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ABSTRACT

The energy pathways associated with the martensitic transformation in shape

memory alloys (SMAs), though the focus of extensive research over the past decades,

are still unclear. In this work, we use a first-principles approach within the frame-

work of density functional theory, as implemented in the Vienna ab initio simulation

package (VASP), to model the transformation in transition metal alloys by tracking

atomic motion via shear, shuffle and distortion during the transformation. We build

a framework to investigate the f.c.c-h.c.p transformation in Co-based binary alloys

which may be applied to ternary alloys as well. In the Co2NiGa Heusler system, by

applying the Burgers transformation, we found a low-energy phase with orthorhom-

bic symmetry (O) phase which is lower in energy than the experimentally observed

L10. By performing a detailed analysis of the transformation paths (Burgers and

Bain) taking into account perturbations on the ground state, it is seen that a phase

selection problem exists: the ultimate crystal structure that the system transforms

into, depends on the path that the system prefers. When coming from high temper-

ature, the accessible path is that corresponding to the Bain transformation. Finally,

we present a complete and unique 4-parameter model to describe the B2 − B19′

transformation in Ni − Ti. We eliminate the possibility of the B19 phase being

an intermediate phase in the transformation and show that it is in fact a barrier-

less transformation. Crystallographic analysis of intermediate states shows that the

B2−B19′ path follows a known crystallographic path.
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NOMENCLATURE

MT Martensitic Transformation

SMA Shape Memory Alloy

SME Shape Memory Effect

Ms Martenistic start temperature

DFT Density functional theory

H-K Hohenberg-Kohn

MEP Minimum Energy Path
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WL Wenkovitch-Lam
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1. INTRODUCTION

The martensitic transformation (MT) is a diffusionless solid-solid phase trans-

formation which occurs by a cooperative movement of atoms. Diffusionless phase

transformations are structural transformations characterized by a small change in

atomic positions, typically within one interatomic distance. The change in structure

is abrupt and is characterized by a specific temperature, composition, and pressure.

The microscopist Adolf Martens in 1890 observed martensite for the first time un-

der the microscope and the phase was named after its discoverer [1]. Martensite

is observed on rapid cooling of a high temperature phase by thwarting the devel-

opment of the low-temperature phase. Consequently it is a non-equilibrium phase.

The high-temperature symmetric phase is known as austenite (so named after the

metallurgist William C. Roberts-Austen) and transforms to a low-symmetry, low-

temperature phase when cooled. Since martensite is generated by atom movement,

it results in the induction of many lattice imperfections such as dislocations, stack-

ing faults and twin faults. Martensitic phase transformations are found to occur in

almost all pure metals and metallic alloys of the group III-IV of the periodic table

of the elements as well as few other materials and ceramics [2]. A complete and

cogent discussion of martensitic transformations is beyond the scope of this work.

The interested reader may refer to the excellent foundational book by Z.Nishiyama

[3] for a thorough discussion.

Through the march of the centuries, the quest for better materials to simplify the

life of man has continued uninterrupted. Fueled by technological advances, growing

populations, and the consequent pressure on the ecology, the field of materials science

prospers. Advances in materials still have the ability to surprise and delight us, much

1
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Figure 1.1: Schematic illustration of the shape memory effect

in the same way they delighted early man thousands of years ago.

One such unique class of materials are shape memory alloys which can recover

apparent plastic strains when subjected to some form of external stimuli such as

heat, stress or magnetization. A solid-solid phase transformation (the martensitic

transformation), occurs wherein the material undergoes a change in crystal structure.

The 1950’s saw the discovery of the shape memory effect (SME) as observed in the

Au-Cd [4] and the In-Tl [5] systems. The discovery of the Ni-Ti SMA in 1963 [6]

provided impetus to the interest in research on shape memory alloys. By 1970, it was

established that the shape memory alloys (SMAs) are a sub-group of alloys which

undergo a thermoelastic martensitic transformation [7]. Since then, a large number

of investigations have been carried on the SME and it’s accompanying effects.

In Figure 1.1 the shape memory effect is illustrated schematically. In (a) the

SMA is in the high temperature austenitic phase. When cooled, the austenite struc-

2



turally transforms into the low temperature structure in (b). This low temperature

martensite may have variants as shown in (b) & (c). To minimize it’s energy, the

SMA transforms into a mixture of variants, giving rise to the twinned martensitic

structure seen in (d). This twinned martensite can be easily deformed as in (e). At

this stage, if the alloy is heated again, the deformed martensite transforms back into

high-temperature, high-symmetry austenite.

Shape memory alloys thus exhibit a reversible martensitic transformation. The re-

versibility of the transformation depends on the order of the transformation. Second-

order transformations such as order-disorder, magnetic or dielectric transformations

are reversible. First-order transformations may be reversible if the lattice constants

of the parent and product structures are such that the martensite may grow in the

austenite phase without creating long-range stress. While undergoing a martensitic

transformation, the austenite can give rise to several martensite variants which may

combine in twinning and deformation. However, each of these variants or combina-

tions thereof return to a unique parent austenite. The material during the course

of the transformation is always within a neighbourhood such that it is able to store

the data necessary to ‘remember’ the way back to the parent martensite. It is essen-

tial that the material remain within this neighbourhood, called the ‘Ericksen-Pitteri’

neighbourhood (EPN) in order to exhibit the shape memory effect.

Nearly all phase transformations in solid metals and alloys are heterogenous pro-

cesses and can be classified as i)reconstructive or ii) displacive transformations [8].

Reconstructive tranformations encompass a change in the primary coordination and

are second order phase transitions. The transformed phase is not a subgroup of the

parent phase and there is no associated energy barrier. Displacive transformations

occur by the ordered and correlated motions of atoms accompanied by a change in the

secondary coordination. The transformed phase is a subgroup of the parent phase.

3



The martensitic transformation in SMAs may be modeled as displacive transforma-

tions. The transition is of first order and is a barrier overcoming process. Displacive

martensitic transformations thus have an associated energy barrier which character-

izes them. The energy barrier indicates the energy required for the transformation

to occur and thereby defines the martensitic transformation temperature.

For the purposes of this work, it is also essential to make a distinction between

thermoelastic and athermal martensitic transformations. The thermoelastic marten-

sitic transformation is one in which the martensite grows continuously on lowering

of temperature and diminishes continuously on raising of the temperature [9]. In

a thermoelastic transformation, the chemical driving force and the resistive stored

elastic energy must proceed more or less in equilibrium. The transformation may see

abrupt transitions whenever the chemical driving forces exceed the resistive forces.

The athermal transformation (as in most steels) proceeds only with change in temper-

ature and the reaction stops when the temperature is kept constant. The TTT (time-

temperature-transformation) phase diagrams may be used to account for the amount

of isothermal martensite for a particular holding time and temperature [10, 11].

In spite of being such a universal phenomenon, and even though there has been

an interest in the transformation for over a 100 years, it is not very well under-

stood even today. While a few simple models exist to explain the transformation in

pure metals and alloys, there are a great number of metals and alloys in which the

transformation pathways are unexplained. As described by Cohen[1]; ‘Martensitic

transformations are diffusionless structural transitions which are shear-dominant and

lattice distortive. The morphology and the kinetics are mainly determined by the

strain energy ’. Consequently, the models that do exist are a combination of shears,

shuffles and distortions.

In this dissertation we present a cogent and comprehensive analysis of the marten-

4



sitic transformation mechanism from a structural viewpoint to gain an insight into

the driving forces behind the transformations in three different SMA systems: (i) Co-

based binary SMAs, (ii) Co-Ni-Ga high temperature shape memory alloy (HTSMA),

and (iii) Ni-Ti binary SMA. In Section 3 we debate the applicability of the Bain

transition mechanism in the case of Co-based alloys and show the energetics of the

Bain path in the Co - Al system. Two phenomenological models for the f.c.c to

h.c.p transformation are discussed and applied to the binary Co - Al, Co-Si and

Co-Fe binary alloys. The minimum energy paths (MEPs) for the transformations

are calculated and are compared with experimental data. In Section 4, an extensive

ab initio study of the transformation paths in the martensitic Co2NiGa system is

carried out. Possible transformation mechanisms are studied and it is shown that the

initial L21 structure may transform either to the L10 or the 0 structures. Although

the O structure corresponds to lower total energy, several phenomena can lower the

total energy of L10 and make it comparable to that of the O structure. The latter

has not been observed experimentally and an extensive analysis is carried out to de-

termine the energetics which render the L10 phase lower in energy. In Section 5, we

present a first-ever consolidated four-paramter model for the B2 − B19 martensitic

transformation in Ni-Ti. We show that the B19 phase, while crystallographically

possible, is not a likely intermediate phase in the transformation. Finally, the MEP

for the four-parameter model is calculated and it is shown the obtained path is a vi-

able crystallogrpahic route. Computational methods used in this work are described

in the following section.
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2. METHODOLOGY AND COMPUTATIONAL TECHNIQUES

2.1 Density Functional Theory (DFT)

The year 1926 saw the publishing of Erwin Schrödinger’s epoch-making paper[12]

introducing wave mechanics. It introduced the Schrödinger equation, a partial dif-

ferential equation (PDE) describing the evolution of the wave function of a physical

system. The goal of most appproaches in solid state physics and quantum chemistry

is to solve the time-independent, non-relativistic Schrödinger equation:

Ĥψi(x⃗1, x⃗2, ...x⃗N , R⃗1, R⃗2....R⃗M) = Eiψi(x⃗1, x⃗2, ...x⃗N , R⃗1, R⃗2....R⃗M) (2.1)

where Ĥ is the Hamiltonian for a system consisting of M nuclei and N electrons, ψ

is the wavefuction and E is the constant energy. The Hamiltonian Ĥ is given by:

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

rAB

. (2.2)

In equation 2.2 the first two terms describe the kinetic energy of the electrons and

nuclei. The third term represents the attractive electrostatic interaction between

the nuclei and the electrons. The fourth and fifth terms represent the arepulsive

potential due to the electron-electron and nucleus-nucleus interactions respectively.

Nuclei being much heavier than electrons, move much slower. Hence, the elec-

trons can be considered to be moving in a field of fixed nuclei. This is the Born-

Oppenheimer approximation which makes the nuclear kinetic energy insignificant

and renders the nuclear potential energy to be a constant. The electronic Hamilto-

nian then reduces to:
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Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
, (2.3)

which gives us the reduced Schrödinger equation:

Ĥelecψelec = Eelecψelec. (2.4)

This complicated many-particle equation is not separable into simpler single-particle

equations because of the interaction terms ( last two terms in equation 2.3). After

the Schrödinger equation was put forth and validated spectacularly for systems like

H and H2, Dirac is famously said to have proclaimed, as mentioned by Kohn [13] -

‘chemistry had come to an end - its content was entirely contained in that powerful

equation. Too bad, he is said to have added, that in almost all cases, this equation

was far too complex to allow solution’. Since then, much progress has been made

in finding approximate solutions to the Schrödinger equation for the many-electron

problem.

Density functional Theory (DFT) is an alternative approach to the theory of

electronic structure, in which the electron density distribution n(r) plays an impor-

tant role. The Thomas-Fermi theory arguably was the first primitive form of DFT

put forth by Thomas [14] and Fermi [15] in 1927. DFT, as it is known today, was

reported over the course of two works -Hohenberg and Kohn in 1964[16] and Kohn-

Sham in 1965 [17] and is based on the two Hohenberg - Kohn (H-K) theorems. The

first Hohenberg-Kohn theorem demonstrates that the electron density uniquely de-

termines the Hamiltonian operator and thus all the properties of the system. The

second H-K theorem defines a ground state energy functional and proves that it

delivers the lowest energy if and only if the input density is the true ground state
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density.

