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ABSTRACT

Anisotropy occurs in a wide range of applications. Examples include porous

media, composite materials, heat transfer, and other fields in science and engineering.

Due to the anisotropy, the physical property could vary significantly only in certain

directions. As such, the discrete problem will have a very large condition number

for traditional numerical methods. In addition, many anisotropic materials contain

multiple scales and their physical properties could vary in orders of magnitude. These

large variations bring an additional small-scale parameter into the problem. Thus, a

proper treatment of the anisotropy not only helps to design robust iterative methods,

but also provides accurate approximations of the problem.

Various well-developed techniques have been used to address anisotropic prob-

lems, such as multigrid methods, adaptive methods, and domain decomposition tech-

niques. More recently, a large class of accurate reduced-order methods have been

introduced and applied to many applications. These include multiscale finite ele-

ment, multiscale finite volume, and mixed multiscale finite element methods.

The primary focus of this dissertation is to study a multiscale finite element

method for the approximation of heterogeneous problems involving high-anisotropy,

high-contrast, parameter dependency. First, we design robust two-level domain de-

composition preconditioners using multiscale coarse spaces. Next, a general formu-

lation of heterogeneous problem is investigated using this multiscale finite element

method. Then, a multilevel multiscale finite element method is proposed and ana-

lyzed to reduce the computational cost. Last, this multiscale finite element method

is extended to a convection-diffusion problem.
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I  INTRODUCTION

I.1 Background and motivation

Many problems arising from various physical and modern engineering applications

are multiscale in nature. Examples include porous media, composite materials, heat

transfer, atmosphere/ocean science, and image processing. These types of problems

often involve high-contrast coefficients. For example, fractured media usually have

large variations in their conductivity. These large variations bring an additional

small-scale parameter into the multiscale problem. Traditional numerical methods

for these problems therefore lead to a large ill-conditioned system of linear equations.

On the other hand, full resolution of the fine-scale information of the coefficient is

often prohibitively expensive. Hence, we wish to design a proper numerical method

so that it can efficiently and accurately resolve complex systems.

Furthermore, many natural and man-made materials exhibit anisotropic behav-

ior. The source of anisotropy can be due to the heterogeneous medium and/or highly

irregular computational domain geometry over which the solution is sought. For ex-

ample, in porous media or other applications, high anisotropy can be caused by

the presence of fractures or other high conductivity thin inclusions that can have

preferred high-conductivity directions. Because of high variations among the back-

ground media and fracture conductivities, the conductivity can have high anisotropy

at the fine computational-grid scale. On the other hand, the source of anisotropy

could have a physical base. Recently, research has been conducted to develop com-

pound materials with anisotropic properties. For example, a cloaking device has

been developed in which a material shell is designed to have specific anisotropic

acoustic and electromagnetic properties such that it can divert pressure and light

1



waves around a region of space unscathed. We note that the existence of high-

anisotropy brings extra difficulties in numerical computations because of the large

condition number of the linear system. It has some additional difficulties compared

to isotropic high-contrast problems that we will discuss later. The investigation of

numerical methods for such challenging problems has motivated the research which

is documented in this dissertation.

Over the past few decades, lots of efforts have been put into the multiscale prob-

lems. They include upscaling [9, 20, 22, 46, 54], multiscale finite element [1, 4, 34, 44],

multiscale finite volume [21, 45, 47, 48, 49], multiscale finite difference [3], and other

multiscale methods [13]. A characteristic of multiscale methods is to recover a fine-

scale solution from the coarse-scale solution. The construction of the multiscale solu-

tion space distinguishes them from the standard finite element methods. In particu-

lar, most multiscale methods have applied local computations for the determination

of coarse basis functions. Numerous papers have shown that the standard multiscale

methods are suitable for various applications [8, 9, 35, 36, 45]. However, these ap-

proaches have proven to be inadequate for solving problems with high-contrast due

to the range of scales and the large number of variables involved. Some previous ap-

proaches are developed for solving isotropic multiscale problems with high-contrast

coefficients [6, 23, 25, 30, 31, 38, 39]. However, the performance of these approaches

deteriorate when applied to anisotropic problems. Because of high anisotropies, nu-

merically solving multiscale problems becomes more difficult and we observe: (1) a

comparatively large coarse space may arise due to the highly-anisotropic regions; (2)

more computational time may be required because of the large condition numbers; (3)

a different testing space is needed to be considered. Hence, to solve problems involving

high-anisotropy, high-contrast, and uncertainties, a more general multiscale method

is desirable for constructing a reduced-dimensional approximation of the solution.

2



In this dissertation, we consider a generalized multiscale finite element method

that hinges on the construction of coarse solution space in which a set of locally

computed multiscale basis functions are generated. These basis functions generate

a solution space, called the snapshot space. Then, some dimension-reduction tech-

niques have been used to reduce the dimension of the snapshot space. The resulting

reduced-dimensional space is called the offline space. The offline basis functions that

constitute the offline space are coupled via a respective global formulation to com-

pute the global solution. In the case of parameter dependency, where the parameter

can represent the uncertainties, an online space is constructed using the offline space

to form the multiscale solution space. In the next section, a brief description to each

chapter of this dissertation is given.

I.2 Description of the dissertation

In Chapter II, we discuss robust two-level domain decomposition preconditioners

for highly-anisotropic heterogeneous multiscale problems. We present a construc-

tion of a multiscale coarse space in the two-level overlapping domain decomposition

method. The coarse space used in this construction is based on local spectral prob-

lems. Two types of partition of unity functions involved in the eigenvalue problem

are discussed. We discuss the robustness of the preconditioner with respect to the

contrast and the anisotropy of the medium. Analysis and numerical experiments are

provided for the validation of robust preconditioners with respect to the number of

iterations and the dimension of the coarse space.

A general highly-anisotropic heterogeneous multiscale problem is studied in Chap-

ter III. We solve this problem in the Generalized Multiscale Finite Element Methods

(GMsFEM) framework. To construct the multiscale solution space, the GMsFEM

framework follows an offline-online procedure. At the offline stage, we first construct

3



a snapshot space. The snapshot space contains local solutions which can provide an

accurate approximation of the solution and can guarantee some conservation prop-

erties. Next, using appropriate local spectral decomposition, we identify the offline

space, which is a reduced-dimensional space. Then, the offline space is used at the

online stage for the creation of the multiscale basis functions to form the online space.

These multiscale basis functions can be re-used for any input parameter to solve the

problem. The key to the construction of these two spaces (offline and online ) is the

design of appropriate local spectral problems for identifying dominant modes that

can capture important features at the fine scale.

In Chapter IV, we develop a multilevel framework for the GMsFEM. To save

the computational cost, a hierarchical construction of the multiscale solution space

is proposed. In particular, an expensive part of the computations involves the cal-

culations of snapshot solutions. We propose a nested sequence of snapshot spaces

using multilevel grids to save the computational cost without sacrificing much the

accuracy. The snapshot space at a given coarse level is built based on the coarse

spaces that are computed from the previous finer grids. Our main contribution in

this chapter is the innovative algorithm for hierarchically building accurate coarse

solution spaces. Some convergence analysis and supporting numerical examples are

presented.

In Chapter V, we develop a multiscale method for coupled flow and transport in

heterogeneous porous media. We consider convection-dominated transport equations

coupled with the flow equations. Mixed finite element framework is used for a coupled

system to achieve a mass conservation. Multiscale spaces are constructed using the

mixed GMsFEM, which constructs the snapshot spaces and performs a local spectral

decomposition in the snapshot space. The resulting approach uses a few multiscale

basis functions in each coarse block (for both the pressure and the concentration)
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to solve the coupled system. Our main contributions are: (1) the development of

a mass conservative GMsFEM for coupled flow and transport; (2) the development

of a multiscale method for convection-dominated transport problem by choosing

appropriate test and trial spaces within Petrov-Galerkin mixed formulation.
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II ROBUST TWO-LEVEL DOMAIN DECOMPOSITION

PRECONDITIONERS FOR HIGH-CONTRAST ANISOTROPIC FLOWS IN

MULTISCALE MEDIA1

II.1 Introduction

In this chapter, we attempt to address the main issues in the design, analysis,

and experimental justification of robust preconditioners for finite element systems

arising in the approximation of highly anisotropic multiscale diffusion problems [25].

We consider the second order elliptic problem with heterogeneous coefficients in

a polygonal domain Ω ⊂ Rd, d = 2, 3:

−div(κ(x)∇u) = f in Ω,

u(x) = 0 on ∂Ω.

(II.1)

Here, κ(x) = {κij}di,j=1, d = 1, 2, 3, is a heterogeneous spatial conductivity (or per-

meability) field with multiple scales, high-contrast, and high-anisotropy.

Now, we introduce the concept of material contrast and anisotropy. Assume that

κ(x) is symmetric and uniformly positive definite in Ω. That is, for each x ∈ Ω,

there are κmax(x) ≥ κmin(x) > 0 such that κmin(x)qT q ≤ qTκ(x)q ≤ κmax(x)qT q, for

all q ∈ Rd. Then, the contrast in κ is defined as

η =
max
x∈Ω

κmax(x)

min
x∈D

κmin(x)
.

1Part of the data reported in this chapter is reprinted with permission from ”Robust Two-level
Domain Decomposition Preconditioners for High-contrast Anisotropic Flows in Multiscale Media”
by Yalchin Efendiev, Juan Galvis, Raytcho Lazarov, Svetozar Margenov and Jun Ren. Com-
put. Methods Appl. Math., Vol.12(4), 2012, pp. 415–436, Copyright [2012] by DE GRUYTER.
DOI: 10.2478/cmam-2012-003. http://www.degruyter.com/view/j/cmam.2012.12.issue-4/cmam-
2012-0031/cmam-2012-0031.xml
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The parameter η is an important physical parameter for highly heterogeneous media.

Throughout this dissertation, the value of κmin is not close to zero. Test results for

a low κtextmin, for example 0.0001, will be studied in the future (see [7]). As for the

high-anisotropy, we denote 0 < µ1(x) ≤ · · · ≤ µd(x) as the eigenvalues of the matrix

κ(x) for any x ∈ Ω, and qj(x) as the corresponding eigenvectors, j = 1, . . . , d. Note

that κ(x) has the following property

κ(x) = µ1(x)q1(x)qT1 (x) + · · ·+ µd(x)qd(x)qTd (x). (II.2)

We know that the ratio µd(x)/µ1(x) characterizes the anisotropy of this material.

In the case of µd(x)/µ1(x) = 1, i.e. µ1(x) = µ2(x) = · · · = µd(x), the material

is of isotropy. If µd(x)/µ1(x) >> 1, then the material becomes highly anisotropic.

For example, in 2-D media, where µ2(x) >> µ1(x) for x in some sub-domain, then

this sub-domain represents a high conductivity in the direction of the eigenvector

q2(x). In this chapter, we consider a high-contrast and high-anisotropy problem and

we aim to design and theoretically justify iterative methods for the corresponding

finite element discretizations of such problem that work for large variations of η, e.g.,

η ≈ 108.

High-contrast problems are quite challenging, but the high-anisotropy adds an-

other dimension of difficulty, which we would like to discuss it in this chapter. An

initial discussion on the issues related to the numerical solution of such problems was

presented in [25]. In this chapter, we discuss the construction of the preconditioner

for such problems and make exhaustive numerical experiments on a series of 2-D

problems. Our work is based on recent achievements in overlapping domain decom-

position theory [51, 52] and mathematical modeling in highly heterogeneous media

like diffusion, conduction, elastic deformations, etc. The case of isotropic media has
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been subject to numerous studies, e.g., [6, 23, 25, 30, 31, 38, 39, 41, 42]. We note

that the coarse spaces play an essential role in two-level domain decomposition pre-

conditioners. It is also known [25] that, for anisotropic problems, the coarse spaces

could have a large dimension. This is due to the fact that the fine-scale features

within the regions of high-anisotropy need to be sufficiently represented on a coarse

mesh.

In order to make the preconditioners robust with respect to the contrast and

the anisotropy, in this chapter, we propose a number of remedies and construct the

coarse spaces such that they contain essential features of the fine-scale solution. The

construction of the coarse spaces is based on recently introduced methods [23, 39].

The rest of this chapter is organized as follows. In Section II.2, we introduce the

finite element method for this problem on a fine mesh that resolves the heterogeneity

of the media. In Section II.3, we present the framework of the overlapping domain

decomposition method and two-level overlapping Schwarz preconditioners. In Sec-

tion II.4, we discuss the construction of the coarse solution space. Our numerical

experiments are presented in Section II.5. We provide the analysis of the precondi-

tioner in Section II.6 and finish this chapter by offering some concluding remarks in

Section II.7.

II.2 Problem formulation

Given a forcing term f , we consider the weak formulation of problem (II.1). We

seek u ∈ H1
0 (Ω) such that

a(u, v) :=

∫
Ω

κ(x)∇u · ∇vdx =

∫
Ω

fvdx, for all v ∈ H1
0 (Ω). (II.3)

Now, we introduce a Galerkin finite element approximation of (II.3). Let Th,

0 < h < 1, be a family of fine triangulations. It is assumed that h is sufficiently
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small to capture the spatial variation of κ(x). Without loss of generality, we assume

that κij(x), i, j = 1, . . . , d are piecewise constant functions on each finite element

in Th. We denote by V h(Ω) the standard finite element space of continuous and

piecewise linear functions with respect to Th. Denote also by V h
0 (Ω) the subspace of

V h(Ω) with vanishing values on ∂Ω. Similar notations, V h(D) and V h
0 (D), are used

for any sub-domain D ⊂ Ω. Further, we shall refer to the spaces V h
0 (Ω) and V h(Ω)

as to fine-grid spaces.

The discrete problem reads as follows. We seek u ∈ V h
0 (Ω) such that

a(u, v) = f(v) for all v ∈ V h
0 (Ω),

or in matrix form

Au = b, (II.4)

where for all u, v ∈ V h(Ω) (considered as vectors), we have uTAv = a(u, v) and

vT b =
∫

Ω
fv. For the notational convenience, we will denote the continuous variables

and the corresponding discrete quantities with the same symbols.

II.3 Domain decomposition framework

II.3.1 Overlapping decomposition and local spaces

We introduce a non-overlapping decomposition {Di}Ni=1 of Ω that is aligned with

the mesh Th and denote by H = maxi diam(Di). We denote by {D′i}Ni=1 the over-

lapping decomposition obtained from the original non-overlapping decomposition

{Di}Ni=1 by enlarging each sub-domain Di to D′i = Di ∪ {x ∈ Ω, dist(x,Di) <

δi}, i = 1, . . . , N . Without loss of generality, we require {D′i}Ni=1 is also aligned

with the mesh Th,

Let V h
0 (D′i) be finite element space with support in D′i. Denote by RT

i : V h
0 (D′i)→
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V h the extension by zero operator. Then, we define the preconditioner

B−1
1L =

N∑
i=1

RT
i A
−1
i Ri, (II.5)

where the local matrix Ai, i = 1, . . . , N , is defined by

vTAiw = a(v, w) for all v, w ∈ V i = V h
0 (D′i). (II.6)

In order to improve the robustness with respect to the underlying physical param-

eters, a coarse space that helps to propagate information globally must be added to

the preconditioner.

II.3.2 General concept of coarse spaces and two-level method

Given a coarse triangulation TH of Ω, we denote by {xi}Nv
i=1 the interior vertices

of TH and define its neighborhood

ωi = {K ∈ TH ; xi ∈ K}, i = 1, . . . , Nv. (II.7)

We introduce coarse basis functions (to be specified later) {Φi,`, 1 ≤ ` ≤ Li, 1 ≤

i ≤ Nv} with Φi,` supported in ωi. Here, for each interior node xi, Li is an integer

that is specified in (II.13) and it is related to the decay of the eigenvalues of the

generalized eigenvalue problem (II.10). We re-enumerate the set of basis functions

(using a single index) to {ΦI}Nc
I=1, Nc =

∑Nv

i=1 Li, and form the coarse space as

V0 = span{ΦI}Nc
I=1.
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We also define the coarse matrix (of size Nc ×Nc) by

A0 = R0AR
T
0 , (II.8)

where RT
0 = [Φ1, . . . ,ΦNc ] is the coarse basis functions matrix that maps the coarse

space to the fine space. Now, with these coarse matrices A0 and R0, we define a

two-level additive preconditioner of the form

B−1 = RT
0A
−1
0 R0 +

N∑
i=1

RT
i A
−1
i Ri = RT

0A
−1
0 R0 +B−1

1L , (II.9)

where B−1
1L is given by (II.5).

II.4 Coarse space construction

II.4.1 Local eigenvalue problems

In this subsection, we study a multiscale coarse space for the construction of the

preconditioner (II.9).

We present a set of localized eigenvalue problems following [23]. In particular,

for any neighborhood ωi related to the coarse node xi, we introduce the following

generalized eigenvalue problem. Find the eigenpair (λ, ψ), ψ ∈ Ṽh(ωi) such that

∫
ωi

κ∇ψ · ∇φ dx = λ

∫
ωi

κ̃ψ φ dx for all φ ∈ Ṽh(ωi). (II.10)

Here, Ṽh(ωi) = Vh(ωi) ∩ V h
0 (Ω) and κ̃ is a scalar defined by

κ̃(x) = H2

Nv∑
j=1

κ(x)∇χj · ∇χj, (II.11)

where {χi}Nv
i=1 is a partition of unity subordinate to {ωi}Nv

i=1. The choice of {χi}Nv
i=1
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will be discussed in the next subsection.

