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ABSTRACT 

 

Chronic hepatitis is an important disease in dogs that can lead to hepatic fibrosis, 

portal hypertension, and hepatic encephalopathy. Histological assessment of liver biopsy 

specimens is currently required to definitively diagnose chronic hepatitis and hepatic 

fibrosis. To evaluate inter-observer agreement arising from the assessment of canine 

hepatic fibrosis and necroinflammatory activity, six pathologists assigned scores to 

histological sections of canine livers. To assess the diagnostic utility of extracellular 

components as serum markers of hepatic fibrosis, dogs with hepatobiliary disease and 

healthy dogs were enrolled. For the dogs with hepatobiliary disease hepatic fibrosis was 

histologically scored. To assess the utility of urine N-methylhistamine as a marker of 

mast cell mediated inflammation, urine N-methylhistamine to creatinine ratios were 

measured in dogs with hepatobiliary disease and healthy control dogs. Urine N-

methylhistamine to creatinine ratios were compared to hepatic mast cell counts in dogs 

with hepatobiliary disease. To elucidate the relationship between plasma ammonia 

concentration and severity of hepatic encephalopathy, and to determine whether factors 

that precipitate hepatic encephalopathy in humans are associated with the presence of 

hepatic encephalopathy in dogs previously treated for the disease, the medical records of 

dogs diagnosed with hepatic encephalopathy were retrospectively reviewed. 

There was fair and poor agreement between pathologists assessing hepatic 

fibrosis and necroinflammation, respectively. This suboptimal agreement needs to be 

taken into account by clinicians making decisions based on hepatic histopathology 
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reports. Despite their diagnostic utility for diagnosing hepatic fibrosis in humans the 

results of this work do not support the utility of the extracellular matrix components 

studied here to discriminate between dogs with and without hepatic fibrosis. A subset of 

dogs with hepatobiliary disease had mildly increased urine N-methylhistamine to 

creatinine ratios, suggesting mast cell mediated inflammation. However, there was no 

correlation between urine N-methylhistamine to creatinine ratio and hepatic mast cell 

counts. Severity of hepatic encephalopathy was not significantly correlated with plasma 

ammonia concentrations and none of the putative precipitating factors for hepatic 

encephalopathy were associated with the presence of clinical signs of the disease at 

hospital admission. Further work is needed to better define the pathogenesis of canine 

hepatic encephalopathy.
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NOMENCLATURE 

 

APSC Acquired portosystemic collaterals 

CH Chronic hepatitis 

CI Confidence interval 

CPSS Congenital portosystemic shunt 

ELISA Enzyme-linked immunosorbent assay 

FP Fibrosed proportion 

HA Hyaluronic acid 

HE Hepatic encephalopathy 

H&E Hematoxylin & eosin 

hpf High power fields 

NMH N-methylhistamine 

OR Odds ratio 

PIIINP Procollagen type III N-terminal peptide 

rs Spearman’s rank correlation coefficient 

SIRS Systemic inflammatory response syndrome 

SD Standard deviation 

TIMP Tissue inhibitor of matrix metalloproteinase 

κ Cohen’s kappa statistic 

κ’ Cohen’s weighted kappa statistic 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Importance and background 

Chronic hepatitis (CH) is a relatively common disease in dogs that can lead to a 

variety of clinical signs and complicating syndromes.1 In a study of dogs undergoing 

necropsy for a variety of reasons, 12% had changes consistent with CH.2 Left untreated, 

or in some cases despite treatment, chronic hepatitis is progressive and can ultimately 

lead to death or euthanasia of the patient. The mean post-biopsy survival times for dogs 

with idiopathic or copper associated CH were 4.1 months or 8.1 months, respectively.3 

Liver biopsy is needed to definitively diagnose CH but, even after this invasive 

procedure, for about two thirds of these dogs, no underlying cause can be identified.3 

Much remains to be discovered about the etiopathogenesis of this disease and its 

complicating syndromes. Additionally, the diagnostic tests currently used by the 

veterinary profession to diagnose and monitor dogs with CH all have considerable 

limitations.4 The development of novel non-invasive tests for the evaluation of patients 

with this condition and the development of a better understanding of the clinical 

ramifications of hepatic histological changes are priorities for investigators in the field of 

canine hepatology. 
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Etiopathogenesis of chronic hepatitis 

Chronic hepatitis is a syndrome that is histologically characterized by 

hepatocellular necrosis or apoptosis, a mononuclear or mixed inflammatory infiltrate, 

regeneration, and fibrosis.5 A variety of factors can lead to hepatic injury and 

inflammation in dogs, including: drugs (e.g. phenobarbital), toxins (e.g., cycads, 

aflatoxins, Amanita phalloides, and blue-green algae), infectious agents (e.g., Leptospira 

spp., canine adenovirus-1, Heterobilharzia americana, and Bartonella sp.), hepatic 

copper accumulation, and possibly autoimmune disease.6 However, some of these 

factors, such as Amanita phalloides intoxication, are more likely to cause acute liver 

injury than CH. In most dogs with CH no underlying cause can be identified and the 

condition is termed idiopathic CH.3,7 

Hepatic copper accumulation is identified as the underlying cause in 

approximately one third of dogs with CH.3 The liver is the principal recipient of copper 

that is absorbed from the gastrointestinal tract. Free copper ions can lead to the 

formation of hydroxyl radicals and subsequently cause oxidative damage to the liver.8 

Copper can accumulate in the liver due to defects in copper metabolism, cholestasis, or 

possibly increased dietary copper intake.9,10 The following breeds of dogs are proven or 

suspected to be predisposed to primary copper accumulation: Bedlington Terrier, West 

Highland White Terrier, Scottish Terrier, Skye Terrier, Labrador Retriever, Dalmatian, 

and Doberman Pincher.8 In the Bedlington Terrier a mutation of the COMMD1 gene that 

encodes a cellular copper exporter has been identified.11 It is also possible to diagnose 

copper associated CH in other dog breeds and in mixed breed dogs. Primary copper 
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accumulation tends to occur in the centrilobular zones of the liver. In contrast, when 

copper accumulates secondary to cholestasis it tends be found in the periportal zones of 

the liver and hepatic copper concentrations are typically lower than those found in dogs 

with primary hepatic copper accumulation.8,9 

As previously discussed CH can lead to a number of serious complications. 

Chronic inflammation of the liver can lead to fibrosis, which can diminish hepatic 

function as hepatocytes are replaced by collagen and can contribute to the development 

of portal hypertension.1 As the liver has a large functional reserve capacity, loss of liver 

function is detected relatively late in the course of CH. Portal hypertension and 

decreased hepatic synthesis of albumin contribute to the development of ascites, which is 

a poor prognostic indicator in these dogs.12 This is probably because ascites occurs late 

in the course of CH and usually signifies that irreversible changes to the portal 

circulation have occurred. Hepatic portal hypertension can also lead to the development 

of acquired portosystemic collateral blood vessels (APSC).1 These allow ammonia rich 

blood from the splanchnic circulation to bypass the liver, which in turn may lead to 

hepatic encephalopathy (HE). Dogs with hepatic disease also seem to be prone to 

gastrointestinal ulceration and erosion, possibly because of the effects of portal 

hypertension.13 

 

Hepatic fibrosis 

 Fibrosis is the deposition of excess fibrous connective tissue in an organ or 

tissue.14 Collagen deposition is an essential part of the natural wound healing process, 
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but this normal mechanism of tissue repair can become pathological. Although 

previously thought to be permanent, extracellular matrix deposition is a dynamic process 

and, because of this, fibrosis is a potentially reversible phenomenon.15 The development 

of hepatic fibrosis is an important event in the progression of liver disease and has been 

shown to be a negative prognostic factor in humans with chronic hepatitis.16 A variety of 

disease processes can lead to hepatic fibrosis including: reactions to drugs and toxins, 

infectious diseases, autoimmune disease, vascular disease, and biliary obstruction. The 

commonality amongst these diseases is the development of chronic hepatic 

inflammation.17 

 Extracellular matrix is the scaffolding that holds tissues together. In health there 

is a balance between matrix deposition and removal. In contrast, in fibrosis there is an 

imbalance where the rate of accumulation of matrix exceeds the rate of removal.14 The 

matrix consists of macromolecules such as collagens, non-collagen glycoproteins, 

matrix-bound growth factors, glycosaminoglycans, proteoglycans, and matricellular 

proteins.17 In a fibrotic liver there is a marked increase of collagen content, including the 

fibril forming collagens (types I, II, and V) and the non-fibril forming collagens (types 

IV and VI).17  

 Extracellular matrix is produced by activated myofibroblast cells and activation 

of these cells is the key step in the development of fibrosis.14 In the liver activated 

hepatic stellate cells are an important source of extracellular matrix.17 Quiescent hepatic 

stellate cells store vitamin A (retinoid) and are found in the subendothelial space 

between hepatocytes and sinusoidal epithelial cells.14 Portal fibrocytes and bone marrow 
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derived fibrocytes can also contribute to matrix production in the liver.18 The relative 

role that each of these potential sources of myofibroblasts plays in the development of 

hepatic fibrosis have been difficult to determine, in part because of the limitations of 

immunohistochemical markers in identifying the origins of myofibroblasts.18 However, 

recent studies using genetic markers suggest that hepatic stellate cells are the major 

contributor.19 Also, it is now accepted that, although epithelial mesenchymal transition 

can occur in the liver, it does not lead to the development of true myofibroblasts.20 

 As well as increased production of connective tissue by activated hepatic stellate 

cells, alterations in the mechanisms responsible for breakdown of extracellular matrix 

are important in the development of hepatic fibrosis.21 Early in the course of fibrosis 

degradation of the normal hepatic matrix occurs.22 Later in the course of disease, failure 

to degrade the excess extracellular matrix leads to progression of fibrosis. In patients 

with progressive fibrosis the activity of matrix-metallopreoteinase-1, which can degrade 

type I collagen, is diminished because of increased expression of tissue inhibitor of 

matrix metalloproteinase (TIMP)-1 and TIMP-2.22,23 

 

Diagnosis of hepatic fibrosis 

 Currently the only way to diagnose hepatic fibrosis in dogs is by histological 

assessment of a liver biopsy specimen. However, the collection of a liver biopsy is by 

nature invasive, there is a risk of hemorrhage,24 and as only a small portion of the organ 

is evaluated, this technique is susceptible to sampling variation.25 The expense and risk 

associated with this procedure means that longitudinal assessment of hepatic fibrosis is 
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rarely performed in canine patients or in a research setting. Because of these 

disadvantages serum markers and imaging techniques that allow the assessment of 

hepatic fibrosis have been developed for use in humans26, and if they could be utilized 

for dogs as well, they would be useful, especially for monitoring response to treatment.  

 In human patients with hepatic fibrosis an increased rate of extracellular matrix 

turnover results in the release of matrix components into the bloodstream.26 Hyaluronic 

acid (HA) is a glycosaminoglycan component of the extracellular matrix that is used as a 

serum biomarker of hepatic fibrosis in humans.26 In one study of humans with chronic 

hepatitis C, the sensitivity and specificity of HA for distinguishing between patients with 

extensive fibrosis and those with milder fibrosis were 86% and 70%, respectively.27 

Hyaluronic acid has previously been shown to be increased in dogs with hepatic disease 

including cirrhosis28 and congenital portosystemic shunts (CPSS).29 However, the ability 

of serum HA measurement to differentiate among dogs with different histological stages 

of hepatic fibrosis has not previously been reported. 

Also, in another study of human patients with chronic hepatitis C, measurement 

of serum procollagen type III N-terminal peptide (PIIINP) concentrations had a 

sensitivity of 92% and a specificity of 76% for differentiating between those patients 

with extensive fibrosis and those with milder fibrosis.27 Serum PIIINP concentrations 

were increased in growing dogs but not in dogs with chronic bronchopulmonary 

disease.30 Serum PIIINP concentrations have not previously been assessed in dogs with 

hepatobiliary disease. 
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Tissue inhibitor of matrix metalloproteinase-1 is a protein that inhibits the action 

of matrix-metalloproteinase-1, thus slowing the degradation of extracellular matrix 

during fibrosis.22 In yet another study of human patients with chronic hepatitis C, 

measurement of serum TIMP-1 concentration had a sensitivity of 75% and a specificity 

of 70% for differentiating between patients with extensive fibrosis and those with milder 

fibrosis.27 To the author’s knowledge serum TIMP-1 concentrations have not previously 

been assessed in dogs with hepatobiliary disease. 

 

Hepatic histological scoring 

In human medicine several grading systems for the assessment of hepatic 

necroinflammatory activity and fibrosis have been developed and are used in clinical 

patients with chronic hepatitis.31 For example, the Ishak system is commonly used to 

score necroinflammatory activity and fibrosis in human liver biopsy specimens.32 The 

grade of necroinflammatory activity is derived from separate scores for periportal 

interface hepatitis, confluent necrosis, focal lytic necrosis, and periportal necrosis. This 

gives clinicians important information about how active the underlying disease process 

is. The stage of fibrosis is scored from 0 (no fibrosis) to 6 (cirrhosis/severely fibrosed 

liver).32 This gives clinicians important information regarding the chronicity of the 

disease process. Despite the extensive use of histological scoring systems in human 

hepatology, there currently is no widely accepted system for use with dogs. Recently, 

several studies in dogs have used a histological scoring system that was adapted from the 

Ishak system. 33,34 This modified system was devised by Drs. van den Ingh, Grinwis, and 
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Rothuizen from the University of Utrecht. Following this protocol necroinflammatory 

activity is graded between 0 (absent) to 5 (very marked), fibrosis is graded between 0 

(absent) to 4 (very marked) and vacuolar change is graded between 0 (absent) to 3 

(severe; Table 1).  

It has been proposed that histological scoring system should fulfill several 

criteria including: acceptable inter-observer agreement, repeatability when the same 

observer performs scoring on different occasions, ease of use, and clinical relevance.31,32 

Poor agreement between pathologists grading the severity of inflammation of 

histological sections prepared from intestinal biopsies collected from dogs has 

previously been documented.35,36 Such disagreement between observers using a scoring 

system complicates the interpretation of these scores. This lack of agreement limits the 

clinical utility of examination of intestinal biopsies for the diagnosis of canine 

enteropathies. To the author’s knowledge the inter-observer agreement associated with 

the histological scoring of fibrosis, necroinflammation, and vacuolar change for canine 

hepatic biopsy specimens has not yet been reported. 

 

Hepatic encephalopathy 

 Hepatic encephalopathy is defined as the presence of neuropsychiatric 

abnormalities in patients with hepatic dysfunction after exclusion of other known brain 

disease.37 In humans, HE is divided into three types according to etiology.37 Type-A HE 

is due to acute liver failure in the absence of pre-existing liver disease. Type-B HE is 

associated with portal systemic bypass without intrinsic hepatocellular disease, for 
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Table 1. Histological grading and staging system for canine chronic hepatitis 

Activity (grade) 

Grade Periportal or periseptal 

interface hepatitis 

Focal lytic necrosis Confluent necrosis 

Absent (0) Absent Absent Absent 

Minimal (1) Very mild 1 focus per 10x objective Absent 

Mild (2) Mild 2-4 foci per 10x objective Absent 

Moderate (3) Moderate 5-10 foci per 10x objective Absent 

Marked (4) Marked >10 foci per 10x objective 

and/orè 

Confluent or bridging necrosis 

Very marked (5) Marked >10 foci per 10x objective 

and/orè 

Bridging or panacinar/multiacinar 

necrosis 

 

Degree of fibrosis (stage) 

Stage Fibrosis Bridging fibrosis Bridging fibrosis with nodule 

formation 

Absent (0) Absent Absent Absent 

Mild (1) Mild fibrous expansion 

(periportal or central) 

Absent Absent 

Moderate (2) Moderate fibrous expansion Some bridging fibrosis 

(PP, CC, or PC) 

Absent 

Marked (3) Marked fibrous expansion Marked bridging fibrosis  

(PP, CC, or PC) 

Absent 

Very marked (4) Marked fibrous expansion Marked bridging fibrosis  

(PP, CC, or PC) 

Present 

 

This scoring system was adapted from the human Ishak scoring system by Drs. van den 

Ingh, Grinwis, and Rothuizen, all from the University of Utrecht.  
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example, congenital portosystemic shunting (CPSS). Type-C HE is associated with 

cirrhosis and portal hypertension or acquired portal systemic shunting, and is 

subcategorized according to duration and characteristics. Episodic HE develops over a 

short period of time and fluctuates in severity. Persistent HE results in cognitive 

dysfunction and can be classified as being mild, severe, or treatment-dependent.37 Covert 

HE is defined as HE occurring in patients with normal mental and neurological status, 

but abnormal results on specific psychometric tests.38 

 Ammonia is believed to play a central role in the pathogenesis of HE and, in a 

study of humans with cirrhosis, there was a moderate positive correlation between total 

venous plasma ammonia concentration and the grade of HE.39 Ammonia is believed to 

lead to glutamine accumulation in astrocytes, with subsequent astrocyte swelling and 

neurological dysfunction.1,40 Venous plasma ammonia concentrations are commonly 

increased in dogs with HE, but it is possible for dogs to have HE and have plasma 

ammonia concentrations that are within the reference interval.41 The aforementioned 

study also found a positive correlation between plasma ammonia concentrations and the 

severity of HE.41 Measurement of plasma ammonia concentration, where available, often 

plays a role in the diagnosis of canine HE. In contrast, in human patients measurement of 

plasma ammonia concentration is not relied upon to diagnose HE.40 

 Several factors are known to precipitate HE in human patients (Table 2) with at 

least one factor identified in 88 to 90% of those affected.42,43 Identifying and addressing 

these precipitating factors plays an important role in patient management, as individuals 

with one or more of these factors have a worse prognosis than those without.42 The most  
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Table 2. Factors believed to precipitate hepatic encephalopathy in humans 

