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ABSTRACT

Aggregate association analysis is a popular way in genome-wide association stud-

ies (GWAS) that analyzes the association between the trait of interest and regions

of functionally related genes, which has the advantage of capturing the missing her-

itability from the joint effects of correlated genetic variants while providing a better

understanding of disease etiology from a systematic perspective. However, tradi-

tional methods lose their power for biomedical data with non-Gaussian data types.

We proposed innovative statistical models to derive more accurate aggregated signals

to enhance the power by taking account of the special data types. Based on general

exponential family distribution assumptions, we developed supervised logistic PCA

and supervised categorical PCA for pathway based GWAS and rare variant analysis.

A general framework, sparse exponential family PCA (SePCA), is further developed

for aggregate analyses for various types of biomedical data with good interpreta-

tion. We derived an efficient algorithm to find the optimal aggregated signals by

solving its equivalent dual problem with closed-form updating rules. SePCA is ex-

tended for aggregate association analysis in hierarchical levels for better biological

interpretation, from groups to individual variables. Both simulation studies and real

world applications have demonstrated that our methods can achieve higher power

in association analysis and population stratification by taking good care of the cor-

relations among the non-Gaussian variables in biomedical data. Another analytic

issue in aggregate analysis is that biomedical data often have special stratified data

structures due to the experiment design to solve confounding issues. We extended

SePCA to low-rank and full-rank matched models to take account of the stratified

data structures. The simulation study has demonstrated their capability of recon-
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structing more relevant PCs for the signals of interest compared to standard ePCA.

A sparse low-rank matched PCA model outperforms the existing Bayesian methods

in detecting differentially expressed genes for a benchmark spike-in gene study with

technical replicates. In summary, our proposed statistical models for non-Gaussian

biomedical data can derive more accurate and robust aggregated signals that help

reveal underlying biological principles of human disease. Other than bioinformat-

ics, these probabilistic models also have rich applications in data mining, computer

vision, and social science areas.
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1. INTRODUCTION

1.1 Motivation

One critical challenge in biomedicine is to understand the association between

genotypes and phenotypes. For example, genome-wide association studies (GWAS)

aim to detect the association between genetic variants and traits of interest like

disease phenotypes. They have been very successful in identification of suscepti-

bility loci through single-marker-based tests of the association of each individual

single nucleotide polymorphisms (SNP) marker with diseases [54]. Limited by small

sample size, however, the detected common variants at these loci have been found

with individually only modest effects [10] that can only explain a small portion of

the heritability of complex diseases. Several possible explanations for the missing

heritability could be: 1) the sample size is very small which could cause the ir-

reproducibility of the detected SNPs [33, 30] and it is even worse for those with

weak effects; 2) the effect size may be underestimated due to incomplete disequilib-

rium between the causal genetic variants and the genotyped SNP markers; 3) the

effects from rare variants are usually ignored due to the low minor allele frequency;

4) these suspected SNPs with weak effects may cooperatively work together with

strong joint effects. The last explanation is considered from a systematic genetics

prospective which prompts the development of new analytic approaches to unravel

the relationships and interactions among groups of genetic variants underlying the

complex diseases based on annotations and prior knowledge of functionalities of gene

networks. Aggregate association analysis is a popular way to achieve these goals by

analyzing the statistical significance of functional regions (e.g. pathways and net-

works) that are composed of multiple functionally related genes. It will not only
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play a role in explaining the remaining heritability that GWAS fail to explore, but

also provide a good understanding on which gene has significant association, what is

the biological mechanism, and how they interact with each other from a systematic

perspective. Moreover, aggregate association analysis could also enhance the power

of rare variant analysis to address the issue in the third explanation for the missing

heritability.

To estimate the statistical significance for the joint effects from multiple SNPs in

a functional region, testing the combined signals representing the functional region

is an appealing approach in aggregate association analysis due to its ability to take

account of correlations among SNPs and the low degree of freedom of the test statis-

tic. The major concern in this approach is how to summarize the optimal combined

signals for a set of SNPs. Principal component analysis (PCA) is an attempting ap-

proach which has been applied for deriving combined signals [11, 4]. However, it may

lose power in aggregating SNP data or other genomic data which have special data

types or sometimes even has complex data structure determined by the experimental

design.

1.2 Problem statement

This thesis proposes several probabilistic models to derive combined signals that

are able to take account of the non-Gaussian data types or stratified data structures

in biomedical data, with the aim to enhance the power of aggregate association

analysis in the applications to pathway based analyses, rare variant analyses, and

matched case-control studies. To take care of the special data types, we develop a new

general dimension reduction method with the capability of variable selection, sparse

exponential family PCA (SePCA), suitable for any data following exponential family

distributions, including SNP data. PCA is usually suitable for dimension reduction

2



of continuous data by making Gaussian assumption of the data distribution, which is

however not an appropriate assumption for recently emerging big omics data, such as

SNP data containing categorical values. This motivates us to derive the aggregated

signals by SePCA to handle mixed types of biomedical data more appropriately. As

opposed to exponential family PCA (ePCA), it allows for variable selection during

dimension reduction, which provides a better understanding of the results and helps

focus on the informative variables, especially for high dimensional non-Gaussian

data. SePCA has wide applications in data mining, image processing and social

science other than bioinformatics.

SePCA method treats the dimension reduction as a maximum likelihood prob-

lem where the data likelihood is derived based on exponential family distributions

in which the canonical parameters are further approximated by a latent variable de-

composition. Instead of directly solving the primal problem which is a non-convex

problem with orthogonal constraints and suffers from many local optima, we pro-

pose an efficient algorithm to find the optimal solutions by solving its equivalent dual

problem via alternate updating with closed-form update rules. Our algorithm is more

scalable to high-dimensional data due to its efficiency compared to the existing meth-

ods handling non-Gaussian data. In addition, SePCA can also be easily extended for

aggregate association analysis by involving outcome information to build an integrate

model, named as supervised SePCA, to study the joint effects from an optimal subset

of predictors. The dual transformation can also be applied to solve this optimization

problem due to the similar form of objective functions in general linear models and

ePCA. Supervised SePCA allows for association analysis in hierarchical levels, from

groups to individual variables, in an integrate framework that takes good care of the

correlations among variables.

For the second issue arise in deriving aggregated signals, biomedical data often
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have special data structures, which are determined in the design stage of studies

to address confounding issues. Basically, they are stratified data matched on the

confounding factors, which requires more complex approaches to perform the usual

analyses such as dimension reduction and regression analysis. Directly applying stan-

dard PCA/ePCA on matched data could result in biased PCs whose variance are

dominated by their confounding factors, which motivates us to derive exponential

family matched PCA methods to adjust the biased PCs by eliminating the confound-

ing effects. We propose low-rank and full rank models to derive unbiased PCs by

explicitly modeling and estimating the confounding effects with the low-dimensional

projections. Similar strategies in solving ePCA problem can also be applied here to

find optimal solutions. The exponential family matched PCA methods are exempt

from tedious steps to choose parameters that are usually concerns for the Bayesian

methods. They are quite general to be applied in many areas that have demands in

dimension reduction on stratified data.

1.3 Organization

The rest of the thesis is organized as follows.

In section 2, we review two categories of existing methods for aggregate associ-

ation analysis for GWAS. The advantages and disadvantages for these methods are

discussed, which suggests that testing combined signals is a promising approach for

aggregate association analysis.

In section 3, we propose SePCA method and develop an efficient algorithm to

solve a dual problem of the primal optimization problem. The results from both sim-

ulation experiments and real-world applications have demonstrated the superiority

of our sparse exponential family PCA in reconstruction accuracy and computational

efficiency over a previous sparse PCA and a previous sparse logistic PCA algorithm.

4



In section 4, we focus on studying the applications of two cases of SePCA: logistic

PCA and categorical PCA in aggregate association analysis of SNP data represented

by two different forms. In both studies, the generalized PCs are regarded as the

combined signals, and are further refined in a supervised framework to achieve the

highest power for association analysis. The superiority of logistic PCA and categori-

cal PCA for aggregate association analysis are demonstrated by both the simulation

study of pathway based GWAS and real world application in detecting significantly

associated pathways for Crohn’s disease.

In section 5, we investigate the performance of logistic PCA in aggregate associa-

tion analysis of rare variants. The performance is assessed via both simulation study

and GAW17 study which have demonstrated that LPCA could extract more accu-

rate combined signals leading to higher power in detecting associated rare variants,

in comparison of other collapsing methods.

In section 6, we propose exponential family matched PCA methods to derive

aggregated signals for matched SNP data and gene expression data with technical

replicates. Our low-rank and full-rank models could lead to more accurate recon-

struction of PC loadings compared to standard PCA/LPCA when applied on sim-

ulated matched Gaussian/binary data sets. A sparse version of low-rank matched

PCA is also proposed and applied for detecting differentially expressed genes for a

benchmark microarray data with technical replicates. Our method could detect all

the spike-in genes in the benchmark data, which however could not be achieved by

a previous Bayesian method.

In section 7, we conclude the thesis by summarizing the major contributions of

the thesis and listing the directions for future work.
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2. LITERATURE REVIEW

2.1 Genome-wide association study

Genome-Wide Association Study (GWAS) has been one of main critical efforts

to address genotype-phenotype association powered by next-generation sequencing

profiling techniques. Whole genome single nucleotide polymorphisms (SNPs) in dif-

ferent individuals can be examined to see if any genetic variant is associated with

a trait of interest. Traditional GWAS mainly focus on single-locus based analysis

concerning individual SNPs, which has successfully detected many susceptible SNPs

that however explains only a small portion of the heritability of diseases. Those miss-

ing heritability could come from rare variants or a set of SNPs with small individual

effects but having strong joint effects or interactions with genetic or environmental

factors [53].

Many alternative or complementary approaches have been proposed in recent

decades to deal with these limitations of single-marker-based analysis. For example,

genotype imputation is used to boost the number of SNPs tested for association in

order to increase the power of GWA studies, the ability to fine-map causal variant

and facilitate meta-analysis [55]. Multi-locus analysis methods are also proposed to

simultaneously test multiple SNPs belonging to a functional region. They perform

statistical tests such as multivariate regressions on their individual main effects as

well as interaction effects among them to extract maximum information about link-

age disequilibrium (LD) [81]. Although they are more informative, these methods

will lose their power when LD in the region are weak or a single marker takes the

main portion of the effect. As human genetic variations are structured into haplo-

types, haplotype-based and its relevant methods have been developed to assess the
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relationship between the trait of interest and multiple markers through an overall

test of association across haplotypes [13, 68, 67]. However, it may lose power as

extremely large number of degrees of freedom are involved in these haplotype-based

methods. The ideal method for joint association tests of multiple SNPs is to generate

the best combination across all the SNPs while reducing the number of degrees of

freedom.

2.2 Aggregate analysis in GWAS

The aggregate analysis of SNPs in GWAS aims to analyze the association of the

trait of interest with the joint effects of multiple SNPs from functional regions such

as genes, pathways and molecular networks. Some popular gene-based association

tests alternatively examine whether a genomic region is associated with the trait of

interest using either a combined signal or a combined test statistic based on multi-

ple SNP markers within a gene [44, 24, 81, 88, 40, 80, 46]. Similarly, pathway-based

methods examine whether there is significant association between the trait of interest

and a pathway composed of a group of related genes defined by some gene annotation

database. These methods have been increasingly popular by analyzing cellular path-

ways which are often involved in disease susceptibility and disease progression [66].

By integrating prior biological knowledge, pathway-based analysis could enhance the

detection rate of SNPs that are truly associated with disease but have only weak

individual effects. Pathway-based analysis offers an appealing alternative to improve

the power of standard GWAS and unravel the biological process underlying complex

diseases.

There are two general categories of methods for pathway based GWAS: (1) cal-

culate a summary statistic for each pathway based on the individual test statistics of

SNPs and then test the summary statistic. (2) derive combined signals for each path-
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way using SNP data and then test the association between these combined signals

and the trait of interest. Determining an accurate aggregated statistic or a combined

signal for a given set of SNPs is crucial in pathway-based analysis. In other words,

the way to aggregate SNPs could determine the detection rate of truly associated

SNPs with weak individual effects.

2.2.1 Testing a summary statistic

After mapping SNPs to those genes in prior curated pathways, it comes the

primary part of pathway analysis, which is aggregating the effects of the individual

SNPs or genes in a pathway. Given the individual statistical significance of each SNP

or gene in a pathway, Fisher’s combination is a simple way to combine p-values of all

SNPs or genes into a summary statistic determining the gene-wise or pathway-wise

significance. Denoting p-values for k individual SNPs or genes by pi, the summary

test statistic is t = −2
∑k
i=1 log(pi) under the assumption that all the p-values pi are

independent and uniformly distributed under their null hypotheses. The statistical

significance of a gene or pathway can then be represented by a p-value obtained

by testing the summary statistic t, which follows a χ2
2k distribution. With p-values

of individual SNPs as the input, this method can directly work on the preliminary

results obtained from GWAS with an advantage of largely reduced storage space

and computational time. However, the independence assumption may be violated

because of LD among SNPs or correlations among genes.

Set association is a simple alternative approach to summarize the individual sta-

tistical significance of SNPs by involving the correlation between a SNP and its

neighbor gene. For each SNP, its test statistic is calculated by a product of χ2
Assoc

and χ2
HWE. The first item is the standard Chi-square statistic obtained from a con-

tingency table to compare the genotype frequencies between cases and controls. The
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second item represents the Chi-square statistic for Hardy-Weinberg disequilibrium

which measures the closeness between a SNP and a gene. The p-value of each gene

or each pathway is evaluated by testing the sum of an optimal number of largest

test statistics of SNPs mapping to it. In addition, three alternative test statistics are

proposed by Luo to combine dependent p-values in consideration of their correlations

by performing linear combination test, quadratic test and decorrelation test [51].

Several popular pathway-based methods for GWAS are extended from pathway

based approaches for gene expression analysis of microarray data with continuous

values in gene levels. The difference between GWAS and gene expression analysis

is that the object in gene expression analysis is a gene instead of a SNP. To extend

pathway-based approaches for gene expression analysis to GWAS, a step to calculate

a test statistic or significance score for a gene is desirable for pathway-based GWAS.

As we mentioned, Fisher’s method is a feasible way to calculate p value for a gene

based on the p-values of SNPs belonging to it. In addition to the violence of inde-

pendent assumption, another problem facing it is the bias of gene size. Gene-wise

significance has preference for larger genes with greater number of SNPs because

they tend to have more associated SNPs by chance alone. The bias on gene and

pathway size has been a non-ignorable problem that most researchers care about

in pathway based GWAS. The most frequent approach to solve this limitation is

selecting the SNP with most significant association in each gene to represent the

gene. It could remove bias in some extent, however this is not optimal as the joint

effect from multiple SNPs is ignored. Several alternative approaches are proposed

including correcting for LD among SNPs [31], taking the most significant multiple

testing-adjusted p-value as the significance score for a gene [90]. Wang uses the max-

imum test statistic of SNPs near a gene to represent the significance of the gene with

adjustment of multiple testing.
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Fisher’s exact test for pathway based gene expression analysis examines if a path-

way is enriched by significant genes based on a list of significant genes across all path-

ways. Genes with p-value less than a specific significance threshold (e.g. 0.05) are

claimed as significant genes. Fisher’s exact test could be extended for pathway-based

GWAS by calculating the p-values for all genes using the approaches mentioned in

the above paragraph. Denoting the total number of genes of interest by N , the

number of genes significantly associated with the disease (p-value≤ 0.05) by S and

the number of genes in a given pathway by m, if there are k significantly associated

genes in the pathway, the p-value of observing k-significant genes in the pathway is

calculated by

p = 1−
k∑
i=0

(
S
i

)(
N−S
m−i

)
(
N
m

) .

One limitation of this method is the ad hoc significance threshold for genes.

Gene Set Enrichment Analysis (GSEA) is another popular method for pathway-

based gene expression analysis and could be further extended for pathway-based

GWAS. To test the association significance for a pathway, given a rank list of genes

based on their statistical significance, GSEA examines whether the members of a

pathway are randomly distributed throughout the rank list or primarily found at the

top or bottom [73]. Compared with Fisher’s exact test, this method takes use of all

genes across all pathways instead of certain number of significant genes contingent

on an ad hoc threshold. Wang extends GSEA for pathway based GWAS using the

maximum test statistic of SNPs near a gene to represent the statistical significance

of the gene [80]. For each SNP, its test statistic could be chosen as the χ2 statistic

calculated by Cochran-Armitage trend test. This method follows the same procedure

in GSEA for gene expression analysis except small modification on pathway size
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adjustment. GSEA compares test statistics of genes in a given pathway with test

statistics for genes in other pathways by calculating an enrichment score (ES) based

on a weighted Kolmogorov-Smirnov running sum statistic. Given a list L of all

N genes, L = {g1, ..., gN}, ranked by their statistical significance {r1, ..., rN} from

largest to smallest, the ES for a given pathway S is calculated by

ES(S) = max
1≤i≤N

{ ∑
gj∈S
j≤i

|rj|q

NR

−
∑
gj /∈S
j≤i

1

N − |S|
}
,

where NR =
∑
gj∈S |rj|q, q is a parameter that gives higher weights for genes with

larger absolute statistic values, and |S| denotes the number of genes in S. The

significance of each pathway is obtained by testing their ES respectively based on

an empirical phenotype-permutation test. q is set to 1 by the author and when q is

set to 0, ES reduces to standard Kolmogorov-Smirnov statistic with no weight for

each gene. Specifically, the null distribution of ES for each pathway is estimated by

recalculating the ES based on permuted phenotypes. To account for pathway size

effect and adjust for multiple hypothesis testing, ES are normalized for each pathway

and the proportion of false positives are controlled by calculating false discovery rate

(FDR) corresponding to each normalized ES. Another alternative approach to extend

GSEA named as GSEA-SNP includes two main steps: (1) use several representative

SNPs determined by an adaptive truncated product statistic to represent each gene

in a pathway; (2) extend standard GSEA by testing if the set of representative SNPs

from a particular pathway is significantly enriched with high ranks using a weighted

Kolmogorov-Smirnov test [83]. This approach corrects for the gene size by selecting

multiple SNPs as representatives for each gene and performs GSEA directly on a set

of representative SNPs without calculating gene-wise statistical significance.
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2.2.2 Testing combined signals

Unlike those approaches extended from gene set enrichment analysis where one

examines whether significant genes are overrepresented in a pathway under study,

another category of approaches for pathway based GWAS focus on testing the joint

effect from multiple SNPs within genes and/or multiple genes within pathways. They

derive combined signals to represent a set of SNPs or genes and then test the associ-

ation between them and the trait of interest. These methods are getting increasing

attention in recent several years in set association studies with a focus on analysis of

the association between the trait and the dimension-reduced variables. Their power

of identifying associated SNPs is claimed to be higher with no worry about correction

criteria in multiple single-variate tests or high degrees of freedom in multivariate test,

especially when the multiple SNPs in a gene or pathway have weak individual ef-

fects. To generate low-dimensional variables for SNP data in high dimension, existing

statistical methods can be categorized into two broad categories.

2.2.2.1 Nonlinear models to generate combined signal

The first direction involves kernel-machine based approaches that combine all the

SNPs in a pathway or gene together based on a user-specific kernel function which

measures the similarity between individuals [40]. In this flexible framework, the

comparison of multiple SNPs are reduced into a scalar by different kernel functions.

Basically, these methods try to measure the similarity over multiple SNPs for all

pairs of subjects and compare the pairwise genetic similarity with the pairwise trait

similarity. Test statistics are thus derived based on these kernel functions or similarity

scores typically leading to small degrees of freedom.

A simple kernel-based approach for case-control study proposed by Schaid et.al [69].

tests a Zglobal statistic with only one degree of freedom developed using U statistics
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based on similarity scores defined by a simple kernel. Consider a subject group l of

n subjects where the genotype of a subject i at k-SNP is denoted by gik. The U

statistic for a specific SNP k is defined as an average similarity scores across all pairs

of subjects, represented by

Ūk
l =

∑
i<j hl(gik, gjk)(

n
2

) ,

where h(gik, gjk) represents the similarity score between subject i and j at SNP

k and l denotes the group they belong to. The overall similarity between these

two subjects can be achieved by weighted summing up Uk over all SNPs, which

corresponds exactly to a kernel function h(gi, gj) =
∑K
k=1wkh(gik, gjk). Let Ū1 and

Ū2 be the vectors of U -statistics for all markers for the case and control groups

respectively. The test statistic is defined as Zglobal = w′(Ū1−Ū2)√
w′V0w

where V0 denotes

the variance-covariance matrix. Its distribution can be approximated by a normal

distribution. However, with this method, the direction of the genotype score at each

SNP affects the test power and the trait is limited to dichotomous phenotype.

Another approach for testing high-dimensional data is multivariate distance ma-

trix regression (MDMR) [84], which evaluates the relationship between variation of

genomic dissimilarity (distance) among a set of individuals and the variation of their

trait values. An F statistic with a reduced degree of freedom is constructed to

test the association by involving a matrix of genomic similarity among individuals.

The distance matrix D can be calculated as D = 11′ − S where S is the similar-

ity matrix which can be calculated by several ways [58]. Let A = (aij) = (−1
2
d2
ij)

where dij is the (i, j)-th element in D and X be the matrix of phenotype vari-

ables. Given H = X(X ′X)−1X ′ and a centralized matrix of A represented by
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G = (I − 1
n
11′)A(I − 1

n
11′), the F statistic is given by

F =
tr(HGH)

tr[(I −H)G(I −H)]
.

This statistic can be used for testing both continuous and discrete traits, but it might

lead to lower power for a set of independent SNPs.

The kernel-based association test (KBAT) [58] was claimed to be able to handle

correlated SNPs without assumption on the direction of individual SNP effects. This

test uses an analysis of variance paradigm to compare the variation between cases

and controls with the variation within groups. This test is also developed based on

the similarities between individuals. The similarity scores are then considered as the

observations for the ANOVA model. Let ykl(ij) denotes the similarity score between

individuals i and j in group l at SNP k. It can be modeled using one-way ANOVA

as follows:

ykl(ij) = µk + αkl + εkl(ij), i < j = 1, ..., nl; l = 1, 2.

Here µ denotes the general effect for pairs of individuals, αkl is the group specific

treatment effect, and εl(ij) are the error components. The null hypothesis for testing

the association is H0 : αk1 = αk2. The authors also compared their method with

Zglobal and MDMR by performing simulation studies and have found KBAT have

more power.

