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ABSTRACT

Powerful laser pulses with duration of few optical cycles and less open up new

venues of nonlinear optics and yield novel applications for quantum optics, elec-

tronics and solid-state physics. In the present Ph.D. research we study, by means

of supercomputer simulations, new approaches to powerful ultrashort pulse self-

transformation in laser-induced filaments and filament-like regimes.

We have found new regimes in which unprecedentedly short powerful light pulses

in optical domain can be generated in helium via shock wave formation at the op-

timum pulse compression point. We have found general scaling laws that extend

nonlinear pulse self-transformation regimes to arbitrarily high powers.

We also study photoionization dynamics in solids at ultrashort timescales and

develop a simple closed-form quantum-mechanical model of ultrafast photoionization

and optical properties of photoionized solids, applicable for pulses of arbitrary shape

and duration, in a wide range of field intensities, and in a wide range frequencies of

field and of nonlinear response. Our model provides single self-consistent framework

for nonlinear optics of absorbing semiconductors and transparent dielectrics in high-

intensity fields. Using our ultrafast photoionization framework we refine criteria

of ultrafast light-induced damage in the transparent material. Our simulations of

ultrashort pulse propagation through photoionized solid using finite-difference time-

domain code predict complex charge-field dynamics in the bulk of the solid, not

described by semiclassical model of optical properties of solid-state plasma. We

found non-monotonous dependence of solid-state plasma density in the wake of the

pulse on depth inside the solid due to high-harmonic generation, phase matching and

absorption.
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Physical effects captured by our model show potential of ultrafast photoionization

for future solid-state optoelectronics and information processing as it allows precise

control of charge dynamics inside solids at time scales 6 orders of magnitude faster

than currently available semiconductor electronics.
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1. INTRODUCTION

Since their invention in 1953, lasers have rapidly evolved from exotic quantum-

mechanical experiments into workhorses of many industrial and scientific applica-

tions. Among plethora of wonderful properties of lasers, making them useful in

science and technology, lasers can produce the shortest artificial events ever made

- on the order of femtoseconds (1 femtosecond, fs = 10−15 seconds), while recent

systems push this limit even further, into the attosecond realm (1 attosecond, as =

10−18 s). Commercial availability of femtosecond bursts of light made it possible to

directly observe and control very rapid processes, such as, for example, vibrations and

rotations of molecules, creation and destruction of chemical bonds [5, 6]. Attosecond

technologies provide probes for even faster processes, such as motion and rearrange-

ment of electrons in atoms and molecules [7, 8, 9, 10]. On the other hand, these

ultrashort bursts of light allow us to experimentally study dynamics of processes

previously thought of as instantaneous, such as, for example, quantum-mechanical

tunneling through the barrier.

Another very active and fruitful area of laser evolution is the increase of the

peak pulse power that allowed study light-matter interaction at the extreme con-

ditions where, for example, electric field of light pulse can be much stronger than

natural electric field binding electrons to atomic nuclei. Modern high-power laser

systems achieve petawatt (1 PW = 1012 watt) levels of instantaneous power that

make possible efficient laser particle acceleration, X-ray generation. Next generation

of ultrahigh power lasers (such as Extreme Light Infrastructure, ELI) is planned to

reach so-called Schwinger limit [11] of light intensities, at which electron-hole pairs

can be created in vacuum, thus paving the studies of nonlinear quantum electrody-

1



namics of vacuum [12]. Simultaneosly, some effects of nonlinear QED can be probed

at much smaller intensities level in semiconductors; for example, photoionization

[13, 14], or creation of electron-hole pair by intense radiation, is a direct analog of

electron-positron pair creation in nonlinear QED.

The technique of choice in generation of ultrashort high-power laser pulses is

chirped-pulse amplification (CPA), pioneered by Donna Strickland and Gerard Mourou

in 1985 [15], whereby ultrashort pulses are stretched with a dispersive line (stretcher),

amplified to high energy and then compressed down to original duration with an-

other dispersive line (pulse compressor). The point of stretching is to reduce peak

intensity of the amplified pulse below the threshold of onset of nonlinear effects and

light-induced damage in the amplifier – the idea borrowed from high-power radar

technology. It has been discovered that resulting compressed pulses are powerful

enough to cause nonlinear-optical effects virtually in any media, including atmo-

spheric air; and one of the first effects to set in is self-focusing [16, 17]. This, as a

matter of fact, accidental discovery (it was found that initially collimated beam after

some distance of propagation leaves burn marks on the mirrors) has opened up a

whole field of nonlinear optics of filaments [18, 19]. Femtosecond filamentation is a

very robust nonlinear-optical phenomenon, ocurring in gases, liquids and solids and

conveying high-intensity radiation over distances much larger than diffraction length

of linearly propagating light. These properties make femtosecond filaments unique

tools for nonlinear optics and high-power laser physics and enable such applications

as remote (up to tens of kilometers) atmosphere sensing [20, 21, 22], remote laser-

induced breakdown spectroscopy, remote sub-diffraction imaging [23], laser pulse

self-compression (down to sub-fs duration) [24, 25, 26, 27, 2], high harmonics gener-

ation and others (see excellent reviews [18, 19]).

While femtosecond filaments themselves have become a well-established technol-
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ogy, some fundamental aspects of physics behind filaments are still unexplored. For

example, at high levels of input power filaments tend to experience so-called modula-

tional instability [28] and break down onto multiple individual filaments, interacting

with each other [29, 30, 31, 32, 33, 18, 19]. Various regimes of interaction of individ-

ual filaments are of interest from the point of chaotic dynamics [34]. When filaments

are used for pulse self-compression, minimum pulse duration and maximum field in-

tensity, attainable during pulse self-compression in the filament, or, more broadly

speaking, the physical mechanisms responsible for limiting pulse duration and max-

imum intensity, are of significant interest.

On the other hand, the nonlinearity of bound and free electrons that creates

the filament is not very well studied at the sub-femtosecond timescales, relevant for

description of transient waveforms during pulse self-compression in the filament. Of-

ten the existing models of non-resonant Kerr nonlinearity [17] and photoionization

[13, 35, 36, 37] are taken, strictly speaking, beyond their domain of validity in theo-

retical description of femtosecond filaments. This makes filaments a great probe for

such sub-femtosecond dynamics and at the same time calls for theoretical description

of underlying nonlinearities at the relevant timescales [38, 39, 40].

The structure of the present thesis reflects evolution of the research focus of

our group in Texas A&M University under supervision of Prof. Aleksei Zheltikov.

First part (sections 2–6) is devoted to supercomputer numerical simulations of var-

ious regimes of filamentation in solids and gases, and analytical studies of filament

properties. Second part (sections 8–12) is devoted to theoretical studies of photoion-

ization in solids at sub-cycle time scales. We develop FCRPI - field-cycle-resolved

photoionization theory (sections 8–10) and apply it to problems of optical break-

down of dielectrics by ultrashort pulses and nonlinear reflection of ultrashort pulses

by interface with ionizing dielectric at sub-cycle timescales (sections 11–12).
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2. NUMERICAL MODEL

To simulate interaction of multiple filaments in liquids or solids, we use the fol-

lowing three-dimensional time-dependent equation [41, 18, 19, 42] for complex scalar

field amplitude A = A (t, x, y, z) evolution:

∂AF
∂z

= i

(√
k(ω)2 − k2

x − k2
y −

ω

Vgr

)
AF + Fx→kx,y→ky {Rnl[A] +Ri[A]} (2.1)

where AF ≡ Fx→kx,y→ky ,t→ω{A} is the Fourier transform of the field amplitude, x and

y are the transverse coordinates, kx and ky are the x and y components of the wave

vector, z is the propagation coordinate, ω is the radiation frequency, t = tlab− z
Vgr

is

the retarded time, tlab is the time in the laboratory frame, Vgr is the group velocity,

k(ω) = ω
c
n(ω), c is the speed of light in vacuum, n(ω) is the frequency-dependent

linear refractive index. Equation (2.1) is derived from Maxwell equations in the

approximation of unidirectional field evolution, that is, that most of the energy of

the field propagates approximately in the same direction, or, alternatively, that the

back-scattered wave is weak [43, 44]. The term Rnl[A] includes instantaneous (Kerr)

and inertial (Raman) parts of the nonlinear-optical response:

Rnl[A] = i
ω

c
Ft→ω

{
n2

∫ ∞
0

K(τ)|A(t− τ, x, y, z)|2 + χTHA
3 + n4|A|4AdτA

}
, (2.2)
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where n2 and n4 is are second- and fourth order nonlinear refractive indices,

n2 =
ω

ck(ω)

√
µ0

ε0
χ(3)(ω;ω,−ω, ω),

n4 =
ω

ck(ω)

µ0

ε0
χ(5)(ω;ω, ω, ω,−ω,−ω),

χ
TH

=
ω

ck(3ω)

√
µ0

ε0
χ(3)(3ω;ω, ω, ω),

(2.3)

χ(3) and χ(5) are third- and fifth order nonlinear susceptibility tensors [45, 46, 47]

K(τ) is the Raman response function,

K(τ) = (1− fR)δ(τ) + fR
1 + Ω2

Rτ
2
R

Ω2
RτR

e−τ/τR sin ΩRτ (2.4)

Here fR is the fraction of the delayed response in the total nonlinear response, ΩR

is the Raman frequency, τR is the decay time, and δ(τ) is the Dirac delta function.

The first term in Eq. (2.4) mimics the instantaneous Kerr response, and the second

term models the inertial Raman nonlinearity [48].

Ionization effects are included through the Ri[A] function [18, 19]:

Ri[A] =
σ(ω)

2
(1 + iωτc)Ft→ω {ρA} − Ft→ω

W (|A|2)

|A|2
(Ui + Up) , (2.5)

where σ(ω) = µ0e2

mk(ω)(1+ω2τ2
c )

is the inverse bremsstrahlung cross section, τc is the

electron momentum transfer time, µ0 is vacuum permeability, m is the electron

mass. The first term on the right-hand side of Eq. (2.5) describes free-electron re-

fraction and absorption, while the second term accounts for photoionization losses,

where W (|A|2) is the photoionization rate, Ui is the ionization potential or band

gap, Up = e2|A|2
mω2

0

√
µ0

ε0
1
n0

is the ponderomotive energy of an electron oscillating in the

electromagnetic wave, ε0 is the vacuum permittivity, n0 ≡ n (ω0) is the linear refrac-
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tive index at the central pulse frequency ω0. The electron density ρ ≡ ρ (t, x, y, z) is

found by solving the equation:

∂ρ

∂t
= W

(
|A|2

)
ρat +

σ (ω0)

Ui + Up
ρ|A|2 − ρ

τr
, (2.6)

First term in (2.6) describes photoionization, where W (|A|2) is photoionization rate

per atom, molecule or unit crystal cell, ρat is density of atoms, molecules or inverse

volume of a unit crystal cell. Second term in (2.6) describes avalanche photoioniza-

tion, and the last term – finite lifetime of free carriers τr.

When considering a single filament, we can make use of cylindrical symmetry of

the beam and instead of transverse coordinates x and y introduce transverse radial

coordinate. The Fourier transform over transverse coordinates then becomes Hankel

transform (or Fourier-Bessel transform or zeroth order)

Fr→kr{f(r)} ≡
∫ ∞

0

2πJ0(krr)f(r)dr (2.7)

Additionally, we use k2
x + k2

y = k2
r , and also use the fact that for single filament

kr � k(ω) and rewrite (2.1) as

∂AF
∂z

= i

(
D(ω)− k2

r

2k(ω)

)
AF +Rnl[A] +Ri[A] (2.8)

where D(ω) = k(ω)− ω/Vgr is the dispersion operator.

The nonlinear-optical responses of noble gases in high-intensity fields, on one

hand, do not have delayed nonlinearity (the delayed nonlinearity comes from rota-

tions or vibrations of molecules. Stricly speaking, response of bound electrons is

also somewhat inertial [49], however, at the timescales relevant to most regimes of

femtosecond filamentation such inertia can be neglected). On the other hand, there
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are additional terms related to higher-order electronic nonlinearities and multiple

ionization of atoms

Rnl[A] = i
ω

c
Ft→ω

[
n2

(
|A|2A+

1

3
A3

)
+ n4

(
|A|4A+

1

2
|A|2A3

)]
, (2.9)

where n2 and n4 are the Kerr nonlinear refractive indices. The |A|2A and |A|4A

terms describe intensity dependent refraction, while the 1
3
A3 and 1

2
|A|2A3 terms

account for third-harmonic generation through the third- and fifth-order nonlinear

susceptibilities.

Ri term on the right-hand side of Eqs. (2.1) and (2.8) that accounts for ionization

response is modified as follows

Ri[A] = −σ(ω)

2
(1 + iωτc)Ft→ω [ρ(t)A]−Ft→ω

[
N∑
Z=0

UZ + Up
|A|2

WZρZA

]
, (2.10)

where UZ and WZ are the ionization potential and photoionization rate for an ion

with a charge Z, Up is the electron ponderomotive energy. The time-dependent free

electron density ρ(t) is found by integrating the following set of equations [50]:

∂ρ0

∂t
= −W0ρ0, (2.11)

∂ρZ
∂t

= WZ−1ρZ−1 −WZρZ for Z = 1, . . . , N, (2.12)

ρ =
N∑
Z=1

ZρZ , (2.13)
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where ρZ is the density of ions with a charge Z, subject to the initial conditions

ρZ (t = 0) = 0 for Z = 1, . . . , N, (2.14)

ρ0 (t = 0) = ρat, (2.15)

ρat is the density of neutral atoms.

For the purposes of analysis of various physical mechanisms responsible for certain

aspects of filaments it can be useful to introduce central frequency ω0 and rewrite

(2.8) in t, r, z coordinates as [18, 19, 42]

∂A

∂z
= i

(
D̂ + T−1∇2

r

2k0

)
A+ R̂nl[A] + R̂i[A] (2.16)

where

T = 1 +
i

ω0

∂

∂t
(2.17)

is self-steepening operator , k(ω) ≈ k(ω0)
(

1 + ω−ω0

ω0

)
in the denominator of the

diffraction term T−1 ∇2
r

2k0
in (2.16); D̂A = Fω→tDAF and R̂i[A] = Fω→tRi[A] are

Fourier-transforms of dispersion operator and ionization response into time domain,

respectively. Nonlinear response operator can be written fully in time-domain using

operator T as

R̂nl[A] = i
ω0

c
n2T

{∫ ∞
0

K(τ)|A(t− τ, r, z)|2dτA+ n4|A|4A
}
, (2.18)

In expression (2.18) we have included higher-order nonlinearity through n4|A|4A

term, which will be useful in the analysis of optical shock-wave formation (section

5). In the same way, third harmonic generation terms from (2.9) can be included.
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3. SUPERCOMPUTER SIMULATIONS

Equations (2.1)–(2.11) were solved using split-step method [51, 52, 48]. Specifi-

cally, in the equation (2.1) linear term

i

(√
k(ω)2 − k2

x − k2
y −

ω

Vgr

)
AF (3.1)

is local in the kx, ky space (the space of transverse wavenumbers), that is, change of

amplitude AF given by the term (3.1) at point kx,0, ky,0 depends only on values of

AF at kx,0, ky,0 (and various values of frequency ω). Such locality means that change

in AF due to linear term (3.1) can be calculated in various grid points in kx, ky in

parallel. In the cylindrically symmetric case (Eq. (2.8)) linear term

i

(
D(ω)− k2

r

2k(ω)

)
AF (3.2)

is local in variable kr. At the same time, nonlinear term

Fx→kx,y→ky {Rnl[A] +Ri[A]} (3.3)

is local in space of transverse coordinates x, y. Locality allows parallel calculation of

linear term in all points in kx, ky-space (or kr-space) simulataneously, and parallel cal-

culation of nonlinear term in all points x, y-space simultaneously. The computation

step is then as follows:

1. Calculate A
(l)
F (z) = eR

(l)∆zAF (z), where Rl = i
(√

k(ω)2 − k2
x − k2

y − ω
Vgr

)
2. Calculate Fourier transform A(l)(t, x, y, z) = Fω→t,kx→x,ky→yA

(l)
F (ω, kx, ky, z)
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3. Calculate ∆A(t, x, y, z) - change of A(t, x, y, z) during the step ∆z due to non-

linear term (3.3) using Runge-Kutta method of the fourth order andA(l)(t, x, y, z)

as input

4. Calculate max |∆A(t, x, y, z)|. If (max |∆A(t, x, y, z)| > Tolmax |A(t, x, y, z)|,

where Tol is numerical tolerance parameter (that physically has the meaning of

maximum nonlinear phase shift during one step and usually selected between

0.01 and 0.05), set ∆z ← ∆z/2, discard ∆A(t, x, y, z) and repeat step 3.

5. Set AF ← A
(l)
F + Ft→ω,x→kx,y→ky∆A(t, x, y, z)

6. Set ∆z ← 0.5Tolmax |A(t, x, y, z)|/max |∆A(t, x, y, z)|

Discretization steps in time t and transverse coordinates x and y (or radial coordi-

nate r) were chosen fixed in such a way as to provide a reliable convergence of the

numerical procedure.

Simulations were performed in parallel codes using Message Passing Interface

(MPI) technology at the Lomonosov supercomputer of Moscow State University in

Russia, and using Graphics Proccessing Units (GPU) through Compute Unified De-

vice Architecture (CUDA) technology on the workstations in Texas A&M University

and in Moscow State University.
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4. RELATIVISTIC-INTENSITY FILAMENTS*

In this section, we  show that  filamentation-assisted  compression of  subpetawatt

laser pulses is possible in low-pressure gases, where the gas pressure is chosen in such

a way as to avoid multiple filamentation and where the depletion of outer-shell ion-

ization is used to steer the balance between Kerr-nonlinearity-induced self-focusing

and plasma defocusing toward the optimum for self-compression of subpetawatt laser

pulses [1].

Simulations were performed for low-pressure argon. Dispersion was included in

the model through the appropriate Sellmeier equation for argon [53]. The nonlinear

refractive indices are calculated as n2,4 = n2,4
p
p0

, where p is the gas pressure and

p0 is the atmospheric pressure. The values of the nonlinear refractive index n2 for

argon available from the literature vary within at least the range from 0.8x10−19 to

1.5x10−19 cm2W−1 [54, 55, 56, 57]. For our simulations, we take n2 = 10−19 cm2

W−1. Since all the Kerr-type processes in our system are controlled by the product

of n2 and the gas pressure p, the uncertainty in n2 simply implies an additional

adjustment of the gas pressure p. The critical power for self-focusing at p = 1 bar for

radiation with the wavelength λ0 = 800nm is then equal to Pcr =
3.77λ2

0

8πn2n0
≈ 9.6 GW.

