
  

 

THREE ESSAYS ON CLIMATE CHANGE ADAPTATION AND IMPACTS: 

ECONOMETRIC INVESTIGATIONS 

 

A Dissertation 

by 

SUNG JU CHO  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Bruce A. McCarl 

Committee Members, Richard T. Woodward 

 Ximing Wu 

 Jianbang Gan 

Head of Department, C. Parr Rosson III 

 

December 2015 

 

Major Subject: Agricultural Economics 

 

Copyright 2015 Sung Ju Cho



 

 ii 

ABSTRACT 

 

Climate change, biofuels, agricultural policies and other factors may well be changing 

farmer decisions and extreme events like wildfires.  We use discrete choice models to 

examine how climate is influencing decisions on crop mix and land use choice along 

with natural wildfire incidence.  Using panel data, we consider the effect of climate 

change across space on the censored choice of both major land uses and agricultural crop 

mix plus on the probability of wildfire.  

 In terms of land use and crop mix, we use a two-step linearized spatial logit 

model to portray major land use transitions and a fractional dependent variable model to 

examine crop mix selection.  The models include socioeconomic, environmental, and 

spatial factors.  Our results indicate that climate significantly affects land use transitions 

and crop mix allocations.  These results indicate that farm level adaptation to climate 

change is ongoing in a spatially heterogeneous manner.  Generally crops are moving 

north and west plus up in elevation while climate change causes crop land to transition 

into grassland.  

 For wildfire, we examine how wildfire risk is affected by climate and other 

factors using a fractional regression considering state unobserved factors.  We examine 

risks of both human and naturally caused wildfires.  We explore the importance of 

factors such as climate, demographics, and physical characteristics on fire risks.  We 

find that climate conditions play a significant role in determining wildfire risks in the US 
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but have regionally heterogeneous effects on human and naturally caused fires.  This 

implies each caused fire can be better dealt with by using separate approaches. 
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1. INTRODUCTION 

 

Climate change influences agricultural productivity, crop mix, land use and wildfire 

incidence across the landscape (Preisler, et al. 2004; Gan 2005; McCarl, Villavicencio 

and Wu 2008; Seo and Mendelsohn 2008a; Feng, Krueger and Oppenheimer 2010; 

Davis and Kilian 2011; Hertel 2011; Yue, et al. 2013).  Such effects stimulate both 

human and natural adaptations.  On the human side farmers adapt by modifying crop 

mix, land use, and many other forms of management.  In natural systems fire may result 

in a natural adaptation changing over vegetation type.  In this dissertation, we will 

examine climate change effects on these human and natural (wildfire) adaptations. 

 In terms of agricultural adaptation, previous studies have found that crop mix 

change and land usage shifts are a potential source of farmer adaptation.  Lands can go 

from crops to livestock as has been found in Mu, McCarl and Wein (2013) and Seo 

(2010) while crop mixes may change and agricultural land may move to or from forest 

(Reilly, et al. 2003; Seo and Mendelsohn 2008b; Choi and Sohngen 2009; Langpap and 

Wu 2011; Souza-Rodrigues 2014).   

 Understanding the importance of the climate drivers and the response in terms of 

chosen adaptations provides important insights into how climate change affects 

agriculture and how agriculture may adapt to future change and what infrastructure 

needs may arise in the future (Bootsma, Gameda and McKenney 2005; Coles and Scott 

2009; Hatfield, et al. 2011; Attavanich, et al. 2013).  Adaptation behaviors directed 

toward reducing or exploiting the effects of the altered climate in the North American 
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agriculture have been observed.  This has taken the form of locational shifts in planting 

areas, varietal selections, altered planting periods and altered crop mix (Bootsma, 

Gameda and McKenney 2005; Howden, et al. 2007; Coles and Scott 2009; Mendelsohn 

and Dinar 2009; Nadler and Bullock 2011; Paudel and Hatch 2012).  Here we pursue 

further analysis of how cropping and agricultural land is affected and will be affected.  

The analysis will be carried out in two essays.   

 In the first essay, presented in section 2, we examine how climate influences crop 

mix on crop lands.  We will estimate the relationships between climate attributes and 

crop mix shifts based on historical data at the US county level.  To look at crop mix, we 

inspect how crop land use shares by crop vary regionally with climate by applying a 

fractional dependent variable model considering climate, socioeconomic, environmental, 

and geophysical factors.  In this analysis we will look at not only longitude and latitude 

but also elevation.  This study also projects major crop mix shifts in terms of spatial 

patterns based on IPCC climate change projections.  

 In the second essay, presented in section 3, we will examine US land use 

transitions using a spatial econometric approach on crop land grasslands, forest, and 

developed land usages. 

 In terms of climate change impacts, in the third essay presented in section 4, we 

will assess a form of natural adaptation where climate change may stimulate more 

wildfires.  In particular, we examine responses in terms of the incidence of human-

caused and nature-caused wildfires in forest lands in the US.  To do this, we estimate a 
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model with fractional dependent variables and spatial heterogeneity.  We also project 

future wildfire risk under the climate change projections.  

 Across all of these studies, we will conduct spatial, econometric, data driven 

analysis with the dependent variable being changes in the probability of an item 

(incidence of a crop, amount of land in a land use or likelihood of a wildfire).  This will 

be done in a panel data setting using various fractional multivariate models. 
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2. CLIMATE CHANGE ADAPTATION IN CROP MIX IN THE UNITED STATES 

 

Agricultural crop mix change is often discussed as a response to changing climate.  

Previous studies found that crop mix change shift is one potential source of farmers’ 

adaptation to climate change (Adams, et al. 1990; Reilly, et al. 2003; Bootsma, Gameda 

and McKenney 2005; Nadler and Bullock 2011; Attavanich, et al. 2013).  Usually the 

researchers only highlight changes in corn and soybeans, which are the largest crops in 

the US.  However, other crops in the US are also important when it comes to the crop 

mix changes because they can be substitutes or complements plus some have superior 

heat tolerating properties.   

 Crop simulation models have been used to estimate changes in crop yields 

considering agronomic factors such as soil quality, climate, and management practices as 

in Rosenzweig and Parry (1994).  This method carries with detailed information on the 

relationship between geophysical factors and climate.  However, approaches of this kind 

involve potential limitations in that they generally neglect farmers’ adaption behavior 

not always portraying changes in management practices or only including as exogenous 

sensitivity cases.   

 Although it is still controversial whether the US agriculture will experience a net 

gain or loss under the projected climate (Mendelsohn, Nordhaus and Shaw 1994; 

Deschênes and Greenstone 2007), some studies argue that decreases in yield of US corn 

under increasing temperature will occur and that adaptation behavior against climate 

change has occurred (Butler and Huybers 2013).   Schlenker and Roberts (2009) also 
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pointed out that there are winners and losers in crop yields in the US.  Some previous 

studies used econometric estimations on crop selections under exogenous weather 

conditions with profit function approaches (Mendelsohn, Nordhaus and Shaw 1994; 

Mendelsohn, Nordhaus and Shaw 1996; Kurukulasuriya and Mendelsohn 2008; Seo and 

Mendelsohn 2008a).  However, the methods have not been broadly applied to the 

agricultural sector across the whole US region covering a variety of crops, especially 

using data from recent years.  

 This study examines crop mix shifts based on historical US county level data.  

We will estimate proportional land use shares by applying fractional regression 

considering most of the major crops in the US.  We consider climate, price and spatial 

effects.  In this endeavor we will extend the literature considering more crops than 

previously examined and also will look at shifts in crop elevation using county data. 

 

2.1 Background on Estimation Approach 

Farmers are assumed to choose crop mix based on maximizing expected profits across 

all the land areas they own or manage.  In doing this, producers are assumed to use 

information on market signals in the form of input and output prices as well as 

expectations on climate and policy.  Crop producers are assumed to be price-takers.  In 

other words, the choice decisions by land owners or managers are assumed as optimal 

choices prior to harvest, given the information they can acquire.  

 Land uses for each crop are a proportion between zero and one of the total crop 

land area.  Estimating the proportional response can be done by using a linear probability 
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model which has a drawback that the estimated probability is not confined in the unit 

interval.  Another possible method is a logit or logarithm transformation of the relative 

shares as done in Wu and Brorsen (1995) and Hardie and Parks (1997) but in doing this 

several problems arise that will be discussed below. 

 Models estimating proportional land uses often have difficulty with zero 

observations where a crop is not used in a region and thus has zero land area.  Logit 

transformations over data with zeroes cause numerical problems because they lead to 

results that are negative infinity or undefined.  For example, a logit transformation is 

defined as ln(𝜋 (1 − 𝜋)⁄ ) for the case of a single fractional response 𝜋, which extends to 

a logarithm transformation of the relative expected shares being assumed as ln(𝜋𝑗/𝜋𝐽), 

where 𝜋𝑗 is a share for crop 𝑗 (𝑗 = 1,2, … , 𝐽 − 1), and 𝐽 is the reference crop for the case 

of multiple responses.  Miller and Plantinga (1999) assumed that the aggregate data do 

not usually suffer from the zero land area.  However, we have multiple zero planted acre 

cases in this study because some crops are not planted in some regions due to climate 

and water availability.  For example, crops like cotton and rice are produced only in 

lower latitudes while wheat, barley, oats, and rapeseed are produced only in higher 

latitudes.  

 We need to utilize an approach to deal with the structural zeroes when a logit 

transformation is to be employed.  There are some possible ways to avoid this problem 

but none of them are considered the best method.  First, we can add some small values to 

zeroes so the data can be transformed using logarithms or log ratios as done in Timmins 

(2006).  However, when the distribution is highly skewed to zero, this type of 
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transformation can change the distribution of the variable so it may make inference 

severely biased.  The second method is that adding a small number to the zero and 

subtracting a small number from non-zeroes, in which the relative magnitude between 

the data points is unchanged as discussed in Aitchison (1982).  However, this also causes 

a changed distribution with fat tails.  Third, we can estimate the model with the data with 

zeroes present by using fractional regressions will be discussed below. 

 Estimating models with fractional response variables including zero proportions 

has been discussed in a variety of studies (e.g., Papke and Wooldridge 1996; Sivakumar 

and Bhat 2002; Bhat and Gossen 2004; Papke and Wooldridge 2008; Koch 2010; 

Mullahy and Robert 2010; Kala, Kurukulasuriya and Mendelsohn 2012; Murteira and 

Ramalho 2013).  In the field of economics, this work began when Papke and Wooldridge 

(1996) proposed estimation in such a case with maximum quasi-likelihood estimation 

(QMLE) in a generalized linear model (GLM) employing a logit link function, as 

suggested by McCullagh and Nelder (1989).  Papke and Wooldridge (2008) later utilized 

a panel data approach that could accommodate the zeros using GLM with a probit link 

function and generalized estimating equations (GEE) with an exchangeable correlation 

matrix. 

 Fractional regression models have been discussed in the literature (Papke and 

Wooldridge 1996; Sivakumar and Bhat 2002; Mullahy and Robert 2010; Ramalho, 

Ramalho and Murteira 2011) but they have not been widely used in spite of their 

robustness. 
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 Another issue is that this study involves multiple crops and land uses.  Although 

Papke and Wooldridge (1996, 2008) employ QMLE to deal with the fractional 

dependent variable, their studies are limited to a single dependent variable.  

Consequently, we are interested in estimating the equations with multinomial fractional 

dependent variables (multivariate; polytomous) cases.  

 A multinomial logit (MNL) and a nested logit (NL) are widely used in the 

literature on land use changes (Plantinga, Lubowski and Stavins 2002; Lubowski, 

Plantinga and Stavins 2006, 2008; Seo and Mendelsohn 2008a; Langpap and Wu 2011).  

However, the MNL approach is known to suffer from the independence of irrelevant 

alternatives (IIA) problem1 at times (McFadden 1974; Wooldridge 2010) and the NL 

approach has a drawback regarding how to group the relevant choices and an inability to 

deal with zero-one extreme values.  Their underling random utility theory does not 

support using aggregate data very well.  Also, MNL and NL generally do not fit the 

model with fractional dependent variables as efficiently as the QMLE approach 

(Murteira and Ramalho 2013). 

  Some studies have attempted this by using approaches such as multivariate 

binomial, beta, and Dirichlet regressions (Mullahy 2010; Ramalho, Ramalho and 

Murteira 2011; Murteira and Ramalho 2013).  In the multinomial setting, full 

information maximum likelihood (FIML) estimation can be used with extreme value 

 

                                                           
1 A popular example describing this problem is the blue-bus-red-bus (auto-bus) case.  IIA implies that if 

commuters chose between car and red bus with the equal probability 0.5 and then when the third 

transportation mode, blue bus (another brand of bus travel), was added, they would choose red bus, blue 

bus, and car with the same probability 1/3.  This example is unrealistic since the commuters are not likely 

to consider the color of the bus as long as the service quality is equivalent between the travel brands. 
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distribution such as Dirichlet regression (Woodland 1979).  Nevertheless, as indicated in  

Murteira and Ramalho (2013), the QMLE for the fractional response variables is more 

robust than the regression based on Dirichlet distribution when the research interest lies 

on the conditional effect of the independent variables on the mean of the dependent 

variable.  Furthermore, the Dirichlet distribution allows the predicted values to fall 

outside the unit interval so it is not the case for this study. 

 

2.2 Empirical Model Specification 

We use the fractional multinomial logit estimation method to estimate how the climate, 

geophysical, and socioeconomic factors affect land allocations for major crops in the US 

as it has the ability to deal with zero land share data.   

 To estimate land use shares, the quasi-likelihood method can be used following 

Papke and Wooldridge (1996) and Wooldridge (2010).  In particular suppose 𝑦 is a 

fractional variable bounded between zero and one.  Then, let the sequence 

{(𝐱𝑖𝑡−1, 𝑦𝑖𝑡): 𝑖 = 1,2, … ,𝑁, 𝑡 = 1,2, … , 𝑇} represent land use shares (𝑦) and values of 

explanatory variables (𝐱) in time (𝑡) and region (𝑖).  The explanatory variables include 

climate, geophysical, and socioeconomic factors in time 𝑡 − 1.  Because land use 

decisions are made before the current return is realized, choice depends on previous 

information.  Thus, we assume the following holds: 

(1) E(𝑦𝑖𝑡|𝐱𝑖𝑡−1) = 𝐺(𝐱𝑖𝑡−1𝛃) 

where 𝐺(⋅) is a known function that makes the predicted dependent variable 𝑦 lie 

between zero and one with 0 < 𝐺(𝑧) < 1 for all 𝑧 ∈ ℝ.  For example, the functional 
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forms of 𝐺(𝑧) ≡ 𝛬(𝑧) ≡ exp(𝑧)/(1 + exp(𝑧)) (logistic function) or 𝐺(𝑧) ≡ Φ(𝑧) 

(standard normal cumulative distribution function) limit the range of the predicted value 

of 𝑦.  The logistic functional form will be used for 𝐺(⋅) since it allows simple estimation 

approaches and can be extended to a spatial multinomial logit framework as we will do 

in the next section.  

 To estimate this, a quasi-likelihood Bernoulli log-likelihood function can be 

formed following Nelder and Wedderburn (1972) and Gourieroux, Monfort and Trognon 

(1984) in the following fashion: 

(2) 𝑙𝑖𝑡(𝛃) ≡ 𝑦𝑖𝑡 log[𝐺(𝐱𝑖𝑡𝛃)] + (1 − 𝑦𝑖𝑡) log[1 − 𝐺(𝐱𝑖𝑡𝛃)]. 

The above method represents the case of each individual who chooses only one 

commodity at a time. 

 To implement the estimation with multiple crops, we use the maximum quasi-

likelihood estimation for multinomial fractional regression following Koch (2010), Kala, 

Kurukulasuriya and Mendelsohn (2012), and Murteira and Ramalho (2013).  This yields 

predicted crop land use shares that fall into the unit interval.  In turn, the conditional 

mean for land use share with 𝐽 cropping alternatives can be expressed as:  

(3) E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡−1) = 𝐺𝑗(𝐱𝑖𝑡−1; 𝛃) =
exp(𝐱𝑖𝑡−1𝛃𝑗)

∑ exp(𝐱𝑖𝑡−1𝛃𝑘)
𝐽
𝑘=1

, 𝑗 = 1,… , 𝐽 

where 𝑠𝑖𝑗𝑡 is the observed land share for crop 𝑗 in county 𝑖 in time 𝑡.  We then normalize 

on one item setting 𝛃𝐽 = 𝟎, which allows identification yielding: 

(4) E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡−1) = 𝐺𝑗(𝐱𝑖𝑡−1; 𝛃) =
exp(𝐱𝑖𝑡−1𝛃𝑗)

1 +∑ exp(𝐱𝑖𝑡−1𝛃𝑘)
𝐽−1

𝑘=1

, 𝑗 = 1, . . . , 𝐽 − 1 



 

 11 

and 

(5) E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡−1) = 𝐺𝐽(𝐱𝑖𝑡−1; 𝛃) =
1

1 +∑ exp(𝐱𝑖𝑡−1𝛃𝑘)
𝐽−1

𝑘=1

 . 

Estimation using the above equations causes the conditional expected land shares to add 

up to one (∑ 𝑠𝑗𝑗 = 1) and to fall in the unit interval (𝑠𝑗 ∈ (0,1)) given that 

Pr(𝑠𝑗 = 0|𝑥) ≥ 0 and Pr(𝑠𝑗 = 1|𝑥) ≥ 0 for 𝑗 = 1,2, … , 𝐽.  

 In this case the specific quasi-maximum likelihood function is 

(6) 𝐿 =∏∏𝐺(𝐱𝑖𝑡−1; 𝛃𝑗)
𝑠𝑖𝑗𝑡

𝐽

𝑗=1

𝑁

𝑖=1

 

and the log-likelihood function of the predicted dependent variable 𝑠 is 

(7) 

𝑙𝑖(𝛃) = 𝑠𝑖1𝑡 log[𝐺(𝐱𝑖𝑡−1; 𝛃1)] + 𝑠𝑖2𝑡 log[𝐺(𝐱𝑖𝑡−1; 𝛃2)] + ⋯ 

+ 𝑠𝑖𝐽𝑡 log[𝐺(𝐱𝑖𝑡−1; 𝛃𝐽)]  . 

Maximizing yields the following first order condition that can be solved to obtain 

estimates for the parameters: 

(8) 
𝜕𝑙𝑖(𝛃)

𝜕𝛃𝑗
=∑𝐱′𝑖𝑡−1[𝑠𝑖𝑗𝑡 − 𝐺𝑗(𝐱𝑖𝑡−1; 𝛃)]

𝑁

𝑖=1

= 0 . 

 Assuming that the model is correctly specified, the quasi-maximum likelihood 

estimator is consistent since the log-likelihood function is a member of the linear 

exponential family (LEF) (Gourieroux, Monfort and Trognon 1984; McCullagh and 

Nelder 1989).  

As discussed in Murteira and Ramalho (2013), the multivariate fractional 

regression does not generally suffer the problem of independence of irrelevant 
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alternatives which is common in the standard multinomial logit because it identifies the 

ratio of the conditional means between alternatives, 𝐺𝑗 𝐺𝑘⁄ =

exp(𝐱𝑖𝑡−1𝛃𝑗) exp(𝐱𝑖𝑡−1𝛃𝑘)⁄   (𝑗 ≠ 𝑘), which is functionally independent from the ratio 

of the other pairs.  

  Note that, as indicated in Papke and Wooldridge (2008), when using QMLE we 

need to ensure the standard errors are robust to arbitrary standard errors.  To make the 

standard errors robust to misspecification of conditional variance and arbitrary serial 

dependence, we used heteroskedasticity-consistent robust standard errors as also 

discussed in Papke and Wooldridge (1996). 

 Estimates from discrete response estimation methods pose inherent difficulties in 

interpreting coefficients because the parameter estimates give changes relative to the 

reference group.  The scale of coefficients is different among each model and thus the 

parameter estimates cannot be compared in magnitude but just in terms of signs for 

relative alternatives.  In this case, even though the coefficients are positive, that is not 

necessarily indicate that there are positive marginal impacts of the explanatory variable 

on the expected proportion.  For instance, if the parameter of the corn price in the barley 

equation is positive, it just means that the probability of choosing barley rather than corn 

increases.  It does not explain the relationship between barley and other crops such as 

sorghum or soybeans when corn price increases. 

