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ABSTRACT 

 

The objective of this research is the life cycle analysis of a high-performance, 

above-code home as compared to a more traditionally built home in a humid, subtropical 

environment. Building energy estimations and environmental impacts analyses were 

performed, and model development and results were presented. Renewable energy and 

rainwater collection systems impacts were also investigated. 

Annual operational energy was reduced 30% due to decreases in the HVAC 

energy associated with infiltration and building envelope differences between the 

‘Reference’ and ‘As-Built’ models. Gas-based heating models embodied energies were 

6% and 12% of the total energy and the use phase energy was 93% and 87% for the 

‘Reference’ and ‘As-Built’ models, respectively. The embodied energy in the 

‘Reference’ model was almost half of the embodied energy in the ‘As-Built’, but the 

‘As-Built’ model achieved a reduction of life cycle primary energy of 23% compared to 

the ‘Reference’ model.  

A reduction of 6,314 GJ and 402 metric tons of primary energy and GWP was 

achieved for the ‘Reference’ compared to the ‘As-Built’ model. Total primary energy 

over the life cycle was 26,216 and 19,983 GJ, with energy intensities of 44.4 and 33.8 

GJ/m2 for the ‘Reference’ and ‘As-Built’ models, respectively. The electrical-based 

heating models followed similar trends as the gas-based model but with a small increase 

in operational energy. Global warming potential had similar distribution patterns as that 

of the primary energy and total life cycle global warming potential intensities were 
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estimated for the ‘Reference’ and ‘As-Built’ models, respectively as 2,835 and 2,166 kg 

CO2-eq/m2.  

Solar electric and hot water renewable energy systems decreased the annual 

operating energy by 12.5% and 15.5% and the total life cycle primary energy by 9.4% 

and 13.4% for the ‘Reference’ and ‘As-Built’ models, respectively. Finally, with no 

rainwater harvesting, total water consumption was 29.68 and 31.78 mega-liters for the 

‘Reference’ and ‘As-Built’. The use phase dominates both models with 85% and 80% of 

the use phase for the ‘Reference’ and ‘As-Built’ model, respectively. Rainwater 

harvesting systems may offset the life cycle use phase and with a Monte-Carlo 

simulation yielded a 73% demand reduction with a 48% probability. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

In the summer of 2008, a Houston, Texas homeowner contacted Texas A&M 

University and began a discussion on the design and construction of a homeowner’s 

future new home. These discussions led to many dialogues that resulted in a research 

endeavor. The concept of the ultimate high performance home was to be a blend of 

durability, energy efficiency, safety and security, environmental comfort and air quality 

and other ‘green elements’, such as sustainably sourced floors. The philosophy of the 

home was to build a durable house with lower energy and water costs, lower insurance 

premiums, low long-term maintenance and impressive resistance to the environment. 

The dwelling incorporated a durable and robust building envelope (walls, fenestration, 

roof and slab), efficient environmental control systems, renewable energy systems and 

an efficient water system, including rainwater collection. The building followed the US 

Green Building (USGBC 2015) Leadership in Environmental and Energy Design 

(LEED) guidelines and was built in the latter half of 2009, which led to it being awarded 

a LEED-Homes Platinum level designation in the fall of 2014.  

The building sector is major contributor to socioeconomic development of 

nations, but it also utilizes a large proportion of energy and available natural resources 

(Ramesh et al. 2010) while the construction industry is the largest user of materials in 

the United States (US) (Horvath 2004). In addition to growing concerns over resource 

consumption and scarcity, climate change is an ever-present geopolitical issue, and the 

control of greenhouse gases such as carbon dioxide (CO2) are the focus of mitigation 
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strategies. Scientific evidence is now overwhelming, climate change presents serious 

global risks and demands an urgent global response (Stern 2007). In addition, the 

emission of CO2 from fossil fuel combustion for the production of electricity, in 

conjunction with that emitted from cement manufacturing is responsible for more than 

75% of the increase in atmospheric CO2 since the pre-industrial 18th century (Solomon et 

al. 2007).  

 In 2014, 41% of total US energy consumption was consumed in residential and 

commercial buildings, or about 40 quadrillion British thermal units (BTU). Residential 

heating, ventilation and air conditioning (HVAC) systems alone accounted for 48% of 

residential building energy consumed in the United States (US EIA 2015), and on 

average, 40% of the energy consumed in the residences of Texas (US EIA 2015). In the 

United States, 73% of the thermal loads are derived through the building envelope (non-

internal) (US DOE 2009). In this particular study the building envelope was a durable, 

insulated concrete form (ICF) wall system with a steel roof and a sealed attic space. ICF 

technology is known to improve the thermal performance of residential buildings by 

reducing and controlling thermal migration and improving infiltration characteristics 

(Chasar et al. 2000, Kossecka and Kosny 2002). However, residential concrete form 

production utilizes more energy and water when compared with typical wood-frame 

construction (Trusty and Meil 1999).  

 Heating, ventilating and air conditioning systems (HVAC) mediate the thermal 

loads not directly controlled by the building envelope. The case study house used in this 

study has two state-of-the-art, efficient 4-ton heat pumps equipped with energy recovery 
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ventilators for further climate control. Properly sized and efficient environmental 

controls are essential to providing the best building strategies that moderate overall life 

cycle costs.  

 After heating and cooling, hot water is the second largest consumer of energy in 

the United States (US DOE 2009).  Onsite renewable energy may provide high quality 

energy while providing lower life cycle costs when compared to conventional systems 

(Pehnt 2005). Solar thermal is a cost-efficient method for delivering hot water, however 

appliance upfront costs, efficiencies, installation, and other maintenance issues may 

dampen performance and should be included in the cost accounting. Approximately 4% 

of the US electrical demand is for the movement and treatment of water and wastewater 

(EPRI 2002); additionally, water scarcity in Texas is a concern in some locales (Griffin 

2011). Onsite rainwater systems may potentially provide clean water, water storage, and 

offset costs and demand and may also offset burdened centralized storm water systems. 

As such, the rainwater harvesting system performance, life cycle impacts and costs are 

critical elements when reviewing the sustainability of a dwelling. 

The over-arching purpose of this research was to evaluate a high-end, high-

performance residential dwelling in Houston, Texas from a life cycle perspective. The 

principles objectives of this research were the study of the building as designed while 

comparing it to a more traditionally built home and discovering those systems that most 

impact the life cycle energy, global warming potential and other environmental 

indicators, an additional objective is to assess the contribution of renewable energy 

systems and a rainwater collection system. Furthermore, life cycle management can be 
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applied to the whole construction process, thus making it possible to characterize and 

improve sustainability indicators and also minimize the environmental loads over the full 

building life cycle (Ortiz et al. 2009). Understanding modern residential building 

components impact on life-cycle performance is of value in a climate sensitive and 

resource-constrained age. Therefore, this study will document a particular building 

design concept and compare its performance to more traditional construction methods 

and practices over a 50-year life cycle. 

Problem Description and Research Objectives 

The residential building market has traditionally embraced the aesthetics and 

superficialities of the home and while glorifying rapid production, low-cost construction, 

and mediocre workmanship. The homeowner’s attention has rarely been focused on 

construction components, individual systems and the fabric of the dwelling. Durability 

was often overlooked for cost savings, and in the current era of increasing resource 

scarcity, global climate change, environmental hazards, and rising energy and water 

prices, more attention has been focused on house design and its impacts. Consumer 

awareness of operation and maintenance costs, environmental impacts, durability and 

sustainability has increased.  These complex issues are compelling individuals, 

corporations and governments to conserve, harness and manage their resources more 

acutely. The financial and ecological costs of over-reliance on centralized energy and 

water have also resulted in a renewed focus on the areas of energy and water efficient 

homes and renewable forms of energy.  
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Residential dwellings take a considerable amount of energy and water to build, 

operate and maintain through their lifetimes. Residential buildings require constant 

inputs of energy and water to operate and maintain a comfortable environment. The 

availability and expense of energy and water are of growing concern. Building systems 

that mediate the external environment, while providing efficient thermal comfort and 

durability and harvesting their own energy and water, are emerging in the markets of 

sustainable products. Rapid urbanization is a global phenomenon, resulting in material-

use and waste-generation issues being of critical importance to sustainable urban 

development worldwide (Theis 2005). As Li, et al (2007) suggests, strategies are needed 

that minimize the environmental impact of expanding urban infrastructure while 

improving social and economic value. Also, it is essential to evaluate and find 

comprehensive solutions to manage the development and maintenance of the built 

environment. Managing urban infrastructures is complex and multi-disciplinary so that it 

must be done from a ‘sustainably’ standpoint, which requires the building industry to 

focus on covering a number of theaters such as energy saving, improved use of 

materials, including water, reuse and recycling materials and emissions control (Ramesh 

et al. 2010). 

 A way to evaluate buildings and their impact is to view the building through the 

lens of ‘building sustainability’, and the Sustainable Building Industry Council (SBIC) 

defines a sustainable building as one in which the site, design, construction, occupancy, 

maintenance, and deconstruction of the building are accounted for in ways that promote 

energy, water, and material efficiencies, while providing healthy, productive, and 
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comfortable indoor environments and long-term benefits to owners, occupants, and 

society as a whole (SBIC 2012). The assessment of building ‘sustainability’ is comprised 

of an evaluation of the buildings energy and resource consumption and associated 

environmental impacts over the course of the buildings life cycle. For example, life cycle 

analysis (LCA) is an excellent tool to evaluate the overall environmental impacts of a 

product because it considers all the inputs and outputs related to the production, use, and 

end of life along with their potential environmental impacts (Kahhat et al. 2009), 

therefore, it is the primary method used in this comparative evaluation. 

The focus of this research will be to determine the relative contribution of each 

building component and system to the ‘sustainability’ of the building through the 

operational energy phase of the life cycle. Additionally, embodied energy, and other life 

cycle phases will be estimated with life cycle accounting tools. The principal building 

systems that will be evaluated are: 1) the building envelope and infiltration, 2) 

environmental controls (HVAC), 3) the renewable energy systems (photovoltaic and 

solar thermal system), and 4) the water and rainwater system. System components will 

be evaluated with embedded real-time monitoring equipment and sensor networks, and 

various state-of-the-art modeling tools for a comprehensive analysis. The following is a 

list of overarching objectives for this research. 

Research Objectives 

1.! Review and evaluate the various tools and metrics and modeling systems for 

dwelling sustainability characterization.  
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2.! Model the dwelling with a publicly available building simulation tool and calibrate 

the HVAC portion of the model with field data. 

3.! Estimate the effect of the building envelope design and environmental controls on 

the cumulative operation energy and embodied energy over a 50-year life cycle 

through modeling and performance data evaluation.  

4.! Estimate the effect renewable energy components have on sustainability through 

modeling and performance data evaluation over a 30-year life cycle. 

5.! Estimate the effect water system components have on sustainability through 

modeling and performance data evaluation over a 50-year life cycle. 

6.! Perform the life cycle analysis on both the a ‘Reference’ and ‘As-Built’ buildings 

and report results that focus on the embodied and use-phase differences along with 

associated impacts from the renewable and rainwater systems. 

7.! Make recommendations to improve the performance of the case dwelling by 

improving and upgrading the various components being evaluated. 

8.! Perform long and short-term field studies with low-cost instrumentation and sensor 

networks where feasible.
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Literature Review 

 A building sustainability characterization was performed by performing a 

building life cycle impact analysis for a ‘Reference’ and ‘As-Built’ building design for a 

50-year period. This research spanned several areas of relevant research from urban 

sustainable development, building life cycle analysis, building operational energy, small-

scale renewable energy systems and, finally, urban water and rainwater systems 

research. A sample of relevant literature is dealt with in the following sub-sections. 

Building Sustainability Research 

In the context of buildings, a sustainability framework is an instrument to 

compare dwelling optimization capabilities and strategies against other building design 

alternatives.  However, sustainability has moved from a qualitative abstraction to a 

multidimensional analytical problem. Ortiz et al. (2009) applied life cycle analysis to 

evaluate environmental loads of a 167 m2 (1,800 ft2) residential home in Spain over a 50-

year life span. Other accounting practices such as exergy are similar to what Brown and 

Herenbreen (1996) call energy ‘form’, with Exergy being the quality of energy utilized. 

Energy conversions do not affect the amount of energy; it is the quality that is affected 

(De Meester et al. 2009). Converting high-grade (quality) energy from natural gas to 

space heating is inefficient.  Subsequently, the quality of the energy (exergy) is 

diminished. In contrast, converting renewable forms of energy into heating is high 

quality. Exergy accounting methods do not split the energy and material resources, and it 

may offer decision support options for energy/material optimization problems (De 

Meester et al. 2009). De Meester, et al. (2009) evaluated 65 optimized Belgian dwellings 
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in a comprehensive exergetic life cycle approach. De Meester’s research took the life 

cycle assessment one step further and coupled it with an exergy analysis, with the 

objective of De Meester et al. (2009) being to perform the analysis on the entire building 

and its construction. Exergy analysis was performed to assess the resource consumption 

in both the construction phase (embodied exergy) and operational phase (operational 

phase exergy).  

Several researchers have utilized these concepts to evaluate building systems 

(Brown and Ulgiati, 1997, Chen et al. 2001, Olgyay and Herdt 2004, Pulselli et al. 

2007). Operating energy analysis embodied energy, life cycle assessments, and exergy 

(energy quality) analysis (Brown and Ulgiati 1997, Ortiz et al. 2009, Torio et al. 2009) 

are typical; however, exergy alone, although suited to evaluate systems that produce and 

use resources, is less understood and not as widely published in the building life cycle 

analysis literature (Zargarzadeh et al. 2007, Zhang et al. 2010). Impact oriented 

approaches such as LCA is the more common approach for considering broader 

environmental impacts of production processes, and it has been the subject of intense 

research over the last decade (Buyle et al. 2013, Singh et al. 2010, Zhang et al. 2010). 

Life Cycle Analysis 

Life cycle analysis is a tool for evaluating industrial products and process and is 

well utilized by academic, governmental bodies and industry alike. According to the 

Environmental Protection Agency (EPA 2011), life cycle assessments can be defined as 

techniques for assessing the potential environmental aspects and potential aspects 

associated with a product or service by: 1) compiling an inventory of relevant energy 
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and material inputs and their environmental releases, 2) evaluating the potential 

environmental impacts associated with identified inputs and releases and 3) interpreting 

the results to help the user make a more informed decision. Inventory involves data 

collection and calculation to quantify matter and energy inputs and outputs of the system 

while impact assessment evaluates the significance of the potential environmental 

impacts based on the aforementioned inventory (Ramesh et al. 2010). The system 

boundaries of the analysis typically include the energy and environmental impact of the 

following phases of the life cycle: 1) manufacture, 2) use, 3) and demolition. The 

manufacture phase includes manufacturing and transportation of building materials and 

installations used in the building and renovation of the structure. The use phase 

encompasses all activities related to the use of the building over it life cycle, including 

the use, operation, maintenance and repair phases.  Finally, the demolition phase 

includes destruction of the building and transportation of materials to landfill sites and, if 

included, the recycling of materials.  

While the LCA approach has been used to quantify energy and environmental 

impacts since the 1960’s, it was not codified until the 1990’s and subsequently in 2006, 

when the International Organization for Standardization (ISO) published ISO 14040 

(Elcock, 2007). LCA is a tool for systematically analyzing environmental performance 

of products or processes over their entire life cycle, including raw material extraction, 

manufacturing, use, and end-of-life disposal and recycle. (Ciambrone 1997, Joshi 2000). 

LCA methods have been used for environmental evaluation of product development 

processes in other industries for a long time (Cabeza et al. 2014), although application to 
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the building construction sector has only been state of the art for the last ten years (Buyle 

et al. 2013, Singh et al. 2010).  

Environmental impact measures reported typically in an ISO 14040 compliant 

form are global warming potential (GWP) (CO2 equivalent mass), acidification potential 

(AP) (H+ ions equivalent mass), human health criteria (PM2.5 equivalent mass), 

eutrophication potential (EP) (Nitrogen equivalent mass), smog potential (SP) (O3 

equivalent mass), ozone depletion potential (CFC-11 equivalent mass) and fossil fuel 

consumption (fossil fuel energy in GJ).  

Life Cycle Energy Analysis 

Life cycle energy analysis is one of the most common of the environmental 

impact indicators used in literature (see De Meester 2009, Kahhat et al. 2009, Keoleian 

et al. 2000, Li et al. 2007, Monahan and Powell 2011, Otriz, et al. 2009, Ramesh et al. 

2010, Sartori and Hestnes, 2006) primarily because the environmental impacts are 

strongly correlated with the primary energy utilized for the entire building life cycle 

(Huijbregts et al. 2006, 2010). Life cycle energy analysis (LCEA) is part of LCA that 

accounts for all energy inputs to a building in the life cycle (Ramesh et al 2010). Also, 

LCEA of buildings suggests strategies to achieve reduction in primary energy use of the 

building, control emissions and is fairly straightforward to compute. Life cycle energy 

includes (Ramesh et al. 2010), 1) embodied energy, 2) operating energy (use phase), and 

demolition energy (end-of-life). The embodied energy is the energy content of all the 

materials used in the building and installations, and energy incurred at the time of new 

construction and renovation of the building (Ramesh et al. 2010). Finally, demolition 
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energy is the energy required at the end of the buildings′ service life to demolish it and to 

transport the material to landfill sites and/or recycling plants. The literature reports that 

the energy is life time energy, typically in energy over a time frame. However, in some 

cases, an energy intensity is reported, which is, energy across an area over a defined time 

period (Citherlet and Defaux 2007, Monahan and Powell, 2011, Ortiz et al. 2009, 

Ramesh et al. 2010, Sartori and Hestmes 2006). 

Utilizing large datasets of office and residential LCA cases from around the 

world, but mostly from cold climates, Satori and Hestnes (2006) and Ramesh et al 

(2010) found a linear relationship between total life cycle energy and operational energy. 

Sartori and Hestnes (2006) also found that buildings with lower total life-cycle energy 

often had a higher embodied energy but also lower operational energy. Additionally, 

several “self-sufficient” homes were higher in total life cycle energy than a more, 

energy-efficient approach due an overuse of embodied energy. Operating energy 

analysis is typically derived from the energy required to operate a device or process, and 

it is broadly used to characterize many engineered systems. In terms of total life cycle 

energy, the operation phase of a dwelling is often a dominant portion of an evaluation 

(De Meester 2009, Keoleian et al. 2000, Otriz, et al. 2009, Ramesh et al. 2010). 

As discussed previously, operating energy for residential dwellings may 

dominate the energy usage of the building over its lifetime and, as Ramesh et al (2010) 

suggests, reductions in life cycle energy of designed buildings over their conventional 

counterparts are proportional to the degree and number of energy saving measures used 

in the building (where conventional buildings refers to a building built according to the 
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common practice of a specific country). However, reduced demand for operating and life 

cycle energy is achieved by an increase in embodied energy of the building due to the 

energy intensive materials used in technical and other installations. Other researchers 

have identified this situation as well; Thormark (2002) reported that embodied energy 

and its share in life cycle energy for low energy buildings is higher than conventional 

building.  

Treloar et al. (2001) presented an evaluation of the embodied energy content of 

several commonly used construction materials in Australia where the authors argued that 

embodied energy deserves attention along with the building operational energy. Building 

envelope thermal properties and permeability have an impact on energy use, and from 

the literature it can be concluded that environmental impacts correlate closely with 

primary energy demand of the buildings in their life cycle (Ramesh et al. 2010). From 

most of the available literature, one can conclude that the operational phase contributes 

more than a 80-85% share in the total life cycle energy of buildings (Ramesh et al. 2010, 

Richman et al. 2009, Sharma et al. 2011, Shu-hua et al. 2010), and future efforts should 

be focused on reducing the operational phase, even at the cost to other less-significant 

phases. 

Though embodied energy constitutes only 10-20% of the life cycle energy, an 

opportunity for its reduction should not be ignored, and there is potential for reducing 

embodied energy requirements through the use of materials in the construction that 

require less energy during manufacturing (Ramesh et al. 2010). Langston and Langston 

(2008) suggest that operation energy is easy and less complicated in accounting, while 
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embodied energy is more complex and time consuming, requiring manual takeoffs and 

robust software. 

Other Environmental Impact Indicators 

Many authors report other environmental impact indicators and with indicators 

that are utilized most frequently by the building LCA literature reviewed being total 

primary energy (PE) and global warming potential, and air (smog, human health 

respiratory and ozone depletion potentials) and water (eutrophication potential). 

Adalberth et al. (2001) performed LCA on four multi-family homes and studied different 

phases of the life cycle of four buildings for the purpose of researching which phase had 

the largest environmental impact and determining if there were any differences in 

environmental impact dues to the choice of building construction. Furthermore, their 

study referred to typical LCA environmental impact indicators such as PE, GWP, AP, 

EP and human toxicity, and the use phase was estimated to be 70-90% of total 

environmental impact caused by a building. Atmospheric indicators are the most 

common indicators reported beside total primary energy (Citherlet and Defaux 2007, 

Marceau et al. 2006, Monahan and Powell 2011, Ortiz et al. 2009, Ramesh et al. 2010), 

and some authors report intensity measures as well, such as GWP intensity (Citherlet 

and Defaux, 2007, Monahan and Powell 2011, Ortiz et al. 2009). 

LCA in Building Design Comparisons 

As recently suggested, understanding building embodied energy and associated 

environmental impacts is useful to understand building assembly impacts, and it may 

lead to informed decision-making based on the values considered, including long term 
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energy savings or ecologically associated effects such as global warming potential or 

water consumption. Additionally, the building design effects not only the embodied 

energy and impacts but also the total life energy, most critically, the operation energy.  

Citherlet and Defaux (2007) compared three variants of residential homes in 

Switzerland, namely, a standard, conventionally design home, a low-energy home and a 

very low-energy system, while utilizing GWP and AP intensity to illustrate a decrease in 

GWP as the building efficiency improved. Marceau (2006) compared a two-story single 

family (2450 ft2) with a wood-frame structure and with insulated concrete, and the 

operational energy was found to be lower in the ICF home and determined that the ICF 

home moderates the load required, requiring less energy. Operating energy was found to 

be the most significant impact phase through emissions and resource depletion. Kahhat 

et al. 2009, also addressed a variety of building assembly designs (ICF, concrete blocks, 

cast-in-place, 2”x6”, 24” on center wood frame and steel framed walled systems) and 

found that the operational energy was 94% of the life cycle energy and that the ICF wall 

system utilized 5% less energy than the wood-framed system. Additionally, Kahhat et al. 

(2009) found that the largest pre-use life cycle impact arose from concrete in the 

building structure. Finally, Monahan and Powell (2011) compared traditional vs. 

‘modern methods of construction’ (MMC) models in the United Kingdom, in with the 

GWP density indicator and found that MMC achieved a 34% reduction when compared 

to traditional methods of construction; MMC in this study was a wood-framed wall and 

the traditional construction was a masonry cavity wall. 
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Life Cycle Accounting Tools 

In the study reported herein, a process-based LCA was performed by using the 

Athena Sustainable Material Institute’s (ASMI) Environmental Impact Estimator (IE), 

and the models determined the environmental impacts based on current constructions 

practices and quantified the amount of material in each of the wall systems while 

covering almost all of the system used in residential buildings (Li et al. 2007). Impact 

Estimator has been referenced in the literature as tool to estimate life cycle energy of 

buildings, construction components and their associated environmental impacts based on 

International Standards Organization (ISO) 14040/140440 and US Environmental 

Protection Agency’s (US EPA) Life Cycle Impact Assessment (LICA) methods (ASMI 

2014, Happio and Viitaniemi 2008, US EPA 2011). IE is easy to use and is especially 

suitable for building construction because it considers various critical factors such as 

building type, on-site construction, related transportation, maintenance, repair and 

replacement effects, operation energy emissions, regional variation in energy use and 

transportation (Kahhat et al. 2009). In general, the life cycle inventory data included 

second-order system boundaries, that is, primary flows plus energy and material flows 

including operations (Marceau et al. 2006). 

Building Operating Energy Research 

The study reported herein seeks to further the residential building life cycle 

literature by reporting a comparative study of an actual energy-efficient residential 

building and a modern IECC 2012 code equivalent home in a hot and humid climate by 

utilizing the US DOE Energy Plus building simulation software to determine the annual 
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operational energy. The HVAC model in the Energy Plus simulation was based on a 

calibrated model from performance data measured in the field. Other non-HVAC end-

use loads were determined based on Pacific Northwest National Laboratory simulation 

guidelines and International Energy Conservation Code (IECC) 2012 code minimums. 

Gas and electric water and space heating models were also presented. Additionally, the 

study reported on water consumption over the life cycle for both cases, and finally, the 

study also addressed the impact of renewable energy and rainwater collection system on 

the associated life cycle indicators. 

Building Envelope 

The building envelope mitigates the building from the affects of the external 

environment and is fundamental to many of the critical design criteria such as energy 

efficiency, environmental control, security, and hurricane/tornado resistance. The design 

strategy employed several novel design strategies compared to typical residential 

building construction. The building envelope is critical in maintaining thermal comfort 

and many studies have reviewed the building envelope’s effects on minimizing heating 

and cooling loads (Antonopoulos and Koronaki 1999, Henze 2005, Kossecka and Kosny 

2002, Kosny et al. 1998, Siddiqui and Fung 2009). The building envelope maintains 

thermal comfort by providing structure and minimizing air filtration/loss. Building 

structure heat transfer characteristics such as control of radiation (surface emissitivies), 

conduction (R-value) and convection processes are the main mechanisms of heat flow in 

and out of a building.  
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The research seeks to evaluate the ‘As-Built’ building envelope compared to a 

traditional wood-frame home ‘Reference’ case in terms of infiltration and overall 

building envelope affects as reported in annual operation energy consumption. The ‘As-

Built’ case building wall system is (from the outside to inside):  1) stucco and/or brick, 

2) an air gap (maintained by 1x1.5” battens every 6 inches), 3) a combined radiant/vapor 

barrier, 4) an ICF wall (2.5” of polystyrene, 6” concrete, 2.5” polystyrene), and 5) a 5/8th 

inch fire rated drywall. The total thickness of the ICF wall system is 14-16 inches. The 

‘Reference’ case is the more a conventional 2”X4” wall of International Energy 

Conservation Code (IECC) complaint (2012). The ‘Reference’ building envelope 

assumed the same geometry and new constructions for fenestration, exterior and interior 

walls, roof, ceilings, and floors were implemented. All constructions followed IECC 

code and are adopted directly from US DOE-PNNL ‘Reference’ code (Mendon et al. 

2013). The ‘Reference’ home was based on the ‘As-Built’ geometry but incorporated a 

more typical building construction that met IECC 2012 code and the envelope model 

descriptions of both buildings models are listed in Chapter 2. 

Building envelope designs may incorporate strategies that have high-mass walls 

that contain high density and high capacity materials such as concrete. These types of 

walls can produce thermal storage that can store energy (hot or cold), thus resulting in a 

dynamic capacitance characteristic of the building that has been shown to offset energy 

loads (Antonopoulos and Koronaki 1999, Henze, 2005, Kosseecka and Kosny 2002, 

Siddiqui and Fung 2009, Reddy 2000). The dynamic effect of thermal capacitance is 

well characterized and primarily performed with simulation tools and modeling (Kosny 
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et al. 1998, Kosseecka and Kosny 2002). Even though little field information exists it 

has been found that increasing thermal capacitance leads to maximizing heat/cool 

storage, reducing peak loads and smoothing energy fluctuation (Antonopoulos and 

Koronaki 2000). 

In Houston, a passively ventilated attic is typical. Houston attics reaching 

temperatures over 130 degrees F and nearly 100% humidity on summer days. This heat 

input to the building envelope affects the air conditioning systems by reducing product 

lifetimes, efficiency, and may creep into leaky ducts, leaky ceilings and other 

penetrations into the conditioned space. Additionally, heat conducts through the framing 

system via thermal bridging. The project incorporated a sealed attic with a durable and 

heat-rejecting boundary.  The roof system is a radiant-vapor barrier installed below a 

shingle-based steel roof that has a wind rating of 130+ mph. This was installed on top of 

a classic rafter support structure that was insulated with open-cell foam.  

Utilizing building simulation software, this study evaluated the building system’s 

environmental control capabilities compared to the ‘Reference’ case based on building 

envelope and infiltration effects. An inherent property of the As-Built model (ICF 

construction and sealed attic) is low effective leakage area. The interconnectedness of 

the foam block and the monolithic nature of the concrete yield a wall system with little 

infiltration crevices or gaps in the wall system. To separate the effects of the infiltration 

from the building envelope, thermal and infiltration modeling control may be performed 

to isolate the effects. 
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Environmental Controls 

The owner installed two high efficiency (17 SEER), four-ton air-sourced heat 

pumps. The size of the house required that two zones be established, one for each floor.  