This electron density is defined as the integral over the spin co-ordinates of all

electrons and over all but one of the spatial variables:

ρ(r⃗) = N

∫
...

∫
|ψ(x⃗1, x⃗2, x⃗3...x⃗N)|2ds1dx⃗2....dx⃗N (2.5)

When reformulated in terms of the electron density, the Schrödinger equation reduces

to the Kohn-Sham equation:

−
[
1

2
∇2 + V (r⃗) + VH(r⃗) + VXC(r⃗)

]
ψi(r) = ϵiψi (2.6)

Here, V (r) accounts for the interaction between the nuclei and the electrons, VH is

the Coulombic interaction between electron at position xi and the average charge

distribution of another electron in spin orbital ψj.This term is the Hartree potential.

This potential is non-local and it depends on the spin orbitals. Thus, these equations

must be solved self-consistently. VXC is the exchange-correlation potential which

includes the many-particle interactions. This VXC is the holy grail of DFT. It is

defined as the functional derivative of EXC with respect to the electron density

(ρ(r⃗)), i.e., VXC =
δEXC

δρ(r⃗)
. If the exact forms of EXC and VXC were known, the Kohn-

Sham equations would lead to the exact energy. However, the exact functionals for

exchange and correlation are not known except for the case of the free electron gas. A

number of approximations exist to estimate these exchange - correlation potentials.

The local density approximation (LDA) [18] as the name suggests assumes that the

exchange energy per particle in each spatial point depends only on the local density.

The generalized gradient approximation (GGA) [19] uses the local electron density

as well as the local gradient in the electron density.
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In this work, we use the Vienna ab initio simulation package (VASP) [20, 21, 22,

23] to perform the ab initio calculations. VASP uses plane-wave (PW) basis sets and

uses the Hellmann-Feynman [24, 25] theorem to calculate forces. The interaction

between ions and electrons is described by the projector augmented-wave (PAW)

method [26].

2.2 Lattice Dynamics Calculations

Martensitic transformations are often found to occur at a critical valence electron

concentration (e/a) and concommitant vibrational anomalies are of importance. Lat-

tice dynamics calculations involve the determination of the constrained free energy

of a system in the neighborhood of an equilibrium conguration ϕ,assuming that the

system is to be found most of the time in the vicinity of a local energy minimum

where a harmonic approximation to the energy surface may be made accurately.

Vibrational properties are calculated by using the reaction forces resulting from im-

posed atomic displacements. The most important part of the calculations involve

the calculation of the force constants. Force constants may be calculated in three

ways: analytic calculations, supercell calculations and linear response calculations.

In simple cases when a direct calculation of the second derivatives of the energy with

respect to atomic displacements is allowable, analytic calculations are possible. In

the supercell method, the atoms are slightly perturbed from their equilibrium posi-

tions and the reaction forces are calculated. Equating the calculated forces to the

predicted forces from the harmonic model results in a set of linear constraints which

may be used to determine the force constants. In the supercell method [27, 28], the

positions of the atoms are slightly perturbed away from their equilibrium position

and the reaction forces are calculated. A set of linear constraints are obtained by

equating the calculated forces to the forces predicted from the harmonic model. From
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these, the unknown force constants are determined. In the linear response method

[29, 30] second-order change in the electronic energy resulting from the perturbations

are used to directly evaluate the dynamical materix associated with the harmonic

system. The eigenvalues of this matrix give the frequencies of the normal modes

of oscillations, which are then used to calculate the vibrational properties. Phonon

vibrational density of states (PVDOS) calculations were carried out using VASP in

conjunction with the fitfc module of the ATAT package [31].A full relaxation of the

structure is first carried out. Then the structure is subjected to perturbations and

the vibrational properties are calculated by fitting a spring model to reaction forces

resulting from imposed atomic displacements.

2.2.1 Calculation of elastic constants

The elastic constants were calculated by imposing a set of strains [32, 33, 34,

35, 36], ϵ = (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6) on the crystal structure. The stresses (σi) resulting

from the change in energy due to the deformation are calculated. By application

of Hooke’s Law σi = Cijϵj, the stiffness tensor Cij may be computed. The Bulk

Modulus (B) is calculated according to [36]:

B =
2

9

(
C11 + C12 + 2C13 +

C33

2

)
(2.7)

The shear modulus is calculated using the Voight approximation[36]:

G =
1

15
(2C11 + C33 − C12 − 2C13+) +

1

5

(
2C44 +

1

2
(C11 − C12)

)
(2.8)

While Young’s modulus is computed by[36]:

E =
9BG

3B +G
(2.9)
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and Poisson’s ratio may be calculated as:

ν =
E

2G
− 1 (2.10)

2.3 String Algorithm for calculation of Minimum Energy Path (MEP)

Calculating the energy landscape of a system with respect to the phenomenon of

interest (for example the martensitic transformation in SMAs) allows us to see the

local and global minima and maxima which lend greater insight into the transfor-

mation. The question that arises next is which path the transformation will take to

transition from a local minimum to another local minimum. The path taken by the

transformation is the minimum energy path (MEP) or the path of least resistance.

These MEPs can be mathematically defined as the paths in the configuration space

along which the potential force is parallel to the path at every point. The MEPs

can be then used to identify the relevant saddle points which act as the bottlenecks

for a particular barrier-crossing event as well as the energy barriers associated with

the transformation. These energy barriers in turn lend an insight into the energy

required for the transformations to occur. A number of computational methods exist

to determine the MEP given an energy landscape. Well known ones include the zero-

temperature string method [37] and the Nudged Elastic Band (NEB) [38] method. In

this work we use the zero-temperature string method to determine the MEPs over the

martensitic transformation energy landscapes. The basic idea behind this method is

to find the MEP by evolving a curve connecting the initial and final configurations,

under the energy field. Only the normal component of the first derivative matters

since the tangential component only varies the positions of points along the curve,

causing a change in parameterization of the curve without any change in the curve

itself. For more details the reader may refer to [39].
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2.4 Minima Hopping Algorithm to predict crystal structures

Minima hopping [40] is a technique that may be used to ind the global minimum

of complicated condensed matter systems. The algorithm works so as explore the low

energy areas of a configurational space as fast as possible while limiting the number

of revisits to known regions. It exploits the Bell-Evans-Polyani principle [41], i.e. it

moves from one minimum to the next by crossing low barriers which significantly

increases the probability of hopping into a low energy local minimum. To put this

another way it operates on the principle that crossing from the current basin over a

low energy barrier into a new basin is more likely to yield a low energy local minimum

than if one overcomes a high barrier. For further details, one may refer to [40]
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3. INVESTIGATION OF THE ENERGETICS OF STRUCTURAL

TRANSFORMATIONS IN CO-BASED BINARY ALLOYS

3.1 Introduction

Pure cobalt shows a non-thermoelastic reversible martensitic transformation from

a parent face-centered (f.c.c - γ) phase to a hexagonal close-packed (h.c.p - ϵ) phase

at ≃ 695K [42]. The transformation is accompanied by small changes in enthalpy

(∆h = 473Jmol−1) and volume (∆V/V = 3.3 × 10−3) and a sharp singularity of

the specific heat, attesting to it being a first order transformation [43]. The system

has a thermal hysteresis associated with it ( ≈ 100K) which is quite high when

compared with conventional thermoelastic SMAs. A number of factors affect the

transformation temperature, such as grain size, purity, external stresses and alloying

[42]. Binary alloying drastically affects the transformation temperature in these

alloys, as zirconium and molybdenum cause a reduction in the martensitic start

temperature (Ms) with increased alloying while germanium and silicon additions

result in an increase in Ms. Addition of aluminium or nickel do not affect the

transformation temperature significantly [42, 44].

In 2003, Omori et al.[44] showed that the addition of aluminium to cobalt pro-

motes L12 ordering and thereby improves the reversibility of the transformation.

The solubility of Al in Co is ≈ 16% and the alloying does not reduce the ductility of

the material. Consequently, Co - Al is a potential high temperature SMA (HTSMA)

with high thermal stability.

A number of attempts have been made to model the f.c.c-h.c.p phase transforma-

tion. The majority of these models describe the transition in terms of nucleation and

growth processes and the propagation of partial dislocations [45, 46, 47]. The other
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class of models are phenomenological models based on shearing mechanisms formu-

lated by the decomposition of the distortion into two configuration co-ordinates. The

Shoji - Nishiyama [3] mechanism was the earliest such model which described a way

of continuously distorting the f.c.c structure into a h.c.p structure using the simple

hexagonal (s.h) reference structure, specifically for the transformation in cobalt al-

loys. More recently, Wentzcovitch et al. [48] proposed a parametric model to describe

this transformation using an orthorhombic reference structure. As mentioned above,

the martensitic transformation in cobalt is a displacive transformation accomplished

by the cooperative movement of atoms while maintaining the primary co-ordination

and thereby lends itself well to analysis using parametric models. In this work, the

martensitic transformations in Co-based binary alloys are investigated using the two

phenomenological models described above using ab initio methods within a DFT

framework with a view to assessing the effect of alloying on the energetics of the

transformation. Kibey at al[49] use a similar process to model the B2−B19′ trans-

formation in Ni-Ti.

These models yield the energy landscapes for the transformations given the initial

and final structures. For transformations with relatively smooth energy surfaces, the

most probable pathways are the minimum energy paths (MEP). Minimum energy

paths have physical significance in the low temperature behavior of a system as they

give insight into the energy barrier involved in a thermally activated event (phase

transformation) without any inputs about the width of the channel near the saddle

point or other effects due to entropy. The energy surfaces calculated in this work are a

result of ground state calculations and hence are sufficiently smooth to bear relevance

for MEP calculations. At high temperature, thermal fluctuations cause the energy

surface to lose smoothness and multiple energy peaks of the order of kBT make the

concept of the MEP irrelevant. However at high temperatures, the MEP will still
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correspond to the path with the maximum likelihood. Thus the problem reduces to

obtaining the MEP over a energy surface when the initial and final states are known.

The techniques used for such scenarios include the string method [50, 51] and the

nudged elastic band(NEB) [38] methods. In this work we use the string method as

implemented by Samanta et al. [51] to determine the MEP for the transformations.

The objective of this work is to build a framework to assess the viability of marten-

sitic transformations in Co-based binary alloys from an energetics point of view, to

investigate the effect of Al alloying on the transformation, and finally, to extend the

framework to allow investigations on other binary Co-based alloys. Additionally, the

framework may be used to study other SMAs which show similar transformations.

The organization of this article is as follows. In Section 3.2 we debate the appli-

cability of the Bain transition mechanism in the case of Co-based alloys and show the

energetics of the Bain path in the Co - Al system. In Section 3.3 the phenomenologi-

cal models for the f.c.c to h.c.p transformation are discussed and applied to the binary

Co - Al, Co-Si, and Co-Fe binary alloys by extending the ideas presented in [48, 52] .

In Section 3.4 the minimum energy paths for the transformations are realized using

a steepest descent algorithm and the results are compared with experimental data.

An attempt is made to provide a theoretical basis for the minimum energy paths ob-

tained. Finally, in Section 3.5 we summarize our results and conclude by delineating

the characteristics of the martensitic transformation in Co-based alloys.

3.2 f.c.c - b.c.c transformation

Cobalt is the only element displaying a f.c.c-h.c.p transition which does not pos-

sess a disordered body centered (b.c.c) phase in it’s phase diagram. In elements

which do possess the b.c.c phase, the f.c.c and h.c.p structures can be attained from

the parent bcc structure via the Bain [53] and Burgers [54] transformations. The
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Figure 3.1: Bain path in Co - Al for alloying up to 50% Al

Co - Al phase diagram however, shows a bcc phase at compositions greater than

around 25 % Al. To validate the use of these distortion models, the phase stability

of competing phases was studied by carrying out Bain path calculations for the Co

- Al system for up to Co-50 % Al as shown in Figure 3.1.