 To compare the magnitude of different models or equations, we use the concept 

of the average marginal effect (AME).  The average marginal effects indicate the 

marginal impacts of change of one unit of the explanatory variables on the choice 
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decisions on the vector of crop planted acres (Long and Freese 2006).  For continuous 

explanatory variables, the average marginal effect of 𝑚-th explanatory variable on the 

expected probability of land share for crop 𝑗 is calculated as the mean of marginal effects 

evaluated at each observation and is expressed as  

(9) 
𝜕E[𝑠𝑖𝑗𝑡|𝐱𝑖]

𝜕𝑥𝑖𝑡−1
𝑚 = 𝑁−1∑(𝛽𝑗

𝑚𝐺𝑗(𝐱𝑖𝑡−1; 𝛃) − 𝐺𝑗(𝐱𝑖𝑡−1; 𝛃)∑𝐺𝑘(𝐱𝑖𝑡−1; 𝛃)𝛽𝑘
𝑚

𝐽−1

𝑘=1

)

𝑁

𝑖=1

 

where 𝑠𝑖𝑗 is the observed land use share for crop 𝑗 in county 𝑖 and 𝑥𝑖
𝑚 is the value of one 

of the continuous explanatory variables in county 𝑖.  For discrete explanatory variables, 

the average marginal effect is calculated as 

(10) 
𝛥E[𝑠𝑖𝑗𝑡|𝐱𝑖𝑡−1]

𝛥𝑥𝑖𝑡−1
𝑚 = 𝑁−1∑(𝐺(𝐱𝑖𝑡−1

−𝑚 𝛃𝑗
−𝑚 + 𝛃𝑗

𝑚) − 𝐺(𝐱𝑖𝑡−1
−𝑚 𝛃𝑗

−𝑚))

𝑁

𝑖=1

 

where 𝐱𝑖
−𝑚 indicates the other explanatory variables besides 𝑥𝑖

𝑚 in county 𝑖.  

 

2.3 Data and Variables Used 

In the estimations, the dependent variable is a vector of proportions, 𝐬𝑖 =

(𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖𝐽)
′, which gives the land use shares across the 𝐽 crops in a region 𝑖.  The 

crops are assumed mutually exclusive.  A base crop is used as the reference point in the 

fractional multinomial logit.  We cover ten major crops, which consist of about 96% of 

harvested crop lands, for 2693 counties in 41 United States2 as shown in the Appendix 

 

                                                           
2 Excluded states or territories are Alaska, American Samoa, District of Columbia, Guam, Hawaii, Puerto 

Rico, and Virgin Islands.  From the 48 contiguous U.S., Connecticut, Delaware, Maine, Massachusetts, 

New Hampshire, Rhode Island, and Vermont are excluded because the croplands are too small or lack of 

data. 
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(figure A-1) and years from 1975 to 2011 (from 1976 to 2012 for the share variables).  

For the estimations, 𝐽 = 10 and alfalfa hay is considered the base crop.  The total 

number of observations is 99,641.  Missing values are filled with linear interpolation 

when the region has some missing observations in analyzed periods.  

 Crop rotations can be used to improve soil fertility and crop yield.  However, 

data on the exact practices being used are difficult to obtain and assuming they are 

repeated widely the longer run effects can be captured on average by observations over 

time on annual acreage.  Thus, we assume that the crop acreages implicitly include crop 

rotations as well as crop switching or selection.  Descriptions and sources of the included 

variables are summarized in table 1.  The dependent variables are land shares for crops 

and the explanatory variables consist of climate, geophysical, and socioeconomic factors 

that will be discussed below.  

 Planted acres, harvested acres, and crop yield data were drawn from USDA 

NASS Quick Stats (U.S. Department of Agriculture 2013d) on a county basis from 1975 

to 2012.  The crops used are barley, corn, upland cotton, rice, sorghum, soybeans, winter 

wheat, durum wheat, spring wheat, and alfalfa hay.  Although hay is a perennial and 

would not a readily respond to current conditions, it is reasonable to assume that it 

responds to the 5-year average values of the explanatory variables.  Wheat types vary 

across geographic regions and exhibit different responses to climate.  Thus, we 

separately estimate the effects on the proportion of the three types of wheat.  For 

example, spring wheat is the most tolerant to cold weather and is used in the coldest 

regions while winter wheat is used in warmer areas. 
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Table 1. Descriptions and Sources of Variables 
Variables Description Source 

% Barley Land share for barley planted acres (%) USDA NASS 

% Corn Land share for corn grain planted acres (%) USDA NASS 

% Cotton Land share for upland cotton planted acres (%) USDA NASS 

% Rice Land share for rice planted acres (%) USDA NASS 

% Sorghum Land share for grain sorghum planted acres (%) USDA NASS 

% Soybeans Land share for soybean planted acres (%) USDA NASS 

% Wheat(winter) Land share for winter wheat planted acres (%) USDA NASS 

% Wheat(spring) Land share for spring wheat planted acres (%) USDA NASS 

% Wheat(durum) Land share for durum wheat planted acres (%) USDA NASS 

% Hay(alfalfa) Land share for alfalfa hay harvested acres (%) USDA NASS 

Temperature 5-year average of annual mean temperature (°C) USHCN 

Precipitation 5-year average of annual total precipitation (100mm) USHCN 

Temperature SD Standard deviation of Temperature USHCN 

Precipitation SD Standard deviation of Precipitation USHCN 

Altitude in 100m Altitude from the sea level (100m) SSURGO 

Soil quality Weighted average of reverse-order land capability 

classifications (1 = least suitable for cultivation; …;  

8 = most suitable for cultivation) 

SSURGO 

PDSI Palmer drought severity index (> –4.0 = extreme drought; …; 

(–0.5,0.5) = normal ; …; < 4.0 = extreme wet spell) 

NOAA CDO 

Irrigation rate Irrigation rate of crop land (%) USDA NASS 

Log(Population density) Logarithm of population density (persons in an acre) CENSTAT 

Log(Planted acres) Logarithm of total planted acres USDA NASS 

Net return - Barley Net return of barley production per acre Calculated 

Net return - Corn Net return of grain corn production per acre Calculated 

Net return - Cotton Net return of upland cotton production per acre Calculated 

Net return - Rice Net return of rice production per acre Calculated 

Net return - Sorghum Net return of grain sorghum production per acre Calculated 

Net return - Soybeans Net return of soybean production per acre Calculated 

Net return - Wheat(winter) Net return of winter wheat production per acre Calculated 

Net return - Wheat(spring) Net return of spring wheat production per acre Calculated 

Net return - Wheat(durum) Net return of durum wheat production per acre Calculated 

Net return - Hay(alfalfa) Revenue of alfalfa hay production per acre Calculated 

Note: Net return for each crop ($/acre) is calculated as state price ($/unit) × county yield (unit/acre) – 

national cost ($/acre) for each crop. 

 

 

 Price received by farmers ($ per unit of commodity) and Yield (unit of 

commodity per acre) were also drawn from QuickStats but on the state level.  Missing 

values for price are filled with the price from an adjacent location.  Production cost data 

were drawn from USDA ERS Commodity Costs and Returns report (U.S. Department of 

Agriculture 2013a).  Because classifications used in the cost and returns data differ over 
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time and across crops, the variable costs were calculated into classes making them 

compatible.  For example, ‘hired labor’ is considered as a cash expense before the 2003 

data for barley but it is considered to be in allocated overhead after 2003.  All the costs 

and prices are normalized by the Producer Prices Received Index (U.S. Department of 

Agriculture 2013c) into 1990 constant dollar values.  

 Revenue ($ per acre) data were calculated as Price received ($ per unit of 

commodity) multiplied by Yield (unit of commodity per acre).  Net returns ($ per acre) 

were calculated as Revenue minus Variable (Operating) cost.  Counties with 

observations of omitted or zero total harvested acres were excluded from the estimation. 

 We included geophysical factors to control for the location-specific 

characteristics.  Land capability classification (Klingebiel and Montgomery 1961) is 

used as a measure of suitability of soil condition for crop production as discussed in 

Lubowski, Plantinga and Stavins (2006).  The land capability that is averaged out across 

parcels at the county level is named soil quality. 

 Palmer drought severity index (PDSI) was drawn from National Oceanic and 

Atmospheric Administration (NOAA)’s National Climatic Data Center (NCDC) at the 

climate division level (Vose, et al. 2014).  PDSI is based on the balance of moisture 

supply and demand and indicates the severity of a wet or dry spell with negative values 

indicating dry spells and positive values indicating wet spells. 

 Since the PDSI does not consider the influence of irrigation, we also include 

proportion of irrigated land by county.  The irrigation rate of agricultural land was 
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calculated using the quantity of irrigated acres drawn from the USDA Census of 

Agriculture (1969–2012) (U.S. Department of Agriculture 2014).  

 Monthly, county level, climate data were obtained from the United States 

Historical Climatology Network (USHCN) (Menne, et al. 2012).  Included climate 

variables are annual average temperature and annual total precipitation, as well as their 

squared values as we assumed nonlinear trends in development of yield and profits with 

respect to climate variables.  As shown in Mendelsohn, et al. (2007), both climate 

normals and inter-annual variations are likely to play an important role in crop mix 

selection.  Thus, in this study, standard deviations of temperature and precipitation are 

also included to reflect temporal fluctuations of climate variables. 

 Temperature and precipitation are important factors in determining land use 

allocations and are thus included as explanatory variables.  There are some other 

candidates such as growing degree days and growing seasonal precipitation, as used in 

Lee and Sumner (2015).  Because the historical data and projected values on the 

variables are not available and our model have multiple crops that have different 

growing seasons, this study only deals with regional average temperature and 

precipitation and their variations for estimations and projections. 

 Some previous studies on crop land allocation have used parcel level data from 

the Natural Resources Inventory (NRI) but the Natural Resources Conservation Service 

(NRCS) has not publicly provided those data since 1997.  Thus, we instead use county 

level data from NASS for fractional land uses for each crop.   
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Data were classified into regions.  The farm production regions by USDA 

Economic Research Service (ERS) were used.  Before 1995, ERS used ten farm 

production regions to classify the region and after 1995, they use nine farm resource 

regions.  Because this study focuses on the locational shifts of the crop variations, we 

use the older farm production regions as the geographic categories.  The regional 

classifications are shown in figure 1 for the farm production regions based on the data 

from U.S. Department of Agriculture (2013b). 

The means and standard deviations of the dependent and independent variables 

by region are shown in table 2.  The descriptive statistics for the variables show different 

characteristics between the regions. 

Figure 1. Farm production regions 

Source: Data from U.S. Department of Agriculture (2013b) 
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Table 2. Means and Standard Deviations of Variables by Region 

Variable Appalachian 
 

Corn Belt 
 

Delta States 
 

Lake States 
 

Mountain 
 

Northeast 

% Barley 0.028 (0.037) 
 

0.002 (0.006) 
 

0.001 (0.009) 
 

0.025 (0.053) 
 

0.111 (0.119) 
 

0.023 (0.038) 

% Corn 0.375 (0.169) 
 

0.429 (0.147) 
 

0.134 (0.118) 
 

0.481 (0.194) 
 

0.071 (0.109) 
 

0.483 (0.127) 

% Cotton 0.031 (0.096) 
 

0.002 (0.023) 
 

0.119 (0.148) 
 

0.000 (0.000) 
 

0.019 (0.084) 
 

0.000 (0.000) 

% Rice 0.000 (0.000) 
 

0.001 (0.015) 
 

0.063 (0.130) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.000 (0.000) 

% Sorghum 0.021 (0.036) 
 

0.022 (0.051) 
 

0.106 (0.106) 
 

0.000 (0.000) 
 

0.021 (0.054) 
 

0.003 (0.005) 

% Soybeans 0.262 (0.187) 
 

0.393 (0.138) 
 

0.433 (0.190) 
 

0.206 (0.170) 
 

0.000 (0.000) 
 

0.145 (0.164) 

% Wheat(winter) 0.149 (0.098) 
 

0.085 (0.088) 
 

0.144 (0.101) 
 

0.053 (0.070) 
 

0.199 (0.224) 
 

0.076 (0.074) 

% Wheat(spring) 0.000 (0.000) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.043 (0.118) 
 

0.085 (0.144) 
 

0.000 (0.000) 

% Wheat(durum) 0.000 (0.000) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.001 (0.004) 
 

0.011 (0.051) 
 

0.000 (0.000) 

% Hay(alfalfa) 0.135 (0.185) 
 

0.066 (0.108) 
 

0.000 (0.000) 
 

0.190 (0.215) 
 

0.484 (0.300) 
 

0.269 (0.183) 

Temperature (°C) 13.611 (1.786) 
 

10.880 (1.778) 
 

17.410 (1.644) 
 

6.741 (1.586) 
 

8.798 (3.972) 
 

9.844 (2.149) 

Precipitation (100mm) 12.234 (1.586) 
 

10.131 (1.438) 
 

14.270 (1.733) 
 

7.887 (1.198) 
 

3.627 (1.433) 
 

10.938 (1.325) 

Temperature SD 0.513 (0.196) 
 

0.675 (0.239) 
 

0.499 (0.168) 
 

0.806 (0.311) 
 

0.658 (0.305) 
 

0.566 (0.233) 

Precipitation SD 2.014 (0.713) 
 

1.792 (0.685) 
 

2.591 (0.927) 
 

1.309 (0.516) 
 

0.779 (0.375) 
 

1.636 (0.609) 

Altitude (100m) 2.276 (1.649) 
 

2.493 (0.714) 
 

0.876 (0.714) 
 

3.004 (0.708) 
 

14.827 (4.768) 
 

2.290 (1.491) 

Soil quality 4.453 (1.087) 
 

5.768 (0.913) 
 

4.865 (0.921) 
 

5.202 (1.091) 
 

2.670 (1.352) 
 

4.574 (0.952) 

PDSI 0.206 (0.863) 
 

0.675 (0.874) 
 

0.239 (0.824) 
 

0.668 (1.123) 
 

0.010 (1.501) 
 

0.400 (0.823) 

Irrigation rate 0.008 (0.021) 
 

0.013 (0.047) 
 

0.102 (0.179) 
 

0.027 (0.056) 
 

0.145 (0.188) 
 

0.026 (0.063) 

Log(Population density) 4.734 (0.917) 
 

4.593 (1.074) 
 

4.163 (0.813) 
 

4.464 (1.252) 
 

2.291 (1.579) 
 

5.584 (1.134) 

Log(Planted acres) 9.535 (1.339) 
 

11.526 (1.222) 
 

10.154 (1.639) 
 

11.211 (1.339) 
 

10.485 (1.404) 
 

10.272 (1.098) 

Net return - Barley (100$/acre) 0.235 (0.355) 
 

0.086 (0.341) 
 

–0.018 (0.098) 
 

0.428 (0.411) 
 

1.003 (0.748) 
 

0.386 (0.338) 

Net return - Corn 1.004 (0.749) 
 

1.584 (0.846) 
 

0.707 (0.813) 
 

1.203 (0.822) 
 

1.039 (1.225) 
 

1.470 (0.734) 

Net return - Cotton 0.168 (0.773) 
 

0.013 (0.218) 
 

0.478 (1.387) 
 

0.000 (0.000) 
 

0.204 (0.926) 
 

0.000 (0.000) 

Net return - Rice 0.000 (0.000) 
 

0.019 (0.210) 
 

0.510 (0.951) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.000 (0.000) 

Net return - Sorghum 0.314 (0.431) 
 

0.681 (0.541) 
 

0.585 (0.413) 
 

0.000 (0.000) 
 

0.208 (0.534) 
 

0.103 (0.328) 

Net return - Soybeans 1.011 (0.630) 
 

1.706 (0.621) 
 

0.910 (0.503) 
 

1.328 (0.571) 
 

0.000 (0.000) 
 

1.265 (0.722) 

Net return - Wheat(winter) 0.761 (0.431) 
 

0.964 (0.449) 
 

0.652 (0.347) 
 

0.826 (0.429) 
 

1.053 (0.936) 
 

0.896 (0.420) 

Net return - Wheat(spring) 0.000 (0.000) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.447 (0.453) 
 

0.860 (0.921) 
 

0.000 (0.000) 

Net return - Wheat(durum) 0.000 (0.000) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.239 (0.430) 
 

0.346 (0.883) 
 

0.000 (0.000) 

Net return - Hay(alfalfa) 2.155 (1.811) 
 

3.197 (1.392) 
 

0.000 (0.000) 
 

1.798 (1.412) 
 

3.203 (1.786) 
 

3.270 (1.042) 

Number of counties 411     491     202     219     264     158   

Note: Standard deviations are in parentheses.  All of the crop net returns per acre are in 1990 constant hundred US dollars.  SD indicates sample 

standard deviations of each climate variable. 
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Table 2. Continued 

Variable Northern Plains 
 

Pacific 
 

Southeast 
 

Southern Plains 
 

All regions 

% Barley 0.029 (0.054) 
 

0.156 (0.186) 
 

0.011 (0.028) 
 

0.020 (0.042) 
 

0.031 (0.073) 

% Corn 0.252 (0.218) 
 

0.128 (0.179) 
 

0.243 (0.159) 
 

0.108 (0.133) 
 

0.285 (0.216) 

% Cotton 0.001 (0.006) 
 

0.036 (0.127) 
 

0.187 (0.216) 
 

0.152 (0.216) 
 

0.053 (0.137) 

% Rice 0.000 (0.000) 
 

0.050 (0.180) 
 

0.000 (0.000) 
 

0.016 (0.081) 
 

0.009 (0.060) 

% Sorghum 0.086 (0.105) 
 

0.026 (0.085) 
 

0.083 (0.087) 
 

0.176 (0.170) 
 

0.056 (0.102) 

% Soybeans 0.151 (0.173) 
 

0.000 (0.000) 
 

0.293 (0.183) 
 

0.065 (0.130) 
 

0.219 (0.208) 

% Wheat(winter) 0.246 (0.265) 
 

0.327 (0.250) 
 

0.184 (0.123) 
 

0.418 (0.283) 
 

0.183 (0.205) 

% Wheat(spring) 0.089 (0.174) 
 

0.056 (0.079) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.024 (0.090) 

% Wheat(durum) 0.022 (0.090) 
 

0.014 (0.074) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.004 (0.038) 

% Hay(alfalfa) 0.124 (0.153) 
 

0.207 (0.278) 
 

0.000 (0.000) 
 

0.045 (0.081) 
 

0.137 (0.214) 

Temperature (°C) 9.617 (2.886) 
 

12.277 (3.709) 
 

17.308 (1.419) 
 

17.576 (2.380) 
 

12.489 (4.301) 

Precipitation (100mm) 6.299 (1.945) 
 

5.890 (4.137) 
 

12.931 (1.644) 
 

8.462 (3.109) 
 

9.473 (3.640) 

Temperature SD 0.793 (0.313) 
 

0.489 (0.229) 
 

0.489 (0.184) 
 

0.539 (0.163) 
 

0.613 (0.265) 

Precipitation SD 1.324 (0.637) 
 

1.370 (0.975) 
 

2.148 (0.849) 
 

1.909 (0.879) 
 

1.718 (0.856) 

Altitude (100m) 5.934 (2.548) 
 

4.263 (3.703) 
 

1.434 (0.902) 
 

3.963 (3.354) 
 

4.087 (4.441) 

Soil quality 5.386 (0.894) 
 

3.018 (1.474) 
 

4.941 (0.765) 
 

4.807 (0.883) 
 

4.752 (1.352) 

PDSI 0.852 (1.505) 
 

–0.102 (1.229) 
 

–0.081 (0.964) 
 

0.529 (0.915) 
 

0.394 (1.118) 

Irrigation rate 0.077 (0.129) 
 

0.198 (0.201) 
 

0.031 (0.050) 
 

0.036 (0.099) 
 

0.052 (0.119) 

Log(Population density) 2.671 (1.264) 
 

4.088 (1.838) 
 

4.558 (0.981) 
 

3.508 (1.462) 
 

4.042 (1.522) 

Log(Planted acres) 12.034 (0.783) 
 

10.234 (1.718) 
 

9.495 (1.333) 
 

10.471 (1.523) 
 

10.618 (1.577) 

Net return - Barley 0.193 (0.333) 
 

0.832 (0.607) 
 

0.021 (0.244) 
 

0.017 (0.308) 
 

0.260 (0.500) 

Net return - Corn 1.103 (1.011) 
 

1.776 (1.658) 
 

0.558 (0.909) 
 

0.577 (1.094) 
 

1.080 (1.033) 

Net return - Cotton 0.040 (0.397) 
 

0.622 (1.701) 
 

0.528 (1.318) 
 

–0.235 (1.216) 
 

0.132 (0.917) 

Net return - Rice 0.000 (0.000) 
 

0.482 (1.478) 
 

0.000 (0.000) 
 

0.112 (0.555) 
 

0.072 (0.465) 

Net return - Sorghum 0.515 (0.536) 
 

0.408 (0.698) 
 

0.224 (0.355) 
 

0.422 (0.457) 
 

0.383 (0.507) 

Net return - Soybeans 1.184 (0.752) 
 

0.000 (0.000) 
 

0.814 (0.496) 
 

0.476 (0.595) 
 

0.970 (0.779) 

Net return - Wheat(winter) 0.647 (0.359) 
 

1.730 (0.911) 
 

0.621 (0.353) 
 

0.389 (0.372) 
 

0.796 (0.572) 

Net return - Wheat(spring) 0.192 (0.363) 
 

0.855 (0.956) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.172 (0.486) 

Net return - Wheat(durum) 0.177 (0.350) 
 

0.703 (1.377) 
 

0.000 (0.000) 
 

0.000 (0.000) 
 

0.098 (0.450) 

Net return - Hay(alfalfa) 2.319 (1.011) 
 

2.589 (2.328) 
 

0.000 (0.000) 
 

2.873 (2.526) 
 

2.239 (1.916) 

Number of counties 317     100     253     321     2693   

Note: Standard deviations are in parentheses.  All of the crop net returns per acre are in 1990 constant hundred US dollars.  SD indicates sample 

standard deviations of each climate variable. 
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The regions with the largest land shares for corn are Appalachian, Corn Belt, Lake 

States, Northeast, and Northern Plains.  The largest crop share in Delta States and 

Mountain are soybeans and alfalfa hay, respectively.  The largest land share in Pacific 

and Southern Plains regions is for winter wheat.  Northern Plains region has the largest 

crop lands.  Corn Belt and Northern Plains have the most suitable lands for cultivation as 

measured in land capability classification.  Note that we have multiple cases with zero 

crop mix shares which generally reflect that not all crops are planted in all regions but 

may also may result from rounding or confidential observations.  For example, rice is 

only observed in Corn Belt, Delta States, Pacific, and Southern Plains regions. 

