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ABSTRACT 

 

 The interaction between the Caribbean and South American plates produced 

irregular sea-floor topography on Bonaire (part of the Leeward Antilles Islands), which 

enables the deposition of calcium carbonate sediments.  To better understand the nature 

and post-depositional history of these deposits, the distribution of carbonate facies across 

Bonaire was investigated.  Direct observations (visual and photographic) of exposed 

Pleistocene carbonate rocks were made, then hand and core samples were collected. The 

samples were analyzed using thin-section petrography, X-ray diffraction, electron 

microprobe, and stable-isotope methods. Four terraces occur on Bonaire, and are 

associated with tectonic uplift and glacio-eustatic sea-level changes (the oldest, highest 

terrace located at the island center; the lowest, youngest terrace located along the island 

edge). Correlation to the dated terrace on adjacent islands indicates the youngest terrace 

is ~125 ky old (last interglacial highstand of sea level).  Results from the visual 

observations and petrographic analysis (e.g., rock constituents, cement habit, 

mineralogy, and porosity) were used to delineate seven facies: Acropora palmata 

rudstone, Montastrea annularis framestone, Coralgal grainstone/packstone, Mixed Coral 

framestone, Acropora cervicornis floatstone, Amphistegina sp. grainstone, and 

Dolomite.  Facies distribution is related to wave energy and water depth.  Facies 

Acropora palmata rudstone and Montastrea annularis framestone are located on the 

windward side of the island (deposited in a high wave-energy, barrier reef environment). 

Facies Mixed Coral framestone and Acropora cervicornis floatstone are located on the 
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leeward side of the island (deposited in a low to medium-wave energy, fringing reef 

environment).  Facies Coralgal grainstone/packstone are located on the platform interior 

(deposited in a low wave-energy, lagoonal environment).  Facies Amphistegina sp. 

grainstone is located on the platform interior (deposited by eolian processes), and facies 

Dolomite is located at points across the island (formed by diagenesis of other facies).  

The dolomite displayed microcrystalline and sucrosic textures, and its δ18OVPDB values 

ranged from -0.7‰ to 2.7‰ and their mean value was 0.7‰.  The proposed model of 

dolomitization is seepage reflux, during which dolomite forms as heavy brine solutions 

with heavy δ18O made by evaporative processes seep into underlying carbonate rocks.   
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INTRODUCTION 

 Bonaire Island is located in the southern Caribbean Sea, approximately 90 km 

north of Venezuela [Fig. 1].  It is one of the three islands that comprise the Netherlands 

or Leeward Antilles (commonly referred to as the ABC islands along with Aruba and 

Curacao). Bonaire is an example of an isolated carbonate platform (Read, 1985; Tucker 

and Wright, 1990).  Controls on the formation and evolution of this type of platform 

include eustasy, tectonic subsidence and uplift, wind energy, wave energy, and tides 

(Deffeyes et al, 1965; Schellmann et al., 2002; Engel et al., 2012). 

 According to depositional environment models, during the Pleistocene a high 

energy regime created a barrier reef type environment with a protected lower energy 

lagoon between the barrier reef and the mainland (Bak, 1976; de Buisonje, 1964; Pomar, 

2001; Bosence, 2005; James and Wood, 2010; James et al., 2010). This barrier reef 

environment is not common on the leeward side of islands, where low wave energy 

occurs and extensive fringing reef is permanently growing (van Duyl, 1985; Purkis, 

2014).  The leeward side has a sharp drop-off, with seaward-dipping slopes reaching up 

to 50 degrees and multiple horizontal benches interrupting the slope.   

 Climatic and oceanographic settings in Bonaire are ideal for coral growth.  

Situated in the low latitudes, corals are exposed to warm tropical waters throughout the 

year and the semi-arid climate regime results in only 52 cm/yr of rainfall annually so 

there is no river runoff. The waves impact the windward part of the island due to the 

continuous trade winds from the east (Haug and Tiedemann, 1998; Nisancioglu et al., 

2003).  Finally, tides within the Leeward Antilles are microtidal, with a range of 
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approximately 30 cm which provides stability for coral growth (De Haan and Zandeval, 

1959).   

 Hermatypic coral species predominate in these reefs, which are abundant 

throughout the modern Caribbean Sea (Newell and Rigby, 1957; Wells 1957, 1967; 

Newell et al., 1959; Stehli and Wells, 1971; Milliman, 1974).  The most abundant coral 

species include Montastrea annularis1, Acropora palmata, A. cervicornis, Diploria 

clivosa, D. labrinthiformis, Porites porites, P. astroides, Siderastrea sidera, S. radian, 

and Agaricia agaricites (Bak, 1976; van Duyl, 1985; Kim and Lee, 1999; Pandolfi and 

Jackson, 2001).  These corals’ preferred growth environments depend upon both wave 

energy and water depth, and some corals may be sensitive to high wave energy. 

The Pleistocene stratigraphy of Bonaire is directly related to glacio-eustatic sea-level 

change as well as tectonic uplift (Bandoian and Murray, 1974; Escalona and Mann, 

2011; Hippolyte and Mann, 2011).  These processes have created offlapping depositional 

patterns which are associated with inverse stratigraphy.  In this setting, the youngest 

units are the lowest in elevation and located on the edge of the island, in contrast to the 

older Pleistocene units which are located toward the interior of the island and are higher 

in elevation (all occurring without influence from folding or faulting). 

 Previous studies focused on distribution of lithological units and described facies 

occurring on the island.  Geologic maps of Bonaire include Cretaceous volcanics, 

                                                           
1 Biologists have recently decided that the coral species referred to as Montastrea annularis in 

many previous studies is more properly referred to as Montastrea faveolata.  I appreciate the 

reason for this change, but to maintain consistency with facies names used in published maps, 

and to avoid confusion when referring to the results of previous studies, this thesis will utilize 

the name Montastrea annularis. 
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Eocene limestone, Plio-Pleistocene inclined beds, Pleistocene terrace limestone, 

Pleistocene eolianite and Holocene carbonate sediments (Pijpers, 1933; de Buisonje, 

1974; Bandoian and Murray, 1974).  A revised geologic map was produced, adding the 

Cretaceous Rincon Limestone, redescribing the Eocene limestone as a conglomerate, 

limestone, and marl, as well as changing the previously described Plio-Pleistocene 

inclined beds (Seroe Domi Fm.) to Neogene (middle Miocene-Pliocene) (Hippolyte and 

Mann, 2011) (see Fig. 2).  Fault kinematic analysis was also performed to collect 

mesoscale-fault data and reconstruct the regional Miocene and younger plate boundary 

tectonic forces that deformed the rocks (Hippolyte and Mann, 2011). 

 Outcrops located near the coast on the leeward and windward sides of the island 

were used to interpret depositional environments of carbonate deposits from described 

facies (Kim and Lee, 1999).  The capitalized facies names refer to the facies delineated 

in the study (Kim and Lee, 1999).  This interpretation includes windward environments 

comprising a barrier reef environment composed of Acropora palmata rudstone, a 

backreef lagoon composed of Montastrea annularis framestone, Diverse Coral rudstone 

composed of hemispherical, massive and spherical corals deposited off of the forereef 

slope, and Coralgal grainstone interpreted as calcareous beach sand.  On the leeward side 

of the island, the facies included Acropora cervicornis floatstone as well as Montastrea 

annularis framestone.   

 In this study, the windward side also included Acropora palmata rudstone, 

Montastrea annularis Framestone, and the leeward side contained Acropora cervicornis 

floatstone facies, but the Coralgal grainstone was located in different locations than this 
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study (Kim and Lee, 1999). In addition, the present study describes a Mixed Coral 

framestone on the leeward side as well as facies from the 3rd- and 4th-terrace strata and 

discusses dolomite located within the 2nd-terrace cliffs, which Kim and Lee (1999) did 

not mention (for facies, see Fig. 3-5 and Table 1). 

 Few studies of dolomites in the Miocene-Pliocene units (including Seroe Domi 

Formation) and Holocene sediments were carried out.  Dolomite from the third terrace in 

Bonaire was interpreted as Pliocene to determine original environment of formation, and 

it was suggested that initial dolomitization had a fresh to brackish water origin (Sibley, 

1980).  Petrographic analysis of “Pliocene” dolomites from Bonaire, Curacao, and Aruba 

characterized six dolomitic fabrics that were classified by mineralogy and size of 

material being dolomitized (Sibley, 1982).  The dolomitic sediments in the Pekelmeer 

locality (southern Bonaire) were interpreted to form by the seepage reflux (Deffeyes et 

al., 1965). A porosity study of the Bonaire Plio-Pleistocene dolomites from the Seroe 

Domi Formation suggested porosity reduction occurred when limestone was 

dolomitized, reducing porosity from 25% to 11% (Lucia and Major, 1994).  A 

geochemical study of the dolomite in the Pekelmeer locality was completed using δ18O 

isotopes as an indicator for water salinity in an environment causing dolomitization.  

Results suggested that δ18O alone cannot be used as an indicator for water salinity 

(Major et al., 1992).  The stratigraphy and dolomitization history of the Seroe Domi 

Formation in Curacao (correlative to the Seroe Domi Formation in Bonaire) was 

determined using 87Sr/86Sr methods, which indicated relative ages of the different 

dolomites (Fouke et al., 1996). 
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 The purpose of this study is to investigate the facies distribution of Pleistocene 

carbonate rocks across the entire isolated platform of Bonaire, and interpret their 

depositional environment. In addition, this thesis will interpret the stratigraphy and 

reconstruct the paleogeography of the Pleistocene carbonate rocks, as well as provide 

brief discussion of its diagenesis including dolomitization. 
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GEOLOGIC BACKGROUND 

Tectonics  

 The island Bonaire is located in the southern area of the Caribbean Plate which is 

characterized by a Paleogene and Neogene terrigeneous deposits and Neogene carbonate 

banks deposited on top of deformed and metamorphosed oceanic crust and island arc 

(Gorney et al., 2007). The Caribbean plate is moving eastward relative to the 

surrounding plates (Miller et al., 2009; Ladd, 1976; Mann and Burke, 1984; Pindell et 

al., 2001).  

 There are differing hypotheses about the origin of the Caribbean Plate. One 

hypothesis involves the Caribbean Plate being derived from the paleogeographic Gulf of 

Mexico (James, 2006), while another hypothesis describes the Caribbean Plate 

originating from the Pacific Ocean. The most common model of the origin of the 

Caribbean Plate is from the Pacific Ocean, moving relatively eastward to South America 

continuously from the Cretaceous to the present (Jordan, 1975; Pindell et al., 1988; 

Perez et al., 2001; Trenkamp et al., 2002).  This movement has created transtensional, 

transpressional, and convergent plate boundaries; influencing tectonic subsidence, uplift 

and subduction forming volcanic island arcs along the plate boundaries.  The convergent 

plate boundary occurs further east with the Greater Antilles volcanic island arc, but the 

boundary near the ABC islands experienced transtensional and transpressional forces 

(Escalona and Mann, 2011).  North of the Netherlands Antilles, the Caribbean Plate 

underthrusts the South American Plate at a shallow angle (Kellogg, 1984; Audemard, 

1993; Levander et al, 2006).  South of this thrust boundary is an accretionary wedge 
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resulting from the underthrusting of sedimentary rocks of the Caribbean Plate known as 

the South Caribbean Plate Boundary Zone (Silver et al., 1975; Biju-Duval et al., 1982). 

 The basement of the carbonate succession is the Washikemba Formation. 

Composed of rhyolite and dacite with some pumpellyite alteration, the Washikemba Fm. 

was dated using 40Ar/39Ar techniques (Thompson et al., 2004).  With ages >90 Ma, 

Argon dating suggests the Washikemba Fm. was not formed on the Caribbean Plateau 

but instead in the intra-American proto-Great Arc (Thompson et al., 2004; Van Der 

Lelij, 2009).  As the Caribbean Plate moved east relative to the South American Plate, it 

underwent both subsidence due to transtensional processes, as well as exhumation due to 

transpressional processes.  Approximately 35 Ma, the Bonaire and Falcon Basins opened 

up and ~25 Ma, a second phase of transtensional rifting of the Bonaire and Falcon 

Basins occurred which led to submergence of the Bonaire platform (Gorney et al., 2007).  

Approximately 15 Ma, the Bonaire Basin becomes transpressive, which exhumed the 

platform (Gorney et al., 2007).  

Stratigraphy  

 The stratigraphy of Bonaire was described by Pijpers (1933), Bandoian and 

Murray (1974), de Buisonje (1974), and Hippolyte and Mann (2011).  The succession 

began with the Cretaceous volcanic Washikemba Fm., overlain by a thin succession of 

Cretaceous Maastrichtian Rincon limestone deposits. During the Eocene, the island was 

exposed due to tectonic uplift, weathered and eroded down to the pre-existing volcanics, 

and formed the Soebi Blanco conglomerate.  Miocene carbonate is exposed on the 

northern side of the island, closer to the leeward coast.  Miocene-Pliocene carbonate of 
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the Seroe Domi locally displayed high-angle dips up to 30 degrees away from the 

island’s center.  Pleistocene carbonate deposition occurred next, forming terraced strata, 

which is the most abundantly exposed carbonate on Bonaire (Fig. 6).  

 Terraces occur on both windward and leeward sides of the island, but the 

windward terraces are broad and much more pronounced due to the strong waves 

produced by the nearly constant trade winds (Alexander, 1961; Bandoian and Murray 

1974; Herweijer et al., 1977; Herweijer and Focke, 1978).  As sea-level fell, the strong 

waves carved out a cliff face in the rocks, and formed the terrace.  Four terraces are 

recognized on the surface, with elevations at the top of the cliffs from each terrace level 

approximately 10 m, 25 m, 50 m, and 80 m [Figs. 7 and 8]. 
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DATA AND METHODS 

 Hand samples and 2-in diameter cores were acquired from multiple locations on 

Bonaire.  The total number of samples is 119, with 62 hand samples and 57 cores (2” 

diameter and approximately 18” long; for sample locations, see Fig. 9).  The cores were 

collected using a Tanaka TED-270PFDH dual handle gas-powered core drill.  These 

samples are mostly Pleistocene carbonate, but some Miocene samples were collected on 

the northwest side of the island.  These samples were used to construct a facies 

distribution map of Bonaire, and investigate their diagenetic history.   

 A facies scheme was delineated based upon descriptions of hand samples, core 

samples, and thin sections, and observations of outcrops.  A facies map was constructed 

to show the spatial relationship between the facies and their location on the island. 

Topographic maps were used to build profiles across the island.  The facies map and 

profiles were used to generate geological cross-sections.  No subsurface data was 

available, so subsurface geology is interpreted based on outcrop observations. 

 Paleogeography maps were constructed based on the morphology of the island of 

Bonaire and associated with each other in relation to relative time.  Four paleogeography 

maps were constructed based on the distribution of the four terraces described on 

Bonaire. 