The electron momentum transfer time was calculated as τc = τ c
p0

p
with τ c = 190 fs

for argon [18, 19]. In electron density calculations, it was sufficient to limit the sum

in Eqs. (2.10) and (2.11) with N = 11, as the number of Ar11+ ions was negligibly

small. Throughout this paper, we discuss simulations performed for a Gaussian pulse

with an FWHM pulse width τ0 = 30 fs and the central wavelength λ0 = 800 nm.

∗Section reprinted with permission from ”Filamentation-assisted self-compression of subpetawatt
laser pulses to relativistic-intensity subcycle field waveforms” by P. A. Zhokhov, V. Ya. Panchenko,
and A. M. Zheltikov [1]
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Light pulses with such parameters and energies in the range of a few joules can be

routinely generated by the available 100–200-TW laser systems [58, 59]. Simulations

done with other input pulse shapes, including flat-top, super-Gaussian pulses, show

that, because of the highly nonlinear, strongly coupled temporal and spatial field

waveform dynamics, which involves pulse and beam sectioning, it is nontrivial to

identify simple pulse-shaping strategies that would efficiently optimize filamentation-

assisted pulse compression or enhance its energy throughput in the considered range

of field intensities. The input beam diameter and the focusing length were varied

in our (3+1)-dimensional simulations in order to achieve the highest efficiency of

pulse compression simultaneously avoiding the multiple filamentation of a beam, as

discussed below in this paper. In what follows, we present the results of simulations

performed for a Gaussian laser beam with an initial FWHM diameter of 2 cm and

a linear focal length of 5 m. This beam focusing geometry was found to provide the

most promising regime of pulse compression.

To avoid multiple filamentation of the high-power laser beam, the gas pressure in

our analysis is chosen in such a way as to keep the critical power for self-focusing Pcr

approximately at the level of the the peak power P of the laser pulse. In particular,

for a 30-fs pulse with E0 = 6 J, the peak power becomes equal to Pcr at an argon

pressure of 5.11x10−5 bar.

As a first step of our analysis, we verify that the high-power laser pulse with a

given initial energy forms a single filament as it propagates through the low-pressure

gas, with its beam profile remaining stable with respect to the buildup of a small-

scale multifilamentary beam structure. Figure 4.1(a) presents the results of (3+1)-

dimensional simulations for a 30-fs laser pulse with an energy of 6 J, propagating in

argon at p = 5.11x10−5 bar, with P = Pcr. The beam at the linear focus point z = 0

displays perfect cylindrical symmetry with no signatures of multiple filamentation.
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Figure 4.1 (a) The fluence F =
∫
|A|2dt (kJ/cm2) as a function of transverse coor-

dinates x and y of a high-power beam with E0 = 6 J, τ0 = 30 fs, and λ0 = 800 nm at
z = 0.4 m in argon at p = 5.11x10−5 bar simulated by solving the (3+1)-dimensional
GNSE. (b) The on-axis field intensity (PW/cm2) as a function of the propagation
distance and retarded time for E0 = 1 J, τ0 = 30 fs, and P = Pcr. From P. A.
Zhokhov et al, 2012 [1]

However, avoiding multiple filamentation by keeping Pcr ≈ P at lower gas pres-

sures is necessary, but not sufficient to effectively scale filamentation-assisted pulse

compression to extreme light powers. Since the ionization rate is typically a much

steeper function of the laser intensity than the Kerr nonlinearity, efficient pulse com-

pression of extreme-power laser pulses at low gas pressures is prevented [Figs. 4.1(b),

4.2(a)] by a fast increase in the electron density along the filament [dashed curve in

Fig. 4.2(a)], which tends to defocus the laser beam following the initial stage of

beam self-focusing [Fig. 4.1(b)]. To steer the balance between ionization-induced

defocusing and Kerr-nonlinearity-related self-focusing toward more efficient pulse

compression in longer filaments, we use specific properties of argon, which features

a large gap (∆U ≈ 280 eV) between the ionization potentials of M - and L-shell
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electrons. When the laser field intensity is high enough to deplete the M -shell, the

large gap ∆U tends to stabilize the electron density along the filament. This effect

is illustrated by Fig. 4.2(a), showing that 1- and 6-J laser pulses generate filaments

where the maximum field intensities differ by two orders of magnitude, while the

average ionization degrees 〈Z〉 = ρ/ρat differ only by factor of two. This result is in

striking contrast with filamentation at the atmospheric pressure, when the electron

density rapidly grows with the laser intensity [18, 19]. For E0 = 6 J, the average

ionization degree 〈Z〉 is effectively clamped at 〈Z〉 = 8 (which corresponds to a

complete depletion of the M -shell) and remains unchanged over more than 1 m.

Due to this electron density clamping effect, the Kerr-nonlinearity-related phe-

nomena can be decoupled within a limited time interval and limited propagation

path from ionization-induced defocusing, as the laser intensity can increase [Fig.

4.2(a)] without a noticeable growth in the electron density [solid curve, the range

of intensities from 0.2 to 0.8 EW/cm2 in Fig. 4.2(a)]. The spatial self-action of a

high-power laser beam under these conditions is dominated by the Kerr nonlinear-

ity, enabling efficient pulse compression through pulse self-steepening and space-time

focusing [18, 19].

This regime of pulse self-compression is illustrated in Figs. 4.3(a) and 4.3(b),

which present the spatiotemporal dynamics and dynamics of spectral broadening of

a laser pulse with τ0 = 30 fs and energy 6 J in argon at p = 5.11x10−5 bar with n4 = 0.

Behind the linear focus [z = 0, shown by white contour lines in Fig. 4.2(b)], the beam

continues to focus due to the Kerr nonlinearity [Fig. 4.2(b)], which dominates within

this section of propataion path over ionization-induced defocusing, suppressed due

to the depletion of ionization from the outer shell of argon. This beam self-focusing

dynamics is accompanied by pulse reshaping and compression in the time domain,

as well as by efficient supercontinuum generation in the spectral domain. At z =
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Figure 4.2 (a) The ionization degree (top) and the maximum on-axis field intensity
(bottom) versus the propagation coordinate z for τ0 = 30 fs, P = Pcr and E0 = 6 J
(dashed lines) and 1 J (solid lines). (b) The fluence (kJ/cm2) as a function of the
propagation distance z and radial coordinate r for E0 = 6 J, τ0 = 30 fs, P = Pcr.
The levels of 0.1 and 0.3 of the maximum field intensity for a linearly focused beam
are shown by white contour lines. From P. A. Zhokhov et al, 2012 [1]

0.5 m, the spectrum of this supercontinuum stretches into the UV region, where it

starts to interfere with the third harmonic (the spectral component centered at 1.2

PHz).

Maximum pulse compression is achieved at a certain distance inside a filament

(z = 0.6 m for the chosen set of parameters, see Figs. 4.4 and 4.5). This distance

of maximum compression depends on the gas pressure. As the pressure of argon is

increased from 5.11x10−5 bar (the pressure that provides compression to the shortest

pulse width) to 6x10−5 bar, maximum compression to a pulse width of about 3 fs is

achieved at z = 0.5 m.

In Fig. 4.4(a), we show the FWHM pulse width, the rms pulse width

τrms =

√∫ r0
0
rdr

∫
dt|A|2t2∫ r0

0
rdr

∫
dt|A|2

−
(∫ r0

0
rdr

∫
dt|A|2t∫ r0

0
rdr

∫
dt|A|2

)2

, (4.1)
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Figure 4.3 (a) The on-axis field intensity (EW/cm2) as a function of the propagation
distance and retarded time and (b) the on-axis spectral intensity in arbitrary units
on the log scale as a function of the propagation distance and frequency for E0 = 6
J, τ0 = 30 fs, and P = Pcr. From P. A. Zhokhov et al, 2012 [1]

where r0 is the aperture of, e.g., a pinhole used to select the central part of the

beam at z = 0.6 m. With r0 = 0.14 mm, pulses with an FWHM pulse width of 1.3

fs and a total energy of about 0.3 J can be generated [Fig. 4.4(b)]. The contrast

of this pulse is 20 with respect to a prepulse at t = −τ0/2 = –15 fs and 200 with

respect to a postpulse at t = +τ0/2 = 15 fs. The steep trailing edge of this pulse

is indicative of the key role of self-steepening and space-time focusing effects in this

regime of pulse compression. The FWHM width of the temporal envelope of |A|2

on the beam axis at z = 0.6 m is 0.86 fs, which corresponds to 0.3 field cycles [Fig.

4.5(a)]. Generation of such an extremely short pulse is facilitated by the interference

of the spectrally broadened fundamental field and its third harmonic, which gives

rise to fringes, visible in Fig. 4.3(a). This process enhances the central peak of

the field that undergoes the most efficient self-focusing [Fig. 4.3(a)], giving rise to
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a solitary peak in the radial profile of the field intensity, which is manifested as a

plateau in the dependence of the pulse width on the pinhole diameter in Fig. 4.4(a).

The light intensity achieved in transient field waveforms on the beam axis as a part

of this pulse self-compression dynamics is as high as 0.8 EW/cm2 [z = 0.2 m in Figs.

4.2(a), 4.3(a)], falling in the range of relativistic field intensities.

Generation of relativistic-intensity subcycle field waveforms is quite sensitive to

variations in the parameters of the input laser pulse, as well as variations in the gas

pressure. Stretching of the input pulse by 3% of its width or a decrease in the input

pulse energy by 200 mJ would increase the pulse width at the point of maximum

compression inside the filament up to approximately 3.5 fs. As the gas pressure is

increased by 20%, the shortest pulse width achieved in the filament is increased to 3

fs.

Even higher field intensities can be generated as a result of filamentation-assisted

pulse self-compression dynamics for laser beams with higher input energies. In par-

ticular, a laser pulse with E0 = 7 J and τ0 = 30 fs inducing a filament in argon at p =

3.1x10−5 bar generates subcycle field transients with the field intensity as high as 2

EW/cm2. The filament length tends to increase with the growth in the input energy

in this regime in agreement with the tendency illustrated in Fig. 4.2(a). Technically,

the computer code remains perfectly stable and fully functional in this range of ex-

treme light intensities, while the small-scale features in the spatiotemporal structure

of the field can be analyzed using finer adaptive computation steps in space and

time. However, since the relativistic physics of light – matter interaction at these

cites of extremely high light intensity in filaments is not included in our model and

falls beyond the scope of this study, we restrict our analysis here to the regimes

where the regions of relativistic light intensity are localized within very small areas,

exerting no influence on the overall spatiotemporal dynamics of the laser beam.
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We emphasize here that relativistic-intensity subcycle field transients are gener-

ated as a part of the considered pulse-compression scenario at a certain propagation

distance inside the filament. Filtering this extreme-intensity subcycle field waveform

for experiments in the far field is a challenging issue, which may limit the utility

of the proposed pulse compression strategy. One possible solution to this problem

is to perform relativistic laser–particle interaction experiments (e.g., experiments

on particle acceleration) right inside the filament. Our simulations show that, by

increasing the energy of the input laser pulse up to 7 J, it is possible to generate

relativistic-intensity subcycle field transients on a centimeter spatial scale. An al-

ternative solution would be to filter such extreme-intensity subcycle pulses using

appropriate pinholes for far-field experiments in the single-shot mode, which is not

uncommon for extreme-intensity laser science.

The residual chirp of the pulse at the point of maximum compression [see the

contour lines in Figs. 4.4(c), as well as the profiles of the temporal and spectral

phases in Figs. 4.5(a) and 4.5(b)]. This suggests that a further compression of this

pulse would be possible with an appropriate dispersion of a medium behind the filter

or a properly designed dispersion-compensating component. The transform-limited

pulse width supported by the full spectrum of the pulse at the point of maximum

compression is 0.53 fs, which corresponds to 0.2 field cycles.

While argon has been shown to be ideally suited for filamentation-assisted pulse

compression to subcycle pulse widths and relativistic field intensities, a similar spa-

tiotemporal dynamics of high-power ultrashort light pulses can be implemented using

other gas media. Specifically, neon and krypton, the nearest neighbors of argon in

the periodic table in the family of rare gases, would be other promising candidates,

enabling the expansion of the parameter space for the considered regime of pulse

compression. In particular, neon, due to its higher ionization potential, would be
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suitable for the compression of ultrashort pulses with even higher initial energies (up

to 30 J according to our simulations), while krypton would be promising for com-

pression of laser pulses with lower energies (in the range of 0.5 – 2 J). Obviously, the

initial beam diameter and focusing geometry need to be appropriately adjusted for

efficient pulse compression in other gas media.

Higher order nonlinearities, included in our model through the n4 terms in Eqs.

(2.1),(2.2) and (2.9), may play a significant role in pulse self-compression in the

regime of extreme light intensities. While positive n4 values tend to assist filamen-

tation and pulse compression, negative n4 may stop self-focusing before the optimal

conditions for pulse self-compression are achieved [Fig. 4.4(d)]. Under these condi-

tions, the optimal gas pressure and initial beam focusing should be redefined with

the inclusion of the n4 effects for the maximum efficiency of pulse self-compression.

In summary, we have shown that filamentation-assisted spatiotemporal dynamics

of ultrashort laser pulses in the regime of extreme light powers can enable self-

compression of subpetawatt laser pulses to subcycle pulse widths and relativistic field

intensities. Supercomputer simulations presented here demonstrate compression of

6-J, 30-fs laser pulses to 1.3-fs sub-100-TW broadband field waveforms and reveal

the generation of relativistic-intensity subfemtosecond field transients as a result of

such a pulse evolution scenario, with multiple filamentation avoided due to low gas

pressures and the balance between Kerr and ionization nonlinearities steered toward

optimal pulse compression due to the depletion of ionization from the outer shell of

atoms by a high-power laser field.
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Figure 4.4 (a) The FWHM pulse width (solid blue line), the rms pulse width (dashed
green line), and the total energy (red dotted line) for the compressed pulse trans-
mitted through an aperture with a radius r0 at z=0.6 m, (b) the power in the pulse
(log scale) transmitted through an aperture with a radius of 0.14 mm at z = 0.6
m. The vertical dashed lines show the initial pulse width. (c) The maps of the field
intensity (PW/cm2) versus retarded time and radius at z = 0.65 m. White contour
lines are the isolines of the temporal phase. (d) The on-axis field intensity versus the
retarded time at z = 0.6 m for n4 = 0 (blue solid line), -1x10−39 TW2/cm4 (green
dashed line), -1x10−38 TW2/cm4 (red dotted line) . In all cases E0 = 6 J, τ0 = 30
fs, and P = Pcr. From P. A. Zhokhov et al, 2012 [1]
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Figure 4.5 (a) The on-axis electric field (solid blue line) and its envelope (blue dotted
line) versus the retarded time and (b) the spectrum of this field waveform at z =
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temporal and (b) the spectral phase of the field. The spectrum of the input pulse is
shown in (b) by the dotted red line. From P. A. Zhokhov et al, 2012 [1]
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5. ATTOSECOND SHOCK WAVES*

    A shock wave is a generic term for an abrupt, often discontinuous, transient 

disturbance of physical parameters that exhibits a clearly pronounced wavelike be-

havior as it propagates through a medium [60, 61, 62]. Examples of shock waves are 

found in fluid dynamics, nonlinear acoustics, astrophysics, seismology, and deto-

nation physics and include such diversified natural phenomena as thunder, volcanic 

and stellar explosions, earthquakes, and tsunamis [63]. An important class of shock 

waves, observed in ocean physics, acoustics, and nonlinear electrodynamics, is pro-

duced through a nonlinear wave steepening. In optics, this type of nonlinearity trans-

lates into the intensity dependence of the group velocity, leading to a self-steepening 

of one of the pulse edges. Following the early theoretical predictions in the 1960s [64], 

optical shock waves have been experimentally demonstrated [65, 66] and insightfully 

explained [67] in terms of the nonlinear wave-evolution equation as a part of the 

classical work on spectral broadening of ultrashort laser pulses in nonlinear media. In 

more recent studies, shock-wave effects have been shown to play an important role in 

supercontinuum generation in highly nonlinear fibers [68, 69], as well as in ultrafast 

optical waveform dynamics in laser-induced filaments [18, 19, 70, 71].

One-dimensional shock-wave effects, observed in optical fibers [48], are known to

steepen the trailing edge of the pulse, but do not lead to pulse shortening. Similar to

hydrodynamic shocks, which obey a set of well-defined conservation and propagation

laws [72], 1D shock waves in nonlinear optics have been shown to satisfy energy and

photon-number conservation [73, 74, 75] and to evolve in accordance with funda-

mental equations of electrodynamics [48], allowing in some approximations compact

∗Section reprinted with permission from ”Attosecond shock waves” by P. A. Zhokhov and A. M.
Zheltikov [2]
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analytical self-similar solutions.

In this section, we demonstrate that a three-dimensional dynamics of ultrashort

light pulses, which involves strongly coupled spatial and temporal nonlinear effects,

can give rise to isolated optical shock transients with remarkably short, subfem-

tosecond pulse widths, suggesting an ionization-free pulse self-compression scenario

whereby multigigawatt attosecond optical waveforms can be synthesized [2].

The input peak power in our simulations was chosen slightly below the critical

power of self-focusing Pcr =
λ2

0

2πn0n2
, where λ0 = 2πc

ω0
is the central wavelength, n0 is

the linear field-free refractive index. The initial beam sizes and the focusing geometry

were varied in a broad range to achieve a specific scenario of space–time self-focusing

where the self-steepening of the trailing edge of the pulse is accompanied by the

diffraction of the leading edge of the pulse, allowing a shock wave to evolve toward

an extremely short pulse width.

Helium was chosen as a nonlinear medium in our simulations because of its high

ionization potential (Ui ≈ 24.59 eV), providing a broad transparency range, needed

to support the spectrum of subfemtosecond shock-wave transients. The nonlinear

refractive indices for helium are n2 ≈ 3x10−8 p
p0

cm2/TW and n4 ≈ −1x10−11 p
p0

cm4/TW2 [76, 77, 78, 56], where p is the gas pressure and p0 is the atmospheric

pressure. The entire dispersion profile of the gas is included in the model through

the n(ω) data for helium from Ref. [79].

