger forged tubulars are available in very costly 

with long lead times and the manufacturer need to outsource the 

machining facilities between several shops due to the requirements of 

longer lathes and larger CNC mills, where the transporting is very costly 

(Koos, 2013). 
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8. CONCLUSION AND FUTURE WORK  

 

8.1 Conclusion 

A coupled dynamic analysis tool for magneto-rheological (MR) dampers, 

incorporated with TLP and DTS, was developed to expand the implementation of MR 

dampers in floating offshore platforms. This numerical tool combined with CHARM3D 

was able to analyze the specific characteristic of MR dampers in alternating the force 

exerted into the offshore structural dynamics and interactively changing the structural 

behaviors correspond to various external loadings. Since the implementation of MR 

dampers in offshore platform is currently very limited, and most of them concentrated on 

the fixed platforms, this numerical tool leads to advancement in developing a reliable 

and cost-effective way to protect the offshore floating hydrocarbon production modules 

in unfamiliar harsher environments by incorporating with the MR dampers technologies.  

The differences of TTR behaviors into both TLP and DTS platforms have been 

identified in this research. In the TLP platform, since the heave motion is restrained by 

the high-stiffed tendons, the axial tension variations of TTR are mainly caused by the 

platform set-down motion. On the other hand, the DTS is vulnerable to larger heave 

motion; therefore deeper draft hull and long stroke tensioner are required. The heave 

motions of DTS can potentially amplify the dynamic tension variation in the dry-tree 

interface. Since the TTR is originally designed for the host platform of TLP, the 

developed analysis tools to calculate the TTR tension are available. However, most of 

these tools were primarily used pneumatic-based equation to approximate the tension 
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variations of a hydro-pneumatic (HP) tensioner system, where the viscous fluid frictional 

effects in the HP tensioner system is not considered in the calculation of tension 

variations. The traditional riser tension variations analysis by using parametric 

formulation is only conditionally valid under certain strict limits and potentially 

underestimate the total magnitudes of the tension variations. This phenomenon is 

especially important for the offshore operations where the dynamic axial tension of riser 

must be closely monitored, such as in the offshore drilling operation and excessive 

fatigue loads prevention on the connection points in between the riser and dry-tree 

production system. In this research, a more comprehensive formulation considering the 

hydraulic viscous fluid effects was developed to improve the reliability of TTR dynamic 

tension in the DTS. This new formulation was included into the coupled dynamic 

analysis tool.  

The larger tension variation caused by larger velocity is reasonable for the cases 

of drillship and dry-tree Semi-submersible, where the platform’s heave motion is no 

longer constrained by the high stiffed tendons, and for the cases of instantaneous 

velocity during anti-recoiling and TTR disconnection. The excessive tension variations 

in the TTR tensioner system leads to the necessity of reducing the tension variations by 

using MR damper. The specific characteristics of MR damper in alternating the damping 

forces have great potential to interactively suppress the tension variations corresponding 

to various sea conditions. The Equivalent Force Compensation Control (EFCC) is a 

conceptual scheme studied in TLP to compensate the tension variations in between the 

actual TTR tension and the desired tension by using a combination of MR dampers and 
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force actuators. System integration of MR dampers with the floating platforms is 

beneficial in the structural integrity management and to improve survivability in harsher 

environments. In the simulation case of TLP, the dynamic tension can be suppressed by 

as much as ~94%, where the tension variations reduced from ~18 kips (~80 kN) to less 

than 1 kips (4.45 kN)) by using the EFCC scheme. The reduction of dynamic tension 

variations of riser during offshore operation can be further implemented in the area such 

as to improve the short-term fatigue limits.  

The Mathieu stability of TTR is very sensitive to the pretension of riser, length in 

deep water, and dynamic tension variations. The reduction of dynamic tension variation 

by using EFCC in TLP and semi-active fuzzy logic control scheme in DTS can further 

improve the stability of TTR. The first two vibration modes which have larger 

amplitudes were studied by using the Mathieu stability diagram, which predicts more 

conservative results in the lower modes than the Hill’s equation. This is reasonable for 

the riser to be more stable when it is affected by the hydrodynamic damping in the water. 