Other existing kernel machine based approaches [88, 40, 46] apply kernel functions

into a linear or logistic regression framework for quantitative analysis and discrim-

inant analysis. Given a data set of n subjects, yi is a continuous trait following

a normal distribution in regression framework or a dichotomous outcome following
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Bernoulli distribution, xi is a vector of p clinical covariates and gi is a vector of geno-

types of K SNPs in a pathway or gene. For continuous trait, the linear regression

model on outcome yi is:

yi = xTi β + h(gi) + ei,

For dichotomous trait, the logistic regression model on outcome yi is:

logitP (yi = 1) = xTi β + h(gi) + ei,

where β is a p × 1 vector of regression coefficients, h(gi) is an unknown centered

smooth function, and the error ei is assumed to be independent and follows a normal

distribution N(0, σ2). The pathway effect is modeled by a nonparametric function

h(.) assumed belonging to the function space generated by a kernel function K(., .).

By maximizing a penalized likelihood function based on the above model, h(.) is

generally estimated as
∑n
i=1 αiK(., gi) by the Representer theorem (Kimeldorf and

Wahba, 1970) where αi are unknown parameters need to be estimated. A challenging

thing here is the choice of kernel function. A simple example is the identical by state

(IBS) kernel, defined as the count of matched alleles between two subjects which has

the form

K(gi, gj) =

∑K
k=1 wkIBS(gik, gjk)∑K

k=1wk
,

where wk are weights for SNPs which can be determined by involving prior infor-

mation. One can find the discussion of more choices of kernel functions from [69].

These kernel-based regression models are further shown to have a connection with

linear mixed model or logistic mixed model by fitting which the pathway effect can be
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easily estimated using existing statistical softwares [46]. Another advantage of ker-

nel machine based approaches is the ability to model the nonlinear effects of SNPs

while taking their interactions and correlations into consideration [18, 8]. These

kernel based methods provide either non-parametric or semi-parametric models for

pathway based association analysis.

2.2.2.2 Linear models to generate combined signal

In addition to nonlinear modeling of SNP effects, dimension reduction methods

based on linear operators or linear combinations of SNPs including weighted summa-

tion, Fourier transformation (FT) and principle component analysis (PCA) have been

also proposed for GWAS. By involving LD information from external databases, as-

sociation tests by combining optimally weighted markers (ATOM) within a genomic

region calculates a weighted summation of them with the optimal weights estimated

by borrowing strength of LD [44]. Another dimension reduction approach [] involves

Fourier transformation to transform the genotypes into low-dimensional frequency

components with a larger weight for the component with lower frequency which con-

tains more information. The global test statistic is calculated based on the weighted

score statistics of the FT components and is proved following an asymptotic standard

normal distribution as in Schaid’s work [69]. The score statistic of a FT component

xk is defined as Uk =
∑n
i=1 Yi(xik− x̄k) where Yi and x̄k denote the trait for subject i

and the sample mean of the FT component xk. The weight for k-th FT component

is assigned as [1/(k + 1)]2.

Rather than including external knowledge or ad hoc weights, principle component

analysis (PCA) [24] provides simple optimal linear combinations of multiple SNPs,

which could capture their variation as much as possible while reducing the dimension-

ality. The obtained principal components which are the optimal linear combinations
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can be further used as the linear predictors in linear or logistic regression model

to analyze the association of a set of SNPs with the trait of interest. Typically,

people focus on the first principle component which contains the most variation of

the SNP data and regard it as the combined signal in the joint effect analysis. By

performing linear or logistic regressions on a combined signal of multiple SNPs with

continuous or dichotomous trait as the outcome, the joint effect of multiple SNPs can

be analyzed using aggregated information with low degrees of freedom to eliminate

the issue of low power in multi-variate tests. However, noisy SNPs might deterio-

rate the accuracy of joint effect of multiple SNPs in a set when performing a linear

combination of all of them. How to achieve useful and informative combined effect

that results in small number of degrees of freedom of test statistic is a challenging

topic for researchers studying SNP set association. Involving outcome information

to select the informative SNPs entering PCA is a potential way that is similar to the

idea of forward selection which is the basic strategy for variable selection in machine

learning area. This idea has been employed to develop several models to microarray

expression analysis and GWAS in bioinformatics area by several works [4, 11]. We

will review those models in section 4 as they are closely related with our methods

for pathway based analyses.

There also exists a Bayesian method, Bayesian hierarchical generalized linear

model (BhGLM) [89], which performs generalized linear regression on the weighted

summation of a group of genes or SNPs with flexible weights following some prior

distributions. The relative contributions of individual genes or SNPs in a group are

reflected by their respective weights which are estimated in a generalized linear model

framework. Therefore, this model assigns more reasonable trait-guided weights for

the genes or SNPs by learning the explicitly modeled weights in a generalized linear

model framework. However, a number of parameters need to be defined to find
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appropriate solutions, which will be tedious and annoying.

In summary, PCA based methods are promising linear models that can take good

care of the correlations among SNPs to derive aggregated signals with low degree of

freedom. Moreover, the contribution of each SNP or gene is explicitly represented by

the weights in the principal loading vectors, which however is not available in non-

linear models. To apply PCA based methods to non-Gaussian biomedical data, we

make modifications and generalizations of standard PCA in this thesis to deal with

the special data types and data structures existing in aggregate association analysis.

More reviews of the relevant methodology ameliorating these issues will be included

correspondingly in the following sections.
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3. SPARSE EXPONENTIAL FAMILY PCA

3.1 Introduction

Dimension reduction methods are widely used for data analysis in many areas

such as computer vision, data mining, and bioinformatics. In addition to the low

dimensional projections, to reduce model complexity and enhance reproducibility of

learning results, people often would like to know the physical meanings of the orig-

inal variables and how they contribute to these projections. For example, in image

analysis, it is of much interest to know which regions are crucial to represent or cap-

ture the essential information of the images, which could also help save the memory

space during image collections. A knowledge of a group of variables expressing the

maximum data variation will also be of much interest for next-generation sequenc-

ing data analysis since such a screening of variables could help reduce the profiling

cost that are usually very high. To achieve these goals in diverse real-world appli-

cations, one faces two critical challenges: how to handle diverse data types arising

from different applications and how to obtain meaningful interpretation of analy-

sis results. Exponential family PCA (ePCA) methods [14, 70, 28] and sparse PCA

(SPCA) methods [36, 91, 71, 20] are well-known to address these two issues sepa-

rately. However, to the best of our knowledge, it seems that no one has proposed a

method to address these two issues together.

In this section, we propose a sparse exponential family PCA (SePCA) method

for dimension reduction with both the capability of addressing the interpretation

issue and the generality of applications to any type of data following exponential

family distributions. The rest of this section is organized as follows. Section 2

briefly reviews PCA in a probabilistic modeling framework, from which it could be
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naturally extended to the exponential family PCA. We also introduce the SPCA

problem and the algorithm solving it at the end of this section. Section 3 describes

the formulation of SePCA, with an efficient alternative updating algorithm to solve

it, and provides the computational complexity analysis. Section 4 illustrates the

performance of SePCA compared with Zou’s SPCA [91] and a previous sparse logistic

PCA method [42] via experiments on both simulated data and real-world data.

3.2 Review of related work

In this section, we review some concepts and probabilistic models that form the

foundations of SePCA. We introduce PCA from a probabilistic modeling perspective

and naturally extend it to the exponential family. From this point of view, PCA is

formulated as a maximum-likelihood estimation (MLE) problem which estimates the

low-dimensional projections of a set of canonical parameters by assuming that the

conditional probability of each data point given its canonical parameters follows a

Gaussian distribution [75]. Similarly, the ePCA tailored to some other types of data

could also be modeled as such a MLE problem by assuming that the conditional

probability follows a corresponding distribution in the exponential family other than

Gaussian. To give a flavor of SePCA, we also introduce SPCA as a simple case and

discuss an efficient strategy to solve it at the end of this section.

3.2.1 Principal component analysis

Given a set of samples x1, ...,xN ∈ RD, PCA projects the data into a principal-

component subspace with a lower dimension L(≤ D) and meanwhile attempts to

preserve the maximum data variation. An alternative interpretation of PCA from

a probabilistic perspective assumes that the data points are approximated by linear

projections of low-dimensional latent variables plus a Gaussian noise. For each sam-

ple xn(1 ≤ n ≤ N), given its corresponding vector of latent variables zn that lies in
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the principal-component subspace, the assumption is

xn = W Tzn + b+ ε,

where W is a principal loading matrix whose rows span the principal-component sub-

space; b is a bias vector and ε follows a Gaussian distribution N(0, σ2I). Assuming

a vector of canonical parameters θn = W Tzn + b, the conditional probability of xn

given θn is:

p(xn|θn) ∼ N(xn|θn, σ2I)

and the conditional probability of xn given zn is:

p(xn|zn) ∼ N(xn|W Tzn + b, σ2I).

PCA is then formulated as an optimization problem of maximizing the log-likelihood

of the data set with respect to zn,W, and b, where the objective function is:

∑
n

−||xn − (W Tzn + b)||2 s.t. WW T = I (3.1)

up to a constant. Obviously, this problem is equivalent to minimize the sum of

Euclidean distances from data points to their projections in the principal-component

subspace, which is exactly one of the interpretations of PCA [60].

3.2.2 Exponential family PCA

From a probabilistic perspective, it is natural to generalize PCA to the exponen-

tial family. In the exponential family, a probabilistic latent variable model represent-
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ing the conditional distribution of a data sample xn has such a general form [14]:

p(xn|θn) = exp(θTnxn + log q(xn)− A(θn)), (3.2)

where θn is the corresponding canonical parameters. A(θn) is the log-normalization

factor with a form of log
∫

exp(θTnxn)q(xn)dxn, which ensures that the sum of the

conditional probabilities over the domain of xn equals 1. The probability functions

for the members in the exponential family are mainly differentiated by the form of

A(.) function. Consequently, the data log-likelihood with respect to the canonical

parameters may be of a quadratic form (for Gaussian) or not (for others). Take

Gaussian for instance, A(θn) takes a form of θ2
n/2 to ensure a Gaussian distribution

function. Then, its data log-likelihood function given θ is equivalent to

∑
n

−||xn − θn||2 (3.3)

up to a constant. The canonical parameters θn are further parameterized with a form

of W Tzn+b using lower-dimensional latent variables zn, principal loading matrix W

and a bias vector b for dimension reduction. After substituting θn into (3.3), we arrive

at (3.1), which is the objective function of PCA in the minimum reconstruction-error

interpretation.

In general, ePCA could be achieved by maximizing the generalized likelihood

based on a general form of the probability function shown by (3.2). After substituting

θn by zn,W and b, ePCA is then formulated as the following problem:

min
Z:ZTZ=I

min
W,b

∑
n

A(W Tzn + b)− tr((ZW + 1bT )XT ), (3.4)

where Z is the N × L principal component score matrix whose n-th row is zn. A
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probabilistic graphical model to illustrate ePCA is illustrated in Figure 3.1.
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Figure 3.1: A probabilistic graphical model for ePCA.

One drawback that ePCA suffers in common with PCA is the interpretation

issue, which motivates us to derive sparse PC loadings for ePCA, especially for high-

dimensional data with many highly correlated variables.

3.2.3 Sparse PCA

Before discussing SePCA, we briefly review SPCA, which is a special case of

SePCA with the Gaussian distribution assumption, and has been studied by numer-

ous papers [91, 71, 20, 37]. Assuming that the data set has been centralized with

zero-mean across samples, an intuitive formulation of the sparse PCA problem can

be considered as:

min
Z

min
W :WWT =I

||X − ZW ||2 +
L∑
l=1

λl|Wl| (3.5)

with the aim to achieve dimension reduction using only a set of significantly con-

tributing original variables. The sparsity of each loading vector Wl is controlled by
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the regularization coefficient λl, where Wl denotes the l-th row of W . A larger value

of λl will cause fewer non-zero elements in Wl, which are explicitly interpreted as the

variables contributing to the l-th principal component. A major difficulty in solving

this problem is caused by the orthonormal constraints and l1-norm penalty imposed

simultaneously on the loading vectors.

Zou et al. [91] treat SPCA as a penalized regression problem and attempt to

minimize the regression error when regressing the PCs on the original variables. They

propose a “self-contained” regression approach to decouple the orthonormal and l1

constraints, which then turns the problem into the following penalized regression

problem

min
A:ATA=I

min
W
||X −XW TAT ||2 +

L∑
l=1

λl|Wl| (3.6)

if the l2-norm in the elastic net penalty is omitted. When A is fixed, the minimization

of W is equivalent to solving a LASSO problem

min
W
||XA−XW T ||2 +

L∑
l=1

λl|Wl|.

Alternatively, we can also decouple the constraints by reformulating (3.5) as

min
Z:ZTZ=I

min
W
||X − ZW ||2 +

L∑
l=1

λl|Wl|, (3.7)

which is equivalent to sPCA-rSVD [71] when l = 1.

Problems (3.6) and (3.7) are closely related with similar forms in both constraints

and objective functions. Although their objective functions are not jointly convex

and the constraints are non-convex, both of them can be solved using the same

strategy by alternately minimizing variables using closed-form update rules. When A
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or Z is fixed, the minimization of W is a LASSO problem solved by soft-thresholding

operators. WhenW is fixed, A or Z can be updated according to Theorem 1 proposed

in [91] and [56] given below:

Theorem 1. Reduced-Rank Procrustes Rotation. Given two matrices MN×D and

NN×L, consider the constrained minimization problem

min
A
||M −NAT ||2 s .t . ATA = IL×L.

Suppose that the Singular Value Decomposition (SVD) of MTN is in the form of

UDV T , then Â = UV T .

When A is initialized by the first L right eigenvectors of X, the above strategy

solving the problem (3.6) can be illustrated as a two-stage procedure: first PCA

is performed on X; and then sparse approximations are estimated for the loading

vectors. This approach leads to efficient solutions demonstrated by the experimental

results in [91]. Analogously, when Z is initialized by the first L left eigenvectors

of X, the above strategy solving the problem (3.7) also acts as the same two-stage

analysis and is expected to lead to efficient solutions. We will introduce such a similar

strategy to help solve SePCA and investigate its efficiency in the following sections.

3.3 Model formulation and algorithm

3.3.1 Problem formulation

We formulate the SePCA problem by adding a regularization term on the gener-

alized loading vectors to the objective function of the ePCA problem (3.4) as follows:

min
Z:ZTZ=I

min
W,b

∑
n

A(W Tzn + b) − tr((ZW + 1bT )XT ) + Ω(W, b), (3.8)
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where Ω(W, b) is the regularization term that equals λ0||ZW + 1bT ||2 +
∑L
l=1 λl|Wl|.

The l2-norm regularization term is involved here to ensure the stable reconstruction

of principal components when N < D and X is not a full rank matrix. It could also

be interpreted as a Gaussian prior for canonical parameters to ensure the stability

of the model. This penalized maximum likelihood estimator attempts to estimate

the optimal loading vectors that are sparse and meanwhile maintain the minimum

reconstruction error. Only the variables corresponding to the non-zero elements in a

loading vector are selected to construct the corresponding principal component. The

tuning parameter λl controls the sparsity of loading vectors and SePCA will reduce

to ePCA when λl equals 0.

3.3.2 Reformulation of the objective function

Based on the observation that for general exponential family distributions, the

objective function can be complex and is not jointly convex on Z and W , it is difficult

and unsatisfactory to directly solve (3.8) by alternating updates based on gradient

descent, which suffers from local optima. Instead, we transform this problem into

an equivalent problem by conjugate dual that can be solved more effectively and

efficiently.

The reformulation is achieved via replacing the term A(W Tzn), which is not

jointly convex in Z and W by introducing its convex conjugate. In mathematics, the

convex conjugate for a function h(α) is defined as:

h∗(u) = sup
α∈M

< u,α > −h(α),

where h∗(u) is always convex since the maximum of a linear function is convex. Let

A∗(.) denotes the convex conjugate of A(.). The explicit form of A(.) and A∗(.)

specific to a distribution in the exponential family are specified in [79].
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Let Θ be a N × D matrix whose n−th row is θn. We first rewrite (3.8) by

introducing linear constraints as follows:

min
Z:ZTZ=I

min
W,b

min
Θ

∑
n

A(θn) + g(Z,W, b)

s.t. θn = W Tzn + b for all n, (3.9)

where g(Z,W, b) = −tr((ZW + 1bT )XT ) + Ω(W, b). Since the complex form of

function A(.) introduces difficulty in directly solving (3.9), we propose Lemma 1 to

first transform the minimization of A(.) to its equivalent dual problem to replace the

complex A(.).

Lemma 1. Let U be the N ×D matrix whose n−th row is un. The inner minimiza-

tion of (3.9) with respect to Θ is equivalent to a dual problem:

max
U
−
∑
n

A∗(−un)− < un,W
Tzn + b > +g(Z,W, b).

Proof. The Lagrangian of (3.9) is defined as:

∑
n

A(θn)+ < un, (θn −W Tzn − b) > +g(Z,W, b).

Then, the inner minimization of (3.9) on Θ is reformulated as the saddle point

problem:

min
Θ

max
U

∑
n

A(θn)+ < un,θn > − < un,W
Tzn + b > +g(Z,W, b). (3.10)

Since the inner minimization of (3.9) on Θ is a convex problem with feasible

linear constraints, it satisfies Slater’s conditions for strong duality and the order of
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minimization and maximization in (3.10) can be exchanged:

max
U

min
Θ

∑
n

A(θn)+ < un,θn > − < un,W
Tzn + b > +g(Z,W, b)

= max
U
− (max

Θ

∑
n

−A(θn)− < un,θn >)− < un,W
Tzn + b > +g(Z,W, b)

= max
U
−
∑
n

A∗(−un)− < un,W
Tzn + b > +g(Z,W, b),

which completes the proof for Lemma 1.

Then, based on Lemma 1, the original optimization problem (3.8) can be trans-

formed to an equivalent dual problem illustrated by Theorem 2.

Theorem 2. The optimization problem (3.8) is equivalent to

min
Z:ZTZ=I

min
W,b

max
U
−
∑
n

A∗(−un) − tr((ZW + 1bT )(U + X)T ) + Ω(W, b). (3.11)

Proof. It suffices to show that (3.9) is equivalent to (3.11). From Lemma 1, it is

straightforward to prove that (3.9) is equivalent to its dual problem:

min
Z:ZTZ=I

min
W,b

max
U
−
∑
n

A∗(−un)− < un,W
Tzn + b > +g(Z,W, b)

= min
Z:ZTZ=I

min
W,b

max
U
−
∑
n

A∗(−un)− tr((ZW + 1bT )(U +X)T ) + Ω(W, b),

which leads to (3.11) and completes the proof for Theorem 2.

We will then focus on solving the equivalent dual problem (3.11) in the following

subsection.

3.3.3 Closed-form update rules

Despite of the non-quadratic objective function and non-convex constraints, we

can still find closed-form update rules to solve (3.11). The algorithm based on these
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update rules will converge much faster than first-order iterative updating approaches.

The solutions are achieved by alternately updating the unknown variables based on

the closed-form solutions, which are given below.

Let f(Z,W, b, U) denote the objective function of this min-max problem (3.11).

Obviously, f(., ., ., U) is concave in U . In each iteration, we can update U by solving

the following optimization problem

max
U
−
∑
n

A∗(−un)− tr((ZW + 1bT )UT ).

The optimal un is obtained as the negative mean vector of a sample xn given in

Theorem 3. The mean vector is further shown to be equal to the first derivative

of the log-normalization factor A(.) according to the following property shown in

Proposition 1 proposed by [79]. Therefore, a closed-form solution for un is ûn =

−∂A(θn)
∂θn
|θn=WT zn+b. One can also verify this solution by setting the first derivative

with respect to un equal to 0.

Theorem 3. Let θ denote the canonical parameters of the exponential family distri-

bution for random variables x ∈ X . Consider the variational representation of the

log-normalization factor A(θ) in terms of its dual A∗(µ) as A(θ) = supµ∈M{〈θ, µ〉 −

A∗(µ)}. Then, as proposed by [79], for all θ ∈ Ω, the supremum in this equation is

attained uniquely at the vector µ∗ specified by the moment matching conditions

µ∗ =
∫
X
xp(x|θ)dx = Eθ[X].

Similarly, consider an optimization problem: maxu∈M′ −〈θ, u〉 − A∗(−u) where
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M′ = {m : −m ∈M}. The maximum is attained at the vector u∗ specified by

u∗ = −µ∗ = −Eθ[X].

Proposition 1. The log-normalization factor A(θ) associated with any regular ex-

ponential family has the following property:

It has the first derivative on its domain Ω and the first derivative yields the

cumulant of the random vector X as follows:

∂A(θ)

∂θ
= Eθ[X] :=

∫
X
xp(x|θ)dx.

For the outer minimization problem on Z,W and b, the objective function f(Z,W, b, .)

is quadratic as shown below:

f(Z,W, b, .)|ZTZ=I

= −tr((ZW + 1bT )(U +X)T ) + λ0||ZW + 1bT ||2 +
L∑
l=1

λl|Wl|+ C0

= λ0||
1

2λ0

(X + U)− ZW − 1bT ||2 +
L∑
l=1

λl|Wl|+ C1,

where C0 and C1 are constant terms unrelated to Z,W and b. The minimization

problem on Z,W and b has a similar form as the SPCA problem (3.7) and thus can

be solved by the same strategy mentioned in Section 3.2.3. Although this problem

involves non-convex constraints, an efficient solution will be achieved owing to the

elegant problem structure. Specifically, in the (t + 1)-th iteration, given an optimal

U t, bt+1 is updated as

bt+1 =
1

N

( 1

2λ0

(X + U t)− ZtW t
)T

1.
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To update Z, the minimization problem with respect to Z is:

min
Z:ZTZ=I

|| 1

2λ0

(X + U)− 1bT − ZW ||2

= min
Z:ZTZ=I

|| 1

2λ0

(X + U)T − b1T −W TZT ||2.

Denote Q as 1
2λ0

(X + U)− 1bT . We first compute the SVD of QtW tT = RΛV T and

then update Zt+1 by R[, 1 : L]V T according to Theorem 1.

To update W , the minimization problem with respect to W is a LASSO problem

min
W
|| 1

2λ0

(X + U)− ZW − 1bT ||2 +
L∑
l=1

λl
λ0

|Wl|

= min
W
||Q− ZW ||2 +

L∑
l=1

λl
λ0

|Wl|.