The problem (II.10) is equivalent to the following symmetric algebraic eigenvalue

problem

Aωiψ = λMωiψ, (II.12)

where the matrices Aωi and Mωi are defined by

vTAωiw =

∫
ωi

κ∇v · ∇wdx for all v, w ∈ Ṽ h(ωi),

and

vTMωiw =

∫
ωi

κ̃vwdx for all v, w ∈ Ṽ h(ωi),

respectively. Denote its eigenvalues and eigenvectors by {λωi
` } and {ψωi

` }, respec-

tively. Now, we order the eigenvalues as 0 ≤ λωi
1 ≤ λωi

2 ≤ · · · ≤ λωi
i ≤ . . . . We note

that, λωi
1 = 0 and ψωi

1 is a constant vector.

Once we have the above eigenfunctions, the coarse basis functions are defined by

Ψi,` = Ih(χiψ
ωi
` ) for 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nv, (II.13)

where Ih is the fine-grid nodal finite element interpolation operator and Li is an

integer number specified for each i = 1, . . . , Nv. Then, the spectral multiscale space

is formed as

V0 = span{Ψi,` : 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nv}. (II.14)

Remark II.4.1. The coarse-space V0 and the corresponding coarse problems can

be used as a multiscale method to approximate, on the coarse-grid, the solution of

the problem (II.3), a procedure studied in the case of scalar coefficients in [6, 33].

Convergence to the reference solution (or the fine-grid solution) is expected when
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more and more additional eigenvectors are included in the coarse space.

II.4.2 Partition of unity

In this subsection, we attempt to test two choices of the partition of unity {χi}Nv
i=1

and further discuss the effect of the partition of unity on the dimension of the re-

sulting coarse space.

Case 1: piecewise linear (or bilinear) functions. If we choose χi = χlini to be

piecewise linear (or bilinear) functions [5], then by (II.2) for a 2-D domain, we have

κ(x)∇χi(x) · ∇χi(x) = κmax(x)(qTmax(x)∇χlini (x))2 + κmin(x)(qTmin(x)∇χlini (x))2.

(II.15)

Taking into account (II.15) and the fact that H2|∇χlini |2 = O(1), we get the following

form of the associated Rayleigh quotient

Q(v) =
vTAωiv

vTMωiv
=

∫
ωi

κ∇v · ∇v∫
ωi

κ̃v2

=

∫
ωi

(
κmax(qTmax∇v)2 + κmin(qTmin∇v)2

)
H2

∫
ωi

(
∑
j

κmax

(
qTmax∇χlinj )2 + κmin(qTmin∇χlinj )2

)
v2

≤

∫
ωi

(
κmax(qTmax∇v)2 + κmin(qTmin∇v)2

)
H2

∫
ωi

∑
j

(
(κmax − κmin)(qTmax∇χlinj )2 + κmin|∇χlinj |2

)
v2

.

We see that this quotient is small for functions v that satisfy

• ∇v = 0 for every region where both κmax(x) and κmin(x) have high values;

• qTmax∇v = 0 for regions where κmax(x) has high values and κmin(x) is of order
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1.

We conclude that the number of small eigenvalues is related to the number of

independent functions (that can be represented on the fine grid) that are constant

along qmax (that is along trajectories of high-anisotropy) and therefore vary along

qmin only.

Case 2: multiscale partition of unity. We propose to use the multiscale finite

element partition of unity. This is motivated by the fact that the multiscale basis

functions χmsi minimize the energy
∫
ωi
κ∇χmsi ·∇χmsi for a given boundary condition.

The multiscale finite element basis function χmsi is numerically computed through

the following problem

−div(κ∇χmsi ) = 0 in ωi, χmsi = χlini on ∂ωi. (II.16)

With such choice of the partition of unity functions, we expect that they can

eliminate interior inclusions and high-anisotropy lines that do not touch boundaries of

ωi. We present an illustrative example below to show the advantage of the multiscale

finite element partition of unity over the piecewise linear (or bilinear) partition of

unity.

We consider a conductivity field

κ(x) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)


T  1 0

0 κ22(x)


 cos(θ) − sin(θ)

sin(θ) cos(θ)

 , (II.17)

where κ22 is depicted in Figure II.1. The high-anisotropy lines are lines that form

an angle of −θ with the horizontal axis.

We compute the number of small eigenvalues for the case of {χlini }. Numerically,

we verify that there are 12 small eigenvalues for the angles θ = 0. In this case, the
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Figure II.1: Left: the fine mesh and function κ22 used in (II.17). The function η has
value 1 in the background region and value 109 in the inclusions (gray). Right: the
fine mesh inside the inclusion. See [25].

high-anisotropy lines are vertical lines. This is due to the fact that, since the mesh is

structured inside the inclusion, we can then represent 12 independent functions that

are constant in the vertical direction and vary along the horizontal direction only.

Examining Table II.1, we make the following observations. For θ = π/2, there are

also 7 small eigenvalues, a fact that is justified in the same manner. For θ = −π/4,

there are 38 small eigenvalues, while for θ = π/3 we observe only 4 small eigenvalues.

For the mesh shown on Figure II.1, all these results can be easily explained using the

fact that the fine-grid finite element functions are piece-wise linear in each triangle.

On the other hand, if we use {χmsi }, we see in Table II.1 that, for this example,

we consistently get less small eigenvalues for all the angles θ.
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θ # of small eigenvalues for χlini # of small eigenvalues for χmsi
−π/3 4 2
−π/4 38 1

0 12 5
π/4 4 2
π/3 4 2
π/2 28 7

Table II.1: Comparison of the number of small eigenvalues corresponding to the use
of χ0

i and χmsi . Sub-domain: shown in Figure II.1 (left). κ(x): defined in (II.17). See
[25].

II.5 Numerical results

In this section, we show representative numerical results for the additive precon-

ditioner (II.9) with the spectral multiscale space defined in (II.14). We consider the

equation −div(κ(x)∇u) = 1 with the boundary condition u = 0 on ∂Ω. We take

Ω = [0, 1] × [0, 1] and construct a coarse mesh TH by dividing Ω into 10 × 10 equal

squares (H = 1/10). The construction of the fine mesh Th is obtained by divid-

ing each coarse-grid cell into 10 × 10 identical squares (h = 1/100). Note that the

dimension of the fine-grid finite element space is 10201.

We run the preconditioned conjugate gradient (PCG) until the l2 norm of the

residual is reduced by a factor of 1010. We present the number of PCG iterations

and the estimated condition number of the preconditioned system. In all examples,

we consider values of the contrast η in the range 103−106 and also give the dimension

of the coarse spaces that were implemented.

We implement a two-level additive preconditioner with the following coarse spaces:

(1) multiscale basis functions with linear boundary conditions (MS); (2) energy min-

imizing basis functions (EMF); (3) linear spectral coarse space with κ̃ defined by

(II.11) where the partition of unity functions are piecewise bilinear functions χlini ;
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(4) multiscale spectral coarse space with κ̃ defined by (II.11) where the partition of

unity functions are the multiscale finite element basis functions χmsi .

II.5.1 Examples of tensors with channels of high-anisotropy

We first use the coefficient tensor defined by (II.17) with θ = 0. We consider sev-

eral heterogeneous two-valued functions for κ22. In this case, we have high-anisotropy

along horizontal straight lines. The value of κ22 in the white background region is

1 and is η in the gray regions. We consider a number of cases, which differ by the

position, the width , and the number of channels. The full description of all cases is

given in Figure II.2. Note that the anisotropy in all cases is in the x2-direction.

Horizontal channels. Two different widths of the channels are shown in Figure

II.2, Cases 1 and 2. The results are presented in Tables II.2 and II.3. First, we

remark that, the number of iterations in both cases does not change as the contrast

increases when using the spectral coarse spaces (for both χlini and χmsi ). The two

spectral coarse spaces seem to be robust with respect to the channel width. The

multiscale coarse space (MS) and the energy minimizing coarse space (EMF) are not

robust with respect to the channel width. Both, MS and EMF perform well for Case

2 (Table II.3) but not for Case 1 (Table II.2).

Regarding the dimension of the resulting coarse spaces, we see that, compared

to the linear spectral coarse space (χlini ), the dimension of the multiscale spectral

coarse space (χmsi ) is lower. An important observation is that, as the channels get

thinner and more numerous, the dimension of the linear spectral coarse space in-

creases significantly, while the dimension of the multiscale spectral coarse space even

decreases. This is due to the fact that, in Case 2, there is much less high-anisotropy

lines (that is, vertical lines within high-anisotropy channels) that touch the edges of

the coarse blocks. In our examples, the dimension of the matrix problem defining
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1. 2. 3.

4. 5. 6.

7. 8. 9.

Figure II.2: Coarse mesh and coefficients: κ22(x) = η >> 1 in the gray region and
κ22(x) = 1 in the white background. From left to right and top to bottom (angle
means the angle of inclination of the channel): 1. Horizontal wide channels with
width 1/10. 2. Horizontal thin channels with width 1/25. 3. Vertical wide channels
with width 1/10. 4. Vertical thin channels with width 1/25. 5. Inclined wide
channels with width

√
2/10 and angle π/4. 6. Inclined thin channels with

√
2/20

and angle π/4. 7. Inclined wide channels with width
√

2/10 and angle 3π/4. 8.
Inclined thin channels with width

√
2/10 and angle 3π/4. 9. Inclined thin channels

with width
√

2/20 and angle 3π/4. See [25].
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the local solvers is approximately 400 and, therefore, a coarse space of comparable

size is preferred. We conclude that the multiscale spectral coarse space produces

a robust coarse space of fairly appropriate size. The linear spectral coarse space is

robust but it might be impractical since it could be much larger than the size of a

local problem.

η MS EMF Linear spectral Multiscale spectral

103 151(2.8e+2) 56(2.6e+2) 45(18.0) 33(12.8)
104 344(2.7e+3) 320(2.5e+3) 36(12.0) 28(6.61)
105 562(2.7e+4) 531(2.6e+4) 41(13.5) 29(6.73)
106 818(2.7e+5) 743(2.6e+5) 28(5.42) 30(6.74)

Dim 81=0.79% 81=0.79% 1327=13.0% 776=7.6%

Table II.2: Number of iterations and estimated condition number for the PCG.
Coefficient: shown in Figure II.2, Case 1. The dimension of the fine space: 10201.
See [25].

η MS EMF Linear spectral Multiscale spectral

103 39(23.71) 33(13.37) 26(5.42) 26(5.84)
104 41(30.34) 33(13.38) 27(5.37) 25(5.39)
105 44(34.56) 33(13.38) 28(5.37) 25(5.39)
106 45(35.26) 33(13.38) 29(5.36) 25(5.39)

Dim 81=0.79% 81=0.79% 2298=22.5% 332=3.3%

Table II.3: Number of iterations and estimated condition number for the PCG.
Coefficient: shown in Figure II.2, Case 2. The dimension of the fine space: 10201.
See [25].

Vertical channels. Now, we consider the vertical channels with different widths.

See Cases 3 and 4 in Figure II.2. The number of iterations and the dimension of the
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local coarse spaces are displayed in Table II.4. The coarse spaces MS and EMF fail to

produce robust preconditioners in this case while the two spectral spaces are shown

to give preconditioners that are robust with respect to the contrast. We observe

that, in these two cases, the linear spectral coarse space and the multiscale spectral

coarse space bring the same result for the iterations and dimension. Furthermore,

the width and the number of the channels do not affect the iterations and dimension.

η MS EMF Linear spectral Multiscale spectral

103 115(1.64e+2) 131(3.36e+2) 52(25.7) 39(15.)
104 241(1.51e+3) 271(3.23e+3) 27(5.36) 27(5.5)
105 335(1.50e+3) 369(3.21e+3) 27(5.38) 28(5.5)
106 442(1.50e+5) 472(3.21e+5) 80(2.5e+2) 28(5.5)

Dim 81=0.79% 81=0.79% 621=6.1% 621=6.1%

η MS EMF Linear spectral Multiscale spectral

103 97(1.13e+2) 106(1.63e+2) 61(32.3) 43(16.7)
104 192(8.86e+2) 196(8.03e+2) 34(11.8) 27(5.42)
105 230(8.75e+3) 297(7.97e+3) 28(5.37) 27(5.44)
106 277(8.74e+4) 392(7.97e+4) 29(5.39) 29(5.44)

Dim 81=0.79% 81=0.79% 558=5.5% 558=5.5%

Table II.4: Number of iterations and estimated condition number for the PCG.
Coefficient: shown in Figure II.2. Case 3: top table and Case 4: bottom table. The
dimension of the fine space: 10201. See [25].

Inclined channels. These examples include inclined channels with angles π/4

and 3π/4 and different widths. See Cases 5, 6,7 and 8 in Figure II.2. The results

are presented in Table II.5 for the angle of inclination π/4. Note that the number of

iterations is still independent of the contrast for the two spectral coarse spaces. We

observe that the multiscale spectral coarse space works very well in reduction of the

dimension. Particularly, when there are more and thinner high-conductivity channels

in the region, the dimension of the local coarse spaces has decreased. However, the
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linear spectral coarse space has almost the same dimension which is three times larger

than the local solver dimension.

η MS EMF Linear spectral Multiscale spectral

104 259(3.17e+3) 223(3.12e+3) 20(5.83) 23(7.38)
106 368(3.16e+5) 345(3.10e+5) 21(12.6) 24(13.0)

Dim 81=0.79% 81=0.79% 1415=13.9% 759=7.44%

η MS EMF Linear spectral Multiscale spectral

104 74(6.83e+2) 60(1.06e+2) 19(5.17) 21(7.80)
106 83(6.75e+4) 53(1.16e+2) 14(4.97) 15(7.82)

Dim 81=0.79% 81=0.79% 1437=14.1% 179=1.75%

Table II.5: Number of iterations and estimated condition number for the PCG.
Coefficient: shown in Figure II.2. Case 5: top table and Case 6 : bottom table. The
dimension of the fine space: 10201. See [25].

In Table II.6, we present the numerical results for an angle of inclination of the

channels 3π/4. Though the angle of the channels changes, the number of iterations

does not change for the proposed coarse spaces. The results show that the dimensions

of the two spectral coarse spaces are not affected by the change of angle. This is

an important observation, since in a realistic situation there will be channels with

various angles of inclination.

The next coefficient in the numerical experiment is Case 9 of Figure II.2. In this

example, we consider a number of inclined channels with an angle 3π/4. The number

of PCG iterations and estimated condition numbers are displayed in Table II.7. We

note that the numbers of iterations are all very small in this case when the region

is full of high-productivity channels. We find that, as the number of the channels is

large, the dimension of the linear spectral coarse space is huge, while the dimension

of the multiscale spectral coarse space remains appropriate.
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η MS EMF Linear spectral Multiscale spectral

104 311(3.5e+3) 330(3.4e+3) 31(13.) 30(13.0)
106 645(3.4e+5) 595(3.4e+5) 31(13.4) 30(13.4)

Dim 81=0.79% 81=0.79% 1407=14% 879=8.6%

η MS EMF Linear spectral Multiscale spectral

104 171(1.2e+3) 204(1.5e+3) 25(11.6) 22(7.28)
106 364(1.2e+5) 375(1.5e+5) 14(5.10) 18(7.27)

Dim 81=0.79% 81=0.79% 1427=14.1% 407=4.1%

Table II.6: Number of iterations and estimated condition number for the PCG.
Coefficient: shown in Figure II.2. Case 7: top table and Case 8: bottom table. The
dimension of the fine space: 10201. See [25].

η MS EMF Linear spectral Multiscale spectral

103 41(42.7) 32(14.6) 20(4.98) 24(7.74)
104 42(59.4) 30(14.6) 19(4.99) 21(7.78)
105 40(62.7) 28(14.6) 17(4.99) 18(7.77)
106 39(63.1) 27(14.6) 16(4.99) 15(7.73)

Dim 81≈0.8% 81≈0.8% 3577≈35% 459≈4.5%

Table II.7: Number of iterations and estimated condition number for the PCG.
Coefficient: shown in Figure II.2, Case 9. The dimension of the fine space: 10201.
See [25].

II.5.2 Varying directions of high-anisotropy

Next, we test the coefficient which is of the form

κ(x) =

 κ11(x) 0

0 κ22(x)

 .

The coefficients are depicted in Figure II.3. Unlike the cases mentioned above, the

coefficient considered here has distinct anisotropy directions in different channels of

high-anisotropy. We consider several heterogeneous two-valued functions for κ11 and
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κ22. The values of κ11 and κ22 in the white background region are 1 and high within

the gray channels. The results for this case are displayed in Table II.8. As before,

the number of iterations does not change as the value of the contrast increases.

Furthermore, compared to the linear spectral coarse space, the multiscale spectral

coarse space performs much better in reducing the dimension of the coarse spaces.

Figure II.3: Coefficient κ and the coarse mesh. Left: κ11(x) = η >> 1 in the gray
region and κ11(x) = 1 in the white background (the width of each channel is 1/10).
Right: κ22(x) = η >> 1 in the gray region and κ22(x) = 1 in the white background
(the width of each channel is

√
2/20 and the angle is π/4). See [25].