However, the first unstable zone is less influenced by the damping coefficient, compared 

to the second unstable region, a very large damping coefficient is needed to change the 

unstable condition on the first unstable zone. Therefore, smaller pretension increases the 

tendency of instability for the TTR. For longer riser length in deep water, very small 

values of the parameters na and nb are potential to trigger the lateral vibration of riser. As 

the riser’s length increases, the operation point in the Mathieu stability diagram tends to 

the region near its origin (where the na and nb are smaller). The dynamic behavior is 

very sensitive to small variations in the parameters na and nb in this low mode region. If 
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the tension variation is larger, the operating point would shift towards the unstable zone. 

Most importantly, the reduction of dynamic tension variation T on the top tension riser 

can move the operating point towards a stable zone. This finding provides an important 

control mechanism to maintain the stability of TTR, even if the lateral damping is low.  

Since tensioner bottom-out is a very critical progress, especially to the structural 

health and integrity, and it has not been considered as one criterion in the experience of 

TLP-TTR applications, the safety prevention on the production modules during survival 

conditions is in critical concern. Interfacing with DTS and long stroke ram-style (LSRS) 

tensioner, the MR damper is able to perform as a Kelvin-Voigt model when the down-

stroke position is lower than the threshold limit in order to provide a damped and 

deformed contact (instead of rigid and hard contact) in between the tensioner ring and 

MR dampers, and to dissipate energy caused by the tensioner cylinder bottom-out 

motion. The MR dampers can redistribute the high tension which originally to be 

withheld solely by the tensioner cylinders during bottom-out by adding the total MR 

dampers’ stiffness and damping forces to the tensioner ring. Therefore, a major part of 

the required tension to be generated by tensioner cylinders can be transferred to the MR 

dampers. The tensioner cylinders can be protected from extreme cushioning and 

excessive tension increment. This is beneficial to the service life span of tensioner and 

the operational/maintenance expenditure (OPEX). 

The total MR damper force output under different control schemes was studied.  

This is an important factor for identifying the capacity and size of MR damper that can 

support in the purposed system. The result implies that a relatively smaller scale MR 
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damper with fuzzy-logic controller is comparable, in performance, to a larger scale MR 

damper with the Skyhook controller. More importantly, MR damper incorporated with 

semi-active fuzzy logic controller can reduce the total required stroke length in DTS 

(stroke length is reduced 0.963 m (3.16 ft) in the study case) which enables the platform 

designer has more flexibility in the sizing of the DTS and LSRS tensioners. This 

optimization is a trade-off in between the riser tension/stress and the piston/tensioner 

ring position.  

 

8.2 Future Work 

One of the important limitations of this study is the consideration of interference 

effects between adjacent TTRs. For instance, the different phase motions of multiple 

TTRs system is worth to be studied in detailed in future and a more advanced central-

type controller is required to monitor the response of each TTR at the same time to 

minimize the vibration caused by mutual-interference of MR dampers output force.  

The development of optimization control and structural health monitoring of the 

MR damper in the DTS and TLP can be promoted using this currently developed tool, in 

this study, by incorporated with the advanced computations in vortex-induced vibration 

(VIV) effects in order to obtain a more accurate lateral parametric resonance scenario of 

the TTR. The accuracy of dynamic tension variations can also be improved by further 

considering the other factors, such as thermal effects of fluid properties in the HP 

tensioner and MR damper.   
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APPENDIX A 

FINITE ELEMENT MODELING OF LINEAR DAMPER CONNECTION 

 (A.0)

In order develop the finite element modeling of a linear damper connection, the 

following relationship are initially defined as,  

Change of displacement ,    1( ) n nn
i i ix x x    (A.1)

Velocity or change of displacement within time interval, 
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Change of velocity , 
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Therefore,  

          1 1 (n)n n n n
i i i i ix x x x x          (A.4)

Then, the damping force on the end node of the line is: 

 D
i i ij j iN D X C r     (A.5)

By using Newton’s method, the damping force is expanded by using Taylor 

series expansion, 
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
 (A.6)