Then the optimal W t+1
l for l = 1, ..., L is given by

(
|QtTZt

l | − λl
2λ0

)
+
Sign(QtTZt

l ),

where Zl denotes the l-th column of Z corresponding to the l-th PC.

In summary, the detailed procedure for solving SePCA is illustrated by Algorithm

1.

3.3.4 Computational complexity

In the initialization step, it takes O(ND2) computational operators to compute

the SVD. Our algorithm contains two main steps: maximization of U and minimiza-

tion of Z,W and b. Computing U has the computational complexity of O(NDL) in

each iteration. In each iteration of optimizing Z, computing QW T and the SVD of it

has the complexity O(NDL) and O(NL2) respectively. The estimation of W using

the soft-thresholding operation have the complexity of O(NDL) in each iteration. In

total, the computational complexity is O(ND2) + rO(NDL) if it takes r iterations

to converge. If N << D, the cost of SVD in the initialization step can be reduced
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Algorithm 1 SePCA

1. Set b as 1
N
XT1. Compute SVD of X − 1b = APBT and set Z = A[, 1 : L] and

W = B[1 : L, ].

2. Update un by −∂A(θn)
∂θn

where θn = W Tzn + b.

3. Update b by 1
N

(
1

2λ0
(X + U)− ZW

)T
1.

4. Calculate Q = 1
2λ0

(X+U)−1bT . Compute the SVD of QW T = RΛV T . Update

Z = R[, 1 : L]V T .

5. Given a fixed Z,
for l = 1, ..., L, Wl =

(
|QTZl| − λl

2λ0

)
+
Sign(QTZl).

6. Repeat 2-5 until convergence.

7. Normalize Wl as Ŵl = Wl/||Wl||1. And then calculate Ẑl as Zl||Wl||1. Rank Ŵl

and Ẑl in the decreasing order of ||Wl||1.

to N2D and the total computational complexity is O(N2D) + rO(NDL). It usually

takes only a few iterations to converge according to our empirical experience.

3.3.5 Connections with ePCA and SPCA

Our SePCA is a generalization of both ePCA and SPCA and could reduce to

them correspondingly in special cases. When λl is set as 0 and the bias term b

is dropped, SePCA reduces to an optimization problem with the same objective

function and constraints as ePCA problem proposed in [28] but with a different

alternating order of optimization on Z,W and U . Fortunately, these two problems

are shown equivalent irrespective of the optimization order in [28]. Without the l1

norm regularization term on W , our algorithm updates W and Z by 1
2λ0
ZT (X + U)

and the first L left vectors of matrix X + U respectively, which conform to the

updates given by [28]. As for the U update step, we directly update U by a closed-

form solution instead of the gradient ascent method used in [28]. Eventually, the

gradient ascent approach will find the same solution since the objective function is
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concave with respect to U ; however it will take longer time than our algorithm.

In the cases that the data set X is assumed to be sampled from a Gaussian

distribution, we have A(θn) = θTnθn/2 and A∗(un) = uTnun/2 correspondingly. Con-

sequently, U is estimated as −ZW when the data is centralized. After substituting

the estimated U into the objective function in (3.11), we will arrive at the SPCA

problem (3.7) with an elastic net regularization term.

3.3.6 Choice of tuning parameters

In Algorithm 1, the parameter λ0 acts as a scaling factor for W , analogous to the

role of tuning parameters for l2 term in elastic net and Zou’s sparse PCA. The default

choice of λ0 can be 1. For simplicity, we treat λl for different principal components

equally and only need to determine one common parameter λ. The l1 regularization

parameter controls the model complexity. To compromise the goodness of fit and

model complexity, we use Bayesian Information Criterion (BIC) to achieve the max-

imum likelihood with the most model generalization. λ is chosen by minimizing the

following BIC criterion:

BIC = −2lnˆ̀(U,Z,W, b) + log(ND)×m(λ),

where ˆ̀ is the estimated log-likelihood and m(λ) is the number of free parameters to

be estimated: m(λ) = ND + NK + D + |W (λ)| where ND is the total number of

elements of U , NK is the total number of elements of Z, D is the length of the vector

b, and |W (λ)| is the number of nonzero loadings in W when the penalty parameter

is λ.
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3.4 Experimental results

We have investigated the performance of our SePCA model and the efficiency

of the algorithm via a simulated study and real-world applications. The simulation

study aims to examine the accuracy and computational efficiency of SePCA on binary

data and count data. These performances are further investigated by real-world

applications in image clustering and population stratification that involve count data

and binary data respectively. We show the superiority of SePCA by comparing it

with Zou’s SPCA [91]. For binary data cases, we also compare SePCA with a previous

sparse logistic PCA method solved by coordinate descent Majorization-Minimization

algorithm [41], which is denoted as SLPCA MM in this paper. We denote SePCA

under a certain exponential family distribution such as Bernoulli distribution or

Poisson distribution as SePCA Bern or SePCA Pois, respectively.

3.4.1 Simulation study

3.4.1.1 Simulation design

In this set of simulation experiments, we studied the performance of SePCA

under Bernoulli distribution for dimension reduction of binary data and Poisson

distribution for count data. For each distribution, we simulated a matrix XN×D of

N independent D-dimensional samples by its corresponding A(.) function of the

canonical parameter matrix Θ. The performance of SePCA Bern and SePCA Pois

in reconstruction of sparse PC loadings for binary data and count data are examined

respectively. As we introduced, Θ is parameterized as ZW +1bT where Z is a N×L

principal component score matrix and W is a L × D principal component loading

matrix. L is the number of principal components, which is set to 2 in this simulation

study. For simplicity, we assume that the bias vector b is 0. The principal component

scores Zl are generated randomly from a Gaussian distribution with zero mean and
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a variance of σ2
l . The loading matrix W is set as a sparse matrix, in which only

W [1, 1 : 20] and W [2, 21 : 40] are set to 1 while the other elements are set to 0. Each

loading vector Wl is normalized with a unit l2 norm. To have a thorough evaluation,

we studied simulated data with different sizes of samples and data variables as well

as different variances of PC scores.

3.4.1.2 Binary data study

In this study, each element Xnd in the data set X is sampled from a corresponding

Bernoulli distribution with a success probability that equals exp(Θnd)
1+exp(Θnd)

.

We considered 8 different settings of (N,D) where N has two choices: 100, 200

and D has four choices: 50, 100, 200, 500 respectively. Since the variance σ2
l measures

the signal level of the l-th PC, we set up PC variance relative to a suitably defined

baseline noise level as σ2
l = SNRl×σ2

0 (baseline noise level), where SNRl is the signal

to noise ratio for the l-th PC. The baseline noise level is defined as the variance of

PC scores from binary data under the unstructured model. To compute this, we

generated the independent N×D binary data from a Bernoulli distribution with the

success probability 0.5 and apply SePCA Bern on it. We calculate the baseline noise

level as the average of sample variances of the obtained L PC scores. The details

about calculating the baseline noise level can be found in Section 6.1 of [42]. Finally,

we simulated 100 binary data sets for each of these 8 settings under SNR= (3, 2)

and (5, 3) respectively.

To evaluate the performance of SePCA Bern, we computed for each simulated

data set the maximum angle between the estimated PC loadings and true PC load-

ings to evaluate the reconstruction accuracy, the percentage of non-zero elements

estimated in the loading matrix among the true 40 non-zero elements (true pos-

itives) and other zero elements (false positives) to examine the accuracy in spar-
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sity. By specifying A(θ) as log(1 + exp(θ)) for Bernoulli distribution, we applied

SePCA Bern to the simulated data under each configuration and compared its per-

formance with SPCA and SLPCA MM. The results shown in Table 3.1 suggest that

our SePCA Bern outperforms the others for all configurations in reconstructing more

accurate principal component loading matrix with smaller angles between estimated

PC loadings and true PC loadings. A visualization of the angles for the three meth-

ods across all 100 replicates under the first setting with N=100, D=50 and SNR=

(3,2) are shown by Figure 3.2. One can observe that SePCA Bern could always

achieve the smallest degree among the three methods. By observing true positive

rates and false positive rates from these three methods in each case, we see that

almost all of them take use of all the non-zero elements to predict the PC scores.

However, SLPCA MM and SPCA use more additional true zero elements which in-

deed have no contribution to the true PCs. These above observations demonstrate

that SePCA Bern could detect the best sparse structure of PC loadings and more-

over achieve the highest reconstruction accuracy using those contributing variables.

The superiority of SePCA Bern over SPCA and SLPCA MM is believed to benefit

from an explicit modeling of binary data and from a direct optimization of the exact

objective function respectively. In addition, the computational time of SePCA Bern

is much less than SPCA especially for higher dimensional data since SPCA requires

an expensive computation of Gram matrix XTX which is avoided in SePCA Bern.

3.4.1.3 Count data study

In this study, each element Xnd in the data set X is sampled from a corresponding

Poisson distribution with mean that equals exp(Θnd). We implemented SePCA Pois

on the this count data set with A(θ) set as exp(θ). We also compared it with

SPCA and SePCA MM based on the criterion of running time, maximum angle of
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Table 3.1: Comparison of the performance of SPCA, SLPCA MM and SePCA Bern
on simulated binary data. The average (standard deviation) of the running time,
maximum angle of PC loadings, true positive rate and false positive rate over 100
simulations are presented for these three methods.

N D Method Time(sec.) Angle(degree) True Pos.(%) False Pos.(%)
SNR=(3,2)
100 50 SPCA 0.68 (0.61) 11.18 (4.03) 100 (0) 7.20 (2.76)

SLPCA MM 0.50 (0.42) 8.35 (2.31) 100 (0) 7.48 (4.35)
SePCA Bern 0.09 (0.08) 5.37 (1.08) 100 (0) 0.92 (1.12)

100 SPCA 1.98 (0.86) 16.67 (5.99) 100 (0) 5.82 (3.48)
SLPCA MM 1.29 (0.95) 8.83 (1.96) 100 (0) 10.0 (2.85)
SePCA Bern 0.16 (0.06) 7.15 (2.17) 100 (0) 0.35 (0.48)

200 SPCA 5.95 (9.36) 26.61 (5.78) 99.95 (0.35) 15.1 (2.08)
SLPCA MM 2.22 (2.22) 8.09 (2.51) 100 (0) 0.83 (1.11)
SePCA Bern 1.3 (1.72) 7.69 (2.35) 100 (0) 0.12 (0.21)

500 SPCA 17.91 (15.84) 37.69 (5.72) 96.33 (1.23) 6.39 (8.02)
SLPCA MM 2.00 (2.09) 7.15 (2.25) 100 (0) 0.75 (0.29)
SePCA Bern 1.03 (1.23) 6.96 (3.22) 100 (0) 0.09 (0.09)

200 50 SPCA 0.46 (0.58) 5.95 (1.35) 100 (0) 11.4 (2.57)
SLPCA MM 0.85 (0.64) 6.35 (1.45) 100 (0) 8.13 (4.67)
SePCA Bern 0.26 (0.01) 3.39 (0.66) 100 (0) 0.92 (1.12)

100 SPCA 1.72 (1.63) 10.7 (1.57) 100 (0) 26.1 (1.99)
SLPCA MM 3.66 (2.60) 7.50 (1.10) 100 (0) 7.58 (3.86)
SePCA Bern 0.50 (0.02) 5.58 (1.04) 100 (0) 0.34 (0.54)

200 SPCA 32.1 (63.6) 20.4 (2.10) 100 (0) 29.7 (1.53)
SLPCA MM 1.14 (0.13) 10.9 (1.78) 100 (0) 0.73 (0.40)
SePCA Bern 0.89 (0.05) 10.7 (1.02) 100 (0) 0.11 (0.18)

500 SPCA 81.8(115.3) 29.5 (3.08) 100 (0) 20.7 (1.07)
SLPCA MM 2.42 (0.26) 8.32 (1.33) 100 (0) 0.78 (0.28)
SePCA Bern 2.08 (0.15) 7.70 (1.07) 100 (0) 0.11 (0.11)

SNR=(5,3)
100 50 SPCA 0.63 (0.61) 11.4 (4.19) 100 (0) 6.65 (2.61)

SLPCA MM 0.58 (0.42) 7.58 (2.22) 100 (0) 8.05 (4.40)
SePCA Bern 0.09 (0.02) 4.45 (1.02) 100 (0) 0.90 (1.12)

100 SPCA 1.29 (0.99) 18.0 (5.17) 100 (0) 14.4 (2.95)
SLPCA MM 1.45 (0.96) 7.50 (1.72) 100 (0) 8.93 (3.47)
SePCA Bern 0.16 (0.02) 5.77 (1.34) 100 (0) 0.33 (0.48)

200 SPCA 2.75 (1.87) 27.1(5.50) 99.90 (0.49) 14.3 (2.26)
SLPCA MM 0.82 (0.24) 6.62 (1.62) 100 (0) 0.81 (0.97)
SePCA Bern 0.34 (0.01) 6.12 (1.86) 100 (0) 0.09 (0.18)

500 SPCA 7.89 (4.73) 41.5 (5.03) 95.40 (3.58) 9.38 (0.96)
SLPCA MM 1.47 (0.18) 5.92 (1.61) 100 (0) 0.75 (0.29)
SePCA Bern 0.76 (0.08) 5.80 (1.81) 100 (0) 0.08 (0.09)

200 50 SPCA 0.31 (0.36) 5.61 (1.15) 100 (0) 10.9 (2.65)
SLPCA MM 0.97 (0.62) 5.48 (1.33) 100 (0) 7.85 (4.09)
SePCA Bern 0.28 (0.07) 2.70 (0.47) 100 (0) 0.93 (1.17)

100 SPCA 2.84 (5.07) 9.54 (1.55) 100 (0) 24.8 (2.18)
SLPCA MM 4.08 (2.61) 6.30 (0.91) 100 (0) 7.91 (3.68)
SePCA Bern 0.54 (0.04) 4.32 (0.71) 100 (0) 0.39 (0.55)

200 SPCA 9.67 (9.92) 17.0 (1.73) 100 (0) 28.5 (1.81)
SLPCA MM 1.23 (0.07) 8.30 (1.31) 100 (0) 0.74 (0.44)
SePCA Bern 0.91 (0.04) 7.44 (1.36) 100 (0) 0.12 (0.19)

500 SPCA 76.3 (164.1) 29.6 (3.40) 100 (0) 20.9 (1.03)
SLPCA MM 2.83 (0.28) 6.74 (0.93) 100 (0) 0.76 (0.26)
SePCA Bern 2.03 (0.05) 5.71 (0.98) 100 (0) 0.10 (0.10)
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Figure 3.2: Plot of the maximum angle of PC loadings for SPCA, SLPCA MM and
SePCA Bern across 100 replicates at N= 100, D=50 and SNR= c(3,2).

PC loadings, true positives and false positives. In order to apply SePCA MM to

analyze this count data set, we set a cut threshold at the half of the maximum

value to dichotomize this data set. We show the results of these three methods

for 100 replicates of data set simulated under one case with N=100, D = 50 and

SNR = (3, 2) in Table 3.2. As shown in this table, SePCA Pois could estimate the

most accurate PC loadings with the smallest difference angle while remaining the

most approximate sparse structure. SePCA MM has pretty bad performance due

to the information loss in the dichotomization. Both the experimental results on

binary data study and count data study suggest that it is crucial to assume the most

appropriate distribution for a given data set according to its special data type to

achieve the best dimension reduction with sparse loading vectors. The superiority of

computational efficiency of our SePCA algorithm was also verified by both studies.
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Table 3.2: Comparison of the performance of SPCA, SLPCA MM and SePCA Pois
on simulated count data at N=100, D = 50 and SNR = (3,2). The average (standard
deviation) of the running time, maximum angle of PC, true positive rate and false
positive rate over 100 simulations are presented for these three methods.

N D Method Time(sec.) Angle(degree) True Pos.(%) False Pos.(%)
SNR=(3,2)
100 50 SPCA 0.0616 ( 0.02 ) 6.14 ( 9.51 ) 99.5 ( 5 ) 0 ( 0 )

SLPCA MM 0.0076 ( 0.00347 ) 74 ( 33.3 ) 59 ( 18.6 ) 0 ( 0 )
SePCA Pois 0.0133 ( 0.00656 ) 1.31 ( 1.5 ) 100 ( 0 ) 1.2 ( 2.7 )

3.4.2 Face image clustering

As image data is usually high-dimensional and involves redundant information

caused by locally related pixels, it is desirable to reduce the dimension and redun-

dancy via penalized latent factor analysis with variable selection pursuing better

performance and interpretation. We applied SePCA on a data set from the Yale im-

age database [25] to compare its clustering performance with other methods based

on k-means clustering.

There are 11 different images of each of 15 distinct subjects in the Yale database.

The images of each subject vary in different facial expression or configuration: center-

light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy, sur-

prised and wink. We randomly select a data set containing 44 images from 4 subjects:

1, 4, 6 and 8, corresponding to 4 clusters respectively. We just use a center region

of 128×128(= 16,384) pixels from the original images by removing the redundant

white background pixels. Then this data set is represented by a 44×16,384 matrix

with each row corresponding to one image. Our goal is to cluster these images to 4

clusters corresponding to the four selected subjects. Due to the high dimensionality

of images, we perform the clustering in a lower L-dimensional space constructed by

the generalized principal components obtained by performing SePCA Pois on the
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images where the pixel intensities are considered as count data following Poisson dis-

tributions. The irrelevant or redundant pixels are taken care by the sparse learning

of PC loading vectors.

We have studied the clustering performance at L = 1, 2, 3 respectively. The

clustering accuracy is calculated as the proportion of correctly assigned labels based

on a best match with true labels [9, 12]. The results summarized in Table 3.3 have

shown that SePCA Pois achieved higher or competitive clustering accuracy than

SPCA at a larger sparsity rate in all the three cases. In each case, the sparsity

rate is summarized by the “Total(%)” column in Table 3.3, which is reflected by the

number of nonzero elements in all the PC loadings followed by its percentage. The

number of non-zeros in each PC loading as well as its percentage are shown in the

following columns. These observations suggest that an appropriate assumption of

the data distribution gives rise to more appealing dimension reduction results than

standard sparse PCA using fewer variables. The visualization of 2-PC projections

for SePCA Pois and SPCA are shown in Figure 3.3, which demonstrated that the

projections obtained from SePCA Pois have more obvious clustering boundary and

smaller within-cluster distance.

3.4.3 Population stratification

We applied our algorithm on Single Nucleotide Polymorphism (SNP) data from

the International HapMap Project (HapMap3) [16] to analyze the subpopulation

structure. This dataset contains 1,301 samples from 11 populations of European

ancestry, Asian ancestry, and African ancestry. Those samples from the same popu-

lation tend to have a common pattern of genetic variation expressed by SNPs, which

can be detected by clustering. We treat SNP data as binary data with 0 representing

the most prevalent homogeneous base pair (wild-type) and 1 representing the other
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Table 3.3: Comparison of the clustering performance after SPCA and SePCA Pois on
Yale data. The clustering accuracy and the number of non-zero variables (percentage)
in all the loading vectors as well as that in each loading vector are presented for these
three methods.

Method Acc. Total(%) PC1(%) PC2(%) PC3(%)

L=1
SPCA 0.61 7064(43.1) 7064(43.1) - -
SePCA Pois 0.61 6023(36.8) 6023(36.8) - -

L=2
SPCA 0.64 7693(47.0) 7076(43.2) 4916(30.0) -
SePCA Pois 0.70 6998 (42.7) 5666(34.6) 5320(32.5) -

L=3
SPCA 0.84 7906(48.3) 6286(38.3) 5994(36.6) 4924(30.1)
SePCA Pois 0.84 7640(46.6) 6133(37.4) 5414(33.0) 3762(23.0)

genotypes (mutant with minor alleles). Considering millions of SNPs are genotyped

in the data set, we first reduce the number of SNPs by quality control via remov-

ing SNPs and samples with minor allele frequency less than 0.05, excluding regions

with strong linkage disequilibrium (LD) such as Major histocompatibility complex

(MHC) and LD pruning to make sure pairs of variants in a window size of 50 kb

have correlation value r2 less than 0.2. After randomly sampling 5,000 SNPs and re-

moving the SNPs with missing values, we have a smaller data set with 1,184 samples

and 748 SNPs for clustering analysis. Since these 11 populations could be clearly

grouped into three clusters corresponding to the three categories of ancestry, we

only present our results on identifying the four populations with the African ances-

try: African ancestry in Southwest USA (ASW); Luhya in Webuye, Kenya (LWK);

Maasai in Kinyawa, Kenya (MKK) and Yoruba in Ibadan, Nigeria (YRI) with 83,

90, 171 and 166 samples respectively. Thus, we have 511 samples in this study in

total. We applied SPCA, SLPCA MM and SePCA Bern for clustering and found

that the last two methods have competitive clustering accuracy and sparsity in all
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Figure 3.3: Visualization of the distribution of 44 Yale images from 4 subjects in
2-PC space.

three cases demonstrated by Table 3.4. It suggests that SePCA Bern has no obvious

improvement compared with SLPCA MM when a fairly large portion of variables

contribute to the projections. However, both of them have considerable improve-

ment over SPCA in clustering accuracy at the competitive sparsity rate owing to

their explicit modelings of binary data.

To examine the computational efficiency of SLPCA MM and SePCA Bern, we

recorded their running time for different number of PCs. As shown in Figure 3.4, our

method has the running time quite insensitive to the number of PCs and outperforms

SLPCA MM with increasing gain in computational efficiency as the number of PCs

increases. The dramatic increasing trend in the running time of SLPCA MM is

believed as a result of the one by one coordinate-descent optimization for PCs. One

may notice that the CD update in SLPCA MM will cost slightly less than SVD in our

algorithm when quite a few PCs are computed for a small data set with a relatively
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Table 3.4: Comparison of the clustering performance after SPCA, SLPCA MM and
SePCA Bern on HapMap data. The clustering accuracy and the number of non-zero
variables (percentage) in all the loading vectors as well as that in each loading vector
are presented for these three methods.