 Fifty-six thin sections were prepared, with 23 made at Texas A&M University, 

and 33 made by an independent company Quality Thin Section, Arizona.  The samples 

prepared from the independent company were impregnated by blue stain to show 

porosity.  All thin sections were stained with Alizarin Red S to assess the amount of 
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dolomitization within samples, and stained with potassium ferricyanide to observe 

ferrous calcite within the samples.  These thin sections were studied using a Zeiss 

Axioplan 2 petrographic microscope to describe components within samples.  

Petrographic images were captured by Axiovision® 4.8 software. Dunham’s (1962) 

carbonate rock classification texture scheme was used to describe the rocks. 

Cathololuminescence (CL) was performed on polished thin section samples to observe 

cements and their growth patterns with a Technosyn Cold Cathode Luminescence Model 

8200 MkII.  A vacuum pump was required to remove air by pumping down the vacuum 

chamber for 3 hours before analysis.  After pumping down, the vacuum was set at 

approximately at -0.05 torr, the cathode power was set between 10-20 kV, which 

established a gun current set between 200 and 300 amperes.  The microscope used to 

view the sample was the Leitz Laborlux D.  The microscope had the camera Coolsnap-

Procf mounted above it which was used to capture the CL image. 

 A Cameca SX50 scanning electron microprobe was used to determine elemental 

composition of the samples.  Thin sections were polished and carbon coated before 

being placed inside the microprobe.  Energy dispersive spectroscopy (EDS) was used to 

verify mineral phases within the rock.  After standardizing for calcite and dolomite, 

wavelength dispersive spectroscopy (WDS) was used to measure mineral composition.  

Abundances of Ca and Mg were observed for presence of dolomite as well as 

abundances of high-Mg and low-Mg calcite (HMC and LMW, repectively).   

 X-Ray diffraction (XRD) analysis was performed on powdered coral and whole 

rock samples to determine presence of dolomite, as well as to detect other mineralogies 



 

 

11 

 

within the samples such as aragonite and calcite.  Approximately 0.1g of sample was 

drilled into powder, and crushed with mortar and pestle to eliminate all fragments from 

samples.  Powder was then placed on a glass slide and flattened into a thin layer.  The 

slide was then placed into a Rigaku Geigerflex XRD machine, where X-ray intensity as a 

function of 2-theta angle was measured.  This allows relative sizes of peaks, which 

correspond to specific minerals were measured. 

 Fourteen samples were drilled to analyze their carbon and oxygen isotope (δ13C 

and δ18O) compositions.  Those analyses were performed at the Texas A&M University 

Stable Isotope Geosciences Facility using a Thermo 253 mass spectrometer with a Kiel 

IV Carbonate Device.  Approximately 50µg of powder from each sample was analyzed 

and the δ13C and δ18O values were reported in per mil units relative to the Vienna 

PeeDee Belemnite (VPDB) standard. 
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RESULTS 

Facies Analysis 

 Based upon the characteristics of the hand and core samples, 7 carbonate facies 

were differentiated.  These facies include: Amphistegina sp. grainstone, Montastrea 

annularis framestone, Acropora cervicornis floatstone, Acropora palmata rudstone, 

Mixed Coral framestone, Coralgal grainstone/packstone, and Dolomite (Table 1, Figs. 3-

5).  These facies indicate similar energy processes occurred locally in the Pleistocene as 

they do today.  Facies commonly located on the windward side of the island include A. 

palmata rudstone, M. annularis framestone, and Coralgal grainstone/packstone.  Facies 

located predominantly on the leeward side of the island include A. cervicornis floatstone, 

Coralgal grainstone/packstone, and Mixed Coral framestone [Fig. 10].  Capitalized 

facies names refer to the delineated facies described on Bonaire. 

Facies Distribution  

 The facies distribution was influenced mostly by variations of wave energy 

across the platform.  Carbonate facies located on the windward (east) side of the island 

include Montastrea annularis framestone, Acropora palmata rudstone, dolomite, and 

Coralgal grainstone/packstone.  These facies have a depositional pattern from distal to 

proximal of a single depositional cycles of the platform center includes Acropora 

palmata rudstone, Montastrea annularis framestone, and Coralgal grainstone/packstone.  

Dolomite is located within the 3rd terrace strata on the windward side.  Carbonate facies 

located on the leeward (west) side include Acropora cervicornis floatstone, Mixed Coral 

framestone, as well as Coralgal grainstone/packstone [Fig. 11].  Dolomite occurs within 
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the 3rd terrace strata at Santa Barbara and 2nd terrace at Tolo.  Progression of the leeward 

facies from proximal to distal in relation to the platform center based on one depositional 

cycle includes Mixed Coral framestone, Acropora cervicornis floatstone, and Coralgal 

grainstone/packstone.  The platform interior is largely composed of Coralgal 

grainstone/packstone that is dolomitized in some locations, which includes the majority 

of the 4th terrace strata.  Amphistegina sp. grainstone is an eolianite facies also located 

within the platform interior at three localities in the center of the island. 

 Dolomite occurs within the cliffs of the 2nd terrace on the northwest part of 

Bonaire on both windward and leeward sides.  Dolomite from the 3rd terrace is exposed 

at the Seru Grandi and Santa Barbara locations.  The 2nd terrace dolomite and 3rd terrace 

dolomite is genetically related to 3rd terrace strata.  There are two textures associated 

with the dolomite: microcrystalline and sucrosic dolomite. 

Petrographic Analysis 

 Bioclastic components within different facies viewed from thin sections include 

coralline red algae (Corallinacea family, both articulated and encrusting), benthic 

foraminifera (such as Amphistegina sp.), green algae and its calcified flakes (Halimeda 

sp.), bivalves, bryozoans, and coral fragments.  Most of the bioclasts were fragmented 

while being reworked from different mechanical processes (Fig. 12 and Table 2). 

 There are varying types and abundances of cements and carbonate mud matrix.  

Carbonate mud matrix is present within the coralgal grainstone/packstone facies.  The 

limestone within the beds of the 3rd and 4th terraces are recrystallized, having abundant 

meteoric cementation, as well as dolomitization precluding porosity (5-10%) within the 
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samples.  The beds composing the 2nd terrace have less cementation (due to these being 

younger than the 3rd and 4th terrace beds).  Dissolution is evident as well as cementation 

in the 2nd terrace samples, with more preserved porosity than samples from the 3rd and 

4th terraces.  First, the cements precipitated as fibrous and bladed types and nucleated on 

the walls of the grain growing outwards.  The second-stage of cementation occurred 

when equant spar cement fully filled the pores.  Beds composing the 1st terrace have 

undergone more dissolution than cementation.  These beds are the youngest, so they 

have not been exposed to meteoric diagenesis as long as the other beds.  Some 

cementation occurs within the 1st terrace beds inland, away from the influence of waves 

or ocean spray.  These are fibrous cements and appear to have undergone only one stage 

of growth (Fig. 13). 

 The dolomite facies can be subdivided into two groups based on crystal texture 

within the matrix of the samples.  The first dolomite texture occurs in the 2nd terrace and 

has a microcrystalline arrangement with some partially dissolved articulated red algae.  

The second dolomite type occurs in the 3rd and 4th terrace and consists of a coarser-

crystalline sucrosic texture with the characteristic rhombic geometry.  In addition, no 

bioclasts could be observed and some calcite spar remains within the 4th terrace 

dolomite.  Visual porosity is approximately 5% within the samples from both textured 

dolomite.   

Geochemical Analysis 

 X–Ray diffraction (XRD) was performed on rock and coral samples to determine 

presence of calcite, aragonite, and dolomite.  Coral samples are from the 1st and 2nd 
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terraces of the windward side with six from the 1st terrace and 11 from the 2nd terrace.  

Analysis indicated that all corals from the 2nd terrace had replaced their mineralogy from 

aragonite to calcite [Fig. 14].  Only one sample from the 1st terrace had all original 

aragonite replaced by calcite, 2 samples were partially replaced with 25% abundance of 

calcite [Fig. 15], and 3 samples were completely composed of aragonite.  Samples from 

Boca Onima, Tolo, and Santa Barbara were believed to be composed of dolomite.  These 

samples were confirmed to be dolomite by X-Ray diffraction [Fig. 16]. 

 Ten samples were analyzed with the Electron Microprobe.  Examining the values 

of these samples in the order of deposition, with the first being the Seroe Domi 

Formation sample.  The notable values for this sample are approximately 99% 

abundance of CaCO3 and 1% abundance of MgCO3.  The values for the 4th terrace 

sample mimic the values for the Seroe Domi sample.  The 4 non-dolomite samples from 

the 2nd terrace include an increased abundance of MgCO3 to average approximately 

1.5%, and CaCO3 average abundance of 98.4%, and minute amounts (between 0.05-

0.20%) of Si, Fe, Na, and Sr.  The 1st terrace sample continues an increased abundance 

of MgCO3 at approximately 3.3%, CaCO3 abundance approximately 96.4%.  All 

limestone samples are composed of LMC.  The 3 dolomite samples are from the 2nd 

terrace, and composed approximately of 55% CaCO3 and 45% MgCO3.  This dolomite 

has a non-stoichiometric relationship. 

 Both limestone and dolomite samples were analyzed for stable isotopes δ13C and 

δ18O [Fig. 17]. Whole rock powder drilled from limestone samples from terraces 1, 2, 

and 4 were used to determine isotopic signatures.  Values from each of the terraces are 
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highly varied for both δ13C and δ18O.  Terrace 1 – values of δ13C are -3.6‰ and -1.0‰.  

Values for δ18O are -0.5‰ and 0.5‰.  Terrace 2 – values of δ13C vary from -5.8‰ to -

2.5‰. Values of δ18O vary from -3.8‰ to –4.9‰.  Terrace 4 - values of δ13C vary from 

–3.9‰ to -3.5‰. Values of δ18O vary from -0.7‰ to -0.5‰. 

 When comparing the average isotopic values of C and O and relating them to 

their respective terrace, there was a depletion of heavy δ13C and δ18O isotopes from the 

1st to 2nd terrace within limestone samples.  The dolomite samples had δ13C values from -

0.77‰ to 3.13‰ and δ18O values from 1.20‰ to 3.65‰.  Dolomite samples were from 

the second terrace on both the windward and leeward side of the island. 
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DISCUSSION 

Depositional Environments 

 Bonaire is composed of a variety of depositional environments that depending on 

the location on the platform. The windward side is comprised of high-energy barrier reef 

environment. The central part of the platform contains a low-medium energy lagoon 

environment. The leeward side of the island comprises of a low-medium energy fringing 

reef environment.  The exposed central part of the platform also contains eolianites as a 

result of west-flowing winds.  These depositional environments were interpreted based 

on coral assemblages and bioclastic compositions.  The western Aves Island (approx. 60 

km east of Bonaire, see Fig. 18) was used as an analogue to Bonaire’s earliest 

Pleistocene deposition because it has similar depositional environments as Bonaire. 

Barrier Reef 

 The barrier reef is composed most abundantly of the coral Acropora palmata 

(Mesolella et al., 1970; Scatterday, 1977), which thrives in high wave-energy 

environments.  Especially, high-energy waves may fragment A. palmata, generating 

rubble deposits. The corals will undergo rapid growth by diverting the majority of its 

energy towards growth, increasing its survivability (Glatfelter et al., 1978; Lirman, 2000; 

Klaus et al., 2012).  As rapid growth ensues, it will eventually create a crest on the reef 

that works as a barrier protecting the internal areas from wave energy.  This process 

produces a protected lagoon environment where more sensitive head corals and fragile 

organisms can grow and grains can be deposited in the platform interior.  The barrier 

reef environment is located on the eastern side of Bonaire, and is the most distally 
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located shallow marine depositional environment on the windward side of the island (see 

Figs. 19-22). 

Lagoon 

 The lagoonal environment is located landward of the barrier reef in the platform 

interior where low-medium wave energy occurred (Fig. 21 and 22).  During deposition 

of 4th terrace strata, the lagoon covered a major part of the interior platform, including 

Montastrea annularis framestone landward of the barrier reef, and Coralgal 

grainstone/packstone facies over the central part of the platform.  Both facies were 

deposited due to the presence of low to medium wave energy.  As the island emerged the 

spatial expanse of this environment increasingly became associated with the windward 

side that was located between the barrier reef and the exposed island.  The lagoonal 

environment was described by de Buisonje (1974) as either a coral-rich bottom that was 

abundant with head corals Montastrea annularis, Siderastrea siderastrea, and Diploria 

sp., a grain-rich bottom from coral rubble and bioclasts fragments, or a rocky bottom 

with just carbonate rock exposed.  Bare rock exposures on the ground would likely have 

only occurred where wave energy was still too high for grains to deposit.  Evidence of 

the coral and grain-rich bottom occurs within the terraces.   

 Terraces 1-3 are composed, at least in some portion, of head corals, typically 

Montastrea annularis (Scatterday, 1977).  The 2nd terrace also has abundant bioclastic 

grains which include very fine grain sand composed of fragments of green and red algae, 

coral, foraminifera, bryozoans, and bivalves.  The most abundant facies in the lagoon is 
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Coralgal grainstone/packstone facies as indicated by the 3rd and 4th terraces being 

composed mainly of this facies. 

Fringing Reef 

 The fringing reef depositional environment was located in areas of low-medium 

wave energy on the leeward side of the island.  This environment occurred in slightly 

deeper waters and with higher energy compared to the platform interior.  This 

environment also includes the top of the slope off the platform containing fringing reefs.  

This environment comprises corals A. palmata, A. cervicornis, M. annularis, S. 

siderastrea, Diploria sp, as well as other head corals (Focke, 1978; van Duyl, 1985).  

The arrangement of the corals from shallow to deep begins with A. palmata in the 

shallowest waters, only up to 4-5 meters deep (Chappell, 1980), followed by A. 

cervicornis between depths 15 and 30 m (Goreau and Wells, 1967; Mesolella, 1967).  

Head corals have a wider depth range of growth and can grow at depths up to 100 

meters, but the optimal depth for growth for many head corals is between 10 – 60 m 

(Goreau and Wells, 1967; Mesolella, 1967) where there is decreased stress from wave 

action (Barnes, 1973; Chappell, 1980).  Decreased stress is important for the head corals 

because they do not regenerate as rapidly as Acropora sp. (Dustan, 1975). In addition, 

bioclastic grains occur in the shallow marine environment and are randomly arranged 

both along strike and down slope.  These grains (composed of fragments of red algae, 

foraminifera, and bivalves) are most abundant where slopes are less steep, which goes 

from the shoreline to about 5-10 m depth.  These abundant grains are also found at a 
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horizontal sub-sea bench at an approximate 30m depth.  Corals are more abundant than 

skeletal grains on the slope, but bioclasts were deposited between corals on the slope.  

Eolianite 

 High-angle cross-bedded deposits of fine-grained grainstone occur in the central 

part of Bonaire.  This grainstone is composed of bioclastic fragments, mainly of benthic 

foraminifera (Amphistegina sp.), bryozoans, and bivalves, and can be up to 40 m thick.  

These beds are topographically the highest carbonate strata on the island, located on top 

of the 3rd and 4th terrace strata.  The beds are never located on top of strata from the 1st or 

2nd terrace, so it was suggested by de Buisonje (1974) that this grainstone was derived 

from beach sands on the windward coast after deposition of the 3rd terrace strata.  The 

grains were carried by the strong and constant trade winds from the east and deposited 

on the center of the island. 