Ducting was located in a sealed highly insulated attic space. Fresh air intake into the 

building environment is important to maintain air quality in an airtight building. Various 

devices maintain the environmental comfort in the building including: 1) air-sourced 

heat pump, 2) bathroom ventilators, and 3) energy recovery ventilators. Houston, Texas 

is often hot and humid and the fresh humid air intake can be mitigated with an Energy 

Recovery Ventilator (ERV), especially during cooling season. ERVs contain cross-flow 

heat exchangers that provide enthalpy transfer by exposing incoming and outgoing air to 

each other across a conductive matrix core and ERV application and optimum control 

strategies in different climatic regions have been performed (Rasouli et al. 2010, Zhou et 

al. 2007). Zhou has documented (2007) that ERVs capable of moisture recovery may 

reduce annual cooling load by 20% if the ERVs are properly controlled. ERV system 

controls will be evaluated and control strategies will be suggested to optimize heat and 

cooling. All environmental controls operating energy will be monitored to calibrate the 

As-Built operational energy model. 

Renewable Energy Research 

Hot water is critical to the house system for traditional residential uses and 

potentially for space heating via ducted hot water coils. The dwelling utilizes flat-plate 

collectors, thermo-siphon heat exchanger mated with an 80-gallon water storage tank. In 

addition, an on-demand hot water heater backs up the solar hot water system (SHWS). 
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The house is also equipped with a 3.5 kW, 20-panel polycrystalline solar photovoltaic 

system (SPVS) installed on the southeastern roof at a 42-degree tilt, and the system is 

grid-tied with no battery storage. The potential of renewable energy systems to offset 

operating energy can be significant, however, installation and operational issues may 

plague their performance. Additionally, product efficiencies may be overstated and 

simulation tools such as National Renewable Energy Laboratory’s Solar Advisory 

Model and TRYNSYS have been used to optimize and study solar thermal systems in 

residential applications (Hobbi and Siddiqui 2009, Kalogirou 2009). Additionally, 

Kalogirou (2009) presents thermal performance with life cycle evaluation of a 

thermosiphon solar hot water system and a similar approach will be conducted to 

estimate the impact of these systems installed at this location. This research utilized 

NREL’s SAM because of combination of solar modeling with a robust solar radiation 

database, life cycle energy and economic features and is public-availably (Blair et al. 

2014). SAM’s PV models have been verified and validated against measured data (Blair 

et al. 2012, Freeman et al. 2013, Rudie et al. 2014, Thevenard and Pelland 2011). In 

addition, Blair et al. (2012) and Freeman et al. (2013) compared model versus quality-

controlled measured performance data for nine PV systems. Blair et al. (2012) found ± 

3% or less annual errors for all the systems at and monthly errors varying ± 6%, while 

Freeman et al. (2013) concluded that combinations of SAM mode errors fell within an 

annual error range of 8.5%. SAM was utilized to verify existing residential renewable 

energy systems performance to perform optimizations and to estimate life-cycle energy 

production and costs in the context of a building life-cycle analysis.  
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Onsite Water Systems Research 

As water resources become more stressed, higher water pricing and regulation 

will be implemented. Many municipal water supplies, while safe, have documented 

levels of high chlorine, deposit forming minerals, heavy metals and other unregulated 

contaminants.  Alternate water sources, such as rainwater harvesting, are becoming more 

attractive options to handle ever-increasing demands and costs. According the Li et al. 

2010, motivation for these alternate water system lies in several factors: 1) consumer 

cost of water and wastewater will rise, 2) climate change may alter rainfall, 3) 

population growth and standard of living increasing, 4) high-quality water used of low 

quality purposes, and 5) runoff and wastewater handling reductions. 

Rainwater harvesting can supply high quality water. Rainfall in Houston ranges 

from three to six inches per month affording ample opportunity to catch and store water. 

The home’s system is able to harvest water from approximately 75% of the roof, passing 

water through covered gutters to a macro-filtering system and then into an underground 

cistern. Potable water can be accessed from the cistern or domestic supply and all water 

domestic water is passed through an advanced water filtration system utilizing reverse 

osmosis and ultraviolet radiation. Approximately four people could use this supply at 80 

gallons-per-day for 24 days. 

In order to evaluate the utility of a rainwater system, a life cycle approach must 

be utilized and several authors have reported using this approach for specific situations 

and applications (Basupi 2013, Farreny et al. 2011, Ghimire et al. 2014, Roebuck and 

Ashley 2006, Ward et al. 2008). In particular, Roebuck and Ashley (2006) demonstrated 
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verified life cycle software tools that will be used in the study reported herein. Using a 

macro-enabled spreadsheet, hydraulic simulation and life cycle analysis production and 

costs were performed on an urban rainwater system.  

This study will analyze the rainwater system costs and benefits in the life cycle 

context for 50-years, and it will offer alternative redesigns for similar conditions in more 

competitive constraints. The simulations are constrained by input parameters such as on-

site water demand data, historical rainfall analysis and other site-specific information 

and financial inputs.  

Scope and Organization 

This dissertation is split into three primary sections, excluding introduction, 

conclusion and appendices; the first, chapter two, focuses on the energy consumed and 

embodied in two different building design scenarios and environmental impacts 

associated with their life cycles, the second section, chapter three, focuses on the impact 

of the onsite renewable generation system and the economics sensitivities of their 

implementation and the fourth chapter, focuses on the rainwater collection system and its 

estimated life cycle performance and economic sensitivities. The third and fourth 

chapters focus on the life cycle performance of the individual systems in the context of 

design optimizations, economic considerations and model-parameter sensitivities. Each 

section focuses on quantifying the energy and water consumed or produced and 

analyzing alternate scenarios and their associated impacts. Finally, chapter five 

summaries the outcomes of the researched report herein and suggests future 

opportunities for research. 
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Contributions 

The aforementioned building components and systems will be integrated to 

evaluate the building system sustainability. Monitored data and building simulation 

programs will be used to simulate the energy usage of the dwelling. Specific data that is 

gathered from the building component studies will provide more intrinsically valid 

parameters for the simulation and secondary data sources were used otherwise. 

Simulations were performed to assess the relative impact of each component on the 

operation phase of the dwelling life cycle. This work explored available literature, 

monitored data and current analysis techniques applicable to each building system and 

evaluation of the whole building are presented.  

Research Contributions 

1.! Developed and validated a residential building operational energy model for a 

building in a hot and humid climate with Energy Plus, a publicly available 

building energy simulation program.  

2.! Evaluated the impact of a low-infiltration (ACH1.5) insulated concrete form 

building envelope design (‘As-Built’) compared to a higher infiltration (ACH5), 

wood-framed, IECC-based (2012) ‘Reference’ case had on the annual building 

operational energy use. 

3.! Performed annual and total life cycle energy differences and life cycle 

environmental impacts estimated over a 50-year life cycle of both building 

models with Impact Estimator, ASMI’s publicly available building life cycle 

analysis tool. 
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4.! Evaluated the impact of renewable energy components, and water systems on the 

dwelling’s sustainability performance over the life cycle. 

5.! Performed solar photovoltaic and solar hot water field studies and modeling 

validations in a hot and humid climate with System Advisory Model, a public 

available renewable energy simulation platform. In addition, system design and 

economic considerations were performed through life cycle costing and 

sensitivity analysis. 

6.! Performed rainwater harvesting system field studies and modeling validations in 

subtropical Texas. In addition, system design and economic considerations were 

performed through life cycle costing and sensitivity analysis. 

7.! Utilized sensor networks and instrumentation to verify model parameters, inputs 

and outputs. 
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CHAPTER II  

OPERATIONAL AND EMBODIED ENERGY 

Synopsis 

The availability, expense and environmental impact of energy and water 

utilization are a growing concern in a resource constrained and environmentally sensitive 

age, and life cycle accounting tools can provide sustainability indicators of buildings to 

assist in the design and understanding of the impact of building systems. Residential 

buildings require constant material and energetic inputs to operate and maintain a 

comfortable and secure indoor environment; however, operating energy for these 

dwellings may dominate the energy usage and associated environmental impact of the 

building over its lifetime. An operational energy and environmental impact simulation of 

an energy-efficient, high-end residential house built in hot and humid climate 

(International Energy Conversation Code Region 2A) was performed. The energy-

efficient home was a LEED for Homes Platinum designated home, and it incorporated a 

durable and robust building envelope and efficient, lighting, environmental controls and 

renewable and rainwater systems. An ‘As-Built’ model was developed, and additionally, 

a ‘Reference’ case was developed based on the same geometric design and location but 

with 2012 International Energy Conservation Code building requirements. The 

objectives of the research were to estimate the life cycle impact (energetic and 

environmental emissions) of the ‘As-Built’ dwelling compared to the ‘Reference’ from a 

life cycle analytical framework, incorporating both an operational and embodied energy 

component. The results of the study are presented in two parts; Part 1, the development 
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and analysis of the building energy models, including calibration and annual operation 

estimates, and Part 2, the development of the embodied energy model and total life cycle 

impact analysis. Specifically, Part 1 describes the model development and 

implementation in the US Department of Energy’s Energy Plus building energy 

simulation software to estimate annual operational energy over the lifetime. The building 

simulation was performed in Energy Plus, and it was calibrated and verified with 

existing field data and actual meteorological year (AMY) weather data, and projections 

of operational annual energy were estimated with typical meteorological year data 

(TMY). Additionally, a reference home was modeled to characterize the difference in 

the actual house design and the reference case. Part 2 presents the life cycle accounting 

(LCA) estimation of the energy demand and environmental impact of the dwellings over 

a 50-year life cycle. LCA was performed on the ‘As-Built’ case, and it was compared to 

an IECC 2012 based ‘Reference’ case. Material energy estimations and impacts were 

performed with the Impact Estimator, LCA software publicly available from the Athena 

Sustainable Materials Institute. The model development is reviewed and the results are 

presented.  

The annual operational energy was reduced by 31.2% and 28.9% for the gas and 

electrical space and water heating models respectively, these reductions were due to the 

decrease in HVAC energy, and they were determined to be from infiltration and building 

envelope differences in the ‘Reference’ and ‘As-Built’ models, with infiltration 

impacting the reductions more than twice the amount as the building envelope effects 

alone. For the gas space and water heating models the embodied energy phase (product 
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production, construction, transportation) was 6% and 12% of the total energy while the 

use phase (operational and maintenance) lifetime energy was 93% and 87% for the 

‘Reference’ and ‘As-Built’ models, respectively. The electrical space and water heating 

models followed similar trends with a slightly more (1-2%) energy being utilized in the 

operational phase. 

The embodied energy in the ‘Reference’ model was almost half (48%) of 

embodied energy in the ‘As-Built’, but the ‘As-Built’ model achieved an overall 

reduction of total primary energy of 23-24% compared to the ‘Reference’ model and 

over 50-year life cycle, which corresponded to an approximate reduction of 6,314 GJ 

(1.75 E06 kWh) and 402 metric tons of primary energy and GWP, respectively (gas and 

electric space and water heating models averaged). Renewable energy systems were 

reported to decrease the annual operating energy 12.5% and 15.5% for the ‘Reference’ 

and ‘As-Built’ models, respectively. Additionally, over the life cycle with a 0.5% 

degradation factor, the total life cycle primary energy was reduced by 9.4% and 13.4% 

for the ‘Reference’ and ‘As-Built’ models, respectively. 

With no rainwater harvesting considered, total water consumption was 29.68 and 

31.78 mega-liters (ML) for the ‘Reference’ and ‘As-Built’ models, respectively, 

Additionally, the ‘As-Built’ model contained 49% more water consumption in the 

product phase, 46% more in the construction phase, and 7% more overall compared to 

the ‘Reference’ model. The end-of-life phase had no water consumption. The use phase 

dominates both models total life cycle water consumption and was 85% and 80% of the 

total for the ‘Reference’ and ‘As-Built’ models, respectively. Although stochastic in 
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nature, rainwater-harvesting systems may dramatically offset the life cycle use phase, 

and the studies presented herein, based on a Monte-Carlo simulation, yielded a 73% 

demand reduction with a 48% probability. This reduction in demand was approximately 

equivalent to the corresponding embodied water in the ‘As-Built’ alone. 

Introduction 

The assessment of building sustainability in a life cycle impact context is 

comprised of analyzing operating energy and embodied energy of the building life cycle 

(Brown and Ulgiati 1997, Ortiz et al. 2009, Torio, et al. 2009). Life cycle accounting of 

a building generally consists of the production phase, the operating and maintenance 

phase and the demolition phase. The operation phase may account for a large portion of 

the life cycle energy and associated environmental impact. In the United States (US), 

73% of the thermal loads are derived through the building envelope (non-internal) (US 

DOE 2009), and heating, ventilating and air conditioning systems (HVAC) control the 

thermal loads not mediated by the building envelope. Residential HVAC systems 

accounted for 48% of energy consumed in the United States (US EIA 2015), and on 

average, 40% of the energy consumed in the residences of Texas (US EIA 2015). 

Properly sized and efficient environmental controls are essential operational strategies 

that moderate indoor climate and overall life cycle costs. After heating and cooling, hot 

water is often the second largest consumer of energy in the United States (US DOE 

2009); however, in recent assessments, appliances, electronics and lighting have gained 

a larger share, and as much as 40 to 41% of the household energy load in the West-

South-Central US and Texas may be attributed these types of loads (US EIA 2015). 
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The building envelopes in this investigation are a durable, insulated concrete 

form (ICF) wall system with a steel roof and a sealed attic space, along with a more 

traditionally constructed wood-frame building and attic built to 2012 code standards. 

ICF building envelope technology is known to improve the thermal performance of 

residential buildings (Chasar et al. 2000, Kossecka and Kosny 2002, Kosny et al. 1998); 

however, due to the large consumption of concrete, residential ICF construction utilizes 

more energy and water when compared with typical, wood-frame construction (Marceau 

and Van Geem 2006, Kahhat et al. 2009, Trusty 1999). Life cycle analysis is a method to 

investigate the energy and resources utilized and emitted during the life cycle of the 

building. 

Life cycle studies of buildings analyze several aspects of energy and 

environmental impacts, and as Kahhat et al. (2009) suggests, typically focus on the 

effects of energy efficient strategies, and green house gas emissions involved in the 

construction and production of the building, along with variances in the different types 

of buildings, both commercial and residential. Some studies focus on the embodied 

phase (Monahan and Powell 2011) while others focus on the entire life cycle (Citherle 

and Defaux 2007, Marceau and Van Geem 2006, Monahan and Powell 2011, Kahhat et 

al. 2009, Keoleian et al. 2000, Ortiz et al. 2009, Sartori and Hestnes 2006, Stek et al. 

2011, Ramesh et al. 2010). Life cycle studies of buildings consistently reveal the 

embodied phase of the building to be less than the operational phase. As a percentage of 

life cycle energy, 9-10% for the embodied fraction is typical (Keoleian et al. 2000, 

Kahhat et al. 2009, Ortiz et al. 2009, Ramesh et al. 2010). Most studies report the 
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operational-use phase as the dominant phase of the life cycle unless the building is a 

self-sufficient building (Monahan and Powell 2011, Sartori and Hestmes, 2006). 

This study seeks to further the residential building life cycle literature by 

reporting a comparative study of an actual energy-efficient residential building and a 

modern (IECC 2012) code equivalent home in a hot and humid climate by utilizing the 

US DOE Energy Plus building simulation software to determine the annual operational 

energy, along with the Sustainable Materials Institute’s Athena Impact Estimator to 

perform the life cycle impact analysis. The HVAC model in the Energy Plus simulation 

was based on a calibrated model from performance data measured in the field. Other 

non-HVAC, end-use loads were determined based on Pacific Northwest National 

Laboratory (PNNL) simulation guidelines and International Energy Conservation Code 

(IECC) 2012 code minimums. Gas and electric, along with water and space heating 

models were also presented. Additionally, the study reported on water consumption over 

the life cycle for both cases, and finally, the study also addressed the impact of 

renewable energy and rainwater collection system on the associated life cycle indicators. 

Background and Methodological Approach 

In the summer of 2008, a Houston, Texas homeowner contacted Texas A&M 

University and began a discussion on the design and construction of residential buildings 

and the homeowner’s future new home. This discussion became a research endeavor and 

each component of the building was meticulously discussed resulting in the concept of 

an innovative home was made up of a blend of durability, energy efficiency, security, 

safety, comfort and air quality design elements (Thompson 2010). The philosophy of the 
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home was to build a durable house with lower energy and water costs, lower insurance 

premiums, low long-term maintenance and resistance to the environment. The building 

followed the US Green Building Leadership in Environmental and Energy Design 

(LEED) guidelines, and it was built in late 2009 and occupied in 2010. In the fall of 

2014 it was awarded platinum level designation. 

The methods used in this study involved a combination of field research, 

component modeling, building simulation and material and energy life cycle accounting. 

Operational energy was determined by modeling the building in US Department of 

Energy’s Energy Plus building simulation software, an industry standard, well-

documented, and tested simulation software, including several HVAC system tests 

(Neymark and Jodkoff 2002, US DOE 2014a) and multiple building simulation program 

tests such as NREL’s and the International Energy Agency BESTest that utilizes 

ANSI/ASHRAE 140-2011 Standard (ASHRAE 2011, Neymark and Jodkoff 1995). 

The building geometry was constructed from building plans, interviews of the 

builders and first-hand knowledge of the components and systems. Once model 

calibrations were performed on the ‘As-Built’ system, a ‘Reference’ case was also 

constructed and simulated with the same geometry but with different materials and 

system configurations based on the International Energy Conservation Code (IECC) 

2012 benchmarks used in IECC code comparison studies for the US Department of 

Energy and executed by Pacific Northwest National Lab (US DOE-PNNL), see Mendon 

et al. (2013) for more details. 
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The embodied energy and environmental impacts of the building envelope were 

also estimated with the Athena Institute’s Impact Estimator, a publicly available building 

life cycle assessment tool. Impact Estimator has been referenced in the literature as a 

tool to estimate life cycle energy of buildings, construction components and their 

associated environmental impacts based on International Standards Organization (ISO) 

14040/140440 and US Environmental Protection Agency’s (US EPA) Life Cycle Impact 

Assessment (LICA) methods (ASMI 2014, Happio and Vitaniemi 2008). Life cycle 

analysis is a tool for evaluating industrial products and buildings. It is well applied by 

industrial, academic, and governmental bodies alike, and, according to US EPA (2011) 

life cycle assessments it can be defined as techniques for assessing potential 

environmental aspects, along with potential aspects associated with a product or service 

by: 1) compiling an inventory of relevant energy and material inputs and their 

environmental releases, 2) evaluating the potential environmental impacts associated 

with identified inputs and releases and 3) interpreting the results to help the user make a 

more informed decision. A building life cycle illustrates many of the forces and 

components that comprise the resource utilization, energy and environmental impact of 

residential buildings, and Figure 1 illustrates a typical building life cycle, the activities 

involved and the phases the building material undergoes including preconstruction, 

transport, construction, use (operation), maintenance, dismantling, recycling and 

disposal (Ortiz et al. 2009). Life cycle analysis attempts to approximate, with the best 

available databases and estimates, the material and activities comprising all phases of 

dwelling life. Typically life cycle analyses have boundary conditions established to 
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clearly define the limits of the phases and assumptions in the analysis. 

 

 

 
Figure 1. A schematic representation of the building life cycle (Ortiz et al. 2009) 

 

The majority of the data from this portion of the study was estimated based on 

secondary data, primarily from life cycle databases. Data for the operational phase of the 

building will be estimated in the building performance section of the research, and 

demolition impacts will be estimated from secondary life cycle databases.  

In this research, the LCA ‘As-Built’ model was constructed based on building 

plan takeoffs and design information, and the ‘Reference’ model was also constructed 

based on the same geometry but with different materials that are common practice for 

the region while maintaining IECC 2012 compliance. The embodied energy analysis for 

both cases incorporated the building envelope (walls, fenestration, roof), the foundation 
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and the interior walls. No equipment, mechanical or otherwise was included in this part 

of the analysis and no interior finish was modeled. 

Building System, Components and Characteristics  

The ‘As-Built’ home was built by a local builder who specialized in energy-

efficient buildings and ICF construction. Additionally, and the building was a large, two 

and half story, urban home in humid, sub-tropical Houston, Texas (IECC Zone 2A) with 

5 bedrooms, 5 bathrooms, and a conditioned floor area of 591 m2 (6,363 ft2). The ‘As-

Built’ home details are listed in Table 1. 

 

 
Table 1. General dwelling details 

Type Description 
Builder Name Durable Residential Builders, LLC 
General Information Energy efficient, durable, noise resistant, urban, custom home in 

Houston, Texas. 
Building type  Large custom house with, 4 bedrooms, exercise room, and 5 

bathrooms 
Building location                                    
(city, state, gen lat, long) 

Braes Heights, Houston, Texas  
Lat: 29.696, Long: -95.434, Altitude: 49 ft. (14.93 m) 

Climate Hot and humid, IECC Zone 2A 
Year of construction/Year 
of occupancy 

2009/2010 

Conditioned floor area 591 m2 (6,363 ft2) 
General schedule Typical residential family oriented household. Maid activity on 

Monday, Wednesday, Friday. 
Days occupied in a year 2 weeks unoccupied 
Home type Single family detached, two and half story 
Attic Unvented, insulated with open cell insulation installed on the roof 

deck 
Walls Stucco, brick and rock facades and radiant barrier, on 11-inch foam 

and concrete block wall. Drywall finish inside. 
Roof  Durable metal roof, composite shingle look 
Windows Low-e, two-layer, hurricane impact windows 
Foundation Slab on pier and beam 
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The design strategy was comprised of several strategies compared to typical 

residential building construction, including a building envelope with a durable, low-

infiltration, 10-inch wide ICF wall system with a steel roof and a sealed attic space. The 

home was tested and audited by a certified Residential Energy Services Network 

(RESNET®) Home Energy Rating System (HERS) rater and the building achieved a 1.5 

air changes per hour (ACH) at 50 Pa, which was smaller than an IECC 2012 minimum 

of 5 ACH. In addition, impact resistant, low-emissivity windows balanced out the 

advanced building envelope. 

The dwelling had two state-of-the-art high efficiency (17 SEER) 4-ton heat 

pumps equipped with energy recovery ventilators (ERV) for makeup air energy recovery 

and the maintenance of air quality. The environmental comfort in the building is 

maintained by various devices including: 1) air-sourced heat pump, 2) bathroom 

ventilators, and 3) energy recovery ventilators with the fresh humid air intake being 

mitigated with ERVs. Table 2 lists the major mechanical systems installed in the home. 

 

Table 2. Dwelling mechanical systems overview 
Type Description 
Heating Two four-ton, 17 SEER heat pumps, Lennox XP21-048-230-02), 

gas backup furnace), 13.63 kW (46,500 BTU/hr) 
Cooling Two four-ton, 17 SEER heat pumps, 8.7 HSPF, Lennox XP21-

048-230-02,  13.92  KW (47,500 BTU/hr ) 
Domestic hot water Solar hot water with efficient natural gas demand heater (0.86 EF) 
Leakage/Infiltration Air changes per hour (ACH): 1.52 
Ventilation Balanced with 2, energy recovery ventilators (ERV) (one for each 

unit) running at low speed (80 CFM each) , 10” inline kitchen vent 
with makeup air, bathroom vented with inline fans, UV filtration 

Controls/automation Seven day programmable thermostats 
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To round out the features of the home, the residence also had a 3.5 KW photovoltaic and 

1.7 KW solar hot water systems as well as a modern rainwater collection system and 

they are the subject of chapters three and four, respectively. 

Dwelling Operational Energy Model 

The operational energy for the ‘Reference’ and ‘As-Built’ models for this study 

were developed in building simulation software, and their primary purpose was the 

determination of the annual heating and cooling energy utilized by the models. The 

additional energy demands for the house, such as lighting and miscellaneous plug loads 

and hot water, were estimated utilizing standard methods and simulation tools where 

applicable. The energy for hot water usage was determined by estimating the average hot 

water used per day by utilizing the standard method prescribed in ASHRAE 90.2, and 

NREL’s System Advisory Model simulation tool was used to estimate the annual hot 

water energy consumption. See chapter three for more detail on the hot water demand 

estimations. Appliance, plug-loads and lighting schedules, power and internal loads were 

estimated by utilizing US DOE code home methods developed by PNNL (Mendon et al. 

2013). 

The ‘As-Built’ calibrated model was developed to verify the model, and then it 

was adapted to a generalized HVAC model TMY weather data, HVAC auto-sizing and 

continuous availability. Occupancy, appliance, plug-loads, lighting schedules and non-

mechanical internal heat gains were held constant from model to model. The foundation 

insulation level was also held constant. The building envelope and HVAC systems 

operation and infiltration were modified to develop the ‘Reference’ case; specifically, 
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the systems altered were the heat pump, infiltration and ventilation (ERV 

presence/absence). 

The general method was as follows: 

1.! Generate the geometry of the building and its constructions  

2.! Generate the mechanical systems 

3.! Update infiltration and ventilation characteristics 

4.! Apply occupancy and schedules 

5.! Calibrate the model to achieve ASHRAE Guideline 14 for annual HVAC energy 

demand (AMY 2012 data driven model results with field measured data) 

6.! Determine heating and cooling operational energy for the ‘As-Built’ case 

utilizing TMY weather data and auto-sized HVAC systems 

7.! Adjust model to create a ‘Reference’ case and perform simulation 

8.! Determine heating and cooling operational energy for the ‘Reference’ case 

utilizing TMY weather data and auto-sized HVAC systems 

9.! Add-in hot water, appliance, plug-load and lighting energy 

10.!Analyze differences in energy consumption and load differentiation 

Building Geometry 

Three floor plans, two elevation plans and one site plan were used for building 

geometry development. The whole house was divided into five thermal zones: first, 

second, and third floors (bedroom and bath) were treated as conditioned zones while the 

garage and attic were taken as unconditioned zones. The whole building is shown in 

Figures 2 and 3. The IECC ‘Reference’ case used the same dimensions and geometry of 

the ‘As-Built’ case. 
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Figure 2. Rendered building geometry (southeast view) 
 

Building Envelope 

The building envelope was composed of standard and customized simulation 

objects for doors, windows, walls, floors, ceilings and the roof, and it was derived from 

the ‘As-Built’ system. The ‘Reference’ building envelope assumed the same geometry, 

and new constructions for fenestration, exterior and interior walls, roof, ceilings, and 

floors were implemented. All constructions followed IECC code and are adopted 

directly from US DOE-PNNL ‘Reference’ code (Mendon et al. 2013). 



 

 40 

 

Figure 3. Rendered building geometry (northwest view) 
 

The ‘Reference’ home was based on the ‘As-Built’ geometry, but it incorporated 

a more typical building construction that met IECC 2012 code. The envelope model 

descriptions are listed in Table 3. The ‘As-Built’ building exterior wall system was a 

composite of components that were modeled as constructions and made of the following 

materials:  1) stucco and rock facades, 2) an air gap, 3) insulation board (polystyrene), 4) 

concrete, 5) insulation board, and 6) gypsum board (sheetrock). The exterior reference 

wall system was based on a typical 2”X4” 16” O.C. stud wall consisting of a stucco 

facade, felt paper, and gypsum board and with an estimated R-value of 13. The ceiling 

and floors were also approximations of actual built conditions. The bottom floor 

consisted of subflooring with the second and third floor consisting of 5/8” plywood. The 

ceilings are modeled as sheetrock (gypsum board) in both models. 
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Table 3. Building envelope model detail 'As-Built' and 'Reference' model details 
Model detail ‘Reference’ case ‘As-Built’ case 

Exterior walls 
Exterior wall 
construction 

Wood-frame walls (2” 
x4” 16” O.C.),1” Stucco, 
Building Paper Felt, Insulating 
Sheathing (if applicable), 5/8" 
Oriented Strand Board, Wall 
Insulation,1/2" Drywall, 

Wall system - Facade, air gap, 
radiant barrier, 2.5” EPS, 6” 
concrete, 2.5” EPS, 5/8” dry 
wall 
 

U-factor (Btu / h-ft2 * 
°F) and/or R-value (h- 

ft2 °F / Btu) 

Exterior wall IECC 2012: R-13  Composite estimated: R-21, 
HERS rater estimate: R-33 

 

Roof and Ceiling 
Roof Construction Asphalt Shingles, ½” 

OSB, on rafter roof deck 
Metal roof, air space, battens, 
radiant barrier, 5/8" plywood, 
rafter roof deck with 6" 
polyurethane foam 

U-factor (Btu / h ft2 °F) 

and/or R-value (h ft2 °F / 
Btu) 

IECC 2012 residential ceiling: R-
38 

Roof: R-1.0 

Composite estimated:  R-22 
 

Window 
Glass-type and frame Glass, vinyl framed window with 

IECC U-factor and SHGC  
Advanced glass film low-E, 
Argon filled, wood clad, 
aluminum framed window 

U-factor (Btu/h -ft2°F), 
SHGC 

IECC 2012 residential glazing 
requirement:  SHGC 0.25, U-
Factor 0.4 

Low-E window: SHGC 0.27, 
U-Factor .35 

Foundation 
Insulation level R-13 Same as ‘Reference’ case 

 

Fenestration 

 The Energy Plus model window object was derived from Aratesh, D. et al. 2009, 

and it was transformed from commonly available properties of composite window 
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systems, such as the solar heat gain coefficient (SHGC), the thermal transfer expressed 

as a U-factor and the visual transmittance (VT), to the glazing properties required by 

Energy Plus. The material properties of the advanced window were SHGC of 0.27, U-

factor of 0.35, and a visual Transmittance of 0.47. A model was performed in a 

spreadsheet to estimate a composite glazing material. The window model for the 

reference was based on IECC 2012, and consisted of a double-pane Argon insulated 

model with a SHGC of .25 and a U-factor of 0.4.  