It is seen that the Co - Al system shows a minima at a c/a ratio of ≈ 1.43 up

to Co-25% Al. Beyond 25% Al there is a sharp shift in the stability and the bcc

structure (c/a = 1) is stabilized for increasing amounts of Al, which agrees with the

Co - Al phase diagram in that this system is dominated by a B2 - ordered phase close

to the 1:1 stoichiometry. While the Bain path is not relevant to the problem at hand,

the fact that it’s composition dependence closely mirrors the expected topology of

the binary phase diagram constitutes an indirect validation of the accuracy of the
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calculations.

3.3 f.c.c - h.c.p transformation

It is well established experimentally that Co - Al alloys show a f.c.c - h.c.p trans-

formation with a good shape memory effect for Al > 10% [44]. On an atomic level,

the martensitic transformation is realized by a combination of finite displacements

(shuffles) along various directions. However, the energy path associated with this

transformation has not been previously examined to the best of the authors knowl-

edge. This work explores the energy surface associated with the f.c.c - h.c.p trans-

formation in Co - Al via two mechanisms mentioned in section 3.1: the conventional

Shoji- Nishiyama path [3] and the recent mechanism presented by Wentzcovitch et.

al. [48]. The energy lansdscape for the f.c.c -h.c.p transformation using both models

for the sample case of pure aluminium is shown in Figure 3.2.

3.3.1 Shoji-Nishiyama (SN) path for the f.c.c-h.c.p transformation in Co - Al

The SN path models a continuous distortion of the parent f.c.c phase into the

h.c.p phase which can be visualized by a decomposition into two configurational

co-ordinates as proposed by Folkins and Walker [52]; one accounting for the shear-

ing of the crystal and the other describing the relative sinusoidal displacements

of atomic planes. The planar correspondence is given by: (111)fcc ∥ (0001)hcp ,

[112̄]fcc ∥ [11̄00]hcp , or [11̄0]fcc ∥ [112̄0]hcp. This transformation occurs by shifting

every other (111) f.c.c plane by (a/6)[112̄]. The parameterization of this transforma-

tion as formulated by Folkins and Walker is used for the calculations. The formu-

lation uses the simple hexagonal (s.h) structure as a reference structure. The f.c.c

structure is then generated from the s.h structure by a shear along the x̂ direction.

The h.c.p structure is derived from the s.h structure by an alternating modulation

along the x̂ direction. For an atom with position vector r = (x, y, z), it’s displacement
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Figure 3.2: F.c.c -h.c.p energy contours for pure aluminium.(a) SN mechanism. (0,0)
corresponds to the s.h reference structure, (0, 1

3
) corresponds to the h.c.p structure

while (1
3
, 0) indicates the f.c.c structure. (b) WL mechanism. (0,1) refers to the f.c.c

structure while (1,0) describes the h.c.p structure.

is then given by equation 3.1:

u(A, η; r) = η
3√
2
zx̂+ A

√
3

2
a cos(Q.r)x̂ (3.1)

with Q = (π
c
)ẑ. The η term on the right hand side of the equation denotes the shear.

It describes the lateral shearing of each hexagonal plane by η 3√
2
z. The second term

describes the modulation associated with the h.c.p structure. For further details

regarding this formulation, refer to [52]. As seen in Figure 3.2a; (0,0) corresponds

to the s.h reference structure, (0, 1
3
) corresponds to the h.c.p structure while (1

3
, 0)

indicates the f.c.c structure.

3.3.2 Wentzkovitch-Lam (WL) path for the f.c.c - h.c.p transformation in Co - Al

The alternate model proposed by Wentzkovitch [48] assumes a correspondence

between (001)fcc and (0001)hcp planes. This is achieved by the simultaneous oc-
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currence of four strains [48]: (i) shear in opposite directions of the A and B layers

along [100]fcc or [010]fcc ,(ii) a macroscopic strain along [100]fcc or [010]fcc, (iii) an-

other macroscopic strain along [001]fcc, and (iv) a compressive strain along [010]fcc

or [100]fcc.

Atomic Displacement of an atom at r(x,y,z) within this formulation is given by

equation 3.2:

u(A, ϵx, ϵy, ϵz; r) = ϵxxx̂+ ϵyyŷ + A(1 + ϵy)
a√
2
cos(Q.r)ŷ + ϵzzẑ (3.2)

where Q = (2π/L)ẑ and L =
√
2a. (1+ϵx)+(1+ϵy)+(1+ϵz) = 1 for both structures

which implies a volume invariance. For more details please refer to [48]. As seen in

Figure 3.2b, (1,0) corresponds to the h.c.p structure and (0,1) to the f.c.c structure.

The minimum energy path (MEP) for the SN and WL mechanisms were then

calculated using the modified string method[51], and are indicated in Figure 3.3.

3.4 Results and Discussion

Calculations presented in this work were performed within the framework of Den-

sity Functional Theory, as implemented in the Vienna ab initio simulation package

(VASP), applying the generalized gradient approximation (GGA) using the Perdew-

Wang 1991 (PW91) functional [55]. The electronic configurations of the appropriate

elements were realized using the projector augmented-wave (PAW) pseudo-potentials

formalism [26]. Brillouin zone integrations were performed using a Monkhorst-Pack

mesh [56] with atleast 5000 k-points per reciprocal atom. Full relaxations were

realized by using the Methfessel-Paxton smearing method of order one [57] and self-

consistent static calculations were carried out with the tetrahedron smearing method

with Blöchl corrections [58]. A cutoff energy of 350 eV was used for all the calcula-

tions and spin polarizations were accounted for as well. The f.c.c - h.c.p transforma-
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Figure 3.3: Calculated MEP using the modified string method for pure cobalt. (a)
SN mechanism. The dashed line indicates the initial straight line path while the line
with circular markers indicates the final optimized MEP. b) WL mechanism. The
dashed line indicates the initial straight line path while the solid line with circular
markers indicates the final optimized MEP.

tion was modeled using the Wentzcovitch-Lam (WL) and the Shoji-Nishiyama (SN)

mechanisms for the Co - Al, Co-Fe and Co-Si systems. The results are presented

below.

This section shows the results obtained for the f.c.c. - h.c.p transformation paths

using the WL and SN models. Calculations have been carried out for the Co -

Al, Co-Fe, and Co-Si systems. For both Al and Fe, experiments have shown that

the martensitic transformation temperature of cobalt is expected to decrease with

increased alloying. The addition of Si shows the opposite effect, the martensitic

tranformation temperature increases with increased alloying [59]. Figure 3.4a shows

the MEP profiles for varying compositions of Co - Al and Figure 3.5a shows the trend

observed in the energy barrier for the transformation for varying compositions of Co -

Al for the Shoji-Nishiyama model. The SN model shows a contrasting trend. We see

an increase in the energy barrier (which indicates an increase in Ms) with increasing
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Figure 3.4: MEP profile for various compositions of Co - Al for the (a) SN, and (b)
WL mechanisms

amounts of Al which is opposite to what is known experimentally. Additionally, the

energy barriers calculated are also more than three times higher than that for the

WL model.
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Figure 3.5: Energy barrier trend as a function of Al % for the (a) SN, and (b) WL
mechanisms
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Figure 3.4b shows the MEP profiles for varying compositions of Co - Al and

Figure 3.5b shows the trend observed in the energy barrier for the transformation

for varying compositions of Co - Al using the WL model. We see a reduction in

the energy barrier (which indicates a lowering of Ms) for increasing amounts of Al,

which is corroborated by experimental works [44] which indicate a lowering of the

Ms with addition of aluminium. This trend stays the same throughout the range of

composition for which calculations were carried out.

A SN model with zero transformation deformation may also be formulated by

considering a combination of deformations in the three equivalent shear directions

[3]. Planar shifts of (a/6)[2̄11], (a/6)[12̄1] on the (111) f.c.c plane are equivalent to

(a/6)[112̄]. Each of these shifts causes a total shear of 19.5°. If these three variants

are stacked with equal thickness the resultant deformation shear will reduce to zero,

i.e they will cancel each other in the bulk cell. This will mean a small resultant shear

for the martensitic transformation and may result in an easier transformation. This

model was also implemented for comparison and calculations were carried out for

the Co - Al system. Figure 3.6a shows the MEP profiles for varying compositions

of Co - Al and Figure 3.6b shows the trend observed in the energy barrier for the

transformation for varying compositions of Co - Al for the modified zero transfor-

mation deformation Shoji-Nishiyama model. Comparing figures 3.4a and 3.6a, it is

seen that while there is a reduction in the absolute values of the energy barrier for

the transformation compared to the simple SN model, it is still much higher than

for the WL model. Additionally, in figure 3.6b we still see an increase in the energy

barrier with addition of Al, contrary to experiments. Consequently, we do not use

the zero deformation shear model for any further analysis.

Figure 3.7a shows the MEP profiles for varying compositions of Co-Fe and Figure

3.8a shows the trend observed in the energy barrier for the transformation for varying
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Figure 3.6: (a) MEP profile for various compositions of Co - Al, and (b) Energy
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Figure 3.7: MEP profile for various compositions of Co-Fe for the (a) SN, and (b)
WL mechanisms

compositions of Co-Fe for the Shoji-Nishiyama model. Figure 3.7b shows the MEP

profiles for varying compositions of Co-Fe and Figure 3.8b shows the trend observed
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Figure 3.8: Energy barrier trend as a function of Fe % for the (a) SN, and (b) WL
mechanisms

in the energy barrier for the transformation for varying compositions of Co-Fe using

the WL model. In the Co-Fe system , the SN model shows an increase in the energy

barrier while the WL model shows a reduction in the energy barrier (which indicates

a lowering of Ms) for increasing amounts of Al. Thus, only the WL model agrees

with experimental data [59].

Figure 3.9a shows the MEP profiles for varying compositions of Co-Si and Figure

3.10a shows the trend observed in the energy barrier for the transformation for

varying compositions of Co-Si for the Shoji-Nishiyama model. Figure 3.9b shows the

MEP profiles for varying compositions of Co-Si and Figure 3.10b shows the trend

observed in the energy barrier for the transformation for varying compositions of

Co-Si using the WL model. In the Co-Si system , both models show a reduction in

the energy barrier (which indicates a lowering of Ms) for increasing amounts of Si,

which is contrary to what may be expected from experiments[59].

Thus it is seen that the WL model predictions agree with experiments for the
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Figure 3.9: MEP profile for various compositions of Co-Si for the (a) SN, and (b)
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Figure 3.10: Energy barrier trend as a function of Si % for the (a) SN, and (b) WL
mechanisms

Co - Al and the Co-Fe systems. Both mechanisms fail to explain the trends seen

in Co-Si. It may therefore be possible, that the underlying energetics of the Co-Si

system are far removed fom those of the Co - Al and Co-Fe systems. We propose
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that the martensitic transformation in Co - Al and Co-Fe may be explained by the

Wentzcovitch -Lam model.