Methods Acc. Total(%) PC1(%) PC2(%) PC3(%)

L=1
SPCA 0.81 502(67.1) 502(67.1) - -
SLPCA MM 0.85 567(75.8) 567(75.8) - -
SePCA Bern 0.85 553(73.9) 553(73.9) - -

L=2
SPCA 0.81 633(84.6) 496(66.3) 494(66.0) -
SLPCA MM 0.85 659(88.1) 568(75.9) 420(56.1) -
SePCA Bern 0.85 650(86.9) 553(73.9) 402(53.7) -

L=3
SPCA 0.66 688(92.0) 489(65.4) 483(64.6) 489(65.4)
SLPCA MM 0.68 708(94.6) 568(75.9) 440(58.8) 420(56.1)
SePCA Bern 0.68 700(93.6) 554(74.1) 414(55.3) 400(53.5)

low dimension. Our algorithm can be further speed up by doing a truncated SVD

when the required number of PCs is less than the full rank of the data matrix.

3.5 Supervised sparse exponential family PCA (SSePCA)

In the last section, we introduced an extended SePCA with the ability of variable

selection to pursue better interpretation for the generalized PCs based on the out-

come of interest. SePCA is an unsupervised model for dimension reduction, which

can not guarantee the resulting PCs and selected variables are meaningful for a

supervised study, in which the label information are available. For example, the

supervised study could be a study that analyzes the association between the out-

come (i.e. labels) and the joint effects from all the predictors. In this section, we

extend SePCA to a supervised model named as supervised SePCA (SSePCA) to

learn supervised generalized PCs for association studies using only a set of dominant

variables. As opposed to SePCA, the variable selection in SSePCA is guided by the
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Figure 3.4: Comparison of the running time versus the number of PCs for
SLPCA MM and SePCA Bern on HapMap data.

outcome. Thus, its power for association analysis could be improved by eliminating

the effects from irrelevant variables under the guidance of label information in an

integrate framework.

Given a design matrix X composed of n samples in d-dimensional space and its

corresponding outcome y = (y1, ..., yn), we aim to analyze the association between the

joint effect from the D predictors and the outcome y. The data type of the predictors

and the outcome could be any type of data following exponential family distributions.

We propose a SSePCA model to enforce that the estimated principal components

extract the maximal variation from some key variables to best predict/differentiate

the outcome. The joint effects are also simultaneously estimated along with the

PCs in an integrative framework. A brief graphical model illustrating SSePCA is

shown in Figure 3.5. On the left side of this graphical model, z is the latent variable

for a sample x lying in an orthogonal principal-component subspace and W is the

corresponding principal component loading matrix. On the right side, the latent
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Figure 3.5: A probabilistic graphical model for SSePCA.

variable z is simultaneously involved in a generalized linear model as predictors

to predict coefficients β that reflecting the joint effects. The association analysis

and data aggregation are simultaneously integrated in this model with the aim of

estimating the aggregated signal that best summarizes the data which meanwhile

influence the outcome.

This model generalizes PCA for data sample x of a certain data type through an

exponential family distribution p(x|θx) where θx denotes the corresponding canonical

parameters which are assumed to factorize in the form Wz + b. Analogously, this

model also generalizes linear models for various types of the outcome y through an

exponential family distribution p(y|θy) where θy is the linear predictor that equals

zTβ + β0.

p(x|θx) and p(y|θy) share a common general form of the exponential family

distribution of an observation a given a canonical parameter vector θ, which can be

written as:

p(a|θ) = exp(θTa+ log q(a)− A(θ)),
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where A(θ) = log
∫

exp(θTa)q(a)da. In generalized linear models, a corresponds

to the outcome and θ corresponds to the linear predictor. The derivative of A(θ)

corresponds to the inverse link function h−1, which provides the relationship between

the mean of the distribution function and the linear predictor. The outcome is related

to the linear predictor via the link function. In the case of exponential family PCA,

the particular form of A(θ) function is determined by the distribution that the data

sample a is assumed to follow.

Consequently, the data likelihood of SSePCA model can be written as:

`(X,y|θx, θy) = Πn
i=1p(xi|θxi)p(yi|θyi) (3.12)

Under the linear decomposition of θx and θy, we can further substitute Z,W and

β into (3.12) and estimate the unknown parameters by maximizing the following

log-likelihood function:

max
Z:ZTZ=I

max
W,β

n∑
i=1

log p(xi|zi,W ) +
n∑
i=1

log p(yi|zi,β)

= min
Z:ZTZ=I

min
W,β

n∑
i=1

A1(Zi:,W )− tr(ZWXT ) +
n∑
i=1

A2(Zi:,β)− tr(ZβyT )

The current model can force the weights stored in the PC loading vectors to be

directly associated with disease outcome when studying complex disease. However,

the PC loading vectors take combinatorial contributions from all the predictors and

therefore it is difficult for biological interpretation and hard to identify dominant

contributing variables. To address this problem, we impose a sparsity penalty on the

loading vectors similarly as what we did for SePCA to make the model interpretable
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and simpler with lower degree of freedom.

` = min
Z:ZTZ=I

min
W,β

n∑
i=1

A1(Zi:,W )− tr(ZWXT ) + Ω(W ) +
n∑
i=1

A2(Zi:,β)− tr(ZβyT )

(3.13)

We reformulate our original optimization problem by applying conjugate duality

as what we did for SePCA. By applying the same strategy on the generalized linear

model part of (3.13), we achieve:

min
Z:ZTZ=I

min
W,β

∑
i A1(Z,Wi:)−Wi:[X

TZ]:i + ||ZW + 1bT ||2 +
L∑
l=1

λl|Wl|1

+ A2(Z,β)− βTZTy + βTβ

= min
Z:ZTZ=I

min
W,β

max
U,v

∑
i −A∗1(Ui:) + tr(ZT (U −X)W T ) + ||ZW + 1bT ||2 +

L∑
l=1

λl|Wl|1

− A∗2(v) + βTZT (v − y) + βTβ.

The solution can be achieved by alternatively updating unknown parameters with

closed-form solutions. In each iteration, the optimal Ui is achieved when the moment

matching condition holds in which Ui equals to E(xi|θi) with θi = Wzi + b. This

mean variable is calculated as the derivative of A1(θi). Given an estimated Ui and

zi, we update b and W by solving a least square problem and a Lasso problem

respectively. The optimal vi, β and β0 could be estimated based on the same logic.

Given all the other estimated parameters, Z can be estimated by doing an SVD of

a matrix involving both information from data matrix X and the outcome y.

The detailed procedure for SSePCA is given in Algorithm 2.

To investigate the performance of SSePCA, we apply it in a simulation study for

pathway based aggregate analysis of SNP data which will be illustrated in section 4.

The corresponding simulation results are included in section 4.4.
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Algorithm 2 Supervised sparse exponential family PCA

1. Set b as 1
N
XT1 and β0 as 1

N
yT1; Compute SVD of [η(X−1b), (1−η)(y−β0)] =

APBT and set Z = A[, 1 : L], W = ηZT (X − 1b) and β = (1− η)ZT (y − β0).

2. Update U by ∂A(Θx)
∂Θx

where Θx = ZW + 1b. Update v by ∂A(θy)
∂θy

where θy =

Zβ + β0.

3. Update b by 1
N

(η
2
(X − U)− ZW )T1 and β0 by 1

N
(1−η

2
(y − v)− Zβ)T1.

4. Calculate P1 = η
2
(X − U)− 1b and P2 = 1−η

2
(y − v)− β0. Denote P = [P1, P2]

and Q = [W,β]. Compute SVD of PQT = MDNT . Update Z by M [, 1 : L]NT .

5. Given a fixed Z = [z1, ...,zL],

for j = 1, ..., L, wj =
(
|zTj P1| − γj

2

)
+
Sign(zTj P1).

β = ZTP2.

6. Repeat 2-5 until convergence.

8. Normalize wj and scale zj = zj||wj||1, βj = βj/||wj||1. Rank zj, wj and βj by
the decreasing order of ||wj||1.

3.6 Conclusion

We proposed a sparse model of exponential family PCA, SePCA, to enable vari-

able selection in low-dimensional analysis of exponential family data for better sys-

tematic interpretation in real-world applications. In comparison with SPCA, it is a

more suitable method for sparse learning of exponential family data. Our experimen-

tal results have empirically demonstrated that SePCA could achieve more accurate

and sparse principal component loadings compared with Zou’s SPCA via explicit

modelings for those non-Gaussian data. By optimizing the exact log-likelihood func-

tion when analyzing binary data, SePCA Bern outperforms an existing logistic PCA

method SLPCA MM in either clustering accuracy or sparsity of PC loadings for

high dimensional binary data. Moreover, SePCA Bern achieves much higher com-

putational efficiency compared with SPCA and SLPCA MM by avoiding calculation

of Gram matrix or CD updates for each principle component. The elegant problem
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structure of the dual form of SePCA model and the closed-form update rules lead to

higher computational efficiency.

Our model is flexible and highly extensible. With integration of additional label

information into the current framework, it can be adjusted as a supervised-learning

model to solve classification or regression problems involving high-dimensional ex-

ponential family data. The dual-transformation strategy is still applicable for this

problem due to the similar form of models shared by ePCA and GLMs. Closed-form

update rules are still available for this problem. Our model also provides a way for

hierarchical analysis of the latent variables based on several dominant variables. It

can simultaneously estimate the principal component effects as well as the individual

effects of the dominant variables. Moreover, one could also apply other regularization

terms on PC loadings to achieve smoothness or perform graph-regularized learning.
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4. PATHWAY BASED AGGREGATE ANALYSIS OF SNP DATA*

4.1 Introduction

As it is commonly conjectured that complex diseases arise due to disruptions by

complex interplay between multiple genetic factors (that may interact with environ-

mental exposures as well), pathway based methods enable more efficient and repro-

ducible association analyses than conventional GWAS focusing on studying individ-

ual effects of SNPs. As in other existing pathway-based association analysis [11, 76],

we take functional pathways defined a priori as functional units determining disease

outcome, for example, by manual curation as in many publicly accessible pathway

databases [2, 38]. As discussed in the literature review of pathway based GWAS, test-

ing the combined signals representing a functional region is an appealing approach

in pathway based aggregate association analysis due to its ability to take account of

correlations among SNPs and the low degree of freedom of the test statistic. The

major concern in this approach is how to summarize the optimal combined signals

for a set of SNPs. Principal component analysis (PCA) is an attempting approach

which has been applied for deriving combined signals [11, 74]. However, it may lose

power in aggregating SNP data since PCA is usually suitable for dimension reduction

of continuous data by making Gaussian assumption of the data distribution, which is

however not an appropriate assumption for SNP data containing categorical values.

The SePCA method illustrated in section 3 provides ways to derive more accurate

PCs for SNP data as combined signals.

In this section, we study the applications of two cases of SePCA: logistic PCA [48]∗

∗Reprinted with permission from “Supervised logistic principal component analysis for pathway
based genome-wide association studies” by Meng Lu, Jianhua Z. Huang, and Xiaoning Qian, 2012.
Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine,
page: 52-59. Copyright c©2012 by ACM, Inc. http://doi.acm.org/10.1145/2382936.2382943.
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and categorical PCA [50] in aggregate association analysis of SNP data represented

by two different forms. Logistic PCA assumes Bernoulli distributions for SNP data

when they are represented by a dominant model where the most prevalent homozy-

gous pair is represented by 0 and the other two pairs are represented by 1. Categorical

PCA assumes multinomial distributions for SNP data in which each SNP takes one of

the three possible categorical values: AA, Aa, and aa with “a” representing the minor

allele. This categorical representation model makes no bias assumption of the SNP

effects compared with the dominant model. In both studies, the generalized PCs are

regarded as the combined signals, and are further refined in a supervised framework

to achieve the highest power for association analysis. The superiority of logistic PCA

and categorical PCA for aggregate association analysis are demonstrated by both the

simulation study of pathway based GWAS and real world application in detecting

significantly associated pathways for Crohn’s disease.

4.2 Supervised logistic PCA

In this section, we take LPCA, which is specifically designed to model and com-

pute the optimal rank reduced representation of given SNP data [42]. As the un-

derlying data model of LPCA fits SNP data, aggregated variables from LPCA may

capture more information in the original SNP data, which will directly affect the

significance analysis of corresponding pathways.

However, without integrating disease outcome information into LPCA, the de-

rived aggregated variables only have the optimal representation of the original data

(as in PCA), but may not have any discriminating power regarding disease. Fur-

thermore, since typically only a limited number of SNPs in each pathway contribute

to disruptions that trigger disease, there may be redundant information if we con-

sider all SNPs in LPCA. In order to infer the most associated aggregated variables
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for pathways, we adopt a supervised selection procedure to search for subsets of

SNPs that are most associated with disease outcome. By combining this supervised

SNP selection procedure together with LPCA, we expect that the derived aggregated

variables by SLPCA accurately capture the association of pathways with disease and

consequently we will obtain more accurate and reproducible results.

4.2.1 Review of logistic PCA

To effectively analyze high-dimensional and categorical SNP data, we first review

the LPCA model [42], which generalizes traditional PCA. The SNP genotype data

can be represented by a high-dimensional vector of categorical values {0, 1, 2} for

homozygous or heterozygous alleles. We focus on their binary representation with

0 representing the most prevalent homogeneous base pair (wild-type) and 1 for the

other genotypes (mutant with minor alleles). This method of encoding SNPs corre-

sponds to testing for a dominant/recessive genetic effect on outcome. Our task is to

derive summary statistics for given functional pathways that aggregate weak effects

from individual SNPs.

Figure 4.1: The probabilistic graphical models of xp with n observations for a path-
way p in (a) PCA; and (b) LPCA ([48] c© 2012 by ACM).
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For a given pathway p, the corresponding genotype information can be repre-

sented by a d-dimensional vector xp, where d is the number of SNPs within the path-

way. Traditional PCA assumes that the underlying random variable xp is a linear

transformation of a K-dimensional latent variable a′ (K ≤ d) with additive Gaus-

sian noise ε ∼ N(0, σ′2I): xp = µ′ + B′a′ + ε with the graphical model illustrated

in Fig. 4.1(a), where parameters µ′ is the mean vector and B′ is a d × K linear

transformation matrix whose columns correspond to principal components. For a

given d × n data matrix Xp with n samples, we can compute the optimal reduced

rank representation X̂p = µ′1T +B′A′ with the minimum mean squared distance to

Xp [42], in which A′ is a K × n matrix with corresponding principal scores. Unlike

traditional PCA, we assume in LPCA that each individual SNP x follows a Bernoulli

distribution: Pr(x|θ) = σ(θ)xσ(−θ)(1−x), where σ(θ) = [1 + exp(−θ)]−1 is the logis-

tic function, and θ is the canonical parameter of the Bernoulli distribution in the

exponential families. For a given pathway p, we write the log-likelihood of canonical

parameters Θ, a d× n matrix, for the given SNP data Xp:

L(Θ) = Pr(Xp|Θ) =
d∏
i=1

n∏
j=1

σ(θij)
xijσ(−θij)(1−xij). (4.1)

Assuming that Θ has a reduced rank representation Θ = µ1T + BA, where µ,

B, A are correspondingly the mean, principal components (loading vectors), and

principal scores similarly as in traditional PCA. We note that the difference is that in

LPCA, we have introduced a new intermediate random variable θp to model canonical

parameters of SNP data distribution and this new random variable itself is associated

with the K-dimensional latent variable a as shown in Fig. 4.1(b). Substituting µ,

B, and A into (4.1), we can compute the log-likelihood:
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l(µ, A,B) =
d∑
i=1

n∑
j=1

{
xij log σ

(
µi +

K∑
k=1

ajkb
i
k

)

+ (1− xij) log σ
(
− µi −

K∑
k=1

ajkb
i
k

)}
. (4.2)

We can rewrite the principal score matrix A = [a1, a2, . . . , aK ]T by row vectors

ak’s, which are the aggregated variables of interest. These corresponding principal

scores will be used to compute test statistics to detect significant pathways that are

associated with disease. Magnitudes in principal components (loading vectors) bk

reflect the actual contributions of corresponding SNPs to summary statistics.

To estimate µ, B, especially principal scores A in LPCA, we need to optimize the

log-likelihood function (4.2) which is highly non-convex with orthonormal constraints

for bk’s. We construct tight lower-bound functions and iteratively solve the optimiza-

tion problem as done in the Majorization-Minimization (MM) algorithm [42]. The

algorithmic detail is discussed in the original paper [42].

With derived principal scores A from LPCA as aggregated variables for each

pathway, we can estimate their statistical significance by analyzing association of

these aggregated variables with disease outcome. Specifically, With derived principal

scores A as predictors and disease outcome as the response variable, we learn a

logistic regression model for each pathway p by assuming the following model:

log(
πj

1− πj
) = β0 +

K∑
k=1

βka
j
k (4.3)

where πj is the posterior probability of the jth subject having disease given known

aggregated variables A and statistical significance of βk’s indicates whether the path-

way is significantly associated with disease outcome. We take the first principal score
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with K = 1 to use one summary statistic for each pathway, which has been done in

previous studies [11] and has provided satisfactory performances in our experiments.

4.2.2 Methodology

In LPCA, the derived aggregated variables only depend on the data distribution

but are not directly related to disease outcome. As we only take the first principal

scores for each pathway, a simple LPCA may not give the principal components and

corresponding scores that are most associated with outcome. In order to make sure

that the resulting principal components and summary statistics contain the most

influential information regarding disease, we propose SLPCA method by adopting

the similar idea in SPCA [4, 5, 11] to derive summary statistics that are associated

with outcome as much as possible.

The key idea of SLPCA for association study is to estimate pathway-level sig-

nificance by deriving the most associated summary statistics from a group of SNPs

with maximum combined effect in pathways. However, simply selecting several top

SNPs based on their individual significance as in conventional GWAS has limited

power as the most disease-associated group of SNPs may contain SNPs with rela-

tively mild individual effects but significant combined effects due to the interactions

among these SNPs. To solve this problem while avoiding the time consuming tasks

as in traditional forward or backward feature selection [65] to select such most asso-

ciated SNP groups from a large number of potential candidates, we adopt a similar

heuristic procedure in a recent pathway based analysis using SPCA [11]. Specifically,

in each pathway, we first rank its mapped SNPs based on their statistical association

with outcome and group SNPs as candidate units by gradually increasing the size

as in forward selection. We implement LPCA to derive multiple potential summary

statistics for the formed candidate groups respectively. The final statistical signifi-
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cance of each pathway is the best value derived from the candidate group with the

most discriminating power in (4.3).

In order to have a fair comparison of our proposed SLPCA with SPCA for path-

way based analysis, we follow the same SNP selection procedure in [11]. For each

pathway, we sequentially form 20 candidate groups by selecting 20 thresholds at each

increment of 5 percentiles of total SNPs based on SNP association measure, which is

computed as the coefficient p-value by fitting a logistic regression model with geno-

type data and outcome. For each of these 20 candidate groups, we implement LPCA

to derive the first principal scores and thereafter compute t-statistic (= β̂1/s.e.(β̂1))

as the test statistics based on (4.3). For each pathway, the final test statistic is based

on the maximum absolute value of t-statistics among all the candidate groups, which

is denoted as M statistic:

M = {t` : |t`| = max1≤`≤20|t`|}, t` = β̂`1/s.e.(β̂
`
1), (4.4)

where ` indexes candidate groups of SNPs. This new test statistic can not be ap-

proximated well by t-distribution. Hence, we estimate the final pathway association

significance by computing nominal p-values based on permutation test to generate a

null distribution of M statistics with random disease outcome.

In summary, our SLPCA takes the following steps to measure the significant

association of pathways with disease:

(1) Generate candidate SNP groups for each pathway

For each individual SNP assigned to a given pathway, its significance (p-value) can

be computed by fitting a logistic regression model. Given all SNPs belonging to a

pathway, we generate 20 incremental candidate groups by setting 20 thresholds at

each increment of 5 percentiles of p-values for those SNPs. Hence, for each pathway,
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20 groups of SNPs {S1, . . . , S20} are formed by sequentially grouping SNPs with

p-values less than each corresponding threshold.

(2) LPCA on candidate SNP groups

LPCA can be implemented to compute the first PC scores for 20 candidate groups

respectively in each pathway.

(3) Calculate M statistics for candidate groups

For each candidate group S`(1 ≤ ` ≤ 20), we fit the logistic regression model (4.3)

using the corresponding first PC scores and estimate t-statistic t` = β̂`1/s.e.(β̂
`
1). Let

M = {t` : |t`| = max1≤`≤20|t`|}.

(4) Estimate the null distribution of M statistics

For each pathway, we perform permutation test by generating random disease status

for each sample from a Bernoulli distribution with the success probability set to

the disease prevalence. Based on randomly generated outcomes, the empirical null

distribution of M statistics can be estimated by repeating steps (1) to (3) and pooling

together corresponding M values from all pathways as a random sample from the

null distribution of M .

(5) Calculate p-value for each pathway

Given a null distribution of M statistic and M values for all pathways based on

true disease status, an empirical p-value for each pathway can be calculated to esti-

mate the pathway significance. This provides a self-contained test which compares

pathways to the non-associated genomic background.

With such an implementation, our SLPCA has the potential to aggregate weak

signals from individual SNPs with the explicit modeling of categorical SNP data

considering outcome.
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4.2.3 Simulation study

To demonstrate the advantages of explicit modeling of categorical SNP data in

our SLPCA model, we first carry out a simulation study following the experiment

design in [11], to which we compare the performance of SLPCA for the detection of

causal pathways. First, to account for the pathway size effect in association study, 50

gene sets are randomly selected as testing pathways from those Gene Ontology (GO)

categories from Biological Process Ontology in GO database [2]. Based on the En-

sembl database (Release 67) [23], each selected pathway contains SNPs within 5KB

upstream or downstream from its corresponding genes. After limiting SNPs to those

on the Perlegen GV4 chip and filtering them for quality control to guarantee minor

allele frequency (MAF) > 0.05, we have 3,584 SNPs in total across the selected 50

pathways with their size ranging from 25 to 195. Further, to construct causal path-

ways, five pathways with SNPs across different chromosomes are randomly selected

from 50 pathways. These five causal pathways have 105,116,171,177, and 195 SNPs,

respectively.

In order to generate samples of SNP genotype data with realistic allele frequencies

and LD patterns, we use HAP-SAMPLE simulation tool (command-line version) [87].