Roof and Slab System 

The ‘As-Built’ roof system developed in the model was a multilayer roof 

construction of the following materials: 1) metal surface, 2) air space, 3) 5/8” plywood 

and a 6-inch layer of polyurethane (open-cell foam), and the ‘Reference’ case was 

modeled with typical roof consisting of asphalt shingles on ½” oriented strand board 

(OSB). The ‘As-Built’ and ‘Reference’ model slabs were modeled as floors with an R-

value of 13, and the ground temperature were derived from the 1-ft below-grade monthly 

temperature reported by Reddy (2000), a regional expert on local, monthly ground 

temperatures (see Appendix A-7 for a listing of the monthly ground temperatures used in 

the simulation). 

Mechanical Systems 

A high efficiency heat pump was utilized for both the ‘As-Built’ and ‘Reference’ 

models with supplemental heating provided. The supplemental heating was modeled 

with both gas and electric. Thermostats were held constant in both models at 76°F and 

71°F, for cooling and heating, respectively, and a two-week vacation was modeled in the 
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summer at a 85°F set point. The thermostat set points were consistent with other studies 

such as US DOE-PNNL study previously mentioned (cooling 75°F, heating 72°F) and 

ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy 

(ASHRAE 2013a) (cooling 76°F, heating 71°F). Table 4 presents a full list of the 

mechanical and infiltration attributes for the models presented. 

 

Table 4. Mechanical systems properties for the 'As-Built' and 'Reference' models 
Model detail ‘Reference’ case ‘As-Built’ case 

Heating type Heat pump, electric and gas 
supplemental heating 
modeled 

Heat pump, electric and gas 
supplemental heating modeled 

Cooling type Central DX heat pump Central DX heat pump 

Heating sizing Field data to calibrate model 
and auto-sized to design day 
for operational energy 
evaluation 

Field data to calibrate model 
and auto-sized to design day 
for operational energy 
evaluation 

Cooling sizing Field data to calibrate model 
and auto-sized to design day 
for operational energy 
evaluation 

Field data to calibrate model 
and auto-sized to design day 
for operational energy 
evaluation 

Cooling efficiency Co-efficient of performance: 
4.5 

Co-efficient of performance: 
4.5 

Heating efficiency Co-efficient of performance: 
3.5, Gas heating efficiency: 
AFUE 78%, Electrical 
efficiency 1 

Co-efficient of performance: 
3.5, Gas heating efficiency: 
AFUE 78%, Electrical 
efficiency: 1 
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Table 4. Continued 
Model detail ‘Reference’ case ‘As-Built’ case 

Thermostat set point 76°F Cooling/71°F Heating 
ASHRAE Standard 55-2013 

76°F Cooling/71°F Heating 
ASHRAE Standard 55-2013 

Thermostat set back No setback weekly setback, 
2 weeks in Summer cooling 
setback to 85 °F 

No weekly setback, 2 weeks in 
Summer cooling setback to 85 
°F 

Ventilation/Infiltration IECC 2012: 5 Air 
Changes/Hr (ACH) @ 50 
Pa, Utilized Energy Plus 
ELA mode, ELA = 284.8 in2  

ERV @ 80 CFM, 54% Total 
recovery eff., 76% Sensible 
recovery eff., 50% Fan total 
eff., 90% motor eff., 1.52 
ACH @ 50 Pa with blower 
door test (HERS). Utilize ELA 
model in Energy Plus ELA = 
86.68 in2 

Fan schedule Utilized field to calibrate 
model and always available 
for operational energy 
evaluation 

Utilized field to calibrate 
model and always available for 
operational energy evaluation 

Fan Efficiencies (%) Total fan efficiency 25%, 
Motor efficiency 65% 

Total fan efficiency 25%, 
Motor efficiency 65% 

 

Fan schedules and efficiencies were held constant from model to model. The 

major mechanical component in the Energy Plus model included two heat pump systems 

(coils and air handlers), two energy recovery ventilators, and supplemental heating. A 

generic air loop system with a heat pump system was utilized and is illustrated in 

Appendix A-8. Supplemental heating coils were required for the heat pump simulation, 

and there was no outside air inlet connected to the air loop, as the fresh air is provided by 

infiltration, bathroom fans as well as the energy recovery ventilators previously 
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mentioned. The mechanical systems modeled were tuned with system specification and 

with field verified data for the calibrated model. No ducting system or duct leakage was 

modeled.  

Two four-ton air-source heat pumps were used to provide cooling and heating, 

with one serving the first floor and the other serving the second and third floor (one 

bedroom/exercise room and bath). The air handler unit models a constant air volume fan 

that cycles on and off with a cooling or heating system. The availability schedule of the 

fan was set to always-on and the fan was simulated as blow-through. Also the motor heat 

loss was modeled to enter the airstream. The single-speed DX coil model uses 

performance information at rated conditions along with curve fits for variation in total 

capacity, energy input ratio and part-load fraction to determine performance at part-load 

conditions. Performance curves are required to determine the coil performance, and the 

default Energy Plus performance curves were used in the simulation. The auto-sizing 

function of the Energy Plus simulation program was utilized to auto size the heating and 

cooling systems for the purposes of developing the appropriate response to the different 

loads presented by the building envelope, leakage, and ventilation. 

Two energy recovery ventilators were installed to provide fresh air to the first 

floor and the second floor, and they were independent of the heat pump system. The 

ERVs were modeled as a heat exchanger object with supply and exhaust fans. The heat 

exchanger object modeled the operation of an air-to-air heat exchanger from the supply 

and exhaust air streams and operates whenever the unit was available and when the 

supply/exhaust airflow were present. The performance data was set at 0.76 sensible and 
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latent heat recovery and the nominal flow rate and electric power were set at 80 CFM 

and 82W, respectively. Due to a larger infiltration rate (5 ACH), the ‘Reference’ model 

contained no ERV.  

Scheduling and Occupancy 

The model was developed with four occupants occupying the space and the 

occupant’s schedule was based on the US DOE PNNL method previously mentioned 

(Mendon et al. 2013) and the 24-hour fractional schedules for lighting, occupancy, 

appliances, and plug –load electrical are depicted in Appendix A-9, A-10, and A-11, 

respectively. 

Appliance, Lighting and Miscellaneous Plug-Loads  

Utilizing a method similar to PNNL (Mendon et al. 2013) for the IECC studies, 

appliance, plug-load and lighting different end-uses were split out to resemble the 

Building America research benchmark (Hendron and Engebrecht 2009) and to account 

for the approximate differences between the internal gains specified by the IECC. The 

sum of lighting and appliances from the Building America benchmark consisted of an 

adjustment factor being added in as an additional load (Mendon et al. 2013). 

Additionally, annual-energy internal-heating gains from general loads, lighting, and 

occupants were estimated based on Table 5, and a listing of the annual energy 

consumption and associated internal heat load gains for the appliances, and other 

equipment utilized in the simulation can be found in Appendix A-12. 

Lighting was modeled as installed, plug-in and garage lighting. Following 

Mendon et al. 2013. The lighting characteristics and energy consumption were based on 
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the Building America Simulation Protocols (Hendron and Engebrech 2010), which 

utilized a baseline calculation formulation based on lighted area and applies a fractional 

portion to different lighting types (incandescent, compact fluorescent and high 

efficiency). The 2012 IECC required seventy-five percent of all lighting to be high 

efficacy. These formulas are presented in Appendix A-13. 

 

Table 5. Internal gains and load model details 
Model detail ‘Reference’ case ‘As-Built’ case 

Lighting - Average 
interior power density 

(W/ft2) 

Living space: Lighting Power 
Density 2012 IECC, 2010 
Building America House 
Simulation Protocol. 
Appendix A-13 

 
Same as ‘Reference’ 
case 

Interior lighting schedule Lighting schedule (IECC 
2009), Appendix A-14 

Same as ‘Reference’ 
case 

General internal gain 
load (Btu/day) 

IECC 2006 and US DOE 
PNNL 

Item listed in Appendix A-12 

Same as ‘Reference’ 
case 

Internal gains 
Schedule(s) 

Internal gain schedule (US 
DOE PNNL) 

 

Same as ‘Reference’ 
case 

Occupancy 4 Same as ‘Reference’ 
case 

Occupancy schedule Occupancy schedule (IECC 
2009). Appendix A-9 

Same as ‘Reference’ 
case 
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Table 5. Continued 
Model detail ‘Reference’ case ‘As-Built’ case 

Exterior lighting 

Annual energy (KWh) 

347 kWh/yr for the IECC 
2006, 2010 Building America 
House Simulation Protocol 

Same as ‘Reference’ case 

Exterior lighting 
Schedule 

Exterior lighting schedule, 
2010 Building America 
House Simulation Protocol 

Same as ‘Reference’ case 

Garage lighting 40 kWh for the IECC 2006, 
2010 Building America 
House Simulation Protocol 

Same as ‘Reference’ case 

 

Model Calibration 

Utilizing the aforementioned ‘As-Built’ model, a calibration of the model was 

performed by assessing HVAC equipment demand profiling, monthly HVAC energy 

demand and comparing measured data with AMY-based simulation results from the 

same year. Heating gas energy was estimated based on utility bills with a based load 

disaggregation. The ‘As-Built’ calibrated model utilized air handler flow rates that were 

estimated based on field measurements, and the field determinations of air handler 

airflow were made with an Energy Conservatory plate flow meter with a manufacture’s 

stated accuracy of 7%. Figure 4 illustrates the operational energy modelling, calibration 

and analysis performed in this study. 
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Figure 4. HVAC operational energy modeling, calibration and analysis process diagram 
 

Calibration targets were established based commercial building simulation 

practices and AHSRAE Guideline 14-5.3.2.4, Whole Building Calibrated Simulation 

Performance Path. Section 14-5.3.2.4 suggests an annual mean bias error (MBE) of 15% 

and a coefficient of variation of the root-mean-squared error CV(RMSE) of 5% or less 

(ASHRAE 2014a) for a well-calibrated model. Measured data and utility gas meter data 

were used for calibrations that included monthly energy consumption for both heat pump 

systems, ERVs, and monthly whole house gas consumption. In addition, indoor air 

temperature and humidity were monitored on each floor to verify thermostat settings and 

to assess the overall comfort (see Appendix A-15 through A-20). System parameters and 

availability schedules were adjusted for calibration, and an annual MBE of 21% and CV 

(RMSE) of 4% for the year 2012. Figure 5 depicts the HVAC monthly energy 
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consumption for both the measured and simulated data. 

 

 

 

Figure 5. Total HVAC energy calibration results illustrating measured and simulated 
monthly energy profiles 

 

Operational Energy 

Once calibration was achieved the model was adopted and the HVAC systems 

were auto-sized to design-day data for Houston, Texas, and simulations were run with 

TMY data with the HVAC availability set to ‘always available’. Figure 6 illustrates the 

operational energy modeling process flow diagram and associated inputs, processes, and 

outputs for the generation of operation energy of the models. Operational energy models 
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were performed for both electric and gas supplemental heating (AFUE 78%), and model 

annual energy and associated end-use for each of the model are presented in Figure 6.  

 
 

 
Figure 6. Operational energy modeling process diagram 

 

Monthly summations of the building energy were summed over the year to arrive 

at the annual energy for each model.  Building energy was estimated based on the 

following equations. 

!"#$%&'()*+),- = // !"#$%&01,2

#14/51,26

7

+/!"#$%&9:;< /+ !"#$%&=>?2@)1@ 
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Where !"#$%&=>?2@)1@ was the exterior lighting and plug-loads, !"#$%&01,2/ was 

defined as the summation of the non-HVAC energy present in each zone, or:  

 

!"#$%&01,2/ = /!"#$%&;AA*)B,C26 /+ !"#$%&D)-E?),-/ + /!"#$%&F*(-G*1B+6 

The energy utilized by the HVAC systems,  !"#$%&9:;< , was also defined with its 

individual components and described as follows: 

!"#$%&9:;< = /!"#$%&9:;</C11*),- /+ !"#$%&9:;</E2B?),- +/!"#$%&;)@/EB,+*2@/

+ /!"#$%&=H: 

 

Operating Energy Results 

The ‘As-Built’ model achieved a 31.2% and 28.9% reduction in total building 

energy when compared to the ‘Reference’ model for gas and electrical supplemental 

heating, respectively. This was due to the reduction in the total HVAC energy, as the 

average HVAC energy (electrical and gas models averaged) total was 48.4% of the 

annual building energy for the ‘As-Built’ model and 60.2% of the annual energy for the 

‘Reference’ model. The ‘As-Built’ models had a 42% and 45.3% reduction compared to 

the ‘Reference’ model for gas and electrical supplemental heating, respectively. Figure 7 

is a stacked bar chart of each model, and the relative contributions of the end-uses and 

cumulative annual energy. 
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Figure 7. Annual operation energy of ‘As-Built’ and ‘Reference’ model by end-use 

 

Lighting represented an average (electrical and gas models averaged) of 5.4% 

and 3.8%, and the appliances and plug-loads were an average of 35.1% and 24.6% of the 

annual energy for the ‘As-Built’ and ‘Reference’ model, respectively. Finally, domestic 

hot water energy consumption was an average 11.2% and 7.8% of annual energy for the 

‘As-Built’ and ‘Reference’ model, respectively. The gas supplemental heating was 

approximately 3% higher compared to the electric only system for the ‘As-Built’ model 

and 6% higher for the ‘Reference’ case. 

HVAC Energy 

The primary contributor for the HVAC energy consumption increase for the 

‘Reference’ model was determined to be infiltration. An inherent property of the ‘As-
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Built’ model (ICF construction and sealed attic) is low effective leakage area as 

measured by a blower-door test. Comparative models for the ‘Reference’ and ‘As-Built’ 

model with gas supplemental heating were run to isolate the effects of the building 

envelope from the infiltration effects. The building model was held constant and the 

infiltration was adjusted to assess the relative impact of both the ‘Reference’ and ‘As-

Built’ case, and the infiltration (ACH) was held constant and the building envelope was 

changed (‘As-Built’ to ‘Reference’). Table 6 presents the findings for adjusting the ‘As-

Built’ and ‘Reference’ models. 

  

Table 6. Impact of infiltration and building envelope design on total and HVAC simulated 
energy 

MODEL DETAILS/ 
ENERGY 

INFILTRATION REDUCTION 
ACH5 to ACH1.5 

BUILDING ENVELOPE 
REDUCTION                                

REF to ‘AS-BUILT’ 

CONSTANT VARIABLE ‘AS-BUILT’ ‘REFERENCE’ ACH1.5 ACH5 

BLDG TOTAL ENERGY 23.7% 23.4% 10.2% 9.8% 

HVAC TOTAL ENERGY 39.2% 36.5% 19.2% 15.6% 

 

With the models presented, the impact of infiltration is substantial and reducing 

an IECC 2012 code-based building with infiltration of ACH 5 to ACH1.5 decreases the 

building HVAC total energy an average of 37.85%. Achieving an ACH 1.5 in residential 

building construction is considered a tight house (Sadineni et al. 2011), and infiltration 

and ACH control is due to the builiding envelope type and construction practice, and 

ICF construction is known to mimnimize infiltration and effective leakage area (Kosny 
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et al. 1998, Thompson 1995). Penetrations to the ICF wall systems such as windows and 

doors  need to be sealed appropriately, but the rest of the wall system is air tight once 

assembled. A spray-foam insulated attic, achives a low-leakage roof and attic system 

from the outset. Infiltration is important to control annual operational energy and 

associated life cycle impacts.   

The building envelope effects are observed by comparing constant infiltration 

rates for each mode and an average reduction in HVAC energy of 17.4%. Building 

energy reduction of about 10.2%. This observation was consistent with reported 

reductions of energy consumption by ICF building envelopes compared to typical 

framing construction (Marceau and VanGeem 2006, Kossecka and Kosny 2002). This is 

due to the ICF’s higher R-value and thermal mass ability to moderate temperature 

swings and peak loads (Marceau and VanGeem 2006, Kosny et al. 1998, Kossecak and 

Kosny 2002). 

Non-HVAC Energy Burden 

Of the non-HVAC energy loads, the appliances and plug-loads are the largest, 

with domestic hot water second; however, the appliance and plug-load estimates are 

conservatively based on the PNNL and Building America estimates for a standard home. 

Additionally, a home of this size may have luxury or ‘lifestyle’ items such as multiple 

refrigerators, central vacuum cleaners, spas and pools, and other items that may yield 

appliance and plug-load electrical demand well beyond the benchmark. US national 

averages indicate a trend in the reduction of overall HVAC energy as a percentage of 

building total energy, but despite energy efficiency improvements and governmental 
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programs such as Energy Star, appliances and miscellaneous plug-load energy footprint 

grows (US EIA 2013).  

Impact of Solar Energy Systems 

Annual operating energy for life cycle calculations were estimated for the models 

based on the addition of an average renewable energy (solar photovoltaic and solar hot 

water system) contribution and were estimated based on annual simulations with a 0.5% 

annual degradation factor from work presented in chapter three. Fifty-year average 

annual energy contributions of 3,757 kWh/yr and 1,637 kWh/yr (ele)/2,023 kWh/yr 

(gas), for the solar photovoltaic and solar hot water, respectively, were subtracted from 

the building energy demand to estimate the annual building energy with renewable 

energy. The renewable energy systems contributed an annual average of 15.5% and 

12.5% reduction to the ‘As-Built’ and ‘Reference’ operational energy, respectively. 

Figure 8 is a graphical depiction of the annual energy of the models with and without 

solar energy systems. 
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Figure 8. Model annual energy with and without solar energy systems 
 

Energy Use Intensity  

Building Energy Use Intensity (EUI) is an index that can be used to describe the 

amount of energy a building uses per year, and formally it is a ratio of the total annual 

energy used onsite over the building area not including spaces typically not conditioned 

or outside (walkways, porches, verandas, etc...) (ASHRAE 2014b). The EUI may take 

into account source or site energy, and in this study, site energy is considered. 

Additionally, renewable energy generation may be characterized by a similar index that 

subtracts generated renewable energy from the building site energy and produces a 

building Net Energy Use Intensity (NEUI). These ratios are formally presented as 

follows: 
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IJKLM/!"#$%&/NO#/P"K#"OQK&/(!NP) = //
IJKLMT""ULM!"#$%&NO#/

V$JOOWMJJ$T$#L
 

and 

IJKLM/X#K/!"#$%&/NO#/P"K#"OQK&/(X!NP) = //
X#KT""ULM!"#$%&NO#/

V$JOOWMJJ$T$#L
 

where 

IJKLMT""ULM!"#$%&NO# = / !"#$%& /
Y1,?E*Z/

7[

7

 

and 

V$JOOWMJJ$T$#L = //T$#L/J\]UQM^Q"%/#_`MU^Q"%/aLbJ$/U"`J"^QKQJ"#^/L$#LO 

 

Building EUIs and NEUIs are useful in comparing buildings in a standardized 

way and setting performance goals. Additionally, they are currently being used by both 

governmental agencies, such as the US Energy Information Administration, and building 

industry associations, such as ASHRAE (ASHRAE 2010 and US EIA 2015). The 

building models presented in this study achieved the following results presented in Table 

7. 

 

Table 7. EUI and NEUI indices for the 'As-Built' and 'Reference' models 
MODEL ASB-GAS REF-GAS ASB-ELE REF-ELE 

VENTILATION/INF
ILTRATION 

ACH-1.5 
ERV-ON 

ACH -5 ERV-
OFF 

ACH-1.5 ERV-
ON 

ACH-5 ERV-
OFF 

EUI kWh/m2 61.4 89.3 59.9 84.2 
EUI kBTU/ft2 19.5 28.3 19.0 26.7 
NEUI kWh/m2 51.7 79.5 50.8 75.1 
NEUI kBTU/ft2 16.7 25.2 16.1 23.8 
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EUI as the energy intensity per square area is highly dependent on the type of 

building and as such needs to be taken in the context to the type of building evaluated. 

Residential buildings have been categorized with EUIs by Architecture 2030’s 

Challenge and the Passivhaus program to assess typical buildings and to assign targets 

(Architecture 2030 2015, Straube 2009). Architecture 2030 provides an analysis of the 

US EIA residential building energy database and sets reductions based on US regional 

averages. These reductions are based on 50%, 60%, 70%, 80% and 90% from the 

regional average EUI. Single-family buildings, both detached and attached garages, in 

the southern region of the US were reported to have an average EUI of 41.8 and 38 EUI 

kBTU/ft2-yr, respectively (Architecture 2030 2015). 

The ‘Reference’ model achieved a EUI below the US EIA average and the ‘As-

Built’ model is essentially at the 50% reduction target of EUI 19.4. Additionally, the 

EUI for the gas and electrical heating models achieved similar EUI and NEUI, with gas 

having a bit higher number due to extra energy usage as a s result of process efficiency 

differences. The EUI for both the ‘As-Built’ and the ‘Reference’ model were both 

smaller (higher performing) when compared to the South-regional national averages, and 

with renewable energy systems, the results were even smaller; however, the lowest 

NEUI attained, at 16.1, did not meet the 60% reduction target of the Architecture 2030  

(EUI 15.5) or the high achieving, Passivhaus standard of an EUI of 15. 
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Dwelling Life Cycle Embodied Energy 

In order to characterize the embedded energy and environmental flows of the 

buildings construction, operation, and end-of-life, a life cycle analysis approach is 

required. The Impact Estimator (IE) from the Athena Sustainable Materials Institute 

(ASMI) is a publicly available whole-building, environmental life cycle decision support 

tool that takes comprehensive life cycle inventory databases and makes it accessible in a 

software-based accounting tool. The model provides a cradle-to-grave life cycle 

inventory (LCI) for a whole building over a user-selected life cycle service life and 

inventory results are flows in the form of energy and raw material as well as emissions 

to the environment (air, water and land) (ASMI 2014). The tool supports life cycle 

assessment measures based on the US EPA’s Tool for the Reduction and Assessment of 

Chemical and Other Environmental Impacts (TRACI v2.0) and in accordance with ISO 

1440/14044 (LCA - Principles and Framework/ Requirements and Guidelines) and ISO 

21930/31 (Environmental declarations on building products) (ASMI 2014). In addition, 

IE’s database is comprised of ISO 14040/14044 compliant unit process and LCI data 

related to basic materials, building products, and components, fuel use and transportation 

(ASMI 2014). The Impact Estimator version utilized in this research study was 5.0.0125. 

Environmental measures reported in IE include 1) global warming potential (CO2 

equivalent mass), 2) acidification (H+ ions equivalent mass), 3) human health criteria 

(PM2.5 equivalent mass), 4) eutrophication potential (Nitrogen equivalent mass), 5) 

smog (O3 equivalent mass), 6) ozone depletion (CFC-11 equivalent) and 7) fossil fuel 

consumption (fossil fuel energy in GJ) (ASMI 2014). These measures are midpoint life 
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cycle impact assessment indicators based on US EPA TRACI. The tool provides the 

capability of inputting annual operational energy by fuel type, and it is able to calculate 

pre-combustion energy (extraction, refining and delivery energy). Finally, it takes into 

account building system demolition and end-of-life disposition of materials (ASMI 

2014). The bill of materials takeoff estimates based on the IE’s model components have 

been compared against detailed manual takeoff and have been found being within �

10% with results within measured differences of 15% are to be considered insignificant 

(ASMI 2014). Materials are grouped by assembly and are divided into the following 

major categories: 1) foundation, 2) walls, 3) beam and columns, 4) floors and 5) roofs. 

An additional extra basic material category provides for other materials that may not fit 

in the defined categories. The Athena’s tool has been used in building and construction 

lifecycle impact studies reported in the literature (Kahhat et al. 2009, Perez-Garcia et al. 

2005, Steck et al. 2011) in technical briefs (Bushi and Meli 2014) and in LCA tool 

reviews (Haapio and Viitaniemi 2008). 

Assumptions and Boundary Conditions 

The lifecycle impact study was constrained to building operation energy 

performance and embodied energy of the building roof, exterior walls, fenestration, 

foundation and interior walls. Operating energy included all the energy used by the 

building, including, HVAC energy, lighting, appliances, and plug-loads. Gas and 

electrical energy are input separately to account for operational energy effects. The 

embodied energy model was developed in IE and follows standard LCA methods 
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previously outlined and conforming to the EN15804/15978 (category and calculation 

definitions) system boundary and reporting formats (ASMI 2014).  

Lifecycles stage are typically divided into four stages, each conceptual module 

labeled A1 through C4; an additional module “D” accounts for benefits outside the 

system boundary of the object of assessment, and includes the benefits of recycling and 

reusing materials at end of life as illustrated in Figure 9. The system LCA boundary for 

this study was set to the end-of-life stage (life cycle stages A1-C4). Figure 9 illustrates 

the typical life cycle stages used in LCA and a typical EN15978 system boundary (A1-

C4) depicting the product production, construction, use and end-of-life phases. 

 

 
Figure 9. Building life cycle stages (A-D), EN15978 system boundary (A-C) 
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The product stage involves modules A1-A3, namely, primary resource harvesting 

and mining (A1), all transportation of material up to manufacturing plant gate (A2) and 

the manufacture of raw materials into products (A3). The construction stage (A4-A5) is 

divided into two modules, namely transportation to the site (A4) and construction 

equipment energy use and effects of construction waste (A5). The use stage contains 

modules B1-B7 and includes, installed product use (B1), maintenance (B2), repair (B3), 

replacement (B4), refurbishment (B5), operational energy use (B6), and operation water 

user (B7). Finally, the end of life contains modules C1-C4.  The end of life stage is 

comprised of de-construction/demolition energy (C1), transport (C2), waste processing 

(C3) and disposal (C4) of the buildings materials. Stage D is supplemental information 

and flow beyond the building life cycle such as reuse, recovery, and recycling potential. 

This stage was not included in the analysis. The study conducted herein, utilized the 

boundary (A-C) identified in Figure 9 (EN15978 system boundary).  

Regional Specifics and Conditions 

IE facilitates regional specificity to support the activation of the appropriate 

electric grids, transportation modes and distances, and product manufacturing 

technologies applicable to the product mix for the selected region (ASMI 2014). 

Electricity supply is especially important due to various types of generators and grids 

available to a region. With this approach, electricity-related impacts associated with 

manufacturing materials, products and components, as well as construction, operation 

and maintenance energy are accounted for at the regional level.  
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Environmental Indicators 

Table 8 lists a review of some LCA of residential building and the life cycle 

environmental indicators utilized by the authors reviewed; not surprising, the primary 

energy (PE) and global warming potential (GWP) are heavily used and air (smog, human 

health respiratory and ozone depletion potentials) and water (eutrophication potential) 

effects in less numbers. 

 

Table 8. Environmental indicators commonly used in the LCA literature 
Authors and 
year 

Primary 
energy 
cons. 

Global 
warming 
potential 

Smog 
potential/HH 
respiratory 
effects 

Acid-
ification 
potential 

Eutro-
phication 
potential  

Ozone 
depletion 
potential 

Units Mega-
Joule 

CO2 

equiv. 
mass 

O3 / PM2.5 

equiv mass  
H+ equiv. 
mass 

N equiv. 
mass 

CFC-11 
equiv. 
mass 

Monahan and 
Powell 2011 

X X     

Stek et al. 2011 X X X    
Ramesh et al. 
2010 

X      

Kahhat 2009 X X X  X  
Ortiz et al. 
2009 

 X  X  X 

Citherlet and 
Defaux 2005 

 X  X  X 

Utilized in this 
study 

X X X X X X 

 

Each of the indicators may be associated with its relevant scale. Global impacts 

include global warming potential (GWP), ozone depletion potential (ODP), and resource 

depletion and regional impacts are typically associated with smog and acidification 
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potential (SP, AP). Human health respiratory potential (HHRP) and eutrophication 

potential (EP) are local in their impacts. All of the indicators listed in the residential 

building LCA studies were investigated in the study and water resource consumption 

was also included in the analysis. A description of each environmental indicator is 

provided in the Appendix and tabulated in Appendix A-22. 