Laser pulses with a peak power well above Pcr tend to form filaments in accor-

dance with the standard filamentation scenario as beam self-focusing due to the Kerr

nonlinearity of the gas is balanced by ionization-induced defocusing. As shown by

the extensive earlier work (see, e.g., Refs. [18, 19] for review), this regime of beam

dynamics, accurately reproduced in our simulations, enables pulse compression to

few-cycle pulse widths. A drastically different scenario of field evolution is observed
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Figure 5.1 (a) Spatiotemporal map of the on-axis field amplitude A for f = 0.65Ld
and (b) the minimum dimensionless FWHM pulse width on the beam axis as a
function of R = f/Ld calculated with the full model (solid line, filled circles), with
ionization switched off (dashed line, open circles), with ionization and high-order
nonlinearity switched off (dotted line, triangles) and with dispersion switched off
(dash-dotted line, rectangles) for P = 0.8Pcr, τ0 = 70. From P. A. Zhokhov and A.
M. Zheltikov, 2013 [2].

for loosely focused laser beams with peak powers slightly below Pcr. This regime

of nonlinear spatiotemporal field dynamics is illustrated in Fig. 5.1(a) for an input

field with a peak power P = 0.8Pcr taken in the form of Gaussian pulse with dimen-

sionless pulse width τ0 = 70 and Gaussian spatial profile, focused in helium with a

focal length f = 0.65Ld. An ultrashort shock wave is seen to build up on the trailing

edge of the pulse [Fig. 5.1(a)] as a result of this spatiotemporal field evolution. The

minimum pulse width of this shock transient, achieved at z = 1.1Ld, is 1.36 fs. The

beam focusing geometry in these simulations is adjusted in such a way as to enhance

pulse compression and to avoid any noticeable ionization effects. Comparison of the

simulations performed using the full model of Eqs. (2.8)–(2.11) [filled circles in Fig.

5.1(b)] with simulations where ionization, high-order nonlinearity and ionization, or

dispersion effects were switched off [open circles, triangles, and rectangles in Fig.

5.1(b)] shows that the minimum pulse width of the shock transient, arising on the
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Figure 5.2 (a) the maximum field intensity (solid line, left axis), the maximum elec-
tron density (dashed line, left axis), the on-axis FWHM pulse width after spectral
filtering (solid line, right axis) and FWHM pulse width of the spectrally filtered field
integrated over the beam (dash-dotted line, right axis) as functions of the propaga-
tion distance z and (b) the field spectrum on the beam axis for λ0 = 800 nm, τp =
30 fs, f = 0.65Ld, and P0 = 0.8Pcr in helium at p = 0.02 bar. From P. A. Zhokhov
and A. M. Zheltikov, 2013 [2].

trailing edge of the pulse, is controlled by the tradeoff of the effects related to disper-

sion, high-order nonlinearities, and, to some extent, ionization. For tightly focused

beams [small R in Fig. 5.1(b)], high-order nonlinearities and ionization effects limit

the pulse width. In the regime of loose focusing large R in Fig. 5.1(b)], dispersion

effects start to play a significant role, limiting the minimum pulse width of the shock

transient.

When the effects of impact ionization are negligible (which is the case within a

broad range of parameters, including the regime considered here), the spatiotemporal

field dynamics leading to the generation of ultrashort optical shocks can be scaled in

the peak power through a coordinated adjustment of the gas pressure p ∝ P−1, the

input beam diameter d0 ∝ P 1/2, and the focal length f ∝ P . As a specific example

of high-power attosecond shock generation, we consider the evolution of laser pulses
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with a central wavelength λ0 = 800 nm and an input pulse width of 30 fs (τ0 = 70),

corresponding to a typical output of mode-locked Ti: sapphire lasers. The input

pulse energies are set equal to 43 mJ and 50 mJ, corresponding to input peak powers

P0 of 1.36 TW and 1.7 TW at a helium pressure p = 0.02 bar. With the input beam

diameter and the linear focal length taken equal to d0 = 2.9 mm and f = 15.5 m,

the maximum electron density generated by the laser pulse is 5x1013 cm−3, and the

longitudinal profiles of the field intensity and electron density along the beam path

[Fig. 5.2(a)] drastically differ from typical field intensity and electron density profiles

with extended plateaus observed in the filamentation regime [18, 19].
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Figure 5.3 Spatiotemporal maps of the on-axis field (in GV/cm), calculated with
(a), (b) and without (c), (d) the shock term in Eq. (2.16) for the initial central
wavelength λ0 = 800 nm, input pulse width τp = 30 fs, f = 0.65Ld, and input peak
power P0 = 0.8Pcr (a), (c) and P0 = Pcr (b), (d) in helium with p = 0.02 bar. From
P. A. Zhokhov and A. M. Zheltikov, 2013 [2].

To isolate the shock-wave effects in the generation of an ultrashort peak on the

26



trailing edge of the pulse, seen in Figs. 5.3(a) and 5.3(b), we performed simulations

with the shock operator T in Eqs. (2.16) replaced by the identity operator. With

the shock-wave effects switched off, a drastically different type of field evolution is

observed [Figs. 5.3(c), 5.3(d)]. For peak powers below Pcr [P = 0.8Pcr in Fig. 5.3(c)],

the pulse retains its symmetric shape, as the peak of the pulse propagates with the

same group velocity as its edges. As the peak power approaches Pcr, ionization effects

become noticeable, defocusing the trailing edge of the pulse [Fig. 5.3(d)]. Generation

of an ultrashort pulse is not observed in any of these regimes when the shock term

is disabled.
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Figure 5.4 (a), (b) The pulse power integrated over the entire beam and the spectrum
of the pulse on the beam axis at z = 0 (dashed line, left axis) and 20 m (solid line,
left axis). Also shown are the transmission of the filter (dotted line, right axis). (c)
The electric field on the beam axis (solid line) and the pulse envelope (dashed line)
at z = 20 m; (d) the pulse envelope integrated over the entire beam behind the filter
for λ0 = 800 nm, τp = 30 fs, f = 0.65Ld, and P0 = 0.8Pcr in helium at p = 0.02 bar.
From P. A. Zhokhov and A. M. Zheltikov, 2013 [2].
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The shock term, as can be seen from Figs. 5.3(a) – 5.3(d), tends to push the

most intense part of the pulse toward its trailing edge, giving rise to subfemtosecond

shock transients on the back of the pulse [seen at 15 < t < 20 fs in Figs. 5.3(a),

5.3(b)]. The physics behind shock-wave formation in this regime is intuitively clear,

as the highest-intensity fraction of the pulse propagates slower than its edges due

to the positive Kerr-effect-induced change in the group index of the gas. Unlike 1D

shock waves, 3D shock transients can evolve toward much shorter, attosecond pulse

widths due to a strongly coupled dynamics of the optical field in space and time.

Specifically, in the regime illustrated by Fig. 5.3(a), a shock wave tends to increase

the field intensity on the trailing edge of the pulse, enhancing the self-focusing of

this portion of the waveform (Fig. 5.5). Since the field intensity on the leading

edge of the pulse is much lower, this part of the pulse undergoes strong diffraction,

facilitating the generation of an ultrashort shock transient. Enhancement of pulse

compression due to self-steepening on the trailing edge of the pulse is confirmed

by numerical simulations performed with and without the shock-wave term in Eq.

(2.16) (Fig. 5.5). At the point of maximum pulse compression [z = 26 m in Fig.

5.3(a)], an ultrashort shock is tightly confined to the pulse section where the beam

size is minimal due to the most efficient self-focusing.

The field waveform produced as a result of this spatiotemporal field dynamics

features an extremely short peak on a long pedestal [Fig. 5.4(a)]. The spectrum of

this pedestal is centered around the input spectrum [shown by the dashed line in

Fig. 5.4(b)], while its temporal power profile follows the input pulse [the dashed line

in Fig. 5.4(a)] slightly distorted by the shock wave. The spectrum of the ultrashort

peak at 15 < t < 20 fs in Fig. 5.3(a) displays a strong blue shift [Figs. 5.2(b), 5.4(b)],

translating into a strong chirp of the electric field on the beam axis [Fig. 5.4(c)]. Due

to this spectral shift, the ultrashort shock wave can be separated from the pedestal

28



t 
(c

y
c
le

s
)

 

 

(a)

0.2 0.4 0.6

−5

0

5 0.05

0.1

0.15

r (mm)

t 
(c

y
c
le

s
)

 

 

(d)

0.2 0.4 0.6

−5

0

5 0.05

0.1

0.15

 

 

(b)

0.2 0.4 0.6

−5

0

5 0.1

0.2

0.3

r (mm)

 

 

(e)

0.2 0.4 0.6

−5

0

5 0.1

0.2

0.3

 

 

(c)

0.2 0.4 0.6

−5

0

5
0.1

0.2

0.3

0.4

0.5

r (mm)

 

 

(f)

0.2 0.4 0.6

−5

0

5
0.02
0.04
0.06
0.08
0.1
0.12

Figure 5.5 Maps of the intensity (PW/cm2) in the (r, t) coordinates simulated with
(a), (b), (c) and without (d), (e), (f) the shock-wave term for (a), (d) z = 10 m, (b),
(e) z = 16 m, (c), (f) z = 22 for τp = 30 fs, P0 = 0.8Pcr, f = 0.65LD, p = 0.02 bar.
From P. A. Zhokhov and A. M. Zheltikov, 2013 [2].

through spectral filtering. In contrast to filamentation compression schemes, where

the laser fluences are prohibitively high for a direct intrafilament filtering of the

compressed pulse, the laser fluence around the point of maximum pulse compression

in our scheme is below 2 J/cm2, which allows a spectral filter to be inserted in the

laser beam at z = 21 m to block the spectrum of the pedestal [as shown by the dash-

dotted line in Fig. 5.4(b)] and to produce an extremely short shock transient across

the entire beam with the FWHM pulse width estimated, following the integration

over the beam, as 460 attoseconds. The maximum field intensity in this 0.46-fs pulse

is about 2 × 103 times higher than the intensity of a prepulse 15 fs before the peak

and 1.6×104 times higher than the postpulse intensity 15 fs after the peak. The total

energy carried by this 0.46-fs shock wave is 0.03 mJ, translating into a peak power
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of 52 GW. The FWHM pulse width in the spectrally filtered shock wave calculated

as a function of the propagation path is shown in Fig. 5.2(a). The integral pulse

width of the compressed shock transient across the entire beam [dash–dotted curve

in Fig. 5.2(a)] closely follows the on-axis beam intensity, shown by the solid line in

this figure. Equations (2.8) and (2.16) is still valid for such field transients since all

the necessary conditions for the applicability of these equations, 1
|A| |

∂A
∂z
| � k0 and

|k0 − ω0

V
| � k0, are satisfied, with k0 = ω0

c
n(ω0) [42]. Indeed, for the regime where

attosecond shock transients are generated, we have max
{

1
|A| |

∂A
∂z
|
}
≈ 10 cm−1 and

|k0 − ω0

V
| ≈ 0.05 cm−1, while k0 ≈ 8× 104 cm−1.

A broad transparency range free of any electronic resonances is critical for at-

tosecond shock wave generation as it helps reduce absorption, dispersion-induced

pulse stretching and precursor formation [80]. For helium, the first electronic reso-

nance corresponds to the 1s−2p transition and occurs at ν1s−2p ≈ 5.13 PHz. For the

attosecond shock transient in Fig. 5.4(d), the high-frequency part of the spectrum

falling beyond ν1s−2p carries less than 10−11 of the total radiation energy and less

than 10−5 of the energy of the attosecond waveform behind the spectral filter. Under

these conditions, effects related to precursor formation are negligible.

Unlike laser-induced filaments, where few-cycle field transients are generated as a

part of an ultrafast strongly coupled spatiotemporal dynamics, which stretches these

transients within extremely short propagation paths, attosecond optical shock waves

demonstrated in this work are generated with loosely focused beams, at low gas

pressures, and in the regime where ionization effects are negligible. Due to all these

factors, such waveforms maintain their pulse widths over much longer propagation

paths. Specifically, at p = 0.02 bar, the 0.46-fs field waveform shown in Fig. 4(d)

remains shorter than 0.65 fs within a propagation path of 70 cm, allowing this field

waveform to be extracted from a gas medium with an appropriate pressure gradient,
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thus making it suitable as a subfemtosecond probe for time-resolved experiments.

To summarize, unlike 1D shock waves in optical fibers, 3D shock transients can

evolve toward remarkably short, subfemtosecond optical waveforms, suggesting a

pulse self-compression scenario whereby multigigawatt attosecond optical waveforms

can be synthesized.
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6. SCALING LAWS FOR FILAMENTS IN GASES*

Methods  of scaling analysis, known since the early days of natural sciences [81],

offer powerful tools for in-depth studies of a broad diversity of systems in physics,

chemistry, geosciences, biology, and social sciences. Identifying scaling laws for sys-

tems with multiparameter, multiple-scale nonlinear dynamics is especially challeng-

ing. In nonlinear optical physics, this type of dynamics is found in laser-induced

filamentation [16, 18, 19], a specific scenario of spatiotemporal dynamics of opti-

cal fields where the beam self-focusing of a high-intensity ultrashort optical pulse is

balanced by defocusing due to the radial profile of the electron density induced by

ultrafast ionization, giving rise to a self-channeling-type propagation of laser radia-

tion. Besides offering an intriguing example of unique ultrafast nonlinear dynamics,

laser-induced filamentation enables long-distance transmission of high-intensity ul-

trashort pulses [82], suggests a powerful strategy for pulse compression to extremely

short [83, 84], in certain cases subcycle [71], pulse widths, allows remotely pumped

lasing [85], and opens new horizons in standoff detection [21].

Important scaling laws for some of the key physical processes contributing to

laser-induced filamentation are known from the classical earlier work on laser–matter

interaction and nonlinear-optical physics. In his seminal 1964 work [13], Keldysh has

derived a closed-form expression allowing the photoionization rate to be calculated as

a function of the laser intensity. On the beam dynamics side, Bespalov and Talanov

[28] have offered important insights into small-scale filamentation of high-power laser

beams, while Marburger [17] has derived a semi-analytical formula for the position

of the nonlinear focus as a function of the peak power. However, in laser-induced

∗Section reprinted with permission from ”Scaling laws for laser-induced filamentation” by P. A.
Zhokhov and A. M. Zheltikov, [3]
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filamentation, all these tendencies, identified earlier for isolated physical processes,

are manifested as a part of complex spatiotemporal field evolution, involving strongly

coupled waveform transformations in space and time, where the beam dynamics is

not uniform within the laser pulse and the beam often undergoes multiple refocusing

cycles. As a consequence, a simple combination of analytical results and physical

intuition available for some of the processes involved in laser-induced filamentation

fail to adequately describe the properties of the laser field in a filament and even to

explain the most prominent effects observed in a laser filament.

In this section, we show that, despite all the complexity of the underlying non-

linear physics, the filamentation of ultrashort optical field waveforms obeys a set of

physically instructive scaling laws, applicable within a remarkably broad range of

laser powers, pulse widths, gas pressures, and propagation paths [3]. The scalability

of the key physical effects contributing to laser-induced filamentation will be iden-

tified with the use of the relevant field-evolution and ionization-dynamics equations

and verified by supercomputer simulations, suggesting practical recipes for the power

scaling of filamentation-based pulse compression.

To isolate the pressure dependence of physical parameters in Eqs. (2.2)–(2.8), we

write

ρat = p/p0 ρat, (6.1)

ρ = p/p0 ρe, (6.2)

Ri[A] = p/p0 Ri[A]. (6.3)

where p is the gas pressure, p0 is the atmospheric pressure, and the bar indicates

that a physical parameter is taken at p = p0. The dielectric susceptibilities (both

linear χ(1), and nonlinear χ(3)) are proportional to the number of atoms per unit
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volume, and thus, to the gas pressure. The linear refractive index n(ω) is given by

n(ω) =
√

1 + χ(1)(ω). Since for gases the refractive index is very close to unity,

we can write n(ω) ≈ 1 + χ(1)(ω)/2. The group index that determines the group

velocity at the central frequency of the pulse is then ng(ω0) = n(ω0) + ω0

(
∂n
∂ω

)
ω0
≈

1 + χ(1)(ω0)
2

+ ω0

2

(
∂χ(1)

∂ω

)
ω0

. Therefore, D(ω) = k(ω) − ω
V

= ω
c

(n(ω)− ng(ω0)) ≈

ω
c

(
χ(1)(ω)

2
− χ(1)(ω0)

2
− ω0

2

(
∂χ(1)

∂ω

)
ω0

)
. We see that D̂ is proportional to χ(1) and, thus,

proportional to the gas pressure

D̂ = p/p0 D. (6.4)

On the other hand, according to (2.3), n2 is proportional to χ(3) and inversely propor-

tional to k(ω). k(ω) is almost independent of the gas pressure because gas refractive

index is very close to unity, thus, the nonlinear refractive index n2 is proportional to

the gas pressure. Similarly, n4 and χTH are proportional to the gas pressure:

n2 = p/p0 n2, (6.5)

n4 = p/p0 n4, (6.6)

χTH = p/p0 χTH . (6.7)

Therefore,

Rnl = p/p0 Rnl (6.8)

Let us now introduce dimensionless coordinates ξ = x/a, ζ = y/a, η = z/LD, and

∇̃2
⊥ = ∂2

∂ξ2 + ∂2

∂ζ2 , where a is the input beam radius, and LD = k(ω0)a2

2
is the diffraction
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length, in order to rewrite Eq. (2.8) as

∂A

∂η
= iT−1 ∇̃2

⊥A

4
+

p

p0

LD
(
iDA+Ri[A] +Rnl

)
. (6.9)

Eq. (6.9) is pivotal in revealing important scaling laws for pulse propagation dy-

namics. Mathematically, this equation remains invariant as long as the product pLD

is kept constant. In terms of physical parameters, this implies that variations in

the input beam radius a are coordinated with the gas pressure in such a way that

pa2 is constant. All the nonlinear-optical effects included in Eq. (6.9) scale uni-

formly with such a transformation. Since the diffraction term in Eq. (6.9) involves

second-order derivatives in ξ and ζ, the invariance of the diffraction term in the field

evolution equation written in terms of real-physical-space variables x and y dictates

that the beam focusing length f should be varied jointly with a as f ∝ a2. Thus, if

As(t, ξ, ζ, η) is a solution to the field evolution equation (6.9) subject to the initial

condition As(t, ξ, ζ, η = 0) = A0(t, ξ, ζ) for a = a1, p = p1, and f = f1, then it will

be also a solution to Eq. (6.9) with the same initial condition for all a, f , and p such

that pa2 = p1a
2
1 and a2/f = a2

1/f1.

Finally, with the peak power of the input laser pulse represented as

P = a2 max
t

{∫ ∞
−∞

∫ ∞
−∞
|A0(t, ξ, ζ)|2dξdζ

}
, (6.10)

the initial condition As(t, ξ, ζ, η = 0) = A0(t, ξ, ζ) remains constant when the gas

pressure and the beam focusing length are changed jointly with P as p ∝ P−1 and

f ∝ P .

We thus conclude that joint variations in a, p, and f keep the solution to Eq.
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(6.9) invariant as long as

pP = const, (6.11)

pa2 = const, (6.12)

pf = const. (6.13)

Equations (6.11) – (6.13) express the key scaling laws for pulse propagation dynamics.

Since the critical power of self-focusing, Pcr = λ2
0 [2πn2]−1 = λ2

0p0 [2πpn2]−1, where

λ0 = 2πc/ω0, scales as p−1 with the gas pressure, Eq. (6.11) is consistent with the

common wisdom that the P/Pcr ratio has to be kept constant for the invariance of

the spatiotemporal field dynamics in the filamentation regime. However, we can now

see from Eqs. (6.11) – (6.13) that the P/Pcr = const condition is necessary, but not

sufficient to keep the beam dynamics constant.