 

2.4 Estimation Results 

The estimations are conducted employing the following conditional mean function: 

(11) E(𝑠𝑖𝑗𝑡|𝐜, 𝐱, 𝐳; 𝛃
𝑐 , 𝛃𝑥, 𝛃𝑧) = 𝐺(𝐜𝑖𝑡−1𝛃

𝑐 + 𝐱𝑖𝑗𝑡−1𝛃
𝑥 + 𝐳𝑖𝑗𝛃

𝑧) 

where 𝐺(⋅) has a multinomial logit functional form, 𝑠𝑖𝑗𝑡 indicates land use share for crop 

𝑗 in county 𝑖 at time 𝑡, 𝐜𝑖𝑡−1 indicates climate variables at time 𝑡 − 1 in county 𝑖, 𝐱𝑖𝑗𝑡−1 

implies time-varying variables such as net return and other socioeconomic factors at 

time 𝑡 − 1 in county 𝑖, and 𝐳𝑖𝑗 indicates time-invariant county fixed variables in county 𝑖 

for crop 𝑗.  The climate variables consist of 5-year average of temperature of 

precipitation and their standard deviations.  The averaged values are used to incorporate 

the generalized longer run pattern of climate and such a practice models farmer longer 

run reactions and avoids excessive fluctuations caused by anomalies in some years.  The 

standard deviations formed over five years are also included to model reactions to 
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climate variations.  The time-varying factors include five year averages for net returns 

for crops, irrigation rates, population density, and total planted area.  Time-invariant 

factors include soil quality, altitude of planted areas, drought index, and other county-

specific factors. 

 Although our model does not explicitly deal with the panel structure of data, 

testing for the existence of autocorrelation and cross-sectional correlation in terms of 

linear estimations can mitigate misinterpretations of the estimates.  The results of unit 

root tests in panel data following Breitung (2001) show that the dependent and 

independent variables do not suffer from autocorrelation and contemporaneous 

correlation except for the share of soybeans and the net return of barley. 

 Using the quasi-maximum likelihood method over the above functional form, the 

estimated results for average land share allocation are presented in table 3.  We tested 

several specifications regarding the temperature and precipitation terms.  In the testing, 

since the estimation was done by QMLE with robust clustered variance-covariance 

matrix, the conventional Hausman test could not be used.  Instead, we used the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) to compare models.  

The lower AIC or BIC is considered the better fitted model when the same data are used 

in the compared models.  AIC and BIC are calculated as AIC = 2𝑘 − 2ln(𝐿) and BIC =

ln(𝑁)𝑘 − 2 ln(𝐿), respectively, where 𝑘 is the number of parameters estimated (model 

degrees of freedom), 𝐿 is the maximized likelihood, and 𝑁 is the number of 

observations.  The BIC penalize the number of parameters more strongly than the AIC 

does as the number of observation increases the BIC.   
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Table 3. Fractional Multinomial Logit Estimation Results 
  % Planted acres (Base: Hay(alfalfa)) 

Variables Barley Corn Cotton Rice Sorghum 

Temperature –0.075  –0.040  3.757 *** –0.425  0.851 *** 

 (0.060)  (0.051)  (0.289)  (0.320)  (0.086)  

Temperature squared 0.008 *** 0.006 *** –0.092 *** 0.028 *** –0.014 *** 

 (0.003)  (0.002)  (0.008)  (0.010)  (0.003)  

Precipitation –0.069  0.389 *** 0.024  0.698 *** –0.041  

 (0.083)  (0.041)  (0.092)  (0.191)  (0.072)  

Precipitation squared –0.000  –0.013 *** 0.003  –0.012  0.001  

 (0.005)  (0.002)  (0.004)  (0.007)  (0.003)  

Temperature SD –0.013  –0.224 *** –0.880 *** –0.513 *** –0.089  

 (0.071)  (0.036)  (0.078)  (0.176)  (0.059)  

Precipitation SD 0.227 *** –0.005  0.086 *** –0.133 ** 0.146 *** 

 (0.042)  (0.019)  (0.029)  (0.055)  (0.026)  

Altitude –0.062 *** –0.065 *** 0.124 *** 0.021  0.060 *** 

 (0.014)  (0.012)  (0.030)  (0.080)  (0.021)  

Soil quality 0.130 *** 0.294 *** 0.431 *** 0.146  0.477 *** 

 (0.042)  (0.033)  (0.063)  (0.182)  (0.050)  

PDSI –0.012  –0.051 *** –0.137 *** 0.023  0.063 *** 

 (0.013)  (0.010)  (0.024)  (0.048)  (0.016)  

Irrigation rate 0.517  1.282 *** 1.800 *** 6.823 *** 0.614  

 (0.376)  (0.297)  (0.415)  (0.510)  (0.405)  

Log(Population density) 0.060 * 0.044 ** –0.099 ** 0.028  –0.095 *** 

 (0.031)  (0.022)  (0.044)  (0.111)  (0.034)  

Log(Planted acres) 0.218 *** 0.255 *** 0.757 *** 0.797 *** 0.261 *** 

 (0.038)  (0.029)  (0.048)  (0.091)  (0.041)  

Net return - Barley 0.637 *** –0.088  –0.792 *** –0.164  –0.299 *** 

 (0.103)  (0.070)  (0.131)  (0.323)  (0.102)  

Net return - Corn –0.026  0.396 *** 0.120 ** 0.161  –0.052  

 (0.051)  (0.036)  (0.061)  (0.135)  (0.049)  

Net return - Cotton –0.281 *** –0.056  0.262 *** –0.422 *** –0.140 ** 

 (0.073)  (0.053)  (0.059)  (0.101)  (0.057)  

Net return - Rice 0.408  0.582 * 0.389  1.647 *** 0.741 ** 

 (0.358)  (0.319)  (0.323)  (0.330)  (0.331)  

Net return - Sorghum 0.380 ** 0.381 *** 0.037  1.777 *** 1.279 *** 

 (0.152)  (0.069)  (0.115)  (0.245)  (0.100)  

Net return - Soybeans –0.934 *** 0.247 *** –0.421 *** –1.412 *** –0.176 ** 

 (0.086)  (0.050)  (0.107)  (0.228)  (0.076)  

Net return - Wheat(winter) 0.140  0.044  0.059  –0.842 ** –0.482 *** 

 (0.096)  (0.071)  (0.137)  (0.358)  (0.107)  

Net return - Wheat(spring) –0.109  –0.207 ** –1.046 * –6.985 *** –0.669 ** 

 (0.086)  (0.095)  (0.579)  (0.725)  (0.280)  

Net return - Wheat(durum) 0.475 *** 0.305 *** 0.146  0.179  –0.065  

 (0.089)  (0.091)  (0.146)  (0.302)  (0.140)  

Net return - Hay(alfalfa) –0.372 *** –0.316 *** –0.318 *** –0.618 *** –0.391 *** 

 (0.032)  (0.016)  (0.031)  (0.104)  (0.022)  

Constant –2.975 *** –5.574 *** –44.538 *** –16.250 *** –12.668 *** 

 (0.659)  (0.477)  (2.376)  (2.566)  (0.740)  

Number of counties 2693                   

Note: County-clustered robust standard errors are shown in parentheses and *, **, and *** indicate 

statistically significance at 10%, 5%, and 1% levels, respectively. 
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Table 3. Continued 
  % Planted acres (Base: Hay(alfalfa)) 

Variables Soybeans Wheat(winter) Wheat(spring) Wheat(durum) 

Temperature 0.556 *** 0.827 *** –0.071  –0.849 *** 

 (0.062)  (0.083)  (0.075)  (0.091)  

Temperature squared –0.015 *** –0.018 *** –0.005  0.034 *** 

 (0.003)  (0.003)  (0.004)  (0.004)  

Precipitation 0.331 *** 0.067  –0.418 *** 0.722  

 (0.056)  (0.065)  (0.078)  (0.454)  

Precipitation squared –0.007 *** –0.003  0.017 *** –0.134 *** 

 (0.002)  (0.003)  (0.005)  (0.051)  

Temperature SD –0.025  –0.103 * 0.247 *** 0.033  

 (0.039)  (0.055)  (0.056)  (0.121)  

Precipitation SD 0.029  0.017  0.076  –0.086  

 (0.020)  (0.022)  (0.046)  (0.137)  

Altitude –0.349 *** 0.025  –0.185 *** –0.263 *** 

 (0.018)  (0.015)  (0.016)  (0.036)  

Soil quality 0.466 *** 0.293 *** 0.275 *** 0.218 * 

 (0.041)  (0.047)  (0.056)  (0.126)  

PDSI –0.019  0.039 *** –0.011  0.042  

 (0.014)  (0.014)  (0.016)  (0.031)  

Irrigation rate 0.802 ** –0.144  0.288  0.378  

 (0.321)  (0.384)  (0.395)  (0.872)  

Log(Population density) 0.041  –0.057 * –0.133 *** 0.039  

 (0.028)  (0.032)  (0.044)  (0.078)  

Log(Planted acres) 0.575 *** 0.528 *** 0.544 *** 0.535 *** 

 (0.034)  (0.037)  (0.056)  (0.122)  

Net return - Barley –0.689 *** –0.189 ** –0.060  0.921 *** 

 (0.078)  (0.085)  (0.111)  (0.280)  

Net return - Corn –0.150 *** 0.136 *** –0.215 *** –0.138  

 (0.039)  (0.041)  (0.060)  (0.131)  

Net return - Cotton –0.078  –0.210 *** 0.022  –0.254 ** 

 (0.055)  (0.060)  (0.078)  (0.118)  

Net return - Rice 0.772 ** 0.724 ** –5.862 *** –0.237  

 (0.332)  (0.341)  (0.706)  (0.516)  

Net return - Sorghum 0.337 *** 0.024  –0.691 *** 0.709 ** 

 (0.078)  (0.082)  (0.230)  (0.334)  

Net return - Soybeans 0.765 *** –0.534 *** –1.184 *** –2.135 *** 

 (0.064)  (0.069)  (0.119)  (0.382)  

Net return - Wheat(winter) –0.158 ** 0.274 *** –0.143  –0.526  

 (0.077)  (0.085)  (0.106)  (0.325)  

Net return - Wheat(spring) 0.437 *** –0.168  0.981 *** –1.396 *** 

 (0.111)  (0.103)  (0.113)  (0.265)  

Net return - Wheat(durum) 0.610 *** 0.178  0.397 *** 0.879 *** 

 (0.107)  (0.112)  (0.080)  (0.150)  

Net return - Hay(alfalfa) –0.447 *** –0.330 *** –0.356 *** –0.361 *** 

 (0.020)  (0.020)  (0.035)  (0.060)  

Constant –13.125 *** –12.509 *** –3.758 *** –2.500  

 (0.582)  (0.618)  (0.711)  (1.539)  

Number of counties 2693               

Note: County-clustered robust standard errors are shown in parentheses and *, **, and *** indicate 

statistically significance at 10%, 5%, and 1% levels, respectively. 
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 Applying these tests, we found that the model including climate squared terms is 

more desirable than the model without the squared terms.  We also find that the 

inclusion of the net return variables improves the model.  On the other hand, we did not 

see significant improvement in including year dummies for time fixed effects.  Thus, the 

year dummies are excluded.  

 Average marginal effects (AME) estimates in table 4 show the following: 

 All of the major crops are statistically significantly affected by changes in 

temperature and precipitation except the case of precipitation on cotton.  Upland 

cotton, rice, sorghum, and winter wheat are more likely chosen when the 5-year 

average temperature increases.  On the other hand, barley, corn, soybeans, spring 

wheat, durum wheat, and alfalfa hay are less likely chosen when the temperature 

goes up.  

 When annual precipitation increases, the proportions of planted acres for corn, 

rice, and soybeans increase with the proportions for barley, sorghum, hay, and all 

types of wheat declining. 

 Larger variations in temperature reduce land allocations for corn, cotton, and rice 

and larger standard deviations of precipitation decrease the proportions of 

planted acres for corn, rice, winter wheat, and hay.  This implies that changes in 

land allocations for some crops are more sensitive to climate variations. 
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Table 4. Average Marginal Effects on Proportions of Planted Acres 
Variables Barley Corn Cotton Rice Sorghum 

Temperature –0.0015 *** –0.0190 *** 0.0145 *** 0.0024 *** 0.0098 *** 

 (0.0004)  (0.0010)  (0.0007)  (0.0004)  (0.0006)  

Precipitation –0.0032 *** 0.0106 *** 0.0008  0.0019 *** –0.0054 *** 

 (0.0008)  (0.0015)  (0.0008)  (0.0003)  (0.0008)  

Temperature SD 0.0020  –0.0258 *** –0.0311 *** –0.0019 * 0.0053 ** 

 (0.0018)  (0.0033)  (0.0028)  (0.0011)  (0.0021)  

Precipitation SD 0.0058 *** –0.0075 *** 0.0021 ** –0.0011 *** 0.0058 *** 

 (0.0011)  (0.0017)  (0.0009)  (0.0003)  (0.0008)  

Altitude –0.0002  0.0117 *** 0.0087 *** 0.0008 * 0.0064 *** 

 (0.0004)  (0.0020)  (0.0011)  (0.0005)  (0.0008)  

Soil quality –0.0028 *** –0.0044  0.0034  –0.0015  0.0076 *** 

 (0.0011)  (0.0033)  (0.0021)  (0.0011)  (0.0017)  

PDSI –0.0002  –0.0089 *** –0.0058 *** 0.0003  0.0040 *** 

 (0.0003)  (0.0012)  (0.0008)  (0.0003)  (0.0006)  

Irrigation rate 0.0015  0.1427 *** 0.0452 *** 0.0366 *** –0.0072  

 (0.0078)  (0.0308)  (0.0120)  (0.0031)  (0.0119)  

Log(Population density) 0.0021 *** 0.0093 *** –0.0036 ** 0.0002  –0.0042 *** 

 (0.0008)  (0.0023)  (0.0015)  (0.0007)  (0.0012)  

Log(Planted acres) –0.0026 *** –0.0312 *** 0.0132 *** 0.0019 *** –0.0093 *** 

 (0.0008)  (0.0028)  (0.0015)  (0.0005)  (0.0013)  

Net return - Barley 0.0221 *** 0.0470 *** –0.0204 *** 0.0017  0.0003  

 (0.0024)  (0.0066)  (0.0045)  (0.0019)  (0.0034)  

Net return - Corn –0.0030 ** 0.0753 *** 0.0017  0.0007  –0.0082 *** 

 (0.0013)  (0.0044)  (0.0021)  (0.0008)  (0.0017)  

Net return - Cotton –0.0061 *** 0.0061  0.0160 *** –0.0023 *** –0.0029 *** 

 (0.0014)  (0.0039)  (0.0012)  (0.0005)  (0.0010)  

Net return - Rice 0.0140 *** 0.0237  –0.0122 *** 0.0061 *** 0.0071 ** 

 (0.0053)  (0.0158)  (0.0026)  (0.0006)  (0.0031)  

Net return - Sorghum 0.0067 * 0.0252 *** –0.0146 *** 0.0087 *** 0.0511 *** 

 (0.0038)  (0.0052)  (0.0036)  (0.0015)  (0.0032)  

Net return - Soybeans –0.0221 *** 0.0302 *** –0.0169 *** –0.0094 *** –0.0068 *** 

 (0.0021)  (0.0053)  (0.0037)  (0.0014)  (0.0026)  

Net return - Wheat(winter) 0.0038 * 0.0135  0.0037  –0.0049 ** –0.0258 *** 

 (0.0022)  (0.0082)  (0.0047)  (0.0021)  (0.0039)  

Net return - Wheat(durum) –0.0011  –0.0389 *** –0.0325  –0.0419 *** –0.0211  

 (0.0019)  (0.0129)  (0.0236)  (0.0052)  (0.0138)  

Net return - Wheat(spring) 0.0075 *** –0.0020  –0.0057  –0.0009  –0.0174 *** 

 (0.0017)  (0.0096)  (0.0039)  (0.0017)  (0.0040)  

Net return - Hay(alfalfa) –0.0036 *** 0.0011  0.0018 * –0.0015 ** –0.0028 *** 

  (0.0008)   (0.0016)   (0.0011)   (0.0006)   (0.0007)   

Note: Standard errors via delta method are shown in parentheses and *, **, and *** indicate statistical 

significance at the levels 10%, 5%, and 1%, respectively.   
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Table 4. Continued 
Variables Soybeans Wheat 

(winter) 

Wheat 

(spring) 

Wheat 

(durum) 

Hay 

(alfalfa) 

Temperature –0.0062 *** 0.0214 *** –0.0039 *** –0.0012 *** –0.0164 *** 

 (0.0009)  (0.0009)  (0.0005)  (0.0002)  (0.0009)  

Precipitation 0.0164 *** –0.0091 *** –0.0052 *** –0.0010 *** –0.0059 *** 

 (0.0012)  (0.0018)  (0.0007)  (0.0003)  (0.0014)  

Temperature SD 0.0268 *** 0.0090 * 0.0055 *** 0.0002  0.0101 *** 

 (0.0024)  (0.0047)  (0.0009)  (0.0004)  (0.0032)  

Precipitation SD 0.0011  –0.0031 ** 0.0008  –0.0005  –0.0034 ** 

 (0.0012)  (0.0015)  (0.0008)  (0.0005)  (0.0016)  

Altitude –0.0472 *** 0.0157 *** –0.0021 *** –0.0007 *** 0.0071 *** 

 (0.0021)  (0.0017)  (0.0003)  (0.0001)  (0.0008)  

Soil quality 0.0252 *** –0.0028  0.0016 * –0.0000  –0.0262 *** 

 (0.0030)  (0.0039)  (0.0008)  (0.0004)  (0.0028)  

PDSI 0.0005  0.0087 *** –0.0001  0.0002 * 0.0012  

 (0.0013)  (0.0013)  (0.0002)  (0.0001)  (0.0008)  

Irrigation rate –0.0151  –0.1407 *** –0.0030  –0.0004  –0.0605 ** 

 (0.0224)  (0.0327)  (0.0059)  (0.0030)  (0.0244)  

Log(Population density) 0.0065 *** –0.0080 *** –0.0025 *** 0.0003  –0.0001  

 (0.0022)  (0.0027)  (0.0007)  (0.0003)  (0.0019)  

Log(Planted acres) 0.0326 *** 0.0232 *** 0.0049 *** 0.0006  –0.0333 *** 

 (0.0023)  (0.0029)  (0.0009)  (0.0004)  (0.0025)  

Net return - Barley –0.0750 *** 0.0114 * –0.0018  0.0034 *** 0.0114 ** 

 (0.0054)  (0.0066)  (0.0018)  (0.0010)  (0.0058)  

Net return - Corn –0.0543 *** 0.0059  –0.0051 *** –0.0005  –0.0126 *** 

 (0.0033)  (0.0038)  (0.0010)  (0.0005)  (0.0026)  

Net return - Cotton –0.0000  –0.0219 *** 0.0023 ** –0.0007 * 0.0096 ** 

 (0.0026)  (0.0034)  (0.0012)  (0.0004)  (0.0045)  

Net return - Rice 0.0362 *** 0.0424 *** –0.1068 *** 0.0052 *** –0.0160  

 (0.0081)  (0.0116)  (0.0112)  (0.0017)  (0.0279)  

Net return - Sorghum 0.0021  –0.0450 *** –0.0159 *** 0.0028 ** –0.0213 *** 

 (0.0045)  (0.0057)  (0.0037)  (0.0012)  (0.0063)  

Net return - Soybeans 0.1215 *** –0.0860 *** –0.0158 *** –0.0056 *** 0.0111 ** 

 (0.0050)  (0.0060)  (0.0021)  (0.0015)  (0.0043)  

Net return - Wheat(winter) –0.0281 *** 0.0460 *** –0.0027  –0.0018  –0.0036  

 (0.0063)  (0.0082)  (0.0017)  (0.0012)  (0.0055)  

Net return - Wheat(durum) 0.1147 *** 0.0011  0.0204 *** –0.0056 *** 0.0058  

 (0.0137)  (0.0128)  (0.0019)  (0.0010)  (0.0067)  

Net return - Wheat(spring) 0.0560 *** –0.0142  0.0022 ** 0.0021 *** –0.0277 *** 

 (0.0093)  (0.0087)  (0.0009)  (0.0005)  (0.0073)  

Net return - Hay(alfalfa) –0.0202 *** –0.0022  –0.0020 *** –0.0002  0.0297 *** 

  (0.0015)   (0.0016)   (0.0006)   (0.0002)   (0.0014)   

Note: Standard errors via delta method are shown in parentheses and *, **, and *** indicate statistical 

significance at the levels 10%, 5%, and 1%, respectively.   
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 The average marginal effects of own net returns for all of the crops show positive 

signs at the 1% statistical significance level.  It implies that higher own net return 

increases the land allocation for the specific crop.  Thus, the net return variables 

are advised to be included because omitting the variables may overestimate or 

underestimate the effects of climate factors. 