Model Development of Embodied Energy 

IE was used to estimate the life cycle energy of two building models, namely a 

‘Reference’ and an ‘As-Built’ model, and operational energy was determined from the 

calibrated Energy Plus models previously discussed. The building plans and Energy Plus 

building geometry was utilized to organize and group the takeoffs for the IE model. 

Figure 10 illustrates a process diagram of the life cycle modeling and analysis, and it 

includes the inputs, sub-processes, processes, databases, and outputs involved in the 

method. 

Over 160 and 190 individual objects and associated components were input into 

the ‘Reference’ and ‘As-Built’ models, respectively; the majority of the objects being 

wall and roof surfaces. IE divides building construction into primary assemblies such as: 

foundation, walls (interior and exterior), roof, floors and extra basic materials. All 

objects have a range of materials that are specific to the object type (i.e. wall object: 

wood-stud wall, concrete block, etc.) of specific, user-defined dimensions. 
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Figure 10. Life cycle modeling and analysis used in this study 

 

Other attributes of the object are included, such as interior and exterior walls 

specified as load bearing or non load bearing. Fenestration is built into the exterior wall, 

objects, as well as, outer and inner envelope materials (insulation, paint, drywall, etc.). 

Other materials that do not fit into predefined objects need to be included in extra basic 

materials. 

Model Details 

‘Reference’ and ‘As-Built’ models were similar with the exception of a few 

major assemblies and components. The ‘Reference’ model construction was based on 

IECC 2012 code and regional building practices. The building envelope was constructed 

from a traditional framed house with fiberglass insulation and with a standard vented 
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attic with fiberglass insulation on the top floor ceiling. The roof was constructed of 

standard asphalt shingles, a vapor barrier, 1/2” of OSB roof decking on top of roof 

trusses. The vapor barrier was modeled as polypropylene-scrim kraft (PSK) material. 

The building rested on a post-tension slab model, which is common for the clay soils of 

the South-Houston, Texas. All concrete in the ‘Reference’ model utilized average (9%) 

fly ash content. 

The ‘As-Built’ building envelope provides a more durable and thermal resistive 

wall system compared to the Reference building. It achieved these measures by utilizing 

an ICF exterior wall system and a durable roof system with a sealed, insulated attic. 

Two-by-six framing and spray foam insulation was utilized in the wall system where the 

ICF was not appropriate or feasible. The roof system was a durable 26-gauge metal 

exterior on top of a multi-layer thermal boundary that was comprised of radiant barrier, 

ice and water shield, 5/8” plywood roof decking with 5 ½” of spray foam, all on top of a 

truss system. The radiant barrier was modeled with a two-layer PSK barrier while the ice 

and water shield was modeled as bitumen membrane. The underside of the roof deck 

was insulated with spray foam. Concrete in the ‘As-Built’ system was 25% fly ash. 
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All floors were modeled the same for the ‘Reference’ and ‘As-Built’ models. The 

first floor was modeled as a 2”X4” stud screed on top of a slab pad, and is typical for 

wood floors installed on top of concrete. The second and third floors were modeled with 

web-truss assemblies and ¾” plywood as a sub-floor. The final “finish” layer of the 

floors was not part of the assemblies of any of the floors. Fenestration was modeled the 

same in both models with standard doors and aluminum cladded, wood-framed, double-

paned windows. Interior wall construction was standard 2”X4” stud wall with the 

‘Reference’ case utilizing 1/2” sheetrock and the ‘As-Built’ 5/8” fire-rated sheetrock. 

Other known support and structural members (composite wood beams and iron posts) in 

the interior of the house were modeled to the same detail. Table 9 presents description 

and model details for ‘As- Built’ and ‘Reference’ building assemblies. 
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Table 9. Construction and model details by building assembly 

 

IECC reference As-built IECC reference As-built

Latex paint Latex paint Latex paint Latex paint
Stucco Stucco Stucco (includes wire mesh underlayment) Stucco (includes wire mesh underlayment)
OSB sheathing Radiant barrier OSB sheathing 2 layers of PSK
2"X4" stud wall ICF or 2"x6" wood stud 2X4 wall assembly ICF assembly or 2X6" wall assembly, concrete has 25% flyash
Wood wall has fiberglass inulation Wood wall has open cell foam 3.5" of Fiberglass insulation 2X6" wall assembly has 5 1/2" of polyiscyurante
1/2" interior sheetrock 5/8" interior fire-rated sheetrock 1/2" regular gypsum board 5/8" fire-rated gypsum board

Asphalt shingles Metal shingles Standard asphalt shingles Metal shingle 26 gauge
No battens 2"X"2 battens No battens 2"X"2 battens
Roof felt #15 Radiant barrier and water shield Roof felt #15 2 layers of PSK with bitumen membrane (2ply)
1/2" OSB roof deck 5/8" plywood roof deck 1/2" OSB roof deck 5/8" plywood roof deck
Truss of rafters with joists Truss of rafters with joists Light frame wood truss assembly Light frame wood truss assembly

Open cell foam insulation 5 1/2" of polyisocyurante

Aluminum clad, wood frame Aluminum clad, wood frame Aluminum clad, wood frame Aluminum clad, wood frame
Double pane windows Double pane windows Double pane glazed and operable Double pane glazed and operable
Standard door Standard door Standard door Standard door

Post-tension slab Concrete pier and beam Post-tension model composed of: Pier and beam model composed of:
All concrete is average (9%) flyash content with voidboxes 36"X12" perimeter and 24"X12" interior beams 42"X12" perimeter and 24"X12" interior beams

All concrete has 25% flyash content 4" Slab pad 4" Slab pad
Interior beam and tensioning tendons in EBM Piers and interior beam in EBM 

1st - wood screed on slab with plywood floor 1st - wood screed on slab with plywood floor 1st - wood screed in EBM 1st - wood screed in EBM
2nd - web truss with plywood floor 2nd - web truss with plywood floor 2nd - web truss with 3/4" plywood 2nd - web truss with 3/4" plywood
3rd - web tuss with 3/4" plywood floor 3rd - web tuss with  plywood floor 3rd - web tuss with 3/4" plywood 3rd - web tuss with 3/4" plywood
3rd floor ceiling has 10" of fiberglass 5/8" ceiling fire-rated sheetrock 3rd floor/ceiling has 10" of fiberglass insulation 5/8" fire-rated gypsum board
1/2" ceiling sheetrock 1/2" regular gypsum board

Standard 2"X4" interior wall Standard 2"X4" interior wall 2"X4" wall assembly 2"X4" wall assembly
1/2" interior sheetrock on both sides m 2" X1/2" sheetrock 2"X 5/8" sheetrock 

Conrete for the beams and slab Concrete for the pier Concrete, 20 M Pa, Average flyash content Concrete, 20 M Pa, 25% flyash content
Rebar, ligature and tendons Rebar and ligature for the foundation beams and piers Rebar Rebar
Materials for the 1st floor screeds Materials for the 1st floor screeds 2"X4" soft pine screeds 2"X4" soft pine screeds
Material for structural steel supported columns Material for structural steel supported columns 5"X5" square iron tubing 5"X5" square iron tubing
Material for GULAM beams Material for GULAM beams GULAM beams GULAM beams

Material for roof battens 2"X2" soft pine

CONSTRUCTION MODEL

EXTERIOR WALLS

EXTRA BASIC MATERIALS

FOUNDATION

FENESTRATION

INTERIOR FLOORS

INTERIOR WALLS

ROOF
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Dwelling Life Cycle Energy Results 

 The dwelling life cycle energy results are divided into two sections, with one 

entailing the distribution and effects of the building assembly and the other, a discussion 

of the whole life cycle, its phases and the distribution of impacts. 

Building Impact Simulation Results 

The primary energy distribution by assembly group identifies those assemblies 

consuming maximum energy and causing the greatest emissions. Figure 11 below 

presents the primary energy consumption by various assembly groups and different 

building models. 

 

 
Figure 11. Primary energy by building model and assembly 
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By category, the foundation, walls and the roof have a substantial impact and 

differences in the ‘Reference’ and ‘As-Built’ cases are due to the large amount of 

concrete and steel in the walls and slightly larger amounts of concrete in the foundation. 

It can be observed from Figure 11 that the foundation accounts for the highest 

percentage of primary energy for both the ‘Reference’ and the ‘As-Built’ model with the 

‘As-Built’ model slightly leading the ‘Reference’. The second largest impact was the 

wall assemblies with the ‘As-Built’ primary energy double the amount of the 

‘Reference’ model. The roof assembly is the third largest consumer of primary energy 

and the ‘As-Built’ model is over double the amount of primary energy compared to the 

‘Reference’ model. The floors and extra basic materials are the same for both cases and 

as such have the same primary energy.  

The relative reduction from the ‘Reference’ to the ‘As-Built’ model for all 

environmental indicators is illustrated in Figure 12. Due to the less concrete in the walls, 

and steel in the roof, along with more wood utilization, the ‘Reference’ model 

environmental impact categories were 60 to 20% less than the ‘As-Built’. 
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Figure 12. Building embodied environmental impact relative change from 'Reference' to 

'As-Built' model 
 

Global warming potential was reduced 74% and the total primary energy 

reduction was 47% from the ‘Reference’ to the ‘As-Built’ model. The total primary 

energy for the ‘Reference’ model was 1.74 E+06 MJ and the ‘As-Built’ model was 2.66 

E+06 MJ. The increased impact of the building envelope is substantial on the amount of 

material required and subsequent environmental emissions. However, as discussed in the 

next section, in life cycle terms, this amount of initial primary energy is modest in 

comparison to the overall life cycle impact. Although the building envelope is expensive 

upfront in terms of materials, energy and emissions, it achieves impressive reductions in 

filtration and thermal control and as such reduces life cycle energy and emissions 

overall.  
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For reference, Figures A28-A33 in the Appendix illustrate the environmental 

impact factor distributions in the building assembly and with this type of assembly 

analysis, design trade-offs can be identified by inspecting and comparing alternative 

assemblies such as walls and roofs for the purpose of assisting future designs that may 

offer lower consumption of resources and energy, subsequently minimizing 

environmental emissions to the air and water. The assembly distribution values are 

tabulated in Appendix A-24. 

Life Cycle Analysis 

Operational energy was added to the analysis with space and water heating with 

gas and electric energy being modeled for both the ‘Reference’ and the ‘As-Built’ 

models. Additionally, renewable energy offsets to the gas space and water heating was 

performed to predict the impact of the renewable energy systems. Figure 13 displays the 

total primary energy by life cycle phase for each building model and for space and both 

water heating energy types. Comparing the gas and electrical space and water heating 

energy models the differences in the operational primary energy use was 4.1 and 4.6% 

for the ‘Reference’ and ‘As-Built’, respectively. The slight difference in operational 

energy was due to conversion efficiency differences. 
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Figure 13. Life cycle phase distribution of primary energy by building model and heating 

energy (space and water) 
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14.12 times larger than the other phases combined, with the ‘As-Built’ model being 6.87 

times all the other phases combined.  

Figure 14 displays the relative increase and decrease in the environmental 

emissions and energy for the ‘Reference’ and ‘As-Built’ mode by life cycle stage. 

 

 
Figure 14. Relative change in life cycle indicators by life cycle stage ('Reference' to 'As-

Built') for gas energy model 
 

For all life cycle phases, except the use phase, there is less impact for the ‘Reference’ 

model; however, the use phase overwhelms the product and construction phases for each 

category and combining the life cycle phases results in a different pattern emerging. 

Figure 15 illustrates the entire life cycle relative change from the ‘Reference’ to the ‘As-
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Built’ model by each environmental and energy impact category. All categories achieved 

positive improvements from the ‘Reference’ model except oxygen depletion potential, 

which occurred because of the use of foam insulation instead of fiberglass insulation. 

Total primary, non-renewable and fossil fuel energy consumptions were reduced 24% 

over the life cycle. Global warming potential and acidification potential were reduced 

24% and 25%, respectively, while other atmospheric emissions such as human health 

particulate potential and smog potential were reduced 18% and 11%, respectively.  

 

 
Figure 15. Life cycle impact indicators relative change from 'Reference' to 'As-Built' 
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Eutrophication potential was reduced by 11% in the analysis. Life cycle environmental 

impact indicators by life cycle stage for gas and electric space and water heating are 

tabulated in the Appendix A-25and 26, respectively. Additionally, Figure A-34 through 

A-39 illustrates graphical representation of the life cycle stage contribution of each of 

the reported environmental indicators for the gas space and water-heating model.  

An investment in the initial phases of the building life cycle trade up for less life 

cycle impact in the long run. Operational energy variables such as the primary building 

electrical demands, consisting of HVAC, lighting, appliances and plug-loads, and 

domestic hot water usage, dominate the life cycle energy profile and subsequent 

environmental impacts in all categories except ozone depletion potential. 

Renewable Energy Impact 

Operational energy inputs for the life cycle model were augmented with the 

renewable energy reductions discussed previously in chapter three for gas water heating 

only. The renewable energy systems were combined, and they offset the annual 

operational energy that was input into Impact Estimator. Table 10 tabulates the results of 

the reduction percentage of the impact indicators for the use-phase of the building. The 

reduction is calculated by the relative change from the use phase primary energy without 

renewable energy compared to the use-phase primary energy with renewable energy. 

 

 

 

 



 

 78 

Table 10. Renewable energy systems (SPVS and SHWS) life cycle environmental impact 
indicators as a reduction percentage 

 

 

Primary energy and global warming potential were reduced 9.4% and 13.4% and 

acidification and smog potential were reduced by 9.1% and 9.5% for the ‘Reference’ and 

‘As-Built’ model respectively. The eutrophication potential decreased 9.5% and 13.3% 

for the ‘Reference’ and ‘As-Built’ models and finally, the ozone depletion potential 

decreased by a small fraction of 0.2% while electric space and water heating numbers 

were slightly larger by 1 and 2% for the ‘Reference’ and ‘As-Built’ model in all 

categories except for the ozone depletion potential, which stayed the same. Appendix A-

27 tabulates the use phase for the ‘Reference’ and ‘As-Built’ gas water and space-

heating models with and without renewable energy input. 

Water Resources 

Water consumption was estimated in the life cycle analysis of the building and 

was determined based the consumption in the product, construction and a small fraction 

of the use phase for maintenance and replacement in Impact Estimator. Additionally, 

operational use was determined based on direct water consumption estimations utilized 

in chapter four while water consumption derived from electrical generation was 

estimated in the water use phase. Rainwater effects on the operational use of the water 

were also estimated based on assumptions and on a stochastic simulation presented in 
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chapter four. Figure 16 presents the water consumption of the different building models 

by life cycle stage and their associated consumptive values in liters and the rainwater 

building use with and without RWH. 

 

 
Figure 16. Life cycle water consumption with and without rainwater harvesting 

 

With no rainwater harvesting considered, total water consumption was 29.68 and 

31.78 mega-liters (ML) for the ‘Reference’ and ‘As-Built’ models, respectively. The 

‘As-Built’ model contained 49% more water consumption in the product phase, 46% 

more in the construction phase and, finally, 7% more overall compared to the 

‘Reference’ model. The end-of-life phase had no water consumption. The use phase 
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dominates both models with 85 and 80% of the use phase for the ‘Reference’ and ‘As-

Built’ model, respectively. 

 Utilizing the results of the Monte-Carlo simulation reported in chapter four, the 

rainwater catchment was estimated based on a 75 % fraction of the annual demand being 

met by the rainwater so that the annual water consumption would be reduced from an 

estimated 507 m3/year to 127 m3/year. Additionally, the probability of this occurrence 

was estimated to be 45.8%. The operational use phase of the water consumption was 

estimated at 6.36 ML over a 50-YR life cycle, and this consumption was close to the 

product phase water consumption of the ‘As-Built’ model. With operational water use at 

these levels, the life cycle water consumption was reduced 64% and 60% for the 

‘Reference’ (10.672 ML) and ‘As-Built’ (12.77 ML) model, respectively.  

Summary and Conclusions 

Operational Energy Analysis 

The ‘As-Built’ model achieved a 31.2% and 28.9% reduction in total building 

energy when compared to the ‘Reference’ model for both that gas and electrical 

supplemental heating, respectively. Total HVAC energy was 48.4% of the annual 

building energy for the ‘As-Built’ model and 60.2% of the annual energy for the 

‘Reference’ model. The ‘As-Built’ models had a 42% and 45.3% reduction from the 

‘Reference’ model for the gas and electrical supplemental heating, respectively. The 

lighting represented an average (electrical and gas models averaged) 5.4% and 3.8% and 

the appliances and plug-loads were an average of 35.1% and 24.6% of the annual energy 

for the ‘As-Built’ and ‘Reference’ model, respectively, in addition, domestic hot water 
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energy consumption was an average 11.2% and 7.8% of annual energy for the ‘As-Built’ 

and ‘Reference’ model, respectively.  

Approximately 23% (average of the models) of total building energy reduction 

was attributed to an infiltration reduction from ACH5 to ACH1.5 (holding building 

envelopes constant) while a 10% (average of the models) reduction in building energy 

was due to building envelope effects. However, as discussed previously, these reductions 

are linked in that infiltration is impacted by the building envelope materials and 

construction type and quality. 

Finally, the renewable energy systems contributed an annual average of 12.5% 

and 15.5% reduction for the ‘Reference’ and ‘As-Built’ operational energy while the life 

cycle primary energy was reduced 9.4% and 13.4%, respectively. 

EUI as an Operational Energy Indicator  

Building Energy Use Intensity (EUI) and Net Energy Use Intensity (NEUI) are 

indices that can be used to describe the amount of operational end-use energy that 

building uses per year. Also they are useful in comparing buildings to other buildings in 

a standardized way and to set performance goals currently being used by governmental 

agencies. EUI/NEUI are highly dependent on the type of building as the energy intensity 

per square area, and as such, needs to be taken in context to the type of building 

evaluated. When compared to Architecture 2030 goals based on US EIA residential 

building regional statistics), the ‘Reference’ model achieved a EUI below the US EIA 

average and the ‘As-Built’ model is essentially at the 50% reduction target of EUI 19.4 

with the EUI for the gas and electrical heating models achieving similar EUI and NEUI 
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values, with gas having a bit higher number due to extra energy usage due to process 

efficiency differences. The EUI for both the ‘As-Built’ model and the ‘Reference’ model 

were both strong achievers when compared to the US southern regional average and with 

renewable energy systems the results were even stronger; however, the lowest NEUI 

attained, at 16.1, did not meet the 60% reduction target of the Architecture 2030 (EUI 

15.5) or the high achieving, Passivhaus standard of an EUI of 15. 

Life Cycle Impact Analysis 

The results of the life cycle analysis for all phase are consistent, for both the 

‘Reference’ and ‘As-Built’ models, with the use (operation and maintenance) stage 

clearly being the most dominant, and by assembly group, wall and foundation 

assemblies have been shown to yield the maximum emissions. For the ‘As-Built’ case 

the roof assembly was also a major contributor.  

For the gas space and water heating, the embodied energy was 1,608 GJ and 

2,376 GJ over the 50-year period for the ‘Reference’ and ‘As-Built’ models, 

respectively, while embodied energy intensities (GJ/m2) being 2.7 and 4.0, respectively 

for the ‘Reference’ and ‘As-Built’ cases. Operational energy was 24,483 and 17,226 GJ, 

with energy intensities of 41.4 and 29.5 GJ/m2 over the 50-year period for the 

‘Reference’ and ‘As-Built’ models, respectively. Total primary energy over the life cycle 

was 26,216 and 19,983 GJ, with energy intensities of 44.4 and 33.8 GJ/m2 for the 

‘Reference’ and ‘As-Built’ models, respectively. The embodied phase was 6% and 12% 

and the use phase was 93% and 87% of the total primary energy for the ‘Reference’ and 

‘As-Built’ model, respectively. Primary energy life cycle totals and intensities are 
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tabulated in Appendix A-40. The electrical space and water heating models followed 

similar trends as the gas modes with the operational energy and total energy slightly 

higher (see Appendix A-41 for more details). 

Global warming potential followed similar distribution patterns as that of the 

primary energy and with the gas space and water heating models, GWP intensities (kg 

CO2-eq/m2) being 193 and 286, respectively for the ‘Reference’ and ‘As-Built’ cases. 

Use phase GWP intensities were 2,626 and 1,861 kg CO2-eq/m2 over the 50-year period 

for the ‘Reference’ and ‘As-Built’ models, respectively. Total life cycle GWP intensities 

of 2,835 and 2,166 kg CO2-eq/m2 for the ‘Reference’ and ‘As-Built’ models, 

respectively. The embodied phase was 7% and 13% while the use phase was 93% and 

86% of the total primary energy for the ‘Reference’ and ‘As-Built’ model, respectively. 

Again, the electrical space and water heating models followed similar trends as the gas 

modes with the operational energy and total energy being slightly higher (see Appendix 

A-40 and A-41 for more details). 

The results from inventory analysis and impact assessment either compared one 

life-cycle stage with the other or one assembly to another so as to help to identify the 

building design components that have the largest impact with respect to total energy load 

and environmental impact. Improving the design of the building envelope to minimize 

the initial embodied energy footprint while maintaining the high operational 

performance attributed to low infiltration, minimal thermal transmission and efficient 

HVAC systems are of the highest concern. Identifying wall and roof system alternatives 

that can simultaneously reduce the upfront environmental burden and minimize the use 
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phase energy burden is the forefront in building design. Additionally, renewable energy 

systems can appreciable impact not only reductions in building energy demand but also 

reductions in environmental emissions to the air and water. Finally, rainwater collection 

systems and their output, although highly dependent on rainfall, may have a significant 

impact on life cycle water consumption. For example, in this study a 22.6 m3 rainwater 

collection system yielded, with a 45.8% probability, approximately the same use-phase 

water consumption as the ‘As-Built’ model product and construction phase alone. 

LCA is a quantitative, but approximate approach to evaluate building design and 

to explore the systems and relationships that impact design goals. Life cycle 

understanding assists and influences building and system designs and attributes, and it 

may influence the over-arching decision-making process in the building sector, such as 

influencing building codes and their emphasis. By exposing the critical parameters 

influencing environmental emissions and resource conservation, life cycle analysis 

studies of buildings are desirable to evaluate design alternative in the built environment.
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CHAPTER III  

RENWABLE ENERGY SYSTEMS 

Synopsis 

Hot and humid climates with high solar radiation have the potential to offset residential 

building energy consumption with the application of solar hot water and photovoltaic 

electricity generation, both of which are the subject of this paper. However, the costs, 

lack of incentives for the systems and more importantly, the unfulfilled need for proof-

of-concepts continue to limit market penetration. Although, solar energy use and 

production has grown in the United States, regional economics coupled with a need for 

incentives continue to keep many solar abundant regions underdeveloped. For example, 

the surplus of natural gas in certain areas of the United States, particularly Texas, 

continues to keep gas and electricity production economical compared to solar 

alternatives. However, ecologically minded consumers, trends that demand lower energy 

homes and finally, a desire for local energy independence, which is the hallmark of net-

zero energy buildings (NZEB), continue to fuel solar energy systems penetration. To 

support solar use, this research was performed to evaluate and analyze the real-world life 

cycle energy and costs of a solar photovoltaic and solar hot water system installed on a 

high-end residential home in Houston, Texas (IECC Zone 2). The house was a well-

insulated, low-infiltration, large urban home with two renewable energy systems 

installed; a 3.5 kW solar photovoltaic system and a 1.71 KW solar hot water system. 

Analyses were part of a larger study performed to investigate the contributions of the 

solar energy offsets on the operational energy of the building over a life cycle of 30-
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years. Field measurements of energy production were compared to solar energy 

simulations based on typical meteorological year and the National Solar Radiation 

Database (NSRDB) data. NSRDB provided the basis for a probabilistic interpretation of 

annual energy production in terms of exceedance probability measures, P50/P90. It was 

found that field estimates were within simulation uncertainties and P90 predictions were 

within 2.5% of TMY3 results for both the solar photovoltaic system (SPVS) and solar 

hot water system (SHWS). Additionally, optimizations in the system design and life 

cycle costs were investigated to determine annual optimal performance for the solar 

energy systems. The SHW system was installed at a less than optimum azimuth of 270° 

instead of 180°. The SPVS was installed at optimal design conditions of 180° azimuth 

and 42° tilt. Additionally, payback and LCOE could have been minimized with the 

addition of another solar hot water collector with a minimal impact to overall cost. Cost 

sensitivity analysis on the LCOE and NPV were also performed and over a 30-year 

lifecycle, TMY3 based simulations predicted a NPV of $796 (21.8-year payback) and -

$1246 (29.2-year payback) for the SHWS and SPVS, respectively. The SHWS achieved 

a LCOE of 8.1 ¢/kWh while the value for the SPVS is 12.29 ¢/kWh. For the SPVS, the 

photovoltaic module and collector costs were the largest determinant in life cycle costs, 

and of special note, a reduction in module cost by 67% reduces the LCOE to the regional 

electric price. Finally, the combined renewable energy systems, as installed in the 

residence, generated a estimated 30-year life-cycle energy production of 184,814 kWh, 

with auxiliary gas provided for additional hot-water heating. 
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Introduction 

The zero-energy home trend has gained momentum in recent years (Marszal et 

al. 2011, Li, D. H. et al. 2013) and The United States Department of Energy sponsorship 

of the ‘Zero-Energy Ready Home’ program promotes high performance homes that are 

so efficient that the installed renewable energy systems can offset all or most of its 

annual energy consumption (US DOE 2014b). In these types of buildings two design 

principles figure prominently, energy efficiency measures and renewable energy systems 

(Li, D. H. et al. 2013). Advanced building envelope designs and efficient heating, air 

conditioning and ventilation systems (HVAC), efficient lighting and appliances, all 

contribute to energy efficiency. In all cases achieve the zero-energy status the buildings 

require renewable energy systems which are typically photovoltaic systems; however, 

hot water provided by solar thermal systems can offset energy as well. In some regions 

throughout the world, solar hot water is common for traditional domestic water uses, and 

in some climates, it may even be used for space heating. In the case study evaluated and 

analyzed herein, hot water was provided by a solar hot water system (SHWS) 

incorporating flat-plate solar collectors, and a thermo-siphon heat exchanger mated with 

an 80-gallon water storage tank. In addition, a natural gas fueled on-demand hot water 

heater backs up the solar thermal system. As noted previously, the house was also 

equipped with a 3.5 kW, 20-panel polycrystalline solar photovoltaic system (SPVS) 

installed on the southeastern roof at a 42° tilt and is grid-tied with no battery storage.  

The potential of using renewable energy systems to offset residential operating 

energy can be significant. However, system costs, along with installation and operational 
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costs and other issues may hinder system penetration and performance. Simulation tools 

such as TRYNSYS and the National Renewable Energy Laboratory’s (NREL) System 

Advisory Model (SAM) have been used to optimize and study solar electric and thermal 

systems in residential applications (Blair, et al. 2014, Hobbi and Siddiqui 2009, 

Kalogirou 2009). Additionally, Kalogirou (2009) presents thermal performances with 

life cycle evaluations of thermosiphon solar hot water systems. A similar approach 

utilizing NREL’s SAM was used in the study reported herein to estimate the impact of 

the two solar systems installed at this location. The background of SAM is that it is in 

ongoing development with NREL, Sandia National Laboratories and in partnership with 

the US Department of Energy since 2006 (NREL 2014). Also, SAM is an energy 

performance and economic modeling tool, which enables users to analyze a wide variety 

of financial models and renewable energy system types, and it contains verified product 

databases and models for numerous commercially available products. Verification of 

SAM models with field data has been conducted in past studies with positive results 

(Freeman et al. 2013, 2014). To summarize, SAM provides a comprehensive suite of 

analysis tools and it is publicly available (Blair et al. 2014).  

Energy production from the solar energy resource is dependent on the variability 

of weather, particularly the solar radiation. Typical meteorological year data is 

constructed from “typical” months that represent normalized weather data for a given 

site (Wilcox and Marion 2008) and is often used to perform solar and building 

simulations. The filtered aspect of this meteorological data can obscure worst-case 

situations that may, in fact, impact life cycle energy production and costs (Dobos and 
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Gilman 2012, Vignola et al. 2012). However, the variability of solar resources and its 

impact on the energy production can be analyzed by using exceedance probabilities 

based on large solar radiation datasets, such as the NSRDB. The NSRDB dataset 

provides input to SAM statistical analysis capabilities and provides P50/P90 exceedance 

probability calculations. P50/P90 analysis is an analysis performed to estimate system 

performance based on variable inputs such as weather (Dobos and Gilman 2012, Vignola 

et al. 2012). In the study reported herein SAM was utilized to verify existing residential 

renewable energy systems, perform optimizations and to estimate life-cycle energy 

production and costs in the context of a building life-cycle analysis. 