By using Adams-Moulton implicit method, the integration of the connector force 

caused by linear damper yields: 
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Since the damping force at time step 1n  ,  1D n
iN   is function of the unknown 

velocity of the platform at time step 1n  , thus, in order to solve this equation, Adams-

Bashforth explicit method with Taylor series expansion as shown in Eqn. (A.6) is used 

to predict the value of  1D n
iN  . 
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(A.8)

By substituting the definition in Eqn. (A.4), the terms in the right hand side of 

Eqn. (A.8) can be further written as: 
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Therefore, rearranging the right hand side of Eqn. (A.8), the integration of the 

connector force that contributed by linear damper yields: 
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By approximating the time varying ir , j and iX in the time interval 

( 1) ( )n nt t  to be a constant 
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Therefore, in the time domain simulation, the integration of the connector force 

yields: 

For equation ir :
 

 1 1 1 1

2 2 2

n

n

t n n n
D
i ij j

t

i iN dt D X C r
             

     
 

     
  

  (A.15)

For equation iX :
 

 1 1 1 1

2 2 2

n

n

t n n n
D

i ij ji i

t

F dt D X C r
             

     
 

      
  

  (A.16)
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Figure A.1 The integration of MR damper in the direct-acting tensioner (DAT) system.
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APPENDIX B 

THE AVERAGE ACCELERATION METHOD (AAM) 

 (A.0)

The average acceleration method (AAM) (San Andrés, 2008) is an implicit 

method with numerically stable and consistent.  For numerical integration of SDOF 

linear system: 

 MX DX KX F t     (B.1)

Let:  i iX X t ,  1 1i iX X t  ,   i iF F t ,   1 1i iF F t   (B.2)

Write Eqn. (B.1) at time step: 

it t :   i i i iMX DX KX F t     (B.3)

1it t  :   1 1 1 1i i i iMX DX KX F t        (B.4)

Subtract Eqn. (B.4) from Eqn. (B.3) to obtain: 

 i i i iM X D X K X F t         (B.5)

where, 

1i i iX X X   ; 1i i iX X X     ; 

1i i iX X X     ; 1i i iF F F    (B.6)

Note that the known quantities at it t are , ,i i iX X X  . Assuming the 

acceleration is constant within the time interval 1i i it t t   , 

  iX a   for 0 it    (B.7)
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then, set an average value  1

1

2i i ia X X   . Therefore, the velocity and displacement 

follow from integration within the time interval are shown as in Fig. B.1: 

  i iX X a     (B.8)

  21

2i i iX X X a      (B.9)

 

 

Figure B.1 Schematic representation of the average acceleration (AAM) method (San 
Andrés, 2008). 
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At the end of the time interval, the velocity and displacement are: 

 1i i i i iX X t X a t         (B.10)

   2

1
1

2i i i i i i iX X t X X t a t         (B.11)

and the differences in velocity and displacement are: 

     

 

1 1 1

1 1
2

2 2
1

2
2

i i i i i i i i i i i i

i i i

X X X a t X X t X X X t

X X t

             

   

       

 
 

(B.12)

       

   

2 2

1 1

2

1 1

2 4
1

2
4

i i i i i i i i i i i i i i

i i i i i

X X X X t a t X t t X X X X

X t t X X

              

     

     

  
 

(B.13)

From Eqn. (B.13),  2

4
2i i i i i

i

X X X X t
t

      


    (B.14)

and into Eqn. (B.12): 

   2

1 1 4
2 2 2

2 2

2
2

i i i i i i i i i i
i

i i
i

X X X t X X X X t t
t

X X
t

 
             

  


     



 

(B.15)

Note that in Eqns. (B.14) and (B.15),  ,i iX X   depend on the known values 

obtained at the prior time step, i.e.  ,i iX X  and the unknown iX . Thus, replace 

 ,i iX X   into the Eqn. (B.5), 

 2

4 2
2 2i i i i i i i i

i i

M X X X t D X X K X F
t t

   
                  

    (B.16)
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Rearrange terms leads to: 