HAP-SAMPLE simulates genotype data for case-control studies by resampling from

HapMap Phase I/II public database (Release 21a) [16]. In this simulation, we use

the Caucasian cohort (CEU) population database as the source dataset from which

samples of SNP data are generated. We further generate case-control status based

on sampled genotype data using the following disease model:

log(f/(1− f)) = β0 + β1g1 + β2g2 + · · ·+ βDgD (4.5)

where D is the total number of causal SNPs associated with outcome status; gi
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represents the genotype of causal SNP i (1 ≤ i ≤ D); and f = Pr(disease|g1, . . . , gD)

is the probability of disease given genotypes {g1, . . . , gD}. To guarantee independent

effects from different causal SNPs in our experiments, we randomly select D causal

SNPs on different chromosomes in each selected causal pathway, where D=3, 4,

and 5. The coefficients βi(1 ≤ i ≤ D) also are independently generated from a

Gaussian distribution N(µ, σ2). As in [11], we have tested four different scenarios

with µ = log(1.1) and σ2= 0.15, 0.2, 0.25, and 0.3 respectively for each D, resulting

in 4× 3 = 12 different settings. We note that the coefficient βi reflects the effect of a

causal SNP i in affecting disease outcome. A larger absolute value of βi indicates that

SNP i has more significant association with disease. We assume disease prevalence to

be 5% and the estimation of β0 follows the solution in [43]. Given genotype data and

values of {β0, β1, . . . , β5}, f is computed using the disease model (4.5) with which

the absolute risk (AR) is computed in HAP-SAMPLE to generate case-control status

for five causal pathways. In the remaining 45 null pathways, the case-control status

are randomly generated from a Bernoulli distribution with the probability of disease

equal to 5%. We generate 500 case and control samples respectively for each scenario

of our simulation experiments and have replicated each scenario 100 times, resulting

in 500 (5× 100) causal pathways and 4500 (45× 100) null pathways in total.

As in [11], statistical power is used as the criterion to evaluate the performance of

our SLPCA, which is compared with SPCA in [11]. Specifically, it is computed as the

proportion of detected causal pathways that are significantly associated with case-

control outcome using two methods. We have independently implemented SPCA for

comparison as we do not have the access to the original code by the authors in [11].

We first compute the power at the significance level 0.05 for all the scenarios

using both methods. Based on the results shown in Table 4.1, it is clear that our

SLPCA consistently performs better than SPCA due to the explicit modeling of
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Table 4.1: Comparison of power obtained by SLPCA and SPCA at significance level
0.05 ([48] c© 2012 by ACM).

Scenario SLPCA SPCA
D=3, σ2=0.15 0.68 0.61
D=3, σ2=0.2 0.74 0.68
D=3, σ2=0.25 0.76 0.72
D=3, σ2=0.3 0.78 0.76
D=4, σ2=0.15 0.78 0.71
D=4, σ2=0.2 0.79 0.76
D=4, σ2=0.25 0.84 0.82
D=4, σ2=0.3 0.85 0.83
D=5, σ2=0.15 0.82 0.79
D=5, σ2=0.2 0.86 0.84
D=5, σ2=0.25 0.92 0.90
D=5, σ2=0.3 0.93 0.92

categorical SNP data. We further investigate the performances of both methods for

a more thorough analysis with different false positive rates at ten different levels

{0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05}. We plot the Receiver

Operating Characteristic (ROC) curves for each scenario obtained by two methods in

Figure 4.2. From the figure, SLPCA again has consistently higher power than SPCA

at different significance levels under different scenarios. In addition, we notice that

SPCA and SLPCA both have higher power with increasing variances of coefficients

βi’s in the disease model (4.5). As βi indicates the relative effect of the ith causal

SNP and the absolute value of βi tends to be large if it has a large variance, the

ith SNP has larger effect on outcome with increasing variance. In other words, with

a larger variance, power increases as causal SNPs tend to have higher significance

and causal pathways are easier to be detected. Our results have demonstrated this

tendency. More importantly, the performance improvement of SLPCA over SPCA

is more obvious when we have smaller variances for βi’s, which indicates that causal
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Figure 4.2: ROC curves for SPCA and SLPCA with D=3,4,5: (a) σ2=0.15; (b)
σ2=0.2; (c) σ2=0.25; (d) σ2=0.3 ([48] c© 2012 by ACM).

SNPs have less effect on disease outcome and hence causal pathways are more difficult

to detect. Due to the better modeling of SNP data to capture more influential

information, SLPCA has demonstrated its advantages over SPCA in these difficult

cases.

We also find that SLPCA and SPCA both have larger power with more causal

SNPs in the disease model (4.5) with the same variances of coefficients βi’s. It is nat-

ural that the enrichment of causal SNPs in a pathway contributes to its significance.

Moreover, in the case with fewer causal SNPs (D=3) and smaller coefficient variances

(σ2=0.15) in causal pathways, it is more difficult to detect causal pathways and the

power is relatively low. These cases resemble the situations of individual SNPs with

weak effects, which pose a challenging problem for both methods. However, we find
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that the superiority of SLPCA over SPCA is prominent especially for these difficult

cases with fewer causal SNPs in the disease model, again due to the explicit modeling

of SNP data by LPCA.

Overall, it is clear that our SLPCA can achieve higher power to identify SNPs

that are significantly associated with disease status, especially for SNPs with rela-

tively weak effects. By explicitly modeling the distribution of categorical SNP data

with LPCA instead of using traditional PCA with the underlying assumption of

Gaussian distribution, which may not perfectly capture the characteristics of SNP

data, SLPCA has demonstrated its advantages over traditional SPCA for pathway

based association analysis.

4.2.4 Analysis for Crohn’s disease

Using the case-control data from Wellcome Trust Case Control Consortium

(WTCCC) (http://www.wtccc.org.uk), we further apply our SLPCA model to iden-

tify pathways that are significantly associated with Crohn’s Disease (CD), which is

a inflammatory bowel disease conjectured to be affected by multiple genetic factors

as well as environmental exposures. WTCCC provides 2,005 case samples and 3,004

control samples consisting of 1,504 individuals from the 1958 British Birth Cohort

and 1,500 individuals from the UK blood services. These samples are genotyped by

Affymetrix GeneChip 500K. After quality control, there are 1,748 case samples and

2,938 controls in total with 469,557 SNPs in each sample [82].

Table 4.2: Representative pathways identified by SLPCA in WTCCC Crohn’s disease
data set ([48] c© 2012 by ACM).

Pathway No. of genes No. of SNPs

Protein oligomerization 40 706
Positive regulation of cytokine secretion 10 117
Interleukin 1 secretion 10 116
Positive regulation of DNA binding 26 300
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Table 4.2 continued

Pathway No. of genes No. of SNPs

Regulation of transcription factor activity 40 375
Positive regulation of binding 28 318
Positive regulation of transcription factor activity 24 294
Regulation of binding 58 535
Regulation of DNA binding 47 406
Activation of NF-κB transcription factor 18 261
Detection of biotic stimulus 10 75
Response to bacterium 30 177
Detection of chemical stimulus 18 497
Defense response to bacterium 24 146
Regulation of cytokine production 25 244
KEGG NOD like receptor signaling pathway 62 499
Positive regulation of I-κ kinase NF-κB cascade 80 442
Regulation of secretion 40 405
Positive regulation of cytokine production 15 131
Positive regulation of protein secretion 12 126
Regulation of cytokine secretion 16 135
Detection of external stimulus 23 178
Positive regulation of secretion 20 168
Peptide metabolic process 10 474
Cytokine secretion 18 190
Regulation of protein secretion 22 223
Protein secretion 32 364
Regulation of I-κ kinase NF-κB cascade 86 502
Transcription initiation 35 279
Cytokine production 72 593
I-κ kinase NF-κB cascade 107 704
Regulation of signal transduction 213 2440
Positive regulation of T cell proliferation 13 130
Regulation of T cell proliferation 16 140
Regulation of T cell activation 28 225
T cell proliferation 19 200
KEGG JAK-STAT signaling pathway 155 1205
KEGG antigen processing and presentation 89 318
Glycerophospholipid biosynthetic process 30 158
Glycerophospholipid metabolic process 43 297
Phospholipid biosynthetic process 39 334
ST phosphoinositide 3 kinase pathway 33 402
Phospholipid metabolic process 71 568
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To carry out pathway-based genome-wide analysis, we again follow the experi-

ment in [11] to obtain the pathway information from Molecular Signature Database

(MSigDB: http://www.broadinstitute.org/gsea/msigdb), in which we collect two cat-

egories of pathways—C2-CP and C5-BP, corresponding to annotated canonical path-

ways (CP) from online pathway databases such as KEGG, BioCarta and Reactome

pathway databases and GO biological processes (BP) respectively. To increase the

specificity by avoiding overly broad pathways, we further filter out those pathways

with more than 250 genes, resulting in 866 CPs and 751 BPs with 8,354 uniques genes

in total. We map SNPs in CD data to these pathways based on the Homo sapiens

Variation (dbSNP 130) and Homo sapiens genes (GRCh37.p7) datasets in the En-

sembl database (Ensembl 67) using BiomaRt (http://www.biomart.org/). Similarly

as in our simulation study, SNPs located within 5KB upstream or downstream of cor-

responding genes are assigned to different pathways respectively. With the WTCCC

CD data and mapped SNPs, we implement SLPCA to each pathway and nominal

p-values from permutation tests are estimated to identify significant pathways at

significance level 0.05.

From our results, the identified pathways are typically involved in the following

cellular functions: (1) Regulation of protein secretion and transcription factor activ-

ity regulation; (2) Detection of stimulus and response to bacterium; (3) NOD like

receptor signaling and regulation of the Nuclear Factor-κB (NF-κB); (4) Regulation

of cytokine production and secretion; (5) Regulation of signal transduction; (6) T-cell

proliferation or activation related pathways; and (7) Interleukin-1 secretion. Most of

these pathways are related to the immune system, which reacts abnormally in people

with CD. Some of representative significant pathways are given in Table 4.2. Among

these pathways, NOD2 appears in multiple pathways, especially in pathways involv-

ing NF-κB regulation and other signaling pathways. It is indeed the first identified
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gene associated with CD in previous analysis [62]. It plays an important role in the

immune response by recognizing specific pattern of intracellular bacteria and stim-

ulating immune reaction through activating the NF-κB protein. T-cell proliferation

or activation related pathways contain genes IL12B, IL18, IL21 in common. Among

these genes, IL12B has been verified as an associated gene in [6]. JAK-STAT signal-

ing pathway contains IL23R, a previously identified associated gene for CD [59]. We

also have identified antigen processing and presentation pathway containing HLA-

DQA2, HLA-DOB, and HLA-DRA which have been found highly associated with

CD by Ballard et al. [6] We also find a group of significant pathways related with lipid

metabolism including glycerophospholipid metabolic process, phospholipid metabolic

process and glycerophospholipid biosynthesis pathways.

We further investigate frequent genes that appear in these significant pathways

associated with CD. The top ten most frequent genes enriched in top 40 pathways are

NOD2, PYCARD, BCL10, NLRP3, CARD8, PYDC1, RELA, UBE2N, CRTAM and

NOD1. In addition to NOD2 as the first identified CD susceptibility gene, RELA is

another important member of NF-κB family, which plays critical roles in regulating

the cellular response to infection. Incorrect regulation of NF-κB is thought to be

related with inflammatory or autoimmune diseases, which may trigger CD [29]. Other

members of the NOD-like receptor (NLR) family: NOD1, NLRP3, NLRC4, NLRC12

and NLRP2 also emerge from these significant pathways. These NLR proteins have

been proven to be related in cytokine processing and NF-κB activation and are

widely accepted as critical to regulate the innate immune response [78]. In previous

association analysis [63], the protein encoded by BCL10 has been shown to induce

apoptosis and to activate NF-κB. Moreover, another gene MALT1 which synergizes

in the activation of NF-κB with this protein also occurs frequently in identified

pathways. Tumor Necrosis Factor (TNF) as pro-inflammatory cytokines, is also
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considered as an inducer of NF-κB activity and most TNF receptor members activate

NF-κB pathways through their interaction with TNF Receptor-Associated Factors

(TRAFs) [19]. Our results confirm that TNF, TRAF6 and genes interactive with

TRAF6 such as UBE2N and UBE2V1 are included in significant pathways associated

with CD. In addition, stimulation of Toll-Like Receptors (TLRs) identified as specific

pattern recognition molecules will also lead to activation of NF-κB [39]. We find

several TLR genes in these identified pathways, including TLR6, which are believed

to be key regulators of both innate and adaptive immune responses [29].

In summary, our SLPCA method shows the potential to detect association effects

for CD and our results have a large overlap with the results reported in [11]. These

findings agree well with the recent literature of multiple GWA studies [6, 77, 80].

But due to the difficulty of obtaining the exact same testing dataset as in [11] and

the fact that there still lacks a complete understanding of the etiology of CD, it is

difficult to give a conclusive evaluation. Further validation of the proposed method

will be the focus of our future research when a better-understood benchmark data

is available.

4.2.5 Conclusion

SLPCA captures more information of original data compared with SPCA by

explicit modeling of SNP data distribution and guarantees the association of ag-

gregated variables corresponding to pathways with disease outcome by a heuristic

selection of SNPs in pathway. Both simulation data and Crohn’s disease data with

real LD structure have testified our SLPCA method has favorable results compared to

SPCA. In our future research for better “supervised” learning to improve on heuris-

tic SNP selection, we will consider to add sparsity penalty in SLPCA as in sparse

PCA [91] to automatically generate subsets of SNPs with aggregated variables that
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are significantly associated with outcome. We will further explore new statistical

learning models to integrate outcome information directly into the LPCA procedure

to achieve adaptive instead of heuristic summary statistics. In addition, the power of

current pathway-based methods for GWAS is limited by the curated pathway defini-

tion. Network-based analysis for GWAS provides a promising framework considering

interaction among genes to better understand the underlying mechanisms of disease

development.

4.3 Supervised categorical PCA

We have previously developed logistic PCA (LPCA) methods [48, 42] for gene-

and pathway-based analysis of SNP data by explicitly modeling the categorical nature

of SNP data. For LPCA, we first transform the genotype data from the domain

{0, 1, 2} to binary data {0, 1}, which is assumed to follow a Bernoulli distribution. We

have obtained promising results compared with traditional PCA-based SNP analysis

that inherently assumes continuous normally distributed SNP data. However, due to

the data transformation, LPCA also has an inherent assumption that the risk effect

takes either recessive or dominant model. The important information in the original

SNP data, especially when we have more general underlying risk effect models, may

be lost due to the transformation.

In this section, we develop a more general PCA denoted as categorical PCA

(CPCA) that does not make any specific model assumptions of the effect of genetic

mutants on the given trait. We first derive an optimization algorithm for CPCA

suitable for categorical data analysis. Similar as conventional PCA, CPCA finds

the optimal linear combinations that best explain the observed data but may not

derive the principal components that are the most associated with a trait of interest.

In order to derive the best principal components capturing the maximum combined
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effect from multiple SNPs with respect to a given trait of interest, we then apply it

in a similar supervised framework as SPCA method.

By our supervised CPCA (SCPCA) [50], the resulting principal components have

the most discriminating power and can be further taken as aggregated predictors for

the disease outcome. It ensures that the principal components obtained by CPCA

are not deteriorated by noisy SNPs that are irrelevant with the trait. With a more

general data model and direct integration of trait information for identifying the

most influential SNPs in a functional region, our preliminary results on both simu-

lated genotype data and the Wellcome Trust Case Control Consortium (WTCCC)

Crohn’s Disease (CD) data [82] have demonstrated the advantages of our supervised

CPCA over traditional SPCA and supervised LPCA for gene-based and pathway-

based aggregated association analysis.

4.3.1 Methodology

It is desirable to develop variants of PCA based on respective modelings for

different types of data such as integer, categorical, binary, and nonnegative data.

PCA has been extended to the exponential family in previous work [14, 79, 27] by

assuming data follows a general form of exponential family distributions:

p(xi|θi) = exp
(
θTi xi + log p0(xi)−G(θi)

)
.

Here, xi ∈ Rd is the ith data point and θi ∈ Rd is the “natural parameter” of the cor-

responding distribution. G(θi) is a function of the form log
∑
xi∈X p0(xi) exp(θTi xi)

to ensure that the sum of p(xi|θi) over the domain of xi equals to 1 and p0 is a

function depending only on xi. Different members in the exponential family have

their respective G functions specified in [14], which results in different distributions

and different generalization of PCA. To generalize PCA based on the distributions of
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exponential family, it starts from an important assumption of θi where it is assumed

to be a linear combination of bases W = [w1, ...,wl] with the minimum reconstruc-

tion loss represented as θi =
∑l
q=1 ziqwq + µ. The bases and their corresponding

weights zi = {ziq} are called as principal component loading vectors and principal

component scores respectively. Given the distribution for data points xi and the

representation of θi, the conditional log-likelihood function of the n data points with

respect to their principal components can be written as:

` =
n∑
i=1

(
θTi xi −G(θi)

)
=

n∑
i=1

(
(zTi W

T + µT )xi −G(Wzi + µ)
)
, (4.6)

where p0 can be considered as a constant term and ignored here. The principal

components resulted from a generalized PCA can then be estimated by maximiz-

ing (4.6). In a special case of the data following a normal distribution, it turns to be

the tranditional PCA derived by maximizing this log-likelihood with G(θi) having a

form of θTi θi/2 where the corresponding parameters are zi, W , and µ. As mentioned

earlier, the SNP data in GWAS only has three different genotypes {00, 10/01, 11}.

We focus on the derivation of exponential family PCA for categorical data denoted

as CPCA in the equivalent categorical domain {0, 1, 2} instead of taking numerical

values. For categorical SNP data which follows a multinomial distribution, each ob-

servation xi is expressed as a set of observation vectors x0
i ,x

1
i ,x

2
i with only 1 and

0 elements. A 1 or 0 in xki , k ∈ {0, 1, 2} denotes the corresponding outcome equals

to k or not. Each observation vector xki corresponds to a natural parameter vec-

tor θki determining the success probabilities of the outcomes belonging to category

k. Each θki is projected to a low-dimensional space spanned by its respective basis

W k = [wk
1 , ...,w

k
n], sharing the common principal component scores zi. It can then
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be represented as θki = W kzi+µ
k. For multinomial distributions, the corresponding

G function for θki ’s is
∑d
j=1 log

∑c
k=1 exp(θkij), where θij is the j-th element of θi. By

substituting this G function into (4.6) and replacing θki by the actual parameters zi,

W k, and µk, the log-likelihood function to be maximized for CPCA is rewritten as:

` =
n∑
i=1

{
c∑

k=1

θkTi x
k
i −G({θki })}

=
n∑
i=1

d∑
j=1

{
c∑

k=1

(Zi:W
kT
:j + µkj )X

k
ij − log

c∑
k=1

exp(Zi:W
kT
:j + µkj )} (4.7)

where Xk = [xkT1 ; ...;xkTn ], Z = [zT1 ; ...; zTn ] and W kT = [wkT
1 ; ...;wkT

l ]. Zi:, W
kT
:j and

µkj represent the i-th row of Z, the j-th column of W kT and the j-th element of µk

respectively.

The principal component scores Z and principal component loading matrix W

could be estimated by maximizing this log-likelihood function with the constraint

that Z has orthonormal columns. We implement Newton’s method for gradient

ascent search for the local maximum as the objective function is not jointly concave

with respect to Z, W , and µ. Given the objective function (4.7) with respect to

Zi:,W
kT
:j and µkj , we update Zi:,W

kT
:j and µkj by computing their respective first-partial

derivative and Hessian matrix for each iteration in Newton’s method. Specifically,

Z ′i: = Zi: −H(Zi:)
−1g(Zi:), (4.8)

where Z ′i: represents the updated principal component scores in each iteration; g(Zi:)

and H(Zi:) denote the first derivative and Hessian matrix of the objective function
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` with respective to Zi:. By basic calculus, g(Zi:) is computed as:

g(Zi:) =
∂l

∂Zi:
=

d∑
j=1

c∑
k=1

(W k
j:X

k
ij −W k

j:P
k
ij)

=
c∑

k=1

(Xk
i: − P k

i: )W
k,

where P k
ij =

exp(Zi:W
kT
:j )∑c

k=1
exp(Zi:WkT

:j )
. Similarly, H(Zi:) is computed as:

H(Zi:) =
d∑
j=1

c∑
k=1

(P k2
ij − P k

ij)W
kT
:j W

k
j:

In each iteration, we also alternatively update W kT
:j and µkj based on the following

equations:

W ′kT
:j = W kT

:j −H(W kT
:j )−1g(W kT

:j ), (4.9)

µ′kj = µkj −H(µkj )
−1g(µkj ), (4.10)

and we have:

g(W kT
:j ) =

∂l

∂W kT
:j

=
n∑
i=1

(ZT
i:X

k
ij − ZT

i:P
k
ij)

= ZT (Xk
:j − P k

:j).

H(W kT
:j ) =

n∑
i=1

(P k2
ij − P k

ij)Z
T
i:Zi:
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g(µkj ) =
n∑
i=1

(Xk
ij − P k

ij)

H(µkj ) =
n∑
i=1

(P k2
ij − P k

ij)

The optimal solution of the corresponding parameters Z,W kT , and µ can be

estimated by the following Algorithm 3. As any non-convex optimization problem,

our algorithm is not guaranteed to converge to a global maximum. To overcome

the problem of being trapped by local optima, we randomly start the algorithm

with different initialization values several times and find the best solution with the

maximum likelihood value. The time complexity for this whole procedure is O(ks3)

where s = min(n, d) and k is number of iterations it takes to converge. Specifically,

the calculation of the first derivatives and Hessian matrices takes O(dnl) and O(dnl2)

respectively. The update of W , Z and µ takes O(ql3) where q = max(n, d). The

whole time complexity is mainly determined by QR decomposition procedure which

takes O(s3) in each iteration. Our CPCA is in the same magnitude of time complexity

as LPCA. Although PCA has a lower time complexity O(nd2 + d3) if n > d, one

should be aware that our algorithms are designed for more general risk effect models

and may achieve better performance with reasonable sacrifice on running time.

Similarly, we also apply CPCA in a similar supervised framework as SLPCA to

guaranttee the derived PCs related with the disease. Our supervised CPCA takes

the following steps to perform aggregated association analysis of a trait for a SNP

set S:

(1) Generate candidate SNP subsets for a SNP set S

For each individual SNP in S, its statistical significance reflected by the correspond-

ing p-value can be computed by fitting a logistic regression model. Given all SNPs
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Algorithm 3 Categorical PCA (CPCA)

1. Initialize with µ = (µk1, ..., µ
k
d)
T , Z = [Z1:; ...;Zn:] and W k = [W k

1:; ...;W
k
d:] by

random values. Compute the transpose of W k: W kT = (W kT
:1 , ...,W kT

:d ).
2. Compute g(Zi:), H(Zi:), g(W kT

:j ), H(W kT
:j ), g(µkj ), and H(µkj ) respectively.