Precipitating factor Proposed mechanism of action 

Sepsis Inflammatory mediators have a synergistic effect with ammonia, increase blood 

brain barrier permeability, and lead to altered neurotransmission 

Gastrointestinal hemorrhage Increased protein load and ammoniagenesis 

Constipation Dehydration, electrolyte abnormalities, small intestinal dysbiosis, and bacterial 

translocation 

Excess dietary protein Increased ammoniagenesis 

Dehydration Electrolyte changes, increased renal ammoniagenesis 

Drugs  Sedative agents (benzodiazepines, opioids) cause depression of cerebral 

function 

Diuretics (cause electrolyte imbalances, alkalosis and dehydration) 

Hypokalemia Leads to movement of intracellular potassium into the extracellular space, 

extracellular alkalosis, and trapping of ammonium ions within cells 

Hyponatremia Enhanced astrocyte swelling 

Alkalosis Increased access of ammonia to neurons (due to a shift in in the equilibrium 

from ammonium ions to ammonia, which can pass freely through cell 

membranes) 

Poor compliance with lactulose 

therapy 

Increased ammoniagenesis 

Bowel obstruction Dehydration, electrolyte abnormalities, small intestinal dysbiosis, and bacterial 

translocation 

Uremia Increased renal ammoniagenesis 

Superimposed hepatic injury Decreased hepatic conversion of ammonia to urea 
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commonly reported precipitating factors in humans are gastrointestinal bleeding 

(18−76% of patients), constipation (3−52%), diarrhea (12−40%), infection (3−52%), 

hypokalemia (9−70%), hyponatremia (25−38%), and excess dietary protein (9−52%).43-

45 HE has been described in dogs with CPSS and in dogs with APSC due to portal 

hypertension.46 Several factors have been proposed to precipitate HE in dogs, including: 

gastrointestinal hemorrhage, hypokalemia, hyponatremia, high protein diets, and 

alkalosis.47 In a recent retrospective study of dogs with CPSS, hyperammonemia, and 

systemic inflammatory response syndrome (SIRS) were found to be associated with HE 

but hyponatremia was not.48 To the author’s knowledge, the association of other putative 

precipitating factors and HE has not yet been reported in dogs. 

 

Mast cell mediated inflammation 

 As previously mentioned, canine CH is characterized by mononuclear or mixed 

inflammatory cell infiltrates. The role of mast cell mediated inflammation in canine 

hepatobiliary disease is poorly understood and mast cells are not commonly noted during 

histological evaluation of healthy or diseased canine liver specimens. 

 Mast cells are derived from myeloid stem cells and can release a variety of 

inflammatory mediators including histamine, serotonin, serine proteases, heparin, 

thromboxanes, prostaglandins, leukotrienes, and heparin.49,50 In humans there is some 

evidence to support their role in the development of hepatobiliary disease.51 Firstly, mast 

cells have been shown to be present in hepatic tissue from healthy humans, but also in 

those from patients with hepatic disease, including chronic liver disease52, acute 
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hepatitis53, primary biliary cirrhosis54, hepatocellular carcinoma, and 

cholangiocarcinoma.55,56 Patients with chronic hepatitis C virus infection with steatosis 

had higher mast cell densities than those without.57,58 Another study of patients with 

chronic hepatitis C found a positive correlation between mast cell density and fibrosis.58 

In vitro, mast cell proteases appear to have a profibrotic effect by stimulating fibroblast 

proliferation.59 Furthermore, humans with chronic cholestatic hepatic disease frequently 

complain of pruritus and one study found that patients with cholestasis had higher 

plasma histamine concentrations than controls.60 To the author’s knowledge there are 

few studies that have specifically evaluated the role of mast cells in dogs with 

hepatobiliary disease. 

 As mast cell degranulation leads to the release of histamine, which is primarily 

stored in these cells, this substance has been suggested as a potential marker of mast cell 

degranulation.49,50 However, histamine is rapidly metabolized and thus is not a practical 

biomarker.49,50 N-methylhistamine (NMH) is generated when histamine is metabolized 

by N-methyltransferase.61 N-methylhistamine is stable and a method for its measurement 

in canine urine and fecal samples has been developed.61,62 

 

Current challenges in canine hepatology 

 As discussed above, much remains to be studied about the pathogenesis, 

diagnosis, and treatment of CH in dogs. However, some of the most germane challenges 

in canine hepatology are listed below: 
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i) The pathogenesis of chronic hepatitis  

 In humans, the discovery of the role of hepatotrophic viruses in the pathogenesis 

of chronic hepatitis has made it possible to identify the underlying cause of chronic 

hepatitis in most humans with chronic hepatitis. Unfortunately, this has not been the case 

for dogs as for most cases an underlying cause cannot be identified. Part of the problem 

is that chronic hepatitis is often diagnosed late in the course of disease and by that time 

there is little chance of identifying the causative agent. Histology can provide a 

histomorphological diagnosis but this does not necessarily lead to an etiological 

diagnosis. 

 Possible investigative approach − This challenge is probably the hardest of all to 

address as canine chronic hepatitis is probably caused by a variety of underlying causes. 

Powerful molecular biology techniques may provide some answers. Screening for 

viruses using polymerase chain reaction with degenerate primers and sequencing with 

high throughput techniques, followed by the appropriate bioinformatics, may lead to the 

discovery of a previously unrecognized viral or bacterial etiology. Where breed 

dispositions for this disease occur, genome wide association studies may help identify 

genotypes that are at increased risk for chronic hepatitis. Gene expression analysis (RNA 

sequencing, microarray or quantitative real time PCR, proteomics, and metabolomics 

may also provide clues as to the pathogenesis of this disease. However, the results of 

these techniques may reflect what is happening at the time of investigation and not 

reveal what the inciting cause of injury was.  
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ii) Interpretation of histomorphological changes of the liver 

 As mentioned previously, histological assessment of a liver biopsy specimen 

does not always lead to an etiological diagnosis. Additionally, there is often a 

disconnection between the histological findings reported and what these findings 

indicate in terms of diagnosis, prognosis, and treatment for the clinician. This is partly 

because the terminology used to describe these lesions is applied inconsistently, so the 

same change may be described with several different names. The standardized 

terminology recommended by the World Small Animal Veterinary Association liver 

study group should help with this challenge and reduce such inconsistency in the use of 

terminology5 but further standardization would beneficial. 

 Possible investigative approach − a standardized scoring system for lesions seen 

in biopsy specimens from dogs with chronic hepatitis could be very beneficial. This 

would make it easier for clinicians to interpret histology reports, and increase inter-

observer agreement between pathologists, and be very useful in clinical trials and other 

research projects. Several such scoring systems have been described for liver specimens 

from humans. Since the patterns of fibrosis and inflammation are quite similar in human 

and canine chronic hepatitis it should be possible to adapt one of these systems. The 

validity of the system would then need to be determined by assessing inter-observer and 

intra-observer agreement as well as the prognostic value of the system. 
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iii) Non-invasive assessment of hepatic fibrosis 

 Currently the only means of assessing canine hepatic fibrosis is by histological 

evaluation of a liver biopsy specimen. As discussed, this technique has several 

limitations. Because repeat hepatic biopsy is rarely performed the lack of longitudinal 

assessment of hepatic fibrosis in canine patients has proven a major hindrance to 

performing clinical trials for assessing the clinical utility of potentially antifibrotic drugs. 

Serial evaluation of hepatic biopsy specimens for fibrosis would also be beneficial for 

monitoring disease progression and response to therapy for individual patients. Non-

invasive markers of hepatic fibrosis would therefore be beneficial in the diagnosis and 

management of canine CH. 

 Possible investigative approach − in humans the measurement of serum 

concentrations of extracellular matrix components such as HA, PIIINP, and TIMP-1 has 

proved reasonably accurate for the diagnosis of hepatic fibrosis.27 Assessment of the 

diagnostic utility of these biomarkers should also be performed in dogs. This would 

involve measuring the concentrations of these substances in the serum of dogs with and 

without hepatic fibrosis. Hepatic histology could then be used as a gold standard with 

which to compare their accuracy. 

 

iv) Clinical trials of agents used to treat chronic hepatitis 

 There is inadequate data to support the efficacy of many of the drugs and 

nutraceutical agents currently used to treat chronic hepatitis in dogs. Agents that are a 
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priority to investigate include glucocorticoids, cyclosporine, s-adenosyl-l-methionine, 

silymarin, and ursodeoxycholic acid. 

 Possible investigative approach − Multicenter randomized controlled clinical 

trials assessing the efficacy of above agents should be performed. The enrolled patients 

should be well characterized and have appropriate follow up, including repeat biopsy. 

Accurate non-invasive markers for hepatic fibrosis and inflammation could be 

beneficial, as they would allow more frequent assessment of these parameters. 

 

Hypotheses and objectives 

The following hypotheses were formulated for this study: 

i. The use of a histological scoring system in dogs will allow assessment of hepatic 

necroinflammatory activity, fibrosis, and vacuolar change with a high level of 

inter-observer agreement 

ii. Measurement of serum extracellular matrix component concentrations can serve 

as clinically useful diagnostic markers for canine hepatic fibrosis 

iii. N-methylhistamine is a useful biomarker of mast cell induced hepatobiliary 

inflammation in dogs. 

iv. Factors, such as, hyperammonemia, electrolyte abnormalities, and alkalosis that 

are known to precipitate HE in humans also precipitate HE in dogs 
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The objectives to prove or disprove the aforementioned hypotheses are: 

i. Assessment of inter-observer agreement associated with the use of a histological 

scoring system for canine chronic liver disease 

a. To assess the inter-observer agreement associated with the use of a 

scoring system to evaluate hepatic biopsy specimens for 

necroinflammatory activity, fibrosis, and vacuolar change 

b. To compare fibrosis scores assigned to sections of the same biopsy 

specimen stained with hematoxylin and eosin (H&E) and picrosirius red  

c. To compare the fibrosis scores assigned to sections of liver by 

pathologists with data from computer based image analysis 

 

ii. Serum extracellular matrix components as markers of canine hepatic fibrosis 

a. To perform the initial validation of a commercially available enzyme-

linked immunosorbent assay (ELISA) for the measurement of HA in 

humans for use with canine serum 

b. To measure serum concentrations of HA, PIIINP, and TIMP-1 in dogs 

with various hepatobiliary diseases 

c. To evaluate the correlation between serum HA, PIIINP, and TIMP-1 

concentrations and the severity of hepatic fibrosis in dogs 
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iii. Urine N-methylhistamine in dogs with hepatobiliary disease 

a. To compare urine NMH concentration between healthy dogs and dogs 

with various types of hepatobiliary disease  

b. To evaluate the correlation between urine NMH and hepatic mast cell 

counts, hepatic fibrosis, as well as hepatic necroinflammatory activity  

 

iv. Putative precipitating factors for canine HE 

a. To determine if there is a relationship between plasma ammonia 

concentrations and the severity of HE in dogs 

b. To determine what proportion of dogs with HE are affected by factors 

known to precipitate HE in humans 

c. To determine if there is an association between any of these factors and 

the presence of HE at the time of admission to a veterinary teaching 

hospital  
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CHAPTER II 

INTER-OBSERVER AGREEMENT FOR THE HISTOLOGICAL SCORING OF 

THE CANINE LIVER 

 

Introduction 

In human medicine several grading systems for the assessment of hepatic 

necroinflammatory activity and fibrosis have been developed and are applied to patients 

with chronic hepatitis.31 The Ishak32 and METAVIR63 systems are two such systems that 

are commonly used to score necroinflammatory activity and fibrosis in liver biopsy 

specimens collected from human patients with chronic hepatitis. Despite the extensive 

use of histological scoring systems in the field of human hepatology, there is currently 

no widely accepted system for use in dogs. Recently, several studies in dogs have used a 

histological scoring system that was adapted from the human Ishak system by Drs. van 

den Ingh, Grinwis, and Rothuizen from the University of Utrecht.33,34 According to this 

scheme necroinflammatory activity is graded between 0 (absent) to 5 (very marked) and 

fibrosis is graded between 0 (absent) to 4 (very marked; Table 1). 

Histological scoring systems should fulfill several criteria including: acceptable 

agreement between observers, repeatability when the same observer performs scoring on 

different occasions, ease of use, and clinical relevance.31,32. A lack of inter-observer 

agreement limits the utility of scoring systems. Poor agreement between pathologists 

evaluating histological sections of canine intestinal biopsy specimens has previously 

been documented.35,36 Previous studies have evaluated agreement in the 
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histomorphological diagnosis made by different observers assessing needle and wedge 

canine hepatic biopsy specimens64, intra-observer agreement for a single pathologists 

assessing various histological features from hepatic biopsy specimens collected using 

different sampling techniques65, and the agreement in histomorphological diagnosis for a 

single pathologist evaluating different liver lobes from the same dog.66 To the authors’ 

knowledge the inter-observer agreement associated with the histological scoring of 

fibrosis and necroinflammation from canine hepatic biopsy specimens has not previously 

been reported. 

Cohen’s kappa statistic (κ) is frequently used to estimate the agreement of 

observers for data on nominal scales and represents the level of agreement between users 

that is beyond the agreement due to chance alone.67 A κ of 0 represents no agreement 

beyond that due to chance and a κ of 1 represents complete agreement. For nominal 

scoring systems, such as the Ishak system, partial agreement between users may be taken 

into account.68 A weighted kappa statistic (κ’) does this by assigning weights to the 

different levels of disagreement.67 

Computerized image analysis has been used to provide quantification of hepatic 

fibrosis in humans.69 This technique entails differentially staining collagen fibers with a 

histological staining solution, for example picrosirius red. The histological section is 

then digitized and image analysis software is used to calculate the fibrosed proportion 

(FP). This technique may allow a more objective quantification of hepatic fibrosis than 

histological scoring by a pathologist. The FP of histological sections of human liver 

were shown to correlate with the fibrosis score assigned to those sections by a 
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pathologist.69 To the author’s knowledge the use of computerized image analysis for the 

assessment canine hepatic fibrosis has not previously been reported. 

The primary objective of this study was to assess the inter-observer agreement 

associated with the use of a scoring system to evaluate canine liver biopsy specimens for 

fibrosis. The secondary objectives of this study were to assess the inter-observer 

agreement associated with the use of a scoring system to evaluate liver biopsy specimens 

for necroinflammatory activity, to compare fibrosis scores assigned to sections of the 

same biopsy specimen stained with H&E or picrosirius red, and to compare the fibrosis 

scores assigned to picrosirius red stained sections of liver by pathologists with data from 

computer based image analysis. 

 

Materials and methods 

Forty paraffin embedded specimens of canine liver with varying degrees of 

fibrosis and necroinflammatory activity were selected from tissue archives at Texas 

A&M University. The sections were primarily selected to represent the full severity 

range of hepatic fibrosis. Ten similar specimens were obtained from the Department of 

Veterinary Pathobiology at North Carolina State University. Thirty-six dogs had chronic 

hepatopathies, 11 were considered to be free from liver disease, and three had hepatic 

changes due to congenial portosystemic shunts. No dogs were euthanized, underwent 

liver biopsy, or any other procedure for the purpose of this study. Seventeen paraffin 

embedded blocks contained large wedge biopsies collected at necropsy, 17 contained 

wedge biopsies collected during laparotomy, 11 contained biopsies collected during 
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laparoscopy with a biopsy forceps (typically 4 to 6), and 5 contained punch biopsies 

collected during laparotomy. We opted to use wedge biopsies collected at necropsy, 

laparoscopically collected biopsies, and biopsies collected during laparotomy so that 

inter-observer agreement could be assessed using only adequately sized specimens. Two 

contiguous 5 to 8 µm sections of liver were cut from the paraffin embedded tissue and 

mounted onto separate microscope slides. One section was stained with picrosirius red 

(PolySciences) and counter stained with Weigert’s iron hematoxylin (PolySciences). The 

other section was routinely stained with H&E (Polysciences). Whenever possible the 

sections were stained in batches to ensure consistency. 

 A number from 1 to 100 was randomly assigned to each section, of which 50 

were stained with H&E and 50 with picrosirius red. The sections were then relabeled 

with this number as their only identifier. A digital image of each of section was captured 

using a slide-scanning microscope (Nanozoomer 2.0-HT, Hamamatsu Photonics). Six 

board-certified veterinary pathologists evaluated the scanned sections or slides. For the 

sections stained with picrosirius red the pathologists scored the stage of fibrosis using a 

previously published scoring system.33,34 For the sections of liver stained with H&E the 

pathologists evaluated the stage of fibrosis and the grade of necroinflammatory activity 

using the same system. The pathologists were blinded to the identity of the sections they 

were assessing, the scores assigned by the other pathologists, and the results of image 

analysis. 