 As population density in the county increases, the marginal effects are mixed.  

Specifically, barley, corn, and soybeans are grown in more populated areas.  On 

the other hand, upland cotton, sorghum, winter wheat, and spring wheat are more 

likely chosen in less populated areas. 

 The predicted proportions of crop planted acres over the 5-year average 

temperature are shown in figure 2.  Around the 1975–2010 mean (12.5 degrees Celsius), 

we find that warming causes increasing proportions of upland cotton, rice, sorghum, and 

winter wheat.  On the other hand, the predicted proportions of barley, corn, soybeans, 

spring wheat, durum wheat, and alfalfa hay decrease as the annual mean temperature 

increases.  The figure follows the results of the average marginal effects.  Nonlinear 

relationships between predicted proportions for crops and increasing temperature are 

shown as expected.  For instance, winter wheat start decreasing as the temperature goes 

beyond 15 degrees Celsius and soybeans start decreasing beyond 12 degrees Celsius.  

Figure 2 also shows the regional differences in that the predicted proportions for each 

crop above and below the mean temperature indicate the responses of crop allocations in 

regions with higher and lower temperature. 
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Figure 2. Predicted proportions of crop planted acres over temperature  
 

Note: Predicted proportions are evaluated holding other variables including precipitation at their observed 

values.  Annual mean temperature over 1975–2011 has mean (12.5 degrees Celsius) shown as a vertical 

dashed line and standard deviation (4.30).  

 

 

 Figure 3 contains results on the changes in crop choice under changes in 

precipitation.  Around the 1975–2011 mean of the annual precipitation (947 mm), more 

precipitation causes increasing proportions of corn, rice, and soybeans.  On the other 

hand, from the mean precipitation, more precipitation makes the predicted proportions of 

barley, sorghum, winter wheat, spring wheat, durum wheat, and alfalfa hay smaller.  The 

figure also follows the results of the average marginal effects.  We see the change in land 
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share proportions is nonlinear to a unit change of precipitation.  The further the deviation 

from the mean temperature and precipitation goes the larger the crop mix change. 

 

 
Figure 3. Predicted proportions of crop planted acres over precipitation 
 

Note: Predicted proportions are evaluated holding other variables including temperature at their observed 

values.  Annual total precipitation over 1975–2011 has mean (947 mm) shown as a vertical dashed line 

and standard deviation (364). 
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are not planted at all in some regions were excluded from the estimation for the specific 

regions.  We show the average marginal effects of temperature and precipitation on the 

proportions of planted acres by region in the Appendix (table A-1).  With the locational 

figures, the results are also summarized in figure 4 for the marginal effects of 

temperature and precipitation on the choice of planted crops.  Based on the results in 

figure 4, we find that when the annual temperature increases: 

 The proportion of planted acres for barley increases in the Northeast region but 

decreases in the Delta States, Lake States, Mountain, and Northern Plains regions.  

This indicates that the overall share of barley is likely to decrease because the 

major areas for barley production (Northern Plains and Mountain) are negatively 

affected by the increase in temperature. 

 The proportion of planted acres for corn decreases in the Corn Belt and Northern 

Plains regions which are the major areas for corn production.  However, the 

proportion increases in the other regions such as Delta States, Lake States, 

Mountain, Southeast, and Southern Plains.  Thus, the increasing temperature has 

mixed effects on different regions but the total amount of corn production is 

likely to drop because the major areas are negatively affected by the increasing 

temperature. 

 The proportion of upland cotton planted acres increases in all of the regions.  

This implies that the overall share of upland cotton is likely to increase especially 

in the major areas for cotton production (Southern Plains and Southeast) regions. 
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Pacific Mountain Northern Plains Lake States Northeast 

Barley . (–) Barley (–) . Barley (–) (–) Barley (–) (–) Barley (+) . 

Corn . (+) Corn (+) (+) Corn (–) (+) Corn (+) (+) Corn . . 

Cotton . . Cotton (+) . Cotton (+) (+) Soybeans (+) (–) Sorghum . (+) 

Rice (+) (+) Sorghum (+) [+] Sorghum (+) (–) Wheat(winter) . . Soybeans (+) . 

Sorghum . [+] Wheat(winter) (+) (+) Soybeans (–) (+) Wheat(spring) (–) (–) Wheat(winter) (+) (–) 

Wheat(winter) (+) . Wheat(spring) (–) (–) Wheat(winter) (+) (–) Wheat(durum) (–) (–) Hay(alfalfa) (–) . 

Wheat(spring) . . Wheat(durum) . (+) Wheat(spring) (–) (–) Hay(alfalfa) (–) (+) 
   

Wheat(durum) . . Hay(alfalfa) (–) (–) Wheat(durum) (–) (–) Corn Belt Appalachian 

Hay(alfalfa) (–) [–] 
   

Hay(alfalfa) (–) . Barley . (+) Barley . (–) 

         
Corn (–) . Corn . (–) 

         
Cotton (+) (+) Cotton (+) (+) 

         Rice (–) (+) Sorghum [+] . 

         
Sorghum (+) . Soybeans (+) (+) 

         Soybeans (+) (–) Wheat(winter) (+) . 

         
Wheat(witer) (+) . Hay(alfalfa) (–) (–) 

         Hay(alfalfa) (–) (+)    

      
Southern Plains Delta States Southeast 

      
Barley . (+) Barley (–) . Barley . (–) 

      Corn (+) (+) Corn (+) . Corn (+) . 

      Cotton (+) (–) Cotton . [–] Cotton (+) (+) 

      
Rice (–) . Rice (+) [–] Sorghum [+] . 

      
Sorghum (+) . Sorghum . (+) Soybeans (–) (–) 

      
Soybeans (–) (+) Soybeans (–) . Wheat(winter) . . 

      
Wheat(winter) (–) [–] Wheat(winter) . [–] 

   

      
Hay(alfalfa) (–) . 

      
Figure 4. Average marginal effects of temperature and precipitation on proportions of planted acres by region 
 

Note: By region, the first column, the second column, and the third column indicate crop name, marginal effects of temperature, and marginal effects of 

precipitation, respectively.  The signs in ( ) and [ ] are statistically significant at the 5% and 10% levels, respectively.  The major regions for each crop 

have crop names in bold face. 

 



 

 33 

 Both of the major regions for rice production (Pacific and Delta) show increases 

in the proportion of planted acres for rice when it gets hotter.  However, the Corn 

Belt and Southern Plains regions show decreases in the proportion of rice planted 

acres.  This indicate that the nearby areas of the Delta region are negatively 

affected by the increasing temperature. 

 The proportion of planted acres for grain sorghum increases in all of the regions 

including the major areas (Southern Plains and Northern Plains).  

 The proportion of soybeans planted acres in the southern regions decreases but 

the proportions in the northern regions increases with an exception of soybean 

decreases in the Northern Plains.  This indicates that the overall temperature 

increase may cause the soybean production regions to move north.  

 The proportion of winter wheat planted acres in the Southern Plains decreases 

but all of the other northern regions increases when it gets hotter.  This implies 

that the overall temperature increase may cause the winter wheat production 

regions to move north.  The proportion of spring wheat in all of the major planted 

regions (Pacific, Mountain, Northern Plains, and Lake States) and durum wheat 

in the major planted regions (Northern Plains and Lake States) decreases when 

temperature increases.  The decreased spring wheat and durum wheat might 

cause Canada to increase planted acres for spring wheat and durum wheat.  

However, this study does not see the effects since the analysis is bounded in the 

US. 
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 The proportion of planted acres for alfalfa hay decreases in all of the regions.  

This indicates that the overall share of alfalfa hay production is likely to drop. 

Based on the results in figure 4, we find that when the annual precipitation increases: 

 The proportion of planted acres for barley increases in the Southern Plains and 

Corn Belt but decreases in all of the major regions for barley production.  This 

indicates that the barley production is likely to drop but it may move to central 

regions. 

 The proportion of planted acres for corn grain decreases in the Appalachian 

region but increases in all of the other regions including major areas for corn 

production.  This indicates that the increasing precipitation may lead to the 

overall increases in share of corn planted acres. 

 The proportion of upland cotton planted acres decreases in the Southern Plains 

and Delta States which are the major areas for cotton production.  However, the 

Corn Belt, Northern Plains, and Southeast regions show increasing share of 

cotton planted acres.  Specifically, among the major areas (Southern Plains, Delta 

States, and Southeast), only the Southeast shows the increases in share of cotton 

planted acres.  This implies that the major production regions may move east 

when the precipitation increases.    

 The proportion of planted acres for rice increases in the Pacific region but 

decreases in the Delta.  It indicates that the rice production may move west under 

increased precipitation in the regions. 
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 The proportion of grain sorghum planted acres decreases in the Northern Plains 

region which is one of the major areas for sorghum production.  However, the 

Delta, Mountain, and Pacific regions show increasing share of sorghum 

production when the annual precipitation increases.  Another major area for 

sorghum production, Southern Plains, is not significantly affected by the 

increasing precipitation. 

 The proportion of winter wheat increases in the Mountain but decreases in the 

eastern and central regions.  This implies that the planted acres for winter wheat 

might move west if precipitation increases or east if precipitation declines. 

 The proportion of spring wheat planted acres decreases in all of the regions when 

the precipitation increases. 

 The proportion of planted acres for durum wheat increases in the Mountain 

region but decreases in the other central regions.  This implies that the production 

region for durum wheat might move west. 

 The proportion of alfalfa has spatially mixed results to increases in precipitation.  

In the Appalachian, Mountain, and Pacific regions, the proportion decreases but 

in the Corn Belt and Lake States regions, the proportion increases. 

 

2.4.2 Predictions with Climate Change Scenarios 

Using the climate outcomes from the Representative Concentration Pathways (RCP) of 

the Coupled Model Intercomparison Project Phase 5 (CMIP5), the predicted proportions 

are evaluated at the mean current value of each region.  The pooled model predicts the 
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expected proportions of the major crops across the national land area in the US.  The 

regional models yield region-specific predictions of the cropland proportions. 

 We obtained the projected temperature and precipitation outputs from six 

different climate models including CanESM2, CCSM4, CESM1-CAM5, GFDL-CM3, 

HadGEM2-ES, and MPI-ESM-MR.  We obtained these from the Archive of CONUS 1/8 

degree BCSD (Bias-Corrected and Spatially Downscaled) (Brekke, et al. 2013).  Mean 

near-surface air temperature and monthly mean of the daily precipitation were obtained 

for the Representative Concentration Pathways (RCP) 2.6, RCP 4.5, and RCP 8.5 

scenarios.  We then averaged out the outputs of the six different climate models under 

each RCP3.  RCPs indicate a possible range of radiative forcing values in the year 2100 

relative to pre-industrial values (+2.6, +4.5, and +8.5 Watts per square meter for RCP 2.6, 

RCP 4.5, and RCP 8.5, respectively).  The grid data were converted to county-level data 

using the mean of the grid-point values inside each county. 

As presented in table 5 and table 6, all of the regions exhibit increasing 

temperature and precipitation except for Pacific temperature (lowest in 2020–2050) and 

Southern Plains precipitation (lowest in 2020–2050).  In general, the greater the radiative 

forcing the higher the temperature and the more the precipitation. 

 

 

                                                           
3 Although there are four scenarios including RCP 6.0, we excluded the scenario because some models 

(CanESM2 and MPI-ESM-MR) do not report it. 
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Table 5. Mean Temperature by Climate Scenarios and Regions 
  Mean temperature (°C) 

 

Base 

 

RCP 2.6 

 

RCP 4.5 

 

RCP 8.5 

Regions 
1975– 

2010   

2020– 

2050 

2051– 

2099   

2020– 

2050 

2051– 

2099   

2020– 

2050 

2051– 

2099 

Appalachian 13.60 

 

15.40 15.78 

 

15.53 16.68 

 

15.64 17.95 

Corn Belt 10.88 

 

12.89 13.29 

 

12.96 14.25 

 

13.13 15.54 

Delta States 17.40 

 

19.11 19.36 

 

19.20 20.24 

 

19.31 21.37 

Lake States 6.73 

 

8.81 9.34 

 

8.87 10.39 

 

9.05 11.78 

Mountain 8.80 

 

9.26 9.57 

 

9.28 10.55 

 

9.43 11.89 

Northeast 9.83 

 

11.40 11.97 

 

11.58 12.95 

 

11.71 14.29 

Northern Plains 9.62 

 

11.46 11.81 

 

11.50 12.78 

 

11.64 14.04 

Pacific 12.28 

 

11.96 12.41 

 

11.94 13.18 

 

12.13 14.33 

Southeast 17.30 

 

18.97 19.28 

 

19.09 20.10 

 

19.18 21.30 

Southern Plains 17.56 

 

19.43 19.68 

 

19.51 20.53 

 

19.67 21.73 

All regions 12.48   14.11 14.48   14.19 15.41   14.34 16.67 

 

 

Table 6. Mean Precipitation by Climate Scenarios and Regions 
  Mean precipitation (100mm) 

 

Base 

 

RCP 2.6 

 

RCP 4.5 

 

RCP 8.5 

Regions 
1975– 

2010   

2020– 

2050 

2051– 

2099   

2020– 

2050 

2051– 

2099   

2020– 

2050 

2051– 

2099 

Appalachian 12.24 

 

12.85 13.38 

 

12.81 13.49 

 

13.07 13.98 

Corn Belt 10.10 

 

10.23 10.59 

 

10.26 10.66 

 

10.41 11.22 

Delta States 14.29 

 

14.68 15.17 

 

14.66 15.22 

 

14.65 15.63 

Lake States 7.88 

 

8.05 8.25 

 

8.21 8.33 

 

8.25 8.62 

Mountain 3.63 

 

4.76 4.89 

 

4.71 4.98 

 

4.83 5.09 

Northeast 10.91 

 

11.23 11.63 

 

11.27 11.63 

 

11.29 11.99 

Northern Plains 6.28 

 

6.48 6.68 

 

6.42 6.67 

 

6.55 6.99 

Pacific 5.91 

 

8.72 8.80 

 

8.60 8.90 

 

8.77 8.86 

Southeast 12.97 

 

13.91 14.49 

 

13.91 14.75 

 

14.09 15.13 

Southern Plains 8.48 

 

8.30 8.39 

 

8.06 8.35 

 

8.08 8.49 

All regions 9.47 

 

9.95 10.27 

 

9.92 10.34 

 

10.04 10.69 

 

 

 Based on the estimation results, we obtained the predicted crop share proportions 

under the RCPs in two different periods, namely 2020–2050 and 2051–2099 plus 1975–

2012.  We used other non-climate items fixed at the average 1975–2010 level so that we 
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can get the predicted proportional change of crop land share affected by only climate 

change.   

 We show the predicted change in land allocations for crops under each RCP 

scenario in table 7.  The results indicate that the proportions of land allocation for corn, 

barley, durum wheat, spring wheat, and alfalfa hay are expected to decrease in the 

periods 2020–2050 and 2051–2099 under all the climate scenarios, with the proportions 

of planted acres for upland cotton, rice, sorghum, soybeans, and winter wheat increasing.  

Thus, the estimation results and simulated predictions show that the heat tolerant crops 

in general are expected to have increased planted acres in the next decades.  Although 

the increasing or decreasing planted acres show monotonic patterns, the rate of shifts is 

more severe in moderate and extreme scenarios (RCP 4.5 and RCP 8.5) than the 

optimistic scenario (RCP 2.6).  The global mean temperature in the RCP 2.6 scenario is 

expected to decline after the peak around 2030.  However, the US crops are not likely to 

benefit from the optimistic situation because the expected proportions for all the crops 

have the expected values between 1975–2010 and 2051–2099.  
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Table 7. Land Allocation Changes for Crops from 1975–2010 to 2020–2050 and 

2051–2099 under RCP 2.6, 4.5, and 8.5 Scenarios 
Crop RCP 2020–2050 2051–2099 Average 

Barley 2.6 –0.7% –0.7% –0.7% 

 

4.5 –0.7% –0.9% –0.8% 

 

8.5 –0.7% –1.0% –0.8% 

     

Corn 2.6 –1.1% –1.7% –1.4% 

 

4.5 –1.2% –3.0% –2.1% 

 

8.5 –1.4% –4.2% –2.8% 

     

Cotton 2.6 2.9% 3.4% 3.2% 

 

4.5 3.0% 4.6% 3.8% 

 

8.5 3.2% 5.8% 4.5% 

     

Hay (alfalfa) 2.6 –2.0% –2.6% –2.3% 

 

4.5 –2.1% –3.8% –3.0% 

 

8.5 –2.3% –5.4% –3.9% 

     

Rice 2.6 1.1% 1.4% 1.2% 

 

4.5 1.1% 2.1% 1.6% 

 

8.5 1.2% 3.5% 2.3% 

     

Sorghum 2.6 0.5% 0.6% 0.5% 

 

4.5 0.6% 1.3% 0.9% 

 

8.5 0.7% 2.1% 1.4% 

     

Soybeans 2.6 –1.8% –1.5% –1.7% 

 

4.5 –1.9% –2.7% –2.3% 

 

8.5 –1.8% –4.2% –3.0% 

     

Wheat (durum) 2.6 –0.1% –0.1% –0.1% 

 

4.5 –0.1% –0.1% –0.1% 

 

8.5 –0.1% 0.0% –0.1% 

     

Wheat (spring) 2.6 –1.0% –1.2% –1.1% 

 

4.5 –1.0% –1.5% –1.3% 

 

8.5 –1.1% –1.9% –1.5% 

     

Wheat (winter) 2.6 2.2% 2.5% 2.3% 

 

4.5 2.3% 4.0% 3.2% 

  8.5 2.4% 5.4% 3.9% 
Note: The values in percentage are calculated as the predicted value in 2020–2050 and 2051–2099 minus 

the historical value of 1975–2010, respectively, under different RCP scenarios. 
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 To illustrate the regional change in land allocations for specific crops, we provide 

maps drawn from the predicted allocations of land shares under the climate scenarios.  

Figure 5 shows the difference of predicted land share for crop by county from 2010 to 

2030, 2050, and 2070, respectively.  The blue and red shades indicate increases and 

decreases in proportions of the land for corn, respectively, from 2010 under the RCP 2.6 

scenario.  The bolder the color, the more the changes in magnitude of proportions.  We 

find decreasing corn land share in the Corn Belt region and increasing the land share in 

other regions over time.   

 In figure 6, the same projection under the RCP 8.5 scenario shows a greater 

decrease in land share for corn in the Corn Belt and increasing share in the other regions 

than the case under the RCP 2.6.  This result also follows the result from the marginal 

effects estimates and here we see the regional differences.  Under the RCP 2.6 and RCP 

8.5 scenarios, the changing predicted shares for corn show similar patterns but the RCP 

8.5 outputs lead to more severe changes.  For other crops, we find the similar changes 

between the RCP 2.6 and 8.5 scenarios.  Thus, we show some predicted differences of 

share for some crops under the RCP 8.5 scenarios.   

 Figure 7 shows noticeable pattern of the land proportions for cotton increasing in 

the northern areas and decreasing in the southern regions as the year increases.  In figure 

8, land proportion for soybeans production is also projected with the similar pattern to 

the cotton lands, increasing in the northern areas and decreasing in the southern areas 

although the major production regions are different from the lands for cotton.  The 

projected results for other crops by region are available in the Appendix (tables A-2).  
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Figure 5. Differences of predicted share of corn from 2010 to 2030, 2050, and 2070 

under RCP 2.6 
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Figure 6. Differences of predicted share of corn from 2010 to 2030, 2050, and 2070 

under RCP 8.5 
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Figure 7. Differences of predicted share of cotton from 2010 to 2030, 2050, and 2070 

under RCP 8.5 
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Figure 8. Differences of predicted share of soybeans from 2010 to 2030, 2050, and 

2070 under RCP 8.5 
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2.4.3 Climate Change Adaptation via Shifting Croplands 

Based on the estimates of the fractional multinomial logit, we examine the shifting 

pattern of expected geographic centers with production quantity weighted for each crop 

using a procedure like that in Reilly, et al. (2003) although we also look at elevation.  In 

particular, we examine shifts in the geographic center (centroid) which is defined as the 

geographic center of planted area by crop.  We use production amounts as weights to 

calculate weighted average of latitude, longitude, and elevation.  The change of centroid 

can represent the global spatial shifts of production of each major crop. 