η MS EMF Linear spectral Multiscale spectral
104 284(5.2e+3) 265(5.8e+3) 22(8.63) 22(8.62)
106 546(5.2e+5) 554(5.8e+5) 17(6.95) 19(8.85)
Dim 81≈0.8% 81≈0.8% 1377≈13% 387≈3.8%

Table II.8: Number of iterations and estimated condition number for the PCG.
Coefficient: shown in Figure II.3. We set the tolerance to be 10−10. H = 1/10,
h = 1/100. The dimension of the fine space: 10201. See [25].
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II.6 Analysis of the preconditioner

We follow the analysis in [27, 39]. We assume that the elements of Th contained

in Ω form a triangulation of Ω. Further, we use the notations introduced in section

II.4. Namely, {χi}Nv
i=1 is the partition of unity defined by (II.16), Ψi,l(x) are the local

spectral basis functions defined in (II.13), and V0 is the local spectral multiscale space

defined in (II.14).

Now, we define the coarse interpolation operator I0 : V h(Ω)→ V0 by

I0v =
Nv∑
i=1

Li∑
`=1

(∫
ωi

κ̃vψωi
` dx

)
Ih(χiψ

ωi
` ), (II.18)

where Ih is the fine-scale nodal value interpolation operator.

For each coarse block K, define the union of the elements that share common

edge with K, ωK =
⋃
{ωj; xj ∈ K, } and note that the weighted L2-approximation

and weighted H1-stability properties hold (cf. e.g., [23, 39]):

Lemma II.6.1. For all coarse element K, we have

∫
K

κ̃(v − I0v)2dx ≤ Cλ−1
K,L+1

∫
ωK

κ∇v · ∇vdx

and ∫
K

κ∇I0v · ∇I0vdx ≤ C max{1, λ−1
K,L+1}

∫
ωK

κ∇v · ∇vdx,

where λK,L+1 = minxi∈K λ
ωi
Li+1 and the constant C does not depend on the contrast.

Using Lemma II.6.1, we can estimate the condition number of the preconditioned

operator B−1A with B−1 defined in (II.9) using the coarse-space V0 introduced in

(II.14). Following [23, 27, 39], one has the following main result:
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Lemma II.6.2. The condition number of the preconditioned operator B−1A with

B−1 defined in (II.9) satisfies the bound

cond(B−1A) ≤ C(1 + λ−1
L+1), where λL+1 = min

1≤i≤Nv

λωi
Li+1,

with a constant C independent of the contrast η.

It can be easily shown that the eigenvalues of the local problem scale as O(1)

assuming ξi = χi, i = 1, . . . , N = Nv, in (II.11). The dependency of the condition

number on δ and H is controlled by the partition of unity {χi}Nv
i=1. The condition

number is independent of h and it is, in general, of order O(H2/δ2), see [39].

II.7 Concluding remarks

In this chapter, we have discussed robust two-level domain decomposition pre-

conditioners for highly anisotropic heterogeneous multiscale problems. The existence

of high-anisotropy within the material causes a high dimension of the coarse space,

and burden the computation consequently. Particularly, we observe that the number

of basis functions will increase within high-anisotropic sub-domains. To reduce the

dimension, we design localized eigenvalue problems to form the reduced-dimensional

spectral coarse space. Standard bilinear basis functions and multiscale basis func-

tions are employed as the partition of unity. The numerical experiments confirm

that the two spectral coarse spaces work well in reduction of the dimension and

provide robust preconditioners in the sense that the width, angle, and number of

anisotropic channels do not affect the number of iterations. Furthermore, the spec-

tral coarse space using multiscale basis functions offers a more robust preconditioner

with respect to the underlying physical parameters.
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III A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR

HIGH-CONTRAST SINGLE-PHASE FLOW PROBLEMS IN

ANISOTROPIC MEDIA1

III.1 Introduction

In this chapter, a more general parameter-dependent anisotropic flow problem is

investigated in the framework of the Generalized Multiscale Finite Element Method

(GMsFEM) [50]. Our objective is to extend the results of Chapter II and (1) consider

parameter-dependent problems, where the parameter represents possible uncertain-

ties, and (2) put the multiscale finite element into a more general framework, which

allows using various snapshot spaces (e.g., harmonic snapshot spaces). Both of these

extensions are important in extending the application range of anisotropic problems

and the efficiency and accuracy of multiscale computations. The input variable used

in GMsFEM can be characterized by: (1) uncertainties contained in the coefficients

of the problem; (2) many source terms; (3) changing boundary conditions. The pro-

posed approach treats these input parameters together and coarse spaces are con-

structed independent of the input space. This allows performing fast computations

in the online stage as discussed below.

The GMsFEM [24] is a flexible framework that extends the Multiscale Finite

Element Method (MsFEM) by systematically enriching the coarse solution spaces

by taking into account small scale information and complex input spaces. Same as

the other reduced-order methods, the objective of the GMsFEM is to construct a

small dimensional coarse space from which the multiscale solution can be efficiently

1Part of the data reported in this chapter is reprinted with permission from ”A generalized multiscale
finite element method for high-contrast single-phase flow problems in anisotropic media” by J.
Ren and M. Presho. Journal of Computational and Applied Mathematics, 277:202–214, 2015,
Copyright[2015] by Elsevier.
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and accurately approximated. This approach follows an offline-online procedure

illustrated below.

1. Offline computation:

– 1.0. Coarse grid generation;

– 1.1. Construction of snapshot space that will be used to compute an offline

space.

– 1.2. Construction of a small dimensional offline space by performing di-

mension reduction in the space of local snapshots.

2. Online computations:

– 2.1. For each input parameter, compute multiscale basis functions;

– 2.2. Solution of a coarse-grid problem for any force term and boundary

condition;

– 2.3. Iterative solvers, if needed.

At the offline stage, we first construct a larger dimensional snapshot space upon

a coarse grid. The snapshot space consists of local solution functions (via local prob-

lems) that can represent the solution space. In particular, the local problem is solved

with all possible boundary conditions (and with various choices of input parameters)

in Step 1.1. Next, a smaller dimensional offline space, as a subspace of the snap-

shot space, is constructed via a spectral decompositions in Step 1.2. Typically, the

spectral decomposition is based on a local eigenvalue problem. Via the local eigen-

value problem, the offline space is then formed by the selected dominant modes. We

emphasize here that oversampling techniques can be used in local computations to

achieve more stringent error bounds [29].
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For parameter-dependent problems, an online computation is needed. In Step 2.1,

we construct online solution spaces that correspond to some specified values of the

input parameter. To obtain a small dimensional subspace of the offline space, a spec-

tral decomposition will be performed in the offline space. The identified dominant

modes then generate the required online space. Finally, the resulting multiscale basis

functions are coupled via a respective global formulation to compute the solution.

The goal of this chapter is to investigate the application of the GMsFEM to

high-contrast flow problems with strong anisotropy. We consider a second order el-

liptic problem, where the coefficient exhibits parameter-dependence which models

the physical characteristics of the porous medium. The strong anisotropy is aligned

with one coordinate axis that is described by an extremely small parameter. Ad-

ditionally, we incorporate a continuous Galerkin (CG) coupling mechanism to solve

the global problem, and use an oversampling procedure in order to construct the

localized basis functions. The proposed method is shown to yield decreasing errors

that correspond to the selection of more dominant eigenfunctions in the coarse so-

lution space. In other words, larger coarse spaces expectedly offer more accurate

approximations. We validate the performance of the method through considering a

variety of cases and numerical examples.

The rest of this chapter is organized as follows. In Section III.2, we formulate the

model problem, introduce the notation to be used throughout this chapter. Section

III.3 is devoted to the detailed construction of the coarse space. In particular, the

construction of the snapshot space, offline space, and online space will be presented

in subsections III.3.1, III.3.2, and III.3.3, respectively. A variety of numerical experi-

ments are offered in Section III.4. We finish this chapter by offering some concluding

remarks in Section III.5.
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III.2 Problem formulation

In this study, we consider a second-order elliptic problem in a convex polygonal

domain Ω ⊂ Rn, where n = 2 or 3:

−div(κ(x;µ)∇u) = f in Ω, (III.1)

u(x) = 0 on ∂Ω.

Here, the coefficient κ(x;µ) represents the conductivity field of a highly heterogenous

porous medium with high-anisotropy. In the two dimensional case that we study in

this chapter, it is assumed that κ(x;µ) takes the form

κ(x;µ) = (1−µ)κ1(x)+µκ2(x) = (1−µ)

 κ1
1(x) 0

0 1
ε1
κ2

1(x)

+µ

 κ1
2(x) 0

0 1
ε2
κ2

2(x)

 ,

where µ is taken to be a value in some parameter space. The terms κ1
1, κ2

1, κ1
2 and

κ2
2 are of the same order of magnitude, whereas the parameters 0 < ε1, ε2 6 1 can

be very small, provoking the high anisotropy of the problem (see Figure III.1 for

an illustration of κ1(x) and κ2(x)) . While the anisotropic direction presented in

this chapter is fixed and aligned with the y−axis, more general anisotropies can be

applied to our method. For instance, the direction of the high-conductivity can vary

in different regions.

In introducing the discrete form of the problem, we first comment on the notion

of the coarse and fine mesh. Though there is some overlap with the notations of

coarse grids introduced earlier in Chapter II, for convenience, we briefly introduce

the coarse and fine grid notations as some extra coarse grid information will be used

in this chapter. The domain Ω is assumed to be discretized by a coarse-grid partition
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(a) y-directional component of κ(x) (b) y-directional component of κ1(x)

(c) y-directional component of κ2(x)

Figure III.1: Illustration of y-directional anisotropic conductivities. See [50].

denoted by T H of mesh size H. The conforming triangulation can be generated by

triangles, quadrilaterals, tetrahedrals, etc. The fine mesh is obtained by splitting

each sub-domain in TH into a connected union of fine-grid blocks, and we denote it

by Th of mesh size h. Given a coarse discretization T H , we denote by {xi}Nv
i=1 (where

Nv is the number of coarse nodes) the vertices of T H , and define the neighborhood

ωi of the node xi by (II.7). Furthermore, we introduce a notation for an oversampled

region denoted by ω+
i . Generally, we choose ω+

i by adding a single or multiple layers
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i

i ω+i
Oversampled
Region

i ωi
Coarse
Neighborhood

A Coarse Element in T H

K4

K3 K2

K1
K

T H (Coarse Discretization)

Figure III.2: Illustration of a coarse neighborhood and oversampled region. See [50].

of fine-grid blocks around ωi. That is,

ω+
i = ωi ∪ {ni layer(s) of fine-grid blocks around ωi, ni > 1}. (III.2)

See Figure III.2 for an illustration of a neighborhood, oversampled region, and ele-

ments subordinated to the coarse discretization.

Next, we briefly outline the formation of coarse basis space. Throughout the

chapter, we consider continuous Galerkin formulations only. We denote the online

coarse basis space by V +
on which consists of {ψ+,on

i,k : 1 ≤ i ≤ Nv, 1 ≤ k ≤ Li,on},

where Li,on denotes the number of dominant eigenfunctions that are included on each

coarse neighborhood. For each coarse node xi, {ψ+,on
i,k : 1 ≤ k ≤ Li,on} are computed

by performing a spectral decomposition in the offline space V +
off via an eigenvalue

problem on ω+
i or ωi. We again note that an oversampling technique is used in local

problems. The details of the offline-online localized spectral construction will be

offered in the next section. Once the coarse space is formed, the discrete problem
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reads as follows. We seek uH ∈ V +
on such that

a(uH , v;µ) = (f, v), for all v ∈ V +
on, (III.3)

where a(u, v;µ) =

∫
Ω

κ(x;µ)∇u · ∇v and (f, v) =

∫
Ω

fv. For the notational con-

venience, we will denote the continuous variables and the corresponding discrete

quantities with the same symbols.

III.3 Construction of the multiscale coarse space

In this section, we will discuss the construction of the multiscale solution space.

We will first introduce the snapshot space, which contains an extensive set of basis

functions formed by solutions of local problems with all possible boundary conditions.

Then, we will present a space reduction technique which enables us to identify the

dominant modes in the snapshot space. At the end, an online space is constructed

for problems with parameter dependency.

III.3.1 Snapshot space

In the offline computation, we first construct a snapshot space V +
snap or V ωi

snap,

depending on the choice of domain for generating the space, where ω+
i is an over-

sampled region that contains the neighborhood ωi. We note that in the case when ωi

is adjacent to the global boundary, no oversampled domain is used. For notational

brevity, we will only use the superscript + for either choice of computation domain.

For example, + may also be referred to a “non-oversampled” domain. Because the

snapshot space consists of spatial fields defined on local fine grids, they are vectors

of the dimension of the fine-grid resolution of a local coarse region. In general, the

standard fine-scale finite element space defined on ω+
i will be used in the computation

of snapshots.
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One of benefits of constructing the localized snapshot space is that it can keep

the local solution space independent of the global source term or boundary condi-

tion. In the case of a large parameter space, it can avoid the extremely expensive

re-computation when the source term or boundary condition is changed. Another

benefit is the elimination of unwanted degrees of freedom (Dof) in the parameter

space. We note that there exist Dofs which may not contribute to the global solu-

tion, and as a result, such snapshots should not be considered in the offline space.

Instead, we specify the parameter µ as a set of fixed values {µj, 1 6 j 6 J}, where J

denotes the number of parameter values we choose in the snapshot generation. Each

µj will be input to generate a single snapshot. We present two choices for generating

the snapshot space, though other options may be also applicable.

First choice: harmonic snapshot. We consider snapshot space consisting of

harmonic extension of fine-grid functions defined on ∂ω+
i . We solve

−div(κ(x;µj)∇ψ+,snap
l,j ) = 0 in ω+

i , ψ+,snap
l,j = δl,m on ∂ω+

i ,

where {µj : 1 6 j 6 J} is a pre-specified set of parameter values, l, m ∈ J(∂ω+
i )

(nodes on ∂ω+
i ). The snapshot space corresponding to the oversampled region ω+

i

can be written as

V +
snap = span{ψ+,snap

l,j : 1 6 j 6 J, l ∈ J(∂ω+
i )}.

Second choice: eigenvalue snapshot. We propose to solve the following zero Neu-
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mann boundary value problem

−div(κ(x;µj)∇ψ+,snap
l,j ) = λ+,snap

l,j κ̃(x;µj)ψ
+,snap
l,j in ω+

i . (III.4)

Here, κ̃ is a scalar weight associated with the coefficient matrix κ(x;µ) and contains

the relevant behavior of the solutions that needs to be represented by coarse basis

functions {χ+
i }. In this chapter we define κ̃ = H2

∑
i κ∇χ

+
i · ∇χ+

i , where χ+
i is the

standard multiscale basis function to be later defined in problem (III.17). Note that

the eigenvalue problem (III.4) is an extension of the spectral problem (II.10) in Chap-

ter II to a parameter-dependent case. Discretization of (III.4) yields a generalized

eigenvalue problem of the form

A+,snap(µj)ψ = λM+,snap(µj)ψ, in ω+
i , (III.5)

where we define the local matrix A+,snap(µj) and the mass matrix M+,snap(µj) by

A+,snap
m,n (µj) =

∫
ω+
i

κ(x;µj)∇φm · ∇φn and M+,snap
m,n (µj) =

∫
ω+
i

κ̃(x;µj)φmφn,

(III.6)

and φn are standard fine-scale basis functions.

We denote the eigenvalues and eigenvectors of (III.6) by {λ+,snap
l,j } and {ψ+,snap

l,j },

respectively, and order the first Li eigenvalues as

0 6 λ+,snap
1,j 6 λ+,snap

2,j 6 · · · 6 λ+,snap
Li,j

.

Then, the Li eigenvectors corresponding to the first Li smallest eigenvalues generate
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a local snapshot space. That is,

V +
snap = span{ψ+,snap

l,j : 1 6 j 6 J, 1 6 l 6 Li}. (III.7)

We re-numerate the snapshot functions by a single index to create the snapshot

matrix

R+
snap =

[
ψ+,snap

1 , · · · , ψ+,snap
Lsnap

]
and Rsnap =

[
ψsnap

1 , · · · , ψsnap
Lsnap

]
,

where ψsnap
k = Iωi(ψ+,snap

k ) is the restriction of ψ+,snap
k to ωi, and the dimension of

the local snapshot space is Lsnap = J ∗ Li.

Remark III.3.1. The eigenvalues of (III.5) vanish asymptotically which can enable

us to select the high-energy modes by picking small eigenvalues (see [33, 39]). In-

tuitively speaking, the dominant eigenvectors corresponding to the small eigenvalues

own high energy at the place where the high conductivity occurs. Thus, there is a

close relation between high-energy modes and the structure of the spatial fields. In

[39], it was shown that the number of small eigenvalues depends on the number of

inclusions and channels within the local region, and the choice of the partition of

unity {χ+
i } in computing κ̃. Recall that in Chapter II, multiscale basis functions are

employed to be the partition of unity, which offers an efficient reduction in the dimen-

sion of the multiscale coarse space. Here, in the framework GMsFEM (with snapshot

spaces, oversampling techniques), the localized eigenvalue problems still show great

performance in reducing the dimension of the coarse space.