When applied jointly with Eq. (6.11), the condition of Eq. (6.12) is equivalent to

keeping the peak pulse intensity constant while allowing the pressure to be variable.

Although simple in its form, this result is not trivial at all if not counterintuitive

as it shows that, while the gas pressure is changing, one needs to keep the intensity

constant instead of trying to compensate for a change in nonlinearity caused by a

variation in p. However, it is Eq. (6.13) that is, perhaps, the most intriguing of all

the scaling rules. Indeed, the focusing length f is a freely variable parameter. It is

remarkable, therefore, that Eq. (6.13), requires the product of f and p be constant.

As explained above, Eq. (6.12) combined with Eq. (6.13) provides the invariance of

the diffraction term in the field evolution equation. Eqs. (6.11) and (6.13), in their

turn, require the invariance of the initial beam and envelope profiles, highlighting

the importance of the initial conditions for the scalability of spatiotemporal field

dynamics.
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Avalanche ionization, which cannot be included as a scalable term into the equa-

tions of pulse propagation dynamics, sets a limitation on the applicability range of

the scaling rules (6.11) – (6.13). This process becomes important when the elec-

tron collision time, τc = τ c
p0

p
, becomes less than the pulse width τ0, leading to the

following limitation on the gas pressure:

p < pa =
τ c
τ0

p0 (6.14)

For a laser pulse with τ0 = 30 fs propagating in argon, where τ c = 190 fs, the

avalanche ionization starts to play a significant role for gas pressures above pa = 6.3

bar.

We now verify the scaling laws (6.11) – (6.13) by numerical simulations using

Eqs. (2.1) – (2.6) with the impact ionization term included for the representative

regimes of laser-induced filamentation. We examine two representative regimes of

filamentation-assisted pulse self-compression [27, 25], which yield drastically different

types of spatiotemporal waveform dynamics (Fig. 6.1) and electron density profiles

(Figs. 6.2,6.3). In the first regime, an initially collimated laser beam with an input

FWHM pulse width τ0 = 30 fs and a central wavelength λ0 = 800 nm propagates

in argon with Ui = 15.75 eV, n2 = 1.74 × 10−19 cm2/W, τ c = 190 fs, fR = 0 and

linear dispersion modeled with the standard reference data [53]. As shown by Bergé

[27], pulse compression to single-cycle pulse widths can be achieved in this regime

of filamentation. This prediction is fully supported by the results of our numerical

simulations [Figs. 6.1(a), 6.1(c), 6.2(e), 6.2(f)].

In the second regime studied here, an ultrashort optical waveform displays a

well-resolved refocusing cycle [Fig. 6.1(b),(d)], accompanied by efficient pulse self-

compression due to pulse self-steepening and space–time focusing [25]. This fila-
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Figure 6.1 The maps of (a), (b) on-axis field intensity and (c), (d) on-axis spectral
intensity for laser pulses with (a), (c) τ0 = 30 fs, a = 0.5 mm in an initially collimated
beam, and P = 3Pcr and (b), (d) τ0 = 115 fs, a = 2.5 mm, f = 0.02LD = 0.5 m, and
P = 4.6Pcr in (a), (c) argon and (b), (d) krypton at a gas pressure of 1 bar. From
P. A. Zhokhov and A. M. Zheltikov, 2014 [3]
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mentation regime is achieved in our simulations by focusing a laser beam with an

input FWHM pulse width of 115 fs, a central wavelength λ0 = 800 nm and focusing

distance f = 0.02LD in krypton with Ui = 14 eV, n2 = 3× 10−19 cm2/W, τ c = 200

fs, and fR = 0.

0.3 0.5 0.7
0

10

20

30

40

η

F
H

W
M

 d
u
ra

ti
o
n
 (

fs
)

(f)

0.3 0.5 0.7
0

10

20

30

40

η

F
H

W
M

 d
u
ra

ti
o
n
 (

fs
)

(e)

0.3 0.5 0.7
10

−5

10
−3

10
−1

η

Io
n
iz

a
ti
o
n
 d

e
g
re

e (d)

0.3 0.5 0.7
10

−5

10
−3

10
−1

η

Io
n
iz

a
ti
o
n
 d

e
g
re

e (c)

0.3 0.5 0.7
0

50

100

150

200

η

In
te

n
s
it
y
 (

T
W

/c
m

2
)

(b)

0.3 0.5 0.7
0

50

100

150

200

η

In
te

n
s
it
y
 (

T
W

/c
m

2
)

(a)

Figure 6.2 The on-axis field intensity (a),(b), ionization degree Z = Ne
Nat

(c), (d)
and the on-axis pulse FWHM duration (e),(f) for a laser pulse propagating in argon
τ0 = 30 fs in an initially collimated beam with a = 0.1 mm, LD = 4 cm, P = 0.7
GW, p = 25 bar (blue dashed line); a = 0.5 mm, LD = 1 m, P = 18 GW, p = 1
bar (green solid line); and a = 1.9 mm, LD = 14 m, P = 250 GW, p = 0.07 bar
(red dash–dotted line) with (a),(c),(e) and without (b),(d),(f) avalanche ionization.
From P. A. Zhokhov and A. M. Zheltikov, 2014 [3]

Dynamics of an ultrashort laser pulse in the first regime is illustrated in Figs.
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Figure 6.3 The on-axis field intensity (a),(b), ionization degree Z = Ne
Nat

(c), (d) and
the on-axis pulse FWHM duration (e),(f) for a laser pulse propagating in krypton
with τ0 = 115 fs; a = 0.83 mm, LD = 2.7 m, f = 5.5 cm, P = 1.6 GW, p = 10
bar (blue dashed line); a = 2.5 mm, LD = 24 m, f = 0.5 m, P = 15 GW, p = 1
bar (green solid line); and a = 8.3 mm, LD = 270 m, f = 5.5 m, P = 160 GW,
p = 0.1 bar (red dash–dotted line) with (a),(c),(e) and without (b),(d),(f) avalanche
ionization. From P. A. Zhokhov and A. M. Zheltikov, 2014 [3]

6.1(a) and 6.1(c). The laser field with an input intensity of 3.2 TW/cm2 and an

input peak power P = 3Pcr is seen to exhibit a typical filamentation dynamics, fea-

turing supercontinuum generation [for η > 0.4 in Fig. 6.1(c)] and evolving toward

a few-cycle field waveform [for η > 0.5 in Figs. 6.1(a), 6.2(e)], in agreement with

the earlier predictions for this regime of filamentation [27]. In Fig. 6.2, we show the

longitudinal profiles of field intensity I, ionization degree 〈Z〉 = ρ/ρat, and FWHM
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pulse width τp on the beam axis calculated for different values of the input beam

radius a, the input peak power P , and the gas pressure p, varied in a coordinated

fashion so that Eqs. (6.11) and (6.12) are satisfied [for a collimated beam, Eq. (6.13)

is fulfilled with any finite gas pressure p]. For gas pressures below pa, simulations

yield identical longitudinal profiles of I [Figs. 6.2(a), 6.2(b)], Z [Figs. 6.2(c), 6.2(d)],

and τp [Figs. 6.2(e), 6.2(f)] for any set of parameters meeting Eqs. (6.11) – (6.13),

thus indicating the validity of the scaling rules expressed by these conditions within

a broad range of the relevant parameters. As an important consequence, filamen-

tation regimes enabling pulse self-compression to single-cycle pulse widths can be

achieved within a broad range of peak powers through an appropriate adjustment

of the input beam parameters and the gas pressure [Figs. 6.2(e), 6.2(f)]. For gas

pressures p > pa, avalanche ionization starts to play a noticeable role, distorting the

longitudinal profiles of I, Z, and τp. These distortions are clearly seen (Fig. 6.2) from

the comparison of simulations performed with and without the avalanche ionization

term in the pulse propagation equations. Figs. 6.2(a),(c) show the on-axis intensity

and ionization degree 〈Z〉 = ρ
ρat

as functions of unitless propagation distance η for

different input beam radii a – 0.1 mm, 0.5 mm and 1.9 mm, which correspond to

pulse powers P equal to 0.7 GW, 18 GW and 250 GW and pressures p equal to 25

bar, 1 bar and 0.07 bar respectively. The ratio of input power P to the critical power

of self-focusing Pcr is P/Pcr = 3, and input intensity is 3.2 TW/cm2.

In the second regime of filamentation-based pulse compression studied here, the

ratio of the input peak power to the critical power of self-focusing is higher than

in the first regime considered above, enabling the refocusing of the trailing part of

the pulse and leading to efficient pulse self-compression [Figs. 6.1(b), 6.3(e), 6.3(f)]

as a result of self-steepening and space-time focusing [25]. The temporal envelope

of the pulse in this regime exhibits a prominent defocusing of its trailing part at
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η ≈ 2×10−2, followed by refocusing and generation of an ultrashort (≈ 30 fs FWHM)

field waveform on the back of the pulse [Figs. 6.1(b), 6.3(e), 6.3(f)].

With τ0 = 115 fs and τ c = 200 fs for krypton, the avalanche ionization remains

weak in this regime for gas pressures below pa ≈ 1.7 bar. In this range of gas

pressures, numerical simulations with Eqs. (2.1) – (2.6) give identical longitudinal

profiles of field intensity [Figs. 6.3(a), 6.3(b)], ionization degree [Figs. 6.3(c), 6.3(d)],

and FWHM pulse width [Figs. 6.3(e), 6.3(f)] for any set of input laser beam param-

eters varied in such a way that Eqs. (6.11) – (6.13) are satisfied. Well-pronounced

intensity clamping is clearly seen in Figs. 6.3(a) – 6.3(d). For gas pressures above pa,

effects related to the avalanche ionization are no longer negligible. These effects, as

can be seen from simulations performed with and without the avalanche ionization

term (Fig. 6.3), tend to accumulate toward the rear part of the filament, generat-

ing higher electron densities [Fig. 6.3(c)] and providing higher field intensities [Fig.

6.3(a)] and shorter pulse widths [Fig. 6.3(e)] in this section of the filament.

We will now illustrate, by means of numerical simulations, that the P/Pcr ratio

alone is in no way sufficient to fully control or scale filamentation dynamics. To

this end, we vary the gas pressure and parameters of the input laser field in such a

way as to keep the P/Pcr ratio constant, thus fulfilling Eq. (6.11), but the focusing

conditions change, implying that Eq. (6.13) is not satisfied. As can be seen from

Figs. 6.4(a) – 6.4(d), although the P/Pcr ratio is kept constant in all the simulations,

variations in the focusing length can give rise to striking changes in field dynamics.

Indeed, in the regime of tight focusing, f = 0.4LD [Fig. 6.4(a)], the electron density

induced by the laser beam near the linear focus is high enough to defocus the laser

beam to the extent of complete suppression of filamentation. When the focusing is

too loose, on the other hand, f = 2LD [Fig. 6.4(d)], dispersion-induced stretching

decreases the field intensity, also preventing filamentation. Because of these effects,
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Figure 6.4 The on-axis field intensity (×1012 W/cm2) as a function of time t and
propagation coordinate z in helium at p = 0.02 bar, a = 2.9 mm, P = 1.4 TW
(0.8 Pcr), τ0 = 30 fs, λ0 = 800 nm, and f = 0.4LD = 9.5 m (a), 0.6LD = 14.3 m
(b), 0.9LD = 21.4 m (c), and 2LD = 47.6 m (d). From P. A. Zhokhov and A. M.
Zheltikov, 2014 [3]
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filamentation is only observed within a limited range of focusing lengths, as shown

by Figs. 6.4(b) and 6.4(c).

Similarly, when we vary input beam diameter while keeping focusing distance and

P/Pcr constant, i.e., fulfilling conditions (6.11) and (6.13), but violating the condition

(6.12), field dynamics changes dramatically. At small input diameters [Fig. (6.5)(a),

(b)] initial stage of self-focusing happens far before the linear focus (consistently

with the Marburger formula, [17]), and several self-focusing-free electron defocusing

cycles are observed. At larger input diameters [Fig. 6.5(c),(d)] high-intensity area

starts close to the linear focus point, refocusing happens once in the trailing part of

the pulse, which then propagates with little changes in temporal structure, providing

the basis for the filamentation pulse compression regime, described in [25].

In summary, we have identified a set of physically transparent scaling laws for

the filamentation of ultrashort laser pulses. We have shown that the intuitively

clear P/Pcr = const scaling law can be directly derived from the field evolution

equation. This scaling law has been shown to be necessary, but not sufficient for

an accurate scaling of spatiotemporal field dynamics in the filamentation regime.

The full set of scaling laws, as demonstrated in this work, has to include two other

physically significant conditions, requiring the invariance of maximum field intensity

and beam diffraction. Using this set of scaling laws, we have demonstrated that one

of the most significant effects of laser-induced filamentation, viz., pulse compression,

is not limited to a single, unique point in the parameter phase space, but can be

implemented within a remarkably broad range of laser powers, pulse widths, gas

pressures, and propagation paths.
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Figure 6.5 The on-axis field intensity (×1012 W/cm2) as a function of time t and
propagation coordinate z in krypton at p = 1 bar,P = 4.4 GW (4.6 Pcr), τ0 = 115
fs, λ0 = 800 nm, f = 0.5 m and (a) a = 1.0 mm, (b) a = 1.5 mm, (c) a = 2.5 mm,
(d) a = 3.5 mm. From P. A. Zhokhov and A. M. Zheltikov, 2014 [3]
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7. FIELD-CYCLE-RESOLVED PHOTOIONIZATION IN SOLIDS:

INTRODUCTION

In his seminal 1964 paper [13], Keldysh has presented his celebrated formulas for

photoionization, providing a uniform description of multiphoton and tunneling ion-

ization. Over the next five decades, the Keldysh theory of photoionization has been

pivotal to the research in laser science, providing a commonly accepted framework for

a quantitative analysis of ionization in a remarkable diversity of light–matter inter-

action phenomena, including laser-induced breakdown [86, 4], high-order harmonic

[87] and terahertz [88] generation, as well as filamentation of ultrashort light pulses

[19, 18]. While the original Keldysh formulas were intended to describe photoion-

ization in a continuous-wave field, several elegant approaches have been proposed

[35, 36, 38] in the context of rapidly progressing ultrafast technologies [8] and at-

tosecond science [10], to include the wave-packet nature of ultrashort driver pulses

inducing an ultrafast ionization of gases. These approaches help identify new field-

cycle-sensitive phenomena in electron tunneling [89, 90] and develop novel experi-

mental methods for all-optical detection of electron tunneling dynamics [91, 92].

Extension of the Keldysh model to ultrafast photoionization in solids is a stan-

dalone challenge in quantum physics. Meeting this challenge not only requires an

adequate treatment of broadband driver fields, but also calls for a revision of the

standard, hyperbolic model of the electron band structure adopted in the Keldysh

formalism. The hyperbolic band model enables an accurate description of weak-field

optical properties of solids [14, 93], but fails in the strong-field regime, where effects

of zone edges become significant [94]. A Schrödinger-equation treatment with a 1D

cosine-type dispersion [95, 39] has been shown to partially address this problem,
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offering an adequate framework for the numerical analysis of an important class of

ultrafast ionization effects in solids [96]. Still, in the lack of a closed-form solution

for the photoionzation rate valid for ultrashort pulses of arbitrary shape, the phys-

ical intuition based on the Keldysh theory of photoionization of solids often has to

be pushed beyond the range where this theory is rigorously valid, for the sake of

compact semianalytical description and overall physical clarity [92, 97, 98].

In this part, we derive a closed-form solution for the nonadiabatic ionization rate

in a transparent solid [40], which can be used not only to calculate the probability of

ionization in the wake of the pulse and after each field cycle, but also to analyze the

behavior of the ionization rate within the field cycle. Our analysis reveals ultrafast

ionization dynamics within the field cycle and recovers the results of the Keldysh

theory within its range of applicability.
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8. GENERAL QUANTUM-MECHANICAL FRAMEWORK*

In this section we will develop a general quatum-mechanical  framework that 

would allow us to analyse photoionization probability and density of photocurrents in 

two-band dielectrics with arbitrary number of spatial dimensions. Then, in the fol-

lowing section, we will provide specific derivation for a dielectric with cosine-shaped 

energy-momentum relation (also commonly referred to as a dispersion relation) of 

electron hole pairs, and approximate formulas for a dielectric with arbitrary spatially 

separable dispersion relation. Let us consider dielectric in 2-band approximation. 

States |v, ~k〉 and |v, ~k〉 denote Bloch waves with crystal quasi-momentum ~k in the 

valence and conduction band, respectively. Let us use ~ = |e| = 1 units, where e is 

electron charge. Field-free Hamiltonian can be written as

H0 =
∑
~k

Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k| (8.1)

Sum in (8.1) is performed over all momentum states in the first Brillouin zone (BZ),

Ev(~k) and Ec(~k) denote energy of the state with momentum ~k in the valence and

conduction band, respectively.

The operator of electron coordinate ~R consists of interband and intraband parts.

Intraband part is related to classical motion of electron within the band, and as

such, can be written as i ∂
∂~k

. Momentum conservation requires that interband part of

coordinate operator to connect states with same quasi-momentum, thus, in general,

~R =
∑
~k

~X(k)
(
|c,~k〉〈v,~k|+ |v,~k〉〈c,~k|

)
+ i

∂

∂~k
(8.2)

∗Parts of this section are reprinted with permission from ”Field-cycle-resolved photoionization
in solids” by P. A. Zhokhov and A. M. Zheltikov [40]
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Time-dependent Hamiltonian of electron in the presence of the field and in the dipole

approximation is then (recall that electron charge is -1)

H(t) =
∑
~k

Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k|+ ~E(t) · ~R (8.3)

Single-electron wavefunction generally has the form

|ψ(t)〉 =
∑
~k

V (~k, t)|v,~k〉+ C(~k, t)|c,~k〉 (8.4)

Time-dependent Shrödinger equation immediately yields partial differential equa-

tions (PDEs) for coefficients C(~k, t) and V (~k, t) (we omit ~k, t arguments for brevity).

i
∂V

∂t
= Ev(~k)V + ~E(t) ·

(
~X(~k)C + i

∂V

∂~k

)
i
∂C

∂t
= Ec(~k)C + ~E(t) ·

(
~X(~k)V + i

∂C

∂~k

) (8.5)

Since the PDEs are linear in derivatives both over time and momentum, it is possible

to turn them into ordinary differential equations (ODEs) by method of characteris-

tics. Namely, we introduce variable transformation

~p = ~k + ~A(t)

t̃ = t

(8.6)

where ~A(t) =
∫ t
−∞

~E(t′)dt′ is vector potential. The derivative transformation is then

∂

∂~k
=

∂

∂~p

∂

∂t
=

∂

∂t̃
+ ~E(t) · ∂

∂~p

(8.7)
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Therefore, (8.5) can be rewritten as (again, we omit (~p, t̃) arguments of V and C for

brevity)

i
dV

dt̃
= Ev(~p− ~A(t̃))V + ~E(t̃) · ~X(~p− ~A(t̃))C

i
dC

dt̃
= Ec(~p− ~A(t̃))C + ~E(t̃) · ~X(~p− ~A(t̃))V

(8.8)

We can also introduce state probability amplitudes

v(~p, t̃) = V (~p, t̃)ei
∫ t̃
−∞ Ev(~p−A(t′))dt′

c(~p, t̃) = C(~p, t̃)ei
∫ t̃
−∞ Ec(~p−A(t′))dt′

(8.9)

such that v(~p, t̃) and c(~p, t̃) do not change with time in the absence of the field.