 The weighted averages of location variables (latitude, longitude, and elevation) 

by using production quantity as weights can be calculated as: 

(12) 𝑙𝑜𝑐̅̅ ̅̅ 𝑡 =∑ 𝑤𝑖𝑡 × 𝑙𝑜𝑐𝑖
𝑁

𝑖=1
=
∑ 𝑞𝑖𝑡𝑙𝑜𝑐𝑖
𝑁
𝑖=1

∑ 𝑞𝑖𝑡
𝑁
𝑖=1

 for each 𝑡 

where the normalized weight is 𝑤𝑖𝑡 = 𝑞𝑖𝑡 ∑ 𝑞𝑗𝑡
𝑁
𝑗=1⁄ , the production quantity is 𝑞𝑖𝑡, and 

the location variables set is 𝑙𝑜𝑐𝑖 = {𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖 , 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖}, consisting of 

longitude, latitude, and elevation in county 𝑖.  We estimated the predicted production 

quantity of crop 𝑗 in county 𝑖 in time 𝑡 as �̂�𝑖𝑡
𝑗
= 𝑓𝑖𝑡

𝑗
𝐺(𝐱𝑖𝑡; �̂�)𝐴𝑖𝑡

𝑗
 where the 𝑓𝑖𝑡

𝑗
 is the yield 

of crop 𝑗 in county 𝑖 in time 𝑡, 𝐺𝑗(𝐱𝑖𝑡; �̂�) is the predicted probability of allocating land 

for crop 𝑗, and 𝐴𝑖𝑡
𝑗

 is the total planted acre.  During the period 1980–2010, the historical 

values for yield and total planted acre are used.  During the period 2010–2050, given the 

other variables are assumed as maintained at the level in the year of 2010, climate-

related variables based on the values of the Coupled Model Intercomparison Project 

Phase 5 (CMIP5) simulation outputs of temperature and precipitation are used to 
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estimate the production quantity.  The weighted averages of locations were calculated 

separately for each crop at time period 𝑡 by using the county level data.  

 The shifting pattern of geographic centers of production for some major crop 

(corn, soybeans, winter wheat, and alfalfa hay) are shown in figures 9–12.  The figures 

for other crops are shown in the Appendix (figures A-2–A-7).  With the RCP 2.6 and 

RCP 8.5 outputs assumed for temperature and precipitation during 2020–2090, the 

figures exhibit the pattern of changing weighted average elevation for each crop over the 

years 1980–2090.  It considers not only the proportions of each crop land but also the 

production quantities.  Thus, this implies the shift of production-weighted average of 

geographic center for each crop.   

 Under the different radiative forcing level, the production-weighted averages of 

latitude, longitude, and elevation are not significantly different in the crop production.  

However, after 2050, the differences between the scenarios are intensified.  As shown in 

IPCC (2013), the climate model scenario outputs have diverging patterns at increasing 

rates especially after the year of 2050, which conforms the crop land shifting pattern in 

this study.   
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Figure 9. Weighted mean of location change for corn, 1980–2090 

 

 

 
Figure 10. Weighted mean of location change for winter wheat, 1980–2090 
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Figure 11. Weighted mean of location change for soybeans, 1980–2090 

 

 

 
Figure 12. Weighted mean of location change for alfalfa hay, 1980–2090 
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 Among the four largest crops in the US, corn only shows moving south in the 

RCP 8.5 scenario.  In terms of latitude, under RCP 2.6 scenario, all the crops have stable 

production-weighted mean latitudes.  This implies that under the optimistic scenario, the 

crop land allocation adaptation on climate change may be less uncertain in shifting 

patterns.  The weighted means of elevation in most crops show increasing pattern under 

RCP 8.5.  It implies that adapting climate change would occur by moving the crop 

planted to higher places.  The higher temperature may allow most of the crops to be 

planted in the current lands which are not suitable for cultivation at the moment but 

suitable when the temperature increases.  However, weighted mean of elevation for 

planting corn comes to the lower places under the projected climate change.  It might be 

because corn productions in the Corn Belt region are likely declining under the projected 

climate change so the weighted average elevation decreases but the production amount is 

expected to increase thanks to the increasing production in other areas. 

 Under the RCP 2.8 and RCP 8.0 outputs of climate variables, we have similar 

shifting pattern of crop productions.  In general, almost all of the crops have moved 

north given other things do not change.  While the crop land moving pattern has not been 

thoroughly studied in the literature, we estimated the magnitudes and directions of 

expected crop mix changes.  This can be extended to a broader area or just be more 

specific for a local area. 
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2.5 Concluding Remarks 

The primary goal of this study was to examine how climate influences land use choice 

among major crops in the US.  In doing this, this study applies fractional regression.  

Furthermore, this study examines crop mix shifts considering the price effects.  

We find that when the annual temperature goes up, the overall proportions of 

cotton, rice, sorghum, and winter wheat are likely to increase with barley, corn, 

soybeans, spring wheat, and durum wheat declining.  We also found that increased 

precipitation reduces barley, sorghum, hay, and all types of wheat but increases corn, 

rice, and soybeans.  We also find that most of the major crops except for corn are 

expected to move north and to higher altitude under climate change scenarios. 

 Although we estimated the crop mix allocations affected by various factors, there 

might be some omitted variables to explain the changes.  We assumed that farmers are 

risk-neutral price takers in crop land allocations and crop yield is stable over time.  

Furthermore, although our results include the existing crops, we do not explain some 

recent crops not settled in the past.  Also, we did not explicitly model the price changes 

by national and local policies such as Farm Bill and state-specific agricultural policies.  

Thus, further research would be better conducted by considering risk aversion, explicit 

policy impacts, spillover effects, and flexible model to include newly introduced crops 

as well as dynamic crop yields. 
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3. CLIMATE CHANGE AND MAJOR LAND USE CHANGES IN THE UNITED 

STATES: A SPATIAL ECONOMETRIC APPROACH 

 

The relationship between climate change and major land use changes have been in the 

subject of a number of studies.  The results of these studies indicate that climate and 

policy factors stimulate direct and indirect land use changes along with changes in 

greenhouse gas emissions (Lambin, Geist and Lepers 2003; Solecki and Oliveri 2004; 

Lubowski, Plantinga and Stavins 2006; Timmins 2006; Lubowski, Plantinga and Stavins 

2008; Searchinger, et al. 2008; Mendelsohn and Dinar 2009; Hertel, et al. 2010; Plevin, 

et al. 2010; Alig 2011; Haim, et al. 2011; Mu, Wein and McCarl 2013).  These studies 

have examined the possible impact of policy factors such as carbon sequestration and 

conservation programs on land use changes.  However, as Dale (1997) argued that 

climate factors are likely to affect human adaptation as a way of land use changes, 

temperature and precipitation also tend to play a significant role in land use decisions.  

Reilly, et al. (2003) also highlighted climate and policy factors that influence agricultural 

land use and cause changes under simulated future climate change. 

 Lubowski, Plantinga and Stavins (2008) investigated the determinants of land use 

change including climate factors.  However, they did not account for potential spatial 

effects that would give poor results in estimating land use changes as explained in Flores, 

et al. (2008).  Rashford, Walker and Bastian (2011) examined land conversion from 

grassland to cropland and its economic returns but they did not consider the potential 

factors of climate change.  Likewise, most of the previous studies have operated either 
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over large geographic areas relying on aggregate data or local areas with detailed data 

but allowing little inference to broader settings.  

 The main objective of this study is to extend the literature by examining the 

determinants of land use changes in the recent years with detailed data, using a spatial 

econometric method.  In addition, we use the latest climate model based scenarios to 

project future changes in land use allocation in the US. 

 

3.1 Major Land Use in the US 

The national land use cover database 2011 (NLCD 2011) provides detailed data on US 

land transitions between recent years (Homer, et al. 2007; Fry, et al. 2009; Fry, et al. 

2011).  The NLCD classifies land cover into water, developed, barren, forest, shrubland, 

herbaceous, planted/cultivated, and wetlands.  We reclassified them into six categories 

that are cropland, grassland, forest, urban, water, and others following the USDA report 

of major uses of lands in the US (Nickerson, et al. 2011).  The matched classifications 

are shown in table 8.  
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Table 8. Matched Land Use Classifications 

Classification in this study 

 

NLCD 2001–2011 Classification 

Cropland 82 Cultivated Crops 

 

81 Pasture/Hay 

Urban 24 Developed, High Intensity 

 

22 Developed, Low Intensity 

 

23 Developed, Medium Intensity 

  21 Developed, Open Space 

Forest 41 Deciduous Forest 

 

42 Evergreen Forest 

  43 Mixed Forest 

Grassland 71 Grassland/Herbaceous 

  52 Shrub/Scrub 

Water 11 Open Water 

  12 Perennial Ice/Snow 

Other 31 Barren Land 

 

95 Emergent Herbaceous Wetlands 

 

90 Woody Wetlands 
Note: Detailed descriptions of each classification are provided in the Appendix (table A-3). 

 

 

 Recent US land use transitions among the major categories described above are 

shown in table 9.  In the period 2002–2012, the land areas for crop and forest decreased 

while the amount in the urban lands, grasslands, and water/ice lands increased.  During 

the periods, the remote sensing data show that urban land does not generally convert 

back to other land uses once it is developed.  The largest transitions out of croplands 

were movements into urban lands during 2002–2012.  Also, note that there was a net 

movement from forest to grasslands during those periods.  Major movements of 

grasslands involved conversion to forest in the 2002–2012 period.  Most croplands 

remained with 99.3% unchanged during 2002–2012.  Likely the higher recent prices 

influenced this greater retention. 
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Table 9. Land Use Transitions between 2002 and 2012 (Million Acres) 

 
To 2012  

 
From 2002 Crop Urban Forest Grass Water Other  2002 Total 

Crop 439.161 2.108 1.058 1.771 0.371 0.771  445.240 

Urban 0.000 107.234 0.001 0.004 0.001 0.002  107.242 

Forest 0.566 1.279 478.866 22.088 0.108 0.904  503.813 

Grass 2.274 1.159 7.153 696.907 0.404 1.238  709.134 

Water 0.140 0.024 0.028 0.266 102.684 0.919  104.061 

Other 0.301 0.444 0.243 1.152 0.907 123.895  126.941 

         

2012 Total 442.442 112.248 487.349 722.189 104.475 127.728  1996.431 

 

 

3.2 Spatial Econometric Specification 

Some recent studies examined spatial effects on land use (e.g., Chakir and Le Gallo 2013 

for France; Li, Wu and Deng 2013 for China) using methods which account for spatial 

interaction or spatial dependence.  In our analysis, we assume that common physical and 

economic conditions across nearby areas affect land use decisions in those areas, with 

diminishing effects as physical distance increases.  We assume that latent variables 

depend on spatially lagged values of the latent variables.  The assumption implies that 

the propensity to change land usage in an area relies on the propensity to change land 

uses in neighboring areas.  For example, if a farmer is in close proximity to similar land 

uses nearby, she may benefit from lower costs to find labor with the skills desired by the 

particular land use.  Additionally, a large proportion of a particular land use in a region 

may help lower costs to obtain the information required to improve overall productivity 

plus lead to close by suitable marketing infrastructure.  As pointed out in Flores, et al. 

(2008), ignoring spatial autocorrelation in estimating land use changes can lead to poor 

predictions. 
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 For the estimation, we use a two-step linearized GMM estimator for the major 

land use change in the US.  Unlike the crop mix case, the six land uses (crop, forest, 

grass, urban, water, and other) cover the complete 48 contiguous United States.  The 

predicted proportion of each land use implies the global share of the land in the lower 48 

States so it indicates not just local proportions but also global proportions of the total US 

land.  However, our preliminary results from the estimation with the county level data 

have insignificant results for some spatial dependence.  Thus, we explicitly incorporate 

the spatial interactions between contiguous areas only on the estimation for the major 

land uses at the 10 × 10 km cell level.  

 Following Li, Wu and Deng (2013), we assume that the expected conditional 

mean of allocations across parcels of land in nearby areas is affected by common factors 

including common climate, common land quality, information spillovers, technology 

adoption, and labor transfers plus other factors that generate spatial externalities. 

 Adding spatial dependence into the conditional mean function of fractional 

multinomial regression model, the equation can be expressed as: 

(13) E(𝑠𝑖𝑗𝑡|𝐱,𝑤) = 𝐾𝑗(𝐱𝑖𝑡−1, 𝑤𝑖𝑚; 𝛃, 𝜌) = 𝐾(∑ 𝜌𝑗𝑡𝑤𝑖𝑚𝑠𝑚𝑗𝑡 + 𝐱𝑖𝑡−1𝛃𝑗𝑡
𝑚≠𝑖

)  

where 𝐾(⋅) is the multinomial logit function, 𝜌𝑗𝑡 is a spatial lag parameter (|𝜌𝑗𝑡| < 1), 

implying the degree to which the propensity to have land use 𝑗 in nearby areas.  The 

explanatory variables 𝐱 include geophysical and socioeconomic factors plus the lagged 

proportional land use share in time 𝑡 − 1 to control for potential endogeneity as done in 

Li, Wu and Deng (2013).  In the above equation, 𝑤𝑖𝑚 implies the spatial relationship 

between land areas 𝑖 and 𝑚.  By construction, spatial relation term in a single region is 
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zero (𝑤𝑖𝑖 = 0, 𝑖 = 𝑖).  The specification in 𝐾(⋅) including spatially lagged dependent 

variables is often referred to as a spatial lag model (LeSage 2008).  

 In turn the conditional mean function is expressed in a stacked form across areas 

as 

(14) E(𝐒𝑗𝑡|𝐗,𝐖) = 𝐾(𝜌𝑗𝑡𝐖𝐒𝑗𝑡 + 𝐗𝑡−1𝛃𝑗𝑡), 

where 𝐒𝑗𝑡 = (𝑠1𝑗𝑡, … , 𝑠𝑁𝑗𝑡)
′
 and 𝐗𝑡−1 = (𝐱1𝑡−1, … , 𝐱𝑁𝑡−1)

′.  The reduced form of the 

above equation is E(𝐒𝑗𝑡|𝐗,𝐖) = 𝐾 ((𝐈𝑁 − 𝜌𝑗𝑡𝐖)
−1
𝐗𝑡−1𝛃𝑗𝑡), where 𝐈𝑁 is an 𝑁-

dimensional identity matrix.  An important aspect of the spatial lag model is the spatial 

multiplier, which can be implied by expanding the inverse term in this reduced form: 

E(𝐒𝑗𝑡|𝐗,𝐖) = 𝐾(𝐗𝑡−1𝛃𝑗𝑡 + 𝜌𝑗𝑡𝐖𝐗𝑡−1𝛃𝑗𝑡 + 𝜌𝑗𝑡
2𝐖2𝐗𝑡−1𝛃𝑗𝑡 +⋯).  Thus, the value of 

𝑠𝑖𝑗𝑡 in area 𝑖 relies not just on 𝐱𝑖𝑡−1 but also on 𝐱 at other areas (−𝑖), with locations 

further discounted by powers of 𝜌𝑗𝑡.  This represents the diminishing nature of the 

spatial multiplier effects in the spatial lag model.  Specifically, if a unit change were 

induced in a given explanatory variable 𝑥𝑖𝑡−1
𝑘  at every location, the effect on 𝑠𝑖𝑗𝑡 would 

amount to (1 − 𝜌𝑗𝑡)
−1𝛽𝑗𝑡

𝑘  (Kim, Phipps and Anselin 2003). 

 Although specification for spatial weight matrix 𝐖 is an empirical question as 

discussed in LeSage (2008) and Li, Wu and Deng (2013), we use a row-normalized first 

queen contiguity matrix.  𝐖 is defined as a 𝑁 ×𝑁 matrix where ∑ 𝑤𝑖𝑚
𝑁
𝑚=1 = 1 and 

𝑤𝑖𝑚 > 0 if areas 𝑖 and 𝑚 share common borders or vertices; 𝑤𝑖𝑚 = 0 otherwise.  The 

global nature of the spatial multiplier effect allows such specification capturing spatial 

reactions between any two locations through higher powers of 𝐖.  Let (𝐈𝑁 − 𝜌𝑗𝑡𝐖) ≡
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𝚿𝑗𝑡.  Then the variance-covariance matrix of 𝐒𝑗𝑡 is proportional to [(𝚿𝑗𝑡)
′(𝚿𝑗𝑡)]

−1.  Let 

𝜎𝑖𝑗𝑡
2  be the diagonal elements of [(𝚿𝑗𝑡)

′(𝚿𝑗𝑡)]
−1 matrix, and let 𝐱𝑖𝑗𝑡−1

∗ = 𝐱𝑖𝑡−1𝜎𝑖𝑗𝑡
−1  and 

𝐗𝑗𝑡−1
∗∗ = (𝚿𝑗𝑡)

−1𝐗𝑗𝑡−1
∗ .  Under the assumption analogous to the maximum quasi-

likelihood estimation, the share of area i  can be derived as follows: 

(15) 𝑝𝑖𝑗𝑡 = E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑗𝑡−1
∗∗ ) =

exp(𝐱𝑖𝑗𝑡−1
∗∗ 𝛃𝑗𝑡)

∑ exp(𝐱𝑖𝑘𝑡−1
∗∗ 𝛃𝑘𝑡)𝑘

 

where changes in land use in area 𝑖 between 𝑡 − 1 and 𝑡 are intrinsically captured by the 

left-hand side variable 𝑝𝑖𝑗𝑡, 𝑗 = 1, . . . , 𝐽 and the right-hand side vector of the land 

proportions at period 𝑡 − 1. 

 The estimation approach is similar to the fractional multinomial logit.  However, 

we do not use that approach as the fractional multinomial logit model with integration of 

spatial effects can be computationally challenging, especially in a large sample as 

discussed in Klier and McMillen (2008).  Thus, we use the linearized spatial logit 

approach for the spatial general method of moments estimator suggested by Li, Wu and 

Deng (2013) and Klier and McMillen (2008). The approach uses a two-step estimation.  

The first step is to estimate the model by standard multinomial logit in setting 𝜌 = 0 to 

linearize the model around a reasonable starting point.  Then the initial estimates are 

formed for 𝛃 (coefficients), 𝑢 = 𝑠 − 𝑝 (generalized residual), 𝐠𝑖𝑗𝑡
𝛽
= 𝜕𝑝𝑖𝑗𝑡/𝜕𝛃𝑘𝑡 

(gradient terms for 𝛽), and 𝑔𝑖𝑗𝑡
𝜌
= 𝜕𝑝𝑖𝑗𝑡/𝜕𝜌𝑘𝑡 (gradient terms for 𝜌).  Based on 𝐠𝑖𝑗𝑡 =

(𝐠𝑖𝑗𝑡
𝛽′
, 𝑔𝑖𝑗𝑡

𝜌
)′, we calculate 𝑢𝑖𝑗𝑡

1 ≡ 𝑢𝑖𝑗𝑡
0 + 𝐠𝑖𝑗𝑡

𝛽
𝛃𝑡
0 + 𝐠𝑖𝑗𝑡

𝜌
⋅ 𝟎 which are used for the 

following two-stage least squares since 𝑢𝑖𝑗𝑡
0 + 𝐠𝑖𝑗𝑡

𝛽
𝛃𝑡
0 + 𝐠𝑖𝑗𝑡

𝜌
⋅ 𝟎 ≈ 𝑢𝑖𝑗𝑡 + 𝐠𝑖𝑗𝑡

𝛽
𝛃𝑡 + 𝐠𝑖𝑗𝑡

𝜌
⋅
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𝛒𝑡.  In the second step, regress 𝐆𝑗𝑡 = (𝐠1𝑗𝑡
′ , . . . , 𝐠𝑁𝑗𝑡

′ )′ on instruments 𝐙 =

(𝐗,𝐖𝐗,𝐖2𝐗,… ,𝐖5𝐗) and then regress the calculated terms [𝑢11𝑡
1 , . . . , 𝑢𝑁𝐽−1𝑡

1 ]′ on 

(�̂�1𝑡
′ , … , �̂�𝐽−1𝑡

′ )′ by using two-stage least squares.  The estimated coefficients �̂� and �̂� 

are the spatial multinomial logit estimates.  

 Note that the coefficients from the spatial econometric models are not directly 

interpreted because the model is nonlinear.  That is also due to the fact that the 

explanatory variables are not independently determined by the equation but depend on 

the interactions with the variables in other observations through the weight matrix. 

 Following Li, Wu and Deng (2013), the marginal effects of covariates with 

respect to the expected share of land uses are calculated as: 

(16) 
𝜕𝑝𝑖𝑗𝑡

𝜕𝑥𝑖𝑡−1
= 𝑝𝑖𝑗𝑡 (

𝛃𝑗𝑡

𝜎𝑖𝑗𝑡
⊙ (𝐈𝑁 − 𝜌𝑗𝑡𝐖)

−1
−∑

𝛃𝑘𝑡𝑝𝑖𝑘𝑡
𝜎𝑖𝑘𝑡

𝑘

⊙ (𝐈𝑁 − 𝜌𝑘𝑡𝐖)
−1) 

where ⊙ is an element-by-element product operator. 