3. Update Z by Z = [Z1:; ...;Zn:] where each Zi: is updated based on (4.8) re-
spectively. Compute the QR decomposition Z = QR and replace Z by Q for
orthonormality constraints.
4. Update W kT by W kT = [W kT

:1 , ...,W kT
:d ] where W kT

:j ’s are updated by (4.9)
respectively.
5. Update µk by µk = [µk1, ..., µ

k
d]
T based on (4.10) respectively.

6. Repeat steps 2 through 5 until convergence.

in S, we generate 20 incremental candidate subsets by setting 20 thresholds at each

increment of 5 percentiles of p-values for those SNPs. Hence, 20 subsets of SNPs

{S1, . . . , S20} are formed by sequentially grouping SNPs with p-values less than each

corresponding threshold.

(2) CPCA on candidate SNP subsets

CPCA can be implemented to compute the first PC scores for 20 candidate subsets

respectively.

(3) Calculate M statistic for a SNP set S

For each candidate subset S`(1 ≤ ` ≤ 20), we fit the logistic regression model (4.3)

using the corresponding first PC scores and estimate t-statistic t` = β̂`1/s.e.(β̂
`
1). Let

M = {t` : |t`| = max1≤`≤20|t`|}.

(4) Estimate the null distribution of M statistic

We perform a permutation test by generating random trait status for each sample

from a Bernoulli distribution with the success probability set to the disease preva-

lence. Based on randomly generated outcomes, the empirical null distribution of M

statistic can be estimated by repeating steps (1) to (3) and pooled together as a

random sample from the null distribution of M .
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(5) Calculate p-value for a SNP set S

Given a null distribution of M statistic and the M value based on true trait, an

empirical p-value for S can be calculated to estimate its significance.

4.3.2 Simulation experiment

To simulate SNP genotype data with real allele frequencies and linkage disequilib-

rium (LD) structure patterns, we use the HAPGEN2 [72] simulation tool to generate

case and control samples based on a reference set, for which we choose Caucasian

cohort (CEU) population on human chromosome 22 from 1000 Genomes project [15].

HAPGEN2 simulates genotype data by resampling this reference set of population

haplotypes and an estimate of the fine-scale recombination rate across the region, so

that the simulated data has the same LD patterns as the reference data [72]. Unlike

other simulation tools simulating a single “disease SNP” on the same haplotype,

such as HAPSAMPLE [87], HAPGEN [72], and GWAsimulator [43], HAPGEN2 can

simulate multiple SNPs associated with the disease outcome on the same chromo-

some, which is often the case for many complex diseases [72]. First, we map a total

of 6,129 SNPs genotyped with Affymetrix array 6.0 in the chosen reference set to

their neighboring genes: SNPs within 5KB upstream or downstream from a gene are

assigned to that gene based on the Ensembl database (Release 67). We randomly

select 50 genes with their constituent SNPs as genotyped SNPs for our simulation.

These selected genes have 11 to 175 constituent SNPs. Among them, five genes are

randomly selected as causal genes for the simulated disease outcome. They contain

56,168,30,12, and 99 SNPs respectively, within which three SNPs for each causal

gene are randomly selected as their corresponding disease SNPs respectively. The

other 45 genes are considered as null genes with no risk effect on the outcome.

HAPGEN2 models the probability πi = P (Yi = 1|Gi) that subject i has dis-
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ease given SNP genotype Gi ∈ {0, 1, 2}, for which πi could take three values: f0,

f1(= f0 × rr1), or f2(= f0 × rr2) corresponding to the genotype with different num-

ber of minor alleles (Gi = 0, 1, or 2). In this general disease model, f0, f1 and f2

are the corresponding penetrance of the disease and rr1, rr2 are the relative risk for

heterozygous (Gi = 1) or homozygous ((Gi = 2)) pairs, respectivly. Under a null

hypothesis SNP Gi has no effect on disease, rr1 = rr2 = 1. To test the power of

our supervised CPCA method for detecting causal genes, we studied three differ-

ent settings for risk effect sizes for disease SNPs in those causal genes. In order to

model more general risk effect from different SNPs, we set the homozygote risk for

a disease SNP slightly bigger than its corresponding heterozygote risk to avoid any

proportional relationship assumptions between its genotype and risk effect size. For

example, if we assume a commonly adopted additive model, the relative homozygote

risk for a disease SNP is inherently assumed to be equal to the square of its relative

heterozygote risk, which may not capture the actual genotype-phenotype relation-

ships in real data. Therefore, we set the relative heterozygote risk and homozygote

risk for all disease SNPs at three different levels at (rr1, rr2) = (1.2, 1.3), (1.3, 1.4),

and (1.5, 1.6). In our simulation study, 500 case and control samples are generated

respectively in 100 replicates for each causal gene under different risk levels. The

same number of cases and controls are also randomly generated in 100 replicates for

45 null genes. In summary, we simulate 500 (5×100) causal genes and 4500 (45×100)

null genes for each scenario in total.

The performance of our supervised CPCA (SCPCA) method on this set of simu-

lated data is evaluated by comparing with the results obtained by SPCA and super-

vised LPCA (SLPCA) based on two criteria: statistical power and receiver operating

characteristic (ROC) curves. The statistical power is computed as the proportion of

detected causal genes that are significantly associated with the case-control outcome,
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for which we have the ground truth as we simulate the outcome based on selected

“causal” SNPs. Table 4.3 provides the statistical power at the significance level

0.05 from different methods, which shows that our method has achieved consistently

higher power than the other two methods. Due to explicit modeling of categori-

cal data, our SCPCA performs better than SPCA, which inherently assumes that

the data follows a normal distribution. We note that the performance of SLPCA is

slightly worse than SPCA in this set of simulation experiments because it loses infor-

mation when transforming the original categorical genotypes {0, 1, 2} into a binary

representation {0, 1} by assuming an inappropriate dominant/recessive model. To

further validate the superiority of our SCPCA method, we plot the ROC curves by

these three methods for all three risk effect sizes as shown in Figure 4.3. The ROC

curves by SCPCA are always on top of those from SPCA and SLPCA for all sce-

narios, which demonstrates that its statistical power is consistently higher than the

others at different significant levels. In addition, both Table 4.3 and Figure 4.3 have

illustrated that our SCPCA has achieved more significant performance improvement

over the other two methods when the risk effect is small. This demonstrates that

SCPCA can perform better due to its explicit modeling of categorical SNP data with

more general model assumptions, especially when we have difficult cases where the

causal genes are more difficult to detect with smaller risk effect from their constituent

disease SNPs. As we expect, based on the results from this simulation experiment,

SCPCA is clearly superior to SPCA and SLPCA.

4.3.3 Analysis for Crohn’s disease

We further apply our SCPCA method for a pathway-based association analysis

of Crohn’s Disease (CD) based on the GWAS case-control data from Wellcome Trust

Case Control Consortium (WTCCC) [82]. In this CD dataset, there are 2,005 case
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Figure 4.3: ROC curves for SCPCA, SPCA, SLPCA at risk level (relative heterozy-
gote risk, relative homozygote risk)= (a) (1.2,1.3); (b) (1.3,1.4); and (c) (1.5,1.6) in
gene-based association analysis on simulation data [50].
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Table 4.3: Comparison of statistical power obtained by SCPCA, SPCA and SLPCA
at significance level 0.05 for three risk levels: (relative heterozygote risk, relative
homozygote risk)=(1.2,1.3); (1.3,1.4); (1.5,1.6) in gene-based association analysis on
simulation data [50].

Power Method
Risk level SCPCA SPCA SLPCA

(1.2,1.3) 0.30 0.24 0.14
(1.3,1.4) 0.37 0.37 0.30
(1.5,1.6) 0.75 0.71 0.68

samples and 3,004 control samples consisting of 1,504 individuals from the 1958

British Birth Cohort and 1,500 individuals from the UK blood services. After quality

control, there are 1,748 cases and 2,938 controls in total with 469,557 SNPs in each

sample [82].

To analyze the joint effect from multiple SNPs in functional regions that may

be associated with Crohn’s disease, we first map all the SNPs in the CD dataset

into their corresponding pathways and thus implement SCPCA on each pathway to

identify those pathways that are statistically significantly associated with the dis-

ease outcome. Specifically, we first download the pathway information from Molecu-

lar Signature Database (MSigDB: http://www.broadinstitute.org/gsea/msigdb) and

collect two categories of pathways as the prior biology knowledge: C2-CP and C5-BP,

corresponding to annotated canonical pathways (CP) from online pathway databases

such as KEGG, BioCarta and Reactome pathway databases and GO biological pro-

cesses (BP), respectively. We further filter out those pathways with more than 250

genes to increase the specificity by avoiding overly broad pathways, which has been

similarly done in literature [48, 11]. The resulting 866 CP and 751 BP pathways

are taken as candidate functional regions for our aggregated association analysis of

Crohn’s disease. With the same procedure as in [48], we map SNPs in the prepro-
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cessed CD data to these pathways based on the Homo sapiens Variation (dbSNP

130) and Homo sapiens genes (GRCh37.p7) datasets in the Ensembl database (En-

sembl 67) using BiomaRt (http://www.biomart.org/). SNPs are first assigned to

their neighboring genes and then mapped to their corresponding pathways according

to the previously described pathway information. With the WTCCC CD data and

mapped SNPs in all pathways, we implement SCPCA to each pathway and calculate

nominal p-values from permutation tests. To correct for the multiple-testing issue,

we estimate the adjusted p-value for each pathway based on the Benjamini-Hochberg

method. Significant pathways are identified at false discovery rate level 0.05.

We list 30 representative significantly associated pathways in Table 4.4. Those

significant pathways are mostly involved in the following cellular functions: (1)

initialization, activation and regulation of transcription factor activity; (2) lipid

metabolism or lipid biosynthetic process; (3) regulation of protein kinase activity and

protein transport; (4) regulation of cytokine secretion; (5) cellular catabolic process;

(6) interleukin production; (7) response to inflammatory and virus; (8) epidermis

and muscle development. Many of these pathways are related to the development

of human immune system. Their alteration could cause potential malfunctioning of

immune system that leads to CD.

To be more specific, those pathways with functions in regulation of cytokine se-

cretion and initialization, activation and regulation of transcription factor are closely

related with innate immunity and also have been claimed as statistically significant

pathways associated with CD in previous SPCA and SLPCA based analysis [48, 11].

Among these pathways, their common gene NOD2 is the first identified gene as-

sociated with CD in previous analysis [62]. It plays an important role in immune

response by stimulating immune activity through activating NF-κB. Another com-

mon group of causal pathways in these three methods includes gene categories related
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to response to bacteria and inflammatory. The overly aggressive immune response

to bacteria causes inflammatory and is more likely a factor causing CD [64]. Our

results also have some other overlap with the previous reported results based on

SLPCA [48] in those pathways related with lipid metabolism and interleukin se-

cretion and production including genes: APOA1, IL18, NOD2, CARD8, PYCARD,

NLRC4, NLRP12, NLRP3, PYDC1, NLRP2, TLR8 and others. These findings agree

well with the recent literature of multiple GWA studies [80, 6, 77]. Substantial al-

ternation of lipid metabolism has been shown in patients with acute CD associated

with metabolic disturbances [32]. In addition, our SCPCA found a set of statistically

significant pathways related with regulation of protein kinase activity. The mitogen

activated protein kinases have been shown with a role in inflammatory bowel disease

such as CD by acting as instigative controllers of many signaling pathways regulat-

ing the innate and adaptive immune system [7]. We also identified several pathways

related with cellular catabolic process and muscle development. Abnormal cellu-

lar metabolic process could cause increased energy expenditure, which are typically

shown in patients with CD and could further alter muscle mass and function with

persist nutritional deficiencies [85]. However, given the fact that there still lacks a

complete understanding of the etiology of CD, it is difficult to provide a conclusive

evaluation, which will be studied in our future research.

4.3.4 Conclusion

We have derived CPCA for aggregated association analysis of categorical SNP

data, which is further extended to SCPCA in a supervised framework. Our SCPCA

captures more relevant information from SNP data based on a better data modeling

and aggregates genotypic information from multiple SNPs into a combined signal that

is the most associated with the trait by a heuristic selection procedure. By explicitly
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Table 4.4: Top 30 representative pathways identified by SCPCA in WTCCC Crohn’s
Disease data set. This table lists the top 30 statistically significant pathways as well
as the number of enriched genes and SNPs for each pathway. Overlapped pathways
with those detected by SPCA or SLPCA are also indicated. In the table: the path-
ways marked as “Yes” have similar functions as the statistically significant pathways
detected by SPCA or SLPCA [50].

Pathway
No. of
genes

No. of
SNPs

Overlap

Peptide metabolic process 10 474 Yes
Lipid biosynthetic process 97 1100 Yes
Transcription initiation 35 279 Yes
Phospholipid biosynthetic process 39 334 Yes
Glycerophospholipid biosynthetic process 30 158 Yes
Lipoprotein metabolic process 33 175 Yes
Membrane lipid biosynthetic process 49 619 Yes
Neuropeptide signaling pathway 14 95
Steroid hormone receptor signaling pathway 20 177
Cytokinesis 19 215 Yes
Activation of NF-κB transcription factor 18 261 Yes
Positive regulation of transcription from RNA 65 1511
polymerase II promoter
Cellular carbohydrate metabolic process 122 1610
Positive regulation of cytokine secretion 10 117 Yes
Positive regulation of transcription factor activity 24 294 Yes
Epidermis development 70 581
Regulation of DNA binding 47 406 Yes
Positive regulation of binding 28 318 Yes
Interleukin 1 secretion 10 116 Yes
Muscle development 92 1979
Cellular catabolic process 209 2076
Cellular lipid catabolic process 34 236
Intracellular protein transport 139 1545
Regulation of protein kinase activity 151 1393 Yes
Glycoprotein metabolic process 88 1466
Regulation of transcription factor activity 40 375 Yes
Interleukin 8 production 11 74 Yes
Inflammatory response 124 1146 Yes
Positive regulation of cell proliferation 142 1991 Yes
Protein targeting 104 1202
Response to virus 49 313 Yes
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modeling SNP data as categorical data instead of continuous data with inherent

assumptions on numerical effects related with genotypes, our SCPCA has shown

higher power compared with SPCA and SLPCA in the gene-based simulation study as

well as pathway-based Crohn’s disease analysis. On the other hand, SCPCA will lose

power if SNP data is indeed under the additive model assumption for introduced risk

that affect the trait of interest. When the underlying model is dominant/recessive

model or unknown, SLPCA or SCPCA is preferred as they make no assumptions on

the numerical effects related with genotypes by assuming SNP data is either binary

or categorical.

4.4 Supervised sparse ePCA

Both SLPCA and SCPCA illustrated in the previous sections take advantage of

an ad-hoc supervised framework to address the issue that the aggregated signals, i.e.

PCs from either LPCA or CPCA are not guaranteed to be directly related to the

outcome of interest. The ad-hoc procedure performs LPCA or CPCA on a subset of

SNPs determined by their individual statistical significance, which may fail for the

cases when a group of SNPs have strong joint effects but weak individual effects. A

flexible way to pursue a good subset of SNPs with their joint effects best related to

the outcome is to perform the sparse ePCA and association analysis in an integrated

framework. Our SSePCA method proposed in the previous section can be applied to

achieve this goal, whose performance will be evaluated by the following simulation

study on a synthetic benchmark data set.

4.4.1 Simulation study

To simulate SNP genotype data with real allele frequencies and linkage disequi-

librium (LD) structure patterns, we still use the HAPGEN2 [72] simulation tool

to generate case and control samples as what we did for the simulation study of
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SCPCA. We still use the same 5 causal genes and the same 45 null genes in the

simulation study of SCPCA. Three SNPs for each causal gene are randomly selected

as their corresponding disease SNPs respectively. HAPGEN2 models the probability

πi = P (Yi = 1|Gi) that subject i has disease given SNP genotype Gi ∈ {0, 1, 2}, for

which πi could take three values: f0, f1(= f0× rr1), or f2(= f0× rr2) corresponding

to the genotype with different number of minor alleles (Gi = 0, 1, or 2). In this

general disease model, f0, f1 and f2 are the corresponding penetrance of the disease

and rr1, rr2 are the relative risk for heterozygous (Gi = 1) or homozygous ((Gi =

2)) pairs, respectively. Under a null hypothesis, SNP Gi has no effect on disease,

thus rr1 = rr2 = 1. For simplicity, we investigate the performance of SSePCA on the

SNP genotypes represented by a dominant model. We named SSePCA applied for

binary data types as supervised sparse logistic PCA (SSLPCA). To test the power

of our SSLPCA method for detecting causal genes, we studied two different settings

for risk effect sizes for disease SNPs in those causal genes. We set the relative het-

erozygote risk and homozygote risk for all disease SNPs at two different levels at

(rr1, rr2)=(1.5, 1.6) and (1.7, 1.8). Also, 500 case and control samples are generated

respectively in 100 replicates for each causal gene under different risk levels. The

same number of cases and controls are also randomly generated in 100 replicates for

45 null genes. In summary, we simulate 500 (5×100) causal genes and 4500 (45×100)

null genes for each scenario in total.

The performance of our SSLPCA method on this set of simulated data is eval-

uated by comparing with the results obtained by SLPCA and a Bayesian method

BhGLM based on receiver operating characteristic (ROC) curves. We plot the ROC

curves by these three methods for both two risk effect sizes as shown in Figure 4.4.

The ROC curves by SSLPCA are always on top of those from SLPCA and BhGLM

for both scenarios except at a very low false positive rate, which demonstrates that its

83



statistical power is mostly higher than the others at different significant levels. This

indicates that SSLPCA can achieve higher power in aggregate association analysis

of the joint effects of SNPs in the causal genes. As we expected, based on the results

from this simulation experiment, SSLPCA is superior to SLPCA due to the flexible

variable selection by an integrative framework rather than an ad-hoc way. In addi-

tion, both SSLPCA and SLPCA has clearly better performance than the Bayesian

method BhGLM, which suggests that the PCA based methods could extract higher

joint effects by taking better care of the relations among SNPs.
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Figure 4.4: ROC curves for SSLPCA, SLPCA, and BhGLM from left to right at
risk levels (relative heterozygote risk, relative homozygote risk)=(1.5,1.6); (1.7,1.8)
in gene-based association analysis on simulation data.
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5. RARE VARIANT ANALYSIS*

5.1 Introduction

Another interesting topic or challenge in association analysis of complex diseases

is rare variant analysis, as some complex diseases have been shown to be related

with rare variants and their interaction with environmental or other factors. Rare

variant is the genetic variant with minor allele frequency (MAF) less than 0.05 or

0.01. It is complicated to study rare variants because they are not well represented

in genome wide association arrays and there are a relatively small number of rare

variants contained in SNP genotyping panels which are typically designed with a

focus on common SNPs for GWAS [22]. Moreover, the characteristics of low mi-

nor allele frequency (MAF) and weak individual effects in rare variants will cause

conventional statistical methods lose their power due to their small variation. Ag-

gregate analysis is an effective way to detect rare variants with disease association by

analyzing the collective effect of multiple rare variants through accumulating their

individual effects. The idea behind aggregate analysis is that multiple rare variants

are individually rare but accumulatively common enough to be analyzed as common

variants in GWAS. Several collapsing methods have been proposed to generate an

enriched signal or aggregated statistic for a set of rare variants [43, 57, 52, 61]. How-

ever, their aggregated signals or statistics are derived based on a simple summation

of individual effects which ignores the correlations between rare variants.

In this section, we propose a novel framework of MAF-based logistic principal

component analysis (MLPCA) [49]∗ to derive aggregated statistics by explicitly mod-

∗Reprinted with permission from “Logistic principal component analysis for rare variants in gene-
environment interaction analysis” by Meng Lu et al, 2014. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, vol:11, issue:6, page:1020-1028. Copyright c©2014 by IEEE.
DOI: 10.1109/TCBB.2014.2322371.
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eling the correlations between rare variant SNPs which are represented by categorical

values. The derived aggregated statistics by MLPCA can then be tested as a surro-

gate variable in regression models to detect the gene-environment interaction from

rare variants. In addition, MLPCA searches for the optimal linear combination from

the best subset of rare variants that has the maximum association with the given

trait. We compared the power of our MLPCA-based methods with four existing

collapsing methods in gene-environment interaction association analysis using both

our simulation data set and Genetic Analysis Workshop 17 (GAW17) data [1]. Our

experimental results have demonstrated that MLPCA on two forms of genotype

data representations achieves higher statistical power than those existing methods

and can be further improved by introducing the appropriate sparsity penalty. The

performance improvement by our MLPCA-based methods result from the derived ag-

gregated statistics by explicitly modeling categorical SNP data and searching for the

maximum associated subset of SNPs for collapsing, which helps better capture the

combined effect from individual rare variants and the interaction with environmental

factors.

5.2 Review of collapsing methods

Conventional statistical methods such as logistic or linear regression models have

been successfully used to identify associated common variants in GWAS. However,

these methods lose their power if the causal variants are rare with very low MAF

(i.e. MAF<0.01 or <0.05) unless the effect size is large [22]. The power of single-

variable tests on rare variants has been demonstrated to be very sensitive to the

effect size [3]. One solution to enhance the detection rate may be to derive summary

statistics for the corresponding genes to which rare variant SNPs belong. Fixed

threshold collapsing (T1 or T5), weighted-sum (WS) and variable-threshold (VT)
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are common collapsing methods proposed to generate such aggregated statistics for

genes consisting of multiple rare variants [57, 52, 61]. These aggregated statistics can

be used to evaluate the statistical significance of the association between a gene G

and a given phenotype y. For example, if y is continuous, a linear regression model

can be fitted:

yi = β0 + β1aiG + εi, (5.1)

where yi and aiG denote the phenotype and the derived aggregated statistics for

subject i respectively; and εi is a noise term. The regression coefficient β1 reflects

the effect size of aggregated statistics for rare variants on the phenotype y and β0 is

an intercept term. In the following, we briefly review four commonly used collapsing

methods T1, T5, WS, and VT for rare variant association studies:

5.2.1 Fixed threshold collapsing (T1 or T5)

The simplest way to aggregate information from rare variant SNPs is to add up

the number of minor alleles for all the rare variant SNPs that belong to corresponding

genes with MAF smaller than a certain threshold (for example, 0.01 or 0.05). The

total number of minor alleles of these rare variant SNPs in each gene is considered

as the aggregated statistics to represent the genetic information in rare variants in

each gene. Based on different threshold values, we have different collapsing methods.