Remark III.3.2. We note that the space of snapshots involves solving local problems

for a set of parameter values {µj}. For each single snapshot set V +
snap(µj) , the

eigenvectors are independent and orthogonal with respect to the mass matrix M+(µj).
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The snapshot space V +
snap corresponding to the coarse node i is the combination of

all the single snapshots, i.e. V +
snap = ∪jV +

snap(µj). In order to guarantee that the

snapshot matrix R+
snap is healthy for the offline space construction, it is desirable to

remove the dependency in V +
snap. Furthermore, even if R+

snap does not have dependent

elements, the truncated matrix Rsnap can still do. This occurs when the independent

components are only within the area ω+
i \ωi. In the parameter independent case, there

is no such issue. Without loss of generality, in this chapter both matrices R+
snap and

Rsnap are assumed to be linearly independent.

III.3.2 Offline space

The main goal at the offline stage is to construct a small dimensional space

V +
off in the space of snapshots using a dimension reduction technique. To perform

a dimension reduction, typically we use an auxiliary spectral decomposition of the

space V +
snap. More precisely, we are trying to seek a possibly small dimensional

subspace V +
off ⊂ V +

snap such that for any ψ ∈ V +
snap(µ∗) (µ∗ is chosen in the parameter

space), it can be approximated in V +
off in an appropriate sense.

Due to the fact that the space of snapshots involves solving local problems for

various choices of the input parameters and source terms, the offline space as a

subspace can be re-used to generate the multiscale basis functions for any input

parameter at the online stage without repeated computation. Thus, the offline (pre-

computation) stage saves us a considerable computation time at the online stage.

Also we note that at the offline stage, eigenvalue problems is parameter free. Thus,

generally the weighted averages κ and κ̃ will be used in the bilinear forms.

Below we provide several plausible eigenvalue problems in the space of snapshots:
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AoffΨ off
k = λoff

k M
offΨ off

k (III.8)

A+,offΨ off
k = λoff

k M
offΨ off

k (III.9)

AoffΨ off
k = λoff

k M
+,offΨ off

k (III.10)

A+,offΨ off
k = λoff

k M
+,offΨ off

k (III.11)

where

Aoff =
[
aoff
mn

]
=

∫
ωi

κ(x;µ)∇ψsnap
n · ∇ψsnap

m = RT
snapARsnap,

Moff =
[
moff
mn

]
=

∫
ωi

κ̃(x;µ)ψsnap
n · ψsnap

m = RT
snapMRsnap,

A+,off =
[
a+,off
mn

]
=

∫
ω+
i

κ(x;µ)∇ψ+,snap
n · ∇ψ+,snap

m = (R+
snap)TA

+
R+

snap,

M+,off =
[
m+,off
mn

]
=

∫
ω+
i

κ̃(x;µ)ψ+,snap
n · ψ+,snap

m = (R+
snap)TM

+
R+

snap.

We refer the interested reader to [6] for more convergence estimates associated

with the above eigenvalue problems. We emphasize that the analysis and examples in

[6] were built to treat isotropic problems, whereas the main goal of the present work

is to offer a generalized framework which extends to highly anisotropic problems.

Here, A+ and A as defined in III.6 denote the fine-scale stiffness matrix on ω+
i and

ωi respectively, A
+

and A are their corresponding matrices which used averaged

coefficients in the construction. We note that the construction of the offline space is

carried out independently on coarse cells which suggests that parallel computation

can be utilized. Each eigenvalue problem above will individually produce a set of

eigenvectors for generating the offline space V +
off by: 1. selecting Loff eigenvectors
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corresponding to the smallest Loff eigenvalues from one of the eigenvalue problems

(III.8-III.11); 2. computing the element ψ+,off
k =

Lsnap∑
j=1

Ψ off
kj ψ

+,snap
j for k = 1, · · · , Loff,

where Ψ off
kj is the jth component of Ψ off

k . Then the offline space in the oversampled

region ω+
i is formed as

V +
off = span{ψ+,off

k : 1 6 k 6 Loff}. (III.12)

We create the offline matrices by setting

R+
off =

[
ψ+,off

1 , · · · , ψ+,off
Loff

]
and Roff =

[
ψoff

1 , · · · , ψoff
Loff

]
,

where ψoff
k = Iωi(ψ+,off

k ) is a natural projection of ψ+,off
k on ωi.

Remark III.3.3. For the parameter-independent case, there is inherently no need to

average the stiffness matrix and the mass matrix in the offline stage. Also, the offline

space is identical to the online space where we seek the global multiscale solution.

Therefore, the online stage is limited to the parameter-dependent case only.

Remark III.3.4. In general, Loff 6 Lsnap. In other words, the offline space is a

subspace of the snapshot space which can suitably incorporate the multiscale infor-

mation. As for a high-contrast anisotropic problem, our main concern is the field

with high-energy. It is ideal that the coarse basis space can recover pertinent in-

formation to accurately approximate the fine-mesh solution. At the same time, a

reduced-dimension approximation space is also desirable for efficient computation.

The balance between accuracy and efficiency would definitely allow us to increase the

simulation efficiency with a desired level of accuracy. As such, the dimension tech-

nique used in the offline stage can greatly benefit us in various multiscale problems.

Remark III.3.5. The convergence of GMsFEM is proportional to the maximum of
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(b) Eigenvalues problem III.9 using harmonic
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(c) Eigenvalues problem III.10 using harmonic
snapshots
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(d) Eigenvalues problem III.10 using spectral
snapshots

Figure III.3: Eigenvalues decay on log-scale against the number of eigenvalues. µ = 0.
Coefficient κ(x;µ) = κ1(x) = diag(1, 1

ε1
) with ε1 = 10−5 in red region, ε1 = 1 in the

blue region, see Figure III.1 (b). Computation domain ω+
i = [0.4, 0.8]× [0.4, 0.8] or

ωi = [0.5, 0.7]× [0.5, 0.7]. See [50].

the reciprocal of the eigenvalue whose corresponding eigenvector is not included in

the coarse space [33]. We test several choices of the bilinear forms for the eigenvalue

problems (III.8)-(III.11), and depict some respresentative results in Figure III.3. As

we observe from the figure, the decay of eigenvalues is much faster when the eigen-

value problem is solved on oversampled domains.
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III.3.3 Online space

Our goal at the online stage is to construct a small dimensional subspace of

the offline space that will yield suitable multiscale basis functions. The procedure

of constructing online space is very similar to the one for offline space. A focal

difference is that κ(x;µ) and κ̃(x;µ) are now taken to be parameter-dependent. In

other words, the reduced dimension online space will be computed for each parameter

value within the fixed offline space. In particular, for each oversampled region ω+
i

and for each input parameter value µ∗, we seek a subspace V +
on(µ∗) of V +

off via spectral

decomposition. Below are a variety of eigenvalue problems that may be used at the

online stage:

Aon(µ∗)Ψ on
k = λon

k M
on(µ∗)Ψ on

k (III.13)

A+,on(µ∗)Ψ on
k = λon

k M
on(µ∗)Ψ on

k (III.14)

Aon(µ∗)Ψ on
k = λon

k M
+,on(µ∗)Ψ on

k (III.15)

where

Aon(µ∗) = [aon
mn(µ∗)] =

∫
ωi

κ(x;µ∗)∇ψoff
n · ∇ψoff

m = RT
offA(µ∗)Roff,

Mon(µ∗) = [mon
mn(µ∗)] =

∫
ωi

κ̃(x;µ∗)ψoff
n · ψoff

m = RT
offM(µ∗)Roff,

A+,on(µ∗) =
[
a+,on
mn (µ∗)

]
=

∫
ω+
i

κ(x;µ∗)∇ψ+,off
n · ∇ψ+,off

m = (R+
off)TA+(µ∗)R+

off,

M+,on(µ∗) =
[
m+,on
mn (µ∗)

]
=

∫
ω+
i

κ̃(x;µ∗)ψ+,off
n · ψ+,off

m = (R+
off)TM+(µ∗)R+

off.
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Each eigenvalue problem of (III.13-III.15) will individually produce a family of eigen-

vectors for generating the online space V +
on(µ∗) by: 1. selecting Lon (6 Loff) eigen-

vectors corresponding to the smallest Lon eigenvalues from one of the eigenvalue

problems (III.13-III.15); 2. computing the projection ψ+,on
k =

Loff∑
j=1

Ψ on
kj ψ

+,off
j for

k = 1, · · · , Lon, where Ψ on
kj is the jth component of Ψ on

k . Then when parameter

µ = µ∗ the online space in the oversampled region ω+
i is formed as

V +
on(µ∗) = span{ψ+,on

k : 1 6 k 6 Lon}. (III.16)

III.4 Numerical results

In this section, we offer a variety of numerical results for two-dimensional problem

−div(κ(x;µ)∇u) = 1,

with boundary condition u = x + y. We solve the global problem on the two-

dimensional unit square Ω = [0, 1]×[0, 1]. The coarse discretization T H is constructed

by dividing Ω into 10×10 or 20×20 equal square sub-domains such that H = 1/10 or

1/20. The fine discretization T h is obtained by splitting each coarse-grid sub-domain

into 10× 10 or 5× 5 small equal squares, respectively, so that the fine mesh has size

h = 1/100 for both cases. In all numerical cases, we let κ̃ = H2
∑

i κ∇χ
+
i · ∇χ+

i

where the partition of unity is chosen as the multiscale basis functions χ+
i defined

below:

−div(κ∇χ+
i ) = 0 in ω+

i , χ+
i = χ0

i in ∂ω+
i . (III.17)

Here χ0
i is the bilinear basis function (and we use linear boundary conditions). We

consider two types of oversampled regions for the local problems, denoted by ω+1f
i
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and ω+1c
i , respectively. ω+1f

i is obtained by adding a single layer of fine-grid blocks

around ωi and ω+1c
i is obtained by adding one layer of coarse-grid blocks around ωi.

The numerical errors will be measured in weighted L2 and weighted H1 (i.e., energy)

norms defined as

‖u‖L2 =

(∫
Ω

‖κ‖2u
2 dx

)1/2

, ‖u‖H1 =

(∫
Ω

κ∇u · ∇u dx
)1/2

respectively, where ‖κ‖2 =
√
λmax(κ∗κ) (κ∗ denotes the conjugate transpose of κ).

III.4.1 Parameter-independent case

In this subsection we test the parameter-independent case in which κ(x;µ) =

κ1(x) and ε1 = 10−5 . In this case we do not need to construct the online space and

the offline space will be used as the multiscale basis space for the global Galerkin

coupling.

First we test the offline space in 10 × 10 coarse triangulation with oversampled

region ω+1c
i by harmonic extensions. The offline space (online space) is constructed

in the snapshot space using the eigenvalue problems (III.8), (III.9) and (III.10) in

ω+1c
i . The error description is given in Table III.1, III.2 and III.3. We also present

the index Λ∗ in each case, where Λ∗ = minωi
λ+

Loff+1 (see [33]). As we expected, both

weighted errors decrease to some extent when we increase the dimension of the offline

space. The residual errors are a limitation of the snapshot space (and subsequent

offline space) to capture all relevant behavior of the system. However, to show our

selection of the offline space is suitable, in Table III.4 we present the error between the

GMsFEM solutions approximated in the snapshot space (i.e., maximum dimensional

offline space) and a variety of lower-dimensional offline spaces, where the eigenvalue

problem (III.10) is used. These convergence results confirm that the selected offline

space as a subspace of the snapshot space indeed can be a good approximation space
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with dimension-reduced basis.

dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

796 0.15 3.23 27.02

1494 2.02× 102 3.14 19.22

2134 1.40× 103 3.12 14.20

2774 4.23× 104 3.10 9.06

Table III.1: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.8), 10 × 10 coarse mesh, harmonic snapshots, ω+

i = ω+1c
i .

See [50].

dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

796 0.15 3.23 27.03

1494 2.02× 102 3.14 19.23

2134 1.40× 103 3.12 14.20

2774 4.23× 104 3.11 9.12

Table III.2: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.9), 10 × 10 coarse mesh, harmonic snapshots, ω+

i = ω+1c
i .

See [50].

Next, we test the offline space constructed in space of snapshots by eigenvalue

problems. This is implemented by first selecting the dominant eigenvectors of the

eigenvalue problem (III.4) in ω+1c
i as the snapshot space, then applying the eigen-

value problem (III.10) and identifying the dominant modes as the offline space. The

numerical results are presented in Table III.5. We note that the selection of an

eigenvalue snapshot space offers more flexibility (and possibly more accuracy) in
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dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

796 2.47× 10−4 3.27 27.05

1494 5.98× 10−3 3.18 19.27

2134 0.018 3.16 14.25

2774 36.79 3.13 9.12

Table III.3: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.10), 10 × 10 coarse mesh, harmonic snapshots, ω+

i = ω+1c
i .

See [50].

dim(V +
off) Λ∗

‖u+,2774 − u+,off‖
L2(Ω) H1(Ω)

796 2.47× 10−4 0.40 25.47

1494 5.98× 10−3 0.12 16.97

2134 0.018 0.09 10.94

2504 0.27 0.05 4.17

Table III.4: Relative errors (in %) between the maximal dimension offline solution
and offline spaces; Eigenvalue problem (III.10), 10× 10 coarse mesh, harmonic snap-
shots, ω+

i = ω+1c
i . See [50].

the construction. More specifically, more eigenfunctions may directly included in

the eigenvalue snapshot space, whereas the size of the harmonic snapshot space is

limited by the dimension of the target boundary.

We also consider a smaller oversampled region ω+1f
i which includes one layer of

fine-grid blocks (see results in Table III.6). We observe in this example similar results

as those in the first set of examples. Though a smaller oversampled region allows us

to obtain more independent eigenvectors on the target domain, the irreducible error

stays around 10%.

In the next set of numerical examples, we compute the GMsFEM solution on

20 × 20 coarse grid. The numerical results in Table III.7 are obtained when eigen-
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dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

899 0.0089 3.17 26.81

2519 0.16 3.06 19.52

3539 1.90× 103 2.98 13.88

4829 4.06× 104 2.43 8.41

Table III.5: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.10), 10× 10 coarse mesh, eigenvalue snapshots, ω+

i = ω+1c
i .

See [50].

dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

899 1.50 3.13 26.97

2519 102.71 3.08 19.21

4139 373.93 3.07 14.13

4949 5.08× 103 3.07 11.41

Table III.6: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.10), 10 × 10 coarse mesh, harmonic snapshots, ω+

i = ω+1f
i .

See [50].

value problem (III.10) is applied in order to construct the solution space. In this

case, it is expected that the space of harmonic snapshots can approximate the fine-

grid solution more accurately than the case of a coarser grid. We still observe an

irreducible residual error, although it is reduced by half to roughly 5%. In Table

III.8, we compare the GMsFEM solution to the maximal dimension offline solution

approximated in the snapshot space. It is not a surprise that the weighted error

becomes smaller and the irreducible residual error is reduced. As with the examples

in Table III.5, in Table III.9 we present the case when the snapshot space consists

of eigenvectors defined in (III.4). The numerical result does not reflect a significant

improvement over the 10× 10 case possibly because of the dependency of the eigen-
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vectors due to a smaller target domain. A smaller oversampled region ω+1f
i is also

considered (see result in Table III.10). Compared to the result in region ω+1c
i , we see

that the addition of more eigenvectors does not guarantee better convergence.

dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

1834 0.078 1.92 34.93

2857 0.37 1.46 15.46

3549 1.92× 103 1.42 11.44

4485 2.06× 104 1.42 5.53

Table III.7: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.10), 20 × 20 coarse mesh, harmonic snapshots, ω+

i = ω+1c
i .

See [50].

dim(V +
off) Λ∗

‖u+,4485 − u+,off‖
L2(Ω) H1(Ω)

1834 0.078 0.84 34.49

2857 0.37 0.08 14.55

3549 1.92× 103 0.02 10.19

4125 8.03× 103 0.008 6.58

Table III.8: Relative errors (in %) between the maximal dimension offline solution
(u+,4485 ) and offline spaces; Eigenvalue problem (III.10), 20× 20 coarse mesh, har-
monic snapshots, ω+

i = ω+1c
i . See [50].

The last result we show for the parameter-independent case is the correlation

between the energy errors and 1/Λ∗. It was demonstrated that the energy norm is

proportionally controlled by (1/Λ∗)
1
2 . We plot the correlation for the 10× 10 case in

Figure III.4(a) and III.4(c), for the 20× 20 case in Figure III.4(b) and III.4(d) . We

46



dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

2174 0.07 2.10 34.49

3978 0.58 1.43 15.68

5784 1.50 1.43 12.04

7589 67.26 1.42 9.78

Table III.9: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.10), 20× 20 coarse mesh, eigenvalue snapshots, ω+

i = ω+1c
i .

See [50].

dim(V +
off) Λ∗

‖u− u+,off‖
L2(Ω) H1(Ω)

2174 0.26 1.94 34.58

3979 1.39 1.43 15.41

6506 407.49 1.42 11.39

7368 3.41× 103 1.42 5.76

Table III.10: Relative errors (in %) between the fine-scale solution and offline spaces;
Eigenvalue problem (III.10), 20 × 20 coarse mesh, harmonic snapshots, ω+

i = ω+1f
i .

See [50].

see that 10 × 10 coarse mesh yields a weaker correlation (correlation coefficients of

roughly 0.90) between the energy norm and (1/Λ∗)
1
2 , as compared to the 20×20 finer

mesh (correlation coefficient of roughly 0.98). However, the all plots illustrate a clear

correlation between the proportionality of the energy error and spectral behavior of

the system.