While noting the MEP indicated by both mechanisms we see that the the MEP

always passes through an intermediate structure and does not show the slightest

tendency to deviate from the intermediate structure. This can be explained on

the basis of space group symmetry. A space group is a set of symmetry elements

which always fulfill certain conditions according to the mathematics of the particular

group. If Gn is a space group consisting of certain n symmetry elements and Gm is

another space group with m symmetry elements such that m ⊆ n,then Gm is the

sub-group of Gn while Gn is the super-group of Gm. The martensitic transformation

under consideration, is a barrier crossing event. The transformation occurs from

the f.c.c structure to the h.c.p structure. F.c.c is a high symmetry structure with

a space group of 225 while h.c.p is a comparatively low symmetry structure (space

group 194). Thus the transformation involves a reduction of symmetry. Reduction

of symmetry happens through intermediate common subgroup structures-transition

states. This makes it necessary to used an optimization method to calculate the

MEP. Not using a specific MEP method makes us overlook the transition states

which reflect the true mechanism of transformation. For f.c.c and h.c.p we see the

common subgroup with the highest symmetry is the Cmcm orthorhombic structure

(space group:63). On examining the structure of the intermediate state indicated by

the MEP, it is seen that it is the Cmcm structure with a space group of 63.

3.5 Summary and Conclusion

The present work deals with the application of displacive transformation models

to Co-based potential shape memory alloys. The f.c.c-b.c.c and f.c.c -h.c.p transfor-

mations have been modeled for the Co - Al and the Co - Al, Co-Fe, Co-Si systems
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respectively. The Bain path calculations for Co - Al showed an energy minimum at a

tetragonal structure upto 25 % Al and indicated a theoretical possibility for the f.c.c -

b.c.c transformation in Co - Al. The lack of a b.c.c phase in the cobalt phase diagram

however, prohibits the expectation of this transformation in this system. Two varied

parameterized models were used to model the f.c.c - h.c.p structural transformation

for three Co-based SMAs. The Wentzcovitch - Lam model predictions agree with

experiments for the Co - Al and the Co-Fe systems. The Shoji-Nishiyama mechanism

calculations agree with experiments for the Co-Fe system. Both mechanisms fail to

explain the trends seen in Co-Si. It may therefore be possible, that the underlying

energetics of the Co-Si system are far removed from those of the Co - Al and Co-

Fe systems. We propose that the martensitic transformation in Co - Al and Co-Fe

may be explained by the Wentzcovitch - Lam model. The intermediate structures

obtained across both models for all the systems conform to the common symmetry

subgroup theory
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4. STABILITY ANALYSIS OF THE MARTENSITIC PHASE

TRANSFORMATION IN CO2NIGA HEUSLER ALLOY*

Over the last few decades, experimental and theoretical research into shape

memory alloys (SMAs) has gained momentum due to the need for high - tempera-

ture multifunctional materials. Current applications are restricted to below 100°C

for Ni − Ti-based and Cu-based alloys which have transformation temperatures in

that range. To be able to realize the advantages offered by these multi-functional

materials in the automotive, aerospace and heavy - machinery industries, there is

a requirement for SMAs with much higher transformation temperatures. CoNiGa

is one such promising SMA which is the object of much interest due to its poten-

tial as a magnetic SMA with a thermoelastic transition in the ferromagnetic state

[60]. Cobalt has a large magnetic moment which ensures a high Curie temperature.

The CoNiGa alloy is sufficiently ductile, exhibits the shape memory effect (SME),

and has excellent super - elastic properties [61]. Additionally, it shows martensitic

start (Ms) temperatures up to 250°C [62]. The CoNiGa alloy with a stoichiomet-

ric Heusler - type composition (Co2NiGa) is a primary candidate for applications

requiring ferromagnetic shape memory alloys[63, 64, 65, 66].

Heusler alloys may be defined as ternary inter-metallic compounds with a sto-

ichiometric composition X2YZ, with the L21 crystal symmetry. The L21 unit cell

belongs to the space group Fm3̄m and the whole crystal shows only tetrahedral

symmetry. X and Y are transition metals while Z is usually a covalently bonding

*Reprinted with permission from “Stability analysis of the martensitic phase transformation in
Co2NiGa Heusler alloy” by Anjana Talapatra, Raymundo Arróyave, Peter Entel, I Valencia-Jaime,
Aldo H Romero,2015. Physical Review B, 92(5):054107, Copyright 2015 by American Physical
Society
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group III-V element. The Heusler structure is bcc-like as it can be formed from the

ordered combination of two binary B2 compounds XY and XZ with CsCl structure

[67]. Austenitic Co2NiGa exhibits the Heusler L21 structure (space group Fm3̄m)

with two inter - penetrating binary B2 compounds CoNi and CoGa with a CsCl

structure. The related inverse Heusler structure (CoNi)CoGa can be described as

one in which the Co sub - lattice is occupied by the Ni atom, while the displaced

Co atoms sit on the Ni sites. DFT calculations have shown that the inverse Heusler

structure competes with the conventional Heusler structure in some cases [68].

In the Co2NiGa system, there is a martensitic transformation from the ordered

cubic L21 to the non - modulated tetragonal L10 (AuCu, space group P4/mmm, 123)

phase. Modulated martensites which are seen in Ni(Mn,Fe)Ga Heusler alloys, have

not been observed in the CoNiGa system [69, 70]. The L21 to L10 transformation can

be described as a tetragonal distortion of the cubic austenitic phase. If one assumes

that the transformation occurs with minimal volume change, then it can be described

through a Bain path, which essentially transforms a bcc structure into a fcc variant

as the c/a ratio of the lattice goes from 1 to
√
2. In this transformation,c/a = 1

corresponds to the L21 phase, while the minimum at c/a =
√
2 corresponds to the

low - symmetry, low - energy martensite L10 with structural symmetry.

Along with the Bain mechanism, the body centered cubic (bcc) - hexagonal close

packed (h.c.p) transformation is the most commonly observed reconstructive phase

transformation in simple crystals. It is found in about 20 elements [71]. The mecha-

nism used to describe this transformation is the Burgers path [72], first proposed for

the β − α transformation in Zr. When applied to the CoNiGa system, surprisingly,

the Burgers path is seen to be a barrier - less transformation that reaches a minimum

value at distortions resulting from shuffles and shears. This minimum corresponds to

a low-energy martensitic structure with orthorhombic symmetry (space group 59),
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referred to as the O structure henceforth which is more stable ( has a lower energy

) than the conventional martensitic L10 structure. The O phase has yet to be re-

ported in the literature and its absence in experiments cannot be merely explained

away using kinetic barrier arguments as the transformation clearly can go forward

in a monotonic way, at least under ground state—i.e., low - temperature conditions.

In an effort to explain this unprecedented O phase, an extensive investigation

was carried out to provide insight into the phenomenon by exploring the energy

landscape around the cubic Co2NiGa composition. A structural search by using the

minima hopping method[40] was carried out to explore the energy landscape sur-

rounding the conventional martensitic L10 structure. These calculations predicted

a number of structures with monoclinic, tetragonal, and orthorhombic symmetries

with energies much lower than the L10 structure as well as the O phase, with energy

differences much larger than typical computational errors within the chosen approx-

imations. Various high-throughput databases such as the Materials Project [73], the

Open Quantum Materials Database (OQMD) [74], and Automatic Flow for Materials

Discovery (AFLOW) [75] did not yield any of the structures predicted by the minima

hopping method (MHM) or the Burgers calculations. This may be attributed to the

lesser number of known structures for ternary phases, making predictions based on

data mining very difficult beyond binary systems or that those methods have been

not used in particular for this type of compound.

Even with the extensive energy landscape exploration, the question as to why

the Co-Ni-Ga system undergoes a martensitic transformation to the L10 phase,-

while other lower energy structures, specifically the O phase which may be accessed

via the Burgers path, exist still remains to be answered. The question may be

addressed in either one of three ways: (i) DFT within a set of given approximations is

inadequate to capture the energetics of the transformations in the Co-Ni-Ga system;
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(ii) experiments have so far been unable to isolate the true martensitic ground state

of the system; (iii) the problem may be resolved by invoking phase competition/phase

selection at elevated temperatures as the system cools down from a cubic austenitic

state.

In addition to the structural search results, we also present total energy calcu-

lations for the Burgers transformation and Bain paths in the conventional Heusler

and inverse Heusler Co2NiGa alloys. It is postulated that the isolation of a low-

energy martensitic phase which is more stable than the L10 martensite via ab initio

calculations may be attributed to a classic case of the phase selection conundrum,

wherein the Co2NiGa L21 phase preferentially transforms to the L10 martensitic

phase in spite of other possible structures which are inaccessible even though their

energy is lower. Elastic and phonon calculations were carried out with the intention

of isolating any instabilities due to vibrational or elastic effects . Finally, the Bain

and Burgers paths were recalculated taking into consideration the effect of configura-

tional , magnetic, and atomic disorder. This analysis indicates that there is probably

a good explanation of why we do not observe the other phases predicted from the

structural search.

The organization of this paper is as follows: In Sec. 4.1 the computational details

and methodology used to perform the calculations is outlined. In Sec. 4.2 the Bain

and Burgers transformations are applied to austenitic Co2NiGa and the results are

presented. Sec. 4.3 outlines the minima hopping method as used in this work and the

results obtained therein. The phase selection hypothesis is presented and calculations

carried out to validate it are discussed in Sec. 4.4. Finally conclusions are drawn in

Sec. 4.6 and the work done is summarized.
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4.1 Computational Details and Methodology

The results presented in this work are ab initio calculations carried out to de-

termine the electronic, structural, and elastic properties of Co2NiGa stoichiomet-

ric Heusler alloys. The calculations were performed within the framework of den-

sity functional theory, as implemented in the Vienna ab initio simulation pack-

age (VASP)[23], applying the generalized gradient approximation (GGA) using the

Perdew-Wang 1991 (PW91) functional [55]. Single - parameter Burgers path calcu-

lations were also carried out using the local density approximation (LDA) [76]. The

electronic configurations of the relevant elements were realized using the projector

augmented wave (PAW) pseudo-potentials formalism [26]. Brillouin zone integra-

tions were performed using a Monkhorst-Pack mesh [56] with at least 5000 k points

per Brillouin zone or cell. Full relaxations were realized by using the Methfessel-

Paxton smearing method of order 1 [57], and self-consistent static calculations were

carried out with the tetrahedron smearing method with Blöchl corrections [58]. A

cutoff energy of 350 eV was used for all the Bain and Burgers path calculations and

spin polarizations were accounted for as well. Convergence of the electronic structure

was assumed, when changes between two consecutive steps fell below 10−7eV .

The elastic constants were calculated by imposing a set of strains on the crystal

structure ϵ = (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6) [32, 33, 34, 35, 36]. The stresses (σi) resulting

from the change in energy due to the deformation are calculated. By application of

Hooke’s law σi = Cijϵj, the stiffness tensor Cij may be computed. The bulk modulus

(B) is calculated by[36]:

B =
2

9

(
C11 + C12 + 2C13 +

C33

2

)
(4.1)
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The shear modulus is calculated using the Voigt approximation [36],

G =
1

15
(2C11 + C33 − C12 − 2C13+) +

1

5

(
2C44 +

1

2
(C11 − C12)

)
(4.2)

while Young’s modulus is computed by [36]

E =
9BG

3B +G
(4.3)

and Poisson’s ratio may be calculated as :

ν =
E

2G
− 1 (4.4)

4.2 Transformation paths in Co2NiGa

The crystallographic relations for the b.c.c-h.c.p transformation were established

by Burgers [72] and can be described as:

(110)b.c.c ∥ (0001)(h.c.p) , [1̄11]b.c.c ∥ [2̄110]h.c.p (4.5)

The transformation manifests in the form of two collective movements of atomic

planes: (i) shearing towards the [1̄11] direction along the (11̄2) plane transform-

ing the (110) b.c.c plane into the (0001) h.c.p plane, and (ii) shuffling of alternate

(110) planes in the [01̄10] direction ,with a constant (110) interplanar distance. The

Burgers mechanism thus involves two distinct and simultaneous structural changes

characterized by primary order parameters.
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Figure 4.1: Energy profile comparison for Bain and Burger paths in Co2NiGa .The
minimum along the Burgers path occurs at approximately δ = 1.1 (O structure).The
single data point in the figure corresponds to the completely relaxed minimum energy
structure.