Finally, ODEs for v(~p, t̃) and c(~p, t̃) are

i
dv

dt̃
= ~E(t̃) · ~X(~p− ~A(t̃))ce−i

∫ t̃
−∞ E(~p−A(t′))dt′

i
dc

dt̃
= ~E(t̃) · ~X(~p− ~A(t̃))vei

∫ t̃
−∞ E(~p−A(t′))dt′

(8.10)

where E(~p) = Ec(~p) − Ev(~p) is electron-hole dispersion relation. Exact solution of

(8.10) can be written as unwieldy time-ordered product of unitary evolution op-

erators. Before doing further approximations, let us write down expressions for

photoionization probability and photocurrent density in terms of c(~p, t̃) and v(~p, t̃).

In what follows we omit tilde above time argument, since t̃ = t. Given the tran-

sition amplitude ~c(~p, t̃) we can find quantum-mechanical average of all operators of

interest. Quantum-mechanical average of the operator of projection onto conduction

band states

ρ̂ =
∑
k

|c,~k〉〈c,~k| (8.11)

yields probability of photoionization or conduction-band electron density (it should
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be noted that usage of a greek letter ρ to denote the projection operator is some-

what unconventional, projection operator is more commonly by P , however, we are

planning to use P to denote electric polarization of unit volume of the dielectric

further on, moreover, quantum-mechanical average of the projection operator gives

conduction electron density or plasma density, customary denoted as ρ)

ρ(t) = 〈ρ̂〉 =
∑
~k

|~c(~k + ~A(t), t)|2. (8.12)

Since dispersion relation is periodic in the first Brillouin zone, summation in (8.12)

can be performed either over ~k or over ~p

ρ(t) =
∑
~p

|~c(~p, t)|2. (8.13)

Polarization of the unit volume is given by average of the coordinate operator, taken

with negative sign (due to the electron charge -1)

~P (t) = −〈~R〉 (8.14)
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therefore

~P (t) =
∑
~k

~X(k)
(
C(~k, t)∗V (~k, t) + V (~k, t)∗C(~k, t)

)
+

+ i
∑
~k

(
C(~k, t)∗

∂

∂~k
C(~k, t) + V (~k, t)∗

∂

∂~k
V (~k, t)

)
=

=
∑
~p

2Re ~X(~p− ~A(t))c(~p, t)∗v(~p, t)ei
∫ t
−∞ E(~p− ~A(t′)dt′+

+
∑
~p

(
c(~p, t)∗

∂c(~p, t)

∂~p
+ v(~p, t)∗

∂v(~p, t)

∂~p

)

+
∑
~p

(
|c(~p, t)|2

∫ t

−∞

∂Ec(~p− ~A(t′))

∂~p
dt′ + |v(~p, t)|2

∫ t

−∞

∂Ev(~p− ~A(t′))

∂~p
dt′

)
(8.15)

We can use relation |v(~p, t)|2 = 1−|c(~p, t)|2 and the fact energy-momentum relations

in both conduction and valence bands are periodic, thus,

∑
p

∂Ev
∂~p

= 0 (8.16)

Eq. (8.15) is then transformed into

~P (t) =
∑
~p

2Re ~X(~p− ~A(t))c(~p, t)∗v(~p, t)ei
∫ t
−∞ E(~p− ~A(t′)dt′+

+
∑
~p

(
c(~p, t)∗

∂c(~p, t)

∂~p
+ v(~p, t)∗

∂v(~p, t)

∂~p
+ |c(~p, t)|2

∫ t

−∞

∂E(~p− ~A(t′))

∂~p
dt′

)
(8.17)

Photocurrents density is

~J(t) =
d~P (t)

dt
(8.18)

Instead of direct differentiation of (8.17), which is already cumbersome enough,
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with respect to time, we can employ the fact that averages of hermitian quantum-

mechanical operators can, in principle, be observed, and thus do not depend on

whether equations of motion are written in Schrödinger or Heisenberg picture. There-

fore,

~J = −d〈R〉
dt

= −
〈
dR

dt

〉
= i
〈[
H(t), ~R

]〉
= i
〈[
H0, ~R

]〉
(8.19)

Last equality in (8.19) follows from the fact that ~R commutes with ~E(t) · ~R term in

hamiltonian H(t). Therefore,

~J(t) = i

〈∑
~k

E(~k) ~X(~k)
(
|c,~k〉〈v,~k| − |v,~k〉〈c,~k|

)〉
+ i

〈[
H0, i

∂

∂~k

]〉
(8.20)

Second term in (8.20) requires careful treatment. Writing it out explicitly gives

〈[
H0, i

∂

∂~k

]〉
=
∑
~k

〈ψ(t)|
(
Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k|

)
i
∂

∂~k
|ψ(t)〉−

−
∑
~k

〈ψ(t)|i ∂
∂~k

(
Ev(~k)|v,~k〉〈v,~k|+ Ec(~k)|c,~k〉〈c,~k|

)
|ψ(t)〉

(8.21)

At a first glance, it is not clear how to take derivatives with respect to momen-

tum of momentum eigenfunctions. However, turns out that such derivatives are not
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necessary. To see that, let us use (8.4) and rewrite (8.21) as

〈[
H0, i

∂

∂~k

]〉
=∑

~k

(
Ev(~k)V ∗(~k, t)〈v,~k|+ Ec(~k)C∗(~k, t)〈c,~k|

)
i
∂

∂~k

(
C(~k, t)|c,~k〉+ V (~k, t)|v,~k〉

)
−

∑
~k

(
C∗(~k, t)〈c,~k|+ V ∗(~k, t)〈v,~k′|

)
i

(
Ev(~k)

∂

∂~k
V (~k, t)|v,~k〉+ Ec(~k)

∂

∂~k
C(~k, t)|c,~k〉

)
+

+
∑
~k

|C(~k, t)|2∂Ec(
~k)

∂~k
+ |V (~k, t)|2∂Ev(

~k)

∂~k

(8.22)

Assuming 〈v,~k| ∂
∂~k
|c,~k〉 = 〈c,~k| ∂

∂~k
|v,~k〉 = 0, first two terms in (8.22) cancel out

completely. Similarly to (8.15), we can use |V (~k, t)|2 = 1− |C(~k, t)|2 and (8.16) and

find

〈[
H0, i

∂

∂~k

]〉
= i
∑
~k

|C(~k, t)|2∂E(~k)

∂~k
= i
∑
~p

|c(~p, t)|2∂E(~p− ~A(t))

∂~p
(8.23)

The expression for photocurrent density is then

~J(t) =
∑
~p

2 ~X(~p− ~A(t))E(~p− ~A(t))Imc(~p, t)v∗(~p, t)e−i
∫ t
−∞ E(~p− ~A(t′))dt′−

−
∑
~p

|c(~p, t)|2∂E(~p− ~A(t))

∂~p

(8.24)

Both polarization and current density can be conveniently written as a sum of

inter- and intraband components

~P (t) = ~P (i)(t) + ~P (c)(t) (8.25)
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and

~J(t) = ~J (i)(t) + ~J (c)(t) (8.26)

where superscript (i) denotes interband, and (c) denotes intraband, and

P (i)(t) =
∑
~p

2Re ~X(~p− ~A(t))c(~p, t)∗v(~p, t)ei
∫ t
−∞ E(~p− ~A(t′)dt′ (8.27)

P (c)(t) =
∑
~p

(
c(~p, t)∗

∂c(~p, t)

∂~p
+ v(~p, t)∗

∂v(~p, t)

∂~p
+ |c(~p, t)|2

∫ t

−∞

∂E(~p− ~A(t′))

∂~p
dt′

)
(8.28)

~J (i)(t) =
∑
~p

2 ~X(~p− ~A(t))E(~p− ~A(t))Imc(~p, t)v∗(~p, t)e−i
∫ t
−∞ E(~p− ~A(t′))dt′ (8.29)

~J (c)(t) = −
∑
~p

|c(~p, t)|2∂E(~p− A(t))

∂~p
(8.30)

Moreover, it is possible to show that

~J (i)(t) =
dP (i)

dt
(8.31)

~J (c)(t) =
dP (c)

dt
(8.32)

Therefore, we can account for optical response of interband transitions through po-

larization P (i), and for optical response of intraband transitions through current

density J (c)(t), or vice versa. Expression (8.30) permits very transparent interpreta-

tion - electrons with momenta ~p at the time t have velocity ∂E(~p− ~A(t))
∂~p

. Total intraband

current is a sum of contributions of velocities of electrons at all points in the momen-

tum space, weighted with respective population, and taken with a minus sign due

to negative charge of electron. The photocurrents defined by (8.24) satisfy energy

conservation. Namely, the energy absorbed from the field in the unit volume at the
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moment of time t due to Ohmic losses is

w(t) =

∫ t

−∞

~E(t′) · ~J(t′)dt′ = −
∫ t

−∞

〈
~E(t′) · d

~R(t′)

dt′

〉
dt′ (8.33)

We can use Heisenberg equation of motion for ~R

i
d~R

dt
=
[
H, ~R

]
(8.34)

to rewrite (8.33) as

w(t) = i

∫ t

−∞

〈[
H(t′), ~E(t′) · ~R

]〉
dt′ (8.35)

From the form of hamiltonian (8.3) and (8.1) we get to rewrite (8.33) as

w(t) = i

∫ t

−∞

〈[
H0, ~E(t′) · ~R

]〉
dt′ =

= i

∫ t

−∞
〈[H0, H(t)]〉 dt′ =

=

∫ t

−∞

d〈H0〉
dt′

dt′ =

= 〈H0〉 |t − 〈H0〉 |−∞

(8.36)

Therefore, all the energy absorbed from the field due to Ohmic losses is absorbed by

electron-hole pairs in the solid.

Let us now consider approximation of small ionization probability, standard for

analysis of photoionization in solids and gases [13, 35, 36, 37, 38, 39, 94]. When

|c(~p, t̃)| � |v(~p, t̃)| we can set v(~p, t̃) ≈ 1, and immediately write out solution of

(8.10) as

c(~p, t̃) ≈ −i
∫ t̃

−∞

~E(t′) · ~X(~p− ~A(t′))ei
∫ t′
−∞ E(~p− ~A(t′′))dt′′dt′ (8.37)

As pointed out by Keldysh, transitions from valence to conduction band are
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dominated by those values of t′ = t∗, for which M(t′) = ~E(t′) · ~X(~p − ~A(t′)) has a

singularity, and behavior of M(t′ ≈ t∗) is universal and does not depend on dielectric.

Thus, we can introduce

~c(~p, t̃) ≈ −iN
∫ t̃

−∞

~E(t′)eiI(~p,t
′)dt′ (8.38)

where N is the normalization factor,

I(~p, t) =

∫ t

−∞
E(~p− ~A(t′))dt′ (8.39)

With ~c(~p, t) given by (8.38) we can further rewrite ionization probability (8.12) and

photocurrents (8.30), (8.29).

ρ(t) = |N |2
∫ t

−∞

∫ t

−∞

~E(t1) · ~E(t2)
∑
~p

eiI(~p,t2,t1)dt1dt2 (8.40)

~J (c)(t) = −|N |2
∫ t

−∞

∫ t

−∞

~E(t1) · ~E(t2)
∑
~p

eiI(p,t2,t1)∂E(~p− ~A(t))

∂~p
dt1dt2 (8.41)

~J (i)(t) = −2|N |2
∫ t

−∞

~E(t1)
∑
~p

ReeiI(p,t,t1)E(~p− ~A(t))dt1 (8.42)

where I(~p, t2, t1) = I(~p, t2)− I(~p, t1).

To summarize, in this section we developed a quantum-mechanical framework

for analysis of photoionization at arbitrary short time scales, including sub-field-

cycle scales. We have also shown that density of photocurrents, calculated with our

framework, obeys energy conservation relation; specifically, energy of the field, that

is absorbed via Ohmic losses due to photocurrents, is stored in electron-hole pairs in

dielectric. Further calculations are possible if we specify certain form of dispersion

relation E(~p).
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9. DERIVATION OF FORMULAS FOR PHOTOIONIZATION PROBABILITY

AND PHOTOCURRENTS

9.1 Nearest-neighboor (cosine) dispersion

First, let us consider the simplest case of periodic dispersion, that follows from

nearest-neighboor interaction approximation, that is,

E(~p) = Eg + ∆− ∆

D

D∑
j=1

cos(pjdj) (9.1)

where D is the number of spatial dimensions, and dj is the lattice constant in the

direction j. Let us also introduce

Φj(t) =
∆

D

∫ t

−∞
eiAj(t

′)djdt′ (9.2)

and Φk(t1, t2) = Φk(t1) − Φk(t2). Due to simple form of dispersion integral I(~p, t)

(8.39) can be evaluated exactly and gives

I(~p, t) = (Eg + ∆)t−
D∑
j=1

ReΦj(t) cos pjdj−

−
D∑
j=1

ImΦj(t) sin pj + const =

= (Eg + ∆)t−
D∑
j=1

|Φj(t)| cos(pjdj − arg Φj(t)) + const

(9.3)

Additive constant in expression (9.3) depends on the choice of time origin, and only

affects unobservable global phase of the wavefunction. Furthermore, for crystals of
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macroscopic size ∑
~p

≈ 1

(2π)D

∫
dD~p (9.4)

thus

∑
~p

eiI(~p,t2,t1) = ei(Eg+∆D)(t2−t1)

D∏
j=1

J0 (|Φj(t2, t1)|) (9.5)

and J0(z) denotes Bessel function of zeroth order. Similarly,

∑
~p

eiI(~p,t,t1)E(~p− ~A(t)) =

= ei(Eg+∆)(t−t1)

D∏
j=1

J0 (|Φj(t2, t1)|) (Eg + ∆)−

− ∆

D

D∑
j=1

e(Eg+∆)(t−t1)J1 (|Φj(t, t1)|) cos (djAj(t)− arg Φj(t, t1))×

×
∏
i 6=j

J0 (|Φi(t, t1)|)

(9.6)

and

∑
~p

eiI(~p,t2,t1)∂E(~p− ~A(t))

∂pj
=

= −∆

D
ei(Eg+ ∆

D
)(t2−t1)J1 (|Φi(t2, t1)|) sin (djAj(t)− arg Φj(t2, t1))×

×
∏
i 6=j

J0 (|Φi(t2, t1)|)

(9.7)

Expectedly, J1(z) denotes Bessel function of the first order. Finally, we write down

the expressions for photoionization probability

ρ(t) = |N |2
∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)

D∏
j=1

J0 (|Φj(t2, t1)|) (9.8)

59



interband photocurrent

J
(i)
j (t) = 2|N |2

∫ t

−∞
dt1Ej(t1)

[
cos(Eg + ∆)(t− t1)

D∏
j=1

J0 (|Φj(t, t1)|) (Eg + ∆)−

− ∆

D
sin(Eg + ∆)(t− t1)×

×
D∑
j=1

J1 (|Φj(t, t1)|) cos (djAj(t)− arg Φj(t, t1))
∏
k 6=j

J0 (|Φk(t, t1)|)
]

(9.9)

and intraband photocurrent

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)×

∆

D
J1 (|Φj(t2, t1)|) sin (djAj(t)− arg Φj(t2, t1))

∏
k 6=j

J0 (|Φk(t2, t1)|)
(9.10)

Before we proceed to more general case, let us touch bases with existing theories.

Fig. 9.1(a) shows results of calculations of CB population in the wake of 20-cycle

long gaussian pulse as a function of peak pulse intensity via Keldysh theory [13] and

using our field-cycle-resolved photoionization theory (FCRPI). Material parameters

are assumed to mimic fused silica, namely, band gap Eg = 9 eV, kinetic energy of

electron-hole pair at the edge of Brilloin zone ∆ = 5.5 eV, and electron-hole mass

m∗ ≈ me, where me is mass of the free electron [99]. Although fused silica is an

amorphous material, it is customary to apply crystal-based photoionization theories

to fused silica; in fact, the majority of experimental data on photoionization and

laser-induced damage is available for fused silica, [100, 101, 4, 102, 103].

In the low-intensity regions predictions of both theories coincide remarkably well.

In the high-intensity regions electrons ”start to feel” the difference between the hy-

perbolic dispersion relation, assumed in Keldysh theory, and the cosine dispersion
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Figure 9.1 (a),(b) Ionization probability in the wake of the pulse, calculated using
Keldysh theory (solid blue line), and our field-cycle-resolved photoionization theory
(blue triangles). FWHM pulse duration is (a) 20 cycles , and (b) 2 cycles. (c),(d)
Photoionization probability as a function of time, calculated using Keldysh theory
(dashed green line), and field-cycle-resolved photoionization theory (solid blue line).
FWHM pulse duration is 2 cycles. Peak pulse intensity is (c) 2 TW/cm2 and (d) 70
TW/cm2.
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relation (9.1). When pulse durations gets smaller, Keldysh theory simply predicts

linear decrease of CB population with pulse duration for a given peak intensity.

FCRPI takes into account that with decreasing pulse duration it spectrum broadens.

Most conspicuous difference between long- and short pulse dependencies of ionization

probability on intensity is absence of Franz-Keldysh steps [104, 105]. These steps in

the ionization probability as a function of intensity are due to the modification of

the band gap by the applied field. More specifically, the steps occur when effective,

field-modified band gap matches energy of integer number of field photons. At small

pulse durations energy of a photon is not well-defined due to uncertainty principle,

hence, there is no pronounced steps in the ionization probability as a function of

intensity [Fig. 9.1(b)], in the contrast to predictions of keldysh formula that is based

on assumtion of continuous-wave radiation.

While ionization probability in the wake of the pulse, predicted using our field-

cycle-resolved photoionization (FCRPI) theory, coincides closely with one predicted

by Keldysh formula, ionization probability within the pulse differs substantially [Fig.