III.4.2 Parameter-dependent case

In this subsection, we consider a parameter-dependent example in which the

distribution of the conductivity is controlled by a parameter. In particular, we assume
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Figure III.4: Relation between relative energy error and Λ∗ for Table III.4, III.8,
III.5, and III.9 respectively. See [50].

that the conductivity takes the form

κ(x;µ) = (1− µ)κ1(x) + µκ2(x),

where 0 6 µ 6 1 and κ1(x), κ2(x) are shown in Figure III.1 (ε1 = ε2 = 10−5). For this

case, the construction of the snapshot space involves specifying nine fixed values of µ

in order to create the snapshot functions on each coarse oversampled region. In the

example, the online space is obtained by the following steps: 1. creating the snapshot
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space by applying eigenvalue problem (III.4) and then removing the dependency of

the nine sets of dominate eigenvectors; 2. forming the offline space by solving one

of the eigenvalue problems (III.8), (III.9) and (III.10) with µ-averaged coefficients;

3. finally constructing the online space in the offline space by performing one of the

eigenvalue problems (III.13), (III.14) and (III.15) with a fixed online parameter value

µ∗ = 0.5. For the results in this subsection we use oversampled regions ω+1c
i .

To further motivate more rigorous error comparisons, we first offer a representa-

tive set of solution plots in Figure III.5. As we can see, a coarse online space of too

small a dimension yields a somewhat crude approximation to the fine scale solution.

However, and increase in the size of the coarse dimension yields a solution that is

essentially indistinguishable from the fine scale reference solution.

Detailed error comparisons are presented in Tables III.11, III.12 and III.13. The

weighted errors between online solution and fine-scale solution (and offline solution)

are shown to predictably decrease as we increase the dimension of the online space.

Thus, we conclude that the variety of spectral problems posed in the oversampled

regions, yield online GMsFEM solution spaces that accurately capture the fine scale

solution.

dim(V +
on) Λ∗

‖u− u+,on‖ ‖u+,off − u+,on‖
L2(Ω) H1(Ω) L2(Ω) H1(Ω)

899 1.12 4.02 27.95 3.20 27.48

2519 277.76 3.78 20.50 3.10 19.88

4402 6.80× 103 3.37 12.10 2.65 11.04

4984 - 1.70 5.32 0.029 1.01

Table III.11: Relative errors (in %) between the fine-scale solution (and offline solu-
tion) and online spaces; Eigenvalue problem (III.13), 10×10 coarse mesh, eigenvalue
snapshots, ω+

i = ω+1c
i . See [50].
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(a) GMsFEM solution, dim(V +
on) = 251 (b) GMsFEM solution, dim(V +

on) = 2114

(c) Fine solution, dim(T h) = 10201

Figure III.5: Solution plots corresponding to the error results in Table III.13. See
[50].

III.5 Concluding remarks

In this chapter we have presented the Generalized Multiscale Finite Element

Method (GMsFEM) aiming at the construction of accurate, reduced-dimensional ap-

proximation spaces for single-phase flow problems with high-contrast, high-anisotropy,

and parameter-dependent coefficients. The framework uses an offline-online proce-

dure in which the smaller-dimensional online space is computed in the fixed offline

space using specified local eigenvalue problems. Several bilinear forms associated to
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dim(V +
on) Λ∗

‖u− u+,on‖ ‖u+,off − u+,on‖
L2(Ω) H1(Ω) L2(Ω) H1(Ω)

899 1.14 4.17 27.97 3.27 27.43

2519 2.59 3.78 20.50 3.01 19.79

4402 6.80× 103 3.67 12.10 2.56 10.88

4984 - 1.69 5.34 0.0055 0.90

Table III.12: Relative errors (in %) between the fine-scale solution (and offline solu-
tion) and online spaces; Eigenvalue problem (III.14), 10×10 coarse mesh, eigenvalue
snapshots, ω+

i = ω+1c
i . See [50].

dim(V +
on) Λ∗

‖u− u+,on‖ ‖u+,off − u+,on‖
L2(Ω) H1(Ω) L2(Ω) H1(Ω)

899 0.0064 4.70 29.18 3.63 28.67

2519 3.74 3.78 20.50 3.01 17.80

4402 6.80× 103 3.37 12.09 2.56 10.89

4984 - 1.70 5.40 0.0039 0.63

Table III.13: Relative errors (in %) between the fine-scale solution (and offline solu-
tion) and online spaces; Eigenvalue problem (III.15), 10×10 coarse mesh, eigenvalue
snapshots, ω+

i = ω+1c
i . See [50].

the eigenvalue problems are presented. In particular, all such eigenvalue problems

allow us to flexibly choose a set of online eigenvectors that offer a predictable error

decline. In other words, the construction of larger dimension online spaces (by adding

more eigenvectors) allows us to more accurately capture the behavior of the system.

The supporting numerical examples show that GMsFEM offers an accurate and effi-

cient framework for treating the high-contrast anisotropic problems considered in this

chapter. Compared to our results in Chapter II, in this chapter, we consider the more

general framework GMsFEM with the presence of parameter-dependent coefficients,

harmonic snapshots, and oversampling techniques. This general framework can be

helpful solving more general anisotropic problems in perforated domains, elasticity
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field or in mixed forms.
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IV A MULTILEVEL METHOD FOR THE GENERALIZED MULTISCALE

FINITE ELEMENT METHOD

IV.1 Introduction

In this chapter, we present a multilevel method for constructing the coarse solu-

tion space in the framework of the Generalized Multiscale Finite Element Method

(GMsFEM).

We have discussed some of the advantages of the GMsFEM and also refer to

[25, 26, 28, 29, 40, 50]. Next, we briefly outline some of the aspects of the GMsFEM

where some further improvements are needed. The systematic construction of multi-

scale basis functions in the GMsFEM [24] distinguishes this approach from the other

multiscale finite methods. The multiscale basis functions are determined (following

an offline-online procedure) by using local snapshot spaces and local spectral prob-

lems. At the offline stage, we construct the snapshot space by solving a set of local

problems that involve all possible boundary conditions. The offline space is then

generated by performing spectral decomposition in the snapshot space. The offline

space is further used to construct the multiscale solution space at the online stage.

The GMsFEM discussed previously is a two-level method, where coarse basis

functions are numerically computed within the coarse sub-domains on the fine grids.

Though these local computations occurring at the offline stage could be viewed as a

pre-computation process, it can be very expensive when the fine grid is sufficiently

small. The strong anisotropy will further burden the local computations. To save the

computational cost at the offline stage, we propose to employ a multilevel method

to hierarchically compute the coarse basis functions. This is motivated by the fact

that multilevel methods could significantly increase the computational speed be-
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cause of the fewer degrees of freedom involved in the local couplings. There are

various approaches within multilevel techniques can be used to speed-up the cal-

culations. These can include multilevel snapshot calculations, multilevel eigenvalue

solution techniques when the snapshot space consists of all fine-grid vectors, multi-

level procedures in the online stage and so on. We refer to [31, 32, 53], where the

authors proposed multilevel approaches for solving local spectral problems. In these

approaches, the snapshot space is not used (or, the snapshot space consists of all

fine-grid vectors). As a consequence, one of the challenges in these approaches is the

construction of the partition of unity functions. The authors use partition of unity

on the fine grid or their procedures can not guarantee the optimal partition of unity

functions. The main idea of our proposed approach is to employ multilevel techniques

in computing harmonic snapshots. As we discussed earlier, with harmonic snapshot

functions, one can use oversampling techniques, which is not possible within previ-

ous approaches. Thus, the design of multilevel approaches for constructing harmonic

snapshot functions is important, which is a focus of this chapter.

In order to compute multiscale basis functions, we design an algorithm for recur-

sively constructing the snapshot spaces and the offline spaces. In particular, a nested

sequence of snapshot spaces are computed where the snapshot space associated with

the current grid is sought from the one related to the previous finer grid. We also

prove that following such multilevel construction, the resulting multiscale solution

space can adequately approximate the fine-scale solution up to the desired accuracy.

The rest of this chapter is organized as follows. In Section IV.2, we present pre-

liminaries and a brief introduction of the two-level GMsFEM. Section IV.3 is devoted

to the detailed multilevel construction of the multiscale solution space. Numerical

experiments and the time complexity analysis are presented in Section IV.4. Some

convergence analysis is provided in Section IV.5. We conclude this chapter by Section
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IV.6.

IV.2 Preliminaries

IV.2.1 Problem formulation

Let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal domain. Consider the anisotropic

high-contrast elliptical problem:

−div(κ(x)∇u) = f in Ω, (IV.1)

u(x) = 0 on ∂Ω,

where κ(x) is a symmetric matrix with high-contrast and high-anisotropy. The vari-

ational formulation of problem (IV.1) is again given as finding u ∈ V such that

aΩ(u, v) = (f, v), for all v ∈ V, (IV.2)

where aΩ(u, v) =

∫
Ω

κ(x)∇u · ∇v, (f, v) =

∫
Ω

fv, and V = H1
0 (Ω).

Here, we use the same notations Th and T H (defined in Section III.2) to respec-

tively denote the fine and coarse triangulation, ωi and ω+
i (defined in Chapter III)

to respectively denote the neighborhood and oversampling region of the coarse node

xi. Then, the discrete problem, as before, consists of finding uH ∈ VH such that

aΩ(uH , v) = (f, v), for all v ∈ VH . (IV.3)

Here VH ⊂ V is a conforming coarse solution space associated with T H . For the no-

tational convenience, we will denote the continuous variables and the corresponding

discrete quantities with the same symbols.
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IV.2.2 Two-level GMsFEM

Though we have described this before, I briefly outline the GMsFEM and present

the two-level construction of the coarse solution space VH .

In the two-level GMsFEM framework, first, we construction of the local snap-

shot space V
ω+
i

snap. In particular, we numerically solve local problems for all possible

boundary conditions on the oversampled region ω+
i . The oversampling technique

considered here increases the accuracy of approximated solutions. Now, let bi be the

collection of fine-grid boundary nodes on ∂ω+
i . Then, the local problem associated

with ωi can be formulated as

−div(κ(x)∇ψi,+snap,p) = 0 in ω+
i , (IV.4)

ψi,+snap,p = δp(x) on ∂ω+
i . (IV.5)

Here, the fine-grid function δp(x) in (IV.5) is defined on bi with value δp(xq) = δpq for

xq ∈ bi. The local snapshot space V
ω+
i

snap will consist of snapshot functions {ψi,+snap,p :

xp ∈ bi}.

Next, a small dimensional offline space V
ω+
i

off is sought in V
ω+
i

snap by performing the

following eigenvalue problem

A+
offΨk = λkM

+
offΨk, (IV.6)

where A+
off = [akl] =

∫
ω+
i
κ(x)∇ψi,+snap,k · ∇ψ

i,+
snap,l and M+

off = [mkl] =
∫
ω+
i
κ̃(x)ψi,+snap,k ·

ψi,+snap,l. Here, the weighted coefficient κ̃(x) is defined in Chapter III. To form the

offline space, we first pick the smallest N eigenvalues of the problem (IV.6), {λk}Nk=1;

then we set a function ψi,+off,k to be a linear combination of the snapshot functions

with weights {Ψk,j}. That is, ψi,+off,k =
∑

j Ψk,jψ
i,+
snap,j, 1 ≤ k ≤ N , where Ψk,j is the
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jth component of Ψk. Then, the multiscale basis function associated with node xi is

defined by

φωi
j = χiψ

i
off,j, 1 ≤ j ≤ N, (IV.7)

where {χi}Nv
i=1 is a partition of unity associated with {ωi : 1 ≤ i ≤ Nv} and ψioff,j

is the restriction of ψi,+off,j on ωi. The offline space Voff can be generated by the

set {φωi
j : 1 ≤ j ≤ N, 1 ≤ i ≤ Nv}. Because the problem (IV.1) is parameter

independent, the coarse solution space VH is chosen to be Voff. We remark that

besides (IV.6), alternative eigenvalue problems can also be used (see III.13, III.14,

and III.15).

IV.3 Multilevel methods

In this section, we extend our construction to a multilevel setting. We can re-

cursively call the two-level construction. In particular, the output (snapshot space

and offline space) obtained in the previous level is input data for the current level

construction. Therefore, we can view a L-level problem as L− 1 two-level problems.

We consider a polygonal 2-D domain Ω and assume that T L ⊂ · · · ⊂ T l · · · ⊂ T 1,

1 < l < L, are nested quadrilateral triangulations of Ω with grid size hL > · · · >

hl · · · > h1. T 1 is the finest grid, and T L is the coarsest (target) grid where the final

multiscale solution space will be computed. Given T l+1, we generate a finer grid T l

by refining T l+1. Then, the discrete problem reads as follows. We seek a numerical

approximation uL ∈ V L
off such that

aΩ(uL, v) = (f, v), for all v ∈ V L
off, (IV.8)

where V L
off ⊂ V is a conforming multiscale solution space associated with T L.

The key ingredient of designing a robust and efficient multilevel method for solv-
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ing (IV.8) is the construction of a sequence of multiscale solution spaces V 1
off, · · · , V l

off,

· · · , V L
off, where V l

off denotes the solution space associated with the mesh T l. Note

that, here, V 1
off is the standard finite element space associated the finest mesh. In

order to obtain V l
off, we need to construct a snapshot space V l,+

snap via local prob-

lems with harmonic extension boundary conditions. Once we have V l,+
snap, V l

off can be

generated by a set of localized eigenvalue problems (IV.6) and corresponding restric-

tions. We emphasize, here, that our approach provides the construction of V l,+
snap only

based on V l−1
off and V l−1,+

snap . The snapshot/offline spaces that are associated with the

mesh T 1, · · · T l−2 will not be used. This construction yields savings because of the

reduced-dimensional space V l−1
off .

IV.3.1 Notations

To improve readability, we collect below the most relevant notations, while their

precise definitions will be given later in the text.

T l : triangulation of Ω at level l.

hl : grid size of T l.

xli : i-th grid node in T l.

ωli : neighborhood of the node xli.

ωl,+i : oversampling region of ωli.

I li : collection of inner nodes in ωl,+i over T l−1.

Bl
i : collection of the finest-grid boundary nodes on ∂ωl,+i over T 1.

ψl,+i,p : local snapshot function with respect to ωl,+i .

ψli,p : restriction of ψl,+i,j to ωli.

V l,+
snap,i : local snapshot space with respect to ωl,+i .
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V l
snap : snapshot space with respect to T l.

V l
off,i : local solution space with respect to ωli.

φli,p : basis function of V l
off,i.

V l
off : coarse solution space with respect to T l.

IV.3.2 Local problems

To obtain V L
off, we need to construct V 2

off, · · · , V L−1
off in a sequence. We assume that

V 1
off is the finite element solution space with respect to the finest grid. Therefore, we

will run L− 1 iterations to arrive at the target level L. Nevertheless, each iteration

can be viewed as a two-level problem as we did for the construction in the GMsFEM.

Assume now that for some l, 2 ≤ l ≤ L, we are given V l−1,+
snap and V l−1

off . Based on

this, we can construct V l
off as follows.

A local snapshot space V l,+
snap,i is constructed by solving local problems on an

oversampling domain ωl,+i . The imposed boundary conditions should be able to

capture all possible solution behaviors in ωl,+i . A usual choice is to choose all the delta

functions δ1
p(x) that are defined on the finest-grid nodes on ∂ωl,+i . The local problem

to solve consists of finding a snapshot function ψl,+i,p ∈ V l−1
off (ωl,+i ) ∪ V l−1,+

snap (ωl,+i ) ,

such that

−div(κ(x)∇ψl,+i,p ) = 0 in ωl,+i , (IV.9)

ψl,+i,p = δ1
p on ∂ωl,+i .

Here δ1
p(x

1
j) = δpj, where x1

j is the finest-grid boundary node on ∂ωl,+i . Note that the

snapshot function to be sought is in the snapshot and offline space of the previous

level l − 1.
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Due to the fact that the boundary condition is defined on the finest grid, we

have to take into account all the finest-grid degrees of freedom on ∂ωl,+i . Therefore,

to define boundary basis functions becomes the key to solve (IV.9). Details of the

creation of boundary basis functions will be discussed in the next subsection. Assume

now with these boundary basis functions, denoted by φ̃l−1
j , we consider solving (IV.9)

in the space V l−1
off (ωl,+i )

⋃
{φ̃l−1

j : x1
j ∈ Bl

i} . More precisely, for an interior node xl−1
j

in ωl,+i (i.e., xl−1
j ∈ I li), we equip its basis functions with {φl−1

j,k : k = 1, 2, · · · }, where

φl−1
j,k ∈ V

l−1
off (ωl,+i ) is the basis function associated to the node xl−1

j ; for a boundary

node x1
j on ∂ωl,+i (i.e., x1

j ∈ Bl
i), we let its basis function be φ̃l−1

j . Then, the snapshot

function ψl,+i,p solving (IV.9) is of the form:

∑
xl−1
j ∈Ili

(∑
k

ci,kφ
l−1
j,k

)
+
∑
x1
j∈Bl

i

djφ̃
l−1
j . (IV.10)

Here, I li denotes the collection of the interior nodes in ωl,+i over T l−1; Bl
i denotes

the collection of the finest-grid boundary nodes on ∂ωl,+i . Note that the coefficient

dj = δ1
p(x

l
j) = δpj.