Tectonic Implications 

 Bonaire is located in the South Caribbean Plate Boundary Zone (SCPBZ), which 

has been experiencing transpression since the Miocene.  The Caribbean Plate is moving 

southeast relative to the South American Plate.  Within the SCPBZ, the Caribbean Plate 

converges with the South American Plate, and shallow subduction of the Caribbean Plate 

beneath the South American Plate occurs.  The subduction occurs north of Bonaire 

(known as the South Caribbean Deformation Belt (SCDB)), and has created an 

accretionary wedge among the sedimentary rocks within the SCPBZ as a result of 

tectonic uplift.  
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 Bonaire terrace formation was partially a product of tectonic uplift, but, as a 

result of this uplifting, it is possible that a subsidence process occurred on the southern 

part of the island.  For that reason, the 1st terrace strata on the northern side of Bonaire is 

approximately 9 m above sea level whereas the same strata on the southern side 

disappears beneath the modern Pekelmeer lagoon.  The reason for this process is that the 

distance between the north part of the island and the South Caribbean Deformation Belt 

subduction zone is approximately 120 km north of Bonaire. The shallow subduction 

occurring on the SSCB pushes the Bonaire block upward.  It is possible that the northern 

side of Bonaire was more influenced by the subduction processes than the southern side, 

allowing for more uplift due to it being the nearest location to the subduction area.  This, 

in effect, is believed to have influenced syntectonic deposition.  Clinoforms prograding 

to the south are present in Seru Grandi (northern Bonaire), illustrating this process. 

 Seismic interpretation indicates that reverse faulting occurred in relation to 

subduction of the Caribbean Plate north of Bonaire in the South Caribbean Deformed 

Belt (Gorney et al., 2007; Escalona and Mann, 2011).  However, in the Caribbean Arc 

Basin where the Netherlands Antilles are located, grabens formed due to transverse 

motion of the Caribbean Plate (Fig. 23).  These grabens formed during the Paleogene to 

Early Miocene.  The seismic transects illustrate normal faults within the basement 

(Cretaceous) through Early to Late Miocene times which shows thick sedimentary 

successions due to high clastic sediment input via the paleo Orinoco delta and other river 

deltas (Gorney et al., 2007; Escalona and Mann, 2011).  South of Bonaire and Curacao, 

inverse faulting has occurred since the Miocene due to subduction from the South 
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Caribbean Deformation Belt.  Inversed faulting induced by the shallow-angle subduction 

is the mechanism for terraced limestone formation on the Netherlands Antilles (Gorney 

et al., 2007; Escalona and Mann, 2011). 

 Curacao and Aruba are both within the same tectonic regime, experiencing 

similar tectonic uplifting as Bonaire.  As a result, a similar pattern of deposition and 

erosion formed on these islands. Furthermore, Curacao and Aruba also experience an 

increase in subsidence from north to south, as in Bonaire. 

 In addition to the Netherlands Antilles, other Caribbean islands have experienced 

tectonic uplift due to convergent tectonic regime.  Barbados is located at the northern 

part of the South American Plate which subducts beneath the Caribbean Plate, forming 

an accretionary prism.  Barbados experienced Pleistocene uplift and contains multiple 

terrace levels dated from 82 ky (3-20 m elev.), 105 ky (6-30 m elev.), and 125 ky (36-60 

m elev.) (Matthews, 1973).  It can be inferred from this example that comparing the 36-

60 m elevation of the MIS 5 aged carbonate rocks in Barbados to the up to 10 m 

elevation MIS 5 carbonate rocks in Bonaire that Barbados has experienced faster uplift 

rates than Bonaire.   

Age Constraint for Pleistocene Deposits 

 The 1st terrace strata relates with elevation from sea-level close to 10 m.  Both 

windward and leeward terraces are very pronounced.  A wave-cut notch on both sides 

can be seen approximately 2 m above sea-level in some areas. Mineralogy within the 

strata is still mainly the original limestone in most locations.  Samples from the 1st 

terrace strata in Curaçao, which is correlative to the 1st terrace in Bonaire, were dated by  
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Electron Spin Resonance (ESR) methods and Uranium-series (Schellmann et al., 2002; 

Muhs et al., 2012).  Both studies produced dates to be approximately 125 ky which 

coincides with the MIS 5e interglacial period (Hornbach et al., 2010). Though there is no 

data to constrain ages of the 2nd-4th terraces, it is likely that these terraces were deposited 

during the preceding interglacial cycles.  Terrace 2 may have been deposited during the 

MIS 7 (~200-220 ky), Terrace 3 may have been deposited during the MIS 9 (~330 ky), 

and Terrace 4 may have been deposited during the MIS 11 interglacial (~405 ky).  Ages 

are from peak transgressions, which are based on paleosea-level reconstruction from 

δ18O benthic foraminifera data (Shackleton and Opdyke, 1973; Waelbroeck et al., 2002 

[Fig. 24]; Lisiecki and Raymo, 2005; Muhs et al., 2012 [Fig. 25]).  

Platform Development and Paleogeographic Evolution 

Volcanic Basement 

 The volcanic basement is exposed in two main regions, in the northwest and east 

parts of the island. The northwest volcanics have three major high-elevation localities, 

with the rest of the volcanic exposure averaging around 40 m.  One of the physiographic 

features is a conical hill with an elevation up to 130 m on the southwest part of this 

volcanic region.  The other two localities are linear ridges parallel to each other from the 

northwest to the center of that region.  The maximum elevations for these ridges are 180 

m and 130 m.  These ridges are oriented southeast toward the eastern volcanic region.  

Between the two volcanic regions is carbonate strata from the 3rd and 4th terraces in 

which elevations are between 70 and 140 m.  The eastern volcanics are topographically 

lower of which the maximum elevation is about 70m and average elevation is 25-30 m.  
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Based on these observations, it can be assumed that as the island was being uplifted, 

shallow water carbonate deposition began in the northwest region of Bonaire where the 

platform was shallowest.  As uplift continued, the geographical extent of this carbonate 

deposition migrated to the southeast as the platform became shallower with water depth. 

1st Phase Pleistocene Deposition and Paleogeography 

 The western Aves Island (approx. 60 km east of Bonaire, see Fig. 18) and the 

current Bonaire Island morphology were used as analogues.  The western Aves Island 

was used for the analogue for the 4th terrace paleogeography [Fig. 26] because it contains 

a well-developed barrier reef on the windward (east) side with northwest–southeast 

extent of approximately 15 km protecting a lagoon from high-energy waves, and shallow 

marine waters on the leeward side including a fringing reef.  There are exposed 

carbonate rocks on the rim of the platform, whose highest elevation is only a few meters, 

which is similar to what is expected of Bonaire during deposition of 4th terrace strata.  

This strata would be equivalent to phase 1 of Pleistocene carbonate deposition, and 

likely occurred during the MIS 11 (~405 ky). 

 When Bonaire’s 4th terrace strata was deposited, the underlying Cretaceous 

volcanic basement could have been exposed as much as ~80 m above sea level in a few 

locations.  (Miocene carbonates may also have been exposed as well, but these were 

eroded).  The volcanic basement was elongated northwest to southeast, and carbonate 

deposition reflects this pattern (as seen by terrace 4 strata).  The volcanic exposures 

would have been located on the northwest side of Bonaire.  The basement to the 

southeast was not elevated enough to be subaerially exposed during the time the 4th 
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terrace was deposited.  There is no evidence of Miocene shallow-water carbonate 

deposition in the exposed southeastern volcanic locality, so it is likely that the 

southeastern volcanics were submerged too deep to deposit shallow-water carbonate.  It 

is estimated that the shallowest the southeastern volcanics were was approximately 60 

m, which means deposition from the 4th terrace strata only occurred in the northwestern 

half of the island. 

 Trade winds from the east created high wave-energy which influenced barrier 

reef growth on the windward side of Bonaire.  A similar setting is envisaged as the 

western Aves Island where the barrier reef provided protection from high wave-energy 

allowing for deposition with a shallow-water lagoon to be deposited.  Fringing reefs 

grew on the leeward slopes of the platform. 

2nd Phase Pleistocene Deposition and Paleogeography 

 At the time of deposition for the 3rd terrace strata (MIS 9, ~330ky), the shallow 

carbonate platform began to resemble the boomerang-shape of the current Bonaire 

platform. There was greater uplift of the volcanics to the northwest than in the southeast.  

The southeast basement could have been shallow enough (approximately 20 m deep sub-

sea) to allow production of shallow-water carbonate.  A large shallow lagoon formed in 

the northwest where it was protected from high-energy waves.  The barrier reef would 

have extended further south allowing elongation of the lagoon and fringing reef 

development, as well as grainstone-packstone type sedimentation south on the leeward 

slopes (Fig. 27). 
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 Skeletal grains and sedimentary structures occur within most of the 3rd terrace 

strata, however, corals indicative of a barrier reef environment (Acropora palmata) only 

occur on the windward side at Boca Onima.  Continuing southeast, erosion occurred 

progressively further inland, resulting in complete erosion of the Acropora palmata 

rudstone and Montastrea annularis framestone facies.  With these facies eroded, 

Coralgal grainstone/packstone is exposed at the terrace cliff-face with cross-stratification 

towards the top of the cliff.   

 The leeward facies is primarily coralgal grainstone/packstone, with no apparent 

cross-stratification.  It is likely that the 4th terrace carbonate rocks provided protection 

from the strong wave energy from the windward side of the island, allowing small 

amounts of carbonate mud to deposit and pervasive bioturbation to occur. 

 Fine-grained sucrosic dolomite occurs at Santa Barbara in the west-central part of 

Bonaire.  The massive dolomite bodies occur on an east-facing vertical cliff face.  Some 

microcrystalline dolomite also occurs on the windward side at the Seru Grandi and Boca 

Onima localities.   

3rd Phase Pleistocene Deposition and Paleogeography 

 During 3rd phase of Pleistocene deposition (MIS 7, ~200-220ky), the platform 

may have enlarged to the south, as well as widened to the east and west.  Assuming little 

erosion of the volcanics and using current topography, very shallow waters (< 20 m) 

covered much of the platform allowing for increased carbonate deposition laterally, 

especially around the southeastern volcanic exposure.  Much of the island was protected 

from high wave energy by the barrier reef and exposed rocks which allowed the platform 
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interior to develop into a lagoon.  The lagoonal environment likely covered much of the 

internal parts of the platform over the current northwest volcanics region as well as the 

windward side of the island, landward of the barrier reef.  The leeward side of the 

carbonate platform was open to the ocean with low-medium wave energy, but deposition 

in this environment likely occurred in slightly deeper waters because of the leeward 

slope of the platform (Fig. 28).   

4th Phase Pleistocene Deposition and Paleogeography 

 After continued uplift, a greater area of Bonaire was exposed including greater 

physiographic features of the two volcanic regions and older carbonate rocks.  Maximum 

sea-level during this time (MIS 5e, ~125 ky) was 6 m higher than current sea-level, 

which means with strata 10 m above current sea-level, Bonaire may have been uplifted 

approximately 4 m since MIS 5e.  A barrier reef grew on the windward side of the 

carbonate platform with a low-medium energy lagoon forming between the reef and 

land.  This lagoon supported mostly head coral species such as Diploria sp. and 

Montastrea annularis.  The leeward side of Bonaire was largely protected from high-

energy waves, by the leeward fringing reefs west of the eastern volcanic region.  This 

protection is related to the morphology of the island forming an asymmetric 

“boomerang-shape”.  The morphology is related to the northwest to southeast orientation 

of volcanic exposure and a north-south trend of barrier reef growth (Fig. 29). 

Distribution of Miocene Seroe Domi Formation 

 The Miocene Seroe Domi Formation was previously described and mapped on 

Bonaire by Pijpers (1933), de Buisonje (1974), Bandoian and Murray (1974), and 
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Hippolyte and Mann (2011).  The Miocene strata was defined as high-angled (from 5-30 

degrees), dipping away from the volcanic basement at Gotomeer in the northwestern part 

of the island.  This strata was described as slope deposits (de Buisonje, 1974).  The 

reefal and grain-rich lagoonal lithologies, which were likely deposited on the 

northwestern volcanic rocks, have since weathered away.  These geological maps have 

described strata of the 3rd and 4th terraces from the leeward side of the island as Miocene 

strata, likely because it is along strike with the Miocene slope deposits.  There are 

multiple problems with the Seroe Domi Formation being exposed as they were described 

in these geological maps: 

1. Miocene outcropping at Gotomeer included high-angled beds, but beds to the east 

along strike did not have high-angle dips.   

2. In some locations the beds were composed of in situ corals from a shallow marine 

environment instead of a slope. 

3. Leeward strata of Bonaire was interpreted as Miocene, wheras strata from the 

windward side, of the same elevation and lithology, was described as Pleistocene. 

 The Miocene succession may continue along strike, but only in the subsurface.  

High-angled Miocene dipping strata at most locations are overlain by Pleistocene strata.  

The Miocene strata is described as medium-bedded, wheras the Pleistocene strata are 

more massive, except in the Coralgal grainstone/packstone, where cross-stratification 

occurs within laminae sets.  It is inferred that most of the Miocene carbonate rocks 

originally deposited on the northwestern section of the island were eroded away.  The 
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only Miocene carbonate rocks on the island were unconformably overlain by Pleistocene 

carbonate rocks.  

Control on Deposition of Pleistocene Carbonate 

 Pleistocene depositional processes were influenced by oceanic currents, wind 

patterns, and sea level changes.  Oceanographic processes influencing deposition include 

the direction and depth of ocean currents as well as nutrient levels in the waters.  The 

wind pattern was influenced by the cooling and warming of the poles.  Patterns related to 

the Coriolis effect shifted convection currents including the ITCZ (Intertropical 

Convergence Zone) north or south as the ice sheets expanded and shrank (Chiang and 

Bitz, 2005; Martinez et al., 2007).  The Caribbean Current flows almost directly west 

approximately 200-300 km north of South America in the southern Caribbean Sea 

(Gordon, 1967, Martinez et al., 2007) (Fig. 30), and then diverts north as it approaches 

Central America.  Later it flows through the Yucatan and Florida Straits, eventually 

joining the Gulf Stream.  The Caribbean Current is relatively shallow, approximately 

100 m below the surface and it is composed of surface water and deeper Subtropical 

Under Water (SUW) (Fig. 31-32) that originates from the tropical North Atlantic Ocean) 

(Gordon, 1967; Bornmalm et al., 1999; Kameo et al., 2004).  The west-flowing trade 

winds have a moderate influence on shallow ocean current travel, especially in the 

southern Caribbean, where ocean current reflects wind pattern direction (Gordon, 1967).    

 Surface winds are controlled by west-flowing trade winds (Fig. 34) that are 

related to converging trade winds of the intertropical convergence zone (ITCZ).  The 

location of the ITCZ is seasonally controlled, located more northerly during the northern 
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hemisphere’s autumn and winter (October-December), and southerly during the northern 

hemisphere’s spring and summer (May-July) (Hastenrath, 1975, Martinez et al., 2007) 

(Fig. 30), however, there are alternating cycles between wet years and dry years 

(Hastenrath, 1975).  Weather patterns also are related to the location of the ITCZ.  