 Image analysis software (ImagePro Premier, v9.1, MediaCybernetics) was used 

to calculate the FP of each scanned section stained with Picrosirius red at Texas A&M 
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University (n = 40). Briefly, smart segmentation was used to discriminate the red stained 

collagen fibers. The FP was not calculated for sections from North Carolina State 

University as a different staining protocol was used so that the same segmentation 

settings could not be used. For two sections from Texas A&M University it was not 

possible to discriminate collagen using the same segmentation settings so these sections 

were removed from this part of the study. For the remaining 38 sections the FP was 

calculated as the area of the section stained red (collagen fibers) divided by the total 

stained area of the section.  

 To evaluate the inter-observer the agreement κ for each pair of observers was 

calculated. Kappa and κ’ for multiple observers was calculated for each scoring 

category. Kappa and κ’ values were interpreted as follows: poor agreement < 0.20, fair 

agreement 0.21−0.40, moderate agreement 0.41−0.60, good agreement 0.61−0.80, and 

very good agreement 0.81−1.00.67 The agreement between observers was also 

summarized by calculating the frequency of scores assigned by each of the 15 possible 

pairs of pathologists. The median fibrosis stage assigned to each case for the sections 

stained with picrosirius red and H&E was compared using the Wilcoxon signed-rank 

test. The level for statistical significance was set at α < 0.05. Spearman’s rank 

correlation coefficient was used to assess the strength of the relationship between the 

median fibrosis score assigned to each picrosirius red stained section and FP. Statistical 

analyses were performed using a commercially available software package (Stata v12, 

StataCorp). 
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Results 

All 100 sections were deemed to be adequate for analysis by the 6 veterinary 

pathologists.  

Agreement between the pairs of pathologists assigning scores for hepatic fibrosis 

to sections stained with H&E are presented in Figure 1. The median 

(minimum−maximum) κ for each pair was 0.41 (0.1−0.56). Multiuser κ (95% CI) was 

0.35 (0.26−0.44) and multiuser κ’ was 0.59 (0.50−0.70). Assignment of fibrosis scores 

by the 15 possible pairings of pathologists to sections stained with H&E are presented in 

Figure 2. The pairs of pathologists were in complete agreement 49% of the time, differed 

by one score level 41% of the time, and differed by more than 1 score level 11% of the 

time. 

Agreement between the pairs of pathologists assigning scores for hepatic fibrosis 

to sections stained with picrosirius red are presented in Figure 3. The median 

(minimum−maximum) κ for each pair was 0.40 (0.22−0.56). Multiuser κ (95% CI) was 

0.39 (0.30−0.49) and multiuser κ’ was 0.64 (0.55−0.73). Assignment of fibrosis scores 

by the 15 possible pairings of pathologists to sections stained with picrosirius red are 

presented in Figure 4. The pairs of pathologists were in complete agreement 53% of the 

time, differed by one score level 42% of the time, and differed by more than one score 

level 5% of the time. 

Agreement between the pairs of pathologists assigning scores for 

necroinflammatory activity are presented in Figure 5. The median (min−max) κ for each 

pair was 0.19 (-0.03−0.40). Multiuser κ (95% CI) for the assessment of 
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necroinflammatory activity was 0.16 (0.10−0.23) and multiuser κ’ was 0.43 (0.32−0.55). 

Assignment of necroinflammatory scores by the 15 possible pairing of pathologists are 

presented in Figure 6. The percentages represent the frequency at which the 15 possible 

pathologist pairings assigned scores to the sections. The pairs of pathologists were in 

complete agreement 34% of the time, differed by one score level 47% of the time, and 

differed by more than one score level 19% of the time. 

 There was no significant difference in the median scores assigned by the 6 

pathologists for fibrosis between contiguous H&E and picrosirius red stained sections (P 

= 0.248). There was agreement between the scores assigned by an individual observer to 

contiguous H&E and picrosirius red stained sections from the same dog 58% of the time 

(Figure 7) and the median (minimum−maximum) κ for the 6 pathologists was 0.46 

(0.23−0.61). 

 The median FP (minimum−maximum) for the sections stained with picrosirius 

red was 1.8% (0.0−19.6%). There was positive correlation between the median fibrosis 

score assigned to sections stained with picrosirius red at Texas A&M University and FP 

(rs: 0.68; P < 0.0001, Figure 8). 

 

Discussion 

 Using a previously published scoring system there was fair agreement between 

the 6 board-certified veterinary pathologists when assessing canine hepatic fibrosis and 

poor agreement when assessing necroinflammatory activity. There was no significant 
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Figure 1. Pairwise comparison of kappa statistics for the assessment of fibrosis from H&E stained sections 

 Observer 1 2 3 4 5 6 

1   0.47 0.48 0.28 0.41 0.41 

2 0.47   0.56 0.17 0.42 0.35 

3 0.48 0.56   0.14 0.42 0.48 

4 0.28 0.17 0.14   0.18 0.17 

5 0.41 0.42 0.42 0.18   0.44 

6 0.41 0.35 0.48 0.17 0.44   

 

The kappa statistic for each of the 15 possible pairings of veterinary pathologists scoring fibrosis for 50 sections of canine 

liver stained with H&E are presented. 
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Figure 2. Assignment of fibrosis scores by pathologist pairings for H&E stained sections 

Score Absent Mild Moderate Marked Very marked 

Absent 9.9% NA  NA   NA NA  

Mild 12.9% 7.2% NA  NA  NA  

Moderate 5.3% 9.7% 14.7%  NA  NA 

Marked 0.7% 2.4% 11.9% 3.2%  NA 

Very marked 0.0% 0.5% 1.7% 6.0% 13.9% 

 

The percentages represent the frequency at which the 15 possible pathologist pairings assigned hepatic fibrosis scores to the 

sections. The pairs of pathologists were in complete agreement 49% of the time (dark gray), differed by one score level 41% 

of the time (light gray), and differed by more than 1 score level 11% of the time (white). NA = not applicable 
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Figure 3. Pairwise comparison of kappa statistics for the assessment of fibrosis from picrosirius red stained sections 

Observer 1 2 3 4 5 6 

1   0.50 0.40 0.24 0.29 0.48 

2 0.50   0.45 0.29 0.43 0.40 

3 0.40 0.45   0.49 0.39 0.56 

4 0.24 0.29 0.49   0.22 0.27 

5 0.29 0.43 0.39 0.22   0.56 

6 0.48 0.40 0.56 0.27 0.56   

 

The kappa statistic for each of the 15 possible pairings of veterinary pathologists scoring fibrosis for 50 sections of canine 

liver stained with picrosirius red are presented. 
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Figure 4. Assignment of fibrosis scores by pathologist pairings for picrosirius red stained sections 

Score Absent Mild Moderate Marked Very marked 

Absent 5.2% NA NA NA NA 

Mild 9.6% 9.7% NA NA NA 

Moderate 1.7% 14.0% 18.7% NA NA 

Marked 0.3% 1.6% 11.2% 3.7% NA 

Very marked 0.0% 0.0% 1.1% 7.5% 15.7% 

 

The percentages represent the frequency at which the 15 possible pathologist pairings assigned fibrosis scores to the sections. 

The pairs of pathologists were in complete agreement 53% of the time (dark gray), differed by one score level 42% of the time 

(light gray), and differed by more than one score level 5% of the time (white). NA= not applicable 
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Figure 5. Pairwise comparisons of kappa statistics for the assessment of necroinflammatory activity 

Observer  1 2 3 4 5 6 

1   -0.03 0.23 0.14 0.19 0.13 

2 -0.03   0.06 0.26 0.08 0.06 

3 0.23 0.06   0.11 0.22 0.26 

4 0.14 0.26 0.11   0.20 0.37 

5 0.19 0.08 0.22 0.20   0.40 

6 0.13 0.06 0.26 0.37 0.40   

 

The kappa statistic for each of the 15 possible pairings of veterinary pathologists scoring necroinflammatory activity for 50 

sections of canine liver stained with H&E are presented. 
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Figure 6. Assignment of necroinflammatory scores by pathologist pairings 

Score Absent Minimal Mild Moderate Marked Very marked 

Absent 13.2% NA NA NA NA NA 

Minimal 19.3% 9.1% NA NA NA NA 

Mild 6.1% 11.1% 4.9% NA NA NA 

Moderate 2.7% 3.6% 8.7% 3.6% NA NA 

Marked 0.5% 0.7% 2.3% 4.7% 1.5% NA 

Very marked 0.3% 0.5% 0.7% 1.9% 2.9% 1.9% 

 

The percentages represent the frequency at which the 15 possible pathologist pairings assigned scores to the sections. The 

pairs of pathologists were in complete agreement 34% of the time (dark gray), differed by one score level 47% of the time 

(light gray), and differed by more than one score level 19% of the time. NA = not applicable 
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Figure 7. Summary of agreement for individual pathologists scoring fibrosis from contiguous sections of liver stained with 

H&E and picrosirius red 
H

&
E

 

Picrosirius red 

Score Absent Mild Moderate Marked Very marked 

Absent 9% 7% 3% 0% 0% 

Mild 2% 11% 7% 0% 0% 

Moderate 0% 4% 18% 5% 1% 

Marked 0% 0% 3% 6% 4% 

Very Marked 0% 0% 1% 2% 14% 

 

The percentages represent the frequency at which the 6 pathologists assigned that combination of scores for the sections. The 

pathologists were in complete agreement with their other score 58% of the time (dark gray), differed by one score level 36% 

of the time (light gray), and differed by more than one score level 6% of the time (white). 
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Figure 8. Fibrotic proportion and median fibrosis score 

 

Scatter plot of fibrosed proportion calculated by computer assisted image analysis and 

the median fibrosis score assigned by 6 pathologists to picrosirius red stained sections of 

liver from 38 dogs. There was a positive correlation between the median fibrosis scores 

assigned to each section and the fibrotic proportion of the sections as measured by 

computer-assisted image analysis (rs = 0.677; P < 0.0001). 
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difference between the median fibrosis score assigned to sections stained with H&E or 

picrosirius red. There was a positive correlation between the median fibrosis score 

assigned to sections stained with picrosirius red and the FP of these sections. 

In this study there was fair agreement between veterinary pathologists using a 

previously published system to score canine hepatic fibrosis from H&E and picrosirius 

red stained sections with a κ of 0.35 and 0.39, respectively. This is comparable to results 

from a study using the Ishak system to stage hepatic fibrosis in humans where κ was 

determined to be 0.26 to 0.47, indicating fair to moderate agreement.68 When the 

pathologists did not completely agree they often assigned scores that only deviated by 

one level and they only deviated by more than one level 15% and 5% of the time for 

H&E and picrosirius red stained sections, respectively. This partial agreement was 

apparent when κ’ was calculated. Weighted-kappa statistics for H&E and picrosirius red 

stained sections were 0.59 and 0.64, indicating moderate and good agreement, 

respectively. For clinical decision making purposes it may not be essential to have 

complete agreement between pathologists as long as there is partial agreement. For 

example, a clinician may not treat a dog with marked hepatic fibrosis differently from a 

dog with very marked fibrosis. However, further research is needed to better determine 

the clinical implications of differences in the severity of canine hepatic fibrosis and 

necroinflammatory activity. Although the inter-observer agreement associated with 

using this scoring system to assess canine hepatic fibrosis was suboptimal because of the 

level of partial agreement, it may be acceptable for clinical use. Agreement as assessed 

by κ tends to be higher for histological scoring systems with fewer points.4 Thus, for 
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clinical use it may be preferable to simplify this scoring system to a four level scale i.e., 

absent, mild, moderate, and marked. In a research setting, for example to evaluate an 

anti-fibrotic agent in a clinical trial, it may be preferable to have a scoring system with 

more levels to detect small differences between study groups, in which case the issue of 

suboptimal inter-observer agreement should be addressed, potentially by having sections 

evaluated but more than one observer. 

In this study there was poor agreement between pathologists scoring 

necroinflammation with a multiuser κ of 0.19. This lack of agreement is concerning as it 

makes it more difficult for clinicians to confidently make treatment recommendation 

based on histopathological findings. In human medicine it has also proven difficult to 

develop a grading system for hepatic necroinflammatory activity that has acceptable 

inter-observer agreement. This may be because of the complexity and subjectivity of the 

histological grading systems that are necessary to take into consideration all the different 

features of hepatic necroinflammation, such as interface hepatitis, focal necrosis, 

confluent necrosis, and portal inflammation. In a study using the Ishak system to assess 

hepatic necroinflammation in human patients κ for its different components were 

reported to range from 0.11 to 0.41, indicating poor to moderate agreement.68 As is the 

situation in humans31,68, inter-observer agreement was higher for the assessment of 

fibrosis than for necroinflammatory activity. This probably reflects the fact that the 

scoring system for fibrosis is easier to use. For example, bridging fibrosis and nodule 

formation are relatively simple features to identify histologically. The multiuser κ’ for 

necroinflammatory activity was 0.43, indicating moderate inter-observer agreement. 
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This reflected the finding that there was often partial agreement between observers. 

Indeed the scores assigned by pathologists only deviated by more than one level 19% of 

the time. In the veterinary field, lack of inter-observer agreement is not unique to 

histological assessment of the liver. A previous study assessing inter-observer agreement 

when four pathologists assessed sections from 62 dogs and 25 cats undergoing intestinal 

biopsy using the World Small Animal Veterinary Association gastrointetinal 

histopatholoigic templates found poor inter-observer agreement with a κ of -0.01 to 

0.30.36 Preliminary data indicate that inter-observer agreement is improved when this 

scoring system is simplfied.70 Likewise, before use in a clincal setting, it may be 

beneficial to simplify the hepatic necroinflmmatory activity scoring system that we used, 

possibly by collapsing it to four levels like the METAVIR system that is often used to 

assess chronic hepatitis in humans.63 

We hypothesized that fibrosis would be easier to detect on picrosirius red stained 

sections and that these sections would be assigned a higher fibrosis score. However, our 

finding that there was no significant difference in median fibrosis scores assigned to 

H&E and picrosirius red stained sections does not support this hypothesis. There was 

moderate agreement between the fibrosis scores assigned to contiguous H&E and 

picrosirius red stained sections from the same case (median κ: 0.46). However, the 

agreement associated with the evaluation of fibrosis from sections stained with 

picrosirius red, was slightly higher than that from H&E stained sections, κ statistics of 

0.35 and 0.39, respectively. Taken together these findings did not demonstrate a clear 

benefit in staining sections with picrosirius red. However, some pathologists find it 
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easier to assess fibrosis using this stain than with H&E stained sections, in which case its 

use may be worthwhile. 

There was a positive correlation between the median fibrosis scores assigned to 

each section and the fibrotic proportion of the sections as measured by computer-assisted 

image analysis (rs = 0.68; P < 0.0001). This is similar to the findings in a study using 

image analysis to evaluate fibrosis in sections of human livers.69 This technique has 

several potential advantages. Firstly, it is more objective than assessment of fibrosis by 

histological assessment. Additionally, the resulting variable FP is a continuous variable 

whereas the histological fibrosis score is a nominal variable. This could be useful to 

detect small changes in hepatic fibrosis in a research setting. It is important to note that 

the relationship between the median fibrosis score and FP is not linear as the sections 

with the highest median fibrosis scores had disproportionately high FPs. Furthermore, 

this technique does not detect key features in the progression of fibrosis, such as the 

development of bridging fibrosis and therefore it should not be considered to be a direct 

replacement for the histological assessment of fibrosis.69 

This study provides useful information about the inter-observer agreement 

associated with the assessment of canine hepatic fibrosis and necroinflammatory 

activity. However, it is important to discuss several limitations. Kappa is commonly used 

to assess the agreement between observers in biomedical research. However, some 

authors have criticized its use for several reasons. One concern is that κ and κ’ are  

dependent upon the distribution of severity amongst the cases evaluated.71 The cases 

enrolled in this study were primarily selected to represent a wide range of the severity 
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fibrosis and although a wide range of severity of necroinflammatory activity was also 

represented the distribution among median scores was not uniform. Therefore, κ and κ’ 

for the assessment of inter-observer agreement associated with histological scoring 

should be interpreted cautiously for this parameter. The weighting systems used to 

calculate κ’ have been criticized as being too subjective.71 As scoring systems are not 

routinely used for the assessment of the canine liver most of the observers had not 

previously used such a scoring system and only one had used this particular system 

previously. Thus it is possible that if the pathologists had more experience and training 

using the system evaluated, agreement may have improved. The provision of pictorial 

templates to the pathologists may have also help to increase agreement. Additionally, 

our study did not assess intra-observer agreement i.e., the same pathologist assessing the 

same section on different occasions or the effect of the biopsy technique on inter-

observer agreement. This would be worth evaluating in additional studies. Future work 

may also include the reanalysis of the results of this study using a mixed linear model 

that should mitigate some of the concerns about the validity of κ and κ’.  

In conclusion, there was fair inter-observer agreement when veterinary 

pathologists assessed canine hepatic fibrosis and poor agreement when they assessed 

hepatic necroinflammatory activity using this scoring system. This suboptimal 

agreement, especially for necroinflammation, is concerning, and a simplified version of 

the scoring system with less possible levels of change may be preferable in a clinical 

setting as this modification would be expected to improve inter-observer agreement. 