9.1(c),(d)]. FCRPI predicts strongly oscillatory behaviour of ionization probability

(defined, as we recall from Eqs. (8.11)–(8.13), as probability of electron to occupy

one of the conduction band states at a moment of time t), whereas Keldysh theory

predicts monotonic growth of ionization probability as a function of time. The dif-

ference stems again from the fact that Keldysh theory is intrinsically time-averaged,

and disregards virtual electrons that are returning back to the valence band. At

sub-field-cycle time scales there is no difference between CB electrons that are go-

ing back to valence band, and CB electrons that are in conduction band ”to stay”;

virtual electrons must be included for correct treatment of sub-cycle photoionization

and calculation of photocurrents at sub-field-cycle time scale.

Let us now compare the photocurrents calculated via FCRPI with photocurrents
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Figure 9.2 Comparison of density of (a),(c) intraband current and (b),(d) interband
current calculations in 1-D semiconductor by Schrödinger equation (thin blue line,
left axis) and by our photoionization theory (dashed red line, left axis). Electric field
of the pulse is shown by solid thick black line, right axis. Medium parameters mimic
diamond, pulse duration 2 cycles FWHM, central pulse wavelength 1.6 µm, pulse
intensity is (b),(c) 0.02 TW/cm2 and (d),(e) 2.2 TW/cm2.

calculated via Schrödinger equation in 1-D dielectric. Fig. 9.2 shows intraband

current density [Fig. 9.2(a),(c)] and interband current density [Fig. 9.2(b),(d)] in

the regimes of low and high intensity. Transition matrix element ~X(~k) is adjusted

to satisfy condition |c(~p, t̃)| � |v(~p, t̃)|. We see that both in low and high-intensity

regimes FCRPI accurately reproduces results of Schrödinger equation.
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9.2 Arbitrary separable dispersion

Deriving expressions (9.5) – (9.7) we notice that integrations are easy to perform

because integrands factorize as functions of momenta components along different

Cartesian axes, which is, in turn, due to the fact that dispersion relation (9.1) is a

sum of terms each of which contains only one Cartesian component of momentum.

Let us now assume dispersion relation can be written as

E(~p) = Eg + ∆−
D∑
j=1

∑
n

∆
(n)
j cos(npjdj + φ

(n)
j ) (9.11)

where Eg is bandgap and ∆ =
∑D

j=1

∑
n ∆

(n)
j cosφ

(n)
j . For example, arbitrary periodic

1-D dispersion can be written in this form (although, technically, the number of

terms in the sum in (9.11) might be infinite). Then, similarly to (9.3), we evaluate

expression (8.39) for I(~p, t) as follows

I(~p, t) = (Eg + ∆)t−
∑
n

D∑
j=1

ReΦ
(n)
j (t) cosnpjdj−

−
D∑
j=1

ImΦ
(n)
j (t) sinnpj + const =

= (Eg + ∆)t−
∑
n

D∑
j=1

|Φ(n)
j (t)| cos(npjdj − arg Φ

(n)
j (t)) + const

(9.12)

where

Φ
(n)
j (t) = ∆

(n)
j

∫ t

−∞
eindjAj(t

′)+φ
(n)
j dt′ (9.13)
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Calculation of sums like
∑

~p e
iI(~p,t2,t1) is a bit more involved than in the case of

nearest-neighbour (cosine) dispersion. Specifically,

∑
~p

eiI(~p,t2,t1) = ei(Eg+∆)(t2−t1)
∑
~p

D∏
j=1

ei
∑
n |Φ

(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1)) =

= ei(Eg+∆)(t2−t1) 1

(2π)D

∫
BZ

dD~p

D∏
j=1

∏
n

ei|Φ
(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1)) =

= ei(Eg+∆)(t2−t1)

D∏
j=1

1

2π

∫ π/dj

−π/dj
dpj
∏
n

∞∑
mn=−∞

Jmn

(
|Φ(n)

j (t2, t1)|
)
×

× eimn(ndjpj−arg Φ
(n)
j (t2,t1))+imnπ/2

(9.14)

In the last expression in (9.14) we can exchange summation and product and op-

eration, keeping in mind that summation is performed over all possible N -tuples

of integer values {m1, . . .mN}, where N is maximum number of harmonic in the

dispersion relation

∑
~p

eiI(~p,t2,t1) = ei(Eg+∆)(t2−t1)

D∏
j=1

∑
{m1,...mN}

N∏
n=1

Jmn

(
|Φ(n)

j (t2, t1)|
)
×

× 1

2π

∫ π/dj

−π/dj
dpje

imn(ndjpj−arg Φ
(n)
j (t2,t1))

(9.15)

Integral over dpj in (9.15) is non-zero only for those tuples {m1,m2, . . .mN}, for

which
N∑
n=1

mnn = 0 (9.16)

Strictly speaking, there is infinite number of tuples satisfying (9.16), however, the

largest contribution comes term where all mn = 0. Therefore, N is maximum number
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of harmonic in the dispersion relation

∑
~p

eiI(~p,t2,t1) ≈ ei(Eg+∆)(t2−t1)

D∏
j=1

∏
n

J0

(
|Φ(n)

j (t2, t1)|
)

(9.17)

Mathematically, equality in (9.17) is exact when there is only one harmonic term in

dispersion relation (regardless whether it is first, nearest-neighbor term or a higher-

order term). Similarly,

∑
~p

eiI(~p,t,t1)E(~p− ~A(t)) =

= ei(Eg+∆)(t−t1)
∑
~p

D∏
j=1

ei
∑
n |Φ

(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1))×

×

[
(Eg + ∆)−

D∑
i=1

∑
k

∆
(k)
i cos (kdi(pi − Ai(t)) + φk)

] (9.18)

First term in square brackets in (9.18) is just (Eg + ∆)
∑

~p e
iI(~p,t,t1) and can be

evaluated using (9.15). To calculate the second term, let us consider the following

expression

∑
~p

∑
k

ei
∑
n |Φ

(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1)) cos(kdi(pi − Ai(t) + φk) =

=
1

2

∑
~p

∑
k

ei
∑
n |Φ

(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1))

(
ei(kdi(pi−Ai(t)+φk) + c.c.

)
=

=
1

2

∑
~p

∑
k

∏
n

∑
mn

Jmn

(
|Φ(n)

j (t2, t1)|
)
eimnπ/2×

× eimn(ndjpj−arg Φ
(n)
j (t2,t1))

(
ei(kdi(pi−Ai(t)+φk) + c.c.

)
(9.19)
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Expression (9.19) can be further expanded as

∑
~p

∑
k

ei
∑
n |Φ

(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1)) cos(kdi(pi − Ai(t) + φk) =

=
1

2

∑
~p

∑
k

∑
{m1,...mN}

∏
n

Jmn

(
|Φ(n)

j (t2, t1)|
)
×

×
[
ei(

∑
nmnn+k)djpj−i

∑
nmn arg Φ

(n)
j (t2,t1)−ikdiAi(t)+iφk+i

∑
nmnπ/2+

+ei(
∑
nmnn−k)djpj−i

∑
nmn arg Φ

(n)
j (t2,t1)+ikdiAi(t)−iφk+i

∑
nmnπ/2

]
(9.20)

The sum over momenta ~p in (9.20) vanishes unless

∑
n

mnn = −k (9.21)

for first exponent in parenthesis in (9.20) and

∑
n

mnn = k (9.22)

for second exponent. Like in (9.15), we keep only the largest term, given by mn =

0 n 6= k and mk = ±1.

Then

∑
~p

∑
k

ei
∑
n |Φ

(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1)) cos(kdi(pi − Ai(t) + φk) ≈

≈ 1

2

∑
k

∏
n6=k

J0

(
|Φ(n)

j (t2, t1)|
)
×

×
[
− iJ−1

(
|Φ(k)

j (t2, t1)|
)
ei arg Φ

(k)
j (t2,t1)−ikdiAi(t)+iφk+

+iJ1

(
|Φ(k)

j (t2, t1)|
)
e−i arg Φ

(k)
j (t2,t1)+ikdiAi(t)−iφk

]
(9.23)
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Finally,

∑
~p

∑
k

ei
∑
n |Φ

(n)
j (t2,t1)| cos(ndjpj−arg Φ

(n)
j (t2,t1)) cos(kdi(pi − Ai(t) + φk) ≈

≈ i
∑
k

J1

(
|Φ(k)

j (t2, t1)|
)

cos
(

arg Φ
(k)
j (t2, t1)− kdiAi(t) + iφk

)∏
n6=k

J0

(
|Φ(n)

j (t2, t1)|
)

(9.24)

Therefore,

∑
~p

eiI(~p,t,t1)E(~p− ~A(t)) ≈

≈ iei(Eg+∆)(t−t1)

[∏
n

D∏
j=1

J0

(
|Φ(n)

j (t2, t1)|
)

(Eg + ∆)−

−
∑
k

∑
j=1

∆
(k)
j J1

(
|Φ(k)

j (t, t1)|
)

cos
(
kdjAj(t)− arg Φ

(k)
j (t, t1)− φk

)
×

×
∏

l 6=j∪n6=k

J0

(
|Φ(n)

l (t, t1)|
)]

(9.25)

and

∑
~p

eiI(~p,t2,t1)∂E(~p− ~A(t))

∂pj
≈

= ei(Eg+∆)(t2−t1)
∑
k

∆
(k)
j J1

(
|Φ(k)

j (t2, t1)|
)
×

× sin (kdjAj(t)− arg Φj(t, t1)− φk)
∏

l 6=j∪n 6=k

J0

(
|Φ(n)

l (t2, t1)|
) (9.26)
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Thus, the final expressions for photoionization probability is similar to (9.8)

ρ(t) = |N |2
∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)

∏
n

D∏
j=1

J0

(
|Φ(n)

j (t2, t1)|
)
,

(9.27)

and expressions for photocurrent densities as functions of time are also similar to

(9.9) –(9.10)

~J (i)(t) = |N |2
∫ t

−∞
dt1 ~E(t1)×[

cos(Eg + ∆)(t− t1)
∏
n

D∏
j=1

J0

(
|Φ(n)

j (t2, t1)|
)

(Eg + ∆)−

−
∑
k

∆
(k)
j

D∑
j=1

J1

(
|Φ(n)

j (t, t1)|
)

cos
(
kdjAj(t)− arg Φ

(k)
j (t, t1)− φk

)
×

×
∏

l 6=j∪n 6=k

J0

(
|Φ(k)

l (t, t1)|
)

sin(Eg + ∆)(t− t1)

]
(9.28)

Intraband current density is given by

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+∆)(t2−t1)×∑

k

∆
(k)
j J1

(
|Φ(k)

j (t2, t1)|
)

sin
(
kdjAj(t)− arg Φ

(k)
j (t2, t1)− φk

)
×

×
∏

l 6=j∪n6=k

J0

(
|Φ(n)

l (t2, t1)|
) (9.29)

Let us now compare the results of our theory, applied to dispersion with higher-

order harmonics, with direct numerical solution of Schrödinger equation (more accu-

rately, against solution of the equations (8.5)) in one dimension. We take parameters

to mimc experimental conditions described in [106], namely, ZnO crystal with band

gap 3.2 eV, irradiated with ultrashort pulses with central wavelength 3.4 µm. Am-

plitudes of first and thrid harmonic in the dispersion relation are ∆(1) = 0.38Eg and
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∆(3) = 0.02Eg, and phases of these harmonics are φ(1) = φ(3) = 0.

Firstly, we compare ionization probability ρ(t). Fig. 9.3(a) shows ionization

probability in the wake of the pulse as a function of peak pulse intensity. When we

take into account only first term in dispersion, results of calculation via Schrödinger

equation and via field-cycle-resolved photoionization theory (FCRPI) coincide [thin

and think solid blue lines in Fig. 9.3(a)]. When we add third harmonic to the

electron-hole dispersion relation, certain discrepancy between Schrödinger equation

and FCRPI appears (due to random phase approximation, underlying Eq. (9.15)).

At the same time, overall shape of the wake ionization probability as a function of in-

tensity, and ionization probability as a function of time [Fig. 9.3(b)–(c)] qualitatively

is well reproduced by FCRPI. Interestingly, the discrepancy is largest at intermediate

level of intensities [Fig. 9.3(c)], at low [Fig. 9.3(b)] and high [Fig. 9.3(d)] levels of

intensities results of Schrödinger equation are accurately reproduced by FCRPI.

Interband and intraband current densities exhibit similar trend. On the qualita-

tive level, temporal profiles of currents, calculated via Schrödinger equation, are well

reproduced by FCRPI. Discrepancy is largest at the intermediate level of intensities

becomes smaller at low and high intensities [Figs. 9.4–9.6].

To summarize, in this section we have applied framework developed in the pre-

vious section to calculate photoionization probability and density of photocurrents

(both interband and intraband) for electric field of arbitrary temporal shape in the

dielectric with cosine–type (nearest-neighbor) electron-hole dispersion, and derived

approximate expressions for dielectric with arbitrary separable dispersion.
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Figure 9.3 (a) Ionization probability in the wake of the pulse as a function of peak
pulse intensity, calculated via Schrödinger equation with only first harmonic in the
dispersion relation (thin solid blue line), via Schrödinger equation with 3 harmonics
in the dispersion relation (thin dashed green line), via field-cycle-resolved photoion-
ization theory with only first harmonic in the dispersion relation (thick solid blue
line), and via field-cycle-resolved photoionization theory (thick dashed green line).
(b)–(d) Ionization probability as a function of time, calculated via Schrödinger equa-
tion (solid blue line) and via FCRPI (dashed green line) with three harmonics in
the dispersion relation. Peak pulse intensity is 0.1 TW/cm2 (b), 3.6 TW/cm2 (c),
22 TW/cm2 (d). Pulse duration 2 cycles FWHM, central pulse wavelength 3.4 µm,
dielectric band gap 3.2 eV.
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Figure 9.4 Intraband current density as a function of time, calculated via Schrödinger
equation (solid blue line, left axis), and via field-cycle-resolved photoionization theory
(dashed green line, left axis). Thin solid black line (right axis) shows temporal profile
of electric field. Peak pulse intensity is 0.2 TW/cm2 (a), 2 TW/cm2 (b), 5.6 TW/cm2

(c), and 11 TW/cm2 (d). Pulse duration 2 cycles FWHM, central pulse wavelength
3.4 µm, dielectric band gap 3.2 eV.
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Figure 9.5 Interband current density as a function of time, calculated via Schrödinger
equation (solid blue line, left axis), and via field-cycle-resolved photoionization theory
(dashed green line, left axis). Thin solid black line (right axis) shows temporal profile
of electric field. Peak pulse intensity is 0.2 TW/cm2 (a), 2 TW/cm2 (b), 5.6 TW/cm2

(c), and 11 TW/cm2 (d). Pulse duration 2 cycles FWHM, central pulse wavelength
3.4 µm, dielectric band gap 3.2 eV.
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Figure 9.6 Spectrum of total current density as a function of time, calculated via
Schrödinger equation (solid blue line, left axis), and via field-cycle-resolved photoion-
ization theory (dashed green line, left axis). Peak pulse intensity is 0.2 TW/cm2 (a),
2 TW/cm2 (b), 5.6 TW/cm2 (c), and 11 TW/cm2 (d). Pulse duration 2 cycles
FWHM, central pulse wavelength 3.4 µm, dielectric band gap 3.2 eV.
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10. AVALANCHE IONIZATION

Fully quantum-mechanical description of avalanche ionization requires treatment

through second quantization, because avalanche ionization is intrinsically multi-body

effect. In this section, we will instead use ad hoc approach, and include avalanche

corrections to the formalism of sections 8 and 9 by analogy with solutions of simple

kinteic equation for plasma density in the presense of photoionization and avalanche

ionization.

First, let us briefly consider equation (2.6) without recombination term

∂ρ

∂t
= W

(
|A|2

)
ρat +

σ (ω0)

Ui + Up
ρ|A|2 (10.1)

and, more generally, equations of the form

∂ρ(t)

∂t
= W

(
|A(t)|2

)
ρat + α(A(t))ρ(t) (10.2)

where α(A) is avalanche ionization cross-section. It is easy to see that (10.1) permits

solution in the following form

ρ(t) =

∫ t

−∞
ρatW (|A(t′)|2)e

∫ t
t′ α(A(t′′))dt′′dt′ (10.3)

We are going to include avalanche growth factor, similar to e
∫ t
t′ α(A(t′′)dt′′ in (10.3),

into the avalanche cross-section.

Then we can introduce

Iα(t, t1) =

∫ t

t1

α(t′)dt′ (10.4)

and rewrite ~c(~p, t̃) (8.38) as
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~c(~p, t̃) ≈ −iN
∫ t̃

−∞

~E(t′)eiI(~p,t
′)+Iα(t̃,t′)dt′ (10.5)

Note that dynamics of ~c(~p, t̃) given by (10.5) is no longer hamiltonian, hence, we

cannot rely on (8.36) to prove energy conservation. In fact, as we will see below, the

interband current will have extra term. Let us write energy stored in electron-hole

pairs at moment t as

w(t) =
∑
~p

|~c(~p, t)|2E(~p− A(t)) (10.6)

On the other hand,

w(t) =

∫ t

−∞

~E(t′) · ~J(t′)dt′ (10.7)

Therefore,

~J(t) · ~E(t) =
d

dt

∑
~p

|~c(~p, t)|2E(~p− A(t))

=
∑
~p

∂|~c(~p, t)|2

∂t
E(~p− A(t))−

∑
~p

|~c(~p, t)|2∂E(~p− A(t))

∂~p
· ~E(t)

(10.8)

We recognize that second term in (10.8) is ~J (c)(t) · ~E(t), that is, energy absorbed

by intraband current ~J (c)(t) (8.30). Naturally, we then assign first term as energy

absorbed by interband current,

~J (t)(t) · ~E(t) =
∑
~p

∂|~c(~p, t)|2

∂t
E(~p− A(t)) (10.9)

With ~c(~p, t) given by (10.5), we write

|~c(~p, t)|2 = |N |2
∫ t

−∞

∫ t

−∞

~E(t1) · ~E(t2)eiI(~p,t1,t2)+Iα(t,t1)+Iα(t,t2)dt1dt2 (10.10)
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Therefore,

∂|~c(~p, t)|2

∂t
= |N |2

∫ t

−∞

~E(t) · ~E(t1)eiI(~p,t,t1)+Iα(t1,t)dt1 + 2|~c(~p, t)|2α(t) + c.c. (10.11)

As long as avalanche cross-section α(t) contains field ~E(t) as a factor, ratio α(t)
E(t)

is

well-defined. We can now derive the expression for interband current in the presence

of avalanche ionization

~J (t)(t) = 2σ ~E(t)w(t)− 2|N |2
∑
~p

∫ t

−∞

~E(t1)ReeiI(~p,t,t1)+Iα(t,t1)E(~p− ~A(t)) (10.12)

It is easy to see that in the absence of avalanche ionization, when σ = Iα(t) = 0 Eq.

(10.12) gives the same expression for ~J (t)(t) as (8.42).