Weather to the north of the ITCZ is dryer, and weather to the south of the ITCZ is more 

humid and experiences more rainfall (Martinez et al., 2007).  The ITCZ is located north 

of the equator in the South America/Caribbean region, fluctuating between 4º and 12º 

north.  This asymmetry of the ITCZ is caused by a relation to physical instabilities and 

feedbacks that intensifies the initial onset of the ITCZ in either the northern or southern 

hemisphere (Philander et al., 1995).  For instance, cold surface waters associated with 

upwelling at the equator prevents the ITCZ from traveling south (Pike, 1971).  The 

position of the ITCZ is related to a positive feedback of atmospheric heating consistent 

with moist deep convection and a boundary-layer of convergence of moisture that feeds 

and intensifies the convection (Charney, 1971; Waliser and Somerville, 1974).  The 

asymmetry of landmass between the northern and southern hemispheres and coastal 

geometries in the tropics may also affect the position and strength of the ITCZ 

(Philander et al., 1995). 

 Computer models indicate increased high latitude ice cover may have produced 

southward excursions of the ITCZ (Chiang and Bitz, 2005), and paleotemperature 

estimates of the last glacial maximum derived from the analysis of marine sediment 

cores are consistent with an ITCZ excursion (Arbuszewski et al., 2013).  If the ITCZ 

also shifted south of its current position during older glacial periods, it is likely that 
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Bonaire would have the same semi-arid climate during older glacial lowstands, based on 

the assumption of current arid conditions north of the ITCZ (Hastenrath, 1975; Martinez 

et al., 2007).  This means that similar depositional systems and diagenetic processes 

affecting the rock during glacial periods would occur similarly during interglacial 

periods.   

 The closure of the Panamanian Seaway, approximately 2.75 Ma, caused the 

surface ocean current direction to flow in an increasingly northward path after it passed 

present-day Colombia (Haug and Tiedemann, 1998; Schneider and Schmittner, 2006).  

Between 2.75 Ma and present-day, the paleoceanography of Bonaire did not alter much 

(Bornmalm et al., 1999).  A westerly flow would be consistent during the Late 

Pleistocene and incorporate nutrients from the Orinoco and Amazon Rivers that would 

outflow into the Atlantic Ocean, similar to current conditions.  The Orinoco River may 

have flowed north in the Miocene and drained into the Caribbean Sea at modern-day 

Venezuela, but uplifting of the Andean tectonics could have caused a shift of drainage 

patterns to the east (Hoorn et al., 1995; Hippolyte and Mann, 2011). 

 A thermocline occurs within the SUW waters, creating a barrier from water 

mixing between waters on the surface and the deep nutrient-filled waters (Kameo et al., 

2004).  The shallow Caribbean waters are depleted in nutrients, however there are still 

nutrient sources to the shallow Caribbean waters, including output from the Amazon and 

Orinoco Rivers, as well as upwelling along the northern coast of South America (Fig. 

33).  After the waters from the rivers leave their deltas, they travel north past Trinidad, 

where they are eventually incorporated into the Caribbean current waters (Van Andel, 
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1967; Muller-Karger and Castro, 1992; Hu et al., 2004). Also, upwelling occurs in 

shallow waters along the northern coastline of South America as a result of the strong 

trade winds pushing the surface water with it, allowing deeper, more nutrient-abundant 

waters to reach the surface.   

 In addition to nutrient sourcing from rivers, upwelling also was a nutrient source 

for Bonaire.  Strong wind-driven coastal upwelling occurs mostly between 61ºW and 

74ºW, except between 68ºW and 70ºW where downwelling occurs (Muller-Karger and 

Castro, 1992; Reuda-Roa and Muller-Karger, 2013).  Strong upwelling episodes in the 

southern Caribbean Cariaco Basin from ~12,600 years ago were related to a rapid rise in 

sea-level, and subsequent upwelling ~10,000 years ago may be related to intensified 

trade winds (Peterson et al., 1991).  These events likely occurred within the Pleistocene 

during Bonaire’s carbonate deposition.  Wind currents in the Caribbean often have small 

variations in their flow north and south, so it is likely that some of the nutrient-rich 

upwelled waters arrived at Bonaire.  

Diagenetic Processes in Pleistocene Carbonates, Bonaire  

Meteoric Diagenesis  

 Carbonate rocks in Bonaire formed in a semi-arid climate; therefore most of the 

island is not susceptible to extensive dissolution.  With evaporation rate exceeding 

rainfall rate throughout most of the year, most dissolved calcite precipitates into 

porosity-destroying cements at the surface (Marshall, 1992).   Mechanical weathering 

and dissolution does occur from continued wave action, which is the most effective force 

for erosion and is perhaps the origin of terrace formation (Bandoian and Murray, 1974).  
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There are numerous caves within the 2nd terrace strata, and it is suggested that these form 

by dissolution from saltwater-freshwater interaction in a mixing zone, or it may be 

related to a more humid conditions. 

 The older deposits were subjected to meteoric diagenesis for longer time periods, 

and therefore all original aragonite was replaced with calcite in the 3rd and 4th terrace 

strata.  LMC is present in the older terraces. Samples from the 3rd terrace were not tested 

for geochemical data, so it is assumed that strata from the 3rd terrace will have similar 

results due to a similar exposure history as the 4th-terrace strata.  Strata from the 2nd 

terrace is younger, so there is some preservation of the first stage of meteoric 

dissolution.  However, much cementation has also occurred, filling in porosity as 

rimmed cements.  Aragonitic corals from the 2nd terrace has also been replaced by LMC 

calcite to replace a metastable aragonite with a stable calcite (Matthews, 1968; 

Constantz, 1986).  The 1st terrace strata corals are still mainly composed of aragonite.  In 

addition, samples from this strata indicate more preserved porosity than strata from the 

second terrace.  1st terrace rocks show increased porosity from dissolution, preferentially 

from the metastable aragonite.  The 1st terrace also contains some LMC cements, but 

fewer cements than the older strata. 

 Stable isotopes δ13C and δ18O were examined from limestone samples from 

terrace strata 1, 2, and 4.  Some results from terrace 3 strata were acquired in another 

study (Kim, 1998).  In this study, both terrace 2 (termed middle terrace 1 by Kim (1998)) 

and terrace 3 (termed middle terrace 2) (Kim, 1998) data was grouped together (Kim, 

1998).   
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 Terrace 4 samples were partially dolomitized and show values a trend of positive 

values δ18O values ranging from -0.7‰ to 2.7‰ VPDB, averaging to 0.7‰ VPDB, and 

δ13C values ranging from -4.0‰ to 2.7‰ VPDB with an average of -1.7‰ VPDB.  The 

middle terrace results expressed similar δ18O values ranging from -4.8‰ to -3.6‰ 

VPDB, averaging -4.3‰, and δ13C values ranging between -9.2‰ and -3.64‰ VPDB, 

averaging at -6.1‰ VPDB.  Terrace 1 samples show negative δ18O and δ13C values, with 

δ18O values of -4.2‰ and -0.5‰ VPDB, averaging to -2.4‰, and δ13C of -1.0‰ and      

-3.7‰ VPDB with an average of -2.4‰ VPDB.  Negative values associated with 

isotopic δ18O and δ13C analysis are associated with subaerially exposed meteoric 

diagenesis.  

 Potential factors controlling the δ18O values of exposed carbonate rocks generally 

include temperature, evaporation, and mineralogy.  However, in the case of Bonaire, 

temperature remains relatively constant throughout the year, so δ18O values are not 

likely to change much due to this variable.  Paleotemperature for the past ~2.5 Ma 

should remain within a similar range due to Bonaire moving along the same latitude line 

near the equator, and deposition only occurring over the platform during highstands.  

The δ18O of aragonite is enriched relative to that of calcite (Tarutani et al., 1969; 

Grossman and Ku, 1986; Kim and O’Neil, 1997), which may account for the 1st terrace 

samples having a heavier average δ18O value than the 2nd and 3rd terrace average δ18O 

value for limestone samples.  Also, a decrease in δ18O could be related to lighter oxygen 

from rainwater being incorporated into the crystal lattices of the calcium carbonate 

(Kim, 1998).  Based on the presence of dolomite, samples from terraces 3 and 4 have 
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positive δ18O values and have much heavier isotopic values than the lowest two terraces.  

It is likely that the heavier δ18O values are a product of evaporative processes on the 

surface (Hudson, 1977). 

 δ13C values range from -5.8‰ to 1.5‰ VPDB.  The only anomalies are two 

samples that coincide with the positive δ18O from terrace 4.  These heavy isotopic values 

could be related to evaporation (e.g. Kim, 1998), or related to dissolved inorganic carbon 

(DIC) having a localized abundance of δ13C (Kim, 1998). 

Dolomitization 

 Dolomitization of modern sediments was observed in southern Bonaire in the 

Pekelmeer hypersaline lagoon (Deffeyes et al., 1965).  The mechanism of dolomitization 

suggested is seepage reflux, which is the process of dense hypersaline brines seeping 

into the subsurface (Deffeyes, et al., 1965; Tucker and Wright, 1990; Lucia and Major, 

1994).  It is assumed that the dolomitization model occurring in the Pekelmeer lagoon 

also produced the Pleistocene dolomite due to Bonaire being in a similar setting during 

the Pleistocene.   

 Hypersalinity is a result of limited influx of new seawater into the system, and 

evaporation induced saturation of dissolved ions within the brines (Machel and 

Mountjoy, 1986; Klosowska, 2004).  These waters have higher Mg2+/Ca2+ ratios and will 

replace calcite for dolomite until they have precipitated enough Mg2+ and dissolved 

enough Ca2+ to approach equilibrium.  Higher Mg2+ abundance within the hypersaline 

water is due to Ca2+ binding with sulfate used to form gypsum as the brines become 

increasingly saturated with dissolved ions.  Seepage reflux is the model suggested to be 
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the mechanism that produced the dolomites in this study on the 2nd, 3rd, and 4th terraces.  

In this model, a coral-rubble levee separates the internal hypersaline lagoon from the 

ocean that sources the saline water.  Water is introduced by microtidal high tides and 

seepage through the coral rubble.  If this process occurred, dolomite crystals did not 

form out of an aqueous solution, but instead, it formed by way of metasomatism from 

pre-existing crystalline calcium carbonate (Degens and Epstein, 1963).  Gypsum and 

other evaporites have not been described within the Pleistocene strata, but the lack of 

evaporites could simply be a consequence of loss due to weathering upon exposure to 

the atmosphere as sea level fell after the evaporites were deposited. 

 Dolomite from the 2nd terrace was described as having a different texture than 

that in the 3rd and 4th terraces.  The 2nd terrace dolomite outcrops only on the 2nd terrace, 

and is genetically related to 3rd terrace strata.  The 2nd terrace strata onlaps onto the 3rd 

terrace strata.  But because the 2nd terrace dolomite outcrops at the 2nd terrace cliff on the 

windward and leeward sides of the island, it was referred to as 2nd terrace dolomite. 

 The 2nd terrace dolomite is microcrystalline, with some articulated red algae 

being partially dolomitized.  Originally, it was though that red algae was composed of 

HMC, and seawater leached the excess Mg2+ ions from the algae, and incorporated it 

into the dolomite crystal lattice (Ries, 2006).  However, electron microprobe analysis on 

Bonaire samples indicated that the red algae contained LMC with abundances of Mg2+ 

between 1 and 2 mole%.  It was realized through this method that dolomitization did not 

occur by seawater leaching.   
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 Compared to the dolomite in the 2nd terrace, the dolomite from the 3rd and 4th 

terraces has coarser, rhombohedral crystals with sucrosic texture, and no bioclasts are 

preserved.  The dolomite from the 3rd terrace is located within the island’s interior at the 

cliff of the 3rd terrace, east of Santa Barbara.  The 4th terrace dolomite is located in the 

central part of the island, comprising most of the 4th terrace strata.  This dolomite body is 

composed mostly of dolomite, but ~30% fine-crystalline calcite spar still remains. 

 In terms of texture, the 3rd terrace dolomite has coarser crystals, which suggests it 

was allowed a longer time to develop than the 2nd terrace dolomite.  The 2nd terrace 

dolomite is located near the exterior of the island whereas the 3rd terrace dolomite is 

located in the middle of the island.  This is interpreted as follow: as sea level began to 

fall during the last two glaciations, the interior lagoon where the 3rd terrace dolomite 

likely did not experience as strong of wave action as the 2nd terrace dolomite, which 

allowed for more rock preservation.  This coarser 3rd terrace dolomite was also likely 

closer to the island’s surface and endured a longer exposure to the hypersaline fluids. 

 The 4th terrace dolomite is much more expansive than the other dolomite units, 

therefore the locations of the seepage reflux brines must have been over a larger area.  In 

order for the seepage reflux brines to efficiently dolomitize a large area, water needs to 

be able to flow over an area without large obstacles deterring flow, and there needs to 

only be a small volume of sea water being introduced into the system at a time.   Limited 

volume of water input can be achieved by one or a few small inlets, or by large and 

effective coral rubble mounds.  This event likely occurred after peak transgression as sea 
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level began to fall, allowing smaller volumes of water to cover the platform which would 

influence increased concentrations of Mg2+. 

 Seepage reflux dolomitization is interpreted to be the process forming dolomite 

at the Pekelmeer, with its isotopically heavy values of δ18O (2.1 – 3.7‰ VPDB, with an 

average value of 2.9‰ VPDB).  The heavy δ18O values indicate evaporation helped 

produce the dolomite across the island (Budd, 1996).  There would have been a minimal 

influx of new waters into the lagoon, and evaporation would lead to the creation of 

denser brines, causing seepage reflux.  However, δ18O results for Pekelmeer dolomites 

may not always indicate evaporation and hypersalinity (Major et al., 1992).  Dolomite 

δ18O values from the Pekelmeer average to approximately 1‰ PDB, which is much 

lower than dolomites precipitated under arid hypersaline conditions, including Abu 

Dhabi sabkha dolomite at 2.8‰ PDB (McKenzie, 1981), Qatar sabkha dolomite at 3.5‰ 

PDB (Lloyd, 1966), and Solar Lake Egypt dolomite at 9‰ PDB (Aharon, 1977).  These 

results indicate that the dolomite formed on Bonaire may not have formed solely as a 

result of evaporative processes.  Instead, factors such as presence or absence of 

microbes, platform morphology, and water chemistry may influence the formation of 

this dolomite. 
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CONCLUSIONS 

 The morphology of Bonaire and its carbonate deposition was influenced spatially 

by tectonic uplift, glacio-eustatic sea-level changes, and strong wave energy.  Four 

Pleistocene carbonate terraces formed from deposition and subsequent erosion, as 

tectonic uplift increases elevation of the carbonate rocks and allows further subaerial 

exposure.  Corals are the main macrofossils within the terrace strata, and associated 

bioclasts were used to identify different depositional environments (barrier reef, lagoon, 

and fringing reef).  The windward side of Bonaire is subject to wind and high wave 

energy, influencing growth of the barrier reef, with its abundant Acropora palmata. This 

reef crest blocks the high wave energy, allowing more delicate corals, such as 

Montastrea annularis, to grow in the protected lagoon.  This protected lagoon extends 

towards the platform interior, as well as in locations where protection is offered by 

subaerially exposed carbonate and volcanic rocks.  The fringing reef environment on the 

leeward side is also protected from high wave energy, but is characterized by deeper 

waters than the lagoonal environment, and is composed of fringing reefs and upper slope 

deposits.  Within the Pleistocene terraces, seven carbonate facies were delineated, six of 

which relate to dominant bioclasts within the limestone (Acropora palmata rudstone, 

Montastrea annularis framestone, Acropora cervicornis floatstone, Mixed Coral 

framestone, coralgal grainstone/packstone, and Amphistegina sp. grainstone).  The 

seventh facies is the Dolomite facies, which formed by diagenesis. 