When investigators design clinical studies evaluating these findings, multiple 
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pathologists should evaluate specimens or other techniques, such as computerized image 

analysis, should be used in addition to histological evaluation. This study did not show a 

difference in the fibrosis scores assigned to sections stained with H&E or picrosirius red, 

although the level of inter-observer agreement was slightly higher for the latter. 

Therefore, a clear benefit of the routine staining of hepatic sections with picrosirius red 

was not demonstrated. Computer-assisted image analysis may offer objective and 

repeatable assessment of canine hepatic fibrosis but it is unlikely to be a replacement for 

histological assessment. The utility of this technique for the assessment of hepatic 

fibrosis in dogs should be further evaluated.
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CHAPTER III 

SERUM CONCENTRATIONS OF EXTRACELLULAR MATRIX 

COMPONENTS IN DOGS WITH HEPATOBILIARY DISEASE 

 

Introduction 

The development of hepatic fibrosis is an important event in the progression of 

liver disease and has been shown to be a negative prognostic factor in humans with 

chronic hepatitis.16 Currently, the only way to diagnose hepatic fibrosis in dogs is by 

histological assessment of a liver biopsy specimen. Liver biopsy is by nature invasive, 

there is a risk of hemorrhage24, and as only a small portion of the organ is evaluated, this 

technique is susceptible to sampling variation.25 Because of these disadvantages serum 

markers of hepatic fibrosis have been developed for use in humans.26 

In human patients with hepatic fibrosis an increased rate of extracellular matrix 

turnover results in release of matrix components into the bloodstream.26 Hyaluronic acid 

is a glycosaminoglycan component of the extracellular matrix that is used as a serum 

biomarker of hepatic fibrosis in humans.26 In a study of humans with chronic hepatitis C, 

the sensitivity and specificity of HE for distinguishing between patients with extensive 

fibrosis and those with milder fibrosis were 86% and 70%, respectively.27 Hyaluronic 

acid has previously been shown to be increased in dogs with hepatic disease including 

cirrhosis28 and congenital portosystemic shunts.29 However, the ability of serum HA 

measurement to differentiate among dogs with different histological stages of hepatic 

fibrosis has not previously been reported. 
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In a study of human patients with chronic hepatitis C, measurement of serum 

PIIINP concentrations had a sensitivity of 92% and a specificity of 76% for 

differentiating between those patients with extensive fibrosis and those with milder 

fibrosis.27 Serum PIIINP concentrations were increased in growing dogs but not dogs 

with chronic bronchopulmonary disease.30 Serum PIIINP concentrations have not 

previously been assessed in dogs with hepatobiliary disease. 

Tissue inhibitor of matrix metalloproteinase-1 is a protein that inhibits the action 

of matrix metalloproteinase-1, thus slowing the degradation of extracellular matrix 

during fibrosis.22 In a study of human patients with chronic hepatitis C, measurement of 

serum TIMP-1 concentration had a sensitivity of 75% and a specificity of 70% for 

differentiating between patients with extensive fibrosis and those with milder fibrosis.27 

To the authors’ knowledge serum TIMP-1 concentrations have not previously been 

assessed in dogs with hepatobiliary disease. 

The main objective of this study was to assess the clinical utility of measuring 

HA, PIIINP, and TIMP-1 concentrations for diagnosing canine hepatic fibrosis in dogs. 

The secondary objective of the study was to perform the initial validation of a 

commercially available human HA enzyme-linked immunosorbent assay (ELISA) for 

use with canine serum. 

 

Materials and methods 

Dogs over 1 year of age (over 2 years for large and giant breed dogs) with 

histologically confirmed hepatobiliary disease diagnosed at Gulf Coast Veterinary 
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Specialists or Texas A&M University Veterinary Medical Teaching Hospital between 

3/1/12 and 3/1/13 were enrolled into this prospective observational cross-sectional study. 

This age cutoff was used to avoid enrolling growing dogs. The diagnosis of 

hepatobiliary disease was based on a combination of clinical signs, laboratory testing, 

diagnostic imaging findings, histological evaluation of a liver biopsy specimen, and in 

some cases, findings upon surgical exploration of the abdominal cavity. These dogs were 

divided into four groups: 1) chronic hepatitis; 2) hepatic neoplasia, which could be 

primary or secondary; 3) CPSS; and 4) other hepatobiliary diseases, including vacuolar 

hepatopathy, nodular regeneration, and gallbladder mucocele. Where possible an extra 

liver biopsy specimen was collected from the dogs with hepatobiliary disease for 

evaluation of the severity of fibrosis. 

Healthy staff-owned dogs over 1 year of age (over 2 years of age for large and 

giant breed dogs) were enrolled at the Texas A&M University Veterinary Medical 

Teaching Hospital. The health of these dogs was assessed by use of an owner 

questionnaire, physical examination, complete blood count, serum biochemistry profile, 

and serum pancreas-specific lipase concentration measurement (Spec cPL, IDEXX 

Laboratories). Dogs with clinically important abnormalities were excluded from the 

study. 

The study was approved by the Texas A&M University Institutional Animal Use 

Committee (AUP 2011-215). Informed owner consent was given before enrollment of 

all the dogs. 
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At the time of liver biopsy or immediately prior to euthanasia and necropsy, 3−5 mL of 

blood were collected from the dogs by jugular venipuncture and placed into sterile 

anticoagulant free tubes. Once a firm blood clot had formed, the blood was centrifuged 

at 1,300 g for 15 minutes to separate the serum from the red blood cells. The serum was 

stored at -80 °C until analysis. 

Serum HA concentrations were measured with a commercially available human 

ELISA (Hyaluronan ELISA Kit, Echelon Biosciences). We assessed assay precision by 

calculating the intra-assay coefficients of variation (%CV) for three samples (low, 

medium and high concentration) run six times on the same ELISA plate. Reproducibility 

was assessed by calculating the inter-assay %CV for three samples (low, medium and 

high concentration) run seven times on different days. We assessed analytical accuracy 

by calculating observed to expected ratios (%) when equal volumes of two of four 

canine serum samples were mixed in every possible combination. We assessed assay 

linearity by calculating observed to expected ratios (%) when five samples were serially 

diluted, 1:2, 1:4, 1:8, and 1:16, with sample buffer. Serum PIIINP concentrations were 

measured with a human radioimmunoassay (UniQ PIIINP RIA, Orion Diagnostica) that 

has previously been validated for use with canine serum.30 Serum TIMP-1 

concentrations were measured using a commercially available canine ELISA (TIMP-1 

ELISA, USCN Life Science) that has been validated for use with canine serum by the 

manufacturer. 

 Liver biopsies were fixed in neutral buffered formalin, processed for routine 

histology, and embedded in paraffin. Serial sections of liver were stained with 
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hematoxylin and eosin and picrosirius red (Picrosirius Red Staining Kit, Polysciences). 

Hepatic fibrosis was staged by a board-certified veterinary pathologist (ARH) using a 

previously published five-point scoring system (i.e., absent, mild, moderate, marked, 

very marked; Table 1)33,34, which was adapted from the human Ishak system.32 

Information about the clinical history or serum extracellular matrix component 

concentrations was not provided to the pathologist during the scoring process. 

 The distribution of continuous data was assessed using the Kolmogorov-Smirnov 

test and by visual inspection of frequency histograms. Non-parametric data was 

expressed as the median (minimum−maximum). Parametric data was expressed as the 

mean (±standard deviation). Comparisons of serum concentrations of HA, PIIINP, and 

HA amongst the groups of dogs were performed using the Kruskal-Wallis test, followed 

by post-testing with Dunn’s test as needed. Comparisons of continuous variables 

between two groups of dogs were made using Mann-Whitney U tests. Where 

appropriate, receiver operating characteristic curve analysis was used to assess 

diagnostic accuracy. The relationships between serum HA, PIIINP, and TIMP-1 

concentrations and the hepatic fibrosis stage were assessed using Spearman’s rank 

correlation (rs). A statistical software package was used for these calculations 

(GraphPad, Prism 5, GraphPad Software). Statistical significance was set as P < 0.05. 

 

Results 

Fifty-nine dogs with hepatobiliary disease were enrolled in the study. The 

median age of the dogs was 10 years (minimum−maximum: 1−17). Twenty-four were 
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neutered male (41%), three were intact male (5%), twenty-eight were spayed female 

(47%), and four were intact female (7%). The following breeds were commonly 

represented: five Labrador Retrievers (8%), four Miniature Schnauzers (7%), four 

Yorkshire Terriers (7%), and 17 mixed breed dogs (29%). Twenty-one dogs (36%) had 

chronic hepatitis, 19 had hepatobiliary neoplasia (32%), six dogs (10%) had CPSS, and 

13 (22%) had other hepatobiliary disease. Forty-five healthy dogs were enrolled into the 

study, the median age of these dogs was 4 years (1−13). Fifteen were neutered male 

(33%), one was intact male (2%), 21 were spayed female (47%), and eight were intact 

female (18%). Commonly represented breeds included: five German Shepherd dogs 

(18%), three Miniature Schnauzers (7%), three Labrador Retrievers (7%), three Hounds 

(7%), three Australian Shepherds (7%), and eight Mixed Breed dogs (18%) 

 Additional liver biopsy specimens for the staging of fibrosis were collected from 

48 dogs of the 59 dogs with hepatobiliary disease enrolled in the study (81%). Hepatic 

fibrosis stage scores were assigned to the dogs as follows: six dogs (13%) had no 

fibrosis, ten dogs (21%) had mild, 15 dogs (31%) had moderate, eight dogs (17%) had 

marked, and nine dogs (19%) had very marked fibrosis. 

 The intra-assay %CV for the HA ELISA was 6.2%, 1.9%, and 12.2% for low, 

medium, and high concentration samples, respectively. The inter-assay variability %CV 

for the assay was 15.1%, 13.4%, and 15.3% for low, medium, and high concentration 

samples, respectively. The mean (±standard deviation; minimum−maximum) observed 

to expected ratio for spiking recovery experiments was 97.2% (±7.2; 89.5−110.9). The 
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mean observed to expect ratio for the dilutional parallelism experiments was 96.0% 

(±16.9; 75.4%−129.3). 

 Serum HA concentrations were measured in 57 dogs (97%) with hepatobiliary 

disease and 44 healthy dogs (98%). Healthy dogs, had higher serum HA concentrations 

(median: 198 ng/mL; 84−1,464) than dogs with neoplasia (median: 123 ng/mL; 

82−1,532; P < 0.01; Table 3). Otherwise there were no significant differences in serum 

HA concentrations among the groups of dogs. There was no significant difference in 

serum HA concentrations between dogs with absent to moderate hepatic fibrosis and 

those with marked to very marked fibrosis (P = 0.524; Table 4). There was no 

correlation between serum HA concentration and hepatic fibrosis (rs = 0.23; P=0.120; 

Figure 9). 

 Serum PIIINP concentrations were measured in 50 dogs (85%) with 

hepatobiliary disease and 44 healthy dogs (98%). There were no significant differences 

in serum PIIINP concentrations among the groups of dogs (P = 0.109; Table 3). There 

was no significant difference in serum PIIINP concentrations between dogs with absent 

to moderate hepatic fibrosis and those with marked to very marked fibrosis (Table 4; P = 

0.781). There was no correlation between serum PIIINP concentration and hepatic 

fibrosis (rs = 0.12; P = 0.462; Figure 10). 

 Serum TIMP-1 concentrations were measured in 53 dogs (90%) with 

hepatobiliary disease and 24 healthy dogs (53%). Dogs with hepatic neoplasia had 

higher serum TIMP-1 concentrations (median: 45 ng/mL; 6−100) than those with 

chronic hepatitis (median: 14 ng/mL; 6−59; P < 0.05; Table 3). There was a trend for the 
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dogs with neoplasia to have higher serum TIMP-1 concentrations than healthy dogs 

(median 20 ng/mL; 5−100), but this did not reach statistical significance (P < 0.1). 

Dogswith neoplasia had higher serum TIMP-1 concentrations than dogs with non-

neoplastic hepatobiliary disease (median 21 ng/mL; 5−63; P < 0.01; Figure 11). The area 

under the receiver-operator characteristic curve (95% confidence interval) of TIMP-1 for 

discriminating between dogs with hepatic neoplasia and healthy dogs was 0.75 

(0.58−0.91). The area under the receiver-operator characteristic curve of TIMP-1 for 

discriminating between dogs with hepatic neoplasia and dogs with non-neoplastic 

hepatic disease was 0.76 (0.60−0.93). Dogs with primary hepatobiliary neoplasia 

(hepatocellular adenomas, hepatocellular carcinomas, and cholangiocarcinomas) had 

higher serum TIMP-concentrations than those with tumors those with neoplasia 

secondarily affecting the liver (lymphoma and hemangiosarcoma), with median 

concentrations of 46 ng/mL (6−100) and 6 ng/mL (6−12), respectively (P = 0.022; 

Figure 12). There was no significant difference in serum TIMP-1 concentrations 

between dogs with absent to moderate hepatic fibrosis and those with marked to very 

marked fibrosis (P = 0.093; Table 4). There was a negative correlation between serum 

TIMP-1 concentration and hepatic fibrosis (rs = -0.32; P = 0.039; Figure 13). 

 

Discussion 

 The main objective of this study was to assess the clinical utility of measuring 

HA, PIIINP, and TIMP-1 concentrations for diagnosing canine hepatic fibrosis in dogs.  
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Table 3. Serum concentrations of extracellular matrix components in healthy dogs and dogs with various types of 

hepatobiliary disease 

Analyte 

 

Healthy 

 

Chronic  

 

Hepatobiliary 

neoplasia 

 

CPSS Other 

hepatobiliary 

disease 

P-value 

HA 

median (min−max) 

 

198 ng/mL* 

(84−1,464) 

155 ng/mL 

(50−3,360) 

123 ng/mL* 

(82−1,532) 

131 ng/mL 

(70−576) 

156 ng/mL 

(106−16,223) 

0.004 

PIIINP 

median (min−max)  

11.3 µg/L 

(3.8−48.2) 

8.9 µg/L 

(3.1−38.6) 

8.1 µg/L 

(3.3−35.3) 

12.5 µg/L 

(4.1−16.3) 

9.9 µg/L 

(3.3−50.0) 

0.109 

TIMP-1 

median (min−max) 

20 ng/mL*** 

(5−100) 

14 ng/mL** 

(6−59) 

45 ng/mL**,*** 

(6−100) 

26 ng/mL 

(12−34) 

24 ng/mL 

(5−63) 

0.011 

 

*P < 0.01 for post-testing between groups, **P < 0.05 for post testing between groups, ***P < 0.1 for post testing between 

groups, CPSS = congenital portosystemic shunt, HA = hyaluronic acid, PIIINP = procollagen type III N-terminal peptide, 

TIMP-1 = tissue inhibitor of matrix metalloproteinase-1
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Table 4. Serum concentrations of extracellular matrix components in dogs with different stages of hepatic fibrosis 

Analyte Absent to moderate fibrosis Marked to very marked fibrosis P-value 

Hyaluronic acid concentration 

median (min−max) 

 

130 ng/mL 

(50−1,532) 

156 ng/mL 

(50−3,360) 

0.297 

PIIINP concentration 

median (min−max) 

8.6 µg/L 

(3.3−50.0) 

9.8 µg/L 

(3.1−38.6) 

0.524 

TIMP-1 concentration 

median (min−max) 

31 ng/mL 

(5−100) 

19 ng/mL 

(6−59) 

0.093 

 

HA = hyaluronic acid, PIIINP = procollagen type III N-terminal peptide, TIMP-1 = tissue inhibitor of matrix 

metalloproteinase-1 
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Figure 9. Serum hyaluronic acid concentration and hepatic fibrosis stage 

 

 

There was no correlation between serum hyaluronic acid concentrations and the stages 

of hepatic fibrosis (rs = 0.23; P = 0.120). 
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Figure 10. Serum procollagen type III N-terminal peptide acid concentration and hepatic 

fibrosis stage 

 

 

There was no correlation between serum procollagen type III N-terminal peptide 

(PIIINP) concentrations and the stages of hepatic fibrosis (rs = 0.12; P = 0.462). 
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Figure 11. Serum tissue inhibitor of matrix metalloproteinase-1 concentrations 

 

 

The horizontal bars represent the median serum tissue inhibitor of matrix 

metalloproteinase-1 (TIMP-1) concentration for that group. Dogs with hepatic neoplasia 

had higher serum TIMP-1 concentrations than those with chronic hepatitis (P < 0.05). 

There was a trend for the dogs with neoplasia to have higher serum TIMP-1 

concentrations than healthy dogs but this did not reach statistical significance (P < 0.1). 
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Figure 12. Serum tissue inhibitor of matrix metalloproteinase-1 concentrations of dogs 

with primary and metastatic hepatobiliary neoplasia 

 

 

The horizontal bars represent the median serum tissue inhibitor of matrix 

metalloproteinase-1 (TIMP-1) concentration for that group. Dogs with primary 

hepatobiliary neoplasia (hepatocellular adenomas, hepatocellular carcinomas, and 

cholangiocarcinomas) had higher serum TIMP-concentrations than those with tumors 

those with neoplasia secondarily affecting the liver (lymphoma and hemangiosarcoma).  
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Figure 13. Serum tissue inhibitor of matrix metalloproteinase-1 concentration and 

hepatic fibrosis stage 

 

 

Scatter plot of serum tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and 

fibrosis stage for 42 dogs with hepatobiliary disease. There was a weak negative 

correlation between serum tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) 

concentrations and the stages of hepatic fibrosis (rs = -0.32; P = 0.039). 
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The secondary objective of the study was to perform the initial validation of a 

commercially available human HA ELISA for use with canine serum. 