4.2.1 1-parameter Burgers path

Friak et al. [77] coupled the two degrees of freedom to obtain a single-parameter

Burgers path to study the b.c.c-h.c.p transformation in iron [78, 79, 77]. This model

is modified and applied to the L21 → hcp transformation in this work. Proceeding

in a manner similar to [77],the simplest transformation is accomplished using an

orthorhombic basis applied to a 1x2x1 supercell of a 4-atom unit cell. For a L21

lattice constant a , the orthorhombic lattice parameters will be

a0 =

√
2a

s(δ)1/3
; b0 = a

(
δ(2

√
3− 3

√
2)

6
+

√
2

2

)
; c0 = a

(
δ(2

√
2− 3)

3
+ 1

)
(4.6)
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where:

s(δ) =
√
2

(
δ(2

√
3− 3

√
2)

6
+

√
2

2

)
·

(
δ(2

√
2− 3)

3
+ 1

)
(4.7)

Here, δ = 0 corresponds to the L21 phase and δ = 1represents the hcp phase.

Correspondingly, the angle in the (110) L21 planes evolves from θ = 109.47◦ to

θ = 120◦. The (110) L21 planes are transformed to the (0001) hcp stacking planes.

In Figure 4.1, we present the profile of the differential energy (δE) along the Bain

path and single-parameter Burgers paths for CoNiGa . For the Burgers path, δ = 1

corresponds to the perfect hcp lattice type. It is seen that the minimum along the

Burgers path occurs at approximately δ = 1.1. The single data point in the figure

corresponds to the completely relaxed minimum energy structure. The energy of this

structure is noted to be further lowered by about 50 meV upon complete relaxation.

4.2.2 2-parameter Burgers path

When both degrees of freedom are considered, this gives rise to the Burgers sur-

face which determines the energy field for the transformation. Nishitani et al [80]

described the b.c.c-h.c.p transformation in Ti using the Burgers surface by perform-

ing first-principle calculations using a two-parameter model corresponding to the

above mentioned two degrees of freedom.

In order to model the Burgers surface of the Co2NiGa and Co2NiAl Heusler

alloys, keeping the atomic volume constant, the most rigorous transformation path

is achieved by using an orthorhombic basis (space group :CmCm, #59, Pearson

symbol:oS4) in conjunction with an 8-atom unit cell. The evolution of the basis

vectors and atom positions gives rise to a two-dimensional parameter space ( δ, η),

where δ1 accounts for the basal shear and η for the shuffle. For a L21 lattice constant

35



a, the orthorhombic lattice parameters will be

a0 = a
√
2 ; (4.8a)

b0 = 2a/s(δ) ; (4.8b)

c0 = a
√
2s(δ) (4.8c)

where:

s(δ) = 1 +

[(
3

2

)0.25

− 1

]
δ (4.9)

The basis vectors are given by [a0, 0, 0], [0, b0, 0], [0, 0, c0]. The atomic positions

are specificed as (0, 0.25, 0.5), (0, 0.75, 0), (0.5, 0.25, η/6), (0.5, 0.75, η/6), (0, 0, 0),

(0.5, 0.5, 0.5 + η/6), (0, 0.5, 0) and (0.5, 0, 0.5 + η/6). The L21 and hcp phases then

correspond to (0,0) and (1,1) respectively.

Figure 4.2, shows the Burgers energy surface for the Co2NiGa Heusler alloy

considering a two-parameter Burgers path that takes explicit account for shuffles

and shears necessary to transform a bcc lattice into an hcp variant. In the figure,

(0, 0) corresponds to the L21 structure and (1,1) corresponds to an hcp-like structure.

For these calculations, a 17x17 grid was used and the energy of the intermediate

structures at each grid point was calculated using methods detailed in Sec. 4.1. A

second-order accurate finite difference scheme was then used to compute the total

energy surface. The minimum energy path (MEP) for the Burgers transformation

through this energy surface was constructed by using the modified string method

[51]. This method allows determination of the MEP by finding the minimum energy

configuration along the hyperplanes normal to the path. The MEP for the Burgers

transformation is also indicated along the surface. The inset shows the energy pro-
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Figure 4.2: Burgers energy surface for Co2NiGa Heusler alloy. (0, 0) corresponds to
the L21 structure and (1,1) corresponds to the hcp structure.Inset: Energy profile
for the transformation.

file of the transformation, which is again barrierless. The energy values for all the

different fully relaxed structures along with their lattice parameters are summarized

in Table 4.1.

From Table 4.1, it is seen that both the 1-parameter and 2-parameter Burgers

paths yield a stable orthorhombic phase appreciably lower in energy than L10 via

barrier-less transformations. Subsequently, it was deemed necessary to explore the

energy landscape surrounding the L10 structure by applying the minima hopping

methods, results of which are detailed in the following section.

4.3 Minima Hopping Method

Minima hopping calculations were carried out for the Co2-Ni-Ga chemical com-

position. The basics of the method are described in detail in the original references
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Table 4.1: Lattice parameters and ground state energies. Calculations were per-
formed using the GGA [55] approximation. Energy difference is computed relative
to the L10 structure in meV/f.u

Model Structure Space a b c δE
Group (Å) (Å) (Å) (meV/f.u)

L21 225 4.015 4.015 4.015 108.402
L10 123 4.364 4.364 3.598 0.000

1-param
O 59

4.113 5.094 4.397 -68.747
2-param 4.484 5.084 4.073 -118.436

[40, 81]. In summary, this method performs a systematic ab initio search for low-

enthalpy phases of a given compound, where the only input is the chemical com-

position and the number of atoms in the simulated cell. Short Rahman-Parrinello

molecular dynamics simulations [82], are used to escape from local minima and ef-

ficient local geometry relaxations were performed to identify stable configurations.

The efficiency of the escape step was ensured by aligning the initial atomic velocities

within the molecular dynamics along a soft mode direction. The energy and stresses

are obtained by interfacing the method with VASP [23]. As in the total energy calcu-

lations, the projector augmented wave (PAW) method was used to describe valence

and core electrons [26]. To approximate the exchange-correlation functional we used

the Perdew-Burke-Ernzerhof (PBE) [83] generalized gradient approximation. After

the potential structures are found by the minima hopping method, the structure is

tightly minimized by using a plane wave cutoff of 550 eV, and the k mesh used to

calculate the observables in the Brillouin zone is adapted such that the calculation

guaranteed a numerical convergence of the total energy to less than 2 meV/atom.

The structures were also re-optimized by using other functionals in accordance with

the total energy calculations.

A summary of the results is shown in Table 4.2. This table shows the energy of
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Table 4.2: Energy difference of the predicted crystal structures in meV/f.u for
Co2NiGa

Space δE Structure
Group GGA PBE LDA
123 0 0 0 L10
3 -58.0920 -21.2160 -67.1520 monoclinic
5 -55.5360 -51.1120 -82.5480 monoclinic
8 -109.976 -100.936 -150.396 monoclinic
11 -139.124 -136.228 -167.192 monoclinic
12 -122.636 -115.444 -159.772 monoclinic
31 -104.456 -99.6720 -136.620 orthorhombic
40 -66.2120 -61.1280 -91.3280 orthorhombic
44 -78.9040 -71.2440 -117.124 orthorhombic
51 -68.9520 -75.6160 -61.2120 orthorhombic
59 -132.536 -144.816 -151.376 O
63 -125.012 -126.512 -152.972 orthorhombic
119 -137.296 -131.360 -183.000 tetragonal
139 -27.9680 -20.7720 -67.9200 tetragonal
216 83.3960 89.4600 94.6720 Inv. Heusler
225 108.402 109.232 78.2080 L21

all structures using GGA [55], PBE [83], and LDA [76] approximations relative to

the relaxed L10 structure. It is seen that a number of structures with monoclinic,

tetragonal and orthorhombic symmetries are predicted with energies much lower than

the L10 structure. The list also includes the O phase, which was observed in section

4.2 to result from a Burgers transformation of the original L21 structure. This shows

that a number of low-energy structures theoretically exist in the thermodynamic

vicinity of L10 but have been inaccessible experimentally.

Figure 4.3 shows the simulated x-ray diffraction spectra for some of the lowest-

energy structures, that can be used by the experimentalist to compare with some of

our-low energy structures. The transformation mechanisms for all these structures,

except the O structure, are unknown. The possibility of considering all possible
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Figure 4.3: X-ray diffraction spectrum with Cu Kα radiation, λ=1.54178 Å for some
of the low-energy structures reported in Table 4.2x.

structural transitions from the L10 phase to the predicted ones is not the focus

of this paper. Instead, we focus only on the O structure and conduct a thorough

analysis to investigate (i) the stability of the structure and (ii) the possible energy

barriers which may render these low-energy structures inaccessible.

4.4 Analysis and Discussion

As mentioned earlier, the austenitic phase in the Heusler system Co2NiGa has a

L21 structure. The martensitic transformation exhibited by this alloy is reversible,

giving rise to the shape memory effect. This implies that the resultant martensite

has a symmetry which is a sub-group of the austenitic cubic structure [87]. The

point group symmetries of the relevant structures are Fm3̄m. for L21, P4/mmm

for L10, and Pmmn for the O phase. The point groups of both the L10 and the O

structures are sub-groups of the L21 point group. The group - subgroup relationship

for the (a) L21-O and (b) L21-L10 are shown in Figs. 4.4a and 4.4b. Three possible
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Figure 4.4: Group-subgroup graphs for (a) L21-O,(b) L21-L10,(c) L21 − 63, and (d)
L21− 119.These were generated using the Bilbao crystallographic server [84, 85, 86].
Space groups corresponding to the relevant point groups are indicated.

paths exist for the symmetry transformation from L21 to O while two paths exist for

the symmetry transformation from L21 to L10. Some examples of group-subgroup
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relations for additional structures isolated using the minima hopping method, which

are close in energy to the O structure, viz., structures corresponding to space groups

#63 and #119, have been described in Figs. 4.4c and 4.4d. For both of these

structures, we have two possible symmetry-reducing transformations. Of all the

structures listed in Table 4.2, structures with space groups 12, 51, 59, 63, 119, 123

and 139 satisfy the symmetry relations with number of symmetry paths ranging

between 1 and 5. For space groups 8 and 11, symmetry relations are satisfied, but

the number of symmetry paths is 15 and 12, respectively. A larger number of possible

symmetry paths amounts to a one to many correspondence, which makes it harder

for a material to ”remember” it’s original crystal structure, thereby hindering the

ideal shape memory effect. The remaining structures (space groups 3, 5, 31, 40, 44

) do not satisfy the symmetry requirements. Thus, from a crystallographic point of

view, it is seen that in addition to the O phase,a number of other structures also

satisfy requirements.

The ideal reversible martensitic transformation must also be a volume-preserving

transition [87] since the higher the volume change, the greater is the hysteresis or

irreversibility associated with the transformation. Having established the fact that

there is a group-subgroup relation between L21 and the O phase, we proceeded to

investigate the existence of possible barriers to the transformation. Table 4.3 shows

the volume change (δV ) associated with the L21-O and L21-L10 transformations ,

the effective bulk modulus for the transformation (Be) , the corresponding volumetric

strain energy per unit volume (Ev), and the total energy for the transformation (Et).