System Characteristics 

Solar Photovoltaic System 

The solar photovoltaic array for the case study was installed on the southeastern 

roof at installed design conditions of 180° Azimuth and a 42° tilt. The solar photovoltaic 

panels, along with the solar hot water system panels are shown in the Figure 17 satellite 

image. 
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Figure 17. Renewable energy systems building roof placement (Google Maps 2014) 

 

The SPVS is comprised of 20 individual 175 W modules with associated micro-

inverters that have a certified efficiency rating of 94.5%. The PV system has a peak 

Standard Test Conditions (STC) DC size of 3.5kW and with a design estimated electrical 

generation of 4,346 kWh per year. The array consists of 20, 175W modules that 

individually connect directly a micro-inverter. Two hundred and forty volt output power 

passes through a utility disconnect and ties into a breaker located in the main service 

panel. The utility disconnect is mounted on the wall within 5ft of the utility meter. 

Figure 18 illustrates the PV system installed on a south facing roof. 
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Figure 18. Street (left) and close-up (right) views of the solar photovoltaic system (SPVS) 
 

The PV modules have micro-inverters that provide AC power and data 

communications via the power-line interconnects to the building circuit breaker. A data 

acquisition gateway is also connected to the service panel and polls the micro-inverter 

status information, including power data. Figure 19 is an illustration of the photovoltaic 

system, grid connection and associated data system. Voltage and current information is 

monitored by the data acquisition gateway and posted to a centralized, Internet-based, 

data monitoring service. 
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Figure 19. Solar photovoltaic system and monitoring system diagram 

 

Solar Hot Water System 

A 2.97 m2 flat-plate collector and thermosiphon heat exchanger with a 0.3 m3 

(80-gallon) water storage tank provides solar hot water. The flat-plate collector is on a 

22° tilt facing west as originally specified by the renewable energy contractor. A 

diagram of the solar hot water system is presented in Figure 20. The SHWS features a 

high performance coating to maximize absorption of the solar radiation. A low-power 

(24 W) gear pump operating at 0.02 kg/sec circulates heated water from the solar panel 

into a flat-plat heat exchanger. The flat-plate heat exchanger provides heat to the hot 

water tank by thermosiphon flow, whereby the hot water passively circulates in the 
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system. In addition, an on-demand, efficient gas-fueled hot water heater backs up the 

solar thermal system as a booster. 

 

 
Figure 20. Illustration of the solar hot water system and its major components 
 

The solar hot water appliance provides protection against overheating and 

stagnation, thus preventing damage to the collector and fluid, finally, the installed solar 

water heat collectors are low profile. Figure 21 is a photograph of the solar collector, 

heat exchanger and thermal storage tank, while Table 11 lists the detailed specifications 

of the SHWS. 

 



 

  94 

Table 11. Solar hot water system specifications 
Specification Description of item 

System Type Domestic hot water (DHW) heating only 

Collector Loop Liquid (polypropylene glycol), 1.219 m x 2.438 m (4X8 ft) , 7.6 
cm) (3 in) deep, 50 kg (110 lb) each, Absorber: copper tube on 
aluminum sheet; absorptance of 94% (± 2%) and emittance of 5% 
(± 2%) 

Collector Type Glazing: Low-iron, patterned, tempered glass with side edge guard 
Single glazing,  

Collector Area: 2.973 m2 (32 ft2)  

Storage Volume 0.3 m3 (80 gallons), glass lined, ASHRAE 90.1 certified 

On-demand hot water 
heater 

86% efficiency conversion, Hot water capacity: 0–78.7 LPM (0-26 
GPM ), Gas input rate MAX/MIN : 69.16/13.92 KWh 
(236,000/47,500  BTU) 

Pump  Low power (24 W) gear pump, 0.02 kg/sec (0.32 gpm/sec) 
flowrate 

 

  

Figure 21. Solar thermal collector, heating appliance and hot water storage tank 
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Solar Energy Simulation 

Renewable energy production was assessed with monitoring equipment and 

simulation tools. The PV system power was monitored with direct power measurements. 

Additionally, the thermal characteristics of the solar thermal system were monitored 

with a sensor network to estimate the heat delivered from the solar system to the solar 

storage tank. Onsite measurements were used to verify the simulation programs 

predictions. NREL’s SAM was utilized further to analyze the solar thermal and electric 

systems to assess performance and estimate life cycle production. Table 12 details many 

of the top-level details of the systems to be simulated. 

 

Table 12. Relevant system parameters for the simulations performed 
System parameter Solar photovoltaic system Solar hot water system 
Rated system size 3.5 KW  1.71 KW 
Panel tilt 42° 22° 
Azimuth 180° (South) 270° (West) 
Weather and radiation data source TMY3 Hobby Airport, 

Houston, TX 
TMY3 Hobby Airport, 
Houston, TX 

Longitude and Latitude 29.9833 °N, -95.3667 °E 29.9833 °N, -95.3667 °E 
Installed cost $26,500 $6,350 

 

SAM predictions are based on weather and solar irradiance for a typical 

metrological year (TMY3) and the NSRDB dataset for Houston, TX, in addition to 

detailed parametric specifications of the SPVS and SHWS. SAM facilitates an 

integration of multiple databases and models for renewable energy systems, including 

PV modules and inverters and solar hot water collectors and has been extensively 

validated against measured data and other similar tools (Blair et al. 2012, Freeman et al. 
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2013, Rudie et al. 2014, Thevenard and Pelland 2011). SAM integrates the California 

Energy Commission’s (CEC) PV module database, which contains model parameters for 

the eligible photovoltaic modules maintained by the CEC for the California Solar 

Initiative. SAM also integrates Sandia’s model for grid-connected PV inverters, which is 

an empirical model of inverter performance based on parameters of commercially 

available inverters maintained by the CEC (NREL 2015). Additionally, SAM has solar 

thermal collector performance datasets verified by the SRCC and models based on 

published solar flat-plate thermal collector concepts and models (Burch and Christensen 

2007, Duffie and Beckman 2013, NREL 2015). 

The simulation was run in conjunction with TMY3 and NSRDB data for the area 

nearest to the location (Hobby airport, Houston, TX). Other notable site position and 

radiation data are listed in Table 13. 

Table 13. Simulation site, temperature, wind and irradiance parameters 

Location Hobby Airport, HOU,TX
Data Source TMY3
Elevation 13 meters
Lat 29.65 ° N
Long -95.283 ° E
Weather Station ID 722435

Site parameters
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Table 13. Continued 

 

 

Solar Photovoltaic System Simulation 

SAM was used to model the grid-connected PV system that consists of a 20-

module photovoltaic array and associated inverters. Models for the modules and inverter 

are used in SAM, which facilitates the choosing of either Sandia, CEC or manually input 

performance data for PV modules, and in addition to choosing either the Sandia or 

single-point efficiency models for inverters (NREL 2015). The user specifies the module 

and inverter characteristics, array design, AC and DC derating factors, shading, costs 

and temperature correction models (NREL 2015). The photovoltaic module used in this 

simulation is based on the CEC performance model and predicts module performances 

based on a database of module characteristics determined from module ratings of the 

system deployed. The inverter CEC database calculates the systems AC voltage output 

by using parameters from SAM’s CEC database of parameters with the Sandia inverter 

mode (NREL 2015). The inverter model calculates the voltage DC to AC conversion 

efficiency, based on the DC power input of the photovoltaic array. Also, the model limits 

the inverter’s output to the inverter’s maximum AC power (NREL 2015).  

Global horizontal 4.28 kWh/m2/day
Direct normal 3.68 kWh/m2/day
Diffuse horizontal 2.01 kWh/m2/day
Average temperature 21.1 ° C
Average wind speed 3.5 m/s

Annual irradiance and temperature and wind summary
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SAM’s PV models have been verified and validated against measured data (Blair 

et al. 2012, Freeman et al. 2013, Rudie et al. 2014, Thevenard and Pelland 2011). In 

addition, Blair et al. (2012) and Freeman et al. (2013) compared model versus quality-

controlled measured performance data for nine PV systems. Blair et al. (2012) found ± 

3% or less annual errors for all the systems at and monthly errors varying ± 6%, while 

Freeman et al. (2013) concluded that combinations of SAM mode errors fell within an 

annual error range of 8.5%. Rudie et al. (2014) ran performance analysis of SAM PV 

models for 100 sites with measured data and found a mean bias error of 0.8% and a 

mean absolute error of 13.7%. Thevenard and Pelland (2011) concluded SAM’s 

combined uncertainty was approximately 8.7% for the first year of operation and a 

lifetime energy error of 7.9%. Uncertainties may be derived from radiation and climatic 

variability, and from other site characteristic deviations such as shading and system 

derating factors. For the study reported herein, the combined uncertainties of the 

parameters used in the simulation were estimated to be ± 6.26% and in Appendix A-42 

are tabulations of the uncertainties along with their assumptions. 

Solar Hot Water System Simulation 

SAM has a closed-loop flat-plate collector model that transfers energy from the 

transfer fluid to the external heat exchanger and the solar storage tank (NREL 2015). In 

SAM, the solar tank is filled with water from the mains, pumped through the heat 

exchanger and returned to the top of the tank (NREL 2015). The system installed, 

evaluated and reported herein operates in the same fashion. In addition, the solar thermal 

energy output of the system was predicted based on incident solar radiation and solar 
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collector properties and coefficients (Duffie and Beckman 2013, NREL 2015), 

additionally SAM used the system ratings tested and reported by the SRCC in 

accordance with ISO 9806, Solar thermal collector test methods. The collector in this 

study was assumed to be flat-plate and plumbed in parallel with uniform flow. 

Additionally, the collector was characterized by the linear form of the collector 

efficiency and incident angle modifier, the parameters were corrected for the flow rate, 

heat exchanger, and pipe losses using relations in Duffie and Beckman (Duffie and 

Beckman 2013, NREL 2015). The collector was configured in a location with TMY and 

NSRDB meteorological and geographic data and the collector orientation, tilt, flow-rate, 

fluid type, number of collectors, model type, albedo and collector area were also 

configured. In addition to collector data and weather conditions, other site-specific data 

was required, with all of these inputs and configurations then being used to generate the 

simulations. The solar heat exchanger is external to the solar tanks, and was assumed to 

have no thermal losses and the heat exchanger effectiveness was also detailed along with 

the plumbing details such as piping diameter, length and insulation; pump power and 

efficiency and the mechanical room air temperature. The solar storage tank geometry 

and heat loss coefficient were specified as well and hot water demand profiles were 

detailed in daily averages. 

SAM’s model output is dependent on the simulation parameters and variables 

that originate in the solar panel performance characteristics along with other model input 

parameters estimated by the user and the simulation engine. Solar panel performance 

characteristics in SAM were measured in rating and certification laboratories and these 
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estimates and their uncertainties contribute to the uncertainty in the model results. The 

expanded uncertainty of the solar thermal collector thermal efficiency has been reported 

to range from 1.6 to 5% (Mathioulakis et al. 1999, Kovacs 2012), while the calculated 

energy gain uncertainty exceeds 10% (Kovacs 2012). Additionally, utilizing a Monte-

Carlo simulation technique, Mathioulakis et al. (2012) estimated an expected annual 

output uncertainty of 9% on a typical solar thermal system. Based on an estimate of the 

combined uncertainties of all the parameters in the simulation, the uncertainty was 

estimated to be ±5.46%. See the uncertainty and assumptions tabulated in Appendix A-

43 for ore details. 

Solar Energy Field Monitoring 

Solar Photovoltaic System Field Monitoring 

The photovoltaic system was monitored with the pre-existing PV monitoring 

system and the power production of the system was measured from 2012 to 2013 with 

intermittent outages. The accuracy of this system power measurement was stated to be 

±5% by the manufacture (Enphase 2014).  

Solar Hot Water System Field Monitoring 

 Solar collector output was measured by using 1-wire® digital thermometers that 

were installed and monitored as a part of the solar thermal system. The multi-drop, 1-

wire® digital technology facilitated multiple temperature measurements with a cost-

effective, and in addition it has a factory verified temperature accuracy of ± 0.5 °C 

(Adams 2012). These temperature probes were installed directly on the plumbing with 

thermal paste and tie-wraps, and then the exposed temperature sensors were insulated 
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with pipe insulation where necessary. Finally, the sensors were fed into an Internet-

based data logger. Solar hot water system performance was estimated by using water 

temperature dynamics to evaluate the solar collector energy output to the solar hot water 

collector. Specifically, the heat energy gathered from the solar thermal system was 

estimated by measuring the heat acquired from the solar thermal collector as measured 

by the temperature difference of the solar collector along with manufacturer 

specifications on the gear pump, and the heat capacity of the fluid which was controlled 

with a differential temperature controller. Following Duffie and Beckman (2013) the 

following general equation was used to determine the estimated energy from the 

collector loop: 

 

Qcol = mj Cp,fluid (Tco,j – Tci,j) 

where, 

Qcol is the net energy output from the solar collector 

mj is the mass of the jth increment of circulated antifreeze fluid 

Cp,fluid is the specific heat of antifreeze fluid 

Tco,j is the temperature of the collector outlet of the jth increment of water 

Tci,j is the temperature of the collector outlet, 

+ indicates positive contributions are counted in the calculation. 

 

A simplified method based on estimating the heat exchanger effectiveness and 

multiplying the effectiveness by the energy delivered by the collector alone was used to 
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estimate the fraction of energy delivered to the storage tank. The solar energy delivered 

from to the storage tank was estimated as: 

 

Qstor  = ε Qcol, i   

where, 

Qstor is the net energy delivered to the storage tank in ith increment of water, 

Qcol is the net energy of from the collector at ith increment of water,  

ε is the effectiveness of the heat transfer from the solar collector to the solar 

storage tank. 

Solar Energy Analysis 

The solar photovoltaic and hot water simulation models were simulated with 

parameters based on site conditions such as panel orientation and tilt and system 

components were modeled with SRCC and CEC datasets where available. Energy 

production was estimated based on field assessments and SAM simulations and is 

detailed in the following sections. 

Solar Photovoltaic System 

The energy production of the SPVS was modeled based on CEC PV module and 

inverter datasets. The PV system utilized micro-inverter technology that produced panel-

level power production. Both the photovoltaic modules and micro-inverter were both 

rated at 175W. The characteristic curves of the photovoltaic module (volts vs. amperes) 

and micro-inverter (efficiency vs. output) are detailed in Appendix A-44 and A-45. 
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Temperatures correction was performed in the simulation with the nominal 

operating cell temperature method as documented in Duffie and Beckman (2013) and 

Neises (2011). Installation parameters included one-story height and rack-mounting with 

no shading modeled. The simulation utilized a titled surface radiation HDKR diffuse sky 

model with beam and diffuse irradiance components. According to Duffie and Beckman 

(2013), the HDKR model yields better results than either the isotropic or the Perez 

model in predicting utilizable radiation and model performance was closer to measured 

values. Simulations were run on TMY3 data for Hobby airport Houston, TX and were 

compared to field measured data. The energy production of the photovoltaic system was 

recorded utilizing existing equipment intermittently from February 2012 to November 

2013. The data was aggregated and monthly outputs were computed and compared 

against the simulation monthly output. Figure 22 illustrates simulated vs. measured 

monthly energy for data obtained in 2012 and 2013. SAM PV predictions are generally 

regarded with an uncertainty of ± 8-15% (Freeman et al. 2013, 2014). 
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Figure 22. Solar photovoltaic system field and simulated and measured monthly energy 

with uncertainty bars 
 

Measured data is based on instruments with reported accuracy of ± 5.46%. 

Annual field energy production was within 6% of predicted output for 2012 and 12% for 

2013 with no degradation accounted for. Considering variations in weather in typical 

meteorological data and potential differences in associated derating and other loss 

factors (shading and soiling) the differences between simulated and measured data were 

considered acceptable for the life cycle evaluation. 
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Solar Photovoltaic System P50/P90 Analysis  

P50/P90 analysis was performed to assess the annual energy exceedance 

probabilities calculated based on the 30-year NSRDB for Houston, Texas. SAM 

provides these capabilities in two types of probabilistic metrics, namely, P50 and P90. A 

P50 of 4,000 kWh a year is there is a 50% likelihood that the annual output will be 

greater the 4000 kWh. Similarly, a P90 value contains an annual output with a 90% 

likelihood of exceedance. The P50 and P90 values are obtained through the estimation of 

the cumulative distribution function (CDF). SAM achieves this through two types of 

estimation of the CDF, one that assumes the data fits a normally distribution (P50/P90-

norm) and another that uses the radiation data to empirically generated the CDF 

(P50/P90-emp) as described in Dobos and Gilman (2012). Solar resource data are not 

known to fit a normal distribution well and the empirical-based CDF and values are 

considered a more reliable approach (Dobos and Gilman 2012). In this study both 

normal and empirical estimates were considered. Figure 23 illustrates the annual solar 

photovoltaic energy production of the P90/P50 and TMY3 simulation estimates. 
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Figure 23. Annual solar photovoltaic energy production comparison of P50/P90 and TMY3 
comparison 

 

Normal and empirical methods of determining P50 and P90 annual energy 

production were within 15 kWh of each other. Normal and empirical estimation of P50 

and P90 energy production were within 2.5% of the TMY3 estimate. These results 

indicate that the radiation dataset from the TMY3 closely resembles that of the 30-year 

NSRDB dataset suggesting that the TMY3 dataset is representative of the typical solar 

energy output. TMY3 simulation was utilized to estimate annual energy production of 

the SPVS at 4,268 kWh/yr at year one. 
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Solar Thermal Energy Production and Analysis 

The simulation was setup with parameters from the installed solar hot water 

system installed and utilized a titled surface radiation HDKR diffuse sky model with 

beam and diffuse irradiance components. Annual availability was set at 99% with no 

shading and solar collector and site parameters were set based on Tables 13. Houston 

residential environments have been reported with an albedo ranging from 0.15 

(Hitchcock 2004) and 0.2 (Rose et al. 2003). Albedo was set to 0.2 for the simulations 

run in this study. Hot water demand was not monitored directly and was estimated based 

on ASHRAE 90.2-2013 Energy-Efficiency Design of Low-Rise Residential Buildings 

(ASHRAE 2013b). The average gallons per day utilized for living units to be used in hot 

water energy consumption is based on the following equation: 

 

AGPD = (CW+ SPA + B) (NP),  

where: 

AGPD = average gallons per day of hot water consumption, 

CW = 2.0 gal/day per person if a clothes washer is present, 

SPA = 1.25 gal/day per person additional hot water use if a “spa-tub” is present, 

B = general “baseline” coefficient of 13.2 gal/day per person, 

NP = number of people in the living unit. 

 

For the case study, the number of persons living the dwelling is 4, however, 

guests do frequent the home and the number of persons was set to 4.5 to accomidate for 
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additional guest and higher than normal clothes-washing demand. The hot water demand 

was calculated and to an AGPD of 74.025 gal/day or 280.2 kg/day. Table 14 identifies 

the parameters necessary for the solar thermal simulation.  

 

Table 14. Solar hot water collector, tank, heat exchanger and piping and plumbing 
simulation parameters 

 

 

 

Tilt 22 °C
Azimuth 270 °
Total system flow rate 0.02 kg/s
Working fluid Glycol
Number of collectors 1
Diffuse sky model HDKR
Irrandiance Inputs Beam and Diffuse
Albedo 0.2
Collector area 2.87 m2

System rated size 1.71253 kW

Solar hot water collector 

Tank volume 0.3 m3

Solar tank height to diameter ratio 2.5
Solar tank heat loss coefficient 0.55 W/m2-°C
Solar tank max water temperature 99 °C
Heat exchanger effectiveness 0.75
Outlet set temperature 54.44 °C
Mechanical room temperature 22.5 °C

Solar tank and heat exchanger

Total pipiing length in system 10 m
Pipe diameter 0.0127 m
Pipe insulation conductivity 0.03 W/m-°C
Pipe insulation thickness 0.006 m
Pump power 24 W
Pump efficiency 0.95

Piping and plumbing
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Piping and plumbing characteristics are estimates from the field and piping 

length, and pipe insulation property estimates include the collector and heat exchnager 

loops. Solar tank, heat exchanger and piping heat losses were modeled within SAM. 

The field estimates of the heat energy delivered by the solar hot water system 

were performed based on 2012 data. Monthly energy estimates were calculated using the 

average heat energy gained over the month. Missing data was estimated based on the 

average energy rate per hour for the month multiplied by the number of hours missing 

for the month. 

The uncertainty of the solar thermal predictions in SAM is not well documented. 

However, surrogates for uncertainty can be assumed based on other findings for energy 

gain in defined conditions such as testing environments and Kovacs (2012) reports on 

that solar collector energy gain has an expected uncertainty that can be as much as 10% 

due to climatic data variability. Measured data is based on an estimated uncertainty of 

5.46 %. Figure 24 illustrates a comparison chart of simulated vs. measured monthly 

delivered solar hot water energy. Annual field energy production was within 3.5% of 

predicted output. 

 

 



 

  110 

 
Figure 24. Solar hot water field and simulation monthly energy production with 

uncertainty bars 
 

Error bars represent a ±5.46% and ±10% uncertainty for measured and simulated 

data respectively. Considering variations in meteorological data and other uncertainties 

the associated differences were considered minimal over a life cycle. 

Solar Hot Water System P50/P90 Analysis  

P50/P90 analysis was performed to assess the annual energy exceedance 

probabilities calculated based on the 30-yr NSRDB for Houston, Texas and the 

simulation estimates are illustrated in Figure 25. Normal and empirical methods of 

determining P50 and P90 were with in 8 kWh of each other. Normal and empirical 

estimation of P50 and P90 were within 6% of the TMY3 estimated output, with P90 

results within 2% of the TMY3 results. These results indicate that the radiation dataset is 
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and that the TMY3 derived output closely resembles that of the majority of 30-year 

NSRDB dataset. TMY3 simulation was chosen to estimate annual energy production for 

an electric auxiliary SHWS at 1,846 kWh/year (first year). 

 

 

Figure 25. Solar hot water system P50/P90 and TMY3 comparison 
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 System Optimization 

Photovoltaic and Solar Thermal System Optimization 

Azimuth and tilt adjustments were analyzed in SAM to investigate ‘As-Built’ 

design optimizations. Table 15 tabulates a series of model scenarios of panel tilt and 

azimuth with associated monthly and annual energy output and suggests the photovoltaic 

system could have been optimized to increase total annual output at a gain of 2%. 

However, the original design optimized the monthly output for winter months with a 

larger tilt angle, with only a slight sacrificed annual output. The design azimuth of the 

installation was properly established at 180° as indicated in Table 15. 

 

Table 15. Solar energy systems annual energy production with various configurations 

 

 

 Table 15 also suggests that the solar hot water system was installed at a less than 

optimal azimuth of 270° and installing the system at 180° would have increased output 

by 19% at the design tilt of 22°, however, the system was installed at a location that 

Azimuth  (°) Tilt  (°) Annual energy (kWh) Azimuth  (°) Tilt  (°) Annual energy (kWh)
135 30 4126 180 22 2196
135 35 4074 180 32 2195
135 40 4003 180 40 2188
180 30 4314 225 22 2102
180 35 4282 225 32 2037
180 40 4226 225 40 2021
225 30 4124 270 22 1846
225 35 4073 270 32 1803
225 40 4001 270 40 1732

Solar hot water systemSolar photovoltaic system
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minimized piping losses and support structure. The simulated system output was more 

dependent on azimuth than tilt angle. In addition, the output of the solar hot water 

system could be increased dramatically with an additional solar collector module and the 

current system can readily accept an additional collector module with a marginal 

installation and material cost. The solar collector module would increase the energy 

annual output by 46% percent with an additional 41% increase in initial cost. 

Life Cycle Energy Production and Costs 

SAM annual simulations were developed over a 30-year life cycle to estimate life 

cycle production and economic performance for both the photovoltaic and solar thermal 

system. Solar photovoltaic and solar hot water systems are both known to function for 

over 20-25 years (Dunlop and Halton 2006, Hang et al. 2012, Realini et al. 2002, 

Skoczek et al. 2009). A thirty-year life cycle was determined to be a reasonable life 

cycle period for both systems and costs simulated included initial costs, operation and 

maintenance (O&M) costs, and lifetime replacement costs. Life cycle energy production 

is useful to determine the impact of renewable energy systems on a buildings operational 

energy usage and also for the determination of project economic indicators such as the 

net-present value (NPV), levelized cost of energy (LCOE) and monetary payback. NPV 

is a measure of a projects economic feasibility that includes both benefits and costs for 

the year, discounted and summed over a projects lifetime. LCOE is a combined 

performance and monetary ratio that is the total cost of installing and operating a system 

in dollars per kilowatt-hour of electricity generated by the system over its life. 
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 In order to determine the LCOE and payback, other financial considerations such 

as loan terms, discount rate and Federal tax rates had to be considered. NPV, payback 

and LCOE are sensitive to inputs and parameters; therefore, a sensitivity analysis was 

performed on various costs and financial parameters. 

System Initial Costs and Financial Considerations 

Initial costs of solar electric and solar hot water include equipment, mounting 

hardware, installation, and interconnection fees (if applicable). Other additional 

expenses can include system design and engineering work, which are often bundled in 

the gross price. The prices used in this study were based on actual market prices in the 

last quarter of 2009 that were charged to the customer. The breakdowns of costs were 

developed with consultation from the renewable energy contractor and the cost 

breakdowns are listed in Table 16. The solar photovoltaic system initial cost was 

$26,500, and the solar hot water system was $6,350. 
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Table 16. Solar photovoltaic and solar hot water system initial costs 

 

 

The initial costs for both the SPVS and the SHWS were simulated with a 30-year 

mortgage loan arrangement at a 4.0% interest rate, with 100% debt fraction (no down 

payment). Additionally, a discount rate was applied at 4.4% with a Federal income tax 

rate of 33%. Sales tax was included at a rate of 8.25% of direct costs and a Federal tax 

credit incentive of 30% was applied. In addition to initial costs, recurring, lifetime costs 

must be estimated as well. 

  

Description Percent of total Cost
Module 30.1% 7,968$       
Inverter 13.3% 3,525$       

Balance of equipment 18.1% 4,782$       
Installation labor 18.6% 4,912$       

Overhead and profit 19.9% 5,262$       
Price 26,448$      

Description Percent of total Cost
Appliance and collector 47.2% 3,000$       

Storage Tank 11.0% 700$          
Mounting hardware, piping, etc .. 4.7% 300$          

Installion 15.7% 1,000$       
Overhead and profit 21.3% 1,350$       

Price 6,350$       

SOLAR HOT WATER SYSTEM COSTS

PHOTOVOLATIC SYSTEM COSTS
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System Operation and Maintenance Costs  

The systems have variety of costs and benefits that need to be accounted for in 

the estimation of the energy production and costs over the life cycle. Annual general 

maintenance for routine checks and collector washing was estimated based on the cost to 

clean the panels and routine maintenance. Both the SPVS and SHWS incurred a $40 cost 

every 3 years for the lifetime and lifetime replacement costs were estimated to be $1,200 

and $600 for the SPVS and SHWS, respectively. SPVS and SHSW lifetime replacement 

costs assume three $400 and $200 payments every seven years and these costs were 

added at their respective time intervals to account for the timing of the costs. Table 17 is 

a summary of these parameters. Salvage value of the systems was estimated at 15% of 

total costs. 

 

Table 17. Summary of solar energy system life cycle simulation parameters 

Lifetime parameters Unit Solar 
photovoltaic 

Solar hot 
water 

Average lifetime Years 30 30 

Annual degradation  % 0.5 0.5 

Annual maintenance $/Year $40 $40 

Lifetime replacement costs 
$/Avg 

Lifetime 
$1,200 $600 

Salvage value (% of original 
value) 

%  15% 15% 

Lifetime costs $ $2,400 $1,800 
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Solar Energy System Life Cycle Performance 

 Solar energy systems are known to degrade in performance over the lifetime of 

the system, however, the amount of degradation occurring is controversial (Dunlop et al. 

2005, Wohlgemuth et al. 2006). Many studies have been conducted on photovoltaic 

systems that have been in operation for over 20 years (Dunlop and Halt 2005, Realini et 

al. 2002, Skoczek et al. 2009) and the components of the electrical system are generally 

considered robust. However, gradual degradation of the polycrystalline silicon 

photovoltaic modules has being reported (Realini 2003, Dunlop et al. 2005, Dunlop and 

Halton 2006, Skoczek et al. 2009) with degradation reporting 0.5-1.0% per year over the 

lifetime. Solar hot water system life expectancy is not well reported on the in the 

literature, however there have been life cycle studies on this type system (Hang et al. 

2012) and the typical life cycle was 20-25 years or more and for the purposes of 

estimating lifetime production and costs the model utilized an annual degradation factor 

of 0.5% per year for both the SPVS and the SHWS.  