ˆ ˆ
i i iK X F    (B.17)

where, 
2

2 4ˆ
i

i i

K K D M
t t

 
     

 (B.18)

4ˆ 2 2i i i i
i

F F MX D M X
t

 
       

   (B.19)

The ˆ
iK  and îF are known as pseudo dynamic stiffness and dynamic force 

respectively. The algorithm for the numerical integration to find the system time 

response is: 

(i) At time it , known variables for current state are  ,i iX X , find from 

equation of motion:  1
i i i iX M F DX KX    ; 

(ii) Form pseudo stiffness and forcing functions,  ˆ ˆ,i iK F from Eqns. (B.18) 

and (B.19); 

(iii) Calculate   1ˆ ˆ
i i iX K F


   , and 

2
2i i i

i

X X X
t

   


  ; 

(iv) Substitute  1i i iX X X     and  1i i iX X X       at 1it   

(v) Increase time to 2it  and return to step (i).  

For numerical integration of SDOF nonlinear system, consider the system with 

equation of motion, 

   ,MX g X X F t    (B.20)
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where  ,g X X is a nonlinear function, for example: 

   3
3, sgno og X X g k X k X F X      (B.21)

As with the linear system, evaluate Eqn. (B.20) at two times (closely spaced): 

it t :   ,i i i iMX g X X F    (B.22)

1it t  :   1 1 1 1,i i i iMX g X X F       (B.23)

Subtract Eqn. (B.23) from Eqn. (B.22) to obtain: 

1i i i iM X g g F      (B.24)

where 

1i i iX X X     ,  1i i iF F F   ,  ,i i ig g X X  ,

  1 1 1,i i ig g X X     
(B.25)

A Taylor series expansion of the nonlinear function at it t gives 

 2 2
1

, 0

,
i i

i i i i i i
X X X

g g
g g X X O X X

X X


 
       

  

 


 (B.26)

Define local linearized stiffness and damping coefficients as 

,i i

i
X X

g
K

X



 

 (B.27)

,i i

i
X X

g
D

X



 


 (B.28)

Hence, 1i i i i i ig g K X D X        (B.29)

and the difference Eqn. (B.24) becomes linearized; 
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1i i i i

i i i i i i

M X g g F

M X D X K X F

    

      



 
 

(B.30)

The Eqns. (B.27) and (B.28) are formally identical to the one devised for a linear 

system. Thus, the numerical treatment is similar, except that at each time step, linearized 

stiffness and damping coefficients need be calculated. The algorithm for the numerical 

integration to find the system time response is: 

(i) At time it , known variables for current state are  ,i iX X , find from 

equation of motion:  1 ,i i i iX M F g X X    
  ; 

(ii) Find local (linearized) stiffness and damping coefficients, 
,i i

i
X X

g
K

X



 

 

and 
,i i

i
X X

g
D

X



 


; 

(iii) Form pseudo stiffness and forcing functions,  ˆ ˆ,i iK F from Eqns. (B.18) 

and (B.19); 

(iv) Calculate   1ˆ ˆ
i i iX K F


   , and 

2
2i i i

i

X X X
t

   


  ; 

(v) Substitute  1i i iX X X     and  1i i iX X X       at 1it   

(vi) Increase time to 2it  and return to step (i). 

On the other hand, for the equation of motion for a nonlinear multi-DOF system: 

(t) ( )NL t MU F F  (B.31)
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where  
(t)NL NLf , ,F U U U  is a nonlinear function of , ,U U U  (the vectors of generalized 

displacement, velocity, and acceleration).  

it t :  
(t) ( )t NL t MU F F  (B.32)

1it t t t    :  
(t t) ( )t t NL t t  MU F F  (B.33)

Subtract Eqn. (B.33) from Eqn. (B.32) to obtain: 

(t) ( )t NL t    M U F F  (B.34)

Let,  

(t) (t t) (t)NL NL NL

NL NL NL
t t t

t t t


  

       
                 

F F F

F F F
U U U

U U U
 

 

 