The volumetric strain energy was calculated as

Ev =
1

2
σvϵv =

1

2
(Beϵv)ϵv =

1

2
Beϵv

2 (4.10)
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Table 4.3: Energy difference due to volume changes during transformation. Indicated
are the volume change (δV ) for the transformations , the effective bulk modulus for
the transformation (Be) , the corresponding volumetric strain energy per unit volume
(Ev) and the total energy for the transformation (Et).

Transformation δV Be Ev Et

(�A3
) (GPa) (meV/f.u) (meV/f.u)

L21 - O -0.28 145 -0.784 -226.838
L21 - L10 -0.12 142.5 -0.141 -108.402

where σv is the volumetric stress and ϵv is the volumetric strain. ϵv was calculated

by taking the ratio of change in volume (δV ) to original volume. Be was estimated

by averaging the bulk moduli for the austenitic and martensitic phases. In Table 4.3,

it is apparent that the volumetric strain energy associated with the L21 - O is about

5 times larger than that for the L21 - L10 transformation; however when compared

to the Et, it it seen that its contribution is negligible. Also, one must keep in mind

that bulk effects (such as those associated with elastic strain energy) only become

important as the system volume becomes large enough. The possible nucleation of

the O phase from a parent L21 matrix is thus not ruled out.

4.4.1 The phase selection problem

Recapitulating, the Co2NiGa Heusler alloy shows a phase transformation from

the austenitic, high-temperature L21 structure to the martensitic, low-temperature

non-modulated L10 phase. Minima hopping calculations predict a number of struc-

tures with monoclinic, tetragonal and orthorhombic symmetries with energies much

lower than the L10 structure. Furthermore, Burgers path calculations predict the

existence of a martensitic phase with orthorhombic symmetry , the O phase. This

phase is stable against perturbations along a Burgers transformation in a barrier-less
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Figure 4.5: Schematic of relative stabilities of the L10 and the O structures. δEg

is the energy difference between the conventional martensitic phase L10 and the O
phase. δEb is the proposed difference between the energy barriers for the L21- O
transformation and the L21 - L10 transformation.

fashion. While the examination of possible elastic energy barriers to the transforma-

tion suggested that there maybe some elastic constraints to the stabilization of the

O phase, the elastic energy may not be sufficient to completely rule it out.

It is proposed that the absence of the O phase may be attributed to the problem

of phase selection. As seen in Figure 4.5 , a possibility exists that while the O phase

is relatively more stable than the L10 phase , the energy barrier for the L21 -O

transformation may be higher than the barrier to the L21 -L10 transformation, i.e,

δEb > δEg at some temperature far away from the ground state conditions, when the

system is cooled from the L21 structure. In this case, the high temperature austenitic

phase may not be able to sample a subset of low energy states since there may be no

accessible paths. We proceeded to examine the stability of the O phase in terms of its

vibrational spectrum, its elastic constant tensor and we also examined the effect of
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configurational and magnetic disorder (brought about by high temperatures) on the

competition between Bain and Burgers paths, taking the L21 structure into either

the observed L10 or the missing O phase. .

4.4.2 Vibrational properties

Phonon calculations were carried out to study the relative stability of the L21,

L10, and O structures. We used the FITFC module as implemented in the ATAT

package to perform the vibrational calculations. In this method [27, 28], the positions

of the atoms are slightly perturbed away from their equilibrium position and the

reaction forces are calculated. A set of linear constraints are obtained by equating

the calculated forces to the forces predicted from the harmonic model. From these,

the unknown force constants are determined. The force constant matrix is then

used to extract the projected vibrational density of states and the phonon dispersion

curves. The projected vibrational density of states is shown in Figure 4.6 .

The mode of interest in these alloys is along the [110] direction. The calculated

phonon dispersion curves of the three structures were compared. Figure 4.7 shows the

projected vibrational density of states for these structures along the [ξ, ξ, 0] directions

in the Co2NiGa systems. No unstable modes are observed. Softening of the optical

modes is observed in the L10 as well as the O structures. No conclusions can be

drawn about the relative stability of the structures. The vibrational contribution

to the total energy was estimated for the three structures by integrating over the

vibrational density of states. However, the contributions were negligible ( < 5meV);

hence we do not include them in this work.

4.4.3 Elastic properties

Elastic constants for the structures considered in this work were calculated as

explained in Sec. 4.1 and are listed in Table 4.4 in GPa. Included are the significant
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Figure 4.6: Projected vibrational density of states for the Co2NiGa system at T = 0
K.

components of the stiffness tensor ( c11 , c12 , c13 , c33 and c44) , bulk modulus (B),

shear modulus (G), elastic modulus (E), and Poisson’s ratio (ν). From the table we

see that the elastic moduli of L10 andO structures are close in magnitude. There is no

suggestion of instability. C11−C12 lends an insight into the stability of the structure

with respect to shear and other martensitic transformation inducing deformations.

For the L21 structure, C11 − C12 < 0, which is expected since the L21 structure is

unstable with respect to temperature and undergoes a martensitic transformation.
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However C11 −C12 values for both L10 and O structures are positive, with the value

for the O phase being higher indicating increased stability with respect to the L10

structure.

4.5 Effect of disorder on the competition between Bain and Burgers paths

While arguments using rough estimates for the elastic strain energy associated

with the L21 − L10 and L21 −O transformations suggest a higher elastic barrier for

the latter, these arguments cannot be used when looking at the incipient process

of the formation of a new phase out of the L21 matrix since at early stages of the

phase transformation bulk energy contributions may not be significant enough. On

the other hand, the phonon and elastic calculations suggest that the O phase is
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Table 4.4: Calculated elastic properties of CoNiGa in GPa. Significant components
of the stiffness tensor (Cij), bulk modulus (B), shear modulus (G), elastic modulus
(E) and Poisson’s ratio (ν) are indicated. Calculations were performed using the
GGA [55] approximation.

Alloy Structure c11 c12 c13 c33 c44 B G E ν
CoNiGa L21 181 186 186 181 141 136 52 139 0.33

L10 252 153 163 204 114 149 71 184 0.29

O 265 154 108 328 55 154 66 173 0.31

mechanically stable. This leads us to believe that there exist mechanisms arising

from hitherto unaccounted for contributions within the material which make these

low energy states inaccessible when coming from high-temperature experiments. We

thus proceed to examine three such contributions: (i) the effect of configurational

disorder, (ii) magnetic disorder, and (iii) atomic disorder.

4.5.1 Effect of configurational disorder

It is well known that atomic ordering may influence the transformation behav-

ior of SMAs. Substantial experimental and numerical work has been carried out

in investigating the order-disorder transition, long-range ordering, and effect of or-

dering on the phase transformation characteristics in various shape memory alloys

[88, 89, 90]. Recarte et al. show that in Ni-Mn-In SMA, the thermodynamics of the

martensitic transformation depends on the atomic ordering [90]. The effect of con-

figurational disorder was simulated by using special quasirandom structures (SQS)

[91], implemented using the ATAT toolkit. A 32-atom supercell was used and the

Bain and Burgers paths were recalculated for this structure and are shown in Figure

4.8. We see that the energy at the minimum along the Bain path is still higher than

that along the Burgers path, although the energy difference is substantially lowered
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Figure 4.8: Energy profile comparison for Bain and single parameter Burger paths
in disordered (SQS) Co2NiGa

(≈ 25meV ).

4.5.2 Effect of magnetic disorder

In this sub-section, we present Bain path and Burgers path calculations for vary-

ing degrees of magnetization (100%− 0%). This may be viewed as a crude method

to simulate the effect of high temperatures by lowering the magnetization. This

is achieved by using the fixed spin moments method within VASP. Specifically, we

assign a value to the parameter NUPDOWN in the INCAR file. Fixing the value

of this parameter ensures that the difference of the number of electrons in the up

and down spin component will be kept fixed to the specified value. We calculate the
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Bain and Burgers paths for the different values of NUPDOWN. For these calcula-

tions, VASP automatically sets MAGMOM = NUPDOWN/number of ions; hence

we use the term MAGMOM to denote the different cases. Results are presented for

100 %, 90 %, 70 %, 50 %, 30 % magnetic moment values and the non-magnetic case.

In Figure 4.9, it is seen that for the 100 % MAGMOM case, as seen before, the

Burgers path has a lower minima than the Bain path; i.e., the O phase is more stable

than the L10 phase. However, on lowering the magnetic moment, as in Figure 4.9

(b), the Burgers and Bain paths have almost coinciding minima. On further lowering

the magnetic moment as in Figure 4.9(c) - 4.9(f), the trend is reversed and the Bain

path is seen to have an increasingly lower minima than the Burgers path. Thus

reducing the magnetization of the system, i.e., introducing magnetic disorder and

simulating the effect of higher temperatures, stabilizes the L10 phase with respect to

the O phase.

4.5.3 Effect of non-stoichiometric composition

In this section we account for the effect of atomic disorder, viz, the modeling of

the transformation in a non-stoichiometric composition. As observed in [60], it is

not simple to achieve the perfect Heusler composition Co2NiGa because one is very

near the two-phase (γ + β) region or at the border of the B2 phase. Simulating a

non - stoichiometric composition also weakens the magnetic ordering naturally ( as

opposed to fixed-spin calculations in Sec. 4.5.2). We use a 16-atom SQS supercell

to model the the Co43.75Ni25Ga31.25 composition and calculate the Bain path. Since

the symmetry of the structure is lowered due to the off - stoichiometric composition,

the Bain path (varying of c/a) was calculated for 2 cases: (i) c||z and (ii) c||y. We

then selected the Bain path with the lower energy profile. For the Burgers path, we

used a simple 16-atom supercell to simulate the structure. Since Ga replaces Co,
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Figure 4.9: Energy profile comparison for Bain and single parameter Burger paths
in Co2NiGa for varying values of magnetization (fixed spin moment calculations)
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Figure 4.10: Energy profile comparison for Bain and single parameter Burger paths
in Co7Ni4Ga5.

we considered all possible configurations of Ga replacing Co and then selected the

lowest energy configuration. The Burgers path was carried out on the lowest energy

configuration. Thus it was ensured that the lowest possible Bain path and Burgers

paths were used, which encapsulate all possible energy ranges which may be observed

and enable us to make a qualitative, if not quantitative observation. The results are

indicated in Figure 4.10. It is seen that the L10 structure as achieved through the

Bain path is more stable than the corresponding O phase for this composition. This

may be attributed to the weakening of the magnetic ordering due to substitution of

one Co atom by a Ga atom, as mentioned earlier .
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4.6 Summary and Conclusion

The Burgers path was investigated in the Co-Ni-Ga ferromagnetic shape memory

alloy system. Calculations were carried out using two models: a single-parameter

characterization of the Burgers path and a two-parameter Burgers model which gen-

erates a transformation energy surface. In both models, a low-energy structure with

an orthorhombic symmetry (O) is observed whose parameters are shifted from the

expected co-ordinates for the transformation. This low energy structure (O) has been

unobserved experimentally. Complete relaxation of the O structure shows further re-

duction in energy. The Bain path for the alloys is also determined and compared to

the Burgers path. Minima hopping calculations were carried out to investigate the

energy landscapes surrounding the L10 martensitic phase in Co−Ni−Ga. Results

showed the existence of a number of structures similar in energy to as well as much

lower than the predicted O phase in the vicinity of the L10 structure. It was postu-

lated the the Co2NiGa Heusler system exhibits a classic case of the phase selection

problem. Although the unexpected Ophase may be relatively more stable than the

L10 phase, the energy barrier for the L21 -O transformation may be much higher

than the barrier to the L21 -L10 transformation. This high barrier may be due to

vibrational effects, elastic effects, configurational disorder, magnetic disorder, or due

to micro-structural effects.