Life Cycle Energy Production 

Life cycle energy production was estimated based on the aforementioned 

considerations and life cycle estimates of energy production of both the photovoltaic and 

solar hot water systems are presented in Table 18. Solar hot water energy output for both 

electric and natural gas heating auxiliary scenarios are presented. The annual energy 

saved for the solar with gas as auxiliary is higher than the auxiliary electric alternative 

due to the thermal efficiency differences. The electric heater in the electric as auxiliary 
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has a larger thermal conversion and as such uses less in energy, so the energy saved 

overall will be less than the gas auxiliary alternative. 

 

Table 18. Solar energy systems life cycle energy production 

 

 

Gas auxiliary simulations were performed with an estimated burning efficiency of 86% 

and tank losses at 20%. Lifetime energy saved from the photovoltaic system is about 

1.76 to 2.28 times the solar hot water system with an average cost of 4.16 times higher.  

Economic Performance Indicators  

The net present value (NPV), levelized cost of energy and payback are well-

established economic metrics of the projects ability to achieve an economic success 

(positive returns). The net present value is an accounting tool that is the sum, over the 

chosen planning lifetime, of all the net benefits (benefits minus costs) accruing to an 

action and discounted to current values terms (Griffin 2006). 

!"#$ = $ !&'
(1 + +)$'

-

./0
$$ 

Solar energy system type
Annual energy 

production      
(kWh)

30-year lifecycle 
energy production  

(kWh)

Solar photovoltaic system 4,226 117,994

Solar hot water system  
(natural gas heating)

2,393 66,820

Solar hot water system 
(electric heating)

1,846 51,555
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where 

t is the time period index (an individual year) 

T is the life cycle (in years) 

NBt are the net benefits in period t, and 

 d is the discount rate. 

 
 The levelized cost of energy (LCOE) is the total cost of installing and operating a 

system in dollars per kilowatt-hour of electricity generated by the system over its life, 

which is defined as follows (Short et al. 1995) 

LCOE =
56

(1 + +)6
7
6/0

86
(1 + +)6

7
6/9

 

where   

Cn: annual project cost in year n,  

Qn: electricity generated by the system in year n, 

d: discount rate, and 

N: total analysis period in year. 

 
 For residential systems, LCOE is comparable to a $/kWh retail electricity rate 

and should be at or less than the local electricity retail rate for the project to be 

considered economically viable (NREL 2015). Real LCOE is a constant dollar, inflation-

adjusted value and the nominal LCOE is the current dollar value. Many considerations 

are involved and because the LCOE takes into account the costs of the system over its 
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lifetime, the LCOE is very sensitive to the life cycle period of study, the discount rate, 

initial and recurring costs and the energy production performance and as previously 

discussed, energy production may vary at the location and degrade over time due to 

panel degradation.  

 The payback period is the time in years that it takes for the project savings in 

year two and later of the cash flow to equal the investment cost in year zero and SAM 

considers non-discounted cash flow values in the estimate (NREL 2015). Similar to 

LCOE, payback period is sensitive to energy production performance (energy cost 

savings), initial and recurring costs and tax savings and the energy performance of the 

system. Utilizing P50/P90 exceedance probability and TMY3 predictions of energy 

performance, NPV, LCOE and payback can be explored. Figure 26 illustrates the 

P90/P50 and TMY3 simulations impact on payback and LCOE for SPVS. 
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Figure 26. Solar photovoltaic system LCOE, payback and P50/P90 comparison with TMY3 

predictions 
 

Thirty year life cycle predictions of the photovolatic system payback is is 

mimnum of 28.2 and a maximum of 29.6 years and the LCOE is a minimum of 11.0 and 

and maximum of 12.6 ¢/kWh. The maximum LCOE in this analysis occurs in the TMY3 

simulation at 12.29 ¢/kWh. The NPV is negative, indicating a less-than-optimal project 

in terms of achieving net benefits over the lifetime of the project. However, as indicated 

by the LCOE and the NPV the project is not far from achieving benefits. Similar trends 

can be seen in the solar hot water system, however, with more positive results. Figure 27 

illustrates solar hot water system payback at a mimnum of 19.5 and a maximum of 21.8 

years and the LCOE at a minimum of 7.3 ¢/kWh and a maximum of 8.1 ¢/kWh. 
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Figure 27. Solar hot water system LCOE, payback and P50/P90 comparison with TMY3 

predictions 
 

TMY3 results have a payback of 21.8 years and a LCOE of 8.1 ¢/kWh. The solar 

hot water system is operating below the local retail cost of the electricty. The net present 

value is greater than zero which indicates that the project achieves benefits within the 

lifecycle, indicating a successful project in economic terms. The net benefits are not 

extremely large but do indicate the system accures benefits over the life cycle. 

Sensitivity Analysis 

As previously mentioned, the cost estimation is based on many parameters that 

are unknown but can be generally assessed though sensitivity analysis and can illustrate 

the impact of certain variables on system outputs and conclusions. By adjusting the input 

variable by up and down, the relative impact of the parameters can be explored and as it 
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is a combined indicator of costs and benefits, LCOE is a good output variable to observe 

as a general indicator of energy and economic performance. As the LCOE approaches 

and drops below the price of retail electricity the more successful the project becomes. 

 

 
Figure 28. Sensitivity analysis of solar photovoltaic system initial costs vs. real LCOE 

 

Figure 28 illustrates the impact of a twenty-five percent change may have on the real 

LCOE. The module cost had the most impact on the LCOE because it is the largest 

portion of the SPVS installed cost and further reducing all costs the project becomes 

more economically viable. The other initial costs have some impact but they are not as 

significant and in order to achieve a real LCOE of 10 ¢/kWh (estimated regional retail 

price of electricity) the module cost would have to be reduced 67% (0.75 $/Wdc) 
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Figure 29 illustrates the impact of financial parameters swing of twenty-five 

percent on the real LCOE. The loan rate of the mortgage has a significant impact on the 

LCOE. For SPVS, a twenty-five percent decrease the in loan rates drops the LCOE to 

the retail rate of electricity. 

 

 
Figure 29. Sensitivity analysis of solar photovoltaic system financial parameters vs. real 

LCOE 
 

Inflation and the real discount rate have a large impact on the LCOE, however, in 

the opposite direction of the loan rate and in general, decreases in the real discount rate 

or inflation will shift the LCOE to higher values. Figures 30 and 31 illustrate similar 

results for the solar hot water system. Figure 30 identifies the initial cost of the solar 

collector as having the largest impact on the LCOE and the LCOE decreases with 
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decreasing costs and Figure 31 indicates that the loan rate has the largest financial 

impact on the LCOE, slightly below 7 ¢/kWh with again, inflation rate and discount rate 

having negative (increasing) effect on the LCOE with decreasing rates. 

 

 
Figure 30. Sensitivity analysis of solar hot water system initial costs vs. real LCOE 

 

Life Cycle and Loan Impacts On Economic Performance 

Another significant aspect of evaluating the life cycle economic performance of a 

renewable energy project is establishing the temporal conditions with which the 
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Figure 31. Sensitivity analysis of solar hot water system financial parameters vs. real 

LCOE 
 

These items have a tremendous effect on the outcome and a series of simulations were 

run to investigate order loan terms and life cycle period combination effects on the 

economic indicators previously discussed. Figures 32 and 33 illustrates of various loan 

term and life cycle period effects on payback, NPV and LCOE for both the SHWS and 

SPVS. 
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Figure 32. Life cycle period and loan term impact on economic performance of SHWS 

 

 
Figure 33. Life cycle period and loan term impact on economic performance of the SPVS 
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Not surprising, the results from Figures 32 and 33 both indicate more positive 

NPV and lower LCOE are produced with longer loan and life cycle analysis periods as 

benefits accrue and, in addition, with shorter loan and life cycle time horizons the 

investment has no payback and or very little economic incentive. A critical issue in 

determining life cycle costs is at what life cycle and loan terms are appropriate for the 

project being investigated. These general principles are important to consider in 

evaluating the life cycle costs of renewable energy investments. The production of the 

renewable energy system is all but one of the many parameters that need to be evaluated 

in the determination of the viability of renewable energy projects. 

Summary and Conclusions 

This research investigated the annual renewable production and costs of two 

residential solar-based systems installed in a LEED-Platinum home in humid, sub-

tropical Houston, Texas, an IECC Zone 2. Field performance was estimated and 

compared to publicly available simulation, NREL’s System Advisory Model, to estimate 

renewable energy life cycle energy production of the residence. Field results agreed with 

TMY3-based simulation estimates within the simulation and measurement system 

uncertainties. SAMs P90/P50 utility along with TMY3 and NSRDB weather data from 

the region provided estimates on the variation in radiation impacts on annual production. 

P50/P90 probabilities were within 3% and 6% of TMY3 predictions for both the SPVS 

and the SHWS respectively. Design optimization checks revealed the SPVS was 

installed in an optimized design, however the SHWS azimuth could have been better 

optimized at an azimuth of 180°. 
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SAM was furthered utilized to estimate life cycle production and life cycle costs 

and perform sensitivity analysis on critical parameters and economic indicators such as 

payback, NPV and LCOE. These economic indicators were explored for both systems 

and payback, NPV, and LCOE were considerably more favorable for the SHWS 

compared to SPVS due to high costs relative to output at the life cycle and loan periods 

evaluated. SHWS achieved a 21.8-year payback, NPV of $796 and an LCOE at 8.1 

¢/kWh, compared to 29.2-year payback, NPV -$1296 and an LCOE at 12 .29 ¢/kWh for 

SPVS. SPVS life cycle costs are very dependent on the PV module costs and were found 

to achieve a LCOE close to regional electricity prices at a module cost of 0.75 ¢/Wdc 

(67% reduction in module installed costs). SHWS life cycle costs are also dependent on 

capital costs; in particular, the solar hot water collector and pre-heat appliance are almost 

50% o of the initial cost.  

Additionally, loan, inflation, and discount rates were modeled with a 25% swing 

from the assumed case to determine the relative impact and the loan rate had the largest 

impact on the LCOE for both SPVS and SHWS at about 15-17% increase or decrease in 

the real LCOE. Additionally, life cycle period and loan term combinations were 

performed to illustrate the impact that various combinations of evaluation period and 

loan term may have on the economic indicators. Finally, the TMY3-based simulations of 

the SPVS achieved an annual and 30-yr energy production of 4,226 and 117,994 kWh, 

respectively, while the SHWS annual and 30-year energy production were 2,394 and 

66,820 kWh with auxiliary gas and 1,846 and 51,555 kWh with auxiliary electrical.  
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Texas is a leader in residential energy consumption and carbon dioxide emissions 

in the United States, with the average annual electricity cost per household is $1,801 (US 

EIA 2009) among the highest in the nation and according to EIA's Residential Energy 

Consumption Survey, 656 million metric tons of carbon dioxide were emitted in 2011, 

12% of the total for nation and twice that of California. Increases in residential 

renewable energy production in Texas has the potential to offset energy consumption 

and subsequent carbon dioxide production and further reduction in renewable energy 

system’s capital and other initial costs, along with appropriate financial terms may help 

with market adoption and viability. However, as illustrated in this article, low regional 

fuel costs increase the constraints on the aforementioned initial costs. Finally, publicly 

available software tools such as NREL’s System Advisory Model (SAM) facilitates a 

robust energy, economic and life cycle analytical platform to assist in renewable energy 

project design, analysis and decision support. 
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CHAPTER IV 

RAINWATER HARVESTING SYSTEMS 

Synopsis 

Stressed water resources will lead to water price escalations and water rationing, making 

alternate water sources such as rainwater more attractive as options to handle increasing 

water demands and drought conditions. For example, rainfall in Houston, Texas, a 

humid, sub-tropical region, ranges from three to six inches per month, which affords an 

ample opportunity to catch and store water. Rainwater system performance and life cycle 

impacts are critical elements when reviewing the sustainability of a dwelling. However, 

the utility of rainwater collection systems is a balance of system design, rainfall inputs, 

water demand, and associated economic costs. The purpose of this research was to 

investigate the performance and economics of a rainwater collection system and 

underground cistern in an urban residential setting, focusing on rainfall, rainwater 

collection and life cycle costs. The project was part of a larger life cycle analysis of a 

durable, energy and water-efficient residential home. Field measurements and weather 

data were used in conjunction with analysis tools to analyze the performance of the 

installed rainwater collection system with a roof catchment area of 250 m3 and a usable 

capacity of 22.6 m3. Daily monthly water demand averages of 1.39 m3/day for a four-

person household were utilized in the simulation with a 30% variation imposed. Finally, 

a spreadsheet-based software tool was used to estimate hydraulic performance and 

economics over a 50-year life cycle. In this research, increasing the size of the rainwater 

cistern from 10 m3 to 22.6 m3 of usable capacity increased the payback in net-present 
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value terms from 21 to 43 years. Sensitivity and Monte Carlo analysis were also 

performed to analyze the life cycle scenarios with below average, average and above 

estimates of input parameters to assess relative contributions and to assess a probabilistic 

interpretation of the life cycle results. Using 30 year rainfall normal and Monte Carlo 

stochastic methods, there was a 45% - 48% probability of 73% of the annual demand 

being harvested and the annual water harvested in this interpretation was 370.3 m3 

(97,744 gallons). 

Introduction 

 As competing demands and allocations of water rise, the management of water is 

of ever growing concern. Water scarcity in Texas is a concern in some locales (Griffin 

and Characklis 2011), with the state experiencing its worst drought in recorded history in 

2011 (Texas Comptroller 2012). Onsite rainwater systems may provide clean water and 

water storage while offsetting costs and demand. Also, onsite rainwater system may 

offset centralized storm water systems. Managing water is part of sustainable building 

practice, and alternate water sources such as rainwater harvesting are becoming more 

attractive options to handle ever-increasing demands and costs of water supplies. 

According to Li et al. (2010), the motivating factors for these alternate water systems 

are: 1) consumer cost of water and wastewater rising, 2) climate change altering rainfall, 

3) population growth and standard of living increases, 4) high quality water used for low 

quality purposes, and 5) runoff and wastewater handling reductions. Texas has a 

growing need for water and water conservation. As such, rainwater-harvesting 

technology has increased in Texas with an estimated 15,000 rainwater harvesting 
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systems deployed (Fewkes 2012), and in 2011, the Texas Legislature eliminated legal 

provisions that stipulated rainwater-harvesting systems being used only for non-potable 

purposes (Texas Comptroller 2012) which made rainwater available for human 

consumption and contact.  

 This research was part of a larger body of work to investigate and evaluate a 

United States Green Building Council’s (USGBC) Leadership for Energy and 

Environmental Design (LEED) for Homes “Platinum” designated residential dwelling in 

Houston, Texas. In addition, the home achieved a “fortified” rating from the Institute for 

Building and Home Safety, and a “Zero-energy ready” home certification from the 

United States Department of Energy. This dwelling incorporated a durable and robust 

building envelope, as well as, efficient environmental controls and two renewable energy 

systems. This research investigated the hydraulic and economic performance of a 

rainwater harvesting system over 50 years by analyzing rainfall data, water demand, and 

life cycle cost performance projections. 

 A critical aspect in achieving a LEED-H Platinum rating is the management of 

water outside and inside the dwelling. Water reuse, rainwater collection, water-efficient 

plumbing systems, proper landscaping, and surface water management all contributed to 

the system. In addition to the rainwater collection system documented here, the dwelling 

used water-efficient fixtures, fittings and appliances throughout. An efficient irrigation 

system was also installed. Landscape and surface water management controls were also 

considered in the design. The turf was drought tolerant and was approximately 60% of 

the designed landscape. Finally, 75% of the installed plants were drought tolerant. The 
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USGBC issues LEED credits for buildings with water efficient and rainwater harvesting 

components (USGBC 2015). 

Urban Water Management and Rainwater Systems 

Rainwater harvesting (RWH) systems are an ancient technology that has been 

deployed globally for millennia (Antoniou et al. 2014), and they can be found around the 

world even to this day. Ancient cisterns were common in the Hellenic and Roman 

civilizations from the Minonan and Mycenaean period (1900 – 1100 BC) to the modern 

day (Antoniou et al. 2014, Crasta et al. 1982, Phoca and Valanis 1999). However, the 

use of rainwater systems has declined as water distribution technology has advanced 

(2012). Pressures of population growth and climate change have instilled renewed 

interest in RHW technology (Abdulla  and Al-Shareef 2009, Villarreal and Dixon 2005).  

From 1990 to 2010, rain-based drinking water sustained a twofold increase worldwide 

(UNICEF and WHO 2012) and developed countries have seen a rise in RWH 

development in the past several decades. 

Centralized water and wastewater systems have escalating environmental and 

economic costs that have refocused attention on decentralized approaches (rainwater 

collection, water reuse, etc.) and as water resources become more stressed, higher water 

pricing and regulations are being implemented, making alternate water sources, such as 

rainwater harvesting, more attractive options to handle ever-increasing demands and 

costs. Rainwater harvesting is an approach that can supply high quality water onsite; 

however, in temporary drought conditions, rainwater maybe less than optimal. 

Additionally, at any given time, onsite water demand may overwhelm collected rainfall, 
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thus yielding a less-optimum condition for a potentially costly solution. Therefore, 

competing costs and benefits of rainwater systems in an urban deployment require an 

analysis recognizing the uncertainty of rain and costs over a life cycle. 

Life Cycle Costs and Benefits 

A life cycle costing approach must be utilized to design and evaluate the utility 

of a rainwater system, and several authors have reported using this approach for specific 

situations and applications (Basupi 2013, Ghimire et al. 2014, Farreny et al. 2011, 

Roebuck and Ashley 2006, Ward et al. 2008). In particular, Roebuck and Ashley (2006) 

demonstrated verified life cycle software tools that will be used in the study reported 

herein. Using a macro-enabled spreadsheet, hydraulic simulation and life cycle analysis 

production and costs were performed on an urban rainwater system. Furthermore, this 

study analyzes the existing ‘As-Built’ system costs and benefits in the life cycle context 

for 50 years and will offer alternative redesigns for similar conditions in more 

competitive constraints.  

System Characteristics 

The system evaluated in the study utilized an underground cistern storage system 

constructed of a cement-rebar structure (underground tank) installed in the front lawn of 

the residence.  The images in Figure 34 illustrate the pre and post landscape 

establishment at the residence as well as indicating the location of the cistern.  



 

  136 

  
Figure 34. Pre-landscape with water collection cistern installed (left image) and landscape 

fully mature (right image) 
 

 The rainwater system is able to harvest water from approximately 75% of the roof 

(333 m3), passing water through covered gutters to a macro-filtering system and then 

into an underground cistern with a usable capacity of 22.6 m3 (5,970 gallons). Potable 

water can be accessed from the cistern or domestic water supply with all of the water 

being passed through an advanced water filtration system that utilizes reverse osmosis 

and ultraviolet radiation. Figure 35 is a schematic of the rainwater and domestic water 

components. The system is composed of collection, conveyance, storage and delivery 

components. Roof collection is delivered to an extensive system of covered and slotted 

gutters that minimize debris infiltration. A collection cistern was installed in the front 

lawn two feet below grade. The system is setup to operate with or without the cistern 

depending on the utility required. 
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Rainwater system hydraulic diagram 

 

Rainwater system debris controls 

 

Rainwater system downspout 

 

Figure 35. Rainwater system characteristics 
 

All water utilized in the house is pre-filtered and further filtered by a micro-filter 

with activated carbon and ultraviolet light that filters water through a 0.2 micron high-

capacity depth filter that traps particles, cysts and bacteria. Activated carbon removes 

chlorine, organics, and other chemicals that can affect taste, feel and the smell of the 

water. Finally, water is disinfected by an ultraviolet system that renders biological 

contaminants inactive. 
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Landscape Design 

The landscape design incorporated a balanced integration of native plant species 

and material with colors and textures that maximize visual interest while maintaining 

sustainable conditions for plants. Zoysia grass with curving beds created the front yard 

landscape. Rock and gravel within the backyard landscape helped to create a natural 

balanced look while adding value visual appeal and drainage advantages. All vegetative 

beds incorporate a drip irrigation system that maximizes water efficient delivery. 

Irrigation occurs at 4-7 AM, three times a week and was established by the landscape 

company, resulting in an annual consumption of 32,200 gallons (121.9 m3/yr) or 0.34 

m3/d. 

Data and Methods  

Using both regional and site specific hydraulic data in conjunction with 

economic data, a life cycle analysis was run to analyze the performance of the system in 

varying conditions over a lifetime. The tool is a spreadsheet-based system based on an 

Excel/VBA-based mass balance continuous simulation program using a yield-after-spill 

(YAS) algorithm with a hydraulic and whole life costing approach (Roebuck and 

Ashley, 2006, Ward 2008, 2010). The YAS model is as described by Jenkins et al. 

(1978) and it is a widely accepted and used methodology (Roebuck and Ashley 2006) 

that is based on a water mass balance around the storage volume, or 

 

#. $$= $#.:9 +$8.$–$<.  , Subject to 0 ≤ #. ≤ ? 
 
where: 
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#.= Water in storage at time interval t 

8. = Inflow during time interval, t 

<. = Demand during time interval, t 

? = Storage capacity. 

 
The yield is described by Fewkes (1999) , 

@.$ = $ABC
<.
#.:9       #.$ = $ABC

#.:9 $+$8.$ − @.
? −$@.  

 
where: 

@.$ = Yield from storage during time interval, t. 

 

 The tool has been utilized in a number of rainwater system research contexts 

(Basupi 2013, Pinto 2010, Roebuck and Ashley 2006, Ward et al. 2008). Additionally, 

the model has been verified against previous models (Roebuck and Ashley 2006) by 

comparing the hydraulic outputs of the model against a methodology described by 

Fewkes and Warm (2001) and the model results were generally within 10%, with an 

average difference of 5.5%.  

 The spreadsheet-based macro optimizes a predicted tank size based on inputs 

such as rainfall and demand level in order to provide a balance between the estimated 

percentage of demand met and potential financial savings in relation to capital cost 

(Ward, 2012). Additionally, the system includes the facility to calculate the whole life 

cost, payback period and cost-benefit of a RWH system (with mains top-up) in 

comparison with an equivalent mains water supply (Ward 2012).  Multiple hydraulic, 
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energetic and financial input parameters can be modeled in the program and the system 

can run lifecycle simulation for up to 100 years. The simulation offers sensitivity 

analysis to determine the impact of certain parameters when subjected to above average 

and below average conditions to input parameters. The simulations are constrained by 

input parameters based on-site water demand data, historical rainfall analysis and the 

other site specific information and financial inputs.  

System Input Data Detail 

A variety of inputs, both hydraulic and financial, are required to model the 

assessment: 1) rainfall data, 2) roof catchment area, 3) runoff coefficient, 4) first flush 

volume, (5) filter coefficient, 6) storage tank volume, 7) drain-down interval, 8) power 

rating of pump, 9) pumping capacity of pump and 10) water demand. Financial data are 

also required to do an assessment and Table 19 and 20 list a complete list of the required 

hydraulic and financial parameters. 

 

Table 19. Hydraulic parameters used in the life cycle simulation 
Hydraulic 
parameters 

Model Input Unit Data source (s) 

Rainfall 3.2 average mm/day NOAA 30 YR n ormals 
Water demand 1.39 average m3/day Avg. Texas per four-person 

household (TWDB,) and 
monitored data  

Catchment area 333 m2 Building roof plan 
Runoff and filter 
coefficients 

0.85, 0.92 Dimensionless Heuristic 

First flush volume 0.0 m3 Case volume and optimized 
volume 

Drain down interval 0.0 m3 None present. 
Pump power rating 0.7 kW Pump specification sheet 
Pumping capacity  56.77 L/min Pump specification and 

measured water flow data 
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The necessary financial data are: 1) total capital cost, 2) maintenance and operational 

costs, 3) discount rate, 4) electricity costs, and utility water cost and are presented in 

Table 20. 

 

Table 20. Financial parameters used in the life cycle simulation 
Financial parameters Model input Unit Data source 
Total capital cost Two scenarios $USD Estimated on components and 

labor polling 
Maintenance operation 
costs 

Scheduled 
maintenance, 
repairs and 
replacement of 
consumables. 

$USD Estimated on components and 
labor polling 

Discount rate 4.4% average % Discount rates from TWDB 
and NRCS 

Electricity costs 0.1$/kWhr $USD/kWh Regional electricity price 
Mains water costs $3.25/m3 $USD/m3 Regional composite water 

prices (water and wastewater 
and base price 

 

Rainfall and Water Demand Detail 

Local airport historical data from NOAA’s NCDC (Arguez et al. 2012, NOAA 

2014) were used to estimate incident rainfall. The supply-pump water flow was 

monitored and compared to average regional per-capita (0.325 m3/day-person) water 

demand profiles from the Texas Water Development Board (TWDB 2014). TWDB 

regional averages were utilized and water demand variations in the simulation were set 

at ±30% of the demand average. 
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Catchment Surface and Filter Details  

The catchment area of 333 m2 was estimated from the roof area of the building 

that had gutter and conveyance systems. The effective runoff is defined as a fraction of 

water retained by the system that strikes the surface. Pitched roof tiles are typically 

around 0.75-0.9 (Roebuck and Ashley 2006), and they are generally more efficient at 

capturing intercepted rainfall than flat roofs, thus minimizing loss through pooling or 

absorption. The effective runoff captured in the storage tank was set to 0.85, with a 

variation of ± 0.05. 

Rainwater Storage Detail 

The underground cistern has a usable storage volume of 22.6 m3 (5,970 gallons) 

for Scenario A, while Scenario B is modeled with 10 m3 (2,600 gallons). In the 

simulation, water mains are used to top-up the storage tank to account for lack of rainfall 

and no maintenance flush losses are currently specified in the volume estimates. 

Pump and UV Filtration Power Detail 

The water pump has a nominal power rating of 1.1 kW with a variable speed 

drive (VSD) (0.72 KW) and a pumping capacity of 56.77 liters/min. The UV water 

filtration system has a power rating of 39.7 W and was considered operable 24 hours a 

day. 

Financial Data Detail 

 The Nation Resource and Conservation Service discount rate statistics are a 

maximum of 5.625%, minimum of 3.5% and an average of 4.568% (NRCS 2014) for 

2013 and 2014. Additionally, the Texas Water Development Board currently uses 4.4% 
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(TWDB 2014) for water construction projects.  This value was used in the simulation for 

the average discount rate with a high of 5.0% and a low of 3.4%. Electricity costs were 

established at an average of 0.10 $/kWh, while maximum and minimum were set at 0.11 

and 0.09$/kWh, respectively. Water pricing from Houston water bills (water, 

wastewater, and base charges averaged in) were set at an average of 3.25 $/m3, with a 

maximum of 4 $/m3 and a minimum of 3.1 $/m3. Roebuck and Ashley (2006) 

recommend no more than 5-10% below expected values for minimum costs). Maximum 

water price was set at approximately 23% above the average. 

Construction and Maintenance Costs 

Tables 21 and 22 list the construction and maintenance costs that are used in the 

simulation and construction costs were estimated based on retail prices of equipment 

from various Internet resources. Gutter system was estimated at $48/meter and the 

cistern build-out costs were based on regional estimates on a volume basis and $264/m3 

was used as the price of the cistern cost. The costs were summed to a total cost of 

$19,000 and expected high and low estimates were based on the expected total cost ± 

25%. Plumbing costs were estimated based on conversations with local plumbers and 

residential construction companies. 
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Table 21. Rainwater system construction costs 

Rainwater construction costs 
Description Cost 
Advanced filter     $1,400 
Pump and controls   

 
$1,600 

Gutter, downspouts, and debris filter (67.6 meter of roof line)   $3,300 
Cistern ($264/m3 (1$/gal) for cistern) 

 
  $7,700 

Plumbing (including excavation) 
 

$5,000 
Expected Total Cost     $19,000 
Expected High Cost 

  
$23,750 

Expected Low Cost     $14,250 
 

Maintenance activity costs shown in Table 22 were estimated based on retail 

prices of equipment from various Internet resources and local labor rates from 2014 and 

maintenance frequency estimates were based on product replacement lifecycles. 

 

Table 22. Maintenance activities and associated costs 
Maintenance activities and associated costs  

Item  Frequency Cost 
Routine scheduled maintenance operations  Every  2 Years $80.00  
Repair/replace pump  Every  15 Years $400.00  
Replace UV lamp  Every  2 Years $55.00  
Clean filters/replace filter media  Every  1 Years $30.00  
Water quality treatment items Every  1 Years $20.00  

 

Hydraulic Analysis 

Rainfall and Sensitivity 

 National Oceanographic and Atmospheric Administration’s (NOAA 2014) 30-

year climate data was used for typical monthly rainfall with Hobby Airport in Houston, 

TX being the closet reliable weather station available. Climate normals are three-decade 
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averages of climatological variables such as temperature and precipitation, which are 

produced once every 10 years by NOAA’s National Climatic Data Center (Arguez et al. 

2012, NOAA 2014). Rainfall was characterized with an average and �30% above and 

below average to characterize a range of values. Figure 36 depicts the 30-year normals at 

Hobby Airport illustrating average rainfall, the average temperature with average low 

and high temperatures in the error bars. 