Since we introduced avalanche ionization coefficient as independent of momen-

tum, modification to the ionization probability and photocurrents is straightforward

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+D∆)(t2−t1)+Iα(t,t1)+Iα(t,t2)×

∆J1 (|Φj(t2, t1)|) sin (djAj(t)− arg Φj(t2, t1))
∏
i 6=j

J0 (|Φi(t2, t1)|)
(10.13)

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+D∆)(t2−t1)+Iα(t,t1)+Iα(t2,t)×

∆J1 (|Φj(t2, t1)|) sin (djAj(t)− arg Φj(t2, t1))
∏
i 6=j

J0 (|Φi(t2, t1)|)
(10.14)
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Interband current is given by

J
(t)
j (t) = 2σE(t)w(t) + 2|N |2

∫ t

−∞
dt1Ej(t1)eIα(t,t1) cos(Eg + ∆)(t− t1)×

×
[ D∏
j=1

J0 (|Φj(t2, t1)|) (Eg + ∆)−

− ∆

D

D∑
j=1

J1 (|Φj(t, t1)|) cos (djAj(t)− arg Φj(t, t1))
∏
k 6=j

J0

(
|Φ(n)

k (t, t1)|
)]

(10.15)

where absorbed energy w(t) is given by

w(t) = (Eg + ∆)W (t)− ∆

D

∫ t

−∞

∫ t

−∞
dt1dt2e

i(Eg+∆)(t2−t1)+Iα(t,t1)+Iα(t,t2)×

×
[ D∏
j=1

J0 (|Φj(t2, t1)|) (Eg + ∆)−

− ∆

D

∑
j=1

ei(djAj(t)−arg Φj(t,t1))J1

(
|Φ(n)

j (t, t1)|
)∏
i 6=j

J0 (|Φi(t2, t1)|)
] (10.16)

and photoionization probability is given by

ρ(t) =|N |2
∫ t

−∞

∫ t

−∞
dt1dt2 ~E(t1) · ~E(t2)ei(Eg+D∆)(t2−t1)+Iα(t1,t)+Iα(t2,t)×

×
D∏
j=1

J0 (|Φj(t2, t1)|) ,
(10.17)

Let us now check the validity of our ad hoc approach by comparing results

of avalanche-augmented field-cycle-resolved photoionization theory with the results

of equation (10.1). It should be noted that we cannot compare the results of

avalanche FCRPI with those of Schrödinger equation (8.5) simulations, because

avalanche ionization is a multi-body effect that is not included into single-particle

Schrödinger equation. Fig. 10.1(a) shows comparison of FCRPI results with and

without avalanche. As expected, presence af the avalanche does not affect leading
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Figure 10.1 (a) CB population as a function of time without avalanche ionization
(solid blue line), and with avalanche cross-section σ = 10−17 cm2 (dashed green line),
calculated via FCRPI. Peak pulse intensity 150 TW/cm2. (b)–(d) CB population in
the wake of the pulse as a function of peak pulse intensity, calculated via Keldysh
formula with avalanche ionization (Eq. (10.1), solid green line) and via FCRPI
(triangles). Avalanche ionization cross-section is 1 × 10−18 cm2 (b), 3 × 10−18 cm2

(c), and 1×10−17 cm2 (d). Pulse duration 2 cycles FWHM, central pulse wavelength
800 nm, material parameters mimic fused silica.
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parts of the pulse, where ionization probability is relatively small. Once the avalanche

ionization switches on close to the peak of the pulse, CB population grows almost

monotonously, governed by avalanche ionization. Ionization probability in the wake

of the pulse closely reproduces the results of equation (10.1).

The derivation of photoionization probability and photocurrent density in the

presence of avalanche ionization in the dielectric with arbitrary separable dispersion

(Section 9.2) is straightforward and left as an exercise for the reader.

To summarize, we have developed ad hoc approach that allows us to include

avalanche ionization in our hamiltonian treatment of photoionization. This approach

permits various functional dependencies of avalanche ionization rate on the strength

of electric field (including non-instantaneous dependencies), as long as avalanche

ionization cross-section contains electric field as a factor.
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11. OPTICAL PROPERTIES OF SOLID-STATE PHOTOIONIZED PLASMA

AT SUB-FIELD-CYCLE TIME SCALE

Optical properties of solid-state plasma is a vast multi-faceted subject studied

theoretically and experimentally for many decades [107, 108, 109, 110, 111, 112],

and still remaining an area of active research [92, 106, 113, 96, 114]. While steady-

state properties of electrons and holes in solids plasma can be accessed through

various well-established spectral-domain techniques [115, 116] and modelled using

perturbation theory and self-consistent field approximation, ultrafast (femtosecond)

transient changes in solid-state plasma are still of considerable interest because they

uncover dynamics of various multi-body phenomena such as carrier-carrier scatter-

ing [108, 117], Coulomb screening [117, 112], and exciton formation [118]. At the

same time, optical properties of solid-state plasma at femtosecond time scales are

important for a number of high-power laser applications, including plasma mirrors

[111], optical micromachining [119] and laser nanosurgery [120, 121].

At the shorter yet, subfemtosecond, time scales optical properties of solid-state

plasma have been studied using high harmonic generation at the surface of the solid

[122, 123] and in the bulk of the solid [106]. Recently, Brunel-type [124] process in

solids, in which harmonics are generated due to sub-field-cycle dynamics of strong-

field photoionization [13, 94, 39, 40] has been employed to study tunneling ionization

in solids via low-order optical harmonics [92]. Direct time-resolved experiments with

attosecond pulses [113, 114], as well as carrier-envelope-stabilized few-cycle near-

infrared pulses [96] have demonstrated field-induced electron tunneling occuring at

the attosecond time scales and opening venues for light-wave-controlled solid-state

electronics [96].
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At the same time, optical response of the photoionized plasma that determines

how does intense ultrashort pulse change while propgating through the solid or

reflecting off its surface is usually calculated either using fully quantum simula-

tions with time-dependent Schrödinger equation (TDSE) or time-dependent density-

functional theory (TD-DFT), or, more commonly, with assumption that plasma den-

sity varies slowly with time [18, 19, 125].

In this paper we present a two-band quantum-mechanical model of optical prop-

erties of solid-state plasma in sub-field-cycle time scales, valid for a wide range of

intensities, pulse shapes and frequencies (both of incident radiation and of nonlinear

response). Our approach recovers known expressions for refraction and absorption

of semiconductors in the limit of low intensities.

Generally speaking, optical polarization ~P (t) and current density ~J(t) in plasma

can be written in the following form

Pi(t) =

∫ t

−∞
χij(t, t

′)Ej(t
′)dt′ (11.1)

Ji(t) =

∫ t

−∞
σij(t, t

′)Ej(t
′)dt′ (11.2)

where subscripts i, j denote Cartesian components of vectors, and ~E(t) is electric

field, χij(t, t
′) is dielectric susceptibility tensor, and σij(t, t

′) is conductivity tensor.

Formulas (11.1) and (11.2) give a transparent physical meaning to time arguments

t and t′, namely, χij(t, t
′) (σij(t, t

′)) shows with which weight electric field at time t′

contributes to polarization (current density) at time t. In the stationary linear case,

χi,j(t, t
′) = χij(t− t′) and σij(t, t

′) = σij(t− t′), and thus it is possible to write in the
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spectral domain

P̂i(ω) = χ̂ij(ω)Êj(ω) (11.3)

Ĵi(ω) = σ̂ij(ω)Êj(ω) (11.4)

where

χ̂jk(ω) =

∫ ∞
0

eiω(t−t′)χjk(t− t′)d(t− t′) (11.5)

σ̂jk(ω) =

∫ ∞
0

eiω(t−t′)σjk(t− t′)d(t− t′) (11.6)

are complex dielectric susceptibility and complex conductivity as functions of a single

frequency argument ω.

We also note that description of optical properties with current density and con-

ductivity is equivalent to the description with polarization and dielectric susceptibil-

ity, because there is the following relation between polarization and current density

~J(t) =
d~P (t)

dt
(11.7)

hence,

σij(t, t
′) =

∂χij(t, t
′)

∂t
+ χij(t, t)δ(t− t′) (11.8)

where δ(τ) is a Dirac delta function. Conversely,

~P (t) =

∫ t

−∞

~J(t1)dt1 (11.9)

hence,

χij(t, t
′) =

∫ t

t′
σij(t1, t

′)dt1 (11.10)
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11.1 Slowly-varying plasma density approach (SVPD)

Popular approach to calculate optical properties of plasma is to assume plasma

density is varying slowly [18, 19, 125]. Equations of motion of a single electron in

collisionless plasma give the velocity of a electron as a function of time (in what

follows we use units ~ = |e| = 1)

~v(t) = − 1

m
~A(t) (11.11)

where

~A(t) =

∫ t

−∞

~E(t′)dt′ (11.12)

is vector potential. The conductivity current in the collisionless plasma is then found

as electron density and vector potential

~J (c)(t) = −ρ(t)v(t) =
ρ(t)A(t)

m
, (11.13)

or, equivalently,

σ
(c)
ij (t, t′) = δijρ(t)/m (11.14)

where m is conduction-band electron mass. Expressions (11.11), (11.13) and (11.14)

can be extended to include collisions with time constant τc as

~v(t) = − 1

m

∫ t

−∞

~E(t′)e(t′−t)/τcdt′ (11.15)

~J (c)(t) =
ρ(t)

m

∫ t

−∞

~E(t′)e(t′−t)/τcdt′ (11.16)
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and,

σ
(c)
ij (t, t′) = δijρ(t)e(t′−t)/τc/m (11.17)

where δij is Kronecker symbol.

Interband current can found via energy conservation [18, 19] and reads

~J (i)(t) =
Eg ~E(t)

E2(t)

dρ(t)

dt
(11.18)

Hence

σ
(i)
ij (t, t′) = δij

Eg
E(t)2

dρ(t)

dt
δ(t− t′) (11.19)

To complete the model given by Eqs. (11.14),(11.14) and (11.19), we need to

specify plasma density as a function of time ρ(t). It can be found by solving the

kinetic equation (2.6). For ultrashort pulses second and third terms in (2.6) can often

be neglected, in which case plasma density is found by integrating photoionization

rate with respect to time

ρ(t) =

∫ t

∞
W (E(t′), ω0)dt′ (11.20)

where W (E(t), ω0) is photoionization rate as a function of field strength and central

pulse frequency ω0. Besides an obvious approximation of slowly varying plasma

density, SVPD tacitly assumes known photoionization rate as a function of field

strength. Time-averaged nonlinear photoionization rates, such as Keldysh formula

[13],[94] may also become inappropriate at sub-field-cycle time scales.
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11.2 Optical properties at sub-field-cycle time scale

Using the field-cycle-resolved photoionization formalism developed in sections 8

and 9, we can write down intraband conductivity σ
(c)
ij (t, t′) as

σ
(c)
ij (t, t′) = 2|N |2

∫ t′

−∞
dt1Ej(t1) sin[(Eg + ∆)(t′ − t1)]

∏
k 6=i

J0 (|Φk(t
′, t1)|)×

× ∆

D
J1 (|Φi(t

′, t1)|) sin (diAi(t)− arg Φi(t
′, t1))

(11.21)

and interband conductivity σ
(i)
ij (t, t′) as

σ
(i)
ij (t, t′) = 2δij|N |2

[
cos[(Eg + ∆)(t− t′)]

D∏
k=1

J0 (|Φk(t, t
′)|) (Eg + ∆)−

− ∆

D
sin[(Eg + ∆)(t− t′)]

D∑
k=1

J1 (|Φk(t, t
′)|) cos (dkAk(t)− arg Φk(t, t

′))
∏
l 6=k

J0 (|Φl(t, t
′)|)
]

(11.22)

where Eg is band gap, ∆ is band width, D is number of spatial dimensions, |N |2 is

normalization factor, J0(z) and J1(z) are zeroth and first order Bessel functions of

the first kind, respectively, dj is lattice constant in direction j, ~A(t) =
∫ t
−∞

~E(t′)dt′

is vector potential,

Φj(t1, t2) =
∆

D

∫ t2

t1

eidjAj(t
′)dt′, (11.23)

Inspection of formulas (11.21) and (11.22) shows that as field amplitude goes to

zero, | ~E| → 0,

σ
(c)
ij (t, t′)→ 0 (11.24)

σ
(i)
ij (t, t′)→ σ

(i)
ij (t− t′) (11.25)
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Figure 11.1 (a),(c) Linear interband single time response functions χ(i)(τ) (solid
blue line) and σ(i) (dashed blue line). (b),(d) Frequency-dependent linear dielectric
susceptibility χ̂i(ω) - real part (solid blue line), imaginary part (dashed green line),
and density of states in the two-band model (arb. units, red dash-dotted line) as
functions of photon energy in the units of band gap energy. Number of spatial
dimensions D = 1 (a),(b) and D = 3 (c),(d). In the panel (d) approximate density
of states in the parabolic band approximation is plotted.
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Figure 11.2 Maps of (a),(d),(g) σ(i)(t, t′), (b),(e),(h) σ(c)(t, t′), calculated using
FCRPI, and (c),(f),(i) σ(c)(t, t′), calculated using slowly-varying plasma density ap-
proach for input pulse intensity (a)–(c) 2.6 TW/cm2, (d)–(f) 41 TW/cm2 and (g)–(i)
260 TW/cm2. D = 1, Eg = 9 eV, ∆ = 0.2Eg, central radiation frequency 0.2Eg, pulse
duration 1 cycle FWHM. Solid black line shows electric field profile as a function of
time t′.
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Figure 11.3 Maps of (a),(c),(d) σ(c)(t, t′) and (b),(d),(f) σ(i)(t, t′) for central radiation
frequency (a),(b) 0.2Eg, (c),(d) 0.6Eg and (e),(f) 1.1Eg. Input pulse intensity 41
TW/cm2, D = 1, Eg = 9 eV, ∆ = 0.2Eg, pulse duration 1 cycle FWHM. Solid black
line shows electric field profile as a function of time t′
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where

σ
(i)
ij (τ) = 2δij|N |2

[
cos[(Eg + ∆)τ ](Eg + ∆)

(
J0

(
∆

D
τ

))D
−

− sin[(Eg + ∆)τ ]∆J1

(
∆

D
τ

)(
J0

(
∆

D
τ

))D−1 ] (11.26)

We plot linear interband conductivity and linear dielectric susceptibility χ(i)(τ) =∫ τ
−∞ σ

(i)(τ ′)dτ ′ at low intensities as a function of time τ , and in spectral domain as

a function of frequency ω for 1-D and 3-D solid [Fig. 11.1]. As expected, linear

absorption coefficient, proportional to imaginary part of χ̂(i)(ω), follows density of

states in the in the two-band solid [Fig. 11.1(b),(c)] [116]. In 1-D solid, density of

states has a (x2−1)−1/2-type singularity in the vicinity of the band gap, and so does

Imχ̂(i)(ω) [Fig. 11.1(b)]. In the 3-D solid singularity of density of states is softer, of

(x − 1)1/2-type, which is reflected in Imχ̂(i)(ω) [Fig. 11.1(d)]. In the time domain

linear optical response of 3-D solid decays faster than that of 1-D solid.

Figure 11.2 shows maps of σ(c)(t, t′) and σ(i)(t, t′) for various field pulse intensities

for D = 1. At small pulse intensities, when Aidi � 1, and away from the peak of

the pulse intraband conductivity σ
(c)
ij (t, t′), in accord with (11.24), vanishes, whereas

interband conductivity σ(i)(t, t′) becomes a function of a single argument t− t′ [Figs.

11.2(a)]. Although in the regime of low intensities optical response is governed by in-

terband transitions, we note drastically different behaviour of intraband coductivity

σ(c)(t, t′), predicted by FCRPI and by slowly-varying plasma density approxima-

tion [Fig. 11.2(b),(c)]. While in SVPD approximation σ(c)(t, t′) slowly changes as a

function of t and does not depend on t′ [Fig. 11.2(c)] , FCRPI predicts oscillatory

behaviour of intraband conductivity [Fig. 11.2(b)] that manifests itself in harmonic

generation. At higher intensities nonlinear interband and intraband responses be-

come comparable [Fig. 11.2(d),(e),(g),(h)], with σ(i)(t, t′) also exhibiting complex
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dependence on both t and t′ [Fig. 11.2(d),(g)].

Formulas (11.21) and (11.22) are valid for arbitrary radiation frequency, as long

as dipole approximation holds and population of the conduction band is small (see

Supplementary Material). Figure (11.3) shows continuous transition of the conduc-

tivity functions from the regime when pulse frequency is smaller than the band gap

to the regime with pulse frequency is larger than the band gap, with the peak field

intensity kept constant. As the frequency increases, peak values of vector poten-

tial decrease (with field strength kept fixed), hence, maps of intraband conductivity

σ(c)(t, t′) show low-intensity patterns [Fig. 11.3)(a),(c),(d)]. At the same time, period

of oscillations of σ(i)(t, t′) approaches field cycle duration as field frequency increases

[Fig. 11.3)(a),(c),(d)], indicating linear interband absorption.
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11.3 FDTD simulations of transmission and reflection at the vacuum-solid

interface

The current density and polarization, calculated (11.1), (11.2), and (11.21),

(11.22),(11.8), can be plugged into various propagation codes to analyse transfor-

mation of the powerful pulse during propagation through dielectric, generation of

high harmonics etc. It should be noted, however, that accurate numerical integra-

tion over time in the expressions (11.2) requires time step smaller than typical time

of oscillations of σij(t, t
′), which, for σ

(i)
ij (t, t′) is on the order of E−1

g (Eq. (11.22), Fig.

11.2(b),(d),(f)] . For example, for fused silica with Eg = 9 eV reliable convergence

is achieved for ∆t ≤ 70 as. On the other hand, our field-cycle-resolved photoioniza-

tion theory [40] can predict oscillations of electron density on the order of critical

plasma density, potentially causing back-reflections of the propagating wave. The

propagations codes for filamentation [42, 43, 18, 19] are thus not very well-suited for

modelling field-cycle-resolved photoionization, because those codes assume relatively

smooth dynamics of the field (when considered in the time frame co-moving with the

pulse), and absence of the back-reflected wave.