In an effort to validate this hypothesis, the stability of this structure was investi-

gated via elastic and lattice dynamics calculations and the contributions of configu-

rational and magnetic disorder on the transformations were studied. No instabilities

due to vibrational effects were detected. Elastic calculations showed comparable val-

ues of elastic properties for the L10 and O phases. C11 − C12 values showed that

the O phase is relatively more stable than the L10 phase. Calculations incorporating
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configurational disorder showed a lowering in the energy difference between the L10

and the O structures, but the O structure was still more stable. The calculations

simulating the effect of magnetic disorder/ high temperature showed that the L10

structure may be stabilized with respect to the O phase by lowering the magnetic

moment. Thus, it is proposed that magnetic disorder plays an important role in the

phase selection energetics of the CoNiGa system and is a principal contributor in

the determination of the transformation path followed in this system. Further cal-

culations were carried out on an off-stoichiometric composition Co43.75Ni25Ga31.25 ,

where the weakening of the magnetic ordering manifests naturally. As expected, the

L10 phase was seen to be more stable than the O phase.

Reverting to the question raised earlier, we conclude that it is unrealistic to

use standard DFT prototypes to investigate ground states of relatively less known

systems. By performing a detailed analysis of the transformation paths (Burgers and

Bain) by taking into account perturbations on the ground state, it is seen that what

is manifested is in principle a phase selection problem: the ultimate crystal structure

that the system transforms into, depends on the path that the system prefers. When

coming from high temperature, the accessible path is that corresponding to the Bain

transformation. To conclude, discrepancies between DFT and experiments may be

reconciled if we consider the ‘history’ of the alloy.
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5. PARAMETRIC MODELING OF THE B2−B19′ TRANSFORMATION IN

NI − TI SMA

5.1 Introduction

Ni − Ti is the most well-known practical SMA available today. It has excellent

mechanical properties and exhibits the shape memory effect which contribute to

make it a very viable material for multi-functional applications. Current practical

uses are however, limited to temperatures below 100 °which is the transformation

temperature limit of near equiatomic Ni − Ti binary alloy [59]. Ni − Ti SMA, or

Nitinol, as it is commercially known, was first discovered by Buehler in 1963 [6].

Today, commercially it is used extensively in the medical engineering world. The

human body offers an isothermal environment which takes away many of the design

complexities and disadvantages of Nitinol.

The Ni−Ti system is fundamentally very complex and exhibits interesting com-

peting martensitic transformations. Depending on the composition and the heat-

treatment it is subjected to, it has various important phases. The high-temperature

symmetric austentic phase is B2 (CsCl, space group Pm3̄m 221). On cooling under

certain specific conditions, Ni−Ti may undergo a initial martensitic transformation

characterized by a sharp increase in resistivity and low hysteresis [92]. This initial

martensitic transformation is referred to as the R-phase transformation and results

in a trigonal phase. On further cooling, the R phase undergoes a second martensitic

transformation with a large hysteresis results in the low-temperature martensitic

phase - the monoclinic B19’ (space group mP4, 11). Another phase of import is the

intermediate orthorhombic phase B19 (AuCd, space group Pmma, 51). It is widely

postulated to be an intermediate phase in the B2−B19′ transformation, although it
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has not been observed experimentally. It involves a volumetric distortion (quantified

by a change in lattice parameters)and a local shuffle of the interior Ni and Ti atoms

along the [010]B19 direction. Table 5.1 shows the lattice paramters and energies

calculated for the structures B2, R-phase B19, and B19′ which have been used in

this work.

Table 5.1: Lattice parameters and energy values for relevant structures in NiT i.
Calculations were performed using the GGA [55] approximation. Energy difference
is computed relative to the B2 structure in meV/f.u

Structure Space a b c δE
Group (Å) (Å) (Å) (meV/f.u)

B2 221 3.0075 4.2534 4.2534 0.0
R 148 6.6428 6.6428 6.6428 -29.0
B19 51 2.7096 4.2620 4.6450 - 48.2
B19′ 11 2.9002 4.6349 4.0569 -80.0

While the last few decades have greatly furthered our knowledge of the underly-

ing dynamics of the SME in Ni − Ti, the system is still not fully understood. In a

ground-breaking paper in 2003, Huang [93] used DFT to show that the ground-state

structure of Ni− Ti corresponds to a BCO structure which is vastly different from

the monoclinic B19′ martensititc low temperature phase. They reasoned that the

BCO phase however becomes unstable under shear stress and hydrostatic pressure

with respect to monoclinic B19’. This finding was further explained using the con-

cept of the ‘Ericksen-Pitteri’ neighbourhood (EPN). While undergoing a martensitic

transformation, the austenite can give rise to several martensite variants which may

combine in twinning and deformation. However, each of these variants or combina-

tions thereof return to a unique parent austenite. The material during the course

of the transformation is always within it’s EPN and hence is able to store the data
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necessary for the shape memory effect. The BCO structure however lies on the

boundary between two neighbourhoods and is not uniquely reversible and hence

cannot store the information necessary for the SME [93]. It was hypothesised that

internal stresses arising from the microstructure are responsible for the stabilization

of B19’ as opposed to the BCO structure. As shown in section 4, to fully understand

the phase selection process during such transformations, an exhaustive investigation

must be carried out.

A number of attempts have been made to model the transformation from B2 to

the B19’ phase in Ni − Ti. Kibey et al. [49] presented the energy landscape for

the B2-B19 transformation using a distortion-shuffle 2D model. They also predicted

the existence of a finite energy barrier between the B2 and B19 structures. Their

model does not extend to the true martensite B19’. At the same time, Hatcher [94]

established a barrierless transformation path for equiatomic NiT i consisting of two

consecutive shears: (i) basal shear composed of bilayer ≤ 100 ≥ 011 stacking faults

to the B2 phase ( i.e. a B2 - 109° B19’ ) and (ii) another basal shear which causes

a relaxation of the structures monoclinic angle and results in the B19’ phase (109°

B19’ - 99° B19’). In 2010, Vishnu et al [95] modeled the B2 − B19 − B19′ − BCO

transformation by linearly interpolating between the lattice parameters of the parent

and martensitic structures using the monoclinic angle (γ) as the reaction coordinate.

These simulations predicted a barrierless transformation from B2-B19-B19’-BCO.

Recently, in 2014, Zarkevich et al [96], used the generalized solid state nudged elastic

band (GSSNEB) method to model the transformations between the body-centered

orthorhombic (BCO) ground state and a newly identified stable austenite (glassy

B2-like) structure [97], intermediate structure ( kinematically limited R phase) and

between martensite variants B19 and B19’. The GSSNEB path shows a barrierless

transformation from B2 − B19′ − BCO and the authors also claim that the path
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Figure 5.1: Schematic of the B2-B19’ transformation

bypasses the B19 structure.

5.2 Model Formulation

As is evident from the above discussion, there exists a very grey region in the

understanding of the B2−B19′ transformation in Ni− Ti. In this work we present

a complete parameterized model of the B2−B19′ transformation in Ni− Ti. First,

we investigate whether the B19 phase is an intermediate structure in the transfor-

mation or whether the transformation bypasses B19 entirely. To do this, we build

on the work carried out by Kibey et al. [49], in which they modeled the B2 − B19

martensitic transformation using a shuffle-distortion 2-dimensional model. We take

their work a step further and also model the B19 − B19′ transformation using a

monoclinic distortion-shear 2 dimensional model. Figure 5.1 shows a schematic de-

scription of the atomic movemenets necessary to generate B19′ from B2, via the

B19 phase. The B2− B19′ transformation, using a parent body centred tetragonal
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(bct) lattice, consists of four independent motions: (i) shuffle along [110]B2 , (ii) or-

thorhombic distortion (change in lattice parameters), (iii) shuffle along [001]B2 and

(iv) monoclinic distortion. Assuming that the B19 phase is an intermediate phase,

this multi-dimensional phase transformation may be attempted in two, 2-dimensional

stages (i) B2−B19 and (ii) B19−B19′.

5.2.1 B2 - B19 model

0.0 0.2 0.4 0.6 0.8 1.0

λ - shuffle

0.0

0.2

0.4

0.6

0.8

1.0

α
-v

ol
u

m
et

ri
c

d
is

to
rt

io
n

B2

B19

0

100

200

300

400

500

600

700

800

(a)

0 20 40 60 80 100

% Transformation

−50

−40

−30

−20

−10

0

10

20

30

40

E
n

er
gy

[m
eV

/f
.u

]
δEb = 32.6 meV/f.u

δEB2−>B19 = -48.2 meV/f.u

B2

B19

(b)

Figure 5.2: (a) Energy landscape, and (b) MEP profile for the B2 − B19 transfor-
mation in Ni− Ti SMA

The energy landscape for the B2− B19 transformation is shown in Figure 5.2a.

Here, (0, 0) corresponds to the B2 structure and (1, 1) corresponds to the B19 struc-

ture. Along the x-axis, we parameterize the shuffle along [110]B2 , while the x-axis

corresponds to the volumetric distortion. Lattice parameters used are indicated in

Table 5.1. Figure 5.2b, shows the energy profile for the minimum energy path (MEP)

for the transformation. We see that there exists a small barrier to the transformation
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(δb = 8.4meV/f.u). This agrees with the results reported by Kibey[49], but contra-

dicts the calculations reported by Vishnu et al.[95] who found no energy barrier.

It is worth noting, that irrespective of whether the B19 phase is an intermediate

phase, the linear interpolation technique used in [95] is not a rigorous method to use

while modeling such transformations. It would seem to be more exact, to account

for all degrees of freedom and model the transformation accordingly, albeit at higher

computational cost.

5.2.2 B19 - B19’ model
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Figure 5.3: (a) Energy landscape, and (b) MEP profile for the B19−B19′ transfor-
mation in Ni− Ti SMA

The energy landscape for the B19−B19′ transformation is shown in Figure 5.3.

Here, (0, 0) corresponds to the B19 structure and (1, 1) corresponds to the B19

structure. Along the x-axis, we parameterize the monoclinic distortion (θ), while

the y-axis corresponds to the non-basal shear along the [110]bct direction. θ may
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be visualized as monoclinic angle γ varying from 90 - 100°. Lattice parameters

used are indicated in Table 5.1. The topology of the enegy lanscape we see here

is very interesting. There is a very high energy barrier all along the x-direction,

for δ values ranging from 0.3 - 0.7. This essentially means that the B19 − B19′

transformation will involve an extremely high, unrealistic barrier. The MEP may be

easily visualized as a L - shaped string from B19 (0,0) to (0,1) to (1,1). This profile,

which would correspond to the lowest energy barrier δb (still unrealistically high at

≈ 1800 meV/f.u). From this, we may conclude, that it is highly unlikely for the B19

phase to be an intermediate structure in the B2− B19′ transformation as reported

by [97].

The second approach in the modeling of the transformation, is to directly trans-

form B2 into B19′, incorporating all degrees of freedom. To do this, we start with an

initial optimized B2 structure using a 4 atom base centered tetragonal (bct) lattice.

It will undergo four independent, but simultaneous atomic movements: (i) shuffle

along [110]B2 (λ), (ii) orthorhombic distortion (change in lattice parameters) (α),

(iii) shuffle along [001]B2 (δ)and (iv) monoclinic distortion(θ).