 

 
Figure 36. NOAA average, high and low average temperature and precipitation 30-YR 

normals at Hobby Airport, Houston, Texas for 1981-2010 
 

Airport illustrating average rainfall, the average temperature with average low and high 

temperatures in the error bars. 
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Water Demand 

 Building water demand was based on regional per capita averages and local data 

recorded onsite with a water flow meter and logger provided data verification. This local 

data was compared to Texas regional per capita water use in order to determine the 

simulation input. Over 10-month period from October 2011 to July of 2012, the 

residence used an average of 1.29 m3/day for four persons. The average Texas regional 

use (TWDB 2014) for the years 2008-2012 is 0.347 m3/day per person or 1.39 m3/day 

(6% COV for the 5 years) for a four-person household, which was assumed to be a 

reasonable approximation of the average conditions over a year. Monthly variation in 

water demand exists and was approximated by a range of values utilizing a �30% 

swing above and below the average. 

Demand Analysis 

 Annual water demand was based on average-daily water demand and summed 

over the year producing an average of 508 m3/yr of water demand. Table 23 illustrates 

hydraulic simulation results with 30-year rain normals, water demand, water harvested, 

and the annual shortfall estimated at 146 m3/yr (38,569 gal/yr). 
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Table 23. Residential monthly and annual hydraulic results of water demand and 
rainwater harvesting analysis 

 Rainfall Measured demand  
(2011-2012) 

Demand  
simulated Harvested Water Shortfall 

Month (mm) (m³) (m³) Supplied (m³) (m³) 
Jan 98.3 16.66 43.09 25.60 17.49 
Feb 81.53 15.35 38.92 21.23 17.69 
Mar 81.28 NA 43.09 21.17 21.92 
Apr 82.55 45.98 41.7 21.50 20.20 
May 120.65 32.69 43.09 31.42 11.67 
Jun 180.34 45.5 41.7 41.70 0.00 
Jul 118.36 47.7 43.09 36.08 7.01 

Aug 128.52 NA 43.09 33.47 9.62 
Sep 132.33 NA 41.7 34.46 7.24 
Oct 152.15 29.03 43.09 39.62 3.47 
Nov 109.73 22.06 41.7 28.57 13.13 
Dec 102.36 22.16 43.09 26.66 16.43 

Annual total 1388.1 NA 507.35 361.47 145.88 
 

Tank-optimization 

The tank size optimization was performed in order to determine how the initial 

tank design performed based on an average payback period and an average savings, 

assuming the tank size can provide at least 70% of the water demand. Seventy percent of 

demand can be met with a tank volume of 2-5 m3; however, rainfall is not consistent and 

this optimization provides little storage buffer. To provide a small buffer, one week of 

water demand was used to buffer against the probabilistic nature of rain and to provide 

extra water storage. For these reasons, a 10 m3 tank size was considered as an alternate 

design. The original design provided a much larger buffering capacity of almost 2.5 

weeks of water demand storage. 
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Life Cycle Performance  

 Two primary scenarios were modeled, consisting of Scenario A, the ‘As-built’ 

22.6 m3 system, and Scenario B, the more ‘tank and storage optimized’, lower-cost 

condition of 10 m3. Rainfall and water demand were modeled with 30-year normals and 

Texas regional average daily water demand, respectively and with a �30% span to 

model a range of possibilities. Table 24 illustrates Scenarios A and B as modeled, while 

Table 25 presents the 50-year life cycle results in a tabulated form.  

 

Table 24. Life cycle simulation Scenarios A and B 
Scenario Rainfall Average water 

demand per day 
(m3d) 

Capital cost 
(USD) 

Tank size 
(m3) 

A 30 YR � 30% 1.39 � 30% $20,000 �25% 22.6 
B 30 YR � 30% 1.39 � 30% $14,000 �25% 10 

 

Table 25 illustrates the simulation estimated approximately 71% of the demand is 

met for either scenario with a payback of 43 years for Scenario A and 21 years for 

Scenario B. Total and annual savings for Scenario B are over seven times larger than 

Scenario A. 
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Table 25. 50-year life cycle performance of Scenarios A and B 
Scenario Long-Term Results Average Per-Year Results 

  
Demand 

Met 
Pay-Back 

Period 
Total 

Savings 
RWH 
Cost 

Mains 
Only Cost 

Yearly 
Savings 

  (%) (yrs) ($/50yrs) ($/yr) ($/yr) ($/yr) 
A 71 43 932.24 675.64 694.28 18.6 
B 71 21 6,932.24 555.64 694.28 138.6 

 

 Figure 37 illustrates average yearly cost breakdown and comparison of 

simulations Scenario A and B, and the mains-only (no rainwater component). All yearly 

maintenance costs are the same except capital costs. Decommissioning costs are set to 

zero. 

 

 
Figure 37. Average annual cost comparison of Scenarios A and B and mains only (no 

rainwater) 
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One hundred dollars a year in annual rainwater harvesting cost difference 

compound significantly over the life cycle. The average yearly costs comparison of the 

simulation scenarios and the main-only illustrate the implications of installing a larger 

system can have on yearly cost. 

 

 
Figure 38. Net present value (NPV) over a 50-year life cycle of Scenarios A and B and 

mains only (no rainwater) 
 

Figure 38 illustrates the estimated net-present value and payback (cross-over 

points) for Scenarios A and B compared to the mains-only system. Investing in a larger 

storage volume can have dramatic effects on the payback period for a rainwater system 

compared to smaller alternative. For example, the payback period is double the amount 

with a cistern volume 2.26 times larger. 
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Sensitivity Analysis 

 Figure 39 and Table 26 illustrate graphically and numerically the impact that the 

model parameter sensitivities have on the system savings for the 10 m3 system. Low and 

high range analysis illustrate that certain parameters such as rainfall, mains water cost, 

the capital cost, discount rate, and the runoff and filter coefficients may affect the 

outcome.  

 

 
Figure 39. Sensitivity analysis of multiple input parameters on Scenario B (10 m3) system 

payback 
 

Rainfall and capital costs may affect the total change in savings by over 100% 

with the affects at 194 and 101%, respectively (Fig. 39 and Table 26). Mains water cost 

also has a large impact on the savings with a 98.8% swing in savings (Fig 8 and Table 
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7). The discount rate (72%), and the runoff (42%) and filter (38%) coefficients may also 

affect the outcome and other parameters such as the water demand (26.9%) and the 

electricity costs (2.8%) have a smaller impact on the results. Parameters that have impact 

on the payback can be categorized as controllable and non-controllable. Certain 

parameters such as rainfall, discount rate, and water pricing are not controllable.  

 

Table 26. Input parameters impact on Scenario B system payback 

 

 

Other parameters such as the filter and runoff coefficients can be controlled 

through building roof design, filter design and proper maintenance. Capital costs are 

controllable to an extent however; regional wages and cost of materials vary. 

Additionally, the cost and complexity of the rainwater collection system can alter costs 

and the subsequent payback.  

 

Variable Graph ID Above Avg/High Below Avg/Low Total % Change
Rainfall profile 1 87.60% -107.00% 194.70%

Catchment runoff coefficient 2 21.00% -21.00% 42.00%
Rainwater filter coefficient 3 11.60% -27.10% 38.80%

Additional inputs 4 0.00% 0.00% 0.00%
Discount rate 5 -26.80% 45.80% 72.50%
Electricity cost 6 -1.40% 1.40% 2.80%

Mains water cost 7 82.30% -16.50% 98.80%
Disposal cost 8 0.00% 0.00% 0.00%
Water demand 9 -0.40% -27.30% 26.90%

Capital cost 10 -50.50% 50.50% 101.00%
Decommissioning cost 11 0.00% 0.00% 0.00%

RHW System Savings (% changes)
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Uncertainty Analysis 

In order to characterize the lifetime performance of the designs in this study, a 

consideration of uncertainty impacts on the simulated inputs is required. In this study, a 

probabilistic perspective of the system and parameters is achieved through a well-known 

analytical approach called a Monte Carlo simulation. This is performed through the 

introduction of randomness to the model inputs and the Monte Carlo simulation is a 

technique that uses random number generation and probability distributions to generate a 

distribution of input values for the input parameters; simulations are then run multiple 

times with individual input values from input distributions. The input distributions are 

often triangular or binomial, and in this study they are triangular and represent above-

average, average and below-average values. The technique is useful in this case because 

of the possibility of many input parameter varying over the system lifetime and it offers 

a more realistic portrayal of likely (and not-so-likely occurrences).  

The simulation was run seven hundred and fifty times to generate the results in 

Table 27; maximum (100%), average (73%) and minimum (43% and 45%) percentage of 

demand met for Scenario A and B are almost identical, due to adequate tank sizing. The 

probability of 73% of demand met for Scenario A and B was 45.8% and 48%, 

respectively and the probability of 100% of demand met was low for both scenarios, 

2.4% and 0.2%, respectively (Table 27). The simulation results indicated that the 

payback is higher for the larger system (average 32.4 years compared to 25 years) and is 

due to larger capital costs. The probability of payback was considerable higher for the 

the 10 m3 with (38.6% compared to 73.4%) (Table 27).  
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Table 27. Monte-Carlo simulation results of Scenarios A and B 

 

 

Summary and Conclusions 

An installed rainwater collection system with a roof catchment area of 250 m3 

and a usable capacity of 22.6 m3 was analyzed to determine the life cycle performance 

and economics in a residential urban setting. Field monthly demand measurements and 

regional weather patterns were utilized with modeling tools to determine hydraulic and 

life-cycle performance and life cycle comparisons with design optimizations were 

presented. Additionally, parameter sensitivity and stochastic analyses were also explored 

to determine the model’s sensitivity to input below-average, average and above-average 

inputs. 

Combined yield after spill and life cycle costing models provide valuable design 

and research tools for the study of rainwater harvesting systems in residential contexts. 

A (22.6 m3) B (10 m3)

100% 100%
73% 73%
43% 45%
15.1 14.3

45.8% 48.0%
2.4% 0.2%

14 10
32 25

No payback No payback
9 9

38.60% 73.4%

Mean (average) pay-back 
Longest pay-back 

Standard deviation 
Probability of pay-back 

Standard deviation 
Probability of 75% met 

Probability of 100% met 

Pay-Back Period (yrs)
Shortest pay-back 

SCENARIO
% of Demand Met

Maximum % met 
Mean (average) % met  

Minimum % met 
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An urban, residential, full-featured rainwater system was analyzed using regional water 

demand profiles and rainfall from NOAA 30-YR normal and other financial and cost 

assumptions.  Average annual costs and NPV can be estimated to compare rainwater 

design against mains-only scenarios. On an annual, average basis, predictions with 

regional water demand and NOAA 30-year rainfall estimated 146 m3/yr (38,569 gal/yr) 

to be collected for the installed system (22.6 m2) and tank optimization indicated that a 

smaller system of 10 m2 would suffice to provide 71% of demand. 

Utilizing a life cycle analysis approach, oversizing rainwater collection systems 

may dramatically increase annualized costs and therefore increase payback time. In this 

research, more than doubling the size of the cistern from 10 m3 to 22.6 m3 of usable 

capacity increased payback in NPV terms from 21 to 43 years. Payback is highly 

dependent on the distribution of rainfall, mains water costs, discount rate, and capital 

costs.  

A sensitivity analysis was run to evaluate the impact of the various input 

parameters. Rainfall may affect the total change in savings by largest amount (194% 

total swing) and capital and mains water cost also had a large impact on the savings 

swing (101 and 98% respectively). The discount rate (72%), runoff (42%) and filter 

(38%) coefficients may also affect the outcome and other parameters such as the water 

demand (26.9%) and the electricity costs (2.8%) have a much smaller impact on the 

results. Cistern capital costs can be moderately controlled through judicious optimization 

of tank volume. Capital costs are controllable to an extent; however, regional wages and 

cost of materials vary. Additionally, cost and complexity of the rainwater conveyance 
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and water treatment system can also impact costs and subsequent payback.  Finally, 

using 30 YR rainfall patterns and Monte Carlo stochastic methods, there is a 45% or 

48% probability (Scenario A, B respectively) of 73% of the annual demand being met 

and the annual water harvested in this interpretation is 370 m3 (97,743 gallons). 

The management of water of growing concern as resource demand increases in 

competitively constrained environments. The reduction of water consumption from 

utility mains may not only decrease demand of municipal water, but will decrease 

municipal electricity consumption associated with the reduction in water demand and, in 

large numbers, may mitigate costly infrastructure expansion through demand reduction. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Overview 

 The construction and occupation of buildings are substantial contributors to 

global emissions with almost a quarter of total CO2 emissions being attributable to 

energy use in buildings (Metz et al. 2007). In addition, buildings play a dominant role in 

the consumption of energy as can be seen all over the world. The building sector has a 

significant influence on the total natural resource consumption and on the emissions 

released (Cabeza et al. 2014).  

 Although considerable advancements have been made to develop energy efficient 

residential building designs, there is ample potential for continued improvements. In this 

research, improvements identified and evaluated to control energy loads by utilizing a 

building envelope that has lower infiltration and better thermal resistance. Specifically, a 

life cycle study was performed on a LEED-Platinum rated home in Houston, Texas that 

incorporated an advanced and durable building envelope system. Comparisons were 

made to a more conventional, energy-efficient IECC 2012 code-based home, these 

operational energy comparisons of the individual homes were performed in Energy Plus, 

a robust building simulation software widely used and sponsored by US DOE. The 

HVAC portion of the model was validated with field-based data and then the ‘As-Built’ 

and ‘Reference’ models were compared. Space and water heating were modeled with 

both electric and gas heating systems. Additional portions of the model were based on 

Building America and PNNL reference code and assumption. Renewable energy and 
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rainwater systems were modeled for estimates of annual production, along with 

economic considerations and constraints. Both solar photovoltaic (electric) and solar hot 

water systems were modeled with NREL’s System Advisory Model and annual 

predictions differences compared to field measurements and were within model 

uncertainties. A rainwater collection system was modeled with a yield-after-spill 

spreadsheet model, and water demand was based on average water consumed on site 

while rainfall inputs were derived from NOAA 30-year normal rainfall patterns. The 

annual outputs of these systems were compiled into a life cycle estimating tool for the 

purposes of estimating the life cycle environmental impacts of the buildings and relative 

impact by the associated subsystems.  

Operational Energy Summary 

The ‘As-Built’ model achieved a 31.2% and 28.9% reduction in total building 

energy when compared to the ‘Reference’ model for both gas and electrical 

supplemental heating, respectively. Ten percent of the total was found to be associated 

with the building envelope effect (infiltration held constant) alone. Comparing wood-

framed IECC reference home to an ICF home, Marceau et al. (2006) reported a 7.7% 

reduction in total energy in Phoenix, AZ. Khahhat et al. (2009) also reported a reduction 

in total energy consumption of 4.7% for a wood-framed home compared to an ICF 

home. Total HVAC energy, as the average HVAC energy total, was 48.4% of the annual 

building energy for the ‘As-Built’ model and 60.2% of the annual energy for the 

‘Reference’ model. The ‘As-Built’ models had 42% and 45.3% reductions, compared to 

the ‘Reference’ model for gas and electrical supplemental heating, respectively. The 
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lighting represented an average (electrical and gas models averaged) 5.4% and 3.8% 

while the appliances and plug-loads were an average of 35.1% and 24.6% of the annual 

energy for the ‘As-Built’ and ‘Reference’ model. Domestic hot water energy 

consumption was an average 11.2% and 7.8% of the annual energy for the ‘As-Built’ 

and ‘Reference’ model. Finally, the renewable energy systems contributed an annual 

average reduction of 15.5% and 12.5% for the ‘As-Built’ and ‘Reference’ operational 

energy, respectively. 

Building EUIs and NEUIs are useful in comparing buildings to other buildings in 

a standardized way. In addition, they are useful to set performance goals and are 

currently being used by governmental agencies such as the US Energy Information 

Administration and building industry associations, such as ASHRAE (ASHRAE 2010 

and US EIA 2015).  In this study, the ‘Reference’ model achieved a EUI below the US 

EIA average and the ‘As-Built’ model is essentially at the 50% reduction target of EUI 

19.4. Additionally, the EUI for the gas and electrical heating models achieved similar 

EUI and NEUI, with gas having a bit higher number due to extra energy usage resulting 

from process efficiency differences. The EUI for both the ‘As-Built’ model and the 

‘Reference’ model were both strong achievers when compared with southern US 

regional averages. With renewable energy systems, the results were even stronger; 

however, the lowest NEUI attained, at 16.1, did not meet the 60% reduction target of the 

Architecture 2030 or the high achieving, Passivhaus standard. Finally, the annual energy 

use is a dominant portion of the life cycle use phase, and, as such, the EUI/NEUI, with 

the buildings associated square footage, yields a predictor of a large portion of the total 
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life cycle energy impact. As suggested previously, the literature reports 80-90% of the 

total life cycle energy of the building is from the use (and operational) phase of the 

building (Khakkat et al. 2009, Ortiz el al. 2009, Ramesh et al. 2010). 

Renewable Energy Systems Summary 

Renewable energy technologies can provide strategies to offset operational 

energy and are one of the key components in zero-energy-buildings (Li, D. et al. 2013, 

Wang et al. 2009). This research investigated the annual renewable energy production 

and costs of two residential solar-based systems installed in humid, sub-tropical 

environment (IECC Zone 2). Field performance was estimated and compared to a 

publicly available simulation tool, NREL’s System Advisory Model for the purposes of 

estimating renewable energy life cycle energy production of the residence. Field results 

agreed with TMY3-based simulation estimates within the simulation and measurement 

system uncertainties. SAMs P90/P50 probabilistic utility along with TMY3 and NSRDB 

weather data from the region provided estimates on the variation in radiation impacts on 

annual production. P50/P90 probabilities were within 3% and 6% of TMY3 predictions 

for both the SPVS and the SHWS, respectively. Design optimization checks revealed the 

that SPVS was installed in an optimized design; however, the SHWS azimuth could 

have been better optimized at an azimuth of 180°, but, a complicated, multi-angled roof 

proved to challenge the optimal position. 

SAM was further utilized to estimate life cycle production and life cycle costs 

and to perform sensitivity analysis on critical parameters and economic indicators such 

as payback, NPV and LCOE. These economic indicators were explored for both 
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systems, and payback, NPV, and LCOE were considerably more favorable for the 

SHWS compared to SPVS due to high costs relative to output at the life cycle and loan 

periods evaluated. SHWS achieved a 21.8-year payback, a NPV of $796 and an LCOE 

of 8.1 ¢/kWh, compared to a 29.2-year payback, a NPV -$1296 and an LCOE of 12 .29 

¢/kWh for SPVS. The SPVS life cycle costs are dependent on the PV module costs and 

were found to achieve a LCOE close to the regional electricity prices at a module cost of 

0.75 ¢/Wdc, representing a 67% reduction in module installed costs. Feldman et al. 

(2014) report from NREL’s Sun Shot initiative, that the United States is at an all time 

historically low module median price of 67¢/Wdc, further stating that the market trends 

have been decreasing 6-7 percent year from 1998 to 2013. This holds incredible promise 

for not only offsetting operational energy impacts, but also renewable energy market 

penetration. SHWS life cycle costs are also dependent on capital costs and the solar hot 

water collector and pre-heat appliance are almost 50% of the initial cost. 

Additionally, loan, inflation, and discount rates were modeled with a 25% swing 

from the assumed case to in order determine the relative impact while the loan rate had 

the largest impact on the LCOE for both SPVS and SHWS at about 15-17% increase or 

decrease in the real LCOE. Additionally, the life cycle period and loan term 

combinations were performed to illustrate the impact that various combinations of the 

evaluation period and loan term may have on the economic indicators. Finally, the 

TMY3-based simulations of the SPVS achieved an annual and 30-yr energy production 

of 4,226 and 117,994 kWh, respectively, while the SHWS annual and 30-yr energy 
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production were 2,394 and 66,820 kWh with auxiliary gas and 1,846 and 51,555 kWh 

with auxiliary electrical. 

Texas is a leader in residential energy consumption and carbon dioxide emissions 

in the United States, with the average annual electricity cost per household being $1,801 

(US EIA 2009). Increases in residential renewable energy production in Texas have the 

potential to offset energy consumption and subsequent carbon dioxide production. 

Therefore, further reduction in renewable energy system’s capital and other initial costs, 

along with appropriate financial, terms may help with market adoption and viability. 

However, low regional fuel costs increase the constraints on the aforementioned initial 

costs. This research has provided field-validated casework of renewable energy system 

performance in humid, subtropical Texas with publicly available software tools such as 

NREL’s System Advisory Model, which facilitates a multifactor energy, economic and 

life cycle analytical platform to assist in renewable energy project design, analysis and 

decision support. 

Rainwater Harvesting System Summary 

Many studies have demonstrated the effectiveness of rainwater harvesting 

systems to offset main water demand and to alter diurnal water pattern flow in the 

distribution networks (Fewkes and Wam 2001, Lucas et al. 2010), and rainwater 

harvesting systems in Texas have experienced growth in the use of RWH over the past 

ten to fifteen years (Fewkes 2012), with this growth being spurred by available water 

resource and population pressures (Fewkes 2012, TWDB 2014). Additionally, green 

building programs, such as LEED, acknowledge rainwater harvesting collection systems 
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as a contributor to the over-arching environmental quality of a building design, as 

evidence by inclusion in their rating systems. To meet the need for regional rainwater 

system studies and their impact on buildings, an evaluation of the installed rainwater 

collection system was performed. The system had a roof catchment area of 250 m3 and a 

usable storage capacity of 22.6 m3. Monthly water demand measurements and regional 

weather patterns were utilized with modeling tools to determine hydraulic and life-cycle 

performance, and life cycle comparisons with design optimizations were also presented. 

Additionally, parameter sensitivity and stochastic analyses were explored to determine 

the model’s sensitivity to below average, average and above average inputs. 

Utilizing a life cycle analysis approach, oversizing rainwater collection systems 

may dramatically increase annualized costs, thus increasing the payback time. In this 

research, more than doubling the size of the cistern from 10 m3 to 22.6 m3 of usable 

capacity increased the payback in NPV terms from 21 to 43 years. Payback is highly 

dependent on the distribution of rainfall, water costs, discount rate, and capital costs. A 

sensitivity analysis was run to evaluate the impact of the various input parameters. 

Rainfall may affect the total change in savings by the largest amount (194% total swing) 

while capital and water cost also had a large impact on the savings swing (101 and 98% 

respectively). The discount rate (72%), runoff (42%) and filter (38%) coefficients may 

also affect the outcome while other parameters such as the water demand (26.9%) and 

the electricity costs (2.8%), have a much smaller impact on the results. Cistern capital 

costs can be moderately controlled through judicious optimization of tank volume. 

Furthermore, capital costs are controllable to an extent; however, regional wages and 
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cost of materials vary. Additionally, the cost and complexity of the rainwater 

conveyance and water treatment system can also impact costs and subsequent payback. 

Finally, using 30-year rainfall patterns and Monte Carlo stochastic methods, there is a 

45% or 48% probability (Scenario A, B respectively) of 73% of the annual demand 

being satisfied and the annual water harvested in this interpretation is 370 m3 (97,743 

gallons). 

A combination of the yield after spill and the life cycle costing models provide 

valuable design and research tools for the study of rainwater harvesting systems in 

residential contexts. An urban, residential, full-featured rainwater system was analyzed 

by using regional water demand profiles and rainfall from NOAA 30-year normal along 

with other financial and cost assumptions based on regional information. Average annual 

costs and NPV can be estimated to compare rainwater designs against mains-only 

scenarios. On an annual, average basis, predictions with regional water demand and 

NOAA 30-YR rainfall estimated that 146 m3/yr (38,569 gal/yr) can to be collected for 

the installed system (22.6 m3) while tank optimization indicated that a smaller system of 

10 m3 would suffice to provide 71% of demand. 

 The management of water is a growing concern as resource demand increases in 

competitively constrained environments. The reduction of water consumption from 

utility mains may not only decrease the demand of municipal water, but it will also 

decrease municipal electricity consumption associated with the reduction in water 

demand; however, in large numbers, it may mitigate costly infrastructure expansion 

through demand reduction. 
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Life Cycle Analysis Summary  

 Building energy estimations and environmental impacts were performed with the 

Impact Estimator, a publicly available LCA software from the Athena Sustainable 

Materials Institute. The model development and the results are presented herein. The 

annual operational energy was reduced 31.2% and 28.9% for the gas and electrical space 

and water heating models, respectively while the reductions due to the decrease in 

HVAC energy and reductions in HVAC loads were determined to be largely from 

infiltration and building envelope differences in the ‘Reference’ and ‘As-Built’ models. 

For the gas space and water heating models, the embodied energy phase (product 

production, construction, transportation) was 6% and 12% of the total energy while the 

use phase (operational and maintenance) lifetime energy was 93% and 87% for the 

‘Reference’ and ‘As-Built’ models. The electrical space and water heating models 

followed similar trends with slightly more (1-2%) energy being utilized in the 

operational phase. The relative fraction of the embodied and use phase was consistent 

with the literature (Khahhat et al. 2009, Ortiz et a. 2009, Ramesh et al. 2010). Ramesh et 

al. (2010) performed a literature review of 73 cases, across 13 countries, and found a use 

phase fraction of 80-90% of the life cycle energy. 

 The embodied energy in the ‘Reference’ model was almost half (48%) of 

embodied energy in the ‘As-Built’, but the ‘As-Built’ model achieved an overall 

reduction of total primary energy over the building’s life cycle of 23-24% compared to 

the ‘Reference’ model, which was due to the larger amount of concrete and steel 

material found in the ‘As-Built’ design. However, over 50-year life cycle, the ‘As-Built’ 
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design achieved a reduction of 6,314 GJ (1.75 E06 kWh) and 402 metric tons of primary 

energy and GWP, respectively (gas and electric space and water heating models 

averaged and compared to the ‘Reference’ case). These trends are also consistent with 

building envelope life cycle energy literature (Khahhat et al. 2009, Marceau et al. 2006). 

For the gas space and water heating, the embodied energy was 1,608 GJ and 2,376 GJ 

over the 50-year period for the ‘Reference’ and ‘As-Built’ models, respectively. 

Embodied energy intensities (GJ/m2) were 2.7 and 4.0, respectively for the ‘Reference’ 

and ‘As-Built’ cases. Monahan and Powell (2011) reported on 14 homes in the UK that 

has 1.3- 7.3 GJ/m2 of embodied energy intensity while other studies reported at 5.3 

GJ/m2, all consistent with estimates presented herein. Operational energy was 24,483 

and 17,226 GJ, with energy intensities of 41.4 and 29.5 GJ/m2 over the 50-year period 

for the ‘Reference’ and ‘As-Built’ models. Total primary energy over the life cycle was 

26,216 and 19,983 GJ, with energy intensities of 44.4 and 33.8 GJ/m2 for the 

‘Reference’ and ‘As-Built’ models. 

Embodied global warming potentials followed distribution patterns similar to that 

of the primary energy. For example, GWP intensities (kg CO2-eq/m2) for the gas space 

and water heating models were 193 and 286, respectively for the ‘Reference’ and ‘As-

Built’ cases. Citherlet ad Defaux (2007) reported about 4 kg CO2-eq/m2-yr while 

Monahan and Power (2011) reported 405 kg CO2-eq/m2, all of which are consistent with 

other reported estimates. Use phase GWP intensities were 2,626 and 1861 kg CO2-eq/m2 

over the 50-year period for the ‘Reference’ and ‘As-Built’ models, respectively. 
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Total life cycle GWP intensities of 2,835 and 2,166 kg CO2-eq/m2 were found for the 

‘Reference’ and ‘As-Built’ models. The GWP intensities for this study were consistent 

with Ortiz et al. (2010), who reported 2,340 kg CO2-eq/m2 over a 50-year period. 

Citherlet and Defaux (2007) reported standard, efficient and very efficient homes in 

Switzerland and found 50-year GWP densities varying from 500-1,250 kg CO2-eq/m2, 

lower GWP densities and overall variations that were attributed to energy mix 

differences and to large contributions in hydropower (60%) and nuclear (40%).  

The embodied phase was 7% and 13% and the use phase 93% and 86% of the total 

primary energy for the ‘Reference’ and ‘As-Built’ model, respectively. Again, electrical 

space and water heating models followed similar trends as the gas models with the 

operational energy and total energy slightly higher. 

 As summarized previously, renewable energy systems decreased the annual 

operating energy 12.5% - 15.5% for the ‘Reference’ and ‘As-Built’ models, respectively. 

Over the life cycle at a 0.5% annual degradation factor, reductions the total life cycle 

primary energy of 9.4% and 13.4% were found for the ‘Reference’ and ‘As-Built’ 

models. This corresponded to an average reduction of 2,570 GJ of total primary energy, 

which is the equivalent of offsetting the embodied phase portion of the ‘As-Built’ model. 