 As the strata gets older, there is a trend of increasing meteoric diagenesis in terms 

of calcite cementation.  Whole rock isotopic analysis indicate negative values for δ18O 
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and δ13C throughout the Pleistocene terraces.  These were interpreted as δ18O relating to 

increased 16O introduced into the crystal lattice from rainwater, and δ13C related to 

normal meteoric cement values.  Aragonite still remains within the 1st terrace strata, but 

older strata has aragonite replaced with LMC. 

 Dolomite occurs within Pleistocene strata on the leeward and windward sides of 

Bonaire.  This dolomite is microcrystalline on the 2nd terrace cliffs and sucrosic texture 

within the island’s interior.  The origin of the dolomite units is not clear.  Seepage reflux 

is the proposed model of dolomitization, but there may be other factors that have yet to 

be determined which influenced the production of dolomite. 
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APPENDIX A: FIGURES AND TABLES 

 
 

Figure 1: (A) Location of Bonaire (yellow box) with respect to Caribbean Plate (outlined 

in red) and South America. (B) Island of Bonaire.  (Satellite images provided by Google 

Earth).  
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Figure 2: Geologic map illustrating possible structural features on the island, including 

an anticline in the northwest.  Reprinted from Hippolyte and Mann (2011). 
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Figure 3:  Images and descriptions for Amphistegina sp. grainstone, Montastrea 

annularis framestone, and Acropora cervicornis floatstone.  Thin section of fine-gr. 

Amphistegina sp. grainstone is represented include Amphistegina sp. foraminifera (f) and 

meteoric cement (c) (A).  Montastrea annularis Framestone is represented by the 

abundance of Montastrea annularis, shown by outcrop photograph (B).  Acropora 

cervicornis Floatstone is represented by a thin section (C) and outcrop photograph (D).  

The thin section (C) illustrates abundance of red algae fragments (R).  The outcrop (D) 

contains dissolved voids of original A. cervicornis branches, of which some have been 

infilled with sediment. 
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Figure 4:  Images and descriptions for Acropora palmata rudstone, Mixed Coral 

framestone, and Coralgal grainstone/packstone facies.  Acropora palmata rudstone is 

denoted by lenticular voids of dissolved A. palmata branches, and is best exemplified by 

outcrop study, of which the photograph (A) derives.  Mixed Coral Framestone is also 

best exemplified by outcrop study.  B) Head coral Montastrea annularis.  C) zonation 

from bottom to top a zone composed of head corals including M. annularis and Diploria 

sp.  Overlaying this zone is a zone abundant in A. cervicornis.  Above A. cervicornis is 

an A. palmata zone, which is the uppermost unit.  The Coralgal grainstone/packstone 

facies is shown in outcrop (D) and thin section (E).  Bedforms may be observed in 

outcrop, including cross-stratification in the top meter of outcrops (Fig. 4 D outlines with 

the black lines).  The thin section illustrates the main bioclasts in this facies are red algae 

fragments (R).   
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Figure 5:  Images and descriptions for Dolomite facies.  Sample 9-3-1 (A) illustrates 

dolomite with microcrystalline matrix and partially recrystallized red algae fragments.  

Sample 20BON2 (B) illustrates a coarser sucrosic texture from the 4th terrace.  Sample 

19BON4 (C)  is dolomite with sucrosic texture from the 4th terrace.  A core sample 9-3-1 

(D) is cut in half to show the fresh white exposure, as well as its apparent crystalline 

composition.  In outcrop (Seru Grandi location) (E), the dolomite which was originally 

white, weathers to a gray color.   
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Figure 6: Geologic map and associated stratigraphic column of Bonaire.  Modified from 

Hippolyte and Mann (2011).  
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Figure 7: Map illustrating 4 Pleistocene carbonate terraces and eolianite units delineated 

in this study.  The eolianite units do not depict an additional terrace level, and are likely 

to be Pleistocene age deposits.   



 

 

66 

 

 
 

Figure 8: Schematic cross-section illustrating the process of carbonate deposition and 

terrace formation on Bonaire.  Factors contributing to these processes are sea level 

fluctuation and tectonic uplift. 

  



 

 

67 

 

 
 

Figure 9:  Bonaire outcrop location map. 
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Figure 10: Bonaire facies map including eight carbonate facies.  Black boundaries 

illustrate facies contacts, and white boundaries illustrate facies contacts and boundaries 

between terraces. 
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Figure 11: Depositional model illustrating where facies deposited relative to one another on the platform from leeward side to 

windward side. 
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Figure 12: Petrographic images that illustrate bioclasts and cements seen within samples. 

Descriptions of samples are in Table 2. R. alg. – articulated red algae; Encr. R alg. – 

encrusting red algae; Foram. – foraminifera; G alg. – green algae, Coral – coral fragment 

or piece of in-situ coral. Sample names: A) 12-2-1; B) 26-7-2; C) 26-8-4; D) 16BON2; 

E) 26-8-3 
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Figure 13: Petrographic images from terraces 1-4 comparing cements and dolomite.  A) 

Sample 19BON4 from the terrace 4 strata containing dolomite (Dol) and calcite (Cal).  

B) Sample 4BON3 from the terrace 3 strata containing bioclasts and cement matrix 

(Cem), with little porosity.  C) and D) Sample 26-8-1 from the terrace 2 strata containing 

bioclasts with rim cements and equant spar cements filling in porosity (blue stain).  E) 

and F) Sample 26-7-2 from the terrace 1 strata containing cement (Cem) as well as 

porosity (blue stain).  The progression through the different terrace strata reflects a 

decrease in porosity moving from the youngest strata (Terrace 1, images E & F) to the 

oldest strata (Terrace 4, image A). 
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Figure 14: XRD analysis of coral sample 8-3-2 (Bolivia location) where aragonite was 

completely replaced with calcite.   
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Figure 15:  XRD analysis (Sample 12-8-1; Bolivia location) from coral sample 

illustrating aragonite as the most abundant mineral within sample. A small amount of 

calcite is also within sample.  
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Figure 16:  XRD analysis (Sample 9-3-1; Tolo location) illustrating dolomite being sole 

component of rock sample.  Graph is skewed to the left, which may be a result of a trace 

element in sample or sample thickness was not optimal samples and location. 
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Figure 17:  Scatter plot illustrating relationship between δ18O (y-axis) and δ13C (x-axis) 

isotopic results comparing dolomite samples and limestone samples from the strata of 

terraces 1, 2, and 4. 
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Figure 18: (A) Current facies distribution map of the western Aves Island (60 km east of 

Bonaire), illustrating present depositional environments.  (B) Location of the western 

Aves Island.  Depositional environments delineated by use of aerial photography.  
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Figure 19: Bonaire facies map illustrating locations of cross-section transects. 

  



 

 

80 

 

Figure 20:  Cross sections A-A’, B-B’, C-C’, and D-D’ transect across the island in a general north-south to southwest-

northeast azimuth, illustrating facies distribution and stratigraphic relationship of the Pleistocene carbonate.  Black lines are 

the contacts between different facies while white lines are boundaries for terrace strata. 
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Figure 21: Cross-section E-E’ illustrates facies distribution and stratigraphic relationship of the Pleistocene carbonate perpendicular to cross-sections A-D in Figure 20.  Black lines are the contacts between different 

facies while white lines are boundaries for terrace strata. 
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Figure 22: Eocene-Oligocene pull-apart basin related to right-lateral transform plate 

motion between the Caribbean Plate and South American Plate.  Reprinted from Gorney 

et al. (2007). 
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Figure 23: Pleistocene sea-level curve reprinted from Waelbroeck et al. (2002) 

illustrating δ18O values and interpreted sea levels compared to present sea-level (dotted 

lines). 

  



 

 

85 

 

 

 

Figure 24: Pleistocene sea-level curve reprinted from Muhs et al. (2012) that illustrates 

topography influenced by uplift and glacio-eustatic sea-level fluctuation. 
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Figure 25: Paleogeography map of 4th terrace strata (MIS 11 interglacial period) 

depositional environments.  The dashed line represents the modern Bonaire coastline.  
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Figure 26: Paleogeography map of 3rd terrace strata (MIS 9 interglacial period) 

depositional environments.  The dashed line represents the modern Bonaire coastline.  
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Figure 27: Paleogeography map of 2nd terrace strata (MIS 7 interglacial period) 

depositional environments.  The dashed line represents the modern Bonaire coastline.  
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Figure 28: Paleogeography map of 1st terrace strata (MIS 5e interglacial period) 

depositional environments.  The dashed line represents the modern Bonaire coastline. 
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Figure 29: Map illustrating westward flow of the Caribbean Current (CC), average ITCZ 

locations during the September and March.  Generalized locations of the Guajira 

upwelling system (GUS) and the Orinoco River plume (OP) are also shown.  Bonaire’s 

location illustrated by the star.  Reprinted from Martinez et al. (2007).   
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Figure 30: Map referenced to Fig. 31 showing location of cross-section transect 

Bonaire’s location illustrated by the star.  Reprinted from Bornmalm et al. (1999). 

 

 
 

Figure 31: Cross-section referring to transect in Fig. 30 illustrating generalized water-

mass stratification.  Reprinted from Bornmalm et al. (1999).  
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Figure 32: Map illustrating waters influenced by upwelling and fluvial discharge shown 

by the colors blue (upwelling) and yellow (fluvial discharge).  Correlation coefficient (r) 

is determined by weekly time series of sea-surface temperature and Log(Chl), or 

concentration of satellite-derived chlorophyll-a concentration for the period of 1998-

2009.  Upwelling has strong inverse correlations with phytoplankton biomass (blue 

color), while areas of freshwater influence (Orinoco River output) has a direct positive 

correlation with Chl (yellow).  Bonaire’s location illustrated by the star.  Reprinted from 

Rudea-Roa and Muller-Karger (2012). 
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Figure 33: Wind stress on the Caribbean Sea; solid arrows refer to wind stress during 

March, April, and May, and hollow arrows refer to September, October, and November.  

Values in dynes/cm3.  Bonaire’s location illustrated by the star.  Reprinted from Gordon, 

(1967), (cited originally from Hikada, (1958)).  
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Table 1: Carbonate facies descriptions with interpretations of depositional environment. 

Facies Description Interpretation 

 

 

 

 

 

Amphistegina sp. 

Grainstone 

Abundant with Amphistegina 

sp., bryozoan fragments 

present.  Fine-grained, well-

sorted bioclasts. Gastropods 

present boring into bedrock.  

Calcite cement within pores, 

nucleating from bioclasts. 

Fine-grain benthic foraminifera 

Amphistegina sp. grainstone.  

High-angled beds include cross-

stratifications, and are likely 

eolian. Low-angled cross-

stratification is likely from a 

shallow marine environment, 

with moderate amount of wave 

energy to sort sand and allow it 

to deposit. 

 

 

 

 

 

Montastrea annularis 

Framestone 

Primarily comprised of 

Montastrea annularis, but 

other corals such as Diploria 

strigose, Diploria clivosa, 

and Montastrea cavernosa 

have been observed.  

Montastrea annularis either 

forms a large singular 

corallum, which is more 

common or densely 

populated columnar corolla. 

They grow either vertically 

to form a phaceloid corallum 

or radiated outward to form a 

fan-shaped corallum, and can 

exceed 3m in height. 20-70% 

coral abundance. 

Montastrea annularis can be 

located in low to medium-

energy waters.  It is likely that 

this facies deposited in a 

lagoonal environment, protected 

from higher energies by a barrier 

created by branched corals. 

 

 

 

Acropora cervicornis 

Floatstone 

Composed of Acropora 

cervicornis, with small 

amounts of Diploria sp.  

Acropora cervicornis is 

partially to completely 

dissolved.  Much of the clasts 

present are A. cervicornis 

rubble broken off from 

branches.  Grainstone-

packstone surrounding coral 

branches. Branch diameter is 

2-3 cm. 

Acropora cervicornis requires 

decreased amounts of wave 

energy to thrive and is abundant 

on the leeward coast.  

Commonly abundant at depths 

between 4-12m.  Scarcity of 

secondary branches and 

abundant rubble suggests 

Acropora cervicornis becomes 

significantly damaged by 

occasional storm waves.  Most 

rubble is captured by proximal 

branches, but some rubble can 

be observed distally. 
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Table 1: Continued 

Facies Description Interpretation 

 

 

 

Acropora palmata 

Rudstone 

Composed primarily of 

Acropora palmata, with 

abundance between 20-50%.  

Portions of coral has been 

dissolved out, leaving behind 

molds.  Acropora palmata 

either in-situ, or branches 

have broken off as broken 

slabs.  Slabs can measure 

from 10-30 cm wide and 2-6 

cm in thickness (Kim and 

Lee, 1999). 

This facies is abundant with 

Acropora palmata, which is 

commonly located in areas 

where there is much water 

turbulence and energy.  

Acropora palmata can be seen in 

modern reefs along the reef 

crest, so this is the interpreted 

depositional environment.  This 

facies can be observed with 

abundant broken branches along 

the reef crest of modern reefs. 

 

 

 

 

 

 

Mixed Coral 

Framestone 

Abundant in Montastrea 

annularis, Diploria sp., and 

Acropora cervicornis. 

Coralline algae (Corallinacea 

family) present as bioclastic 

grains between corals in all 

beds. Montastrea annularis 

and Diploria sp. are in situ. 

Abundant in massive corals 

Montastrea annularis and 

Diploria sp., which is overlain is 

some areas by Acropora 

cervicornis.  Deposited in a low 

to medium energy environment.  

This facies is located within 

second terrace, being protected 

by the island from high energy 

waves, so a barrier-type system 

may not have been present, but 

instead be deposited between 

10-20m depth.  This facies in 

terrace 4 was some of the first 

carbonate to be produced on 

Bonaire, and will likely have 

deposited behind a barrier, and 

likely deposited within a lagoon. 
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Table 1: Continued 

Facies Description Interpretation 

Coralgal 

Grainstone/Packstone 

 

Composed of fine-grained 

bioclast fragments.  Bioclast-

rich, composed of red algae 

(Corallinacea), coral 

fragments (Acropora sp.), 

calcareous green algae, 

bivalves, gastropods, 

bryozoans, and foraminifera 

(Amphistegina sp.).  Most 

abundant bioclasts are 

coralline red algae and coral 

fragments. Coralline algae is 

non-crustose and articulated.  