The HA ELISA we used in this study had acceptable precision, accuracy, and 

linearity for the measurement of canine serum HA concentrations. The inter-assay %CV 

of 15.1%, 13.4%, and 15.3% were slightly higher than desirable, suggesting suboptimal 

repeatability. However, we do not think this is likely to have affected the conclusions we 

reached, as there was not even a trend for serum HA concentrations to be related to the 

severity of hepatic fibrosis. 

 The relevance of the finding that dogs with hepatic neoplasia had lower serum 

HA concentrations than healthy dogs is unknown and neither is the reason why this 

occurred. However, the differences in the median concentration of HA between the  

groups was small and therefore may not be clinically important. We are not aware of a 

similar relationship in humans with hepatic neoplasia. There was no relationship 

between the severity of hepatic fibrosis and serum HA concentrations in the dogs 

enrolled in this study. This is in contrast to studies in humans where HA has been shown 

to be a useful marker of hepatic fibrosis26,27, and a previous study in dogs where those 

with hepatic cirrhosis had higher serum HA concentrations than those with non-cirrhotic 

hepatic disease, those with non-hepatic disease, or healthy dogs.28 The aforementioned 

study in dogs used a different assay, an automated latex agglutination assay, than the one 

we used. However, a previous study using the ELISA that we used in our study found 

that Chinese Shar Pei dogs with cutaneous mucinosis had higher serum HA 

concentrations than healthy dogs or Chinese Shar Peis without cutaneous mucinosis72, 
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suggesting that this assay is capable of detecting elevated serum HA concentrations in 

dogs. The median serum HA concentrations of 5 healthy dogs reported in that study was 

244 ng/mL (166−302), which is similar to that of the 45 healthy dogs from our study 198 

ng/mL (84−1,464). Another possible reason for the discrepancy in results between our 

study and theirs is that our study contained relatively few dogs with marked or very 

marked hepatic fibrosis and potentially serum HA concentrations only increase in dogs 

with very advanced fibrosis. 

 There was no difference in serum PIIINP concentrations among healthy dogs, 

dogs with chronic hepatitis, dogs with CPSS, dogs with hepatobiliary neoplasia, or dogs 

with other hepatobiliary disease. Additionally, no relationship between the severity of 

hepatic fibrosis and serum PIIINP concentrations was observed. In humans, serum 

PIIINP concentrations have been shown to be useful in distinguishing between patients 

with no or mild fibrosis and those with moderate or severe fibrosis.26,27 The reason why 

serum PIIINP concentrations were not increased in these dogs with hepatic fibrosis is 

unknown. One possible explanation is that this protein is not leaked into the bloodstream 

of dogs with hepatic fibrosis. Type III collagen was increased in the livers of dogs with 

chronic hepatitis9, suggesting that this form of collagen is important in canine hepatic 

fibrosis. It is interesting that a previous study did not find that measurement of serum 

PIIINP concentrations were increased in dogs with chronic bronchopulmonary disease 

but concentrations in bronchoalveolar lavage fluid were increased.30 In humans, PIIINP 

has also been shown to have a moderately strong positive correlation with the severity 

grade of hepatic necroinflammatory activity73, therefore we cannot rule out that this was 
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a confounding factor that obscured the presence of a true relationship between PIIINP 

and the severity of hepatic fibrosis in our study. 

 Dogs with hepatic neoplasia had higher serum concentrations of TIMP-1 than 

those with chronic hepatitis and there was a trend for them to have higher serum 

concentrations than healthy dogs, but this did not reach statistical significance. 

Additionally, when the dogs with non-neoplastic hepatobiliary disease were combined 

into one group they had significantly lower serum TIMP-1 concentrations than those 

dogs with hepatobiliary neoplasia. Serum TIMP-1 had fair diagnostic accuracy for 

discriminating between dogs with hepatic neoplasia and healthy dogs or dogs with 

hepatic disease. For example, using a cut-off value of 29 ng/mL, the sensitivity and 

specificity of serum TIMP-1 measurement for distinguishing between healthy dogs and 

dogs with hepatobiliary neoplasia were 77% and 75%, respectively. Using the same cut-

off, the sensitivity and specificity of TIMP-1 measurement for distinguishing between 

dogs with non-neoplastic hepatobiliary disease and those with hepatobiliary neoplasia 

were 77% and 72%, respectively. Additionally, dogs with primary liver neoplasia 

(hepatocellular adenoma, hepatocellular carcinoma, and cholangiocarcinoma) had higher 

serum TIMP-1 concentrations than those with lymphoma and hemangiosarcoma. These 

findings are interesting as humans with a variety of tumors, including, hepatic 

metastases74 and pulmonary neoplasms75 have been shown to have increased serum 

TIMP-1 concentrations. In one study of humans with hepatic metastases, higher serum 

TIMP-1 concentrations were shown to be a poor prognostic factor.74 Dogs with 

spontaneously occurring mammary tumors have been shown to have a relatively low 
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tissue TIMP-1 activity when compared to rats with induced mammary tumors76, but to 

our knowledge serum TIMP-1 concentrations have not previously been reported in dogs 

with hepatobiliary neoplasia. Further studies are needed in a larger group of dogs to 

confirm our findings and to assess serum TIMP-1 concentrations in dogs with other 

types of neoplasia. 

There was a weak negative correlation between serum TIMP-1 concentration and 

the severity of fibrosis. There was no significant difference in the fibrosis stages 

assigned to dogs with hepatobiliary neoplasia and those with other hepatobiliary diseases 

so it is unlikely that the increased serum TIMP-1 concentrations observed in dogs with 

neoplasia acted as a confounding factor explaining this unexpected negative correlation. 

There was no difference in serum TIMP-1 concentrations between dogs with absent to 

moderate fibrosis and those with marked to very marked fibrosis. These findings contrast 

with those in studies of humans where TIMP-1 is a useful marker of hepatic fibrosis and 

is positively correlated with its severity.26,27 The reason for this difference between the 

two species is not known. 

 It is important to discuss several limitations of this work. Firstly, there were 

relatively few dogs (nine out of 48; 19%) that were assigned a score of very marked 

hepatic fibrosis, so it is possible that this was the reason we failed to find a relationship 

between any of the extracellular matrix components and the severity of hepatic fibrosis 

because they are only increased in dogs with very marked fibrosis. However, even if this 

was the case, the utility of these markers would be limited if they can only distinguish 

between dogs with mild fibrosis and those with very marked fibrosis. Additionally, we 
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cannot completely exclude the possibility that some of the dogs that were enrolled in this 

study had subclinical disease that was causing fibrosis of another organ, therefore 

increasing their serum extracellular matrix component concentrations, and acting as a 

confounding factor. However, the group of dogs with hepatobiliary disease that we 

enrolled in the study would be similar to the population of dogs in which these markers 

would be used if they were shown to be valuable. Therefore, their lack of apparent 

diagnostic utility in this population is important to recognize.  

 The results of this study do not support the utility of measuring serum HA, 

PIIINP, or TIMP-1 concentrations for the diagnosis of canine hepatic fibrosis. Serum 

TIMP-1 had fair diagnostic accuracy for discriminating between dogs with hepatic 

neoplasia and healthy dogs or dogs with hepatobiliary disease. Further studies are 

needed to confirm this finding. 



 

 61 

CHAPTER IV 

URINARY N-METHYLHISTAMINE TO CREATININE RATIOS IN DOGS 

WITH HEPATOBILIARY DISEASE 

 

Introduction 

 Mast cells are derived from myeloid stem cells and can release a variety of 

inflammatory mediators including histamine, serotonin, serine proteases, thromboxanes, 

prostaglandins, leukotrienes, and heparin.49,50 In humans there is some evidence to 

support their role in the development of hepatobiliary disease.51 Firstly, mast cells have 

been shown to be present in the livers of healthy humans and those with hepatic disease, 

including chronic liver disease52, acute hepatitis53, primary biliary cirrhosis54, 

hepatocellular carcinoma, and cholangiocarcinoma.55,56 Patients with chronic hepatitis 

virus infection with steatosis had higher mast cell densities than those without.57,58 

Another study of patients with chronic hepatitis C found a positive correlation between 

the mast cell density and fibrosis.58 In vitro, mast cell proteases have a profibrotic effect 

by stimulating fibroblast proliferation.59 Furthermore, humans with chronic cholestatic 

disease frequently complain of pruritus and one study found that patients with 

cholestasis had higher plasma histamine concentrations than healthy controls.60 The role 

of mast cell mediated inflammation in canine hepatobiliary disease is poorly defined and 

mast cells are not commonly noted during histological evaluation of the healthy or 

diseased canine liver.  
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 As mast cell degranulation leads to the release of histamine, which is primarily 

stored in this type of cell, histamine has been suggested to be a potential marker of mast 

cell degranulation.49,50 However, histamine is rapidly metabolized and, therefore, may 

not be a practical biomarker.49,50 N-methylhistamine is generated when histamine is 

metabolized by the N-methyltransferase enzyme system.61 N-methylhistamine is stable 

and a method for its measurement in canine urine and fecal samples has recently been 

developed and analytically validated.61,62 In a recent study, seven out of 16 of dogs with 

chronic gastrointestinal disease were shown to have increased fecal or urinary NMH 

concentrations, indicating that mast cell mediated inflammation may be important in a 

subset of these dogs.77 Urinary NMH to creatinine ratios have also shown to be greatly 

increased in dogs with mast cell tumors.62 To the authors’ knowledge the utility of NMH 

as a marker of mast cell induced inflammation in canine hepatobiliary disease has not 

previously been investigated.  

 We hypothesized that urinary NMH to creatinine ratio is a useful biomarker of 

mast cell induced hepatobiliary inflammation in dogs. The main objective of this study 

was to compare urine NMH concentration between healthy dogs and dogs with various 

types of hepatobiliary disease. Secondary objectives were to evaluate the correlation 

between urinary NMH concentrations and hepatic mast cell counts, hepatic fibrosis 

scores, as well as hepatic necroinflammatory activity in dogs with hepatobiliary disease. 
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Materials and methods 

Dogs with histologically confirmed hepatobiliary disease diagnosed at Gulf 

Coast Veterinary Specialists or Texas A&M University Veterinary Medical Teaching 

Hospital between 3/1/12 and 2/28/13 were enrolled into this prospective observational 

study. The diagnosis of hepatobiliary disease was based on a combination of clinical 

signs, laboratory testing, diagnostic imaging findings, histological evaluation of a liver 

biopsy specimen, and, in some cases, findings upon surgical exploration of the 

abdominal cavity. The dogs were divided into four groups: dogs with chronic hepatitis 

(CH); dogs with hepatic neoplasia, which could be primary or secondary; dogs with a 

congenital portosystemic shunt; and dogs with other hepatobiliary diseases, including 

vacuolar hepatopathy, nodular regeneration, or gallbladder mucocele. Where possible an 

additional liver biopsy specimen was collected from the dogs for mast cell enumeration, 

evaluation of fibrosis, and evaluation of necroinflammatory activity. 

Healthy staff-owned dogs over 6 months’ of age were enrolled at the Texas 

A&M University Veterinary Medical Teaching Hospital. The health of these dogs was 

assessed by use of an owner questionnaire, physical examination, complete blood count, 

serum biochemistry profile, and serum pancreas-specific lipase concentration 

measurement (Spec cPL, IDEXX Laboratories, Westbrook, ME). Dogs with clinically 

important abnormalities in any of these parameters were excluded from the study. 

The study was approved by the Texas A&M University Institutional Animal Use 

Committee (AUP 2011-215). Informed owner consent was obtained before enrollment of 

any of the dogs. 
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At the time of liver biopsy, 5 mL of urine was collected by cystocentesis and 

placed into sterile anticoagulant-free tubes. The urine was centrifuged at 20,000 g for 12 

minutes to remove cellular material. The supernatant was removed and stored at -80°C 

until analysis. 

Where collected, additional hepatic biopsies were fixed in neutral buffered 

formalin, processed for routine histopathology, and embedded in paraffin. Sections of 

liver were stained with hematoxylin and eosin for the evaluation of necroinflammation, 

picrosirius red for the assessment of fibrosis, and toluidine blue for mast cell 

enumeration. Hepatic fibrosis (absent, mild, moderate, marked, very marked) and 

necroinflammatory activity (absent, minimal, mild, moderate, marked, very marked) 

were scored by a board-certified veterinary pathologist using a previously published 

scoring system33,34, which had been adapted from the human Ishak system (Table 1).32 

The total number of mast cells in 10 high power fields (hpf; 400X) for each toluidine 

blue stained section were counted by a veterinary anatomic pathology resident. 

Information about the clinical history and urine NMH to creatinine ratio for each case 

was not provided to the evaluators prior to the scoring/counting process. 

 Urine N-methylhistamine was measured by stable isotope dilution gas-

chromatography/mass spectrometry using a previously analytically validated method.62 

The lower limit of the working range of the assay was 50 pg/µL. Urine creatinine 

concentrations were used to normalize urine NMH concentrations. Urine samples were 

diluted 1:20 before measurement of creatinine using an automated chemistry analyzer 

(Sirrus, Stanbio Laboratory). The urine NMH to creatinine ratio was calculated and 
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expressed as ng of NMH per mg of creatinine. Samples for which the urine NMH 

concentration was < 50 pg/µL were removed from the analysis because it was not 

possible to accurately quantify NMH and therefore it was not possible to calculate or 

estimate the NMH to creatinine ratio for these samples as the reported ratio could be 

much higher that it really is for a very dilute urine sample with a low urine creatinine 

concentration.  

Data were tested for normality using the Kolmogorov-Smirnov test and visual 

inspection of frequency histograms. Non-parametric data are expressed as median 

(minimum−maximum). Urine NMH to creatinine ratios were compared between healthy 

dogs and dogs with liver disease using the Mann-Whitney U test. Urine NMH to 

creatinine ratios were compared among the five groups of dogs using Kruskall-Wallis 

tests followed by Dunn’s post-test as appropriate. A reference interval for urine NMH to 

creatinine ratios was constructed by calculating the central 95th percentile of the results 

from healthy dogs. The association between having an elevated urine NMH to creatinine 

ratio and disease group was assessed using exact methods. The correlations between 

urinary NMH concentrations and mast cell counts, fibrosis scores, as well as 

necroinflammatory scores, were assessed using Spearman’s rank correlation (rs). 

Statistical significance was set as α < 0.05. A statistical software package was used for 

all calculations (GraphPad, Prism 5, GraphPad Software). 
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Results 

 Fifty-nine dogs with hepatobiliary disease were enrolled in the study. For 7 of 

these dogs it was not possible to determine urinary NMH to creatinine ratio because the 

urinary NMH concentration was < 50 pg/µL. The median age of the remaining 52 dogs 

was 9.5 years (6 month to 13 years). Sixteen were neutered male (31%), five were intact 

male (10%), twenty-eight were spayed female (54%), and three were intact female (6%). 

The following breeds were commonly represented: five Labrador Retrievers (10%), four 

Miniature Schnauzers (8%), 3 Chihuahuas (6%), and 17 mixed breed dogs (29%). 

Seventeen dogs (33%) had hepatobiliary neoplasia, 14 (27%) had CH, eight (15%) had 

hepatic vascular disease (7 of which had CPSS and 1 had microvascular dysplasia), and 

13 (25%) had other hepatobiliary disease.  

Twenty-five healthy dogs were enrolled into the study. For 3 of these dogs it was 

not possible to determine urinary NMH to creatinine ratio because the urinary NMH 

concentration was < 50 pg/µL. The median age of the remaining 22 dogs was 3.5 years 

(1 to 12 years). Seven were neutered male (27%), none were male intact, 10 were spayed 

female (38%), and five were intact female (19%). The following breeds were commonly 

represented: three Labrador Retrievers (12%), four Miniature Schnauzers (15%), two 

Boston Terriers (8%), and three mixed breed dogs (12%). 

 Median urine NMH concentrations were 96 pg/µL (13−485) and 104 pg/µL 

(14−1,114) for healthy dogs and dogs with hepatobiliary disease, respectively (P = 

0.618). Median urinary NMH to creatinine ratios were 82 pg/µL (<50−291), 143 pg/µL 
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(<50−286), 199 pg/µL (<50−456), and 142 pg/µL (43−1,114) for dogs with hepatic 

neoplasia, CH, vascular, and other hepatobiliary disease, respectively (P = 0.420).  

Median urinary NMH to creatinine ratios were 71 ng/mg (23−241) and 98 ng/mg 

(40−492) for healthy dogs and dogs with hepatobiliary disease, respectively (P = 0.006). 

Median urinary NMH to creatinine ratios were 90 ng/mg (58−236), 121 ng/mg 

(60−423), 128 ng/mg (55−492), and 98 ng/mg (40−326) for dogs with hepatic neoplasia, 

CH, vascular, and other hepatobiliary disease, respectively (Figure 14). There was a 

trend for healthy dogs to have lower urinary NMH to creatinine ratios than dogs with CH 

or dogs with hepatic vascular disease but these differences did not reach statistical 

significance (P < 0.1 but > 0.05).  