To obtain the snapshot space V l,+
snap,i, we impose boundary conditions δ1

p(x) for all

p (x1
p is on ∂ωl,+i ). Then, we obtain the local snapshot spaces

V l,+
snap,i = span{ψl,+i,p : x1

p on ∂ωl,+i } (IV.11)

and

V l
snap,i = span{ψli,p : x1

p on ∂ωl,+i }, (IV.12)

where ψli,p is the restriction of ψl,+i,p on ωli.

To obtain the offline/solution space V l
off, an auxiliary spectral decomposition is
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used to identify the dominant modes in V l,+
snap,i. In particular, for each ωl,+i , we define

the following eigenvalue problems

Al,+i Θk = λl,+i,kM
l,+
i Θk, (IV.13)

Al,+i Θk = λli,kM
l
iΘk, (IV.14)

AliΘk = λli,kM
l
iΘk, (IV.15)

where

Al,+i = [apq] =

∫
ωl,+
i

κ(x)∇ψl,+i,p · ∇ψ
l,+
i,q ,

Ali = [apq] =

∫
ωl
i

κ(x)∇ψli,p · ∇ψli,q,

M l,+
i = [mpq] =

∫
ωl,+
i

κ̃(x)ψl,+i,p ψ
l,+
i,q ,

M l
i = [mpq] =

∫
ωl
i

κ̃(x)ψli,pψ
l
i,q.

The coefficient κ̃(x) is a scalar weight associated with the coefficient κ(x). In this

chapter, we define κ̃ = h2
l

∑
i κ∇χli · ∇χli, where χli denotes the bilinear basis func-

tion in T l. We apply (IV.13) and identify the dominant modes by choosing the

eigenvectors corresponding to the smallest sli eigenvalues and setting

ψ̃l,+i,k =
∑
p

Θkpψ
l,+
i,p , k = 1, 2, · · · , sli, (IV.16)

where Θkp is the p-th component of Θk. Denote ψ̃li,k as the restriction of ψ̃l,+i,k to ωli.

The coarse basis functions associated with the node xli are obtained by multiplying
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the dominant modes by χli, i.e., φli,k = χliψ̃
l
i,k. Then, we have the local solution space

V l
off,i = span{φli,k : k = 1, 2, · · · , sli}, (IV.17)

and the global coarse solution space is formed as

V l
off =

⋃
i

V l
off,i = span{φli,k : i = 1, 2, · · · , N l, k = 1, 2, · · · , sli}, (IV.18)

where N l is the number of grid nodes in T l.

Algorithm 1: Construction of the coarse solution space using a multilevel
method.
Input : κ(x), T l(1 ≤ l ≤ L), V 1

off

Output: V L
off

1 for l=2:L do
2 V l,+

snap = {}, V l
off = {}.

3 for ωl,+i ⊂ T l do
4 Build basis functions for the local problem (IV.9).

5 for xl−1
j ∈ I li do

6 Inner basis: φl−1
j,k (k = 1, 2, · · · ).

7 end
8 for x1

j ∈ Bl
i do

9 Boundary basis: see Subsection IV.3.3.
10 end

11 Solve the local problem (IV.9) for ψl,+i,j .

12 Form a local snapshot space: V l,+
snap,i = span{ψl,+i,j : x1

j ∈ Bl
i}.

13 Update V l,+
snap.

14 Form a local solution space V l
off,i using spectral decomposition (IV.13).

15 Update V l
off.

16 end

17 end
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Remark IV.3.1. Note that V l,+
snap,i and V l

snap,i fully represent the behavior of the

multiscale solution in ωl,+i and ωli, respectively; V l
off,i is a dimension-reduced local

solution space. More precisely, V l
off,i is a subspace of χli · V l

snap,i.

IV.3.3 Boundary basis functions

The essential part of solving (IV.9) is to build the boundary basis functions φ̃l−1
j ,

for all the finest-grid nodes x1
j on ∂ωl,+i . Recall that the snapshot space consists of

vectors that characterize the behavior of the multiscale solution. Hence, a reasonable

boundary basis function should be able to capture the multiscale information of the

solution near the boundary of ωl,+i . This motivates us to solve additional local

problems to seek a ”good” boundary basis function. Fortunately, our approach

below can manage to avoid solving these expensive local problems. Our algorithm

x3
i

x2
k

x2
k′

ω2,+
k′

Figure IV.1: Left: an oversampling domain ω3,+
i (the largest square) and a small

oversampling domain ω2,+
k′ ⊂ ω3,+

i . Right: ω2,+
k′ , where the finest-grid boundary

nodes to be considered on ∂ω2,+
k′ are marked in red.

is described below. First, for each xl−1
k on ∂ωl,+i , find the corresponding oversampling
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domain ωl−1,+
k′ ⊂ ωl,+i . We require xl−1

k to be located at the center of one edge of

∂ωl−1,+
k′ (in the case that xl−1

k is around the corner of ωl,+i , we let ωl−1,+
k′ to be also

at the corner of ωl,+i ). Second, we find an interval Fk of length hl−1 on ∂ωl−1,+
k′ ,

such that xl−1
k is (close to) the center point of Fk. Next, we solve the following local

problems on ωl−1,+
k′ with boundary conditions imposed on the finest-grid boundary

nodes. For every finest-grid boundary node x1
j in Fk, find ψl−1,+

k′,j such that

−div(κ(x)∇ψl−1,+
k′,j ) = 0 in ωl−1,+

k′ , (IV.19)

ψl−1,+
k′,j = δ1

j on ∂ωl−1,+
k′ .

We realize that the above problem has already been solved at the level l−1. In fact,

ψl−1,+
k′,j is a snapshot function in V l−1,+

snap,k′ . In Figure IV.1, we illustrate a three-level

sub-domain where ω2,+
k′ is filled in yellow and the needed boundary nodes in Fk are

marked in red. Now, we define the boundary basis function as

φ̃l−1
j = χl−1

k ψl−1,+
k′,j , (IV.20)

where χl−1
k is the partition of unity function associated with xl−1

k . After all xl−1
k on

∂ωl,+i have been visited, the boundary basis functions can be created. The step-by-

step algorithm is summarized in Algorithm 2.

Remark IV.3.2. When xl−1
k is around the corner of ∂ωl,+i , the small oversampling

domain ωl−1,+
k′ is located at the corner of ωl,+i . In the case that xl−1

k is a corner

boundary node, the interval Fk will consist of two smaller segments that align with

∂ωl,+i .

Remark IV.3.3. With the above construction of boundary basis functions, the non-

zero boundary value for some snapshot functions ψl,+i,p of (IV.9) may differ from 1.
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Algorithm 2: Construction of boundary basis functions.

Input : ωl,+i , V l−1,+
snap , χl−1

k .

Output: φ̃l−1
j , for x1

j on ∂ωl,+i .

1 Step 1: for every node xl−1
k on ∂ωl,+i , determine the proper ωl−1,+

k′ .

2 Step 2: find the interval Fk.

3 Step 3: for every finest-grid boundary node x1
j ∈ Fk, solve the problem (IV.19)

for ψl−1,+
k′,j .

4 Step 4: load V l−1,+
snap,k′ .

5 Step 5: define φ̃l−1
j = χl−1

k ψl−1,+
k′,j .

However, it does not matter since it only differs by a factor that is greater than or

equal to 1/2. Such snapshot functions can still capture the multiscale information

near the boundary of ωl,+i .

IV.4 Numerical results

IV.4.1 Numerical experiments

In this section, we present a variety of numerical experiments that demonstrate

good performance of the GMsFEM in a multilevel manner. The computational

domain Ω is chosen to be a unit square [0, 1]× [0, 1]. We set the force term f(x) =

1, and use boundary condition u = 0. The numerical errors will be measured in

weighted L2 and energy norm H1 defined as

‖u‖L2 =

(∫
Ω

||κ||2u2

)1/2

and ‖u‖H1 =

(∫
Ω

κ∇u · ∇u
)1/2

,

respectively.
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Figure IV.2: The component κ22 of κ(x), where κ(x) = diag(1, κ22).

dim(V 3
off)

‖u3 − u1‖
L2(Ω) H1(Ω)

1125 7.56 28.71

2250 5.49 22.08

4500 3.75 16.17

9000 1.14 10.65

Table IV.1: Relative errors (in %) between the fine-scale solution and the GMsFEM
solutions. 3-level problem with mesh: [256×256, 64×64, 16×16]. Degrees of freedom
at the fine scale: 66049.

Our first experiment is tested on multilevel grids: [256 × 256, 64 × 64, 16 × 16].

Each n×n represents that the domain is divided into n by n small identical squares.

The permeability field κ is depicted in Figure IV.2. We assume that the fine-scale

solution is obtained by discretizing problem (IV.1) using the standard piecewise

bilinear finite elements on the finest-grid (256× 256). The total degrees of freedom

at the fine scale is 66049. In Table IV.1, we show the convergence result for the
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(a) GMsFEM solution, dim(V 3
off)=1125. (b) GMsFEM solution, dim(V 3

off)=4500.

(c) GMsFEM solution, dim(V 3
off)=9000. (d) Fine solution, dim(Vfine)=66049.

Figure IV.3: Solution plots corresponding to the error results in Table IV.1.

3-level problem. In the first column, we list the dimension of the offline space that is

used to approximate the GMsFEM solution u3. The dimension is determined by the

number of dominant modes selected per coarse block, see (IV.13). In order to enrich

the coarse solution space, we can add more dominant modes per interior coarse node.

In the test, we increase the number of dominant modes per interior node from 5 to

40. Consequently, the dimension of the offline space increases from 1125 to 9000.

We see that the weighted H1 error decreases from 28.71% to 10.65%. Note that the

GMsFEM has an irreducible error of order O(H) ≈ 6.25%. The error for u3 decreases
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to 10.65% when the coarse solution space is enriched with a dimension 9000 (out of

66049). The numerical result aligns with our convergence analysis that is presented

in the next section. We plot the GMsFEM solutions as well as the fine-scale solution

in Figure IV.3. In this experiment, we set the dimension of each local offline space

to be 10 for the middle level (level 2).

dim(V 3
off)

‖u3 − usnap
2 ‖

L2(Ω) H1(Ω)

1125 2.13 14.65

2250 1.28 8.76

4500 0.35 7.73

9000 0.064 6.99

Table IV.2: Relative errors (in %) between the 3-level GMsFEM solution and the
2-level solution approximated in the full snapshot space. u3: 3-level solution with
mesh [256×256, 64×64, 16×16]. usnap

2 : 2-level solution with mesh [256×256, 16×16].
The dimension of the 2-level snapshot space is 51456.

In Table IV.2, we compare the 3-level GMsFEM solution u3 with the 2-level

solution usnap
2 . Here, usnap

2 is approximated in the full snapshot space that is generated

on the 2-level mesh [256 × 256, 16 × 16]. It is expected that the error between u3

and usnap
2 is small due to the fact that the snapshot space can represent the fine-scale

solution in some sense. Our results show that as we increase the coarse solution

space, the error decreases consequently. The weighted L2 and H1 errors are less the

ones in Table IV.1. In particular, the weighted L2 error between u3 and usnap
2 is

much less compared with the one between u3 and u1. We also observe that the error

is hard to decrease when the dimension if over 2250. This is due to the irreducible

error of order O(H) ≈ 6.26%.

Our next experiment is to test a parameter-dependent permeability field. In
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(a) κ1,y(x): y-direction in κ1(x) (b) κ2,y(x): y-direction in κ2(x)

Figure IV.4: Left: κ1(x) = diag(1, κ1,y(x)). Right: κ2(x) = diag(1, κ2,y(x)).

particular, we assume the permeability is of the form κ(x, µ) = (1−µ)κ1(x)+µκ2(x),

where 0 ≤ µ ≤ 1 and κ1(x), κ2(x) are shown in Figure IV.4 . For this case, the

construction of multiscale solution space involves there stages (referred to Chapter

III). First, specifying nine fixed values of µ to create the snapshot space at each level.

Second, the construction of offline space is obtained by spectral decomposition with

µ-averaged coefficients. Last, constructing the solution (online) space by performing

eigenvalues problem with a fixed online parameter value µ∗ = 1/2. We offer a set of

solution plots in Figure IV.5. As we increase the dimension of online space, it yields

a solution that is essentially indistinguishable from the fine-scale solution. Detailed

error comparisons are presented in Table IV.3. The weighted errors between the

reference solution and the online solution are shown to predictably decrease as the

dimension of the online space is increasing. Therefore, we can conclude that the

3-level GMsFEM solution accurately capture the fine scale solution.
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(a) GMsFEM solution, dim(V 3
on)=675. (b) GMsFEM solution, dim(V 3

on)=3375.

(c) Fine solution, dim(Vfine)=66049.

Figure IV.5: Solution plots corresponding to the error results in Table IV.3.

IV.4.2 Complexity analysis

In this subsection, we briefly analyze the computational time complexity for the

multilevel GMsFEM. The computational domain is a unit square. We assume: (1)

the finest scale is the fixed length h, and the coarsest scale varies with the length

H = 10n·h, n ≥ 1; (2) we can access the global finest stiffness matrixAh and the mass

matrix Mh (note that the matrices Ah and Mh are assembled on the global domain

using standard bilinear basis functions. Given a sub-domain, the corresponding local

stiffness/mass matrix is the restriction of Ah/Mh to this sub-domain.); (3) if there
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dim(V 3
on)

‖u3 − u1‖
L2(Ω) H1(Ω)

675 2.93 25.43

1800 0.47 9.20

3375 0.24 7.97

Table IV.3: Relative errors (in %) between the fine-scale solution and the GMsFEM
solutions. 3-level problem with mesh: [256×256, 64×64, 16×16]. Degrees of freedom
at the fine scale: 66049.

are multiple levels, the scales of the middle levels are chosen such that the ratio hl
hl−1

possibly remains the same (in order to save the total cost); (4) we assume that in

each local snapshot space, only the first 10 dominant modes are selected to form the

corresponding offline space. With the above assumptions, we can calculate the time

complexity as follows.

For each level, the construction of the coarse solution space involves two compu-

tations: the snapshot space and the offline space. In particular, to obtain a local

snapshot space, it requires O
(
dof2+k ·dof

)
= O

(
dof2

)
flops. Here, k is the number of

the finest-grid nodes along the boundary of this sub-domain, and dof stands for the

number of degrees of freedom involved in this problem. We know that the local offline

space is formed via a local eigenvalue problem. To solve the local eigenvalue problem,

it needs O
(
10 · dof2

)
flops. Here, the coefficient 10 is due to the fact that we only

generate 10 eigenvectors (dominant modes) for each eigenvalue problem. Hence, to

obtain a local coarse solution space, it requires O
(
10 ·dof2

)
+O

(
dof2

)
= O

(
10 ·dof2

)
flops. Note that this cost is only for a local coarse solution space. As for the whole

coarse solution space, the total cost depends on the number of sub-domains at that

level. Below, we calculate the costs for the two-level case and three-level case.

Two-level GMsFEM:
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In each sub-domain (oversampling domain) ω+
i , the number of degrees of freedom is

dof = O
(
(4
H

h
)2
)
.

The number of the sub-domains is

# of sub-domains = O(1/H2).

As a result, the computational cost for the two-level GMsFEM is

TC2 =
1

H2
O
(
10 · (dof)2

)
=

1

H2
O
(
10 · (4H

h
)4
)

= O
(
10 · 44 · H

2

h4

)
flops.

Three-level GMsFEM:

Now, we need to compute the coarse solution space for level 2 and level 3. From the

analysis before, we know that the computational cost at the middle level (level 2) is

O
(
10 · 44 · h

2
2

h4

)
, where h2 denotes the length of the scale at the level 2. At the level

3, in each sub-domain ω3,+
i , the number of the degrees of freedom is

dof3 = O
(
10 · (4H

h2

)2
)
,

where the number 10 indicates that each inner node in ω3,+
i is equipped with 10 basis

functions. The number of the sub-domains is

# of sub-domains = O(1/H2).
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Hence, the computational cost at the level 3 is

1

H2
O
(
10 · (dof3)2

)
= O

(
103 · 44 · H

2

h4
2

)
flops. Totally, the cost of the there-level GMsFEM is

TC3 = O
(
10 · 44 · h

2
2

h4

)
+O

(
103 · 44 · H

2

h4
2

)
= O

(
10 · 44 · H + 102h

h3

)
flops. Here, we have used the assumption that h2/h = H/h2.

log( H/h )
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Figure IV.6: Time complexity for 2-level, 3-level, and 4-level GMsFEM. The finest
scale h = 10−6. x-label: log value of H/h; y-label: log value of the time complexity.

Now, we compare the costs for the two-level case and the three-level case. We
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have

TC3

TC2
≈

10 · 44 · H+102h
h3

10 · 44 · H2

h4

=
h(H + 102h)

H2

≤ 1

2
· h
H

(when H ≥ 102h). (IV.21)

The above result implies that when the coarsest mesh is coarse enough, H ≥ 102h, the

three-level GMsFEM takes a huge advantage over the standard two-level GMsFEM

with respect to the cost. In Figure IV.6, we depict the time complexities for several

multi-level GMsFEMs, where the finest scale is fixed to be h = 1/106 and the coarsest

scale H = 10nh. We observe that the time complexity drops significantly when one

more level is added.