Some fine-grained  

volcaniclastics present.  

White in color, bioturbated 

with burrowing.  Some root 

casts infilled with paleosol.  

Cross-stratification present 

on windward side. 

Grains are well-sorted.  This 

facies is most abundant spatially 

across the island, and was 

originally deposited on the 

island interior in a lagoonal 

environment.  Cross-

stratification is well-preserved 

within the top meter of 

exposures, which is due to 

shallow waters with wave 

influence.  This cross-

stratification can be located both 

within the island interior as well 

as at the most distal part of the  

terrace strata, at the terrace 

itself.  It is likely this cross-

stratification was a result of 

reworked sediment at a beach 

environment as sea-level 

dropped.  Leeward Coralgal 

Gs/Ps does not show cross-

stratification as evident as the 

windward counterparts, and 

shows some bioturbation.  

Dolomite 

Microcrystalline dolomite 

with similar size crystals.  

Contains Corallinacea red 

algae (articulated) as only 

bioclast that is partially 

recrystallized.  Massive 

bedding in outcrop. 

 

Microcrystalline dolomite with 

only remnant coralline red algae. 

Dolomite is located within 

second terrace on windward side 

of island, and also the third 

terrace at Seru Grandi, which 

located in the northern side of 

Bonaire.  This dolomite formed 

after the third terrace lithologies 

deposited.  This dolomite is 

present along the coast, so it is 

likely that this formed from 

seepage reflux. 
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Table 2: Descriptions of thin sections from Pleistocene strata. 

Sample Description 

4BON3 Some mud matrix, but mostly composed of calcite cement. Fragments of red algae present 

9_1_2 Fragments of foraminifera and articulated red algae within a calcite cement matrix 

9_1_3 Calcite and dolomite grains replacing coral 

9_2_2 Calcite cement abundant.  Bioclasts present include coral fragments and fragments of articulated red algae 

9_3_1 Microcrystalline dolomite present with fragments of articulated red algae 

12_5_3 Lineations of green algae flakes 

12_2_1 
Abundance of green alge (Halimeda sp.) present within calcareous mud matrix.  Halimeda sp. grains have recrysallized as  
cement 

14-6-1 Microcrystalline dolomite with sucrosic texture, no bioclasts present 

15-1-1 
Bioclasts present include green algae, articulated red algae, and bryozoan fragments. Matrix is composed of mud  
and calcite cement 

15-3-1 Microcrystalline dolomite present with fragments of articulated red algae 

15BON1 Presence of green and articulated red algae, foraminifera, and dolomite 

15BON3 Coralline red algae present.  Matrix is composed of microcrystalline calcite and dolomite cement. 

16BON2 Abundance of foraminfera (Amphistegina sp.) with some fragments of bryozoans 

16BON4 Abundance of foraminfera (Amphistegina sp.) with some fragments of bryozoans 

19BON2 Abundance of foraminfera (Amphistegina sp.) with some fragments of bryozoans 

19BON3 Microcrystalline sucrosic textured dolomite with some calcite cement present. No bioclasts present 

19BON4 Microcrystalline sucrosic textured dolomite with some calcite cement present. No bioclasts present 

19BON7 Microcrystalline dolomite present with fragments of articulated coralline red algae present 

20BON2 Microcrystalline sucrosic textured dolomite with some calcite cement present. No bioclasts present 

24-1-3 
Composed of green and red algae, bivalves, foraminifera, and volcaniclastics with calcite cement and calcareous  
mud matrix 

26-1 Presence of calcareous red algae and coral fragments with calcite cement between grains 

26-3-1 Dolomite with no bioclasts, porosity ~10-15% 
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Table 2: Continued 

Sample Description 

26-3-2 Tufa composed of calcite, grains radiate out from nucleation points infilling porosity 

26-6 Composed of microcrystalline dolomite with few grains of red algae and som e volcaniclastic grains 

26-6-1 Composed of microcrystalline dolomite with few grains of red algae 

26-6-3 Microcrystaline dolomite present with fragments of articulated red algae.  Some red algae partially recrystallized 

26-6-4 Microcrystalline dolomite present with few fragments of articulated red algae 

26-7-2 
Coral specimen present that is encrusted by red algae. Bioclasts such as bivalves, encrusting red algae, foraminifera, and  
bryozoan fragments present 

26-7-2 2 Abundant with coralline red algae, with fragments of bivalves and coral also present. Porosity ~25% 

26-8-1 Articulated red algae fragments abundant within sample, with included bryozoan fragments and dissolved bivalves  

26-8-2 
Bioclasts present include fragments of articulated red algae, bivalves, bryozoans, and foraminifera.  Both calcite cement 
 and dolomite are present 

26-8-3 
Green algae present that is encrusted by red algae.  Articulated red algae fragments are present and separated by  
calcite cement 

26-8-4 Microcrystalline dolomite present with fragments of articulated red algae. Porosity  ~5-10% 

26-8-5 Abundant with green algae 

26-8-6 Dolomite replacing all matrix and grains, which include green and red algae, and bivalves 

26-8-7 
Presence of foraminifera, calcareous articulated red algae, and bivalves.  Some bivalves have dissolved and vugs 
 filled with calcite cement.  Some microcrystalline dolomite present 

27-1-1 Composed of microcrystalline dolomite and with a moderate amount of red algae grains 

27-2-1 Repeating consistent structure with may belong to a sponge 

27-3-1 Composed of microcrystalline dolomite and abundant with red algae grains 

27-4-1 Composed of microcrystalline dolomite and abundant with red algae grains 

27-5-1 Foraminifera and red algae with microcrystalline dolomite cement 

27-7-1 Composed of red and green algae, dolomite present within matrix, porosity ~25% 

27-8-1 Composed of microcrystalline dolomite with few grains of red algae 

27-9-1 Composed of microcrystalline dolomite with few grains of red algae 
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Table 2: Continued 

Sample Description 

Boca 
Chikitu Only composed of articulated coralline red algae, 30-40% porosity 

LS1 Bioclasts include fragments of articulated red algae, bivalves, bryozoans, coral, and foraminifera 

LS2 Abundant in bivalves, some coral and red algae, much of the matrix is dolomitized 
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APPENDIX B: SUPPLEMENTAL FIGURES AND TABLES 

(Not referenced in text.) 

Table 3 

Stable isotope geochemistry results (δ18O and δ13C) of limestone and dolomite samples. 

 
sample 
ident 1 

sample 
ident 2 

d18O 
VPDB 

d13C 
VPDB 

T2 dolomite 26-6-3 3.50 3.02 

T2 dolomite 15-3-1 3.21 2.45 

T2 dolomite 9-3-1 2.18 2.57 

T2 dolomite 26-6-4 3.65 3.13 

T3 dolomite 
20Bon1-
2 2.14 1.19 

T4 dolomite 19BON3 2.70 1.49 

T4 dolomite 19BON8 1.20 -0.77 

T1 0 -4.15 -1.01 

T1 20 -0.52 -3.66 

T2 12-2-1 -3.81 -2.50 

T2 12-2-3a -4.66 -5.81 

T2 12-2-2a -4.93 -5.65 

T4 19BON4 -0.74 -3.56 

T4 19BON7 -0.51 -3.95 
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Table 4 

Geochemical results using electron microprobe analysis.  Results are measured by weight percentage and well as molar percentage.  Highlighted in yellow are dolomite samples, while other samples are limestone. 

 

  Wt. % carbonate (all elements) MOLE % (normalized for Mg, Ca, Fe, Mn, Sr only) 

Analysis 

CaCO3 

(wt%) 

FeCO3 

(wt%) 

SrCO3 

(wt%) 

MnCO3 

(wt%) 

S(CO3)3 

(wt%) 

MgCO3 

(wt%) 

Al2(CO3)3 

(wt%) 

Na2CO3 

(wt%) 

Si(CO3)2 

(wt%) 

Ca 

(mole%) 

Mg 

(mole%) 

Fe 

(mole%) 

Mn 

(mole%) 

Sr 

(mole%) 

                              

5CaCO3_stdck#1 99.06 0.00 0.00 0.05 0.05 0.00 0.00 0.01 0.09 99.95 0.00 0.00 0.05 0.00 

3calcite_stdck#1 97.62 0.00 0.02 0.20 0.04 0.00 0.02 0.00 0.19 99.80 0.00 0.00 0.20 0.00 

JS_2413_a_pt01 98.37 0.01 0.19 0.00 0.09 0.98 0.06 0.07 0.31 98.69 1.16 0.00 0.00 0.15 

JS_2413_a_pt02 98.62 0.03 0.18 0.02 0.06 0.86 0.01 0.04 0.08 98.85 1.00 0.05 0.00 0.10 

JS_2413_a_pt03 98.58 0.04 0.14 0.00 0.04 1.05 0.19 0.04 0.35 98.59 1.26 0.05 0.00 0.10 

JS_2413_a_pt04 99.13 0.07 0.08 0.02 0.05 0.89 0.00 0.04 0.00 98.85 1.05 0.05 0.00 0.05 

JS_2413_b_pt05 97.66 0.04 0.20 0.00 0.02 0.65 0.03 0.08 0.01 99.00 0.80 0.05 0.00 0.15 

JS_2413_b_pt06 98.02 0.08 0.05 0.00 0.06 1.91 0.07 0.03 0.08 97.65 2.25 0.05 0.00 0.05 

JS_2413_b_pt07 97.76 0.08 0.05 0.01 0.22 1.15 0.03 0.01 0.02 98.55 1.35 0.05 0.00 0.05 

JS_2664_c_pt01 62.16 0.03 0.00 0.05 0.24 38.83 0.01 0.09 0.00 57.39 42.56 0.00 0.05 0.00 

JS_2664_c_pt02 57.45 0.05 0.02 0.02 0.20 43.13 0.07 0.10 0.01 52.86 47.09 0.05 0.00 0.00 

JS_2664_c_pt03 99.46 0.05 0.00 0.00 0.03 1.33 0.00 0.03 0.00 98.40 1.55 0.05 0.00 0.00 

JS_2664_c_pt04 98.87 0.06 0.00 0.00 0.07 1.25 0.00 0.02 0.03 98.50 1.45 0.05 0.00 0.00 

JS_2664_b_pt05 91.91 0.05 0.02 0.00 0.07 8.54 0.02 0.05 0.03 90.03 9.92 0.05 0.00 0.00 

JS_2664_b_pt06 94.19 0.01 0.03 0.00 0.04 5.88 0.00 0.05 0.04 93.09 6.91 0.00 0.00 0.00 

JS_2664_b_pt07 94.83 0.07 0.07 0.00 0.13 6.09 0.00 0.06 0.10 92.83 7.07 0.05 0.00 0.05 

JS_2664_a_pt08 93.21 0.05 0.04 0.02 0.08 7.37 0.00 0.04 0.04 91.38 8.57 0.05 0.00 0.00 

JS_2664_a_pt09 94.58 0.06 0.02 0.01 0.08 4.68 0.00 0.03 0.03 94.39 5.56 0.05 0.00 0.00 

JS_2664_a_pt10 59.93 0.07 0.03 0.04 0.26 40.02 0.02 0.08 0.04 55.72 44.18 0.05 0.05 0.00 

JS_2664_a_pt12 96.17 0.05 0.02 0.00 0.16 3.82 0.10 0.00 0.09 95.44 4.51 0.05 0.00 0.00 

JS_2664_a_pt13 97.24 0.01 0.04 0.01 0.03 2.44 0.04 0.00 0.07 97.10 2.90 0.00 0.00 0.00 

JS_2672_a_pt01 96.97 0.09 0.11 0.00 0.07 2.13 0.04 0.06 0.02 97.25 2.55 0.10 0.00 0.10 

JS_2672_a_pt02 95.91 0.08 0.21 0.00 0.16 2.86 0.02 0.07 0.17 96.39 3.41 0.05 0.00 0.15 

JS_2672_a_pt03 94.14 0.06 1.37 0.00 0.73 0.33 1.80 0.89 0.96 98.54 0.42 0.05 0.00 0.99 

JS_2672_b_pt04 96.32 0.07 0.18 0.00 0.24 2.92 0.02 0.11 0.02 96.39 3.46 0.05 0.00 0.10 

JS_2672_b_pt05 94.49 0.08 0.18 0.00 0.24 4.27 0.08 0.09 0.34 94.77 5.08 0.05 0.00 0.10 

JS_2672_b_pt06 96.04 0.10 0.29 0.00 0.73 2.96 0.08 0.31 0.17 96.16 3.54 0.10 0.00 0.20 

JS_2672_d_pt07 96.06 0.09 0.11 0.00 0.25 2.93 0.00 0.15 0.03 96.34 3.46 0.10 0.00 0.10 

JS_2672_d_pt08 95.88 0.05 0.13 0.00 0.09 2.99 0.02 0.05 0.03 96.29 3.56 0.05 0.00 0.10 

 



 

 

102 

 

Table 4:Continued 

 Wt. % carbonate (all elements) MOLE % (normalized for Mg, Ca, Fe, Mn, Sr only)  

Analysis 

CaCO3 

(wt%) 

FeCO3 

(wt%) 

SrCO3 

(wt%) 

MnCO3 

(wt%) 

S(CO3)3 

(wt%) 

MgCO3 

(wt%) 

Al2(CO3)3 

(wt%) 

Na2CO3 

(wt%) 

Si(CO3)2 

(wt%) 

Ca 

(mole%) 

Mg 

(mole%) 

Fe 

(mole%) 

Mn 

(mole%) 

Sr 

(mole%) 

JS_2672_d_pt09 97.13 0.04 0.09 0.01 0.23 3.45 0.00 0.12 0.00 95.84 4.06 0.05 0.00 0.05 

JS_2672_d_pt10 96.98 0.06 0.16 0.00 0.31 2.91 0.04 0.17 0.06 96.43 3.42 0.05 0.00 0.10 

JS_2681_a_pt01 98.61 0.03 0.03 0.00 0.04 0.86 0.02 0.00 0.37 98.95 1.00 0.05 0.00 0.00 

JS_2681_a_pt02 98.90 0.07 0.07 0.00 0.01 0.81 0.01 0.01 0.00 98.95 0.95 0.05 0.00 0.05 

JS_2681_a_pt03 96.97 0.10 0.03 0.00 0.09 1.28 0.32 0.04 0.73 98.38 1.51 0.10 0.00 0.00 

JS_2681_b_pt04 97.14 0.03 0.10 0.02 0.07 0.76 0.02 0.03 1.66 98.99 0.91 0.05 0.00 0.05 

JS_2681_b_pt05 99.72 0.08 0.06 0.01 0.02 0.80 0.00 0.08 0.01 98.95 0.95 0.05 0.00 0.05 

JS_2681_b_pt06 98.13 0.11 0.10 0.00 0.01 1.01 0.18 0.01 0.27 98.65 1.20 0.10 0.00 0.05 