 The marginal effects of each independent factor on land use are direct marginal 

effects as shown in LeSage and Pace (2009). We can estimate the indirect marginal 

effects that are formed from the total marginal effects (the row sum or column sum of 

marginal effects) minus direct marginal effects.  This can be viewed as spillover effects 

or indirect effects as termed in LeSage and Pace (2009). 

 

3.3 Data and Chosen Variables 

We summarize the descriptions and sources of included variables in table 10.  The 

estimation procedure is similarly specified to the crop land allocation case in the 
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previous section but with spatial terms.  Again the assumption is used that land use 

decisions by land owners or managers are made to maximize profit or utility.  The 30m-

by-30m level land use data come from National Land Cover Database (NLCD) of Multi-

Resolution Land Characteristics (MRLC) Consortium: in particular, for 2001 (Homer, et 

al. 2007), for 2006 (Fry, et al. 2011), and for 2011 (Jin, et al. 2013).  The National Land 

Cover Database data contains the transitions from and to land uses.  However, the 1992 

and post 2001 data sets have different imagery, legends, and methods.  Thus, we used 

the data for the 2001, 2006, and 2011 periods, which make the transition data 

comparable across all the periods.  

 The number of national land parcel cells is approximately 16.8 trillion, which 

makes it hard to compute so we will go to a larger scale of aggregation.  Also, all of the 

other data we have are highly aggregated data compared to the cells so we can reduce 

the sample size to take advantage of feasible computation without much of loss of 

information.  We aggregated the cells into 10 × 10km cells.  Although this will prevent 

capturing the heterogeneity within the 10 by 10 km cells, it allows us to capture the 

interaction between cells.   

 Census data for economic and social factors were obtained for 2002, 2007, and 

2012 from the USDA Census of Agriculture and the general US Census.  The data 

include agricultural land asset value, median housing value of owner-occupied units, 

farm proprietor income, non-farm proprietor income, and population estimates.  When 

the data for a specific year are not available, the data from a succeeding or preceding 

year were used.  
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Table 10. Descriptions and Sources of Variables for Major Land Use Change 
Variables Description Aggregation Level Source 

% Crop Share of croplands (%) 10×10km MRLCa 

% Grass Share of grasslands (%) 10×10km MRLCa 

% Forest Share of forest (%) 10×10km MRLCa 

% Urban Share of urban land (%) 10×10km MRLCa 

% Water Share of water/ice (%) 10×10km MRLCa 

% Other Share of other lands (%) 10×10km MRLCa 

Temperature (°C) 5-year average of annual mean temperature 

(degrees Celsius) 

10×10km USHCNb 

Precipitation 

(100mm) 

5-year average of annual total precipitation 

(100mm) 

10×10km USHCNb 

Temperature SD Standard deviation of Temperature in 5 years 10×10km USHCNb 

Precipitation SD  Standard deviation of Precipitation in 5 years 10×10km USHCNb 

Altitude (100m) Altitude from the sea level (100m) 10×10km SSURGOc 

Slope Slope of land (degrees) 10×10km SSURGOc 

Soil quality Soil quality based on land capability classification 

(Index) 

10×10km SSURGOc 

Irrigation rate (%) Irrigation rate of crop land (%) County NASSd 

Ag. land value 

($/acre) 

Agricultural land asset value including buildings 

($/acre) 

County NASSd 

Farm income 

(1000$/acre)  

Farm income (1000$/acre) County CENSTATe 

Non-farm income 

(1000$/acre)  

Non-farm income (1000$/acre) County CENSTATe 

Housing value ($) Logarithm of Median value of owner housing ($) County CENSTATe 

Log(Population 

density) (per acre) 

Logarithm of population density (persons in an 

acre) 

County CENSTATe 

a Multi-Resolution Land Characteristics (Environmental Protection Agency, National Oceanic and 

Atmospheric Administration, United States Forest Service, United States Geological Survey, Bureau of 

Land Management, National Park Service, National Aeronautics and Space Administration, U.S. Fish and 

Wildlife Service, National Agricultural Statistics Service, U.S. Army Corps of Engineers, and United 

States of Department of Agriculture) 
b United States Historical Climatology Network, National Climatic Data Center, National Oceanic and 

Atmospheric Administration 
c Soil Survey Geographic Database, Natural Resources Conservation Service, United States of Department 

of Agriculture 
d National Agricultural Statistics Service, United States of Department of Agriculture 
e United States Census Bureau 

 

 

 The time-invariant land characteristics data are obtained from the soils data base 

SSURGO data (Soil Survey Staff 2014) of the Natural Resources Conservation Service, 

United States Department of Agriculture (USDA-NRCS).  This includes data on land 
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capability classes (LCC) in which class 1 and class 8 imply the most desirable and the 

least desirable for cultivation, respectively, and figure 13 presents the LCC in non-

irrigated lands.  For ease of interpretation, we converted LCC to a weighted averaged 

continuous variable, Soil Quality (1: least desirable; 8: most desirable), as shown in the 

estimation results.  

 

 

Figure 13. Land capability classification (Non-irrigated) 
 

Source: Data from Klingebiel and Montgomery (1961) and Soil Survey Staff (2014).  

Note: Class 1 is most suitable and Class 8 is least suitable for cultivation. 

 

 

 The base county and state maps (tl_2008_us_county00 and tl_2008_us_state00) 

were obtained from the TIGER products (U.S. Census Bureau 2008).  The 10×10 km 

map was based on the TIGER maps and gridded by using fishnet function in ArcGIS 

software (ESRI 2013).    

 Climate variables such as annual mean temperature, annual mean of monthly 

minimum temperature, annual mean of monthly maximum temperature, and annual total 
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precipitation are obtained from United States Historical Climatology Network (USHCN).  

The variables are spatially interpolated between weather stations for the finer scale data.  

We then calculated the mean and standard deviations of observations of the climate 

variables in a 5-year window.   

 

3.4 Estimation Results 

We estimate the land use transitions with the data at the10 × 10 km cell level.  The 

included explanatory variables are the same as the county level data except for the 

geophysical data including altitude, slope, land capability class and climate data 

including temperature and precipitation as shown in table 10.   

 Unlike the county level estimation, the estimation here includes more than 

60,000 observations so it needs much more computing power to compute the marginal 

effects.  Due to the computing memory constraints for the full weight matrix, we used 

sparse matrices using the algorithm implemented in MATLAB (Gilbert, Moler and 

Schreiber 1992; Mathworks 2014) since the values in the contiguity weight matrix is 

highly banded around the diagonal.  For example, when locations are sorted in terms of 

latitude and longitude, a candidate for the starting point is the left-upper location.  It 

leads to banded matrix which can be expressed as a much smaller dimension since the 

diagonal elements and most of the off-diagonal elements are zero.  We can then 

manipulate the sparse or banded matrix with much smaller memory.  The banded sparse 

weight matrices were constructed by using a Stata (StataCorp 2013) command, spmat, 

written by Drukker, et al. (2013). 
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 Using finer scale micro-level data can relax assumptions of common behavior 

compared to using aggregate-level data although it requires much more computing 

power.  One of the assumptions underlying the land use change estimation is that all the 

decision makers behave identically at the same area.  Accordingly, the county level data 

cannot show spatial dependence within a county but the micro level data can.  

 We present results from the fractional multinomial logit and the spatial 

multinomial logit in table 11 for the period 2002–2007 and table 12 for 2007–2012.  The 

results show that the coefficients are generally robust between the models.  However, the 

spatial lag parameter estimates are all positive and significant at the 1% level.  This 

implies that the estimates without spatial lag terms can lead to a misspecification error 

and thus the estimates can be biased (Pace and LeSage 2010). 
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Table 11. Estimates of Land Use Allocations, 2002–2007 
  Land share 2007 

 
Fractional multinomial logit 

 
Spatial multinomial logit 

Covariates  Crop Grass Forest Urban Water   Crop Grass Forest Urban Water 

Temperature –0.0002 0.0276*** 0.0196*** 0.0153*** –0.0411*** 
 

0.0042*** 0.0232*** 0.0187*** 0.0166*** –0.0354*** 

Precipitation –0.0116*** –0.0743*** –0.0067*** –0.0255*** –0.0039 
 

–0.0180*** –0.0657*** –0.0151*** –0.0261*** 0.0065* 

Temperature SD –0.7744*** –0.9277*** –0.0549* –0.7624*** –0.3555*** 
 

–0.7086*** –0.8044*** –0.1691*** –0.6652*** –0.4346*** 

Precipitation SD –0.1116*** 0.1310*** –0.0346*** –0.0305*** 0.0047 
 

–0.0859*** 0.1115*** –0.0258*** –0.0280*** –0.0011 

Altitude –0.0219*** –0.0038*** 0.0214*** –0.0181*** –0.0434*** 
 

–0.0191*** –0.0051*** 0.0172*** –0.0157*** –0.0264*** 

Slope 0.0014*** 0.0060*** 0.0067*** 0.0022*** 0.0066*** 
 

0.0026*** 0.0057*** 0.0063*** 0.0021*** 0.0073*** 

Soil quality 0.0182*** 0.0110*** 0.0209*** 0.0069*** 0.0023 
 

0.0163*** 0.0126*** 0.0193*** 0.0068*** 0.0010 

Irrigation rate –0.5473*** –0.2352*** –0.5877*** –0.6596*** –0.0088 
 

–0.5131*** –0.2093*** –0.5435*** –0.6427*** 0.0917 

Ag. land value 0.0213* –0.0965*** 0.0147 0.0914*** –0.0658*** 
 

0.0200*** –0.0789*** 0.0046 0.1128*** –0.1275*** 

Farm income –0.3202*** 0.0053*** –0.0000 0.0040** –0.0036 
 

–0.2049*** 0.0048* –0.0028 0.0052 –0.2012*** 

Non-farm income –0.0458*** 0.0409*** 0.0151* –0.0632*** 0.0198* 
 

–0.0456*** 0.0420*** 0.0104** –0.0577*** 0.0458*** 

Housing value –0.4499*** –0.0749*** 0.0201 –0.2455*** –0.2159*** 
 

–0.3742*** –0.0811*** –0.0088 –0.2076*** –0.2383*** 

Population density 0.0915*** 0.0025 0.0179*** 0.1559*** 0.0204* 
 

0.0787*** 0.0117*** 0.0253*** 0.1227*** 0.0345*** 

Share of crop 10.4119*** 6.2685*** 5.9784*** 7.7404*** 3.7272*** 
 

9.9662*** 5.9115*** 5.7138*** 7.5797*** 3.7069*** 

Share of grass 6.6656*** 9.6786*** 5.9282*** 6.7593*** 3.3545*** 
 

6.3720*** 9.1156*** 5.6304*** 6.5957*** 3.4519*** 

Share of forest 6.4098*** 6.9197*** 10.0230*** 6.8763*** 3.8746*** 
 

6.2662*** 6.5251*** 9.5966*** 6.7744*** 3.8038*** 

Share of urban 6.5377*** 4.8558*** 6.0867*** 11.6991*** 5.4337*** 
 

6.2158*** 4.3657*** 5.7980*** 11.5153*** 5.3844*** 

Share of water 4.2380*** 3.7647*** 4.4576*** 5.8827*** 9.6582*** 
 

4.0215*** 3.2571*** 3.9130*** 5.7843*** 9.5273*** 

Constant –0.4995*** –3.4276*** –6.0916*** –4.7260*** –1.1443*** 
 

–1.1596*** –3.2753*** –5.2991*** –5.1118*** –0.5809** 

Spatial lag (WX) 
      

0.0552*** 0.0841*** 0.0449*** 0.0316*** 0.0472*** 

Observations 68978   68978 

Note: *, **, and *** indicate statistical significance at the levels 10%, 5%, and 1%, respectively.   
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Table 12. Estimates of Land Use Allocations, 2007–2012 
  Land share 2012 

 
Fractional multinomial logit 

 
Spatial multinomial logit 

Covariates Crop Grass Forest Urban Water   Crop Grass Forest Urban Water 

Temperature 0.0009 0.0320*** 0.0256*** 0.0236*** –0.0355*** 
 

0.0055*** 0.0268*** 0.0224*** 0.0218*** –0.0259*** 

Precipitation –0.0252*** –0.0620*** –0.0288*** –0.0191*** –0.0331*** 
 

–0.0243*** –0.0523*** –0.0329*** –0.0191*** –0.0217*** 

Temperature SD –0.2661*** –0.3665*** 0.1556*** 0.1009*** 0.0604 
 

–0.2236*** –0.2620*** 0.1077*** 0.0826*** 0.1970*** 

Precipitation SD 0.0137** 0.0895*** 0.0254*** 0.0227*** 0.1006*** 
 

0.0143*** 0.0670*** 0.0267*** 0.0232*** 0.0979*** 

Altitude –0.0055*** 0.0127*** 0.0310*** 0.0032* –0.0245*** 
 

–0.0027*** 0.0090*** 0.0275*** 0.0042*** –0.0056* 

Slope 0.0019*** 0.0068*** 0.0072*** 0.0032*** 0.0081*** 
 

0.0030*** 0.0064*** 0.0068*** 0.0031*** 0.0085*** 

Soil quality 0.0163*** 0.0108*** 0.0197*** 0.0058*** 0.0058 
 

0.0145*** 0.0123*** 0.0190*** 0.0057*** 0.0039 

Irrigation rate –0.7925*** –0.4460*** –1.0266*** –0.7858*** –0.2521*** 
 

–0.7073*** –0.4036*** –0.9658*** –0.7825*** –0.0194 

Ag. land value 0.1198*** –0.0097 0.1018*** 0.1770*** –0.0076 
 

0.1006*** 0.0020 0.0913*** 0.2017*** –0.0377* 

Farm income –0.3040*** 0.0329*** 0.0204** 0.0319*** 0.0013 
 

–0.3453*** 0.0335*** 0.0351*** 0.0420*** –0.1254*** 

Non-farm income –0.0332*** 0.0265*** 0.0030 –0.0546*** 0.0164** 
 

–0.0303*** 0.0274*** 0.0013 –0.0493*** 0.0259*** 

Housing value –0.4885*** –0.0966*** –0.0319** –0.2336*** –0.2011*** 
 

–0.3916*** –0.0943*** –0.0455*** –0.2289*** –0.2144*** 

Population density 0.0772*** –0.0152*** 0.0171*** 0.1305*** –0.0123 
 

0.0644*** –0.0024 0.0187*** 0.1056*** –0.0041 

Share of crop 10.6111*** 6.3789*** 5.9045*** 7.8573*** 3.6298*** 
 

10.1149*** 5.9446*** 5.5714*** 7.7643*** 3.6512*** 

Share of grass 6.8252*** 9.7883*** 5.7980*** 6.8323*** 3.0658*** 
 

6.4946*** 9.1029*** 5.4305*** 6.7488*** 3.2602*** 

Share of forest 6.4818*** 6.9516*** 9.9192*** 6.8251*** 3.6051*** 
 

6.3066*** 6.4884*** 9.3915*** 6.7860*** 3.5175*** 

Share of urban 6.7538*** 5.1062*** 6.0060*** 11.7150*** 5.3303*** 
 

6.4107*** 4.5651*** 5.6614*** 11.6079*** 5.2830*** 

Share of water 4.6929*** 3.9158*** 4.5805*** 6.2050*** 9.8287*** 
 

4.2454*** 3.1620*** 3.9649*** 6.1788*** 9.7565*** 

Constant –1.2291*** –4.2654*** –6.1660*** –6.2515*** –1.6543*** 
 

–1.9910*** –4.0896*** –5.4994*** –6.2930*** –1.6149*** 

Spatial lag (WX) 
      

0.0590*** 0.1018*** 0.0529*** 0.0262*** 0.0393*** 

Observations 68978   68978 

Note: *, **, and *** indicate statistical significance at the levels 10%, 5%, and 1%, respectively.  
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The spatial dependence estimates are summarized in table 13.  Comparing the period 

2002–2007 with the period 2007–2012, the share of cropland, grassland, and forest is 

becoming more dependent on land use patterns in the nearby areas over time with the 

urban lands less dependent.  The spatial dependence terms are mostly stable over time 

but there is negative growth rate of the dependence for urban lands and water.  

Decreasing spatial dependence in urban areas might be because the allocation of US 

lands is somewhat irreversible so that the changes have become less sensitive to the 

spatial interactions with nearby areas since once a parcel goes to urban lands it almost 

never comes back to other land uses.  The result differs from the findings of other works 

(Zhang 1993; Li, Wu and Deng 2013) which find increasing spatial dependence over 

time in China.  Whether the country characteristic affects the decreasing spatial 

dependence or the other structural changes have occurred should be further investigated 

by the data in longer periods. 

 

Table 13. Estimated Spatial Lag Parameter to the Final Land Usage 

 
Crop Grass Forest Urban Water 

2002–2007 0.0552*** 0.0841*** 0.0449*** 0.0316*** 0.0472*** 

2007–2012 0.0590*** 0.1018*** 0.0529*** 0.0262*** 0.0393*** 

Note: *** implies statistical significance at the 1% level. 

 

 

 Table 14 contains estimates of the average marginal effects from the spatial 

multinomial logit for the years 2002–2007 and 2007–2012.  We find the marginal effects 

of the explanatory variables are mostly consistent across time.  Namely: 
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 Higher temperatures lead to a decrease in the share of croplands with the effects 

growing over the years.  Increases in precipitation leads to an increase in the 

cropland share but over time this is declining.  Also, larger variations in 

temperature and precipitation generally decrease in the cropland use share, 

implying that higher volatility appears to reduce the land share for crops. 

 Higher temperatures lead to an increase in the share of land in grassland with the 

effect growing over time.  Increases in precipitation lead to less land in 

grasslands but the effect is declining over the years. 

 Soil quality significantly affects shares of cropland with the effect declining over 

time but does not affect those of grassland.  This may indicate that crop and 

grazing lands are less dependent on the land or soil quality as technology 

advances.  

 Irrigation rates have positive impacts on allocating lands to grasslands with 

negative impacts on crop, forest and urban lands.  This implies that irrigation 

may be limited by water and the remaining lands may be in grasslands. 

 Higher asset values for cropland have positive impacts on crop land use share but 

negative impacts on grassland use.  However, farm income decreases cropland 

share but increases grassland share.  This may imply that croplands response 

more to a longer run value such as asset value but less to a short run value like 

annual income while grasslands do in opposite direction 
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Table 14. Marginal Effects on Land Use Allocations in Spatial Multinomial Logit, 

2002–2007 and 2007–2012 
  Crop   Grass   Forest   Urban   Water   

From 2002 to 2007 
          

Temperature –0.0011 *** 0.0014 *** 0.0008 *** 0.0003 *** –0.0008 *** 

Precipitation 0.0015 *** –0.0053 *** 0.0022 *** 0.0000 
 

0.0005 *** 

Temperature SD –0.0224 *** –0.0436 *** 0.0499 *** –0.0071 *** 0.0001 
 

Precipitation SD –0.0111 *** 0.0162 *** –0.0046 *** –0.0006 *** 0.0001 
 

Altitude –0.0019 *** –0.0004 *** 0.0029 *** –0.0005 *** –0.0004 *** 

Slope –0.0002 *** 0.0002 *** 0.0003 *** –0.0001 *** 0.0001 *** 

Soil quality 0.0004 *** –0.0002 
 

0.0009 *** –0.0003 *** –0.0002 *** 

Irrigation rate –0.0157 *** 0.0263 *** –0.0242 *** –0.0111 *** 0.0078 *** 

Ag. land value 0.0034 *** –0.0098 *** 0.0025 *** 0.0055 *** –0.0022 *** 

Farm income –0.0191 *** 0.0086 *** 0.0067 *** 0.0037 *** –0.0026 *** 

Non-farm income –0.0055 *** 0.0060 *** 0.0012 ** –0.0024 *** 0.0009 *** 

Housing value –0.0288 *** 0.0081 *** 0.0179 *** –0.0019 *** –0.0019 *** 

Population density 0.0044 *** –0.0040 *** –0.0020 *** 0.0036 *** –0.0001 
 

Share of crop 0.4417 *** –0.0750 *** –0.0810 *** 0.0384 *** –0.0353 *** 

Share of grass –0.0009 
 

0.4040 *** –0.1066 *** 0.0219 *** –0.0347 *** 

Share of forest –0.0443 *** –0.0416 *** 0.4225 *** 0.0054 *** –0.0380 *** 

Share of urban 0.0682 *** –0.1488 *** 0.0550 *** 0.2737 *** 0.0029 *** 

Share of water 0.0267 *** –0.0622 *** 0.0273 *** 0.0876 *** 0.1030 *** 

From 2007 to 2012 
          

Temperature –0.0014 *** 0.0015 *** 0.0008 *** 0.0004 *** –0.0007 *** 

Precipitation 0.0009 *** –0.0030 *** 0.0000 
 

0.0005 *** 0.0001 ** 

Temperature SD –0.0173 *** –0.0265 *** 0.0282 *** 0.0078 *** 0.0044 *** 

Precipitation SD –0.0026 *** 0.0049 *** –0.0014 *** –0.0004 ** 0.0012 *** 

Altitude –0.0015 *** –0.0002 ** 0.0025 *** –0.0002 *** –0.0002 *** 

Slope –0.0002 *** 0.0002 *** 0.0003 *** –0.0001 *** 0.0001 *** 

Soil quality 0.0003 ** –0.0001 
 

0.0009 *** –0.0003 *** –0.0001 ** 

Irrigation rate –0.0121 *** 0.0341 *** –0.0521 *** –0.0070 *** 0.0096 *** 

Ag. land value 0.0039 *** –0.0095 *** 0.0041 *** 0.0061 *** –0.0018 *** 

Farm income –0.0358 *** 0.0147 *** 0.0127 *** 0.0066 *** –0.0012 * 

Non-farm income –0.0033 *** 0.0044 *** 0.0003 
 

–0.0020 *** 0.0005 *** 

Housing value –0.0286 *** 0.0092 *** 0.0152 *** –0.0020 *** –0.0011 *** 

Population density 0.0041 *** –0.0045 *** –0.0012 *** 0.0034 *** –0.0006 *** 

Share of crop 0.4570 *** –0.0723 *** –0.1031 *** 0.0461 *** –0.0380 *** 

Share of grass 0.0135 *** 0.4185 *** –0.1373 *** 0.0290 *** –0.0396 *** 

Share of forest –0.0308 *** –0.0382 *** 0.4030 *** 0.0095 *** –0.0427 *** 

Share of urban 0.0825 *** –0.1332 *** 0.0267 *** 0.2779 *** –0.0001 
 

Share of water 0.0427 *** –0.0906 *** 0.0254 ** 0.1019 *** 0.1069 *** 

Note: *, **, and *** indicate statistical significance at the levels 10%, 5%, and 1%, respectively, based on 

the standard errors using the delta method.  