In this paper we instead employ finite-difference time-domain (FDTD) method

[126, 127] to analyze pulse propagation in the presence of photoionization at sub-

cycle time scale. FDTD is a very popular method of directly solving Maxwell

equations for electric and magnetic fields, and has been applied to a large variety

of problems, including propagation of radar signals [128, 129, 130], nanophotonics

[131, 132, 133, 134], and plasmonics [135, 136, 137, 138]. Quantum-mechanical simu-

lations of 4-level media have been also successfully combined with FDTD [139]. Due

to its popularity, there is a number of free [140] and proprietary software packages

for FDTD simulations. However, as the stability of the simulations depends crucially
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on material parameters, these software packages do not allow specification of arbi-

trary photocurrents and polarization as source terms. Therefore, we implement our

own FDTD code that treats very simple 1-D geometry in which light pulse is inci-

dent in the z direction normally onto vacuum–dielectric interface from the vacuum

side. We assume electric field is polarized along one of the crystal directions, hence,

photocurrents are also polarized in the same direction, and we only need to keep

track of one component of the field. Specifically, we solve the following equations for

x-component of electric displacement Dx

1

c

∂Dx

∂t
=
∂Hy

∂z
− 4πJx (11.27)

1

c

∂Hy

∂t
=
∂Dx

∂z
− 4π

∂Px
∂z

(11.28)

Here Dx = Ex+4πPx, Ex is x-component of the field, Px is x-component of polariza-

tion, Jx is x-component of current, Hy is y-component of magnetic field, c is speed

of light in vacuum, and vacuum-dielectric interface lies in x − y-plane. FDTD step

is then given by the following equations

Dn+1
j = Dn

j +
c∆t

∆z

(
H
n+1/2
j+1/2 −H

n+1/2
j−1/2

)
− 4πc∆tJ

(c),n
j (11.29)

H
n+1/2
j+1/2 = Hn

j+1/2 +
c∆t

∆z

(
Dn
j+1 −Dn

j − 4π
(
P n
j+1 − P

(t),n
j

))
(11.30)

where j denotes spatial index (along z coordinate), n denotes temporal index (along

t coordinate), and we have omitted Cartesian indices x and y for brevity. In vac-

uum, J (c)(t) = P (i)(t) = 0. In dielectric we calculate Jx using (11.2) and (11.21) (or

(11.14)), and Px using (11.1), (11.8) and (11.22) (or (11.19)). We include intraband

transitions through the current density term in (11.27), and interband transitions

through polarization term in (11.28), because interband transitions provide positive
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contributions to the refractive index even at small fields (Eq. (11.25)) and cause

numerical instability if included through current density term, and intraband transi-

tions provide negative contribution to the refractive index and can cause instability

if included through polarization term.

We also notice that, strictly speaking, equations (11.29) and (11.30) provide

solution for displacement D(t), whereas formulas (11.21), (11.22) require field E(t)

and intergral of the field in vector potential A(t). In the input of formulas (11.21),

(11.22) we use estimate E(t) ≈ D(t)/ε(ω0), where ε(ω0) is dielectric constant at

central pulse frequency ω0.

Fig. 11.4(a),(c),(d) shows maps of electric field in the vicinity of vacuum-dielectric

interface. Further insight into the process of reflection at the vacuum-dielectric

boundary can be gained if we plot fraction of the energy of the input pulse that is

contained in the field in vacuum, in dielectric and stored by electron-hole pairs in

plasma. Specifically,

R(t) =

∫
Vv

(E2 +H2)|tdv∫
Vv

(E2 +H2) |t=0dv
(11.31)

where
∫
Vv
dv denotes integration over volume of vacuum, gives fraction of the initial

pulse energy contained in vacuum at the time moment t. Similarly,

T (t) =

∫
Vd

(E2 +H2)|tdv∫
Vv

(E2 +H2) |t=0dv
(11.32)

where
∫
Vd
dv denotes integration over the volume of dielectric, gives the fraction of

the energy of the input pulse, stored by the field within the dielectric. Fraction of

the energy of the input pulse, stored by electron-hole pairs within the dielectric, can
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Figure 11.4 (a),(c),(e) Maps of the electric field (in V/A) in the vicinity of vacuum-
dielectric interface calculated by FDTD+FCRPI. Solid black line (left-bottom axis)
shows plasma density on the surface as a function of time, and dashed black line
(top-right axis) shows plasma density in the wake of the pulse as a function of
depth. (b),(d),(f) Fraction of the initial energy of the pulse contained in vacuum
(solid blue line), in field within the dielectric (dashed green line) and in electron-
hole pairs within the dielectric (dash-dotted red line) as functions of time. Sum
R(t) + T (t) + P(t) is shown by thin black line, Fresnel reflection and transmission
coefficients are shown by thin solid blue line and thin dashed green line respectively.
Peak intensity of the incident pulse is (a),(b) 50 TW/cm2, (c),(d) 300 TW/cm2

, (e),(f) 400 TW/cm2. Incident pulse duration is 2 cycles FWHM, central pulse
wavelength 800 nm, ionization parameters mimic fused silica.
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Figure 11.5 (a) Fraction of input pulse energy reflected (solid blue line), stored in the
field inside the dielectric (dashed green line) and in plasma inside the dielectric (dash-
dotted red line) at t = 17 cycles as functions of incident pulse intensity, calculated
using FDTD+FCRPI. (b) Spectra of the reflected pulse for various incident pulse
intensities: 1014 W/cm2 (solid blue line), 3×1014 W/cm2 (dashed green line) , 5×1014

W/cm2 (dash-dotted red line), and 9× 1014 W/cm2 (dotted cyan line). Spectrum of
the incident pulse is shown by thin black line.

be found by integrating Ohmic losses due to currents within plasma

P(t) = 8π

∫
Vd

∫ t
−∞E(t′) · J(t′)dt′dv∫
Vv

(E2 +H2)|t=0dv
(11.33)

In the low-intensity linear limit R(t → ∞) and T (t → ∞) can be calculated

using well-known Fresnel formulas [141] for electric and magnetic fields of reflected

and transmitted wave to yield

RF =

(
1−
√
ε

1 +
√
ε

)2

(11.34)

T F =
2(1 + ε)√
ε(1 +

√
ε)2

(11.35)
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PF =
2(ε− 1)√
ε(1 +

√
ε)2

(11.36)

At low pulse intensities, constant portion of the energy is stored in the electron-

hole plasma, corresponding to dielectric polarization due to interband transitions

[Fig. 11.4(b)]. When t → ∞, R and T coincide with RF and T F , respectively.

At higher intensities, energy of the pulse is being spent as the pulse propagates

into dielectric [Fig. 11.4(b)], while transmitted and reflected pulses develop new

frequency components [Fig. 11.4(c),(d), Fig. 11.5(b)], which, in turn, affect both

instantaneous plasma density and the plasma density in the wake of the pulse.

We can compare these results with FDTD+SVPD model [Fig. 11.6]. Distribu-

tion of energy between vacuum, dielectric and plasma is similar at small intensities

[Figs. 11.6(b), 11.4(b)], but differs dramatically at medium and high intensities [Figs.

11.6(d),(f), 11.4(d),(f)]. In the SVPD approximation, shape of the reflected pulse is

virtually the same as the shape of the incident pulse, whereas transmitted pulse is

slowly modified by the plasma dispersion [Fig. 11.6(e)]. Density of plasma in the

wake of the pulse varies slowly with depth.

To summarize, we develop a quantum-mechanical model of optical response of

solid-state plasma in photoionized transparent solid at sub-field-cycle time scale. Our

model is valid in a wide range of intensities, radiation frequencies and pulse shapes,

and shows nonlinear dependence of optical properties, arising both from interband

and intraband motion of electrons, on field intensity. Analysis of transmission and

reflection of ultrashort pulse at vacuum-solid boundary with FDTD code shows com-

plex coupled field-charge dynamics, not present in description of optical properties

using slowly varying plasma density approximation.
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Figure 11.6 (a),(c),(e) Maps of the electric field (in V/A) in the vicinity of vacuum-
dielectric interface calculated by FDTD + SVPD. Solid black line (left-bottom axis)
shows plasma density on the surface as a function of time, and dashed black line
(top-right axis) shows plasma density in the wake of the pulse as a function of depth.
(b),(d),(f) Fraction of the initial energy of the pulse contained in vacuum (solid blue
line), in field within the dielectric (dashed green line) and in electron-hole pairs within
the dielectric (dash-dotted red line) as functions of time. Sum R(t) + T (t) + P(t)
is shown by thin black solid line, Fresnel reflection and transmission coefficients
are shown by thin solid blue line and thin dashed green line respectively. Peak
intensity of the incident pulse is (a),(b) 50 TW/cm2, (c),(d) 300 TW/cm2 , (e),(f)
400 TW/cm2. Incident pulse duration is 2 cycles FWHM, central pulse wavelength
800 nm, ionization parameters mimic fused silica.
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12. OPTICAL BREAKDOWN BY ULTRASHORT LASER PULSES

Laser-induced breakdown of solid materials has been a subject of in-depth re-

search since the invention of lasers [142, 143]. Systematic experimental studies per-

formed within more than five decades have revealed distinctly different physical sce-

narios leading to optical breakdown in materials irradiated by long [86, 144] and short

[4] laser pulses and helped identify a broad range of physical processes contributing

to laser-induced breakdown [145], including field-induced and avalanche ionization,

nonlinear dynamics of a laser beam, plasma effects, radiation absorption by impurity

and defect states, as well as collisional dynamics, diffusion, and recombination of free

carriers.

While the specific regime of laser-induced breakdown can depend on all the above-

listed factors, ionization dynamics and the related buildup of free-carrier density

always play a central role in laser breakdown, providing a mechanism whereby the

laser field is coupled to a material. This fact is recognized by a broadly accepted

criterion of laser-induced breakdown [145, 100, 146, 147, 19, 18, 121] that defines the

laser breakdown threshold in terms of the laser fluence or laser intensity needed to

generate a certain fraction of the critical electron density within the laser pulse. This

criterion has proven to be useful in a broad range of pulse widths, offering a powerful

tool for the analysis of a laser breakdown by pico- and femtosecond light pulses

and helping understand a variety of related laser–matter interaction phenomena in a

broad class of materials and systems, including laser-induced filamentation [147, 19,

18, 148], laser micromachining [119], laser biomedicine [121, 120], supercontinuum

generation [19, 18, 149], and compression [125, 150, 151] of high-power laser pulses in

solids. Here, we show, however, that this commonly accepted approach to assessing
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the role of laser-induced breakdown in solids fails in the case of extremely short,

few-cycle laser pulses. The physical arguments offered in this work suggest that the

laser breakdown threshold of solids should be rather defined in terms of the absorbed

laser energy per unit volume and energy transfer to the crystal lattice.

In the case of few-cycle laser pulses, application of criterion

ρ > sρc(ω0), (12.1)

where ρ is density of conduction band (CB) electrons, ρc(ω) is critical plasma den-

sity, and s is the fraction of critical plasma density that leads to the breakdown,

meets the following difficulties. Firstly, the notion of central frequency is not very

well defined for ultrabroad band single-cycle pulses. In the commonly used set-ups

to study breakdown threshold as a function of pulse duration pulse duration is var-

ied by adjusting chirp of the pulse [152, 100, 4, 101]. For ultrabroandband chirped

pulses central frequency ω varies with time; clearly, application of breakdown cri-

terion of the ρ(t) > sρc(ω(t)) should then give different results for positively and

negatively chirped pulses, while experimentally this is not observed. Fundamentally,

expression (12.1) contains Fourier-conjugated variables - time through ρ(t) and fre-

quency through ρc(ω) - in the same expression, and thus will inevitably run into

inconsistensies at timescales comparable to field cycle.

Secondly, our recent revision of Keldysh photoionization theory [13] for solids

shows that density of electrons in the conduction band exhibits strongly non-monotonous,

oscillatory behaviour at sub-field-cycle time scales [40]. Within the field cycle plasma

density can be comparable to the critical plasma density; while plasma density in

the wake of the pulse can be relatively low. This corroborates necessity of revision

of the criterion (12.1) – we can take maximum maxt ρ(t) or ρ(t → ∞) in the wake
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down occurs between energy transfer to the lattice and energy dissipation through
thermal conductivity.

of the pulse as plasma density ρ with clearly different predictions for optical break-

down threshold. On the other hand, accurate theoretical answer to both questions

is of paramount importance for current and future applications of laser micro- and

nanomachining and nanosurgery with ultrashort pulses [119, 120, 153, 121].

In sections 8–10 we have developed quantum-mechanical formalism to calculate

photoionization probability and photocurrent density at sub-cycle time scales, and

then in section 11 we have applied this formalism to analyse how powerful ultrashort

pulse penetrates dielectric in the conditions of ultrafast ionization. We have shown

that certain portion of energy can propagate into dielectric, although the maximum

population of conduction band exceeds ρc(ω0). Here, we focus on applying our field-

cycle-resolved photoionization theory to the problem of optical breakdown and adopt

the following picture [Fig. 12.1] Typical timescales of electron-lattice collisions are
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1 fs – 1ps. At this time scale electrons forget history of irradiation and collective

motion due to the field, but retain acquired energy. Energy transfer times are cor-

respondingly me/M times larger (here M is mass of ion or atom in the lattice site,

and me is mass of electron). Therefore, in the case of the femtosecond pulse-induced

optical breakdown the electrons store the energy during the pulse; the transfer of

this energy to the lattice and actual structural changes (breakdown) happen in the

wake of the pulse [100]. Typical energy escape time thorough heat diffusion can

be estimated from below as τh = λ2/χ , where χ is thermal conductivity (in units

of m2s−1), λ = 2πc/ω is the radiation wavelength, determining minimal size of the

irradiated volume, and c is speed of light. Thermal conductivity of dielectric with

plasma can be expected to be larger than thermal conductivity of a cold medium due

to electronic contribution; consequently, is on the order 1 ps – 10ns. This hierarchy

of energy transfer timescales [Fig. 12.1] enables an estimate of the breakdown time

between energy transfer to the lattice and heat diffusion; and allows us to base a

physically transparent criterion of optical breakdown on the amount of energy per

unit volume w absorbed during the irradiation by the ultrashort light pulse that

reads

w ≥ wth (12.2)

where wth amount of energy, that, if deposited instantaneously inside unit volume of

a solid, causes structural changes. Quantity w can be calculated as Ohmic losses of

the field due to currents (see also Eqs. (8.33) and (10.8))

w =

∫ ∞
−∞

~E(t) ·
(
~J (c)(t) + ~J (t)(t)

)
dt (12.3)

For breakdown criterion in the form (12.2) to work, we need to provide value of
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Figure 12.2 Breakdown threshold in fused silica as a function of pulse duration cal-
culated using criterion (12.4) (solid blue line), using Keldysh formula with avalanche
ionization (12.2) (dashed green line). Value of avalanche cross-section is (a) 0, (b)
2× 10−18 cm−2, (c) 5× 10−18 cm−2, and (b) 10−17 cm−2. Best fit value of wth (th) is
(a) 3 kJ/cm3 (1021 cm−3), (b) 6.8 kJ/cm3 (3.4×1021 cm−3), (c) 21 kJ/cm3 (1.2×1022

cm−3), (d) 0.16 MJ/cm3 (1.5× 1023 cm−3), Experimental points from Lenzner et al
[4] are shown as black triangles.
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wth. As an order-of-magnitude estimate of wth we can take the energy required to heat

up unit volume of the material up to the melting point and overcome latent fusion

heat. For most optical materials such estimate lands in the range 0.1 – 10 kJ/cm3.

However, it is established that femtosecond breakdown itself is a non-thermal process

[152, 100, 146], hence, such an estimate can be expected to overshoot actual values

of wth. More accurate determination of wth is possible through fitting results of our

calculations to the experimental data. To this end, we choose model parameters to

mimic fused silica (as we speculated in the previous sections, although fused silica

is not a cubic-symmetry crystal, for which our photoionization model is supposed

to work best, most of the experimental data on ultrashort pulse optical breakdown

is available for fused silica), namely, Eg = 9 eV, ∆ = 5.5 eV, m∗ ≈ me. Then

we calculate absorbed energy as a function of peak intensity (taking into account

Fresnel reflection at the air fused silica boundary), pulse duration and avalanche

ionization cross-section for Gaussian pulses and fit the results to the experimental

data from [4] to obtain wth . To make a fair comparison with existing theory of optical

breakdown, we also calculate CB electron density using Keldysh theory augmented

with avalanche ionization, namely, through equation (10.1), setting

ρ ≥ ρth (12.4)

as a breakdown criterion and fitting the results to the experimental points to ex-

tract ρth. Results of both fitting approaches are summarized in Fig. 12.2. With

no avalanche ionization (avalanche ionization cross-section σ = 0) theoretically pre-

dicted breakdown threshold grows faster as a function of pulse duration than observed

in experiment [12.2(a)]. Conversely, with larger avalanche ionization cross-section

breakdown threshold exhibits weaker dependence on pulse duration then experimen-
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tally observed [Fig. 12.2(d)]. Both approaches fit well into experimental data down

to pulse width of 5 fs, but predict slightly different values of breakdown threshold

for single-cycle (2.5 fs) laser pulses.

To summarize, in this section we propose a new ultrashort laser pulse-induced

breakdown criterion in dielectrics, based on the amount of field energy absorbed by

dielectric in a unit volume. This amount of energy can be calculated using our field-

cycle-resolved photoionization theory (FCRPI). The results agree with experimental

data from [4] for pulses with duration down to 2 cycles.
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13. CONCLUSIONS

Powerful ultrashort laser pulses are transforming modern science and technology

in the areas well beyond conventionally optics such as biology, chemistry, medicine,

material processing, solid state physics and electronics. Tailoring ultrashort pulses

themselves and ultrafast processes using light pulses of arbitrary shape will allow

observation and control of processes with unprecedented temporal and spatial reso-

lution, opening up even more applications and perspective-changing methods. In the

present Ph. D. research we have investigated analytically and numerically two groups

of such methods. One group is related to filamentation of ultrashort laser pulses,

where we have found new regimes that form ultrashort and ultraintense wave tran-

sients, and discovered general scaling laws of filamentation that will help to translate

any filamentation regime in gas to almost arbitrary level of powers.

The second group of methods develops field-cycle-resolved photoionization theory

in solids (FCRPI). FCRPI, on one hand, provides photoionization probability and

photocurrent density induced by fields of arbitrary shape and duration. On the other

hand, FCRPI accurately reproduces results of Schrödinger equation simulations, and

recovers results of Keldysh photoionization theory in the appropriate limits of the

applicability of the latter. FCRPI can be used directly to analyse high-harmonic

generaton or optical breakdown by shaped ultrashort pulses, and it can be incor-

porated into various propagation codes for accurate analysis of photoionization in

the bulk of dielectric media, in photonic crystals and solid-core waveguides. FCRPI

provides closed-form analysis of ultrafast charge dynamics in solids that can poten-

tially permit optical-frequency solid state electronics that will process information

6 orders of magnitude faster than current semiconductor chips. Numerical evalua-
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tion of integrals in FCRPI can easily be parallelized onto various modern computing

architectures.
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A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven

by a femtosecond filament,” Phys. Rev. A, vol. 86, no. 3, p. 033831, 2012.

[86] N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quant.

Electron., vol. 10, no. 3, p. 375, 1974.

117



[87] T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear

optics,” Rev. Mod. Phys., vol. 72, no. 2, p. 545, 2000.

[88] M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon., vol. 1, p. 97,

2002.

[89] M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F.

Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L.
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