For example, T1 and T5 denote the fixed threshold collapsing method with MAF

thresholds at 0.01 and 0.05, respectively. Mathematically, for a given gene G, the

corresponding aggregated statistics aiG for the ith subject can be computed as:

aiG =
∑
k∈S

xik, (5.2)
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where S = {j ∈ G|xj with MAF<0.01 (T1) or 0.05 (T5)} is a set containing the rare

variants with MAF below the corresponding thresholds. Here, xj represents the jth

rare variant belonging to G, and xik denotes the genotype of the kth rare variant for

subject i.

5.2.2 Weighted summation collapsing (WS)

Fixed threshold methods may miss causal variants that are more common than

the arbitrary cutoff for MAF threshold as these cutoff values might not be optimal

thresholds which vary with different diseases. The weighted sum method (WS) [52]

aggregates the effects of all SNPs in a given gene by summing the number of minor

alleles for all the variants, weighted according to the corresponding MAF of each

SNP. For a gene G, the aggregated statistics by WS for the ith subject is represented

as:

aiG =
∑
j∈G

wjx
i
j, wj = 1/[pj(1− pj)]1/2, (5.3)

where pj is the MAF of the jth variant, and wj is the corresponding weight for the

jth variant, which is in fact the inverse of the standard deviation if we assume each

variant follows a Bernoulli distribution with the mean value pj. The weight is larger

for SNP with lower MAF, smaller otherwise.

5.2.3 Variable threshold collapsing (VT)

For both fixed threshold and WS methods, it is probable that associations shown

in the derived summary statistics may be diluted by including SNPs which are not

associated with the outcome. In order to remove possible noise from SNPs which

do not influence the outcome and further improve the power, the variable threshold

method (VT) [61] aims to search for an “optimal” MAF threshold with the highest
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power for association studies instead of using arbitrary fixed thresholds. First, each

possible MAF cutoff value Tt among all variants in a gene is chosen to compute the

corresponding summary statistics:

atiG =
∑
k∈S

xik, S = {j ∈ G|xj with MAF< Tt}. (5.4)

For each possible summary statistic atiG, z scores of regression coefficients β1 fitted

in the regression models (5.1) can be computed as the statistical significance of as-

sociation with disease for corresponding genes. Among all the summary statistics

computed with different cutoff values Tt, the one with the maximum absolute value

of z scores is selected as the VT summary statistics. VT method determines ag-

gregated statistics corresponding to the “optimal” MAF threshold by involving trait

information and thus considers the effects of SNPs irrespective of their MAFs.

5.3 Aggregate statistics based on logistic PCA

In this section, we derive new summary statistics for rare variant association

studies based on a binary genotype data representation using logistic principal com-

ponent analysis (LPCA) [42, 48]. Instead of simply summing up the number of minor

alleles as in the existing collapsing methods for association analysis, we derive the

summary statistics by taking into account of the distribution of genotype data in a

given data set. Simple summation does not necessarily lead to an optimal combina-

tion of rare variants for association analysis as it ignores the relations among SNPs.

Principal component analysis (PCA) [35] provides an alternative that takes account

of linkage disequilibrium among SNPs by approximating the original data using an

optimal linear combination of genotypic information from SNPs, with the least loss

of information. However, conventional PCA is designed for continuous data based on

the Gaussian distribution assumption, which may not perform well for categorical
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SNP data. For appropriate analysis of rare variant SNP data, we derive the new

summary statistics by extending PCA to LPCA for binary data based on reduced

rank representations [42].

For a given subset of d SNPs from n subjects, the corresponding genotype data can

be represented by an n×d matrix X= {xij}, in which xij denotes the genotype for the

jth SNP of subject i. For each SNP, we may have two possible representations of xj.

One is the common representation with the state space {00, 10, 11} corresponding

to homozygous or heterozygous alleles. We note that this representation can be

considered as the padded binary data and we do not impose any genetic effect model

assumptions. The other possible representation is simply encoding genotype data

into a binary representation with 0 representing the most prevalent homogeneous

base pair (wild-type) and 1 for the other genotypes (mutant with minor alleles),

which corresponds to testing for a dominant/recessive genetic effect on the outcome.

With this dominant/recessive genetic effect model assumption, we also can test for

corresponding genotype-phenotype associations. However, the recent studies have

shown that the genetic effect model assumption may affect the detection power of

associations [45, 33]. Therefore, between two possible representations, we expect

that we may detect more general associations between genotype and the given trait

based on the first form of SNP data representation.

As the given SNP data X can be expressed by binary values for both representa-

tions, the existing methods in the literature for analyzing binary data [42, 14, 70, 21]

can be implemented to derive summary statistics for SNP data. To distinguish the

implementations for two different data representations, we name the method with the

binary representation xj ∈ {0, 1} the logistic principal component analysis (LPCA)

while the method for the second padded binary representation xj ∈ {00, 01, 11}

the padded logistic principal component analysis (PLPCA). For both LPCA and
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PLPCA, under the assumption that the binary data follows a Bernoulli distribution,

we can similarly summarize genotype data (as shown elsewhere [42]) to derive an

improved aggregated statistics to enhance the detection accuracy of functional rare

variants by further considering interaction effects from SNPs in a gene. Here, we

propose to perform both methods on an “optimal” subset of SNPs in corresponding

genes with respect to a given trait y so that we can evaluate gene association effects

by analyzing the derived aggregated statistics. To identify the subset of SNPs, we

adopt a similar MAF threshold selection procedure as in VT to determine a flexible

MAF cutoff value for our novel MAF-based aggregated statistics.

We note that LPCA and PLPCA have the same optimization model and algo-

rithm with PLPCA dealing with padded binary data since each SNP xj ∈ {00, 01, 11}

is represented as two-dimensional binary vector instead of single binary value as in

LPCA. Thus, LPCA can be extended for PLPCA in a straightforward way. For

simplicity, we take the first PC score a1 as the aggregated statistics and estimate

its significant association with outcome. When we take aggregated statistics from

more than one principal component, we may be able to further improve power due

to including more information in the model. We will investigate this issue more

thoroughly in our future work.

With the derived aggregated statistics, we now can select the best subset of SNPs

which gives the most significant association with the trait y by changing the MAF-

based cutoff value T ′ as in VT. For a gene G and a possible MAF threshold T ′, the

aggregated statistics for the ith subject is aiG = ai1 with X = {xj|xj with MAF <

T ′, j ∈ G}.

In summary, based on the binary SNP data, our MLPCA collapsing method takes

the following steps:

(1) Generate candidate subsets for each gene

92



For each unique MAF value of variants in a given gene, a corresponding subset is

generated by collecting those variants with MAF less than the specific value.

(2) Derive candidate aggregate statistics

The first PC score obtained from LPCA implemented on each candidate subset is

regarded as its corresponding aggregated statistics.

(3) Fit simple linear regression models

Each candidate aggregated statistics is substituted into the regression model. Each

t-statistic of the estimated coefficient β̂1 can be calculated by β̂1/s.e.(β̂1).

(4) Determine the final aggregated statistics

Return the aggregated statistics with the maximum absolute value of t-statistics.

For the implementation with the padded data representation, we can extend

the previous procedure in a straightforward manner and call it MAF-based PLPCA

(MPLPCA). As there are often only a small number of contributing SNPs with effects

to given traits, to derive better aggregated statistics to avoid including nonfunctional

SNPs that are not associated with the outcome, we can further apply a sparse LPCA

by adding an L1 regularization term Pλ = −∑k
l=1(λ||bl||1) to the log-likelihood

to search for sparse PC loading vectors in B that maximize the regularized log-

likelihood function. A sparse loading vector with only a few number of non-zero

elements implies the selection of SNPs that contribute to the derived aggregated

statistics. The L1 regularization term is a sparsity inducing penalty with parameter

λ controlling the sparsity. By maximizing the regularized log-likelihood function,

the larger λ is, the more zero elements the loading vectors have, which means fewer

SNPs contributing to aggregated statistics are selected. We implement the same

MAF-based procedure for sparse LPCA and denote it as MSLPCA.

93



5.4 Pooled association test for gene-environment interaction

The above aggregation methods could be further extend to learn the effect of the

gene-environment interaction factors. In order to do that, we test the association

significance based on the following regression model:

yi = β0 + β1aiG + β2zi + β12aiG ∗ zi + εi, (5.5)

where zi denotes the environmental exposure status of subject i; εi is a noise term;

and β0 is an intercept term. The regression coefficients β1 and β2 reflect the effect size

of aggregated statistics for rare variants and environmental factor z on the outcome

y while β12 represents the effect size of gene-environment interaction summarized by

aggregated statistics. We note that in corresponding MAF-based methods (VT as

well as LPCA-based methods) for interaction analysis, the association significance

for all the aggregated statistics for corresponding genes are tested based on the re-

gression coefficients β12 for interaction effects, instead of β1 fitted by model (5.1) for

main effect analysis. Although multiple hypothesis tests are performed to compare

all the t-statistic values corresponding to different MAF-based cutoff values, there is

no multiple hypothesis testing problem introduced since in the end we only consider

one hypothesis test which tests the t-statistic with maximum absolute value corre-

sponding to a specific MAF-based cutoff value under a null distribution based on

permutation tests.

We test the prediction accuracy using all different collapsing methods based on

this interaction model. Specifically, to measure association significance of rare vari-

ants in a given gene G, association tests are performed by fitting the model (5.5)

involving interaction effects with its corresponding aggregated statistics aiG as one

predictor. For all the above collapsing methods, p-values for gene-environment inter-
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action are estimated by permutation tests for t statistic scores of β12 since t statistics

can no longer be approximated well by a t-distribution due to potential SNP subset

selection. We have performed 1,000 permutations for the phenotype y and the null

distribution of t statistics is estimated empirically by fitting the same model (5.5)

based on the permuted traits. Nominal p-values for the interaction between the

aggregated statistics and environmental factor are used to denote the statistical sig-

nificance of its association with given traits.

5.5 Experimental results

We evaluate our MAF-based LPCA methods and compare the performance with

the four existing collapsing methods (T1, T5, WS, VT) for gene-environment inter-

action association analysis for rare variants on a simulated rare variant SNP data set

as well as GAW17 data.

Statistical power (true positive rate) and ROC (receiver operating characteristic)

curves are taken as the criteria to evaluate and compare the performances of different

methods. Statistical power is estimated by the proportion of successfully detected

genes whose aggregated statistics and interaction with the environmental factor are

tested to have statistically significant associations with a given trait. With N repli-

cates of data, statistical power can be computed based on the known functional or

“causal” genes as:

∑
G∈C
|RG|/(N ∗ |C|), RG = {r|prG < α, 1 ≤ r ≤ N}, (5.6)

where prG denotes the association p-value for gene G in the r-th replicate; C represents

a set of causal genes; and α denotes a given significance level.

A ROC curve is a plot of statistical power against false positive rate with the

latter defined as the proportion of falsely detected null genes that do not affect the
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given trait. False positive rate is calculated by:

∑
G∈C′

|RG|/(N ∗ |C′|), RG = {r|prG < α, 1 ≤ r ≤ N}, (5.7)

in which C′ represents a set of all known null genes that have no effects on a given

trait.

5.5.1 Simulation study

In this set of simulation experiments, we have simulated a Bernoulli random vari-

able E with prevalence of 30% as the environmental factor. Similarly, SNP data has

been randomly generated for 80 genes consisting of various number of SNPs ranging

from 1 to 80 respectively for 700 samples. All SNPs were independently generated

with their MAFs less than 0.05 as this paper focus on gene-environment interaction

analysis for rare variants. To simulate the common genotypes in the state space

{00,01,11} for a SNP in 700 samples, both alleles of each SNP have been sampled

from a Bernoulli distribution independently with a randomly selected success rate

less than 0.05. This representation could then be easily transformed to another geno-

type space {0,1,2} representing the number of minor alleles that each SNP has. A

quantitative disease risk score Y also has been simulated based on the linear re-

gression model which integrates individual or main effects from both simulated SNP

data and environmental factor as well as their interactive effects. To be specific,

we have randomly selected one gene as the only causal gene significantly associated

with disease Y . This gene has 16 SNPs and half of them are selected as functional

SNPs. The disease trait Y has been simulated for 200 replicates of 700 samples based

on these eight functional SNPs and a randomly simulated environmental factor E

sampled from a Bernoulli distribution with success rate 0.3 by the following linear
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regression model:

Y = β0 +
8∑
i=1

βi ∗ SNP i + α ∗ E +
8∑
i=1

γi ∗ SNP i ∗ E + ε (5.8)

with β0 set as 0 for simplicity; ε denoting a white noise following a standard normal

distribution; and α, βi and γi representing the effect of environmental factor E, the

main effect from SNPs, and the genotype-environment interaction effect of the ith

causal SNP respectively, sampled from the same normal distributionN(log(1.1), 0.25)

independently.

To make thorough and comprehensive comparison of our MAF-based LPCA

methods with the four prevalent collapsing methods, we have tested their perfor-

mances in both gene-environment interaction association analysis and main effect

association analysis to identify genes significantly associated with Y with and with-

out gene-environment interaction effect respectively. The pooled association analysis

for each gene has been performed on 700 samples in all 200 replicates for both tests

by fitting both models (5.5) and (5.1) using the derived aggregated statistics from

different methods. The main effects and gene-environment interaction effects are de-

tected based on their nominal p-values calculated by permutation tests as introduced

in the method section.

Our MAF-based LPCA (MLPCA) method has shown consistently higher statis-

tical power than the four existing collapsing methods at four different significance

levels for both main effect and interaction effect analyses as given in Tables 5.1 and

5.2. Moreover, our method’s power could be further improved either in the padded

version (MPLPCA) as expected or in the sparse version (MSLPCA) by introducing

an appropriate penalty parameter λ = 1. All the programs for the work in this paper

are written in R and run on a Mac OS X with a 2.5 GHz Intel Core i5 processor.
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The run time for each collapsing method in one replicate for both main effect and

interaction effect analyses is included respectively in Tables 5.1 and 5.2. Due to

the heuristic search procedure for the “optimal” MAF threshold in both VT and

our MLPCA-based methods, it takes them more time for association tests compared

to T1, T5, and WS. Our MLPCA-based methods are more time consuming as we

need to optimize for maximum likelihood estimates of corresponding principal com-

ponents. However, as shown in both tables, the run time is in the same magnitude

to the run time of VT. To verify the consistent superiority of our methods, ROC

curves and area under the curve (AUC) of all these methods for the main effect and

interaction effect analyses are also plotted and calculated respectively as shown in

Figure 5.1(c) and Figure 5.1(d), which demonstrate that our methods have achieved

consistently higher power than those four collapsing methods for both analyses. We

further verify this conclusion by re-running the same simulation experiments but with

a smaller sample size 300. The respective ROC curves and AUCs for main effect and

interaction effect analyses are plotted and calculated as given in Figure 5.1(a) and

Figure 5.1(b). Based on the ROC curves for different sample sizes for both main

effect and interaction effect analyses, we observe that: (1) the power of each method

has been improved for a larger sample size as more accurate estimates of association

significance have been obtained by running regression analyses with more samples;

(2) our methods keep the superiority for different sample sizes; (3) the improvement

of our methods, especially MSLPCA and MPLPCA, is larger with the increasing

sample size compared to the other four collapsing methods.

5.5.2 Analysis of GAW17 data

To make further evaluation and comparison, we have also applied all the above

methods to analyze gene-environment interaction effect for rare variants in GAW17
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Figure 5.1: ROC curves for T1, T5, WS, VT, MLPCA, MSLPCA, MPLPCA in (a)
main effect analysis with 300 samples; (b) gene-environment interaction analysis with
300 samples; (c) main effect analysis with 700 samples; and (d) gene-environment
interaction analysis with 700 samples for simulation data ([49] c© 2014 by IEEE).
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Table 5.1: Performance comparison for T1, T5, WS, VT, MLPCA, MSLPCA, and
MPLPCA at four significance levels for main effect analysis on simulation data ([49]
c© 2014 by IEEE).

α T1 T5 WS VT MLPCA MSLPCA MPLPCA
0.005 0.030 0.170 0.165 0.240 0.345 0.555 0.350
0.001 0.050 0.215 0.200 0.305 0.390 0.615 0.405
0.05 0.090 0.320 0.315 0.445 0.575 0.755 0.650
0.1 0.170 0.390 0.385 0.560 0.690 0.825 0.740

time (min) 3.68 3.87 4.20 50.57 71.08 51.71 77.59

Table 5.2: Performance comparison for T1, T5, WS, VT, MLPCA, MSLPCA, and
MPLPCA at four significance levels for gene-environment interaction analysis on
simulation data ([49] c© 2014 by IEEE).

α T1 T5 WS VT MLPCA MSLPCA MPLPCA
0.005 0.010 0.045 0.045 0.055 0.075 0.125 0.095
0.01 0.030 0.075 0.060 0.075 0.115 0.185 0.180
0.05 0.055 0.170 0.170 0.185 0.230 0.375 0.420
0.1 0.145 0.255 0.240 0.305 0.390 0.490 0.550

time (min) 4.19 4.36 4.77 59.39 87.12 63.57 90.36

data which is a hybrid of simulated and real data based on the 1000 Genomes Project

with a realistic pattern of number and frequency of SNPs including linkage disequi-

librium structure. GAW17 provides three quantitive risk factors: Q1, Q2, Q4 and

one binary common disease trait with 200 replicates in two samples of 697 individuals

with 24,487 autosomal markers assigned to 3,205 genes [1]. Both rare variants and

common variants are included in this simulation data set in a wide range of effect size

with MAFs ranging from 0.07% to 25.8%. Here we choose the sample of unrelated

individuals regardless of their pedigrees as we would like to guarantee the association

test of various collapsing methods would not be disturbed by other factors such as
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the correlation between individuals. Since genotype-smoking interaction effects on

Q1 are included for variants in only one gene KDR on chromosome 4, we would

like to design our experiments focusing on chromosome 4 with total 944 variants in

81 genes for efficiency. By performing gene-environment interaction effect test for

each gene by the model (5.5) based on the derived aggregated statistics by different

methods, we have detected variants with genotype-smoking interaction effects sig-

nificantly associated with Q1 based on nominal p-values calculated by permutation

tests as before.

In this genotype-smoking interaction association analysis, statistical power is the

proportion of gene KDR detected interacting with smoking to influence the outcome

Q1 in 200 replicates. The false positive rate is the proportion of falsely detected null

genes that do not have interaction effects in 200 replicates. Based on the given sta-

tistical power values of different collapsing methods under four different significance

levels in Table 5.3 and ROC curves and AUC shown in Figure 5.2, it is clear that

our MLPCA method performs consistently better than all four existing collapsing

methods due to the optimal linear combination of rare variants through the explicit

modeling of categorical SNP data. Under the same framework, we have further inves-

tigated the power of MAF-based sparse LPCA (MSLPCA) with λ = 0.1. As shown

in Table 5.3 and Figure 5.2, MSLPCA enhances the power of MLPCA when λ is

large enough, since unimportant SNPs are filtered out by L1 norm penalization. In

addition, the padded version of our method (MPLPCA) also improves the power by

using a two-dimensional binary representation of genotype data without any genetic

effect model assumption. The run time for each collapsing method is included in

Table 5.3.
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Table 5.3: Performance comparison for T1, T5, WS, VT, MLPCA, MSLPCA, and
MPLPCA at four significance levels for genotype-smoking interaction analysis on
GAW17 data ([49] c© 2014 by IEEE).

α T1 T5 WS VT MLPCA MSLPCA MPLPCA
0.005 0.045 0.070 0.085 0.090 0.100 0.070 0.095
0.01 0.060 0.085 0.100 0.135 0.135 0.105 0.165
0.05 0.180 0.170 0.175 0.25 0.270 0.295 0.300
0.1 0.285 0.260 0.230 0.315 0.340 0.390 0.410

time (min) 3.10 3.43 3.70 21.19 48.76 31.73 61.73
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Figure 5.2: ROC curves for T1, T5, WS, VT, MLPCA, MSLPCA, MPLPCA in
gene-environment interaction analysis for GAW17 data ([49] c© 2014 by IEEE).
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5.6 Conclusion

Different from conventional collapsing methods for rare variant analysis based on

the simple summation of the total number of minor alleles for selected or weighted

SNPs, we propose a set of novel MLPCA-based methods [49] to aggregate rare vari-

ants by an optimal linear combination of the best SNP subset by explicitly modeling

categorical SNP data. Our new aggregated statistics captures the combined effect

from individual rare variants belonging to the corresponding gene. Moreover, our

method could be further improved by adding an L1-norm regularization term to

perform additional unsupervised selection of causal SNPs based on the sparsity as-

sumption. The experimental results have demonstrated our MLPCA-based methods

have higher power compared to four commonly used collapsing methods and its power

can be further enhanced by its sparse and padded versions.
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6. EXPONENTIAL FAMILY MATCHED PCA

6.1 Introduction

In addition to the aforementioned challenges in aggregate analyses in the previ-

ous sections, it is often the case that genotypic variability may be due to potential

confounding factors, including race, age, and other demographic characteristics of

the population. We specifically focus on developing aggregate analysis methods for

stratified data that contains specific structure information of the samples, due to

potential confounding factors. This kind of data structure arises from specific exper-

iment design which tries to adjust the effects from confounding factors in association

analysis to identify critical factors that are specifically associated with the outcome

of interest.

Typically, the confounding issues can be addressed by matching in the design

stage of a study, in which samples are matched on one or more attributes (i.e. age,

gender, smoking status, etc) in a stratum. When the sample size is small, based on

the matched data, the confounding could be controlled more efficiently by balancing

the distribution across strata to pursue more stable estimates of the odds ratio.

Consequently, new algorithms are required for the subsequent analysis of stratified

data. Ignoring matching in the analysis stage could cause estimation bias in the

downstream analysis. For example, the combined signals representing a set of SNPs

could be dominated by the confounding factors, which will further jeopardize the

power of aggregate association analysis.