 

 

 Non-farm income has negative impacts on land use for planting crops and urban 

areas and positive impacts on grasslands and forest.  It is noted that the non-farm 
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income is defined the total income minus the farm income by county and as this 

increases there would be greater labor allocation away from the farm so it is 

reasonable that the more labor intensive cropland decreases due to the higher 

non-farm incomes.   

 Moving land to urban lands and grasslands from other land uses are possibly 

affected by the specific type of non-farm incomes so the overall incomes might 

not separate the effects.  This may also reflect a greater demand for 

environmental amenities as income grows. 

 Higher median housing values decrease the probability of allocating lands to 

crops and urban uses but increase the probability of allocation lands to forest.  It 

implies that the high-valued housing units are likely to be placed out of crop or 

urban lands.  

 More populated areas increase the land allocation for crop and urban lands.  This 

implies that as population grows, grassland and forest may be converted to crop 

or urban lands.  This also indicates the crop lands and urban lands may be placed 

nearby for the cropland to be urbanized in the future.  This result is also 

consistent with the observed positive correlation between cropland values and 

proximity to urban areas as discussed in Nickerson, et al. (2012). 

 Land share in the previous period affects land usage in the current period.  In 

specific, increases in the previous forest share have negative impacts on land use 

shares for crops and grass in the current period and vice versa.  This may imply 

that as the region becomes more forested, that crop and grass lands tend to move 
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more rapidly into forest lands.  We also find that when any land shares in the 

previous period increases, the urban land share in the current period still 

increases.  This indicates that urban lands are likely to be developed from any 

lands in the previous period as well as the previous urban lands. 

Overall, temperature and precipitation are found to have the largest effects on use of 

cropland and grassland.  Generally, increasing temperature affects an increase in 

grassland share and a decrease in cropland but increasing precipitation leads to declining 

share of cropland and increasing share of grasslands.  Given the most areas are expected 

to experience higher temperatures, the cropland is likely to decline but the grassland is 

likely to increase in the next decades. 

 We computed the root mean squared errors (RMSE) to compare the predictions 

to the observed values among models.  In specific, the predicted values with fractional 

multinomial logit and spatial multinomial logit estimations are compared.  As shown in 

table 15, the predicted values from spatial multinomial logit estimation have smaller 

RMSE to the sample observations except the croplands in both 2002–2007 and 2007–

2012 periods.  This may imply that observed cropland shares tend to be distributed more 

clustered around the mean.  This also indicates that in linear models it might be 

appropriate not to employ spatial dependences.   
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Table 15. Root Mean Squared Errors of Predicted Shares 

 RMSE of predicted to observed shares 

Land Share Fractional MNL Spatial MNL 

2002–2007   

Cropland 0.04736 0.04803 

Grassland 0.05413 0.05248 

Forest 0.05722 0.05578 

Urban 0.02711 0.02667 

Water 0.02907 0.02873 

Other 0.04019 0.03952 

2007–2012   

Cropland 0.04732 0.04770 

Grassland 0.05520 0.05399 

Forest 0.05804 0.05720 

Urban 0.02675 0.02641 

Water 0.02951 0.02899 

Other 0.03973 0.03899 

 

 

3.5 Projected Land Use Allocations as Climate Change Adaptation 

Based on the estimation results, we provide some predictions on major land use 

allocations as adaptation to climate change under counterfactual and future climate 

scenarios.  The counterfactual simulation is conducted under the assumption that the 

historical climate has been fixed at the level of 1900–2000 average value in 2012 and the 

future climate scenarios reflect the temperature and precipitation values from the global 

climate models.  The former may indicate what was likely to happen if the climate 

change was absent and the latter may indicate what is likely to happen if the climate 

change occurs in the next decades. 

 



 

 72 

3.5.1 Counterfactual Simulation 

We conducted a counterfactual simulation under the assumption that the temperature and 

precipitation would have stayed the 1900–2000 average values in 2012.  We presented 

the average marginal effects of temperature on the land use allocations but the effects are 

averaged over the space.  Thus, we also show the counterfactual allocations of major 

land uses by region in figure 14, given the counterfactual predicted values based on 

1900–2000 average temperature and precipitation.  In the figures, the growth rate 

between observed and counterfactual shares are evaluated at the year 2012 as differences 

of share of observed in 2012 and share of counterfactual in 2012 divided by share of 

counterfactual in 2012.  Under the 1900–2000 normal, the expected proportion of 

cropland in 2012 would have been likely to be larger than the observed values in most 

areas.  In contrast, grasslands would have been less allocated if the temperature and 

precipitation stayed the historical normal.  As the marginal effects show the opposite 

response of cropland and grassland to temperature and precipitation, the counterfactual 

allocations show opposite, if not exact, growth rate under the historical mean.   
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Figure 14. Counterfactual growth rate of predicted shares with historical climate 

normal 1900–2000 in 2012 
 

Note: Blue cells indicate more allocations for each land usage than the values in 2012 under 1900–2000 

average climate and red cells indicate less allocations. 

 

 

3.5.2 Climate Scenarios 

Using the temperature and precipitation estimates from the Representative Concentration 

Pathways (RCP) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we 

simulated the land use allocations in 2030, 2050, 2070, and 2090.  We obtained the 

projected temperature and precipitation outputs from six different climate models 

including CanESM2, CCSM4, CESM1-CAM5, GFDL-CM3, HadGEM2-ES, and MPI-

ESM-MR.  We obtained these from the Archive of CONUS 1/8 degree BCSD (Bias-
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Corrected and Spatially Downscaled) files available at “Downscaled CMIP3 and CMIP5 

Climate and Hydrology Projections”.  RCP 2.6 scenario implies optimistic conditions 

with the lowest level of greenhouse gas emissions while RCP 8.5 scenario indicates 

pessimistic conditions with the highest level of GHG emissions.  Since we focus on the 

climate effects on the land use changes, we simplified the assumption that the market 

values are exogenously determined although they are likely to be endogenous to 

commodity production and consumption.  That is, the predicted values of land use 

allocation demonstrates the marginal change of the land uses when the other variables 

are stable in the current condition.  Unlike the counterfactual simulation, we evaluate the 

expected growth rate of share in the future years from 2012 to show how the land 

allocations would adapt to the altering climate over the years.   

 Figure 15 shows the growth rate of land share for crops under the values of 

temperature and precipitation under the RCP 2.6 scenario.  Because the RCP 2.6 

scenario implies the least increases in GHG and the least change in climate, the change 

in land use shares over the future years are not much variant.  In figure 16, using the 

same prediction under RCP 8.5 results in noticeable changes in expected land shares 

compared to the RCP 2.6 result.  The shares of cropland are expected to decrease in the 

Eastern and Central areas and to increase in the southwest, Mountain and Pacific areas 

over the years.  Although the patterns resemble each other, the figures show more rapid 

decreases in cropland share under the RCP 8.5 than the RCP 2.6. 
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Figure 15. Cropland growth rate under RCP 2.6 scenario from 2012 
 

Note: Blue cells indicate more allocations for each land usage compared to the values in 2012 under RCP 

2.6 scenario in 2030, 2050, 2070, and 2090 and red cells indicate less allocations. 
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Figure 16. Cropland growth rate under RCP 8.5 scenario from 2012 
 

Note: Blue cells indicate more allocations for each land usage compared to the values in 2012 under RCP 

8.5 scenario in 2030, 2050, 2070, and 2090 and red cells indicate less allocations. 

 

 

 Figures 17–18 present the growth rate of share for grasslands under RCP 2.6 and 

RCP 8.5 in 2030, 2050, 2070, and 2090 compared to 2012.  Over the years, Southeastern 

and Western areas are expected to have less shares for grassland due to climate change.  

As in the case of croplands, expected shares for grassland under RCP 8.5 increase or 

decrease more rapidly than those under RCP 8.5 particularly in Texas and the Great 

Plains.  Because the RCP 8.5 climate estimates change more rapidly than those of RCP 
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2.6, the other land use shares such as forests and urban areas are also expected to change 

more severely under the RCP 8.5.  

 

 

Figure 17. Grassland growth rate under RCP 2.6 scenario from 2012 
 

Note: Blue cells indicate more allocations for each land usage compared to the values in 2012 under RCP 

2.6 scenario in 2030, 2050, 2070, and 2090 and red cells indicate less allocations. 
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Figure 18. Grassland growth rate under RCP 8.5 scenario from 2012 
 

Note: Blue cells indicate more allocations for each land usage compared to the values in 2012 under RCP 

8.5 scenario in 2030, 2050, 2070, and 2090 and red cells indicate less allocations. 

 

 

3.5.3 Marginal Effects of Land Use Transitions 

We also estimated the land use transitions model with the fractional multinomial logit 

model because some transitions between land uses turn out insignificant spatial 

autocorrelations.  Also, RMSE of the predicted probabilities of transitions are smaller in 

the fractional MNL result.  Thus, we rely on the fractional MNL results to estimate the 

transitions.  To save space, we only present the marginal effects of average temperature 

and precipitation.  Because the changed probability is constructed as the land use 
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changes from A usage to B usage divided by B usage, we multiply the B usage shares at 

the initial state to the marginal effects to identify the changed magnitude.  We estimate 

the marginal effects of all the variables in 2002–2007, 2007–2012, and 2002–2012 

periods.  However, the transitions lead to too many marginal effects estimates so we 

focus on the temperature and precipitation between 2002 and 2012 here.   

 Table 16 shows that increasing temperature significantly decreases the 

probability of maintaining the initial land uses for all usage except the urban lands.  

Specifically, cropland is likely to change most significantly to grassland and urban lands 

under increasing temperature.  Grassland is likely to be converted to forest and urban 

lands the most in higher temperature.  The probability of urban lands to be remained 

may not respond to the changed temperature.  

 The result indicates that under increasing temperature, the croplands is highly 

likely to convert to grassland and the grasslands are likely to convert to forests and the 

forests are likely to convert to grasslands.  Thus, cropland would be likely to change to 

other land uses significantly and grasslands and forests are mostly converted to each 

other. 

 

Table 16. Marginal Effects of Temperature on Land Use Transitions, 2002–2012 
 Final land use 

Initial land use Cropland  Grassland  Forest  Urban  Water  

Cropland –0.052 *** 0.023 *** 0.011 *** 0.016 *** 0.002 
 Grassland 0.004 *** –0.072 *** 0.043 *** 0.018 *** 0.004 *** 

Forest 0.000 
 

0.066 *** –0.076 *** 0.010 *** 0.000 * 

Urban 0.000 
 

0.000 
 

0.000 *** 0.000 
 

0.000 ** 

Water 0.000 * 0.005 *** 0.001 *** 0.001 *** –0.012 *** 

Note: Marginal effects are multiplied by the 2002 shares and by a hundred.  ***, **, and * indicate 

statistical significance at the levels 1%, 5%, and 10%, respectively.   
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 The marginal effects of precipitation on land use transitions are shown in table 17.  

Increasing average precipitation is likely to increase the probability that the cropland, 

grassland, urban lands, and water is maintained and thus increasing aridity would 

stimulate transitions.  The probability of converting from cropland to forest and urban 

lands decreases under increasing precipitation.  Grasslands have lower probability to be 

converted to other uses when precipitation increases.  This implies that less precipitation 

would push the grasslands to other uses, most significantly, to forest.  We also find that 

the urban land change to croplands, grasslands, and forest may not respond to the 

precipitation.  However, unlike the case in temperature change, we do not find 

monotonic patterns of land use transitions.  Because precipitation change differs across 

regions while temperature change is expected to increase over the regions, the 

insignificant changing pattern might result from the trade-offs of the effects between 

heterogeneous regions. 

 

Table 17. Marginal Effects of Precipitation on Land Use Transitions, 2002–2012 
 Final land use 

Initial land use Cropland  Grassland  Forest  Urban  Water  

Cropland 0.014 * 0.000  –0.005 *** –0.009 *** –0.002  

Grassland –0.025 *** 0.097 *** –0.054 *** –0.011 *** –0.007 *** 

Forest 0.003 * 0.000  0.000  0.000  –0.008 *** 

Urban 0.000  0.000  0.000  0.000 ** 0.000 ** 

Water 0.003 *** –0.002 * 0.001 *** 0.000  0.004 * 

Note: Marginal effects are multiplied by the 2002 shares and by a hundred.  ***, **, and * indicate 

statistical significance at the levels 1%, 5%, and 10%, respectively.   
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3.6 Concluding Remarks 

This study employs a spatial econometric method for land use allocations and transitions 

in the US.  We use the linearized multinomial logit framework due to the difficulty of 

estimating nonlinear discrete choice models when including spatial dependences.  The 

current study extends the previous studies of land use change by using more detailed 

data while also considering spatial interactions between land areas and focusing on the 

climate change adaptation via altering land uses.   

 The results show that the climate significantly affects the land allocations and 

transitions as do other economic and geophysical conditions.  In particular we find that 

temperature and precipitation affect the land use allocations for cropland and grasslands 

in the opposite direction.  We also find that including spatial dependences in land use 

allocations improves the land use allocation model.  However, we do not find advantages 

using the spatial autocorrelation term for the land use transitions model.  Because the 

allocation of land shares in the US has been highly stable in the recent years, the land 

transitions between usages are not readily captured by the spatial dependence and the 

prediction based on the fractional multinomial logit is shown more robust in the 

transitions model. 

 Using the simulated expected shares, we show the regional land responses under 

the counterfactual case in 2012 under the historical climate normal.  We also show the 

expected shares in the future under the climate scenarios.  We find that the patterns of a 

specific land use change due to the altering climate resemble those of different climate 

scenarios but the rate of changes are much higher in the climate scenario with more 
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radiative forcing.  Generally, we find climate change moves land out of cropping and 

into grasslands although this is only strongest in certain regions. 

 Although we estimated the marginal impacts of various factors on land use 

transitions nationwide, there may be some omitted factors affecting the change.  For 

example, policy changes are a significant factor on land use changes but due to the lack 

of data, we could not include the factors explicitly in the model.  We assumed some 

state-level or county-level policy impacts implicitly with the spatial information.  Also, 

there might be good approximation of explicit land prices for each usage considering 

endogenous price changes from market demand and supply of lands.  Thus, our model 

could be further improved by including market factors.  Unfortunately, those kind of 

data are limited especially at the micro level and a system of equations including those 

factors would be more complicated.  Thus, further studies would be better conducted 

with more detailed panel data and system equations that are not available currently. 
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4. IMPACTS OF CLIMATE CHANGE ON WILDFIRE RISK IN THE UNITED 

STATES 

 

Wildfires in the form of uncontrolled occurrence of fire within wild landscapes such as 

forestlands and grasslands are damaging and of public concern.  They are also 

considered a natural adaptation of an ecosystem to say hotter and drier conditions.  

Climate change impacts on wildland fire have been discussed conceptually with some 

regional empirical work in previous studies (Westerling and Swetnam 2003; Gan 2005; 

Westerling and Bryant 2006; Daigneault, Miranda and Sohngen 2010; Yue, et al. 2013).  

Here we will attempt to advance the literature by doing a national econometric study 

examining how climate change may enhance wildfire risk.  This will be done using a 

modified logistic regression over a recent panel data set to discover the effect of climate 

and other factors on fire risk and then to project the expected change in fire risks under 

the IPCC (2013) future climate scenarios. 

 Specifically, we will use an econometric approach to study the impacts of climate 

variables such as temperature and precipitation on human-caused and lightning-caused 

wildfire risks in forest lands.  We will also include other natural factors and human 

factors including population, tree mortality, tree removal, and density of biomass.  We 

will employ a fractional regression model over a state level, multiple year, panel data set 

with heterogeneity considered.  Moreover, we will form projections of future wildfire 

risks in the US based on the IPCC (2013) Representative Concentration Pathways (RCP) 

climate scenarios.   
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 This study contributes to the literature in several ways.  First, we use a panel data 

approach considering unobservable heterogeneity of each state, which makes the 

estimates more robust.  Second, we employ a fractional multinomial logit to predict 

incidence of both human-caused and natural, lightning caused fires.  Third, we combine 

recent historical data with the latest IPCC RCP climate scenarios (IPCC 2013; Knutti 

and Sedlacek 2013) and generate spatially heterogeneous projections of wildfire risks 

under expected climate change.  Fourth, we identify the importance of climatic, 

demographic and stand characteristic factors as contributors to wildfire risk and 

understanding of which can possibly aid in setting future forest policy. 

  

4.1 Background on Wildfires in the US 

Forestlands have been mainly considered a source of timber production, recreational 

opportunities, and an environmental amenity (Sorg and Loomis 1984; Garrod and Willis 

1992; Pattanayak, Murray and Abt 2002).  Also, in the climate change arena they have 

been mentioned as a carbon sink to mitigate climate change (Richards and Stokes 2004; 

IPCC 2014).  However, increased incidence of wildfires can threaten these roles.  

Accordingly, the factors increasing wildfire danger has been examined by many 

previous studies.  Climate conditions, human activity, and other variables have been 

found to affect frequency and severity of wildfire occurrence (Running 2006; Del Genio, 

Yao and Jonas 2007; Seager, et al. 2007; Price 2009), and the IPCC among others has 

argued that recent climate change is also contributing (IPCC 2013, 2014).  Furthermore, 
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the IPCC also indicates that projected climate change will further increase wildfire 

activity (IPCC 2013, 2014).  

 In this study, wildfire risks are defined as ratio of burned area to forested land 

area.  Also, we identify lightning-caused wildfires as natural wildfires, and use those 

terms interchangeably.  National Interagency Fire Center (NIFC) classifies wildfires into 

lightning-caused fires and human-caused fires among 13 causes such as arson, campfire, 

equipment use, and smoking (Short 2014).  Fires originating due to all other causes 

excepting lightning are identified as human-caused wildfires.  

 Currently, the historical average of human- and lightning-caused wildfire risks 

are given in figure 19 and figure 20, respectively.  Generally, we see that the western 

areas of the US have higher wildfire risks than eastern regions.  This might be because 

the western states are generally drier with large areas of public lands as discussed in 

Running (2006).  The numbers of human-caused and lightning-caused fire occurrences 

are highest in the Southern area and in the Midwestern area such as Rocky Mountain and 

Southwest, and Eastern Basin regions, respectively.   
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Figure 19. Average human-caused wildfire risk, 1996–2010 

 

 

 

Figure 20. Average lightning-caused wildfire risk, 1996–2010 

 

   

4.2 Econometric Model Specification 

We use a discrete response model method to estimate how human-caused and natural 

wildfires are affected by climate, physical, and demographic factors.  Wildfire risk in 
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this study is estimated as the ratio of area burned to the total forest lands with separate 

analyses for fires caused by human and lightning.  Such a variable is bounded between 

zero and one and to maintain that restriction we use a fractional model that deals with 

proportional data (Murteira and Ramalho 2013).  There are three alternative cases that 

would apply to a parcel on an annual basis: human-caused fire, lightning-caused fire, and 

no fire and the probabilities of these must sum up to one.  

 To implement the estimation with considering the three cases, we use a 

maximum quasi-likelihood estimation for multinomial fractional regression approach 

following Koch (2010), Kala, Kurukulasuriya and Mendelsohn (2012), and Murteira and 

Ramalho (2013).  Furthermore, we utilize fractional regression on panel data as 

developed by Papke and Wooldridge (2008) and a pooled multinomial logit on panel 

data as developed by Wooldridge (2010).  This method makes predicted fire occurrence 

proportions for the three cases fall between zero and one.   