JS_2681_c_pt07 100.29 0.08 0.09 0.01 0.04 0.80 0.00 0.07 0.01 98.95 0.95 0.05 0.00 0.05 

JS_2681_c_pt08 97.80 0.05 0.02 0.00 0.04 2.07 0.00 0.05 0.01 97.50 2.45 0.05 0.00 0.00 

JS_2681_c_pt09 97.91 0.11 0.11 0.01 0.00 1.03 0.44 0.04 1.39 98.63 1.22 0.10 0.00 0.05 

JS_2681_c_pt10 98.89 0.03 0.11 0.00 0.07 0.98 0.00 0.05 0.04 98.75 1.15 0.05 0.00 0.05 

JS_2682_a_pt01 98.28 0.00 0.01 0.00 0.00 1.27 0.02 0.02 0.02 98.50 1.50 0.00 0.00 0.00 

JS_2682_a_pt02 98.15 0.01 0.09 0.00 0.04 1.56 0.04 0.04 0.14 98.10 1.85 0.00 0.00 0.05 

JS_2682_a_pt03 97.55 0.02 0.21 0.01 0.06 1.47 0.04 0.02 0.45 98.09 1.76 0.00 0.00 0.15 

JS_2682_a_pt04 98.23 0.03 0.01 0.00 0.00 1.01 0.03 0.04 0.14 98.75 1.20 0.05 0.00 0.00 

JS_2682_b_pt05 98.35 0.05 0.20 0.02 0.09 1.64 0.00 0.28 0.03 97.84 1.96 0.05 0.00 0.15 

JS_2682_b_pt06 98.52 0.04 0.25 0.02 0.06 0.98 0.01 0.24 0.14 98.64 1.16 0.05 0.00 0.15 

JS_2682_b_pt07 98.65 0.03 0.18 0.00 0.08 1.22 0.01 0.06 0.00 98.45 1.45 0.00 0.00 0.10 

JS_2682_b_pt08 98.06 0.06 0.18 0.02 0.09 1.48 0.00 0.04 0.52 98.09 1.76 0.05 0.00 0.10 

JS_2682_c_pt09 99.46 0.05 0.12 0.00 0.03 1.32 0.01 0.02 0.00 98.30 1.55 0.05 0.00 0.10 

JS_2682_c_pt10 99.25 0.06 0.01 0.00 0.02 1.16 0.00 0.03 0.00 98.60 1.35 0.05 0.00 0.00 

JS_2682_c_pt11 97.81 0.03 0.16 0.02 0.01 1.29 0.00 0.02 0.07 98.30 1.55 0.05 0.00 0.10 

JS_2682_c_pt12 96.74 0.00 0.23 0.01 0.05 1.25 0.19 0.04 0.59 98.34 1.51 0.00 0.00 0.15 

3dolomite_stdck#1 54.16 0.12 0.01 0.03 0.02 45.24 0.01 0.00 0.13 50.15 49.75 0.10 0.00 0.00 

JS_2663_c_pt01 62.88 0.02 0.08 0.03 0.20 38.60 0.00 0.12 0.01 57.82 42.13 0.00 0.00 0.05 

JS_2663_c_pt02 59.66 0.01 0.00 0.00 0.10 42.97 0.04 0.06 0.05 53.91 46.09 0.00 0.00 0.00 

JS_2663_c_pt03 48.90 0.01 0.01 0.01 0.19 36.73 0.01 0.08 0.07 52.89 47.11 0.00 0.00 0.00 

JS_2663_c_pt04 61.92 0.02 0.04 0.02 0.31 38.42 0.13 0.09 0.12 57.59 42.41 0.00 0.00 0.00 

JS_2663_c_pt05 57.55 0.01 0.06 0.01 0.12 43.14 0.05 0.05 0.07 52.91 47.04 0.00 0.00 0.05 

JS_2663_a_pt06 61.54 0.04 0.02 0.01 0.13 38.95 0.03 0.07 0.00 57.06 42.89 0.05 0.00 0.00 

JS_2663_a_pt07 60.32 0.07 0.01 0.01 0.09 40.18 0.04 0.06 0.00 55.81 44.14 0.05 0.00 0.00 
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Table 4:Continued 

 Wt. % carbonate (all elements) MOLE % (normalized for Mg, Ca, Fe, Mn, Sr only)  

Analysis 

CaCO3 

(wt%) 

FeCO3 

(wt%) 

SrCO3 

(wt%) 

MnCO3 

(wt%) 

S(CO3)3 

(wt%) 

MgCO3 

(wt%) 

Al2(CO3)3 

(wt%) 

Na2CO3 

(wt%) 

Si(CO3)2 

(wt%) 

Ca 

(mole%) 

Mg 

(mole%) 

Fe 

(mole%) 

Mn 

(mole%) 

Sr 

(mole%) 

JS_2663_a_pt08 57.45 0.04 0.01 0.01 0.25 42.91 0.23 0.06 0.27 52.99 46.96 0.05 0.00 0.00 

JS_2663_a_pt09 58.84 0.02 0.05 0.01 0.51 38.86 1.26 0.12 2.39 56.02 43.92 0.00 0.00 0.05 

JS_2663_a_pt10 57.67 0.00 0.09 0.02 0.27 41.75 0.25 0.07 0.91 53.76 46.18 0.00 0.00 0.05 

JS_2683_a_pt01 99.23 0.06 1.11 0.00 0.00 1.11 0.03 0.02 0.00 97.90 1.30 0.05 0.00 0.75 

JS_2683_a_pt02 78.79 0.00 1.81 0.00 0.00 0.32 0.02 0.03 0.17 97.95 0.50 0.00 0.00 1.55 

JS_2683_a_pt03 98.82 0.08 0.24 0.00 0.02 1.05 0.01 0.01 0.21 98.55 1.25 0.05 0.00 0.15 

JS_2683_a_pt04 100.31 0.06 0.08 0.00 0.01 0.82 0.02 0.01 0.05 98.95 0.95 0.05 0.00 0.05 

JS_2683_b_pt05 97.85 0.01 0.05 0.02 0.06 2.64 0.05 0.02 0.31 96.84 3.11 0.00 0.00 0.05 

JS_2683_b_pt06 100.53 0.05 0.04 0.00 0.00 0.69 0.01 0.00 0.05 99.15 0.80 0.05 0.00 0.00 

JS_2683_b_pt07 96.46 0.63 0.07 0.00 0.12 2.17 1.99 0.02 4.90 96.85 2.58 0.53 0.00 0.05 

JS_2683_b_pt08 100.60 0.07 0.05 0.00 0.00 1.26 0.01 0.02 0.03 98.45 1.45 0.05 0.00 0.05 

JS_2683_c_pt09 99.73 0.05 0.08 0.25 0.01 0.01 0.00 0.02 0.01 99.70 0.00 0.05 0.20 0.05 

JS_2683_c_pt10 99.54 0.49 0.05 1.68 0.01 0.34 0.00 0.02 0.01 97.70 0.40 0.40 1.45 0.05 

JS_2683_c_pt11 99.95 0.11 0.12 0.00 0.03 0.69 0.00 0.02 0.00 99.00 0.80 0.10 0.00 0.10 

JS_2683_c_pt12 96.59 0.47 0.04 0.00 0.07 1.66 0.87 0.03 2.81 97.53 2.00 0.41 0.00 0.05 

JS_2683_d_pt13 97.06 1.90 0.07 0.02 0.11 1.27 0.90 0.04 2.05 96.83 1.48 1.64 0.00 0.05 

JS_2683_d_pt14 99.79 0.09 0.10 0.00 0.06 0.78 0.02 0.01 0.13 98.95 0.90 0.10 0.00 0.05 

JS_2683_d_pt15 100.23 0.08 0.10 0.00 0.00 0.96 0.01 0.01 0.00 98.80 1.10 0.05 0.00 0.05 

LS_1_a_pt01 100.52 0.03 0.04 0.01 0.14 0.57 0.01 0.10 0.00 99.30 0.65 0.05 0.00 0.00 

LS_1_a_pt02 99.76 0.03 0.08 0.00 0.00 0.99 0.04 0.02 0.15 98.80 1.15 0.00 0.00 0.05 

LS_1_a_pt03 99.36 0.03 0.00 0.03 0.04 0.86 0.13 0.02 0.33 98.95 1.00 0.05 0.00 0.00 

LS_1_a_pt04 99.63 0.02 0.04 0.00 0.00 0.90 0.03 0.02 0.07 98.90 1.05 0.00 0.00 0.05 

LS_1_b_pt05 97.70 0.00 0.01 0.00 0.11 0.66 0.00 0.06 0.05 99.20 0.80 0.00 0.00 0.00 

LS_1_b_pt06 101.06 0.01 0.03 0.00 0.01 0.59 0.00 0.05 0.08 99.30 0.70 0.00 0.00 0.00 

LS_1_b_pt07 99.50 0.02 0.03 0.01 0.07 0.76 0.00 0.01 0.06 99.10 0.90 0.00 0.00 0.00 

LS_1_b_pt08 99.81 0.00 0.00 0.03 0.04 0.58 0.04 0.02 0.18 99.30 0.70 0.00 0.00 0.00 

LS_1_c_pt09 88.74 0.00 0.00 0.00 0.04 0.81 0.02 0.02 0.01 98.95 1.05 0.00 0.00 0.00 

LS_1_c_pt10 98.47 0.00 0.00 0.04 0.11 0.56 0.00 0.04 0.01 99.30 0.65 0.00 0.05 0.00 

LS_1_c_pt11 98.04 0.17 0.00 0.04 0.11 0.84 0.76 0.03 2.06 98.77 1.02 0.15 0.05 0.00 

LS_1_d_pt12 98.43 0.01 0.02 0.02 0.07 0.34 0.03 0.03 0.30 99.60 0.40 0.00 0.00 0.00 

LS_1_d_pt13 97.47 0.40 0.01 0.01 0.08 0.71 0.36 0.06 0.97 98.79 0.86 0.35 0.00 0.00 

LS_1_d_pt14 98.88 0.17 0.02 0.00 0.07 1.02 0.81 0.04 1.55 98.63 1.22 0.15 0.00 0.00 

JS_2687_a_pt01 100.18 0.06 0.06 0.00 0.03 1.51 0.03 0.03 0.01 98.15 1.75 0.05 0.00 0.05 
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Table 4:Continued 

 Wt. % carbonate (all elements) MOLE % (normalized for Mg, Ca, Fe, Mn, Sr only)  

Analysis 

CaCO3 

(wt%) 

FeCO3 

(wt%) 

SrCO3 

(wt%) 

MnCO3 

(wt%) 

S(CO3)3 

(wt%) 

MgCO3 

(wt%) 

Al2(CO3)3 

(wt%) 

Na2CO3 

(wt%) 

Si(CO3)2 

(wt%) 

Ca 

(mole%) 

Mg 

(mole%) 

Fe 

(mole%) 

Mn 

(mole%) 

Sr 

(mole%) 

JS_2687_a_pt02 100.25 0.09 0.03 0.00 0.02 0.55 0.04 0.03 0.09 99.25 0.65 0.10 0.00 0.00 

JS_2687_a_pt03 100.80 0.08 0.04 0.01 0.04 0.48 0.00 0.01 0.01 99.35 0.55 0.05 0.00 0.05 

JS_2687_a_pt04 99.34 0.06 0.06 0.01 0.00 2.08 0.01 0.02 0.00 97.50 2.40 0.05 0.00 0.05 

JS_2687_b_pt05 100.52 0.05 0.00 0.00 0.00 1.56 0.00 0.01 0.06 98.15 1.80 0.05 0.00 0.00 

JS_2687_b_pt06 100.25 0.07 0.00 0.00 0.02 1.04 0.08 0.03 0.36 98.74 1.20 0.05 0.00 0.00 

JS_2687_b_pt07 100.84 0.07 0.11 0.00 0.01 0.40 0.13 0.07 0.10 99.40 0.45 0.05 0.00 0.10 

JS_2687_b_pt08 99.66 0.02 0.09 0.00 0.05 0.75 0.02 0.03 0.60 99.05 0.90 0.00 0.00 0.05 

JS_2687_c_pt09 98.72 0.02 0.03 0.02 0.15 0.95 0.02 0.10 0.37 98.84 1.16 0.00 0.00 0.00 

JS_2687_c_pt10 101.10 0.15 0.05 0.39 0.01 0.58 0.00 0.02 0.09 98.85 0.65 0.10 0.35 0.05 

JS_2687_c_pt11 100.67 0.07 0.06 0.00 0.00 0.25 0.01 0.03 0.00 99.60 0.30 0.05 0.00 0.05 

JS_2687_c_pt12 99.23 0.03 0.06 0.00 0.00 1.87 0.02 0.04 0.04 97.75 2.20 0.00 0.00 0.05 

JS_2687_c_pt13 100.48 0.04 0.07 0.00 0.02 1.43 0.02 0.02 0.05 98.25 1.65 0.05 0.00 0.05 

JS_2687_d_pt14 99.68 0.05 0.13 0.01 0.04 0.74 0.00 0.02 0.02 99.00 0.85 0.05 0.00 0.10 

JS_2687_d_pt15 100.19 0.08 0.08 0.01 0.04 0.77 0.01 0.02 0.09 99.00 0.90 0.05 0.00 0.05 

JS_2687_d_pt16 101.11 0.08 0.06 0.00 0.00 0.58 0.01 0.02 0.07 99.25 0.65 0.05 0.00 0.05 

3dolomite_stdck#1 53.71 0.12 0.00 0.01 0.05 45.44 0.04 0.00 0.15 49.82 50.08 0.10 0.00 0.00 

JS_2684_a_pt01 59.96 0.03 0.02 0.01 0.32 39.03 0.02 0.10 0.15 56.40 43.60 0.00 0.00 0.00 

JS_2684_a_pt02 61.30 0.03 0.06 0.03 0.35 37.43 0.01 0.07 0.06 57.92 41.98 0.00 0.05 0.05 

JS_2684_a_pt03 61.28 0.07 0.00 0.05 0.31 37.55 0.07 0.09 1.29 57.81 42.08 0.05 0.05 0.00 

JS_2684_a_pt04 98.06 0.05 0.02 0.01 0.16 2.83 0.07 0.05 0.19 96.64 3.31 0.05 0.00 0.00 

JS_2684_b_pt05 58.32 0.02 0.03 0.02 0.24 40.39 0.05 0.08 0.04 54.89 45.11 0.00 0.00 0.00 

JS_2684_b_pt06 36.58 12.89 0.00 0.41 0.12 31.33 9.83 0.84 116.62 42.90 43.62 13.07 0.41 0.00 

JS_2684_b_pt07 59.31 0.07 0.02 0.01 0.21 39.32 0.02 0.05 0.00 55.94 44.01 0.05 0.00 0.00 

JS_2684_b_pt08 58.76 0.01 0.00 0.00 0.22 40.44 0.02 0.07 0.05 55.04 44.96 0.00 0.00 0.00 

JS_2684_c_pt09 60.44 0.06 0.00 0.02 0.42 38.47 0.02 0.11 1.16 56.93 43.02 0.05 0.00 0.00 

JS_2684_c_pt10 58.61 0.02 0.03 0.01 0.17 40.38 0.03 0.05 0.05 54.99 45.01 0.00 0.00 0.00 

JS_2684_c_pt11 58.22 0.00 0.00 0.00 0.13 40.65 0.02 0.09 0.01 54.69 45.31 0.00 0.00 0.00 

JS_2684_c_pt12 59.42 0.03 0.08 0.03 0.13 39.13 0.00 0.09 0.06 56.12 43.83 0.00 0.00 0.05 
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Table 5 

Sample names with facies type, name of outcrop location collected from, and 

coordinates of sample location. 