The central 95% percentile of the urinary NMH to creatinine ratio for the 22 

health dogs was 26−223 ng/mg. Eight of 52 dogs (15%) with hepatobiliary disease had 

serum NMH to creatinine ratios > 223 ng/mg. There was no association between disease 

group and having a urinary NMH to creatinine ratio > 223 ng/mg (P = 0.484; Table 5) 

 The median hepatic mast cell count for the dogs with hepatobiliary liver disease 

was 0 mast cells per 10 hpf (0−24; n = 46). Eight of 43 dogs for which fibrosis was 

scored (19%) were scored to have no hepatic fibrosis, 10 (23%) to have mild fibrosis, 14 

(33%) to have moderate fibrosis, 6 (14%) to have marked fibrosis, and 5 (12%) to have 

very marked fibrosis. Ten of 43 dogs (23%) had no necroinflammation, 10 (23%) had 

minimal necroinflammation, 11 (26%) had mild necroinflammation, 7 (16%) had 

moderate necroinflammation, 5 (12%) had marked necroinflammation, and no dogs had 

very marked necroinflammation. There was no significant correlation between urine 
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NMH concentration and mast cell count (rs = -0.103; P = 0.496), fibrosis score (rs = -

0.125; P = 0.424) or necroinflammatory score (rs = -0.091; P = 0.558). There was no 

significant correlation between urinary NMH to creatinine ratio and mast cell count (rs = 

-0.077; P = 0.643), fibrosis score (rs = 0.256; P = 0.097) or necroinflammatory score (rs 

= 0.042; P = 0.788). There was no significant correlation between mast count and 

fibrosis score (rs = 0.220; P = 0.184) or necroinflammatory score (rs = 0.200; P = 0.228). 

 

Discussion 

For the current study, dogs with hepatobiliary disease had higher urinary NMH to 

creatinine ratios than healthy dogs with median ratios of 71 ng/mg and 98 ng/mg, 

respectively. There was a trend for healthy dogs to have lower urinary NMH to 

creatinine ratio than dogs with CH or vascular liver disease (CPSS or microvascular 

dysplasia), but this difference did not reach statistical significance. Equivalent 

differences between groups were not observed when urine NMH concentrations were 

compared. This is not unexpected as urine NMH concentrations are affected by 

differences in urine concentrations, potentially masking differences between groups. 

This is the reason that we normalized urine NMH concentrations by calculating the 

urinary NMH to creatinine ratios. In a previous study including 6 healthy dogs the 

control range for urinary NMH to creatinine ratio was determined to be < 136 ng/mg.62 

However, in the 22 healthy dogs enrolled in our study a preliminary reference range was 

determined to be 26−223 ng/mg. This difference is probably a reflection that the group 

of healthy dogs used for the previous study was so small. Eight of 52 dogs (15%) with  
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Table 5. Urinary N-methylhistamine to creatinine ratio and disease group 

Group Number below RI (%) Number within RI (%) Number above RI (%) 

Hepatic neoplasia 0 (0%) 16 (94%) 1 (6%) 

Chronic hepatitis 0 (0%) 11 (79%) 3 (21%) 

Hepatic vascular disease 0 (0%) 6 (75%) 2 (25%) 

Other hepatobiliary disease 0 (0%) 11 (85%) 2 (15%) 

 

Urinary N-methylhistamine to creatinine ratios are compared between different disease categories for 52 dogs with 

hepatobiliary disease and the reference interval of 26−223 ng/mg. There was no significant association between urinary N-

methylhistamine to creatinine ratio and disease group (P = 0.484). RI = reference interval. 
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Figure 14. Urinary N-methylhistamine to creatinine ratios for 52 dogs with 

hepatobiliary disease 

 

 

The solid horizontal bars represent the median urinary N-methylhistamine to creatinine 

ratio for that group of dogs. The dashed horizontal lines represent the upper and lower 

limits of the 95th percentile of urinary N-methylhistamine to creatinine ratios for 22 

healthy dogs (26−223 ng/mg). P-values are for Dunn’s post-test between groups of dogs.  
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hepatobiliary disease had a urinary NMH to creatinine ratio > 223 ng/mg. There was no 

association between the disease group and having an increased urinary NMH 

 concentration. The highest recorded urinary NMH to creatinine ratio was 492 ng/mg 

and this was, unexpectedly, determined in a sample from a dog with a CPSS. This dog 

did not have any other clinical findings that would account for this increase. Taken 

together these findings suggest that mast cell mediated inflammation may occur in a 

subset of dogs with hepatobiliary disease but is not a common finding. This appears to 

be similar to the situation in dogs with gastrointestinal disease where the median urinary 

NMH to creatinine ratio in 16 dogs with chronic gastrointestinal disease was 100 ng/mg 

(63−722) and 4 of 16 (25%) dogs had urinary NMH to creatinine ratios > 223 ng/mg.77 

Another study of 28 dogs with chronic enteropathies found that the median urinary 

NMH to creatinine ratio was 97 ng/mg (5−474) in that group and that 2 of 28 (7%) had 

ratios > 223 ng/mg.78 In comparison 8 dogs with mast cell tumors tended to have much 

higher urinary NMH to creatinine ratios with a median of 68,760 ng/mg 

(327−156,600).62 The lack of comparably high NMH to creatinine ratios in dogs with 

hepatobiliary disease does not support the hypothesis that mast cell mediated 

inflammation plays a major role in canine hepatobiliary disease. 

 We did not find a correlation between urinary NMH to creatinine ratios and 

hepatic mast cell counts. Similarly, no correlation between urinary NMH concentration 

and intestinal mast cell counts were found in studies of dogs with gastrointestinal 

disease.77,78 There are several possible reasons for this lack of correlation. Firstly, mast 

cell mediated inflammation may not be a major contributor to canine hepatobiliary 
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disease. Therefore, the small differences in NMH to creatinine ratios between groups 

may not have been due to hepatic mast cell degranulation. Secondly, as we used 

toluidine blue, which only stains intact mast cell granules, it is possible that the number 

of mast cells in the sections were underestimated, as degranulated mast cells may not 

have been identified by this stain. In our study we were unable to find a correlation 

between mast cell counts and fibrosis or necroinflammation. Once again, this does not 

support the importance of mast cell mediated inflammation in the development of canine 

liver disease or hepatic fibrosis. This is in contrast to the situation in humans where, in 

patients with chronic hepatitis C, a positive correlation between hepatic mast cell density 

and fibrosis has been reported.58 We cannot completely exclude the possibility that the 

limitations in the mast cell staining technique discussed above, or the relatively small 

number of dogs with CH (n = 14), precluded the identification of such an association. It 

is interesting that humans with cholestatic disease were found to have higher plasma 

histamine concentrations than healthy people, which suggests that mast cell mediated 

inflammation may play an important role in these patients who often complain of 

pruritus.60 We did not evaluate any dogs with cholestasis. Therefore, we could not 

determine if this was also the case for dogs. 

In our study few mast cells were observed in toluidine blue stained sections of 

canine liver (median count of 0 mast cells per 10 hpf). Some dogs did have notably 

higher mast cell counts and the maximum was 24 per 10 hpf, in a dog diagnosed with 

CH. To our knowledge the mast cell density in the liver of healthy dogs has not been 

determined. In comparison the median mast cell count from toluidine blue stained 
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duodenal sections of dogs with chronic gastrointestinal disease was much higher with a 

median of 44 per 10 hpf (0−170).77 It is not unexpected that there were fewer mast cells 

in sections of liver then in sections of the intestine as mast cells are known to be 

commonly observed when the intestinal tissue is stained with toluidine blue.79 It would 

be interesting to also evaluate the location of mast cells within healthy and diseased 

canine livers to determine whether they are randomly or zonally distributed. Indeed 

during anaphylaxis the canine intestine is believed to be the main source of histamine 

release. The liver is also involved in canine anaphylaxis during which portal 

hypertension and venous congestion develop. However, it is not clear if this occurs 

secondary to the effects of histamine and other mediators released from gastrointestinal 

mast cells into the splanchnic circulation49 or from degranulation of mast cells within the 

liver itself. 

 This study is the first to evaluate urinary NMH concentrations in dogs with 

hepatobiliary disease. However, it is important to point out several limitations. Firstly, 

the lower limit of the working range of the assay for the measurement of urinary NMH 

(50 pg/µL) was suboptimal. As a result, 10 dogs had unmeasurable urinary NMH 

concentrations. Since the results were expressed as urinary NMH to creatinine ratios it 

was not possible to calculate or even estimate urinary NMH to creatinine ratios from 

these dogs and therefore they were excluded from the study. Secondly, although 52 dogs 

with hepatobiliary disease were enrolled into the study, the number of dogs in some of 

the subgroups was relatively small, which could have resulted in a type II error. For 

example, it is possible that if more dogs were enrolled, significant differences in NMH 
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to creatinine ratios between healthy dogs and dogs with different kinds of hepatic 

disease, such as CH, may have been observed. Looking at the distribution of NMH to 

creatinine ratios in dogs with CH there was a lot of overlap with healthy dogs and so, 

even if more dogs had been enrolled, our interpretation that mast cell mediated 

inflammation may only be important in a subset of these dogs is unlikely to have 

changed. Lastly, as previously discussed, we cannot rule out the possibility that the use 

of metachromatic staining rather than immunohistochemical staining resulted in an 

underestimation of mast cell counts. Future studies combining immunohistochemical 

staining for mast cells with computer assisted image analysis should allow for a more 

accurate assessment of hepatic mast cell density.57 

In conclusion, although dogs with hepatobiliary disease had higher urinary NMH 

to creatinine ratios than healthy dogs, there was a lot of overlap between groups. Mast 

cell counts from toluidine blue stained sections of diseased canine liver were very low. 

Therefore, mast cell mediated inflammation does not appear to commonly be a major 

component of hepatobiliary disease in dogs. There was no correlation between urinary 

NMH to creatinine ratio and hepatic mast cell count, fibrosis score, or 

necroinflammatory score. Taken together, these findings do not support the utility of 

urinary NMH concentration or urinary NMH to creatinine ratio as a biomarker in dogs 

with hepatobiliary disease. 
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CHAPTER V 

PUTATIVE PRECIPITATING FACTORS FOR HEPATIC 

ENCEPHALOPATHY IN DOGS: 118 CASES (1991−2014)* 

 

Introduction 

Hepatic encephalopathy is a spectrum of neuropsychiatric abnormalities 

observed in patients with liver dysfunction in which other brain diseases have been ruled 

out. In human patients hepatic encephalopathy is classified into three types on the basis 

of etiology.37 Type A hepatic encephalopathy is caused by acute liver failure in the 

absence of preexisting liver disease. Type B hepatic encephalopathy is associated with 

portosystemic bypass without intrinsic hepatocellular disease (e.g., CPSS). Type C 

hepatic encephalopathy is associated with cirrhosis and portal hypertension or acquired 

portal systemic shunting, and is subcategorized on the basis of duration and 

characteristics. Episodic hepatic encephalopathy develops over a short period of time 

and varies in severity. Persistent hepatic encephalopathy causes cognitive dysfunction 

and is classified as mild, severe, or treatment-dependent.37 Subclinical hepatic 

encephalopathy is associated with normal mental and neurological statuses in 

conjunction with abnormal results on specific psychometric tests.38 

Ammonia is believed to have a central role in the pathogenesis of hepatic 

encephalopathy. In a study39 of human patients with cirrhosis, there was a moderate 

                                                
* Reprinted with permission from “Putative precipitating factors for hepatic encephalopathy 
in dogs: 118 cases (1991−2014)” by Lidbury JA, Ivanek R, Sucholdolski JS, Steiner JM 
2015. Journal of American Veterinary Medical Association, 247, 176-183, Copyright [2015] 
by American Veterinary Medical Association. 
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positive correlation between total venous plasma ammonia concentration and severity of 

hepatic encephalopathy. In dogs with hepatic encephalopathy, venous plasma ammonia 

concentrations are frequently, but not always, increased from reference limits, and there 

is a positive correlation between plasma ammonia concentration and severity of 

disease.41 In veterinary medicine diagnosis of hepatic encephalopathy generally involves 

measurement of plasma ammonia concentration when available whereas in human 

medicine diagnosis of hepatic encephalopathy is not dependent on measurement of 

plasma ammonia concentration.40 

Several factors are known to precipitate hepatic encephalopathy in human 

patients. Identifying and addressing those precipitating factors are important for patient 

management because the prognosis for patients with ≥ 1 precipitating factor is worse 

than that for patients without precipitating factors.42 Results of previous studies suggest 

that 88% (354/404)42 to 90% (45/50)43 of human patients with hepatic encephalopathy 

have at least 1 precipitating factor. Precipitating factors most commonly associated with 

hepatic encephalopathy in human patients include gastrointestinal bleeding (18%−76% 

of patients), constipation (3%−52%), diarrhea (12%−40%), infection (3%−52%), 

hypokalemia (9%−70%), hyponatremia (25%−38%), and excess dietary protein intake 

(9−52%).43-45 Hepatic encephalopathy has been described in dogs with CPSS or APSC 

secondary to portal hypertension.46 Factors proposed to precipitate hepatic 

encephalopathy in dogs include gastrointestinal hemorrhage, hypokalemia, 

hyponatremia, high protein diets, and alkalosis.47 Results of a study of dogs with CPSS 

suggest that hyperammonemia and SIRS, but not hyponatremia, were associated with 
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hepatic encephalopathy.48 To our knowledge, studies to elucidate the association 

between hepatic encephalopathy and other putative precipitating factors in dogs are 

lacking. The objectives of the study reported here were to elucidate the relationship 

between plasma ammonia concentration and the severity of hepatic encephalopathy in 

dogs and to determine whether there is an association between factors that precipitate 

hepatic encephalopathy in humans and the presence of clinical signs of hepatic 

encephalopathy at hospital admission in dogs previously treated for the disease. 

 

Materials and methods 

The computerized medical record database at the Texas A&M Veterinary 

Medical Teaching Hospital was searched for records of dogs in which hepatic 

encephalopathy was diagnosed between October 1, 1991 and September 1, 2014. An 

investigator (JAL) reviewed all identified records to verify the diagnosis of hepatic 

encephalopathy and ensure that each dog met the inclusion criteria for the study. Hepatic 

encephalopathy was diagnosed on the basis of clinical findings, the exclusion of other 

causes of encephalopathy, evidence of hepatic dysfunction or insufficiency as 

determined by results of serum biochemical analysis, CBC, urinalysis, diagnostic 

imaging (typically abdominal ultrasonography or portal scintigraphy), and response to 

treatment. Plasma ammonia and serum bile acid concentrations were also evaluated 

when available. A dog was excluded from the study if its medical record was unavailable 

for review or it did not meet the criteria for hepatic encephalopathy. 
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Signalment, historical findings (including previous treatments), cause of hepatic 

encephalopathy, and the results of the physical examination performed at hospital 

admission, serum biochemical analysis, CBC, diagnostic imaging, and plasma ammonia 

concentration (when available) were extracted from the record of each dog enrolled in 

the study. Laboratory test results were evaluated only if the samples were collected 

within 24 hours after hospital admission. For dogs that were admitted to the teaching 

hospital on multiple occasions, information was evaluated only from the admission 

during which hepatic encephalopathy was initially diagnosed. When possible, the cause 

of hepatic encephalopathy was classified in accordance with a slightly modified version 

of a classification system37 used for human patients in which the definition of type C 

hepatic encephalopathy was broadened to include all types of intrinsic hepatocellular 

disease rather than just cirrhosis. Specifically, type A hepatic encephalopathy was 

defined as acute liver failure in the absence of preexisting hepatic disease, type B hepatic 

encephalopathy was defined as a portosystemic bypass without intrinsic hepatocellular 

disease (e.g., CPSS), and type C hepatic encephalopathy was defined as intrinsic 

hepatocellular disease and portal hypertension or acquired portal systemic shunting. 

When sufficient information was available for dogs that had been previously 

treated for hepatic encephalopathy, the severity of hepatic encephalopathy historically 

and at the time of hospital admission were graded in accordance with a previously 

described 5-point scale.80 The historical hepatic encephalopathy grade generally 

represented the most severe clinical sign recorded in the patient’s history. Briefly, grade 

0 was assigned to dogs with no clinical signs of hepatic encephalopathy; grade 1 was 
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assigned to dogs with mildly impaired mobility, apathy, or both; grade 2 was assigned to 

dogs with severe apathy, mild ataxia, or both; grade 3 was assigned to dogs with 

hypersalivation, severe ataxia, head pressing, blindness, circling, or any combination of 

those signs; and grade 4 was assigned to dogs with seizures or that were in a stupor or 

coma. 

The prevalence of factors such as SIRS, gastrointestinal hemorrhage, dietary 

change or indiscretion, constipation, furosemide treatment, hypokalemia, hyponatremia, 

alkalosis, and azotemia that are known to precipitate hepatic encephalopathy in human 

patients40 was recorded for each dog on the basis of the patient’s history and physical 

examination findings at the time of its first admission to the teaching hospital. Systemic 

inflammatory response syndrome was diagnosed when at least 2 of the following 4 

criteria were met: body temperature ≥ 39.7 °C (103.5 °F) or ≤ 37.8 °C (100.0 °F), heart 

rate ≥160 beats/min, respiratory rate ≥ 40 breaths/min, and WBC count ≥ 12,000 or 

≤ 4,000 cells/µL or ≥ 10% band neutrophils.81 Results of serum biochemical analysis for 

samples obtained only within 24 hours after the first hospital admission were used to 

determine the prevalence of hypokalemia, hyponatremia, alkalosis, and azotemia. When 

available, the plasma ammonia concentration measured within 24 hours after the first 

hospital admission was also recorded. 