IV.5 Convergence analysis

In this section, we provide a convergence proof of the GMsFEM using the multi-

level method. Throughout this section, we define || · ||D as the weighted energy norm

on the domain D, i.e., ‖u‖D =
(∫

D
κ∇u · ∇u

)1/2
. We use the notation α � β when

α ≤ cβ, where the constant c is independent of the level and the spatial variation.

we define χli and χl,+i as partition of unity functions that are subordinated to ωli

and ωl,+i , respectively. In particular, we can simply choose standard bilinear basis

functions for a rectangular partition as χli and χl,+i . The size of ωl,+i is limited by the

requirement

|∇χli|2 � |∇χ
l,+
i |2. (IV.22)

Using the triangle inequality, we know that

||u− uL||Ω ≤ ||u− uL−1||Ω + ||uL−1 − uL||Ω. (IV.23)
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Now, let us estimate ||uL−1 − uL||Ω.

For any 2 ≤ l ≤ L, we define two interpolations Iω
l
i and Iω

l,+
i that will be

chosen. We denote ûl as the multiscale solution at level l that is computed in the

full snapshot space V l
snap. Because the local snapshot space V l

snap,i consists of the

whole basis functions and the local snapshot space is constructed on ωl,+i , we have

Iω
l,+
i ûl = Iω

l
i ûl in ωli.

We borrow ûl and apply the triangle inequality, then

||ul−1 − ul||Ω ≤ ||ul−1 − ûl||Ω
I

+ ||ûl − ul||Ω
II

. (IV.24)

Term I.

Applying the triangle inequality, we have

||ul−1 − ûl||Ω ≤ ||ul−1 − u||Ω + ||ûl − u||Ω

� ||ul−1 − u||Ω (IV.25)

The inequality (IV.25) is easily induced by the fact that ûl is computed in the space

V l−1
off ∪ V l−1,+

snap which implies that ||ûl − u||Ω � ||ul−1 − u||Ω.

Term II.

Next, we derive a bound for the second term on the right hand size of the above

inequality. Using the definition of Iω
l
i , we have

||ûl − ul||2Ω �
∑
i

||χli(ûl − ul)||2ωl
i

�
∑
i

∫
ωl
i

κ|χli|2|∇(ûl − ul)|2 +
∑
i

∫
ωl
i

κ|∇χli|2|ûl − ul|2 (IV.26)

Let −div(κ∇(ûl − ul)) = g(x) in ωli. Multiplying both sides of this equation by
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|χli|2(ûl − ul), integrating by parts and rearranging the terms, we get

∫
ωl
i

κ|χli|2|∇(ûl − ul)|2

≤ 1

c

∫
ωl
i

κ|∇χli|2|ûl − ul|2 + c

∫
ωl
i

κ|χli|2|∇(ûl − ul)|2 + |
∫
ωl
i

g|χli|2|(ûl − ul)|,

where the parameter c < 1 is independent of the level and the spatial variation.

Rearranging the terms in above inequality, we have

∫
ωl
i

κ|χli|2|∇(ûl − ul)|2 �
∫
ωl
i

κ|∇χli|2|ûl − ul|2 + |
∫
ωl
i

g|χli|2(ûl − ul)|. (IV.27)

From (IV.26) and (IV.27), we have

||ûl − ul||2Ω �
∑
i

∫
ωl
i

κ|∇χli|2|ûl − ul|2 +
∑
i

|
∫
ωl
i

g|χli|2(ûl − ul)|. (IV.28)

Note that the second term on the right hand side of the above inequality has the

property

|
∫
ωl
i

g|χli|2(ûl − ul)| � |
∫
ωl
i

g(ûl − ul)|

�
∫
ωl
i

g

(
κ|∇χli|2

)−1/2(
κ1/2|∇χli|(ûl − ul)

)
�

∫
ωl
i

g2

(
κ|∇χli|2

)−1

+

∫
ωl
i

κ|∇χli|2|ûl − ul|2. (IV.29)

With the assumption that g � 1, we can show that
∫
ωl
i
g2

(
κ|∇χli|2

)−1

� h2
l . Com-

bining this with (IV.28) and (IV.29), we obtain

||ûl − ul||2Ω �
∑
i

∫
ωl
i

κ|∇χli|2|ûl − ul|2 + h2
l . (IV.30)
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Now we define Iω
l,+
i ûl and Iω

l
i ûl by choosing the dominant modes from eigenvalue

problems (IV.13) and (IV.15), respectively. That is,

∫
ωl,+
i

κ|∇χl,+i |2|(ûl − Iω
l,+
i ûl)|2 �

1

λl,+
i,sli

∫
ωl,+
i

κ|∇(ûl − Iω
l,+
i ûl)|2 �

1

λl,+
i,sli

∫
ωl,+
i

κ|∇ûl|2,

(IV.31)∫
ωl
i

κ|∇χli|2|(ûl − Iω
l
i ûl)|2 �

1

λl
i,sli

∫
ωl
i

κ|∇(ûl − Iω
l
i ûl)|2 �

1

λl
i,sli

∫
ωl
i

κ|∇ûl|2. (IV.32)

Here λl
i,sli

is the sli-th smallest eigenvalue of the corresponding eigenvalue problem.

Note also that the λl
i,sli

-th eigenvector is the first one that is not selected for the

dominant modes. We define

ul = Iω
l,+
i ûl + Iω

l
i(ûl − Iω

l,+
i ûl).

Using the inequality (25) in [29], we have

∑
i

∫
ωl
i

κ|∇χli|2|ûl − ul|2 �
1

Λl
∗

1

Λl,+
∗

∫
Ω

κ|∇ûl|2, (IV.33)

where Λl
∗ = miniλ

l
i,sli

and Λl,+
∗ = miniλ

l,+

i,sli
. Hence, if Λl

∗ and Λl,+
∗ are chosen suffi-

ciently large of the order O(1/hl), we have the following estimate for (IV.30)

||ûl − ul||2Ω � h2
l ||ûl||2Ω + h2

l . (IV.34)

Therefore, with (IV.25) and (IV.34), we have an estimate for (IV.24)

||ul−1 − ul||Ω � ||ul−1 − u||Ω + hl(||ûl||Ω + 1) � ||ul−1 − u||Ω + hl(||ul||Ω + 1).(IV.35)
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In particular,

||uL−1 − uL||Ω � ||uL−1 − u||Ω + hL(||uL||Ω + 1). (IV.36)

Hence, the inequality (IV.23) follows

||u− uL||Ω � ||u− uL−1||Ω + hL(||uL||Ω + 1) (IV.37)

We are aware that when L = 2,

||u− u2||Ω � h2(||u||Ω + 1). (IV.38)

By the induction and the fact that h1 < h2 < · · · < hL, we obtain the convergence

rate for the multilevel GMsFEM solution

||u− uL||Ω � hL(||uL||Ω + 1) � hL(||u||Ω + 1). (IV.39)

IV.6 Concluding remarks

In this chapter, we present a multilevel method for computing coarse basis func-

tions hierarchically in the GMsFEM framework. Our objective is to approximate

snapshot vectors in a multilevel fashion. This work differs from previous findings

[31, 32, 53], where the authors work with special snapshot vectors. In our construc-

tion, at each level, we compute the snapshot space and the offline space by solving

a set of local problems. The computation of snapshot functions of current level is

based on the snapshot space and the offline space of the previous level only. We also

develop an innovative algorithm to create boundary basis functions related to the

local problems. Such algorithm can avoid tremendous expensive computation and
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offer a speedup in constructing coarse solution spaces. Some convergence analysis is

presented. Both numerical experiments and computational time complexity analysis

are provided to support our proposed approach.
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V  MULTISCALE SIMULATIONS OF FLOW AND TRANSPORT USING

THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD

V.1 Introduction

In this chapter, we consider a multiscale method for a coupled flow and trans-

port system, where the flow equation for the pressure field is described by a steady

state elliptic equation (derived by Darcy law) and the transport equation for the

concentration field is described by a convection-dominated parabolic equation [17].

Our approach derives its foundation from rigorous methods developed recently

[2, 4, 7, 10, 11, 12, 14, 15, 18, 19, 37, 43, 44, 45]. In these approaches, multiscale basis

functions are computed and used to solve flow equations. The main contributions

of this chapter are (1) to use multiscale basis functions for both flow and transport

equations and (2) a design of a novel mixed multiscale methods for convection-

dominated transport equation within the context of the GMsFEM. In our proposed

approach, we use a mixed formulation for both the flow and the transport equations.

The use of a mixed formulation is important for the transport equation as it helps

with the stabilization of it. In particular, by adding more flux basis functions, we

can achieve a better stability. In the mixed formulation for a coupled system, we first

define snapshot spaces for the pressure and the concentration. The snapshot space

represents the solution space in each coarse region and provides a mass conservative

approach. In the snapshot space, we perform a local spectral decomposition to

identify multiscale basis functions. The functions corresponding to dominant modes

are used to construct coarse spaces. In particular, we use only a few degrees of

freedom in each coarse region. For the test functions for the convection-dominated

transport, we use the solutions of adjoint problem. As a result, we have a full coarse-
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grid approximation for the coupled flow and transport system.

My contributions can be summarized as follows.

• The development of Generalized Multiscale Finite Element Method for a mixed

formulation of the convection-diffusion equation using different test and trial

spaces, giving better stabilization.

• The development and implementation of a mass conservative mixed GMsFEM

for the coupled flow and transport equations.

We consider several numerical examples by considering three different hydraulic

conductivity fields. In our numerical examples, we use a relatively coarse grid with

the coarsening factor of 10 or 5. We study the numerical errors in the concentration

field and depict concentration profiles. Our numerical results show that the use of

only one basis function per coarse region (which is similar to numerical upscaling

of hydraulic conductivity) does not produce an accurate solution, while if we use 3

or more basis functions, we can obtain an accurate approximation of the solution.

All numerical results show that our fully coarse-grid model for the coupled flow and

transport equations can accurately predict the solution using only a few degrees of

freedom in each coarse region.

The rest of this chapter is organized as follows. In Section V.2, we present

preliminaries and describe coarse and fine grids as well as a mixed formulation.

Section V.3 is devoted to the construction of multiscale basis functions. Numerical

results for three different hydraulic conductivity fields are presented in Section V.4.

Finally, concluding remarks are given in Section V.5.
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V.2 Preliminaries and notations

We consider a coupled flow and transport system that arises in many hydrological

applications
∂c

∂t
+ v · ∇c−D∆c = fc in Ω× (0, T ),

v + κ∇p = 0 in Ω,

∇ · v = fq in Ω.

(V.1)

Here Ω is the computational domain, T > 0 is a fixed time, κ is a hydraulic con-

ductivity, c is the concentration, p is the pressure, D is a constant diffusivity of the

medium, and fc, fq are source terms. The equations are subject to the boundary

conditions c(x, t) = 0 on ∂Ω × [0, T ], p(x) = g on ∂Ω and the initial condition

c(x, 0) = 0 in Ω. In order to have a mass conservation, we re-write the system in a

mixed formulation

∂c

∂t
+∇ · q = fc + cfq in Ω× (0, T ),

q +D∇c− vc = 0 in Ω× (0, T ),

v + κ∇p = 0 in Ω,

∇ · v = fq in Ω.

(V.2)

Here q is an auxiliary variable, we call it flux. It is well known that the Galerkin

method inherits the stability of the continuous problem and it yields to spurious

oscillation when the convection coefficient is larger than the diffusive one (v � D).

The mixed finite element methods can be used to achieve a mass conservation. In

this chapter, we aim to construct multiscale basis functions for the flux q and the

velocity v. As for the concentration c and the pressure p, we choose piecewise constant

functions for the approximation.
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Next, we introduce the discrete form of the problem (V.2). We first comment on

some notations of the coarse and the fine mesh. The coarse grid configuration differs

from those introduced in previous chapters because of a mixed formulation. We

assume that Ω is partitioned in the usual way into a union of rectangles (in 2-D) or

hexadedrals (in 3-D) denoted by T H , where H is the coarse mesh size. The fine mesh

is obtained by splitting each coarse block in T H into a connected union of fine-grid

blocks, and we denote it by T h with mesh size h, h < H. In addition, we denote by

EH the set of all edges/faces of elements in T H , i.e., EH = {Ei : 1 ≤ i ≤ Ne}, where

Ne is the number of coarse edges/faces. Note that each Ei ∈ EH is the union of some

fine-grid edges/faces. That is, Ei = {ej : ej is on Ei}, where ej are the fine-grid

edges/faces lying on Ei. We also define the coarse neighborhood of the edge/face Ei

by

ωi = {K ∈ T H : ∂K ∩ Ei 6= φ}. (V.3)

See Figure V.1 for an illustration of a coarse neighborhood associated with one coarse

edge, where the coarse mesh and the fine mesh are represented by black lines and

gray lines, respectively.

Next, we define the coarse trial spaces for q, v, c, and p. The concentration c and

the pressure p are approximated in the space of piecewise constant functions with

respect to the coarse grid T H . We denote this space by QH , and

QH = {ψ : ψ|Ki
∈ P0(Ki) for all Ki ∈ T H}. (V.4)

As for the flux q and the velocity v, the basis functions are associated with coarse

edges and are supported in the corresponding coarse neighborhoods. In particular,

to obtain the basis functions for a coarse edge Ei, we will solve a local problem in
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A fine cell

in T h

Ei

Kr

Ks

A coarse cell

in T H

Figure V.1: An illustration of a coarse neighborhood ωi (in green) corresponding to
the coarse edge Ei.

the coarse neighborhood ωi. Let Φq
i and Φv

i be the set of multiscale basis functions

for q and v with respect to Ei, respectively. Then, we define the multiscale solution

space for q and v as

V q
H =

⋃
Ei

Φq
i and V v

H =
⋃
Ei

Φv
i . (V.5)

Furthermore, we discretize the time interval [0, T ] uniformly by the points

tn = nτ, n = 0, 1, · · · , N,

where τ is the time step and N = T/τ . Using the above spaces, the GMsFEM

approximation of (V.2) can be given as follows. For all n ≥ 1, find (cnH , q
n
H , pH , vH) ∈
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QH × V q
H ×QH × V v

H , such that

∫
Ω

cnH − cn−1
H

τ
c̃+

∫
Ω

(∇ · qn−θH )c̃ =

∫
Ω

(fn−θc + cn−θH fq)c̃ for ∀c̃ ∈ QH ,∫
Ω

1

D
qn−θH · q̃ =

∫
Ω

(∇ · q̃ +
vH
D
· q̃)cn−θH for ∀q̃ ∈ W q

H ,∫
Ω

1

κ
vH · ṽ =

∫
Ω

(∇ · ṽ)pH for ∀ṽ ∈ V v
H ,∫

Ω

(∇ · vH)p̃ =

∫
Ω

fqp̃ for ∀p̃ ∈ QH ,

(V.6)

subject to the boundary condition pH = g. Here, we let zn−θ = θzn−1 + (1 − θ)zn,

where z = cH or qH . For θ = 0, 1/2 and 1, we get the Backward Euler, Crank-

Nicolson and Forward Euler Methods respectively. Note that W q
H is the testing

space for qnH . We emphasize here that in general, W q
H 6= V q

H , which allows better

stability. The construction of V q
H , V

v
H , and W q

H will be discussed in the next section.

In addition, to get the fine-scale solution, we use the standard lowest-order

Raviart-Thomas space Qh×V q
h ×Qh×V v

h for the approximation of (V.2) on the fine

grid T h. The fine-scale solution (ch, qh) will be considered as a reference solution for

the comparison with the multiscale solution (cH , qH).

V.3 Generalized multiscale finite element methods

In this section, we will discuss the construction of the vector solution spaces

V q
H , V

v
H , and the testing space W q

H . Note that solving qH in (V.6) requires vH . There-

fore, we will first compute vH using the last two equations of (V.6).

We recall that the objective of the GMsFEM is (1) to construct the snapshot

space obtained by solutions of local problems with all possible boundary conditions,

which are resolvable by the fine-grid; (2) to identify a subspace of the snapshot space

by selecting dominant modes via some local spectral decompositions. The resulting

reduced-dimensional space, called the offline space, will be used to approximate the
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multiscale solution. We remark that for parameter dependent problems, one needs to

construct an online space using the offline space and an appropriate spectral problem.

Ei Ei

eij

eij′
Kr Ks

Figure V.2: Neighboring coarse cells Kr and Ks corresponding to the coarse-grid
edge Ei. The fine-grid edge eij and eij′ are in red.

V.3.1 Multiscale solution space V v
H

We form the multiscale solution space V v
H for vH . In order to build V v

H , we first

construct the snapshot space, denoted by V v
snap. For each coarse-grid edge Ei ∈ EH , a

local problem is defined on each of its neighboring coarse cells. Because the snapshot

space is supposed to capture the multiscale information within this local domain, the

corresponding boundary conditions of the local problem should cover all possibilities.

Formally, the local problem is defined as: for each Ei ∈ EH , on its neighboring coarse

cell K = Kr or Ks (see Figure V.2), find (pij, ψ
i
v,j) ∈ Qh × V v

h , such that

ψiv,j + κ∇pij = 0 in K,

∇ · ψiv,j = αij in K,

ψiv,j · n = 0 on ∂K\Ei,

ψiv,j · n = δij on Ei.

(V.7)
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For convenience, we use the same notations as the solution to denote local snapshot

fields. Here αij is a constant defined on K, n is a fixed unit-normal vector on ∂K,

and δij(x) is defined on Ei with respect to the fine-grid edges. Note that Ei =

{eij : eij in Ei}. We require δij has value 1 on eij and 0 on the other fine-grid edges,

1 ≤ j ≤ Ji, where Ji is the number of the fine-grid edges on Ei. That is,

δij =

 1, on eij,

0, on the other fine-grid edges.