 

Location Facies Sample Waypoint Longitude Latitude 

Elevation 

(m) 

1000 

Steps Acropora cervicornis floatstone 26-1 273 -68.321653 12.21093 7.82 

Bike Trail Coralgal grainstone/packstone 4BON1 5 -68.31203 12.21164 43 

Bike Trail Coralgal grainstone/packstone 4BON2 6 -68.31236 12.21146 44 

Bike Trail Coralgal grainstone/packstone 4BON3 7 -68.31272 12.2113 40 

Bike Trail Coralgal grainstone/packstone 4BON4 8 -68.313 12.21109 39 

Bike Trail Coralgal grainstone/packstone 19BON1 78 -68.3109 12.21226 43 

Bike Trail Amphistegina sp. grainstone 19BON2 79 -68.29456 12.22399 94 

Bike Trail Dolomite 19BON3 80 -68.30119 12.22023 102 

Bike Trail Dolomite 19BON4 81 -68.30158 12.21982 94 

Bike Trail Dolomite 19BON5 83 -68.30206 12.21933 91 

Bike Trail Dolomite 19BON6 84 -68.30465 12.21663 82 

Bike Trail Dolomite 19BON7 85 -68.30763 12.21359 80 

Bike Trail Dolomite 19BON8 86 -68.30868 12.21296 71 

Bike Trail Coralgal grainstone/packstone 19BON9 87 -68.30914 12.21288 60 

Bike Trail Amphistegina sp. grainstone 15-5-1 459 -68.290225 12.229172 58.04 

Bike Trail Amphistegina sp. grainstone 15-2-1 461 -68.292046 12.227762 68.62 

Boca 

Onima Montastrea annularis framestone 26-7-1 295 -68.311362 12.253295 13.82 

Boca 

Onima Montastrea annularis framestone 26-7-2 295 -68.311362 12.253295 13.82 

Boca 

Onima Montastrea annularis framestone 26-8-1 296 -68.309407 12.248896 12.62 

Boca 

Onima Dolomite 26-8-2 296 -68.309407 12.248896 12.62 

Boca 

Onima Montastrea annularis framestone 26-8-3 296 -68.309407 12.248896 12.62 

Boca 

Onima Dolomite 26-8-4 296 -68.309407 12.248896 12.62 

Boca 

Onima Montastrea annularis framestone 26-8-5 296 -68.309407 12.248896 12.62 

Boca 

Onima Dolomite 26-8-6 296 -68.309407 12.248896 12.62 

Boca 

Onima Dolomite 26-8-7 296 -68.309407 12.248896 12.62 

Bolivia Dolomite 20BON1 88 -68.28689 12.23526 25 

Bolivia Coralgal grainstone/packstone 8-3_1 365 -68.337996 12.217329 21.27 
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Table 5: Continued 

Location Facies Sample Waypoint Longitude Latitude 

Elevation 

(m) 

Bolivia Coralgal grainstone/packstone 8-3_2 365 -68.337996 12.217329 21.27 

Bolivia Coralgal grainstone/packstone 13-6-1 372 -68.333004 12.264884 15.75 

Bolivia Acropora palmata rudstone 12-2_1 428 -68.210291 12.212714 10.46 

Bolivia Acropora palmata rudstone 12-2_2 429 -68.210743 12.217417 9.98 

Bolivia Acropora palmata rudstone 12-2_3 429 -68.210743 12.217417 9.98 

Bolivia Acropora palmata rudstone 12-2_4 429 -68.210743 12.217417 9.98 

Bolivia Acropora palmata rudstone 12-2_5 429 -68.210743 12.217417 9.98 

Bolivia Acropora palmata rudstone 12-3_1 430 -68.225047 12.219576 5.65 

Bolivia Acropora palmata rudstone 12-3_2 430 -68.225047 12.219576 5.65 

Bolivia Acropora palmata rudstone 12-3_3 430 -68.225047 12.219576 5.65 

Bolivia Coralgal grainstone/packstone 12-4_1 431 -68.237411 12.221696 11.9 

Bolivia Coralgal grainstone/packstone 12-4_4 431 -68.237411 12.221696 11.9 

Bolivia Coralgal grainstone/packstone 12-5_1 432 -68.255795 12.226326 6.13 

Bolivia Coralgal grainstone/packstone 12-5_2 432 -68.255795 12.226326 6.13 

Bolivia Montastrea annularis framestone 12-6_1 433 -68.276073 12.233363 13.58 

Bolivia Montastrea annularis framestone 12-7_1 434 -68.257085 12.231567 2.53 

Bolivia Montastrea annularis framestone 12-8_1 435 -68.238875 12.227245 10.22 

Bolivia Montastrea annularis framestone 12-8_2 435 -68.238875 12.227245 10.22 

Bolivia Dolomite 15-3-1 464 -68.276913 12.230173 29.21 

Bolivia Coralgal grainstone/packstone 15-4-1 465 -68.279132 12.230351 28.72 

Bolivia Coralgal grainstone/packstone 12-4_2 - - - - 

Bolivia Coralgal grainstone/packstone 12-4_3 - - - - 

Fontein Montastrea annularis framestone 26-2-1 275 -68.300061 12.239426 32.33 

Fontein (Tufa) 26-3-1 276 -68.299959 12.23963 24.88 

Fontein (Tufa) 26-3-2 276 -68.299959 12.23963 24.88 

Goto 

Meer Dolomite 25-4 260 -68.375169 12.231382 59.73 

Goto 

Meer Dolomite 25-5 261 -68.37518 12.231345 50.84 

Goto 

Meer Coralgal grainstone/packstone 25-6 262 -68.374596 12.230864 43.38 

Goto 

Meer Coralgal grainstone/packstone 25-7 263 -68.374621 12.230794 29.21 

Goto 

Meer Coralgal grainstone/packstone 25-8 264 -68.374489 12.230733 19.59 

Goto 

Meer Coralgal grainstone/packstone 25-9 264 -68.374489 12.230733 19.59 
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Table 5: Continued 

Location Facies Sample Waypoint Longitude Latitude 

Elevation 

(m) 

Goto 

Meer Coralgal grainstone/packstone 25-10 265 -68.374358 12.230567 8.06 

Goto 

Meer Coralgal grainstone/packstone 25-11 266 -68.374453 12.230882 1.57 

Goto 

Meer Coralgal grainstone/packstone 25-12 267 -68.374539 12.230971 2.05 

Goto 

Meer Coralgal grainstone/packstone 25-13 268 -68.374646 12.231553 27.76 

Goto 

Meer Coralgal grainstone/packstone 25-14 269 -68.374797 12.231773 18.39 

Goto 

Meer Coralgal grainstone/packstone 25-15 270 -68.374832 12.231621 15.51 

Rincon 

south Coralgal grainstone/packstone 13-8-1 447 -68.329132 12.226513 102.75 

Santa 

Barbara Dolomite 20BON2 89 -68.27593 12.19124 70 

Seru 

Grandi Dolomite 15BON1 53 -68.35737 12.29171 12 

Seru 

Grandi Montastrea annularis framestone 15BON2 54 -68.35772 12.2924 10 

Seru 

Grandi Montastrea annularis framestone 15BON3 55 -68.35819 12.29415 10 

Seru 

Grandi Montastrea annularis framestone 15BON4 57 -68.35847 12.2947 10 

Seru 

Grandi Dolomite 26-6-1 288 -68.356883 12.291249 18.39 

Seru 

Grandi Dolomite 26-6-3 288 -68.356883 12.291249 18.39 

Seru 

Grandi Dolomite 26-6-4 288 -68.356883 12.291249 18.39 

Seru 

Grandi Montastrea annularis framestone 27-1-1 298 -68.358301 12.295969 10.7 

Seru 

Grandi Montastrea annularis framestone 27-2-1 301 -68.358745 12.295473 4.21 

Seru 

Grandi Montastrea annularis framestone 27-3-1 302 -68.358477 12.29468 13.58 

Seru 

Grandi Montastrea annularis framestone 27-4-1 303 -68.358139 12.293848 26.8 

Seru 

Grandi Dolomite 27-5-1 305 -68.357425 12.292118 22.48 

Seru 

Grandi Montastrea annularis framestone 27-7-1 306 -68.358275 12.289565 37.86 

Seru 

Grandi Dolomite 27-8-1 307 -68.358545 12.290161 29.21 

Seru 

Grandi Dolomite 27-9-1 309 -68.35725 12.2899 27.52 

Seru 

Grandi Dolomite 27-10-2 310 -68.35725 12.2899 -0.6 

Seru 

Grandi Montastrea annularis framestone 13-1-1 437 -68.356522 12.290214 15.99 
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Table 5: Continued 

Location Facies Sample Waypoint Longitude Latitude 

Elevation 

(m) 

Seru 

Grandi Dolomite 13-2-1 438 -68.356754 12.289906 12.86 

Seru 

Grandi Dolomite 13-2-2 438 -68.356754 12.289906 12.86 

Seru 

Grandi Montastrea annularis framestone 13-3-1 440 -68.358181 12.289801 40.26 

Seru 

Grandi Montastrea annularis framestone 13-3-2 440 -68.358181 12.289801 40.26 

Seru 

Grandi Dolomite 13-4-1 441 -68.358876 12.290511 44.83 

Seru 

Grandi Montastrea annularis framestone 13-5-1 442 -68.358787 12.290594 37.38 

Seru 

Grandi Montastrea annularis framestone 13-5-2 442 -68.358787 12.290594 37.38 

Seru 

Grandi Montastrea annularis framestone 14-1-1 449 -68.357088 12.289933 24.4 

Seru 

Grandi Dolomite 14-1-2 449 -68.357088 12.289933 24.4 

Seru 

Grandi Dolomite 14-2-1 450 -68.356867 12.289964 20.55 

Seru 

Grandi Montastrea annularis framestone 14-3-1 451 -68.35697 12.290966 24.88 

Seru 

Grandi Montastrea annularis framestone 14-4-1 452 -68.35806 12.291121 30.89 

Seru 

Grandi Dolomite 14-5-1 453 -68.35936 12.291108 40.02 

Seru 

Grandi Dolomite 14-6-1 454 -68.359756 12.291041 45.55 

Seru 

Grandi Dolomite 14-7-1 455 -68.359576 12.293661 31.85 

Seru 

Grandi Dolomite 14-8-10 456 -68.360058 12.293381 59.49 

Seru 

Grandi Montastrea annularis framestone 14-9-1 457 -68.358898 12.294064 36.66 

Seru 

Grandi Dolomite 

26-6-

unlabeled - - - - 

Seru 

Largu Amphistegina sp. grainstone 16BON1 61 -68.27079 12.19332 102 

Seru 

Largu Amphistegina sp. grainstone 16BON2 64 -68.27076 12.19331 101 

Seru 

Largu Amphistegina sp. grainstone 16BON3 64 -68.27076 12.19331 101 

Seru 

Largu Amphistegina sp. grainstone 16BON4 71 -68.27082 12.19342 112 

Seru 

Largu Amphistegina sp. grainstone 16BON5 74 -68.2693 12.19349 113 

Seru 

Largu Amphistegina sp. grainstone 16BON6 75 -68.27014 12.19332 115 

Seru 

Largu Amphistegina sp. grainstone 16BON7 76 -68.2702 12.19328 108 
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Table 5: Continued 

Location Facies Sample Waypoint Longitude Latitude 

Elevation 

(m) 

Tolo Mixed Coral Framestone 9-1_3 366 -68.339001 12.218228 23.92 

Tolo Mixed Coral Framestone 9-1_4 367 -68.340412 12.21799 26.8 

Tolo Mixed Coral Framestone 9-2_1 368 -68.341516 12.217329 11.9 

Tolo Mixed Coral Framestone 9-2_2 368 -68.341516 12.217329 11.9 

Tolo Mixed Coral Framestone 9-2_3 368 -68.341516 12.217329 11.9 

Tolo Mixed Coral Framestone 9-2_4 369 -68.341276 12.217704 28.48 

Tolo Dolomite 9-3_1 371 -68.323218 12.25842 13.34 

Tolo Mixed Coral Framestone 9-4_1 374 -68.281251 12.203296 119.33 

Tolo Mixed Coral Framestone 15-5-1 469 -68.258949 12.033917 8.06 

Tolo Mixed Coral Framestone 9-1_1 - - - - 

Tolo Mixed Coral Framestone 9-1_2 - - - - 
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Figure 34: Comparing dolomite samples using paired Cathodoluminescence (CL) and 

plain light images.  Seru Grandi, Sample 26-6-3; Boca Onima, Sample 26-8-4; Bolivia, 

Sample 15-3-1; Tolo, Sample 9-3-1; Santa Barbara, Sample 20BON2. 
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Figure 34 continued: Paired Cathodoluminescence (CL) and plain light images.  Tolo, 

Sample 9-3-1; Santa Barbara, Sample 20BON2. 

  



 

 

112 

 

Seru Grandi – Sample has luminescence, with both matrix and bioclasts (red algae) 

luminescing.  The matrix is composed of microcrystalline quartz and luminesces to a 

dull to moderate intensity of orange.  The red algae is of moderate intensity of orange-

pink color [Fig. 1]. Sample 26-6-3. 

Boca Onima - This sample luminesces more strongly than Seru Grandi’s samples with 

the matrix being medium to bright orange and the red algae medium orange-red in color.  

Matrix is still microcrystalline so any growth pattern within the grains is not obvious.  

Dolomite near pores do not luminesce as bright as dolomite away from pores [Fig. 1]. 

Sample 26-8-4. 

Bolivia – This sample has red algae present which luminesces to a dull orange-pink 

color.  Microcrystalline dolomite grains do not luminesce, or are a very dull blue [Fig.1]. 

Sample 15-3-1. 

Tolo - Sample has very dull luminescence in the microcrystalline matrix, with a brown 

color.  Red algae is much brighter, with medium intensity and a red-orange color.  No 

observable growth patterns within matrix dolomite [Fig. 2]. Sample 9-3-1. 

Santa Barbara – Sample is much coarser than all of the second terrace microcrystalline 

dolomite, and exhibits a sucrosic texture.  Grain boundaries are euhedral and rhombic.  

Luminescence ranges from a low intensity to a very high intensity, with colors from 

brown to yellow.  The larger grains contain the most luminescent (yellow) thin bands 

within the grains, with one per grain if present.  These are located varying from within 

the middle to halfway within the crystals.  The dull brown luminescence is located on 
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the outside of the grains.  The smallest grains are entirely dull brown, or black due to no 

luminescence [Fig. 2]. Sample 20BON2. 

 

 