(B.35)

where  

 t t t t  U U U   ,   t t t t  U U U   ,   t t t t  U U U  (B.36)

and define the following matrices, evaluated at each time step, 

NL
t

t

 
   

F
K

U
;  NL

t

t

 
   

F
D

U
;  NL

t

t

 
   

F
M

U
 (B.37)

These matrices represent linearized stiffness, viscous damping, and inertia 

coefficients. The difference Eqn. (B.34) becomes, 

 
(t)t NL t

t t t t t t t

    

     

M U F F

M + M U D U + K U F



 
 

(B.38)

The solution of this algebraic equation proceeds in the same form as for the S-

DOF system.   
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APPENDIX C 

ADIABATIC PROCESS OF IDEAL GAS IN PRESSURE VESSEL / HYDRO-

PNEUMATIC TENSIONER 

 (A.0)

From the first law of thermodynamics: 

dU dQ dW   (C.1)

The pressure-volume work done dW by the system is defined as: 

dW P dV   (C.2)

The internal energy of a gas is a state variable, and hence is a function of 

temperature. This allows us to state that: 

VdU nC dT  (C.3)

For an adiabatic process, no heat is added ( 0dQ  ). Note that this does not mean 

that 0dT  ; in fact, for an adiabatic process, none of the intensive quantities ( , ,P T V n ) 

will be constant (Watkins, 2003). Therefore, substituting Eqns. (C.2) and (C.3) into the 

Eqn. (C.1): 

VnC dT PdV   (C.4)

From the Ideal Gas Law, PV nRT , differentiating this equation and we can 

obtain: 

VdP PdV nRdT   (C.5)

 1
dT VdP PdV

nR
   (C.6)

Upon the substitution of Eqn. (C.6) into Eqn. (C.4),  
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 VC VdP PdV RPdV    (C.7)

V

R
VdP PdV PdV

C
    (C.8)

From ideal gas law for a constant pressure process, we obtain the relation of

P VC C R  , substituting it into Eqn. (C.8) and hence: 

P V

V

C C
VdP PdV PdV

C


    (C.9)

The Eqn. (C.9) is divided by PV ; 

P V

V

C CdP dV dV

P V C V


    (C.10)

1 0P V

V

C C dV dP

C V P

 
   

 
 (C.11)

0P

V

C dV dP

C V P

 
  

 
 (C.12)

Let P VC C  is defined as the heat capacity ratio; the Eqn. (C.12) can be 

rearranged as: 

0
dV dP

V P
    (C.13)

Integrating Eqn. (C.13) to obtain: 

   ln lnV P C    (C.14)

Hence, rearranging Eqn. (C.14) and the equation to relate the pressure and 

volume for an adiabatic process is: 
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PV C   (C.15)

For the variation of pressure and volume during the adiabatic process, the Eqn. 

(C.15) can be further written as: 

0 0 1 1P V P V C      (C.16)

Let 1 0P P P    and 1 0V V V  during the compression of gas volume which 

increase the system pressure; 

1 1

0 0

P V

P V


 

  
 

 (C.17)

0 0

0 0

P P V V

P V


   

  
 

 (C.18)

0 0

1 1
P V

P V


  

   
 

 (C.19)

0 0

1 1
P V

P V


  

   
 

 (C.20)

 0

0

1
1

1
P P

V V


 
   
   

 (C.21)

Therefore, the pressure variation in the gas tank / pressure vessel can be 

expressed as: 

 0

0

1
1

1
A A

A A

P P
V V



 
   
    

 (C.22)
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In the industrial practice, this adiabatic equation is further utilized in order to 

determine the tension exerted by the hydro-pneumatic tensioner, in which the pressure is 

expressed as P T A : 

0 0

0 0

P P V V

P V


   

  
 

 (C.23)

0 0

0 0

T A T A V V

T A V


   

  
 

 (C.24)

Since the cross-sectional area in the tensioner cylinder is constant, therefore, 

0 0

0 0

T T z z

T z


   

  
 

 (C.25)

0 0
0

1
z

T T T
z


 

    
 

 (C.26)

0
0

1
z

T T
z


 

  
 

 (C.27)

 