The distributions of continuous variables were evaluated for normality by visual 

inspection of frequency histograms and the Kolmogorov-Smirnov test. Results for 

variables that there not normally distributed were expressed as the median 

(minimum−maximum), and results for normally distributed variables were expressed as 
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the mean ± SD. For each historical finding, physical examination result, and 

precipitating factor, the prevalence within the study population was expressed as the 

percentage (95% CI). The historic hepatic encephalopathy severity grade was compared 

with the hepatic encephalopathy severity grade at the time of hospital admission by use 

of the Wilcoxon signed-rank test. The correlation between plasma ammonia 

concentration and the hepatic encephalopathy severity grade was assessed with the 

Spearman rank correlation coefficient. A statistical software program (GraphPad, Prism 

5, GraphPad Software) was used for all analyses, and values of P < 0.05 were considered 

significant. 

To investigate the relationship between potential precipitating factors for hepatic 

encephalopathy and the presence of clinical signs of the disease at the time of hospital 

admission, the study population was divided into 2 groups (i.e., dogs with and without 

clinical signs of hepatic encephalopathy during the initial physical examination at 

hospital admission). The respective frequencies of prior treatment for hepatic 

encephalopathy, SIRS, gastrointestinal hemorrhage, dietary change or indiscretion, 

constipation, furosemide treatment, hypokalemia, hyponatremia, alkalosis, azotemia, and 

hyperammonemia were compared between the 2 groups by use of the Fisher exact test. 

Variables with P < 0.2 for the Fisher exact test were included in a multivariable logistic 

regression model in which the outcome of interest was modeled as the presence of 

clinical signs of hepatic encephalopathy at hospital admission. The final model was 

constructed by backward stepwise elimination, and only variables with P < 0.05 were 

retained in the model. The odds ratio (OR) and 95% confidence interval (CI) for each 
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variable were calculated. These analyses were performed with another statistical 

software program (PROC LOGISTIC, SAS, version 9.4, SAS Institute). 

 

Results 

The database search revealed that 170 dogs were assigned the diagnostic code for 

hepatic encephalopathy between October 1, 1991 and September 1, 2014. Forty dogs 

were excluded from the study because their medical records were incomplete or 

unavailable for review. An additional 12 dogs were excluded from the study because 

review of their medical records revealed that there was insufficient evidence to diagnose 

hepatic encephalopathy. Thus, 118 dogs met the criteria for diagnosis of hepatic 

encephalopathy and were enrolled in the study, of which 46 (39%) were spayed females, 

17 (14%) were intact females, 31 (26%) were castrated males, and 24 (20%) were intact 

males. The median age of dogs at the time of onset of clinical signs was 24 months 

(minimum−maximum, 1 to 186 months), and the median age of the dogs at the time of 

admission to the teaching hospital was 32 months (minimum−maximum, 2 to 186 

months). The breeds most commonly represented in the study population were Yorkshire 

Terrier (n = 17 [14%]), Miniature Schnauzer (14 [12%]), Chihuahua (7 [6%]), Labrador 

Retriever (6 [5%]), Poodle (6 [5%]), Pug (4 [3%]), Dachshund (4 [3%]), Cocker Spaniel 

(3 [3%]), and Pomeranian (3 [3%]). 

The cause of hepatic encephalopathy was unknown because of incomplete 

diagnostic evaluation for 16 (14%) dogs. Type A hepatic encephalopathy was not 

diagnosed in any of the dogs, whereas types B and C hepatic encephalopathy were 
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diagnosed for 73 (62%) and 29 (25%) dogs, respectively. Of the 73 dogs with type B 

hepatic encephalopathy, the disease was attributed to CPSS in 70 (96%), an 

arteriovenous fistula and APSC in 2 (3%), and microvascular dysplasia in 1 (1%). Of the 

29 dogs with type C hepatic encephalopathy, the disease was attributed to intrinsic 

hepatocellular disease with APSC in 24 (83%) and intrinsic hepatocellular disease 

without evidence of APSC identified during abdominal ultrasonography in 2 (7%); the 

remaining 3 (10%) dogs had intrinsic hepatocellular disease but did not undergo 

diagnostic imaging for evaluation of APSC. Overall, 96 of the 102 (94%) dogs in which 

the cause of hepatic encephalopathy was identified had some type of macroscopic 

portosystemic shunting.  

The most frequently recorded historical clinical signs were lethargy (n = 32 

[27%] dogs), altered behavior (31 [26%]), obtundation (29 [25%]), ataxia (28 [24%]), 

seizures (26 [22%]), head pressing (22 [19%]), ptyalism (22 [19%]), vomiting (21 

[18%]), blindness (20 [17%]), circling (15 [13%]), shaking or twitching (14 [12%]), and 

anorexia or hyporexia (13 [11%]). At the time of hospital admission, abnormal 

neurological findings were recorded for 56 (47%) dogs, and the most frequently 

recorded clinical signs were obtundation (n = 30 [25%]), ataxia (23 [19%]), paresis (9 

[8%]), conscious proprioceptive deficits (8 [7%]), seizures (6 [5%]), stupor or coma (5 

[4%]), circling (4 [3%]), abnormally delayed menace response (4 [3%]), tremors (3 

[3%]), and blindness, abnormally decreased pupillary light response, head pressing, 

ptyalism, head tilt, and anisocoria (2 [2%] each).  
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The frequency distributions of hepatic encephalopathy severity grades before 

(historical) and at the time of hospital admission for the study population were 

summarized (Table 6). A hepatic encephalopathy severity grade at the time of hospital 

admission could not be assigned to 2 of the 118 dogs because the medical records for 

those dogs contained insufficient information. The median historical severity grade (3; 

minimum−maximum, 0 to 4) was significantly (P < 0.001) greater than the median 

severity grade at hospital admission (1; minimum−maximum, 0 to 4). For each of 116 

dogs, the medical record maintained by the referring veterinarian prior to the patient’s 

admission to the teaching hospital was available for review, and 50 (43%) dogs were 

treated for hepatic encephalopathy prior to referral to the teaching hospital.  

Plasma ammonia concentration was determined within 24 hours after hospital 

admission for 83 (70%) of 118 dogs. The median plasma ammonia concentration was 

179 µg/mL (minimum−maximum, 15 to 1,350 µg/mL; reference limit, < 50 µg/mL), and 

77 (93%) dogs had hyperammonemia. Plasma ammonia concentration was not 

significantly correlated with either the historical hepatic encephalopathy severity grade 

(rs = 0.16; P = 0.156) or the hepatic encephalopathy grade at the time of hospital 

admission (rs = 0.22; P = 0.052; Figure 15). 

Information regarding some precipitating factors for hepatic encephalopathy was 

unavailable for some dogs; therefore, the denominator used for determining the 

prevalence varied among the precipitating factors. The putative precipitating factors for 

hepatic encephalopathy prevalent in dogs at the time of hospital admission were SIRS 

(prevalence, 14% [16/116]), hyponatremia (7% [7/105]), alkalosis (5% [5/103]), 
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hypokalemia (5% [5/105]), dietary change or indiscretion (3% [4/118]), furosemide 

treatment (3% [4/118]), azotemia (3% [3/107]), gastrointestinal hemorrhage (2% 

[2/118]), and constipation (1% [1/118]). Thirty-six (31%) of the 118 dogs had at least 1 

putative precipitating factor for hepatic encephalitis at the time of hospital admission.  

Of the 116 dogs for which sufficient information was available to assign a 

hepatic encephalopathy grade at the time of admission to the hospital, 59 (51%) and 57 

(49%) did and did not, respectively, have clinical signs of hepatic encephalopathy 

recorded during the initial physical examination at the time of admission. Fisher exact 

test results revealed that prior treatment for hepatic encephalopathy (P = 0.014) and 

hyperammonemia (P = 0.023) were significantly associated with whether dogs did or did 

not have clinical signs of hepatic encephalopathy at the time of hospital admission 

(Table 7). Factors assessed in the multivariable logistic regression model included prior 

treatment for hepatic encephalopathy, SIRS, hypokalemia, and hyperammonemia. 

Hypokalemia, SIRS, and hyperammonemia were sequentially eliminated from the 

model, and the final model included only prior treatment for hepatic encephalopathy. 

Dogs with clinical signs of hepatic encephalopathy at the time of hospital admission 

were less likely to have been previously treated for the disease than were dogs without 

clinical signs of hepatic encephalopathy at the time of hospital admission (OR, 0.36; CI: 

0.17 to 0.78; P = 0.009). 
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Figure 15. Plasma ammonia concentration versus hepatic encephalopathy severity grade 

before (A) and at the time of admission (B)  

 

 

 

The dashed horizontal line represents the upper reference limit for plasma ammonia 

concentration (50 µg/mL). The solid diagonal line represents the line of best fit for the 

data.
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Table 6. Frequency distributions of hepatic encephalopathy severity grades before 

(historical) and at the time of admission to a veterinary teaching hospital  

Severity grade Historical At hospital admission* 

0 1 (1) 57 (49) 

1 11 (9) 6 (5) 

2 29 (25) 29 (25) 

3 54 (46) 14 (12) 

4 23 (19) 10 (9) 

 

Values represent the number (percentage) of dogs. Each dog was assigned a hepatic 

encephalopathy severity grade on a scale of 0 to 4 as follows: grade 0 = no clinical signs 

of hepatic encephalopathy; grade 1 = mildly impaired mobility, apathy, or both; grade 2 

= severe apathy, mild ataxia, or both; grade 3 = hypersalivation, severe ataxia, head 

pressing, blindness, circling, or any combination of those signs; and grade 4 = seizures, 

stupor, or coma.80 A hepatic encephalopathy severity grade at the time of hospital 

admission could not be assigned to 2 of the 118 dogs because the medical records for 

those dogs contained insufficient information. 
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Table 7. Frequency distributions of various putative precipitating factors for hepatic encephalopathy that did and did not have 

clinical signs of the disease at the time of admission to a veterinary teaching hospital 

Factor Dogs with clinical signs at 

admission 

Dogs without clinical signs at 

admission 

OR (95% CI)* P value** 

Prior treatment for HE 18 (32) 32 (56) 0.36 (0.17–0.78) 0.014 

SIRS 11 (19) 5 (9) 2.49 (0.80–7.69) 0.176 

Gastrointestinal hemorrhage 1 (2) 1 (2) 0.97 (0.06–15.83) 1.000 

Dietary change or indiscretion 1 (2) 3 (5) 0.31 (0.03–3.08) 0.360 

Constipation 1 (2) 0 (0) 2.95 (0.12–73.95)*** 1.000 

Furosemide treatment 2 (4) 2 (4) 0.96 (0.13–7.10) 1.000 

Hypokalemia 4 (7) 0 (0) 8.65 (0.45–165.00)*** 0.117 

Hyponatremia 5 (9) 2 (4) 2.35 (0.44–12.71) 0.443 

Alkalosis 2 (4) 3 (6) 0.60 (0.01–3.77) 0.669 

Azotemia 3 (5) 0 (0) 6.87 (0.35–136.40)*** 0.244 

Hyperammonemia 45 (98) 33 (83) 9.55 (1.12–81.41) 0.023 

 

Values represent the number (percentage) of dogs unless otherwise indicated. Information regarding some of the precipitating factors was unavailable 

for some dogs. * Odds ratios were calculated by univariable analysis and the referent was dogs without clinical signs of hepatic encephalopathy at 

hospital admission. ** For Fisher exact test. *** Calculation was performed by the addition of 0.5 to each group of dogs
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Discussion 
In the present study, most of the 118 dogs treated for hepatic encephalopathy at a 

veterinary teaching hospital between October 1, 1991 and September 1, 2014 had type B 

hepatic encephalopathy, followed by type C hepatic encephalopathy. Although 36 (31%) 

of those dogs had at least 1 putative precipitating factor for hepatic encephalopathy at 

the time of hospital admission, none of the precipitating factors evaluated were 

significantly associated with the presence of clinical signs of hepatic encephalopathy at 

hospital admission. Dogs that were treated for hepatic encephalopathy prior to hospital 

admission were less likely to have clinical signs of the disease at hospital admission than 

were dogs that were not treated for hepatic encephalopathy prior to hospital admission.  

In human patients, type C hepatic encephalopathy, which is associated with 

cirrhosis and portal hypertension or acquired portosystemic shunting, is more common 

than type B hepatic encephalopathy, which is associated with portosystemic bypass in 

the absence of intrinsic hepatocellular disease.40 Conversely, most of the dogs in the 

present study in which the cause of hepatic encephalopathy was identified (n = 102) had 

type B hepatic encephalopathy (73 [72%]), which was generally attributable to CPSS 

(70/73 [96%]), whereas the remaining dogs (29 [28%]) had type C hepatic 

encephalopathy, which was generally attributable to portal hypertension and the 

development of APSC (24/29 [83%]). Some dogs with intrinsic hepatocellular disease 

(type C hepatic encephalopathy) were not evaluated for APSC, and in others, APSC was 

not detected during diagnostic imaging but may have been present (i.e., false negative 

diagnostic imaging results). Therefore, it is likely the prevalence of APSC was 
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underestimated for the dogs of the present study. Macroscopic portosystemic shunting 

secondary to CPSS or APSC was identified in 96 (94%) of the 102 dogs in which the 

cause of hepatic encephalopathy was identified; however, it is likely this is also an 

underestimate of the true prevalence of macroscopic portosystemic shunting in the study 

population. Regardless, the results of the present study were similar to those of another 

study in which abdominal ultrasonography was used to identify the cause of 

hyperammonemia in 90 dogs. In that study,46 61 (68%) dogs had CPSS, 17 (19%) dogs 

had APSC (including arteriovenous fistulae), and 11 (12%) dogs had no macroscopic 

portosystemic shunting detected. Although type A hepatic encephalopathy associated 

with acute hepatic failure was not diagnosed in any dogs of the present study, it has been 

reported in dogs.41 

The most commonly reported historical and clinical findings (lethargy, altered 

behavior, obtundation, ataxia, seizures, head pressing or tilt, ptyalism, vomiting, 

blindness, circling, shaking or twitching, anorexia or hyporexia, abnormally delayed 

menace and pupillary light responses, anisocoria, conscious proprioceptive deficits, and 

stupor or coma) for the dogs of the present study were similar are similar to those that 

have previously been recognized.47 In human medicine, seizures are rarely associated 

with hepatic encephalopathy40; however, seizure activity was recorded for a substantial 

proportion (22% [26/118]) of dogs in the present study. The apparent difference in the 

incidence of seizure activity between humans and dogs with hepatic encephalopathy 

might be a reflection of the fact that hepatic encephalopathy is generally diagnosed at an 

earlier stage in human patients than it is in dogs. Human patients with subclinical hepatic 
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encephalopathy perform poorly on specialized psychometric tests, but do not have an 

impaired mental status or abnormal neurological examination findings.38 Unfortunately, 

there is currently no way to diagnose subclinical hepatic encephalopathy in dogs, and the 

disease is detected only after clinical signs become apparent. Therefore, it is likely that 

hepatic encephalopathy is underdiagnosed in dogs. 

For the dogs of the present study, the median hepatic encephalopathy severity 

grade before hospital admission (median grade, 3) was worse than that at hospital 

admission (median grade, 1). This finding was not surprising because 50 (43%) of the 

116 dogs that were assigned a hepatic encephalopathy severity grade both before and at 

hospital admission were treated for the disease prior to being admitted to the veterinary 

teaching hospital. Also, dogs that were not treated for hepatic encephalopathy prior to 

hospital admission were approximately 3 times as likely to have clinical signs of hepatic 

encephalopathy at the time hospital admission, compared with dogs that were treated for 

the disease prior to hospital admission.  

The protocols used to treat the dogs of the present study for hepatic 

encephalopathy prior to admission to the veterinary teaching hospital varied, but 

generally included antimicrobials, lactulose, and some type of dietary intervention. 