 With no rainwater harvesting considered, total water consumption was 29.68 

(24.06 acre-foot) and 31.78 mega-liters (ML) (29.76 acre-foot) for the ‘Reference’ and 

‘As-Built’ models, respectively, additionally the ‘As-Built’ model contained 49% more 

water consumption in the product phase and 46% more in the construction phase and 7% 

more overall compared to the ‘Reference’ model while the end-of-life phase had no 
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water consumption. The use phase dominates both models with 85 and 80% of the use 

phase for the ‘Reference’ and ‘As-Built’ model, respectively. Although stochastic in 

nature and difficult to predict, rainwater harvesting systems may dramatically offset the 

life cycle use phase. The studies presented herein, based on a Monte-Carlo simulation, 

yielded a 73% demand reduction with 48% probability. This reduction in demand was 

approximately equivalent to the corresponding embodied water in the ‘As Built’ alone. 

Future Research and Closing Remarks 

The results from the life cycle analysis and impact assessment compared one life-

cycle stage with the other (or one assembly to another) and helped in identifying those 

building design components that have the largest energy and environmental impact. 

LCA is a quantitative, but approximate, approach for integrated building design, and it 

evaluates building systems along with overall impacts and tradeoffs. The techniques 

employed herein are useful to help understand and guide designs and decision-making in 

the building sciences and construction process. Building use energy analysis, through 

operational energy simulation, determines those building phases and components that 

have the highest energy demand, allowing them to be identified and targeted for 

improvements. Primary energy can give a useful indication of the greenhouse gas 

emissions attributable to buildings and their impact on the environment. Additionally, 

renewable energy systems can have a substantial impact not only on reducing building 

energy demand, but also in the reduction of environmental emissions to air and water. 

As of 2013, median PV module costs yield a LCOE that is competitive with local 

electricity prices and suggest future SPVS investments to be more likely. Finally, 
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rainwater collection systems and their output, although highly dependent on rainfall, 

may have a significant impact on life cycle mains water consumption. The cost of the 

rainwater harvesting system is a critical factor for the widespread use of the technology, 

and, as illustrated in this study, proper sizing of the storage volume is a critical element 

in analysis of the system. 

Future Research 

This work focused on an actual large urban home in Houston, Texas with 

specific systems under evaluation. This study did not look at the performance of the 

building and renewable energy systems in different climates to ascertain the building 

envelope and infiltration impact on operational energy; this will be the subject of future 

work. Building operational energy use projections are based on static assumptions from 

the annual estimates, meaning that model sensitivities have not been rigorously explored. 

Infiltration, lifestyle factors and climate variability may increase their associated loads. 

The size of the home in this study is more than double the average size home in 

the United States, and future work will utilize smaller footprint models such as PNNL 

IECC code-testing models (223 m2, 2400 ft2). Utilizing common and more robust 

building envelope structures, such as ICF, the embodied energy contained in these 

models can be determined and Energy Plus derived operational energy can be used to 

calculate a complete life cycle performance of the PNNL models. To date, it is not clear 

that this approach has been reported in the literature. 

Finally, mains water demand reduction due to the rainwater collection system 

production did not include energy or associated environmental impacts that may arise 
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from reductions in water distribution energy requirements at the utility. Additionally, the 

reduction of the water use associated with the energy reductions in the model 

comparisons (building operational energy or renewable energy offsets) were not 

accounted for either. These “water and energy nexus” issues are items of future research. 

Closing Remarks 

 Texas has one of the largest economies in the United States, and as of 2014, it 

has the second highest gross state product of $1.68 trillion dollars (Chantrill 2015). As 

such, Texas is a leader in residential energy consumption and carbon dioxide emissions 

in the United States. Furthermore, Texas average annual electricity cost per household is 

$1,801 (US EIA 2009), among the highest in the nation and according to US EIA's 

Residential Energy Consumption Survey six, hundred and fifty-six million metric tons of 

carbon dioxide were emitted in 2011, which is 12% of the total for the nation and twice 

that of California (US EIA 2009). Reducing residential energy and water demand 

through improved methods of building envelope construction along with implementing 

energy and water offsetting subsystems, such as renewable energy and rainwater 

collection systems, reduces total primary energy, water consumption, other resource 

burdens and environmental impacts such as global warming potential. Finally, these 

improvements reduce energy and water requirements from stressed utilities and their 

distribution networks. The promotion of building codes that stress building envelope 

design that promotes thermal resistance and minimizes infiltration is critical to reduce 

the environmental burden of buildings. Furthermore, the retention of tax incentives for 

renewable energy system is important for their continued market penetration. However, 
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rainwater systems, although free of sales tax currently in Texas, do not have large 

incentives, and as Fewkes (2012) states, they may remain largely uneconomic.
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APPENDIX 

 
Appendix A-1.  North and south elevations 
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Appendix A-2. South and east elevations 
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Appendix A-3. First floor plan 
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Appendix A-4. Second floor plan 
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Appendix A-5. Third floor plan 
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Appendix A-6. Roof plan
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Appendix A-7. Monthly ground temperatures at 1 ft below grade (Reddy 2000) 

 

 
Appendix A-8. Simulation idealized airflow model 

Month Temperature (°F)
Jan 67.83
Feb 68.84
Mar 71.34
April 77.91
May 82.99
June 84.52
July 86.1
August 88.58
September 87.11
October 82.14
November 73.76
December 68.22
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Appendix A-9. Occupancy 24-hour fractional schedule 

 

 
Appendix A-10. Appliance and plug load 24-hour fractional schedule 
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Appendix A-11. Lighting 24-hour fractional schedule 

 

Appliance Power 

Total 
Electricity 
(kWh/yr) 

Fraction 
Sensible 

Fraction 
Latent 

Fraction 
Lost 

Internal heat 
gains (kWh/yr) 

IECC 2012 
Refrigerator 91.09 W 668.9 1 0 0 669 
Clothes 
Washer 29.6 W 109.216 0.8 0 0.2 87 
Clothes Dryer 222.11 W 868.15 0.15 0.05 0.8 174 
Dishwasher 68.33 W 214.16 0.6 0.15 0.25 161 
Range 
(ele/gas) 248.97 W 604.9 0.4 0.3 0.3 423 
Misc plug 
loads 0.228 W/ft2 8585.1 0.69 0.06 0.25 6439 
Misc ele 
loads 182.5 W 1598 0.69 0.06 0.25 1199 
IECC 
adjustment 
factor 0.275 W/ft2 1035.47 0.69 0.06 0.25 777 
Lighting   1580.5 1 0 0 1580.5 
Occupants           2831 

Appendix A-12. Model annual internal gains and electrical loads 
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Type Energy Use 
Interior hardwired 0.8 × CFA × 0.542 +334 kwh/yr 
Interior plug-in lighting 0.2 × CFA × 0.542 +334 kwh/yr 
Garage lighting Garage area × 0.08 +8 kwh/yr 
Exterior lighting CFA × 0.145 kwh/yr 

Appendix A-13. Baseline lighting energy use for the IECC PNNL estimates based Mendon 
et al. 2013. CFA = conditioned floor area 

 

 
Appendix A-14. Non-HVAC monthly electricity of interior equipment, interior and 

exterior lighting 
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Appendix A-15. First floor air temperature daily profile at the thermostat 

 

 
Appendix A-16. Second floor air temperature daily profile at thermostat 
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Appendix A-17. Third floor air temperature daily profile at the thermostat 

 

 
Appendix A-18. First floor air relative humidity at thermostat 
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Appendix A-19. Second floor air relative humidity at thermostat 

 

 
Appendix A-20. Third floor air relative humidity at thermostat 
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Appendix A-21. Monthly simulated vs. measured HVAC energy 

 

Life Cycle Analysis Environmental Indicators Overview 

LCA environmental impact indicators are mappings from quantities of emissions to the 

environmental impacts that these emissions cause and these impact categories have been 

established from nationally recognized standards established by agencies such as the 

Environmental Protection Agency, Occupational Safety and Health Administration, and National 

Institutes of Health (Bayer et al. 2010). These impacts are usually given as a ratio of the quantity 

of the impact per functional unit of product produced. Each category is an indicator of the 

contribution of a product to a specific environmental problem (Bayer et al. 2010). A group of 

impact indicators common in many LCA methods are provided on the following page. 
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Indicator Description Unit  

Global 
Warming 
Potential 
(GWP)  

 

Global Warming Potential, or GWP, has been developed to characterize the 
change in the greenhouse effect due to emissions and absorptions attributable 
to humans. The unit for measurement is grams equivalent of CO2 per unit of 
product (note that other greenhouse gases, such as methane, are included in 
this category, thus the term “CO” is an impact and not an emission).  

CO2 
equiv 
mass 

Acidification 
Potential (AP)  

 

Acidifying compounds emitted in a gaseous state either dissolve in 
atmospheric water or fixed on solid particles. They reach ecosystems through 
dissolution in rain. The two compounds principally involved in acidification 
are sulfur and nitrogen compounds. The unit of measurement is grams of 
hydrogen ions per functional unit of product.  

H+ 
equiv. 
mass 

Eutrophication 
Potential (EP)  

 

Eutrophication is the addition of mineral nutrients to the soil or water. In both 
media, the addition of large quantities of mineral nutrients such as nitrogen 
and phosphorous results in generally undesirable 
shiftsinthenumberofspeciesinecosystemsandareductioninecologicaldiversity. 
In waterways, excess nutrient leads to increase biological oxygen demand 
(BOD) from the dramatic increase in flora that feed on these nutrients, a 
subsequent reduction in dissolved oxygen levels, and the collapse of fish and 
other aquatic species. The unit of measurement is grams of nitrogen per 
functional unit of product.  

N 
equiv. 
mass 

Fossil Fuel 
Depletion  

 

This impact addresses only the depletion aspect of fossil fuel extraction, not 
the fact that the extraction itself may generate impacts. The unit for 
measurement is mega joules (MJ) of fossil-based energy per functional unit 
of the product. This category helps demonstrate positive environmental goals, 
such as reducing the energy needed to produce a product, or such as 
producing a product with renewable, non- fossil-based energy.  

MJ 

Smog 
Formation 
Potential  

 

Under certain climatic conditions, air emissions from industry and fossil-
fueled transportation can be trapped at ground level, where they react with 
sunlight to produce photochemical smog. The contribution of a product or 
system to smog formation is quantified by this category. The unit of 
measurement is grams of nitrogen oxide per functional unit of product. This 
highlights an area where a regional approach to LCA may be appropriate, as 
certain regions of the world are climatically more susceptible to smog.  

O3 
equiv. 
mass 

Ozone 
Depletion 
Potential  

 

Emissions from some processes may result in the thinning of the ozone layer, 
which protects the earth from certain parts of the solar radiation spectrum. 
Ozone depletion potential measures the extent of this impact for a product or 
system. The unit of measurement is CFC-11 per functional unit of the 
product.  

CFC-
11 
equiv. 
mass 

Appendix A-22. Life cycle analysis environmental impact indicators (Adapted from Bayer 
et al. 2010) 
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Appendix A-23. Average US energy mix utilized in Impact Estimator based on average 

2012 US energy mix data from the US DOE (Finlayson 2015)
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Appendix A-24. Life cycle environmental impact indicator by building assembly 

 

 
Appendix A-25. Life cycle environmental impact indicator by life cycle stage (gas space and water heating) 

REFERNCE AS-BUILT
Summary 
Measure Unit FOUNDATION WALLS ROOF FLOORS EXTRA MAT. FOUNDATION WALLS ROOF FLOORS EXTRA MAT. TOTAL TOTAL
Global 

Warming 
Potential

(kg CO2 eq)
8.99E+04 8.18E+03 -3.17E+03 -1.33E+04 -3.61E+03 9.14E+04 4.96E+04 1.35E+04 -1.39E+04 -4.53E+03 7.80E+04 1.36E+05

Acidification 
Potential (kg SO2 eq) 5.04E+02 1.97E+02 5.65E+01 1.02E+02 1.19E+01 5.25E+02 4.04E+02 1.44E+02 1.00E+02 1.39E+01 8.71E+02 1.19E+03

HH Particulate (kg PM2.5 eq) 2.15E+02 6.12E+01 1.93E+01 4.17E+01 8.05E+00 2.17E+02 1.25E+02 3.96E+01 4.11E+01 9.42E+00 3.45E+02 4.32E+02
Eutrophication 

Potential (kg N eq) 2.08E+01 1.16E+01 3.48E+00 9.39E+00 1.28E+00 2.24E+01 1.91E+01 7.65E+00 9.03E+00 1.54E+00 4.65E+01 5.97E+01
Ozone 

Depletion 
Potential

(kg CFC-11 eq)
5.17E-04 2.22E-04 2.47E-06 6.46E-05 2.56E-05 5.19E-04 4.93E-04 1.94E-04 5.62E-06 2.56E-05 8.31E-04 1.24E-03

Smog 
Potential (kg O3 eq) 1.03E+04 2.70E+03 9.50E+02 1.91E+03 2.64E+02 1.11E+04 6.67E+03 2.12E+03 1.83E+03 3.13E+02 1.61E+04 2.20E+04

Total Primary 
Energy (MJ) 9.35E+05 4.55E+05 2.61E+05 2.78E+05 3.82E+04 9.53E+05 8.92E+05 7.32E+05 2.65E+05 4.46E+04 1.97E+06 2.89E+06
   Non-

Renewable 
Energy

(MJ)
9.30E+05 3.83E+05 2.25E+05 1.81E+05 2.15E+04 9.48E+05 8.25E+05 6.91E+05 1.69E+05 2.42E+04 1.74E+06 2.66E+06

   Fossil Fuel 
Consumption (MJ) 8.38E+05 3.61E+05 2.16E+05 1.62E+05 1.88E+04 8.62E+05 7.92E+05 6.32E+05 1.52E+05 2.14E+04 1.60E+06 2.46E+06

REFERENCE MODEL AS-BUILT MODELENVIRONMENTAL INDICATOR

REFERENCE AS-BUILT
Summary Measure Unit PRODUCT CONSTRUCTION USE END OF LIFE PRODUCT CONSTRUCTION USE END OF LIFE TOTAL TOTAL
Global Warming 

Potential
(kg CO2 eq)

9.67E+04 1.76E+04 1.55E+06 8.96E+03 1.45E+05 2.37E+04 1.10E+06 1.15E+04 1.68E+06 1.28E+06
Acidification Potential (kg SO2 eq) 5.50E+02 1.53E+02 1.20E+04 1.03E+02 7.72E+02 2.06E+02 8.47E+03 1.32E+02 1.28E+04 9.58E+03

HH Particulate (kg PM2.5 eq) 2.88E+02 1.94E+01 1.34E+03 5.16E+00 3.70E+02 2.52E+01 9.62E+02 6.35E+00 1.65E+03 1.36E+03
Eutrophication Potential (kg N eq) 2.81E+01 9.31E+00 1.02E+02 6.74E+00 3.58E+01 1.26E+01 7.30E+01 8.70E+00 1.46E+02 1.30E+02

Ozone Depletion 
Potential

(kg CFC-11 eq)
7.34E-04 3.25E-05 6.58E-05 3.52E-07 1.11E-03 4.95E-05 7.43E-05 4.54E-07 8.33E-04 1.24E-03

Smog Potential (kg O3 eq) 7.44E+03 4.38E+03 4.18E+04 3.54E+03 1.07E+04 6.08E+03 2.99E+04 4.56E+03 5.72E+04 5.12E+04
Total Primary Energy (MJ) 1.37E+06 2.36E+05 2.45E+07 1.25E+05 2.06E+06 3.15E+05 1.74E+07 1.60E+05 2.62E+07 2.00E+07

   Non-Renewable 
Energy

(MJ)
1.17E+06 2.23E+05 2.34E+07 1.25E+05 1.85E+06 3.01E+05 1.67E+07 1.60E+05 2.49E+07 1.90E+07

   Fossil Fuel 
Consumption

(MJ)
1.01E+06 2.16E+05 2.03E+07 1.24E+05 1.66E+06 2.94E+05 1.44E+07 1.59E+05 2.17E+07 1.66E+07

AS-BUILT MODEL  LIFE CYCLE STAGEENVIROMENTAL INDICATOR REFERENCE MODEL LIFE CYCLE STAGE
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Appendix A-26. Life cycle environmental impact indicators by life cycle stage (electrical gas and water heating) 

 

 
Appendix A-27. Use phase environmental impact indicators comparison of ‘Reference’ and ‘As-Built’ models with and without 

renewable energy (RE) 

REFERENCE AS-BUILT
Summary Measure Unit PRODUCT CONSTRUCTION USE END OF LIFE PRODUCT CONSTRUCTION USE END OF LIFE TOTAL TOTAL

Global Warming 
Potential

(kg CO2 eq)
9.67E+04 1.76E+04 1.63E+06 8.96E+03 1.45E+05 2.37E+04 1.17E+06 1.15E+04 1.76E+06 1.35E+06

Acidification Potential
(kg SO2 eq)

5.50E+02 1.53E+02 1.25E+04 1.03E+02 7.72E+02 2.06E+02 8.93E+03 1.32E+02 1.33E+04 1.00E+04
HH Particulate (kg PM2.5 eq) 2.88E+02 1.94E+01 1.45E+03 5.16E+00 3.70E+02 2.52E+01 1.04E+03 6.35E+00 1.76E+03 1.44E+03
Eutrophication 

Potential
(kg N eq)

2.81E+01 9.31E+00 1.06E+02 6.74E+00 3.58E+01 1.26E+01 7.62E+01 8.70E+00 1.50E+02 1.33E+02
Ozone Depletion 

Potential
(kg CFC-11 eq)

7.34E-04 3.25E-05 6.59E-05 3.52E-07 1.11E-03 4.95E-05 7.44E-05 4.54E-07 8.33E-04 1.24E-03
Smog Potential (kg O3 eq) 7.44E+03 4.38E+03 4.46E+04 3.54E+03 1.07E+04 6.08E+03 3.20E+04 4.56E+03 5.99E+04 5.32E+04

Total Primary Energy (MJ) 1.37E+06 2.36E+05 2.56E+07 1.25E+05 2.06E+06 3.15E+05 1.84E+07 1.60E+05 2.73E+07 2.09E+07
   Non-Renewable 

Energy
(MJ)

1.17E+06 2.23E+05 2.44E+07 1.25E+05 1.85E+06 3.01E+05 1.75E+07 1.60E+05 2.59E+07 1.99E+07
   Fossil Fuel 
Consumption

(MJ)
1.01E+06 2.16E+05 2.09E+07 1.24E+05 1.66E+06 2.94E+05 1.51E+07 1.59E+05 2.23E+07 1.72E+07

AS-BUILT MODEL  LIFE CYCLE STAGEREFERENCE MODEL LIFE CYCLE STAGEENVIROMENTAL INDICATOR

Summary Measure Unit USE STAGE USE STAGE WITH RE USE STAGE USE STAGE WITH RE

Global Warming Potential (kg CO2 eq) 1.55E+06 1.41E+06 1.10E+06 9.55E+05

Acidification Potential (kg SO2 eq) 1.20E+04 1.08E+04 8.47E+03 7.34E+03

HH Particulate (kg PM2.5 
eq)

1.34E+03 1.22E+03 9.62E+02 8.44E+02

Eutrophication Potential (kg N eq) 1.02E+02 9.26E+01 7.30E+01 6.32E+01
Ozone Depletion 

Potential
(kg CFC-11 

eq)
6.58E-05 6.57E-05 7.43E-05 7.41E-05

Smog Potential (kg O3 eq) 4.18E+04 3.80E+04 2.99E+04 2.61E+04
Total Primary Energy (MJ) 2.45E+07 2.22E+07 1.74E+07 1.51E+07

   Non-Renewable Energy (MJ) 2.34E+07 2.12E+07 1.67E+07 1.45E+07
   Fossil Fuel 
Consumption

(MJ) 2.03E+07 1.83E+07 1.44E+07 1.25E+07

ENVIROMENTAL INDICATOR REFERENCE MODEL AS-BUILT MODEL
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Appendix A-28. Global warming 
potential by building assembly 

 
Appendix A-29. Ozone depletion 
potential by building assembly 

 
Appendix A-30. Smog potential by 

building assembly 

 
Appendix A-31. Human health potential 

by building assembly 

 
Appendix A-32. Acidification potential 

by building assembly 

 
Appendix A-33. Eutrophication 
potential by building assembly 
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Appendix A-34. GWP distribution by life 

cycle stage 

 
Appendix A-35. ODP distribution by life 

cycle stage 

 
Appendix A-36. Smog potential 
distribution by life cycle stage 

 
Appendix A-37. Human health potential 

distribution by life cycle 

 
Appendix A-38. Acidification potential 

distribution by life cycle 

 
Appendix A-39. Eutrophication potential 

distribution by life cycle stage 
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Appendix A-40. Environmental indicator summary primary energy and global warming potential totals and intensities for the 

‘Reference’ and ‘As-Built’ gas space and water heating models 
 

 
Appendix A-41. Environmental indicator summary primary energy and global warming potential totals and intensities for the 

‘Reference’ and ‘As-Built’ electric space and water heating models 
 

 

 ENVIRONMENTAL INDICATOR REFERENCE 
MODEL

AS-BUILT 
MODEL

RELATIVE 
CHANGE

 ENVIRONMENTAL INDICATOR REFERENCE 
MODEL

AS-BUILT 
MODEL

RELATIVE 
CHANGE

EMBODIED ENERGY (GJ) 1,608.2           2,376.2          -48% EMBODIED GWP  (kg CO2-eq) 114,280           168,772         -48%
EMBODIED ENERGY INTENSITY (GJ/m2) 2.7                4.0               -48% EMBODIED GWP INTENSITY (kg CO2-eq/m2) 193.37             286              -48%
USE ENERGY (GJ) 24,483.3          17,446.5        29% USE GWP (kg CO2-eq) 1,552,017         1,099,910      29%
USE ENERGY INTENSITY (GJ/m2) 41.4               29.5              29% USE GWP INTENSITY (kg CO2-eq/m2) 2626 1861 29%
TOTAL PRIMARY ENERGY (GJ) 26,216.8          19,983.0        24% TOTAL GWP (kg CO2-eq) 1,675,252         1,280,176      24%
TOTAL PRIMARY ENERGY (GJ/m2) 44.4               33.8              24% TOTAL GWP INTENSITY (kg CO2-eq/m2) 2835 2166 24%
EMBODIED ENERGY QUOTIENT (%) 6% 12% EMBODIED GWP QUOTIENT (%) 7% 13%
USE ENERGY QUOTIENT (%) 93% 87% USE GWP QUOTIENT (%) 93% 86%

GAS SPACE AND WATER HEATING MODELS

 ENVIRONMENTAL INDICATOR REFERENCE 
MODEL

AS-BUILT 
MODEL

RELATIVE 
CHANGE

 ENVIRONMENTAL INDICATOR REFERENCE 
MODEL

AS-BUILT 
MODEL

RELATIVE 
CHANGE

EMBODIED ENERGY (GJ) 1,608            2,376         !48% EMBODIED GWP  (kg CO2-eq) 114,280         168,772     -48%
EMBODIED ENERGY INTENSITY (GJ/m2) 2.7               4.0            -48% EMBODIED GWP INTENSITY (kg CO2-eq/m2) 193.37          285.57      -48%
USE ENERGY (GJ) 25,597          18,401        28% USE GWP (kg CO2-eq) 1,632,951      1,166,140 29%
USE ENERGY INTENSITY (GJ/m2) 43.31            31             28% USE GWP INTENSITY (kg CO2-eq/m2) 2763 1973 29%
TOTAL PRIMARY ENERGY (GJ) 27,331          20,937        23% TOTAL GWP  (kg CO2-eq) 1,756,187      1,346,406 23%
TOTAL PRIMARY ENERGY (GJ/m2) 46               35             23% TOTAL GWP INTENSITY (kg CO2-eq/m2) 2972 2278 23%
EMBODIED ENERGY QUOTIENT (%) 6% 11% EMBODIED GWP QUOTIENT (%) 7% 13%
OPERATIONAL ENERGY QUOTIENT (%) 94% 88% OPERATIONAL GWP QUOTIENT (%) 93% 87%

ELECTRICAL SPACE AND WATER HEATING MODELS
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Appendix A-42. Solar photovoltaic system uncertainty 

 
 

 

 
Appendix A-43. Solar hot water system uncertainty  

Classification Coefficients Unit Mean, m (preset) Uncertainty, u (%) u^2 Remamrks Cited 
From

Inverter Module Efficiency % 97 3 9.00 PV1
Subarrary AC Wiring Loss % 2 1.5 2.25 Total AC loss 4.45%, u=1.5% own
Subarray DC Wiring Loss % 1 1.5 2.25 total DC loss 6.89%, u=1.5% own

Nameplate Loss % 5 1.5 2.25 u=1.5% own
Soiling Loss % 0.5 1.5 2.25 Not applicable to SAM Stochastics own, PV1

Albedo - 0.2 2.9 8.33 Not applicable to SAM Stochastics own, PV1
Temperature Coeff pow %/°C -0.453 0 0.00 u=±0.05% MFG
Temperature Coeff Isc %/°C 0.065 0 0.00 u=±0.015% MFG
Temperature Coeff Voc mV/°C -160 0 0.00 u=±20mV/°C MFG

NOCT °C 46 0 0.00 u=±2°C MFG
Resource Solar (ir)Radiation % 3.59 12.85 see 'Solar Resource Statistics' NREL

6.26

Sy
st

em

COMBINED UNCERTAINTY (%)

Classification Coefficients Unit Mean (preset) Uncertainty, u (%) u^2 Remamrks Cited 
From

Total System Flow Rate kg/s 0.02 0.8 0.64 0.80% ST1
Albedo - 0.2 2.9 8.33 own

Collector- Frta - 0.717 0 0.00  independent var. of ΔT, U, etc.
Collector - FRUL W/m2.C 4.01 0 0.00  independent var. of ΔT, U, etc.

Heat Exchanger Effectiveness - 0.75 1.5 2.25 ST1
Solar Tank heat loss Coefficient W/m2.C 0.55 1.5 2.25 ST1, ST2

Pump Efficiency - 0.95 1.5 2.25 own, ST1
Inlet&Outlet Temperature Diff °C 1.10 1.21 uΔT=0.6C/54.44C (outlet set temp) own, ST1

Resource Solar (ir)Radiation % 3.59 12.85 see 'Solar Resource Statistics' NREL
5.46COMBINED UNCERTAINTY (%)

Sy
st

em

Reference List
PV1 Link
ST1 Link
ST2 Link

Didier Thevenard, Sophie Pelland, Estimating the uncertainty in long-term photovoltaic yield predictions, Solar Energy, Volume 91, May 2013, Pages 432-445
Emmanouil Mathioulakis, George Panaras, Vassilis Belessiotis, Uncertainty in estimating the performance of solar thermal systems, Solar Energy, Volume 86, Issue 11, November 2012, Pages 3450-3459,
E. Mathioulakis, K. Voropoulos, V. Belessiotis, Assessment of uncertainty in solar collector modeling and testing, Solar Energy, Volume 66, Issue 5, August 1999, Pages 337-347
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Appendix A-44.  SPVS module (BP Solar BP175B) characteristic curve 
 

 

Appendix A-45. SPVS Module inverter (Enphase Energy M175) characteristic curve
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Appendix A-46. Equipment list for the study presented herein 
 

 

Instrument and model Manufacturer Website Purpose of equipment Calibration Information (if applicable) Quantity
Hobo U10 Onset Computer, Inc. http://www.onsetcomp.com/ Measure indoor temperature and humidty and data logger Riverside Energy Efficiency Laboratory (REEL) TAMU 8

Hobo Energy Logger Onset Computer, Inc. http://www.onsetcomp.com/ Logger for submeter data from the house electrical panel Onset Computer, Inc. 1
Watt Node Pulse Continential Control Systems http://www.ccontrolsys.com Power measurement of heat pump and ERV Continential Control Systems 2

Hobo 20 Onset Computer, Inc. http://www.onsetcomp.com/ Water level and temperature gauge Onset Computer, Inc. 1
E-series 55 Badger Meter, Inc. http://badgermeter.com Water flow meter Badger Meter, Inc. 1

Web Energy Logger Phil Malone http://welserver.com Embedded 1-wire data logger Maxim Semiconductor, Inc. 1
1-wire temperature system Maxim semiconductor, Inc. http://welserver.com Ten sensors monitoring roof and solar thermal system Maxim semiconductor, Inc. And REEL 10

Enphase 175-24 Enphase Energy, Inc. http://enphase.com Photovoltaic monitoring system Enphase Energy, Inc. 1
H8053-0100 Enercept Veris, Inc. http//veris.com Whole building energy monitoring Veris, Inc. 1
Smart reader Plus 9 ACR Systems, Inc. http://www.acrsystems.com Two channel digital input logger, one for WBE and water flow ACR Systems, Inc. 2