In this section, we focus on studying the dimension reduction for matched data

when the disease or label information is not available or badly collected. We propose

a novel dimension reduction method for matched data, namely matched PCA, as
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well as its low-rank version to eliminate the bias effects from confounding factors

with the aim of achieving PCs expressing the maximum variance from signals of

interest. The results from simulation studies have verified the superiority of our

two matched PCA models over standard PCA in reconstruction accuracy of PCs

for matched data. The spike-in data experiment with microarray gene expression

data also demonstrates the advantage of a sparse version of our method in detecting

differentially expressed genes compared with a Bayesian method.

6.2 Matched PCA

The covariance of principle components resulting from standard PCA might be

dominated by the confounding factors when matching is not taken care in the anal-

ysis. To eliminate the confounding effects, we propose two matched PCA models by

involving an explicit modeling of the confounding effects to the standard PCA model,

which can thus lead to more accurate estimation of principle components from the

true signals of interest. Let X denote a N ×D data matrix with N matched samples

and U denote a N ×G indicator matrix specifying the strata, to which each sample

belongs to. Each strata comprises a set of matched samples. Given X and U , we

developed two models to estimate the adjusted PC scores Z and the corresponding

PC loading matrix W .

6.2.1 Full-rank model

We first propose a full-rank matched PCA model by explicitly modeling the

confounding effects across the strata.

X = UV + ZW T + 1µT + ε

s.t. ZTZ = I,
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where Z is the N ×L (L is the latent dimension) principal component score matrix;

W is the D × L principal loading matrix; and V models the strata effects with the

elements in each row reflecting the contribution of each variables to a certain stratum.

µ and ε are the bias and noise term respectively.

To estimate these unknown parameter matrix, we formulate a corresponding mean

squared error (MSE) problem:

min
V,Z,W,µ

||X − UV − ZW T − 1µT ||2

s.t. ZTZ = I.

The optimization problem can be solved by Algorithm 4.

Algorithm 4 Full-rank matched PCA

1. Denote a random row-permuted matrix of X by Xp. Set µ as 1
N
XT
p 1. Compute

SVD of Xp − 1µT = APBT and initialize Z as A[, 1 : L] and W as B[, 1 : L].

2. Update V by (UTU)−1UT (X − 1µT − ZW T ).

3. Update µ by 1
N

(X − UV − ZW T )T1.

4. Let M = X − 1µT − UV . Do SVD of MW = PDQT and set Z by PQT .

5. Update W by MTZ(ZTZ)−1.

6. Repeat 2-5 until convergence.

7. Normalize j-th PC loading vector wj and scale zj = zj||wj||1. Rank zj, wj by
the decreasing order of ||wj||1.

6.2.2 Low-rank model

With a larger number of strata and involved variables, we will face the overfitting

problem due to the large number of unknown parameters in the model. To address

106



this issue, we further improve the model by introducing a low-rank approximation

of the group effect matrix.

The low-rank model is formulated as follows:

X = UZ0W
T
0 + ZW T + 1µT + ε (6.1)

s.t. ZT
0 Z0 = I, ZTZ = I, (6.2)

where the group effect matrix V in the full-rank model is further parameterized as a

product of a G×K matrix Z0 and a K×D matrix W0 for a low-rank approximation.

To estimate these unknown parameters, we solve the following MSE problem:

min
Z0,W0

min
Z,W,µ

||X − UZ0W
T
0 − ZW T − 1µT ||2

s.t. ZT
0 Z0 = I, ZTZ = I

The optimization problem can be solved by Algorithm 5.

6.2.3 Simulation study of matched Gaussian data

The simulation model used to generate the data is:

X = UV + ZW T , (6.3)

where each i-th row of V is generated from an independently identical Gaussian

distribution N(µi, vvar); each column j of Z is generated from an independently

identical Gaussian distribution N(0, wvar); and each element in W is sampled from

a uniform distribution.

We studied a data matrix X of 500 samples with the dimension set to 300. The

values of the elements in X are then generated based on model (6.3). We just
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Algorithm 5 Low-rank matched PCA

1. Denote a random row-permuted matrix of X by Xp. Set µ as 1
N
XT
p 1. Compute

SVD of Xp − 1µT = APBT and initialize Z as A[, 1 : L] and W as B[, 1 : L]. Do
a SVD of a random matrix X0 = A0PB

T
0 and initialize Z0 by A0[, 1 : K] and W0

by B0[, 1 : K].

2. Update µ by 1
N

(X − UZ0W
T
0 − ZW T )T1.

3. Let S = (UTU)−1UT (X − 1µT − ZW T ). Do SVD of SW0 = P0DQ
T
0 and set

Z0 by P0Q
T
0 .

4. Update W0 by STZ0(ZT
0 Z0)−1.

5. Let M = X − 1µT − UZ0W
T
0 . Do SVD of MW = PDQT and set Z by PQT .

6. Update W by MTZ(ZTZ)−1.

7. Repeat 2-6 until convergence.

8. Normalize j-th PC loading vector wj and scale zj = zj||wj||1. Rank zj, wj by
the decreasing order of ||wj||1.

simulated one principal component for simplicity. µi is selected from a uniform

distribution on the interval [0,1] and wvar is set as 5. We thoroughly investigated

the performance of our two models in reconstruction of PCs for different numbers

of strata and different effect sizes from the confounding factors by setting different

values for G and vvar. We set four values of G: 25, 50, 100, and 125 which correspond

to four different strata sizes: 20, 10, 5, and 4 respectively. These four different cases

are studied under two choices of vvar: 0.01 and 0.05 respectively.

We investigated the performance of our full-rank matched PCA and low-rank

matched PCA models in reconstruction of the PCs, by comparing with standard

PCA. For simplicity, we just consider one PC for simple. The red line, black line,

black dots, and blue line correspond to standard PCA, full-rank matched PCA, low-

rank matched PCA, and benchmark respectively. The benchmark result is estimated

from full-rank matched PCA using the true V . The performance is evaluated based

on the angle between the estimated PC loading vector and the ground truth. We
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Figure 6.1: Comparison of angles between the estimated PC loading and ground
truth versus different ranks under varv= 0.01 and D=300 for matched Gaussian
data. We compared standard PCA(red line), full-rank matched PCA(black line),
low-rank matched PCA(black dots), and benchmark(blue line).
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Figure 6.2: Comparison of angles between the estimated PC loading and ground
truth versus different ranks under varv= 0.05 and D=300 for matched Gaussian
data. We compared standard PCA(red line), full-rank matched PCA(black line),
low-rank matched PCA(black dots), and benchmark(blue line).
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run the simulation study 10 times and plot the average angles from all the replicates

versus rank for all the methods. Figure 6.1 shows that both of our methods achieved

more accurate estimation of the true PC loading vector which is reflected by their

smaller angles compared to the standard PCA. Moreover, the low-rank model can

further improve the accuracy by cutting down the number of parameters to be esti-

mated in V to avoid the overfitting problem that may jeopardize the power of our

full-rank model. As shown in the cases with quite small group sizes, the full-rank

model suffers from the overfitting issue that can be addressed well by our low-rank

model. In addition, in the worse situations with smaller group sizes where a larger

number of parameters need to be estimated in V , the improvement of accuracy in

PC reconstruction from our low-rank model gets larger compared with the full-rank

model. The results shown in Figure 6.2 with a larger varv also agree well with the

conclusions we made from Figure 6.1. In addition, we found that the improvement

of reconstruction accuracy from our low-rank model gets more significant compared

to the full-rank model when the variances of variables in V are smaller. Also, it

is observed that a smaller varv leads to a lower-rank Z0 required for the low-rank

model to achieve the same performance as the full-rank model.

6.2.4 Application to spike-in data

Microarray techniques are widely used for high-throughput measurements of gene

expression levels, which consist of multiple quite complicated steps. However, there

exist two critical issues in the microarray experiments: (1) microarray experiments

are associated with low precision probe-level measurements, especially for weakly

expressed genes; (2) each step in the experiment could induce variability to the mea-

surements. Typically, a simple way to handle these issues is performing at least three

replicate measures for each sample in order to take care of the technical noise [47]. In
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microarray data analysis, one of the basic tasks is to detect differentially expressed

genes. To achieve this goal, one need summarize the probe-level measurements to

estimate gene expression levels for the downstream analysis. Alternatively, the sum-

marization of expression levels can also be completed during the procedure of the

subsequent analysis to meet its specific medical goals.

Our matched PCA allows to learn both the expression levels and differentially

expressed genes simultaneously by involving an explicit term of the sample group

structure to the standard PCA model. The differentially expressed genes can be

identified via inducing a sparsity penalty on the PC loading vectors for variable

selection. By introducing a sparsity penalty term to our low-rank matched PCA

model (6.1), we formulated the corresponding new matched PCA problem shown as

below:

min
Z,Z0

min
W,W0,µ

||X − 1µT − UZ0W
T
0 − ZW T ||2F +

∑
l

λ|W |l

s.t. ZT
0 Z0 = I, ZTZ = I. (6.4)

We then apply this modified matched PCA method to perform gene expression

analysis of spike-in data [17], which is a benchmark data set designed for assessing

gene expression measures. In this data set, several replicates are measured for each

sample to pursue robust and reproducible analysis. Our goal is to detect differentially

expressed genes from this spike-in data containing technical replicates.

6.2.4.1 Description of spike-in data

In the spike-in data provided by Affymetrix (http://www.affymetrix.com/analysis

/download center2.affx), human cRNA fragments matching 14 probe-sets on the

HGU95A GeneChip were added to the hybridization mixture of the arrays at con-
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centrations ranging from 0 to 1024 pM [17]. All arrays use the same hybridization

mixture obtained from a common tissue source. The cRNAs were spiked-in at 14

different concentration on each of 14 array groups based on a Latin square design.

Each array group corresponds to a row of the Latin square, while each probe set

corresponds to a column of the Latin square. The concentrations of 14 probe sets

in the first row of the Latin square are: 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256,

512 and 1024 pM. Each following array group has the concentration rotated by one

column cyclicly. The design is described in detail by Irizarry et al. [34]. Table 6.1

shows the Affymetrix Latin square design.

Table 6.1: Affymetrix spike-in Latin square design. All probe set IDs end in at,
which is removed to save space. The design consists of 14 probe sets spiked-in in 14
array groups. Each row is an array group containing 14 probe sets.

37777 684 1597 38734 39058 36311 36889 1024 36202 36085 40322 33818 1091 1708

A 0 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024

B 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 0

C 0.5 1 2 4 8 16 32 64 128 256 512 1024 0 0.25

D 1 2 4 8 16 32 64 128 256 512 1024 0 0.25 0.5

E 2 4 8 16 32 64 128 256 512 1024 0 0.25 0.5 1

F 4 8 16 32 64 128 256 512 1024 0 0.25 0.5 1 2

G 8 16 32 64 128 256 512 1024 0 0.25 0.5 1 2 4

H 16 32 64 128 256 512 1024 0 0.25 0.5 1 2 4 8

I 32 64 128 256 512 1024 0 0.25 0.5 1 2 4 8 16

J 64 128 256 512 1024 0 0.25 0.5 1 2 4 8 16 32

K 128 256 512 1024 0 0.25 0.5 1 2 4 8 16 32 64

L 256 512 1024 0 0.25 0.5 1 2 4 8 16 32 64 128

M 512 1024 0 0.25 0.5 1 2 4 8 16 32 64 128 256

N 1024 0 0.25 0.5 1 2 4 8 16 32 64 128 256 512

There are three replicates in each array group except group C, for which there

are only two. The two array groups denoted with M and N, for which there are 12
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replicates. In total, the spike-in data contains 59 arrays of 12,626 probe sets, in which

14 of them are spiked-in. Given the array group information, we set a corresponding

U matrix and apply our model (6.4) to identify spike-in genes.

6.2.4.2 Results

By applying our model (6.4) with λ set to 1 and the number of PCs to 1, we

estimated the weights for all the genes stored in W [, 1] and found 28 genes with non-

zero weights. We ranked these genes by their absolute values of the weights and have

detected 18 spike-in genes with their weights significantly distinct from the others,

as shown in Figure 6.3, where there seems an obvious gap between the top 18 genes

and the others. These top 18 gene IDs include: 37777 at, 407 at, 1708 at, 36311 at,

1024 at, 684 at, 36889 at, 36202 at, 546 at, 39058 at, 38734 at, 1091 at, 40322 at,

36085 at, 1597 at, 33818 at, 1552 i at, and 35127 at. The top 16 of them have also

been reported as spiked-in probe sets by other researchers [17, 86] as opposed to

the 14 originally described by Affymetrix. They claimed that 33818 at follows the

pattern of the 12th column of Latin square design and should be included as the

transcript in column 12, since no spike-in gene given by Affymetrix has the pattern

consistent with the 12th column of the Latin square design. The spike-in gene 407 at

which is designed in the 12th column however actually has the same concentration

pattern as gene 37777 at in column 1. Another detected gene in the top 16 but not

in the original 14 is 546 at, which should be considered with same concentration as

36202 at in column 9, because it is designed against the same target: Unigene ID

Hs. 75209 and it shows the same pattern as 36202 at in the data [17]. Besides the

top 16 genes, we also detected two extra interesting genes: 1552 i at and 35127 at,

which requires further effort to confirm their concentration patterns.

For comparison, we also applied another existing Bayesian method [47], which

114



0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

Gene

W
ei
gh
ts

Figure 6.3: A plot of weights for the 28 ranked non-zero weighting genes in spike-in
data.

takes account of the technical variance from microarrays in a probabilistic model to

infer the differentially expressed genes from replicated experiments. The probability

of positive log-ratio (PPLR) of expression levels between conditions are calculated

in this model to score and rank all the genes. This method expects better results

by involving both point estimates of expression levels and their variance estimates

in the probabilistic model. Since this method is designed for case-control studies, we

repeat the experiment 10 times by randomly assigning the label information to the

array sets and then check their top-ranked genes. We run a Web-tool developed to

implement this method, RepExplore [26], and found that among the top-ranked 16

genes from each of the 10 runs, this Bayesian method could only detect at most 15

spike-in genes of the 16 reported by both our method and previous researchers. This

suggests that our low-rank matched PCA is superior in taking care of the variance
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of technical measures in gene expression analysis.

6.3 Exponential family matched PCA

6.3.1 Methodology

Both low-rank and full-rank models of matched PCA can be easily extended

to exponential family distributions to adjust confounding effects for matched data

that follow exponential family distributions. Compared to matched PCA, exponen-

tial family matched PCA approximates the canonical parameters of the data rather

than the original data by a combination of strata projections and lower dimensional

projections of the signals of interest, similar as SePCA in previous sections. The

optimization problem for exponential family matched PCA can be formulated for

the full-rank model as:

min
Z:ZTZ=I

min
V,W,b

∑
n

A(V Tun +Wzn + µ)− tr
(
(UV + ZW T + 1µT )XT

)
,

and for the corresponding low-rank model as:

min
Z:ZTZ=I,Z0:ZT

0 Z0=I
min
W0,W,b

∑
n

A(W0Z
T
0 un +Wzn + µ)− tr

(
(UZ0W

T
0 + ZW T + 1µT )XT

)
.

The developed optimization algorithms introduced in previous sections can be ap-

plied to solve these problems similarly.

6.3.2 Simulation study of matched binary data

The simulation model used to generate the data is:

Θ = UV + ZW T , (6.5)
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where each i-th row of V is generated from an independently identical Gaussian

distribution N(µi, vvar); each column j of Z is generated from an independently

identical Gaussian distribution N(0, wvar); each element in W is sampled from a

uniform distribution.

We studied a data matrix X of 500 samples with the dimension set as 300. Each

element Xij in the matched binary data set is sampled from a Bernoulli distribution

with the success probability as Θij generated based on model (6.5). We just simulated

one principal component for simplicity. µi is selected from a uniform distribution on

the interval [0, 5] and wvar is set as 100. We also investigated the performance of

our two models in reconstruction of PCs for different numbers of strata and different

effect sizes from the confounding factors by setting different values for G and vvar.

We set four values of G: 25, 50, 100, and 125 which correspond to four different

strata sizes: 20, 10, 5, and 4 respectively. These four different cases are studied

under two choices of vvar: 0.1 and 1 respectively.

We investigated the performance of our full-rank matched LPCA and low-rank

matched LPCA models in reconstruction of the PCs, by comparing with LPCA. The

red line, black line, black dots, and blue line correspond to LPCA, full-rank matched

LPCA, low-rank matched LPCA, and benchmark respectively. The benchmark result

is estimated from full-rank matched LPCA using the true V . The performance is

evaluated based on the angle between the estimated PC loading vector and the

ground truth. We run the simulation study 10 times and plot the average angles

from all the replicates versus rank for all the methods. Figure 6.4 shows that both

of our methods achieved more accurate estimation of the true PC loading vector

compared with standard PCA. Moreover, the low-rank model can further improve

the accuracy using only rank 1 especially for quite smaller group sizes where larger

number of parameters need to be estimated in V . The results shown in Figure 6.5
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Figure 6.4: Comparison of angles between estimated PC loading and ground truth
versus different ranks under varv= 0.1 and D=300 for matched binary data. We
compared LPCA(red line), full-rank matched LPCA(black line), low-rank matched
LPCA(black dots), and benchmark(blue line).

118



5 10 15 20

0
10

20
30

40

group size= 20

rank

an
gl
e

0 10 20 30 40 50

0
10

20
30

40

group size= 10

rank

an
gl
e

0 20 40 60 80 100

0
10

20
30

40

group size= 5

rank

an
gl
e

0 20 40 60 80 100 120

0
10

20
30

40

group size= 4

rank

an
gl
e

Figure 6.5: Comparison of angles between estimated PC loading and ground truth
versus different ranks under varv= 1 and D=300 for matched binary data. We
compared LPCA(red line), full-rank matched LPCA(black line), low-rank matched
LPCA(black dots), and benchmark(blue line).
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with a larger varv also agree well with the conclusions we made from Figure 6.4.

Also, it is observed that a smaller varv leads to a lower-rank Z0 required for the

low-rank model to achieve the same performance as the full-rank model.

Overall, both simulation studies on matched Gaussian data and matched binary

data suggest that the low-rank models can improve the accuracy in reconstruction

of PCs compared with the full-rank model for the cases with small group sizes and

achieve more obvious improvement especially for the cases with smaller group sizes.
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7. CONCLUSIONS AND FUTURE WORK

In this thesis, we derive general aggregate analysis methods for biomedical data

which usually have special data types and structural information. Specifically, we

derive accurate aggregated signals for SNP data based on explicit probabilistic mod-

els, which results in enhanced power of aggregate association analysis in pathway

based GWAS, rare variant analysis, and matched data analysis, demonstrated by

both simulation studies and real-world applications.

To take care of the special data types of SNP data in deriving aggregated signals,

we developed a general dimension reduction method capable of variable selection,

named as SePCA, suitable for any type of data following exponential family distri-

butions including SNP data. To the best of our knowledge, as a dimension reduction

method, it is the first general method with both the capability of interpreting PCs

and the generality of applications to any type of data following exponential family dis-

tributions, which helps focus on analyzing informative variables for high dimensional

non-Gaussian data such as next-generation sequencing data and genetic mutation

data in genomics. SePCA has higher power in deriving more accurate PCs using

pretty sparse variables for non-Gaussian data analysis compared to the sparse PCA,

demonstrated by the simulation study and real applications in image clustering, and

population stratification on binary data or integer data. Another contribution of

our SePCA algorithm is that it is quite scalable to high dimensional data due to

the efficient closed-form update rules for deriving optimal solutions. In the path-

way based Crohn’s disease analysis, two specific members of SePCA: SLPCA and

SCPCA, could derive more accurate aggregated signals that help discover more vali-

dated immune system related pathways in explaining the underlying mechanisms of
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disease development. In rare variant analysis, SLPCA can capture more effects from

rare variants and enhance the power of detecting statistically significant genes in the

GAW17 simulation study, compared to the other baseline methods.

We further developed supervised SePCA to involve the outcome information

to SePCA and formulate an integrated framework for aggregate association anal-

ysis. Both supervised dimension reduction and variable selection are simultaneously

achieved in this integrated framework. The contribution of this algorithm is that

it is capable of extracting the aggregated signals that are most related to the out-

come for non-Gaussian data using sparse variables. The learned sparse variables play

significant roles in determining the outcome and provide a better interpretation of

the results. Benefit from the supervised learning of sparse variables and aggregated

signals from an integrative framework, the supervised SePCA could achieve higher

power demonstrated by a simulation study for aggregate association analysis of SNP

data, compared with a traditional supervised method which does variable selection

in an ad-hoc way and a Bayesian method that imposes some prior distributions for

the weights of the variables.

In addition to the special non-Gaussian data types, biomedical data often has

special stratified data structures in some experiment designs that involve matching

to solve confounding issues. Both our low-rank and full-rank exponential family

matched PCA models can adjust the bias effects from the stratified data structures

and reconstruct more relevant PCs for the signals of interest, as demonstrated by

the simulation study in comparison with standard ePCA. The low-rank model out-

performs full-rank model by ameliorating the overfitting issues arise in biomedical

data with high dimensionality and small stratum size of samples. A sparse low-rank

matched PCA model can further provide good interpretation of the results. It out-

performs a Bayesian method in detecting the variables that significantly contribute
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to the variance of signals of interest, which is verified by the application of detect-

ing differentially expressed genes for a benchmark spike-in gene study with technical

replicates. The results indicate that exponential family matched PCA methods are

able to exempt the resulting PCs from the bias effects from confounding or strata fac-

tors, which are appealing tools for dimension reduction of those data with stratified

structures.

In summary, our proposed statistical models for non-Gaussian biomedical data

can derive more accurate and robust aggregated signals to help tackle the typical

challenges from weak individual genetic effects, complex data types and stratified

data structures in biomedical applications. The results have suggested that our

methods can help reveal underlying biological principles of human disease. Other

than bioinformatics, these probabilistic models also have rich applications in data

mining, computer vision, and social science areas.

In the future work, we will explore the following two research topics: (1) in-

vestigate and pursue more favorable approaches to determine the choice of tuning

parameters for regularization terms and the ratio for supervised learning trade-off;

(2) perform matched case-control study by involving label information to develop su-

pervised exponential family matched PCA models that are robust to technical noise,

systematic noise and confounding factors, with the expectation to provide mecha-

nistic insights in understanding complex diseases. In addition, it is also desirable to

extend the applications of our supervised SePCA and exponential family matched

PCA methods to other real-world data mining applications to further validate the

performance of our proposed methods.
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