Unfortunately, the protocols varied to such an extent that it was not possible to assess the 

efficacy of individual interventions. However, the findings of the present study 

suggested that medical management strategies commonly used to treat dogs with hepatic 

encephalopathy are effective, at least in the short term.  
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In the present study, venous plasma ammonia concentration was measured within 

24 hours after hospital admission for 83 dogs, of which 78 (94%) had hyperammonemia 

(ammonia concentration ≥ 50 µg/mL). This suggested that most but not all dogs with 

hepatic encephalopathy have hyperammonemia, a finding that supported the results of 

another study41 that involved dogs with hepatic encephalopathy. However, we could not 

estimate the sensitivity of the presence of ammonemia for detecting dogs with hepatic 

encephalopathy from our data because the presence of hyperammonemia was used as an 

inclusion criterion for the study. Consequently, the sensitivity of hyperammonemia for 

detecting hepatic encephalopathy calculated from the data of the present study would 

likely be overestimated. Also, at the time of hospital admission, many dogs were 

receiving lactulose and various antimicrobials, which might have reduced the absorption 

of ammonia from the intestine at the time the blood sample used to measure plasma 

ammonia concentration was obtained. Although there was a weak positive correlation (rs 

= 0.22) between venous plasma ammonia concentration and the hepatic encephalopathy 

severity grade at the time of hospital admission, that correlation did not quite reach 

significance (P = 0.052). Results of another study41 that involved dogs indicate that there 

is a positive correlation between hepatic encephalopathy severity and both arterial and 

venous plasma ammonia concentrations. It is possible that the enrollment of additional 

dogs with hepatic encephalopathy or dogs without a history of hepatic encephalopathy in 

the present study would have enabled us to detect a significant correlation between 

plasma ammonia concentration and hepatic encephalopathy severity. Results of 

studies39,82 that involved human patients suggest there is a moderate to strong positive 
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correlation between arterial plasma ammonia concentration or partial pressure and the 

severity of hepatic encephalopathy. Interestingly, results of another study83 suggest only 

a weak correlation between venous plasma ammonia concentration and the severity of 

hepatic encephalopathy in human patients. Arterial ammonia concentration is generally 

higher than venous ammonia concentration, and may better reflect the ammonia 

concentration in the cerebrum.39 Ammonia in its gaseous form readily enters the brain; 

therefore, the correlation between the severity of hepatic encephalopathy and the pH-

dependent partial pressure of gaseous ammonia is better than the correlation between the 

severity of hepatic encephalopathy and total arterial ammonia concentration.82 Because 

the ranges for plasma ammonia concentration among patients with different hepatic 

encephalopathy severity grades (including those with a severity grade of 0, or no clinical 

signs of the disease) overlap, measurement of plasma ammonia concentration is of 

limited value for detection of individual human or canine patients with hepatic 

encephalopathy.39,41 Hence, even though ammonia has a critical role in the pathogenesis 

of hepatic encephalopathy, other factors such as inflammatory mediators, neurosteroids, 

and manganese are also important.40 Dogs with CPSS and clinical signs of hepatic 

encephalopathy often have serum C-reactive protein concentrations that are increased 

from reference limits.84 Additionally, dogs with CPSS85 or primary hepatitis86 frequently 

have blood manganese concentrations that are increased from reference limits.  

Thirty-six (31%) of the 118 dogs of the present study had at least 1 putative 

precipitating factor for hepatic encephalopathy at the time of hospital admission. The 

precipitating factors for hepatic encephalopathy that were most commonly recorded for 
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the dogs of the present study were SIRS, hyponatremia, alkalosis, hypokalemia, dietary 

change or indiscretion, furosemide treatment, azotemia, gastrointestinal hemorrhage, and 

constipation. The prevalences of those precipitating factors in the dogs of the present 

study were generally lower than the prevalences of those factors in human patients with 

hepatic encephalopathy, likely because the most common cause of hepatic 

encephalopathy in dogs is CPSS, whereas the most common cause of hepatic 

encephalopathy in humans is cirrhosis, and patients with cirrhosis tend to have more 

systemic complications.40  

Results of another study48 indicate that SIRS is associated with hepatic 

encephalopathy in dogs with CPSS, and SIRS, with a prevalence of 14% (16/116), was 

the most commonly recorded precipitating factor for hepatic encephalopathy in the dogs 

of the present study. The criteria used to diagnose SIRS in the present study were more 

stringent than those used in another study87 because we decided it would be preferable to 

be conservative and reduce the chance for false-positive SIRS diagnoses, which might 

have contributed to the fairly low prevalence of SIRS in the present study. A variety of 

mechanisms have been proposed for how inflammation and infection could precipitate 

hepatic encephalopathy. A synergistic relationship between ammonia and inflammatory 

cytokines might alter cerebral neurotransmission and increase the permeability of the 

blood-brain barrier.88 Also, dogs with CPSS have higher serum C-reactive protein84 and 

plasma interleukin-6 concentrations89 than do dogs without CPSS.  

Hyponatremia (7% [7/105]) and hypokalemia (5% [5/105) were the next most 

common precipitating factors for hepatic encephalopathy recorded for the dogs of the 
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present study. Hyponatremia is believed to precipitate hepatic encephalopathy by 

exacerbating the low-grade cerebral edema caused by ammonia dysmetabolism.90 

Hypokalemia causes extracellular alkalosis, which can lead to the trapping of 

ammonium ions within the cells of the cerebral cortex.47 

The putative precipitating factors for hepatic encephalopathy evaluated in the 

present study were chosen on the basis of known precipitating factors for hepatic 

encephalopathy in humans. For the dogs of the present study, none of those precipitating 

factors for hepatic encephalopathy were significantly associated with the presence of 

clinical signs of the disease at the time of hospital admission. However, these findings 

are specific for the study population and should not be extrapolated to a population that 

includes dogs with and without a history of hepatic encephalopathy. Thus, the 

precipitating factors for hepatic encephalopathy evaluated in the present study might 

instead be comorbid disorders that are not involved in the pathogenesis of hepatic 

encephalopathy in dogs. The results of the present study differ from those of 

retrospective study48 of dogs with CPSS in which SIRS and hyperammonemia, but not 

hyponatremia, were associated with hepatic encephalopathy. That study48 differed from 

the present study in that the dogs with CPSS did not have a history of hepatic 

encephalopathy, which may account for the conflicting results between the 2 studies. 

Furthermore, the prevalences of the putative precipitating factors for hepatic 

encephalopathy in the present study population were fairly low, which could suggest that 

the study had insufficient power to detect an association between the precipitating 

factors for hepatic encephalopathy and the presence of clinical signs of the disease at 
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hospital admission. Conversely, it is possible that there is no association between the 

putative precipitating factors and the presence of clinical signs of hepatic 

encephalopathy because those factors are not as critical for the development of hepatic 

encephalopathy in dogs as they are in humans. Nevertheless, we believe that it is prudent 

for clinicians to evaluate dogs for the putative precipitating factors for hepatic 

encephalopathy and manage those factors whenever possible.  

The present study had several limitations. As with any retrospective study, our 

ability to identify dogs that met the criteria for study enrollment and accurately evaluate 

those dogs was dependent on the correct and complete recording of each subject’s 

history, physical examination findings, and diagnostic test results in its medical record. It 

is possible that the prevalence of dogs with clinical signs of hepatic encephalopathy at 

the time of hospital admission was underestimated. Also, the retrospective assignment of 

hepatic encephalopathy severity grades was difficult because the disease is episodic in 

nature, and it is possible that clinical signs were not at their worst when the dogs were 

examined at the veterinary teaching hospital, which could have led to underestimation of 

severity grade. Underestimation of the hepatic encephalopathy severity grade would 

have limited our ability to detect a correlation between the plasma ammonia 

concentration and the severity grade. To minimize the potential effect from 

underestimation of the hepatic encephalopathy severity grade, we assigned each dog 2 

severity grades, 1 of which was based on the patient’s history provided by the owner and 

referring veterinarian and another of which was based on the patient’s initial physical 

examination findings at the time of hospital admission. Additionally, the diagnostic 
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testing protocol was not standardized. Therefore, the evaluation for portosystemic 

vascular anomalies varied among dogs, and we were unable to determine the cause of 

hepatic encephalopathy in some dogs. Ideally, a prospective study should be performed 

in which each patient undergoes a standardized comprehensive evaluation (e.g. 

computed tomography angiography for identification of portosystemic vascular 

anomalies and histological evaluation of a liver biopsy specimen for assessment of 

intrinsic hepatocellular disease). Although the prevalences of the putative precipitating 

factors were determined at the time of or within 24 hours after admission to the 

veterinary teaching hospital to ensure that dogs were assessed for the presence of hepatic 

encephalopathy as close to hospital admission as possible, it is possible that plasma 

ammonia or serum electrolyte concentrations changed between the time that the initial 

physical examination was performed and the time that the blood samples were obtained 

for analyses. Finally, because of the retrospective nature of the study, evaluation of the 

putative precipitating factors for hepatic encephalopathy was not standardized. Some 

factors, such as hypokalemia, are easy to detect, whereas others, such as gastrointestinal 

hemorrhage, are difficult to diagnose. Consequently, the presence of some factors may 

have been non-differentially misclassified, which would have shifted the ORs for those 

factors toward the null and potentially caused a type II error. Further studies are 

necessary to better elucidate the precipitating factors for hepatic encephalopathy in dogs.  

Results of the present study indicated that type B hepatic encephalopathy subsequent to 

CPSS was the most common cause of hepatic encephalopathy in dogs with a history of 

the disease, followed by type C hepatic encephalopathy subsequent to APSC. 
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Approximately 31% (36/118) of the dogs had at least 1 putative precipitating factor for 

hepatic encephalopathy; however, there was no significant association between any of 

those factors and the presence of clinical signs hepatic encephalopathy at the time of 

hospital admission. Dogs treated for hepatic encephalopathy prior to hospital admission 

were less likely to have clinical signs of the disease at the time of hospital admission. 

Further investigation into the pathogenesis of hepatic encephalopathy in dogs is needed. 

  



 

 98 

CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

Hepatic histological scoring 

Histopathological assessment of liver biopsy specimens is currently the only 

diagnostic method to definitively diagnose CH and to assess the severity of hepatic 

fibrosis in dogs. However, this technique is expensive, there is a risk of hemorrhage24, 

and it is susceptible to sampling variation.25 Furthermore, there was poor inter-observer 

agreement when veterinary pathologists evaluated necroinflammatory activity and only 

fair agreement when they evaluated hepatic fibrosis using a previously published scoring 

system. Interestingly, the pathologists usually only disagreed by one score level. Thus, 

the level of agreement observed may be acceptable for fibrosis if partial agreement is 

taken into account. A retrospective study to determine the prognostic significance of the 

stage of hepatic fibrosis in dogs with CH is currently being performed. This will allow 

us to determine the clinical acceptability of this partial agreement. The inter-observer 

agreement was lower for scoring of necroinflammation than for fibrosis, which is also 

the case for humans.31 However, for both the level of agreement was suboptimal. This 

complicates the interpretation of hepatic histopathology in both a clinical and a research 

setting. For clinical use where repeatability is important simplification of this scoring 

system, especially the grading of necroinflammatory activity, may be beneficial, as this 

would be expected to improve inter-observer agreement. For research studies, where it 

may be important to detect small changes in fibrosis or necroinflammation, more than 
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one pathologist should score sections and/or histological assessment should be 

augmented by more objective techniques such as computerized image analysis. The 

work described in this dissertation shown the feasibility of computer assisted image 

analysis for the assessment of canine hepatic fibrosis. However, further, studies 

assessing the utility of computerized image analysis to assess canine hepatic fibrosis are 

needed. 

 

Conclusion  

There is suboptimal agreement when veterinary pathologists assess canine 

hepatic fibrosis and necroinflammatory activity. This is concerning, and a simplified 

scoring system should be developed for use in a clinical setting. When investigators 

design studies evaluating these findings, multiple pathologists should examine 

specimens or other techniques, such as computerized image analysis, should be used in 

addition to histological assessment. 

 

Diagnosis of hepatic fibrosis 

Due to the limitations of the histological assessment of hepatic fibrosis discussed 

above, the development of non-invasive markers would be beneficial in diagnosing and 

monitoring dogs with CH. Unfortunately, although HA, PIIINP, and TIMP-1 are 

promising markers of hepatic fibrosis in humans27 they did not appear to useful for this 

purpose in dogs. A previous study did suggest that serum HA has some utility as a 

marker of canine hepatic fibrosis.28 Further work to identify and validate other markers 
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of fibrosis in dogs is warranted. One appealing approach is to use untargeted proteomics 

to identify candidate markers from specimens of fibrosed and healthy canine liver. As a 

next step, these candidate markers would need to be evaluated in a larger group of dogs. 

Additionally, microRNAs, which are non-coding RNAs, also have the potential to be 

used as serum markers for hepatic fibrosis.91 

Another possible approach for the non-invasive assessment of canine hepatic 

fibrosis would be elastography. In broad terms, this involves creating a shear or strain 

wave in the tissue of interest. The speed of propagation of this wave is then measured 

with ultrasound or magnetic resonance imaging.92 Shear waves pass more quickly 

through stiff tissue, so the speed of the wave is directly related to the degree of hepatic 

fibrosis.92 These techniques have been shown to have good diagnostic accuracy for the 

detection of hepatic fibrosis in humans with CH92 but to the author’s knowledge have 

not been used to assess canine hepatic fibrosis. 

The finding that serum TIMP-1 concentration has some ability to discriminate 

between dogs with hepatobiliary disease and healthy dogs or dogs with non-neoplastic 

hepatic disease is interesting. However, further work is needed to determine if TIMP-1 

has any clinical utility for this purpose. This marker is more likely to have potential as a 

prognostic marker for dogs with hepatocellular carcinoma (and possibly other tumors) 

rather than as a true diagnostic marker. The reason for this is that hepatocellular tumors 

are usually readily detected in dogs using abdominal ultrasound and, if after diagnosis 

they are the surgically excised, a biopsy can be collected for definitive diagnosis.93 
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Conclusion 

Measurement of serum PIIINP and TIMP-1 do not appear to be useful 

biomarkers of canine hepatic fibrosis. The results of the work described in this thesis do 

not support the utility of serum HA for the assessment of hepatic fibrosis in dogs, 

however findings from a previous study suggest that this marker may have some utility 

for this purpose. Further work to identify noninvasive markers of canine hepatic fibrosis 

is needed. 

 

Mast cell mediated inflammation  

A subset of dogs with hepatobiliary disease, including those with CH, had mildly 

increased urinary NMH to creatinine ratios, suggesting that mast cell mediated 

inflammation may play a role in these dogs. However, mast cell counts were low in 

toluidine blue stained sections of liver from dogs with a variety of different hepatobiliary 

diseases, and there was no correlation between urinary NMH to creatinine ratios and 

hepatic mast cell counts, fibrosis score, or necroinflammatory score. Taken together 

these findings do not support the hypothesis that mast cell mediated inflammation plays 

an important role in canine hepatobiliary disease. They also do not support the utility of 

urinary NMH to creatinine ratio as a marker of hepatobiliary inflammation in dogs. It is 

not possible to completely rule out the possibility that mast cell mediated inflammation 

may be important in a minority of dogs with hepatobiliary disease and studies evaluating 

hepatic mast cell counts using immunohistochemical staining may allow the more 

sensitive detection mast cells, especially those that are degranulated.  
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The development of novel markers of hepatobiliary inflammation would be 

beneficial for the diagnosis on monitoring of canine liver disease. As CH is 

characterized by a predominantly lymphoplasmacytic inflammatory infiltrate it may be a 

better use of resources to develop markers of mononuclear cell inflammation. We also 

have an ongoing project assessing the efficacy of the acute phase inflammatory marker 

C-reactive protein and S100-A12, which is a marker of phagocytic cell activation as a 

biomarkers of hepatic necroinflammatory activity.  

 

Conclusion 

Mast cell mediated inflammation does not appear to play an important role in the 

majority of dogs with hepatobiliary disease and therefore the urine NMH to creatinine 

ratio does not appear to be a useful biomarker of hepatic inflammation. 

 

Hepatic encephalopathy 

Hepatic encephalopathy is an important complication of CH in dogs. The most 

common cause of HE in dogs is portosystemic shunting, which in turn is most 

commonly due to a CPSS (type B HE), but can also occur due to APSCs that develop in 

dogs with hepatocellular disease (type C HE), as is the case in dogs with CH. Hepatic 

encephalopathy in the absence of macroscopic portosystemic shunting is uncommon in 

dogs. In dogs with CH, APSCs develop secondary to hepatic portal hypertension. 

Ammonia plays a central role in the pathogenesis of HE by causing astrocyte swelling 

and dysfunction through a number of different mechanisms. Therefore, it was not 
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surprising that there was a weak positive correlation between venous plasma ammonia 

concentration and the hepatic encephalopathy severity grade at the time of hospital 

admission, although this correlation did not quite reach significance (P = 0.052). 

Additionally, on univariate analysis there was an association between hyperammonemia 

and the presence of HE at presentation. In humans other factors that can precipitate HE, 

such as electrolyte abnormalities, gastrointestinal hemorrhage, and SIRS, have been 

identified. The roles of such putative precipitating factors in canine HE are not well 

understood. Although these factors are relatively common in dogs with HE there was no 

significant association between any of these factors and the presence of clinical signs of 

hepatic encephalopathy at the time of hospital admission. However, a previous study did 

find an association between HE and SIRS as well as hyperammonmia.48 Further 

investigation into the pathogenesis of hepatic encephalopathy in dogs is indicated. 

Initially, prospective studies evaluating the association between putative precipitating 

factors and the development of HE in dogs at risk should be conducted. Techniques, 

such as magnetic resonance spectroscopy and positron emission tomography, that allow 

the pathogenesis of HE to be studied in vivo, may also help to better define the 

pathogenesis of canine HE. This in turn may open up the possibility of discovering novel 

treatments for this syndrome in dogs and humans. 

 

Conclusion  

Dogs with HE commonly have at least one putative precipitating factor, such as 

electrolyte abnormalities. However, it was not possible to demonstrate an association 
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between any of these factors and the development of HE other than those previously 

found for hyperammonemia and SIRS. Dogs medically treated for hepatic 

encephalopathy prior to hospital admission are less likely to have clinical signs of the 

disease at the time of hospital admission. Further investigation of the pathogenesis of 

canine HE is needed. 
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