5.2.3 The B2−B19′ transformation model

The end state is the optimized B19′ structure. In order to obtain the true B19′

structure, initial test runs of the mdoel were carried out to determine the optimal

combination of shuffles (along [110]B2 and [001]B2), monoclinic angle and volumetric

distortion were carried out bto obtain the lowest energy structure. The B19′ struc-

ture that was realized, was then relaxed allowing movement of ions. The resultant

structure was found to have γ = 97.438 °. The lattice parameters and energy details

are indicated in Table 5.1. To determine the relative volumetric distortion, the model

was extended upto 15% volume change. The minimum in the 4-dimensional energy
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landscape was isolated at 6.5%. Similarly, the relative shuffles corresponding to the

minimum energy were found to be 0.24 in the [001] direction and 0.05 in the [110]

direction. A 7x7x7x7 grid was used to populate the energy field, with 1701 point

calculations. The domain was then divided into 7 3-parameter energy sets. These

point values were then interpolated to generate the 3-dimensional energy field. A

steepest descent algorithm implemented via the string method was used to identify

the MEP in each of these 7 sets through the energy field. Finite difference method

was used to calculate the energy gradient required for the string method. Finally,

the 7 separate 3-D MEPs were combined and the resultant data set was used as an

initial guess for the 4-dimensional MEP over the entire 4-dimensional energy surface.

Selected points were then relaxed allowing movement of ions to generate the final

relaxed MEP.

(a) δ = 0 (b) δ = 1

Figure 5.4: 3D energy slice for the B2-B19′ transformation at (a)δ = 0, and (b) δ = 1

For the purpose of visualization, 3-dimensional volume plots are shown in Figures
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5.4a and 5.4b. In Figure 5.4a, we see the projection of the MEP in 3-D for δ = 0,

i.e a constant value of shuffle along [001]B2 , δ =0. (0,0,0) here corresponds to the B2

phase. (1,0,1) corresponds to the B19 phase, which can be seen to have the lowest

energy. However, the MEP is seen to not pass through this point ( in agreement with

earlier results) since the surrounding landscape proves to be too much of an energy

barrier. In Figure 5.4a, we see the projection of the MEP in 3-D for δ = 1, i.e. for

a constant value of shuffle along [001]B2 , δ =1.(1,1,1) here corresponds to the B19′

phase.
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Figure 5.5: Energy profile and lattice parameter variation for the B2− B19′ trans-
formation in Ni− Ti

The energy profile along the calculated MEP and the variation in lattice parame-

ters along the transformation is shown in Figure 5.5. The lattice parameters a and c

decrease while b increases monotonically during the transformation. This of course,
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is an artifact of the tacit assumption in the model that the volumetric distortion is

linear. However, this is a reasonable assumption. It is seen from the MEP, that the

transformation is barrierless, which agrees with the results reported by [97]. Over the

course of the tranformation, it is also seen that the MEP does not pass through the

B19 structure as well. The results reported here thus completely qualitatively agree

with the work of Zarkevich et al [97]. The advantage of this model however lies in

the fact that it is not necessary to know the precise lattice parameter of the marten-

site apriori as opposed to the fact that the GSSNEB is only as good as the initial

and final structures provided. Using the 4-dimensional parametric model, given the

austenite structure, one may completely model the B2 − B19′ transformation and

isolate the minimum energy martensite. Also, the model allows complete tracking of

independent atom movements and gives a detailed insight into the energetics of the

transformation.

5.3 Crystallographic analysis

Figure 5.6 shows the available crystallogrpahic routes for the B2−B19′ transfor-

mation calculated using the Bilbao Crystallographic Server [84, 85, 86]. As seen in

the figure, there are 12 possible routes which are listed in Table 5.2. The experimen-

tally observed R phase, and the DFT constructs BCO and B19 are also indicated in

the figure. On analysis of the intermediate structures isolated by the MPE, it is seen

that the 4-parameter model yields a martensitic transformation path corresponding

to the 10th row in Table 5.2: Pm-3m > P4/mmm > P4/nmm > Pmmn > P21/m.

This indicates that the calculated MEP is also crystallographically viable.
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Figure 5.6: Crystallographic routes in Ni− Ti B2−B19′ transformation

Table 5.2: List of crystallographic routes in Ni− Ti B2−B19′ transformation

Sr.No Route
1 Pm-3m > Pm-3 > Pmmm > Pmma > P21/m
2 Pm-3m > P4/mmm > Cmmm > Pmmn > P21/m
3 Pm-3m > P4/mmm > Cmmm > C2/m > P21/m
4 Pm-3m > Pm-3 > Pmmm > P2/m > P21/m
5 Pm-3m > P4/mmm > Pmmm > P2/m > P21/m
6 Pm-3m > P4/mmm > Pmmm > Pmma > P21/m
7 Pm-3m > R-3m > C2/m > P21/m
8 Pm-3m > P4/mmm > Cmmm > P2/m > P21/m
9 Pm-3m > P4/mmm > Cmmm > Cmcm > P21/m
10 Pm-3m > P4/mmm > P4/nmm > Pmmn > P21/m
11 Pm-3m > P4/mmm > P4/m > P2/m > P21/m
12 Pm-3m > P4/mmm > Cmmm > Pmma > P21/m
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6. CONCLUDING REMARKS AND FUTURE WORK

The intent of this work is to describe the diffusionless martensitic transformation

in transition metal alloys using a combination of shear, shuffle and distortions to

parameterize the transformation by accounting for all degrees of freedom. To that

end, we investigated three phase transforming systems: (i) Co-based binary alloys,

(ii) Co2NiGa hesuler alloy and (iii) Ni− Ti equiatomic SMA.

6.1 Summary

First, we appled displacive transformation models to Co-based potential shape

memory alloys. The f.c.c-b.c.c and f.c.c -h.c.p transformations were modeled for the

Co - Al and the Co - Al, Co-Fe, Co-Si systems.. The Bain path calculations for

Co - Al showed an energy minimum at a tetragonal structure upto 25 % Al and

indicated a theoretical possibility for the f.c.c - b.c.c transformation in Co - Al. The

lack of a b.c.c phase in the cobalt phase diagram however, prohibits the expectation

of this transformation in this system. Two different parameterized models were

used to model the f.c.c - h.c.p structural transformation for three Co-based SMAs.

The Wentzcovitch - Lam model predictions agreed with experiments for the Co -

Al and the Co-Fe systems. The Shoji-Nishiyama mechanism calculations agreed

with experiments for the Co-Fe system. Both mechanisms failed to explain the

trends seen in Co-Si. It was concluded that the underlying energetics of the Co-Si

system are far removed from those of the Co - Al and Co-Fe systems. We proposed

that the martensitic transformation in Co - Al and Co-Fe may be explained by the

Wentzcovitch - Lam model. The intermediate structures obtained across both models

for all the systems conformed to the common symmetry subgroup theory. This work

may be extended to model the energetics and gain a qualitative understanding of the

66



transformation in Co-based ternary alloys.

Next, we investigated the phase transformation in Co2NiGa heusler alloy. The

Burgers path was investigated. Calculations were carried out using two models: a

single-parameter characterization of the Burgers path and a two-parameter Burgers

model which generates a transformation energy surface. In both models, a low-energy

martensitic structure with an orthorhombic symmetry (O) was observed which has

been unobserved experimentally. The Bain path for the alloys was determined and

compared to the Burgers path. Minima hopping calculations were carried out to

investigate the energy landscapes surrounding the L10 martensitic phase in Co −

Ni−Ga. Results showed the existence of a number of structures similar in energy to

as well as much lower than the predicted O phase in the vicinity of the L10 structure.

It was postulated the the Co2NiGa Heusler system exhibits a classic case of the phase

selection problem. Although the unexpected Ophase may be relatively more stable

than the L10 phase, the energy barrier for the L21 -O transformation may be much

higher than the barrier to the L21 -L10 transformation. In an effort to validate

this hypothesis, the stability of this structure was investigated via elastic and lattice

dynamics calculations and the contributions of configurational and magnetic disorder

on the transformations were studied. No instabilities due to vibrational effects were

detected. Elastic calculations showed comparable values of elastic properties for the

L10 and O phases. C11−C12 values showed that the O phase is relatively more stable

than the L10 phase. Calculations incorporating configurational disorder showed a

lowering in the energy difference between the L10 and the O structures, but the O

structure was still more stable. The calculations simulating the effect of magnetic

disorder/ high temperature showed that the L10 structure may be stabilized with

respect to the O phase by lowering the magnetic moment. Thus, it is proposed

that magnetic disorder plays an important role in the phase selection energetics
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of the CoNiGa system and is a principal contributor in the determination of the

transformation path followed in this system. Further calculations were carried out

on an off-stoichiometric composition Co43.75Ni25Ga31.25 , where the weakening of

the magnetic ordering manifests naturally. As expected, the L10 phase was seen to

be more stable than the O phase. These results indicate that it is unrealistic to

use standard DFT prototypes to investigate ground states of relatively less known

systems. By performing a detailed analysis of the transformation paths (Burgers and

Bain) by taking into account perturbations on the ground state, it is seen that what

is manifested is in principle a phase selection problem: the ultimate crystal structure

that the system transforms into, depends on the path that the system prefers. When

coming from high temperature, the accessible path is that corresponding to the Bain

transformation. To conclude, discrepancies between DFT and experiments may be

reconciled if we consider the ”history” of the alloy.

Ni−Ti is one of the most widely studied SMAs, yet there is no definite conclusive

knowledge about the B2−B19′ martensitic transformation which results in the shape

memory effect. With an objective of filling this gap, in Section 5, we presented

parameterized models for three transformations:, (i) B2−B19, (ii) B19−B19′ and

finally (iii) B2−B19′ in Ni-Ti. The B2−B19 model was a re-calculation of earlier

work by Kibey et al. Kibey et al.[49] which showed that an energy barrier exists in

the B2−B19 transformation (32.6 meV). The B19−B19′ transformation showed a

very high energy barrier which indicates that it is highly unlikely that the B19 phase

is an intermediate phase in the transformation. This conclusion agrees with recent

work by Zarkevich [96]. Finally, we presented a complete 4-parameter distortion-

shuffle model for the B2 − B19′ transformation in Ni-Ti SMA which is the first of

it’s kind. Earlier models have either modeled only part of the transformation, or

applied uni-dimensional linear interpolation models. No earlier model has been able
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to depict the entire energy landscape for the transformation. The advantage of this

model over prior work is that it is not necessary to know the lattice parameters and

angles of the final martensite apriori. The calculated MEP over the parameterized

energy landscape was seen to be barrierless, confirming the known instability of

the B2 structure. B19′ was identified as a local minimum in the landscape, again,

in consensus with experimental work. It was shown that the B19 phase, while

crystallographically possible, is not a likely intermediate phase in the transformation.

Finally, the obtained MEP is shown to follow a viable crystallogrpahic route.

6.2 Future Work

The framework laid down in this dissertation may be used in the design of high

temperature shape memory alloys. The various models implemented may be applied

to any new potential HTSMA to determine it’s tendency to undergo a martensitic

phase transformation. The energetics of the transformation along with the calculated

energy barriers may be used to predict the associated hysteresis. The effect of alloying

on the energy barrriers of the transformation may be determined, which in turn may

be used to predict the effect onMs of the material. The family of Heusler alloys is vast

and as yet unexplored. The phase stability analysis methodology detailed in Section

4 serves as a prototype for the investigation of Heusler alloy systems. The search for

new Heusler HTSMA’s can be streamlined by following the process outlined. Future

work will include the investigation of hitherto unexplored Heusler alloys using this

work to discover and develop new HTSMAs.These calculations will be done using

high-throughput methods and will contribute to the building of a Heusler materials

database. The B2 − B19′ model will be extended to model the transformation in

ternary Ni− Ti−Hf , Ni− Ti− Zr, Ni− Ti− Pt, and Ni− Ti− Pd, using SQS

structures, which are potential new HTSMA’s. The effect of increased alloying of
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Hf,Zr,Pt, and Pd on the energy barrriers of the transformation will be determined

and used to predict the hysteresis and the effect on Ms of the material.
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