Note that the constant αij in (V.7) is chosen so that the compatibility condition∫
K
αij = (±)

∫
Ei
δij is satisfied, for K = Kr or Ks. The above local problem (V.7) can

be solved numerically on the underlying fine grid of K by the lowest-order Raviart-

Thomas element method.

After solving the local problems (on Kr and Ks) with respect to Ei, a local

snapshot V v,i
snap is generated by the solutions of (V.7). That is

V v,i
snap = span{ψiv,j : 1 ≤ j ≤ Ji}.

Then, the snapshot space V v
snap is formed as

V v
snap =

⋃
Ei

V v,i
snap = span{ψiv,j : 1 ≤ j ≤ Ji, 1 ≤ i ≤ Ne}. (V.8)

We re-numerate the snapshot functions by a single index to create the snapshot

matrix

Rv
snap =

[
ψv1 , ψ

v
2 , · · · , ψvLsnap

]
,

where Lsnap =
Ne∑
i=1

Ji is the dimension of the snapshot space V v
snap. Note that the
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matrix Rv
snap maps from the coarse space to the fine space.

The next step is to construct the offline space V v
off for vH . For a coarse-grid edge

Ei, we define the following eigenvalue problem in V v,i
snap:

Aoff
v Ψv

k = λkM
off
v Ψv

k, (V.9)

where

Aoff
v = [ast] =

∫
Ei

(ψiv,s · n)(ψiv,t · n),

and

Moff
v = [mst] =

∫
ωi

1

κ
ψiv,s · ψiv,t.

The eigenvalue problem (V.9) will produce a set of eigenvectors for generating the

local offline space V v,i
off by first selecting Lioff eigenvectors corresponding (as before)

to the smallest Lioff eigenvalues, and then computing the element φiv,k =

Ji∑
j=1

Ψv
kjψ

i
v,j

for k = 1, 2, · · · , Lioff, where Ψv
kj is the j-th component of Ψv

k. Then the local offline

space with respect to Ei is formed as

V v,i
off = span{φiv,k : 1 ≤ k ≤ Lioff}.

and the offline space V v
off is formed as

V v
off =

⋃
Ei

V v,i
off = span{φiv,k : 1 ≤ k ≤ Lioff, 1 ≤ i ≤ Ne}. (V.10)

We re-numerate the basis functions by a single index to create the offline matrix

Rv
off =

[
φv1, φ

v
2, · · · , φvLoff

]
,
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where Loff =
Ne∑
i=1

Lioff is the dimension of the offline space V v
off.

We take the multiscale solution space as

V v
H = V v

off.

Then vH is approximated by solving the problem as follows. We seek (pH , vH) ∈

QH × V v
H such that

∫
Ω

1

κ
vH · ṽ =

∫
Ω

(∇ · ṽ)pH for ∀ṽ ∈ V v
H ,∫

Ω

(∇ · vH)q̃ =

∫
Ω

fq q̃ for ∀q̃ ∈ QH ,

(V.11)

subject to the boundary condition pH = g.

Remark V.3.1. The design of a ”good” eigenvalue problem is a key ingredient of

the GMsFEM. It plays a critical role in reducing the dimension of the coarse solution

space. After applying such eigenvalue problem, the few dominant modes should suf-

ficiently capture the multiscale behavior of the multiscale solution up to some certain

extent.

Remark V.3.2. Generally, the offline space should contain a constant basis func-

tion. Therefore, the local snapshot space V v,i
snap, as a solution space of the eigenvalue

problem (V.9), can be decomposed into V v,i
1

⊕
V v,i

2 , where V v,i
1 = {(1, 1, · · · , 1)} and

V v,i
2 = {ψ :

∫
Ei
ψ · ni = 0, ψ ∈ V v,i

snap}. We put (1, 1, · · · , 1) ∈ V v,i
1 as the first basis

function of the offline space, and identify the other dominant modes in the space V v,i
2 .

V.3.2 Multiscale solution space V q
H

We construct the solution space V q
H and the testing space W q

H for qH . They follow

a similar procedure to the one for vH . In order to build V q
H , the snapshot space V q

snap
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is to be constructed. We define a local problem corresponding to each coarse-grid

edge Ei ∈ EH as follows. We seek (cij, ψ
i
q,j) ∈ Qh × V q

h , such that

ψiq,j +D∇cij − vHcij = 0 in K,

∇ · ψiq,j = αij in K,

ψiq,j · n = 0 on ∂K\Ei,

ψiq,j · n = δij on Ei,

(V.12)

where K = Kr or Ks depicted in Figure V.2. The local snapshot space V q,i
snap, the

snapshot space V q
snap, and the snapshot matrix Rq

snap are formed as

V q,i
snap = span{ψiq,j : 1 ≤ j ≤ Ji},

V q
snap =

⋃
Ei

V q,i
snap = span{ψiq,j : 1 ≤ j ≤ Ji, 1 ≤ i ≤ Ne}. (V.13)

Rq
snap =

[
ψq1, ψ

q
2, · · · , ψ

q
Lsnap

]
,

respectively.

To construct the testing space W q
H , a snapshot space W q

snap is also needed. We

solve the adjoint problem of (V.12)

wiq,j −D∇pij = 0 in K,

∇ · wiq,j +
1

D
vH · wiq,j =

1

D
αij in K,

wiq,j · n = 0 on K\Ei,

wiq,j · n = δij on Ei.

(V.14)

Then the snapshot space W q
snap is formed by the snapshot functions ωiq,j for all Ei ∈
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T H .

The local offline space V q,i
off for uH is obtained by solving the following eigenvalue

problem in V q,i
snap:

Aoff
q Ψq

k = λkM
off
q Ψq

k, (V.15)

where

Aoff
q = [ast] =

∫
Ei

(ψiq,s · n)(ψiq,t · n),

and

Moff
q = [mst] =

∫
ωi

D̃ψiq,s · ψiq,t.

Here, we let D̃ = 1+|vH |
D

, where |vH | denotes the vector l2 norm of vH . Then the local

offline space V q,i
off , the offline space V q

off, and the offline matrix Rq
off are formed as:

V q,i
off = span{φiq,k : 1 ≤ k ≤ Lioff},

V q
off =

⋃
Ei

V q,i
off = span{φiq,k : 1 ≤ k ≤ Lioff, 1 ≤ i ≤ Ne}, (V.16)

Rq
off =

[
φq1, φ

q
2, · · · , φ

q
Loff

]
,

respectively. Here φiq,k =

Ji∑
j=1

Ψq
kjψ

i
q,j, k = 1, 2, · · · , Lioff, is the dominant mode in the

space V q,i
snap.

We let V q
H = V q

off and define the testing space as

W q
H = {w ∈ W q

snap : (w − q) · n|E = 0, for all E ∈ EH , for some q ∈ V q
H}, (V.17)

where n is the unit-normal vector of the coarse-grid edge E. Now, we have the

multiscale solution space V q
H and the testing space W q

H . The GMsFEM solution
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(cH , qH) can be computed through (V.6).

Remark V.3.3. We remark that the fine-scale velocity field is constructed and used

in computing multiscale basis functions for the concentration. In future, we plan to

study joint multiscale basis construction procedures, which can compute multiscale

basis functions for the concentration without solving the velocity field. Because the

concentration field is a nonlinear function of the velocity field, an online procedure

for computing multiscale basis functions for the concentration will be employed.

V.4 Numerical results

We present a representative set of numerical experiments that demonstrate the

performance of the mixed GMsFEM for approximating the coupled flow and trans-

port equations (V.2). The computational domain Ω = [0, 1]× [0, 1]. We consider two

different permeability fields κ, as depicted in Figure V.3(a-b). The source term fc to

be used are plotted in Figure V.3(c-d), and fq is chosen to be 0. In all experiments

below, the fine grid T h is fixed to be 200× 200 uniform mesh, i.e., h = 1/200. The

coarse grid consists of 20 × 20 uniform meshes, i.e., H = 1/20. As for the time

discretization, the time step is chosen to be τ = 1 × 10−4 and the Crank-Nicolson

scheme is used. We denote ch as the average value of ch in each coarse cell, i.e.,

ch = 1
|K|

∫
K
ch, for every K ∈ T H . The relative numerical errors are measured in L2

norm for the concentration.

In our numerical experiments, we approximate the velocity vH and the flux qH (at

any time instant) in the offline space V v
H and V q

H in which each coarse edge is equipped

with Lioff basis functions. We choose at most Lioff = 2 and compare concentration

profiles with Lioff = 1. Note that there are H/h basis functions associated with each

coarse edge. We only select up to the two dominant modes per edge to form the

offline space.
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(d) f2

Figure V.3: Two permeability fields (top) and two source terms (bottom).

The first experiment is for the problem (V.2), where the diffusivity D = 1, the

source term fc = f1, the permeability field κ = κ1, and the boundary condition g =

7xy. The boundary condition represents the flow from lower left corner to upper right

corner. In Figure V.4, we depict the averaged fine-scale solutions and the GMsFEM

solutions at the time T = 0.015, 0.04, and 0.1. We choose the averaged fine-scale

solution since piecewise constant basis functions are used in the approximation of

the concentration on a coarse grid. The averaged fine-scale solution is depicted on

the top of Figure V.4. In the middle row, we depict the GMsFEM solution, where

only one basis function is used for the approximation of the velocity and one basis
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function is used for the approximation of the flux-concentration field. The L2 errors

in the concentration field are 21.22%, 30.16%, and 27.19% at T = 0.015, 0.04, and

0.1. At the bottom row of Figure V.4, we depict the concentrations computed using

two basis functions for the velocity and two basis functions for the flux-concentration

field. As we observe, the results look much better when two basis functions are used.

For example, at T = 0.1, we can observe that the concentration profile is similar

to the averaged fine-scale concetration profile. The L2 errors in the concentration

field are 8.1%, 11.1%, and 8.44% at T = 0.015, 0.04, and 0.1. Note that since we

use 20× 20 coarse grid and piecewise constant basis functions for the concentration,

one expects a first order convergence with respect to the coarse mesh (i.e., about 5%

error in our case).

In our second set of numerical examples, we consider the permeability κ = κ2, a

source term fc = f2, and a boundary condition g = 8(x− y). We let the diffusivity

to be D = 1. In this case, the problem becomes convection-dominated, where the

coarse-grid Peclet number has a maximum value around 8.1. The numerical results

are shown in Figure V.5, where the top row shows the averaged fine-scale concen-

tration profiles, the middle row shows the GMsFEM solution with one velocity basis

and one flux-concentration basis functions, and the bottow row shows the GMsFEM

solution, which uses two velocity basis functions and two flux-concentration basis

functions. In all numerical results, we use piecewise constant pressure and piecewise

constant concentration basis functions, as mentioned earlier. Thus, for the concen-

tration field, there is an irreducable error of order H (5% in our case). First, we

study the numerical results using only one multiscale basis function (the middle row

of Figure V.5). The L2 errors in the concentration field are 77.6%, 82.53%, and

77.96% at T = 0.01, 0.02, and 0.1. We observe from the figure that the coarse space

consisting one basis function per edge does not work well in capturing the averaged
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Figure V.4: First row: Fine-scale solutons ch. Second row: GMsFEM solutions cH
(one multiscale basis function per edge for both velocity and flux-concentration).
Third row: GMsFEM solutions cH (two multiscale basis function per edge for
both velocity and flux-concentration). From left column to right column: T =
0.015, 0.04, 0.1. We use κ = κ1, fc = f1, H=1/20.

fine-scale solution behavior. On the other hand, we observe a good agreement when

two multiscale basis functions are used (the bottom row of Figure V.5). We observe

that the main features of the concentration profile are captured. The L2 errors in

the concentration field are 14.9%, 18.24%, and 15.71% at T = 0.01, 0.02, and 0.1.

In our numerical simulations, we limit ourselves to piecewise constant (lowest or-

der) concentration basis functions. This allows a low computational cost and avoid a

design of more complex concentration basis functions, which can satisfy inf-sup con-
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Figure V.5: First row: Fine-scale solutons ch. Second row: GMsFEM solutions cH
(one multiscale basis function per edge for both velocity and flux-concentration).
Third row: GMsFEM solutions cH (two multiscale basis function per edge for
both velocity and flux-concentration). From left column to right column: T =
0.01, 0.02, 0.1. We use κ = κ2, fc = f2, H=1/20.

ditions (see e.g., [13]). Since we use lowest order basis functions for the concentration,

the accuracy is limited to O(H). This is reasonable as in large-scale simulations (due

to very detailed κ), the coarse grid sizes can be taken sufficiently small. In general,

the numerical results shown above can be improved using more basis functions for

the flux-concentration and designing multiscale basis functions for the concentration

field. One of our main objectives is to show that the results with one basis function

(which is similar to flow-based upscaling) can be substantially improved if one uses
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more multiscale basis functions and we also provide a procedure for computing the

multiscale basis functions and suitable global formulations.

V.5 Concluding remarks

In this chapter, we develop a Generalized Multiscale Finite Element Method

(GMsFEM) for coupled flow and transport equations. The transport equation is

convection dominated and we choose an appropriate test space to achieve a stability

and improved numerical results. We study a mixed formulation for both flow and

transport, which guarantees mass conservation. The multiscale spaces for the flux

and the velocity fields are constructed by appropriately choosing the snapshot spaces

and performing local spectral decompositions. The design of the local problem for

generating the snapshot space is one of our novel contributions. From the numerical

experiments, we observe that the mixed GMsFEM offers an accurate and efficient

approach for treating high-contrast convection diffusion problem considered in this

chapter.
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VI CONCLUSIONS

In this dissertation, GMsFEMs for high-contrast and high-anisotropy problems

are investigated. In Chapter II, we introduce the notion of material contrast and

anisotropy. We describe the concept of coarse space and discuss the robust two-level

domain decomposition preconditioners for highly anisotropic heterogeneous multi-

scale problems. We observe that, distinct from isotropic materials, anisotropic in-

clusions and channels bring an additional dimension to the coarse space. To obtain

a reduced-dimensional coarse space, we construct two spectral coarse spaces, where

standard bilinear basis functions and multiscale basis functions are employed as the

partition of unity, respectively. Based on the numerical results, we see that the two

spectral coarse spaces work well in reduction of the dimension and provide robust

preconditioners in the sense that the width, angle, and number of anisotropic chan-

nels do not affect much the number of iterations. Furthermore, the spectral coarse

space using multiscale basis functions, compared to the one using the blinear basis

functions, has smaller dimension as the underlying physical properties become more

complicated.

In Chapter III, we study a more general flow problem with high-contrast, high-

anisotropy, and parameter-dependent coefficients. We describe the GMsFEM frame-

work and investigate the application of the GMsFEM to this more general flow

problem. Two types of snapshot spaces, harmonic and eigenvalue, are presented for

building the multiscale coarse space. Note that our previous approach is limited and

can not handle general snapshot spaces as we discussed in the chapter. To obtain

a reduced-dimensional coarse space, we use a multiscale model reduction technique,

which is based on localized spectral decompositions in the snapshot space. Several
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bilinear forms associated to the eigenvalue problems are presented and the numeri-

cal experiments have shown that all problems work well for selecting the dominant

eigenvectors. In particular, all cases allows us to flexibly choose a set of eigenvectors

that offer a predictable error decline. In addition, when an oversampling technique

is used in the harmonic computations and localized eigenvalue problems, we observe

a faster convergence. Both parameter-independent and parameter-dependent cases

are discussed. The supporting numerical examples show that the GMsFEM offers

an accurate and efficient framework for treating high-contrast anisotropic problems

considered in this chapter.

In Chapter IV, we present a multilevel method in the GMsFEM framework for

hierarchically computing coarse basis functions. As the two-level GMsFEM, we at-

tempt to construct the snapshot space for the later use of building multiscale coarse

space. In this chapter, we develop an innovative algorithm to approximate snapshot

vectors in a multilevel fashion. More precisely, on grids of each level, we compute

the snapshot space by solving a set of local problems with harmonic extensions. For

a given level, the snapshot functions are computed only based on the snapshot space

and offline space of the previous level. This algorithm has the benefit of avoiding

tremendous expensive fine-grid computation and offering a speed-up in constructing

the multiscale coarse space. The use of oversampling techniques in the algorithm

brings a faster convergence for the resulting coarse space. Both numerical experi-

ments and computational time complexity analysis support our proposed approach.

In Chapter V, based on the GMsFEM, we develop a mixed GMsFEM for cou-

pled flow and transport in heterogeneous porous media. The flow equation involves

high-contrast coefficients and the transport equation is convection dominated. The

convection-dominated flow equation is a challenging anisotropic problem, where the

convection direction bring a high anisotropy to the problem. We study a mixed
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formulation for both flow and transport and construct the multiscale coarse spaces

for the flux and the velocity fields. We design (1) local problems for computing the

snapshot spaces and (2) localized eigenvalue problems for performing local spectral

decompositions. In addition, we choose an appropriate test space to achieve a sta-

bility and improve numerical accuracy. Numerical results show that with only a few

basis functions per coarse block, we can achieve a good approximation. The mixed

GMsFEM provides an accurate and efficient approach for treating high-contrast con-

vection diffusion problem considered in this chapter.
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