 Our model includes panel data for fire observations at the US state level in states 

𝑖 = 1, … ,𝑁 and time periods 𝑡 = 1, … , 𝑇 where we have data for 46 states and 17 years.  

In turn the conditional mean for fire occurrence of type 𝑗 (here 𝑗 denotes human- and 

natural lightning-caused fires and no fire) can be expressed as:  

(17) E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡) = 𝐺𝑗(𝐱𝑖𝑡; 𝛃) = 𝐺(𝐱𝑖𝑡𝛃𝑗) =
exp(𝐱𝑖𝑡𝛃𝑗)

∑ exp(𝐱𝑖𝑡𝛃𝑘)
𝐽
𝑘=1

, 𝑗 = 1,… , 𝐽 

where 𝐺(⋅) is a known function that makes the predicted dependent variable 𝑠 lie 

between zero and one with 0 < 𝐺(𝑧) < 1 for any 𝑧 ∈ ℝ.  𝑠𝑖𝑗𝑡 is the observed proportion 

state 𝑖 forested lands that end the year in wildfire category 𝑗 (human-caused fire, natural 
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fire or no fire) in year 𝑡.  The explanatory variables 𝐱𝑖𝑡 include climate, physical, and 

demographic factors in state 𝑖 in year 𝑡.   

 To consider heterogeneity between states, we include a term (𝑐𝑖) for unobserved 

heterogeneity as the following: E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡, 𝑐𝑖) = 𝐺𝑗(𝐱𝑖𝑡, 𝑐𝑖; 𝛃, 𝛾) = 𝐺(𝐱𝑖𝑡𝛃𝑗 + 𝛾𝑗𝑐𝑖), 𝑗 =

1, … , 𝐽.  As introduced by Chamberlain (1980) and Wooldridge (2010), if we assume that 

𝑐𝑖|𝐱𝑖~𝑁(𝜓 + �̅�𝑖𝛇, 𝜎𝑎
2) where 𝑐𝑖 = 𝜓 + �̅�𝑖𝛇 + 𝑎𝑖 and �̅�𝑖 is an average of time-varying 

variables of 𝐱𝑖𝑡 over time 𝑡 for each 𝑖, then E(𝑠𝑖𝑗𝑡|𝐱𝑖) = E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡, �̅�𝑖).  Because 

directly estimating this equation is computationally burdensome and does not run 

without sufficient observations as argued by Wooldridge (2010), we follow Wooldridge 

(2010) and  assume that D(𝑐𝑖|𝐱𝑖) = D(𝑐𝑖|�̅�𝑖) where D(⋅ | ⋅) is a conditional probability 

distribution function and then E(𝑠𝑖𝑗𝑡|𝐱𝑖) = E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡, �̅�𝑖) for all 𝑗, 𝑡.  Then, to average 

out 𝑐𝑖, the specification of the conditional expectation E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡, �̅�𝑖) as the fractional 

multinomial logit satisfying 𝑠𝑖𝑡|𝐱𝑖𝑡, … , 𝐱𝑖𝑇 ~ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐱𝑖𝑡𝛃1 + 𝐱𝑖𝛇1, … , 𝐱𝑖𝑡𝛃𝐽 +

𝐱𝑖𝛇𝐽).  In turn this leads to a pooled fractional multinomial logit estimation including 

time averaged terms, which averages out the heterogeneity term 𝑐𝑖.  This is estimate with 

a quasi-maximum likelihood method that has robust standard errors makes the estimates 

robust to arbitrary serial dependence. 

 We then normalize on one item setting one 𝛃𝐽 = 𝟎 (in this case making the no 

fire result the base alternative).  Subsequently this allows identification as the following: 
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(18) 

E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡, 𝑐𝑖) = 𝐺𝑗(𝐱𝑖𝑡, �̅�𝑖; 𝛃, 𝛇)

=

{
 
 

 
 

exp(𝐱𝑖𝑡𝛃𝑗 + �̅�𝑖𝛇𝑗)

1 + ∑ exp(𝐱𝑖𝑡𝛃𝑘 + �̅�𝑖𝛇𝑘)
𝐽−1
𝑘=1

, 𝑗 = 1,… , 𝐽 − 1

1

1 + ∑ exp(𝐱𝑖𝑡𝛃𝑘 + �̅�𝑖𝛇𝑘)
𝐽−1
𝑘=1

, 𝑗 = 𝐽

 

where �̅�𝑖
𝑚 = 𝑇−1∑ 𝑥𝑖𝑡

𝑚𝑇
𝑡=1  for each 𝑚-th time-varying variable. 

 Estimation using the above equations causes the conditional expected proportions 

of area burned due to human and natural causes plus the no fire case to add up to one 

(∑ 𝑠𝑗𝑗 = 1) and to fall in the unit interval (𝑠𝑗 ∈ (0,1)).  

 In this case the specific log-likelihood function of the predicted dependent 

variable 𝑠 is 

(19) 

𝑙𝑖(𝛃) = 𝑠𝑖1𝑡 log[𝐺(𝐱𝑖𝑡, �̅�𝑖; 𝛃1, 𝛇1)] + 𝑠𝑖2𝑡 log[𝐺(𝐱𝑖𝑡, �̅�𝑖; 𝛃2, 𝛇2)] + ⋯ 

+𝑠𝑖𝐽𝑡 log[𝐺(𝐱𝑖𝑡, �̅�𝑖; 𝛃𝐽, 𝛇𝐽)]  . 

Since the log-likelihood function is a member of the linear exponential family (LEF), the 

quasi-maximum likelihood estimator is consistent  (Gourieroux, Monfort and Trognon 

1984; McCullagh and Nelder 1989).  As suggested in Papke and Wooldridge (2008), we 

used heteroskedasticity-consistent robust standard errors to make the standard errors 

robust to misspecification of conditional variance and arbitrary serial dependence. 

 Because estimates from discrete response estimation methods are difficult to 

interpret directly, we use the concept of the average marginal effect (AME) as discussed 

in  (Long and Freese 2006).  The average marginal effects indicate the marginal impacts 

of a one unit change in the explanatory variables on the acres in each fire class.  For 

continuous explanatory variables, the average marginal effect of 𝑚-th explanatory 
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variable on the expected probability of forest land share burned from cause 𝑗 is 

calculated as the mean of marginal effects evaluated at each observation and is expressed 

as  

(20) 
𝜕E[𝑠𝑖𝑗𝑡|𝐱𝑖]

𝜕𝑥𝑖𝑡
𝑚 = 𝑁−1∑(𝛽𝑗

𝑚𝐺𝑗 − 𝐺𝑗∑𝐺𝑘𝛽𝑘
𝑚

𝐽−1

𝑘=1

)

𝑁

𝑖=1

 

where 𝑠𝑖𝑗 is the observed land share burned by cause 𝑗 in state 𝑖, 𝐺𝑗 indicate estimated 

share on alternative 𝑗 for each observation and 𝑥𝑖
𝑚 is the value of 𝑚-th explanatory 

variables. 

 

4.3 Data and Empirical Model Description 

Above we presented the econometric specification with an arbitrary functional form.  

Here we adopt a specific form which is: 

(21) E(𝑠𝑖𝑗𝑡|𝐱𝑖𝑡) = 𝐺𝑗(𝐱𝑖𝑡, �̅�𝑖; 𝛃, 𝛇) = 𝐺(𝐱𝑖𝑡𝛃𝑗 + �̅�𝑖𝛇𝑗) =
exp(𝐱𝑖𝑡𝛃𝑗 + �̅�𝑖𝛇𝑗)

∑ exp(𝐱𝑖𝑡𝛃𝑘 + �̅�𝑖𝛇𝑘)
𝐽
𝑘=1

 

where 𝛃𝑗 and 𝛇𝑗 are parameters to be estimated and 𝐱 are the independent variables we 

use to describe factors that alter fire incidence and are denoted as, 𝐱𝑖𝑡 =

{𝑥𝑖𝑡
1 , … , 𝑥𝑖𝑡

𝑞 , 𝑥𝑖
𝑞+1, … , 𝑥𝑖

𝑞+𝑝−1, 𝑥𝑖
𝑚}.  The vector 𝐱𝑖𝑡 contains both time-varying (𝑞) and 

time-invariant (𝑝) factors, and �̅�𝑖 includes 𝑞 time-varying variables averaged out over 

multiple years for each state.   

 Several independent variables were considered to contribute to fire incidence.  

For our study we certainly add climate descriptors as linear terms.  We also add non-

linear terms to allow increasing and decreasing effects as climate factors change 
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including squared terms for temperature and precipitation.  To control for seasonality of 

wildfire risks, seasonal temperature and precipitation measures.  Historically, the 

Western US has encountered 94% of wildfires and 98% of area burned due to fire 

between May and October (Westerling and Swetnam 2003; Whitlock, Shafer and 

Marlon 2003).   

 We include forest characteristic factors such as tree mortality, tree removal, and 

aboveground biomass density following Rothermel (1972), Rothermel and Philpot 

(1973), Anderson (1982), and Gan (2005).  After several specification tests, we picked 

the set of explanatory variables shown in table 18 which also demonstrates descriptive 

statistics on these variables.   

 We use the US state-level data for the wildfire incidence and the explanatory 

factors over 46 states in 17 years.  We include population density, annual tree mortality, 

annual tree removals, and biomass density as time-invariant variables because 

population density and tree-related variables are changing very slowly and stable in each 

state.  Rather, we consider those variables used for controlling for state-specific 

characteristics.  Although human population density does not rapidly change, most 

wildfire occurrences have been in populated areas according to the historical records.  

Tree removals such as harvesting sound trees and amount of aboveground biomass play 

a role in fuel accumulation and forest structure and operations for the removals may 

increase wildfire risks.  Also, annual tree mortality has impacts on the changes of fuel 

characteristics since dead trees are more vulnerable to fire risks. 
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Table 18. Descriptive Statistics of Variables (N = 46, T = 17) 

Variable Mean 
Standard 

Deviation 
Min Max 

Dependent variables     

Fire: lightning-caused burned area / forest (ratio) 0.01 0.01 0.00 0.11 

Fire: human-caused burned area / forest (ratio) 0.01 0.01 0.00 0.06 

Fire: area not burned / forest (ratio) 0.99 0.02 0.88 1.00 

Explanatory variables     

Temperature in spring (°C) 10.75 4.63 2.98 21.88 

Temperature in summer (°C) 22.17 3.22 16.13 28.87 

Temperature in autumn (°C) 12.31 4.14 4.88 23.19 

Temperature in winter (°C) 0.48 5.80 –12.85 15.93 

Precipitation in spring (hundred mm) 2.45 0.92 0.27 4.91 

Precipitation in summer (hundred mm) 2.63 1.16 0.12 6.46 

Precipitation in autumn (hundred mm) 2.29 0.97 0.39 4.49 

Precipitation in winter (hundred mm) 2.06 1.12 0.24 5.66 

Population density (persons / km2) 63.79 86.8 2.03 440.73 

Tree mortality (m3 / ha) 0.89 0.44 0.05 2.08 

Tree removal (m3 / ha) 1.91 2.06 0.01 8.86 

Biomass (hundred tons / ha) 1.03 0.44 0.04 2.07 

Note: Number of observations is 782 including 46 states and 17 years.  

 

 

 Data on wildfire occurrence and burned area in the US were drawn from Short 

(2014) and compiled by year, state, and causes.  Forested area data were extracted from 

National Land Cover Database (NLCD) of Multi-Resolution Land Characteristics 

(MRLC) Consortium by state: in particular,  for 1992–2001 (Homer, et al. 2007; Fry, et 

al. 2009), for 2006 (Fry, et al. 2011), and for 2011 (Jin, et al. 2013).  We used those data 

to calculate the wildfire risk defined as the ratio of burned area by wildfire to forested 

lands. 

 Human population density data were obtained from United States Census Bureau 

by state and averaged across years.  Annual tree mortality, annual tree removal, and total 

aboveground biomass from 1997 to 2012 by state were obtained from: Smith, et al. 
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(2001) for 1997, Smith, et al. (2004) for 2001, Smith, et al. (2009) for 2007, and Oswalt, 

et al. (2014) for 2012, and then averaged out across years because the data series are 

unstable across survey years and slowly changing and we rather use them as state-

specific characteristics. 

 Historical temperature and precipitation data were obtained from nClimDiv 

which are argued to be improvements on previous estimates by National Oceanic and 

Atmospheric Administration’s (NOAA’s) National Climatic Data Center (NCDC) as 

discussed in Fenimore, et al. (2011) and Vose, et al. (2014).  We used the state-level 

climate variables of nClimDiv, estimated by bias-corrected distance weighted average 

across multiple weather stations.  Seasons are defined as: Spring (March to May), 

Summer (June to August), Autumn (September to November), and Winter (December to 

February in the following year).  We compute the seasonal temperature as the average 

monthly mean temperature and seasonal precipitation as the sum of the monthly total 

precipitation data.  

 

4.4 Estimation Results and Discussion 

We estimated the lightning- and human-caused wildfires with both the fractional 

regression and a fixed effects linear regression with heteroskedasticity-robust standard 

errors (Stock and Watson 2008) for comparative purposes.  Estimated coefficients from 

fractional multinomial logit (FMNL) model are shown in table 19.  In the estimation, 

“no fire” is used for the base case alternative whose coefficients are set to zero to 

identify the model.  The estimates indicate how the alternative would change in 
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probability with respect to the no fire case if one variable increases by one unit.  

However, it is hard to directly interpret the estimation results of this non-linear model, 

and thus we compute average marginal effects (AME) with the results shown in table 20.   

 To show whether AME is estimated appropriately, we compare the two sets of 

results.  We find that the statistically significant AME and FE coefficients have similar 

patterns except for the case of summer temperature on human-caused fire.  Since 

predicted probabilities in the FE regression are not bounded between zero and one and 

estimated separately, the estimated results may be biased.  Coefficients across 

regressions are adding up to zero by design due to the unit sum of dependent variables4.  

We focus on the AME estimates in FMNL model because it deals with unobserved 

factors like panel regression models plus with fractional dependent variables bounded 

zero and one.  

   

 

                                                           
4 Random effects linear regression shown in the Appendix is also used for comparison but the result is not 

much different from fixed effects model while the RE model can estimate the coefficients for time-

invariant variables.  Hausman test that the estimates are indifferent is rejected so we stick to FE model for 

the purpose with FMNL.  
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Table 19. Estimates of Lightning- and Human-caused Wildfire Risk, 1996–2012 

 

Lightning-caused 

wildfire 

Human-caused 

wildfire 

Covariates Coefficients SE Coefficients SE 

Temperature - spring (C) 0.507** (0.212) –0.119 (0.155) 

Temperature squared - spring (°C) –0.009 (0.010) 0.014* (0.008) 

Temperature - summer (C) –1.249* (0.694) –0.570 (0.485) 

Temperature squared - summer (°C) 0.041** (0.018) 0.020** (0.009) 

Temperature - autumn (C) –0.004 (0.335) 0.462* (0.237) 

Temperature squared - autumn (°C) 0.004 (0.017) –0.012 (0.008) 

Temperature - winter (C) –0.074 (0.127) 0.036 (0.077) 

Temperature squared - winter (°C) –0.007 (0.008) –0.003 (0.004) 

Precipitation - spring (hundred mm) 1.231* (0.715) –0.320 (0.324) 

Precipitation squared - spring (hundred mm) –0.354* (0.187) –0.016 (0.057) 

Precipitation - summer (hundred mm) 0.359 (0.393) 0.738 (0.486) 

Precipitation squared - summer (hundred mm) –0.095 (0.073) –0.101* (0.056) 

Precipitation - autumn (hundred mm) –1.214* (0.675) –2.308*** (0.515) 

Precipitation squared - autumn (hundred mm) 0.198* (0.109) 0.342*** (0.088) 

Precipitation - winter (hundred mm) –0.155 (0.486) –0.980** (0.480) 

Precipitation squared - winter (hundred mm) –0.038 (0.069) 0.159** (0.080) 

Population density (persons / km2) –0.146*** (0.036) 0.004 (0.003) 

Tree mortality (m3 / ha) 3.530*** (1.189) –0.478 (0.629) 

Tree removal (m3 / ha) –0.264 (0.300) 0.117 (0.195) 

Biomass (hundred tonne / ha) –4.473*** (1.516) 0.419 (0.860) 

Constant –87.011*** (24.644) –34.513*** (10.389) 

Quasi-log likelihood –39.772    

Number of observations 782    
Note: *, **, and *** indicate statistical significance at the levels 10%, 5%, and 1%, respectively.  

Heteroskedasticity-robust standard errors are in parentheses.  Time averaged variables are included in the 

estimation but suppressed in the table.  In the Appendix (table A-5), the full results are shown. 

 

 

 

 



 

 96 

Table 20. Estimates on Wildfire Risk: Average Marginal Effects in Fractional Multinomial Logit and Coefficients in 

Fixed Effects Linear Regression 

 

Fractional Multinomial Logit Fixed Effects Linear Regression 

Lightning-caused wildfire Human-caused wildfire Lightning-caused wildfire Human-caused wildfire 

Covariates AME AME Coefficients Coefficients 

Temperature - spring (°C) 0.00166*** 0.00091** 0.00362** 0.00031 

 (0.00040) (0.00041) (0.00160) (0.00126) 

Temperature - summer (°C) 0.00246*** 0.00155** 0.00974* –0.00800* 

 (0.00092) (0.00065) (0.00487) (0.00458) 

Temperature - autumn (°C) 0.00039 0.00071* –0.00150 0.00155 

 (0.00057) (0.00039) (0.00145) (0.00124) 

Temperature - winter (°C) –0.00037 0.00014 –0.00012 0.00025 

 (0.00063) (0.00038) (0.00041) (0.00044) 

Precipitation - spring (hundred mm) 0.00121 –0.00171*** –0.00599* –0.00539* 

 (0.00126) (0.00065) (0.00341) (0.00301) 

Precipitation - summer (hundred mm) 0.00043 0.00128 –0.00144 0.00329 

 (0.00114) (0.00115) (0.00427) (0.00432) 

Precipitation - autumn (hundred mm) –0.00355* –0.00528*** –0.01137* –0.01801** 

 (0.00203) (0.00128) (0.00609) (0.00679) 

Precipitation - winter (hundred mm) –0.00119 –0.00235** –0.00146 –0.00533* 

 (0.00157) (0.00118) (0.00298) (0.00299) 

Population density (persons / km2) –0.00072*** 0.00003** – – 

 (0.00018) (0.00001)   

Tree mortality (m3 / ha) 0.01733*** –0.00233 – – 

 (0.00593) (0.00278)   

Tree removal (m3 / ha) –0.00130 0.00054 – – 

 (0.00147) (0.00086)   

Biomass (hundred tonne / ha) –0.02195*** 0.00211 – – 

 (0.00758) (0.00384)   

Number of observations 782 782 

Note: Delta-method standard errors for fractional multinomial logit and robust standard errors for fixed effects regression are in parentheses.*, **, and 

*** indicate statistical significance at the levels 10%, 5%, and 1%, respectively.  AME indicates “average marginal effects” in fractional multinomial 

logit that is comparable to the coefficients of linear models.  Full estimation results including random effects regression are included in the Appendix 

(tables A-6–A-7). 
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 In table 20, the AME results show positive impacts of spring and summer 

temperature and negative impacts of autumn precipitation on both human- and lightning-

caused wildfires significantly at the 10% level.  Human-caused wildfire risk increases as 

autumn temperature increases while lightning-caused fire does not show a significant 

effect.  Increasing spring and winter precipitation significantly plays a significant role in 

reducing human-caused wildfire.  Both caused fires are affected by temperature and 

human-caused fires are more sensitive to precipitation as discussed in Gan (2005).  

Seasonal climate changes may alter fuel type and structure due to altered vegetation and 

fuel moisture as well (Schneider, et al. 2009).  Thus, the altered seasonal temperature 

and precipitation would change the probability of risks on human-caused and lightning 

wildfires.   

 The AME estimates also show that the magnitude of the summer temperature is 

larger than that of other seasonal temperature partially because wildfires occur at the 

highest frequency and severity in summer.  Also, the summer temperature is already 

higher than others so the marginal increase of temperature would induce intense 

conditions for wildfire risks such as highly altered fuel moisture.  

 Human population density has positive impacts on human-caused fire and 

negative impacts on lightning-caused fire, which implies that populated areas would be 

more vulnerable to human-caused wildfire.  However, the populated areas would be less 

exposed to lightning wildfire because the degree of efforts on the prevention of 

catastrophic events may be higher than in non-populated areas plus tree density may be 

lower. 
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 On lightning-caused fires, increasing annual tree mortality rate has positive 

impacts.  This is not surprising since dead or unsound trees have less fuel moisture and 

are more combustible.  Increasing biomass density has negative impacts on lightning fire 

risk.  This might be because the abundant biomass results from well stocked forests with 

environmental and high commercial values which are protected by wildlife preventive 

actions plus tend to be in wetter areas.    

 Changes in climate conditions would have heterogeneous impacts on both 

human-caused and natural wildfire risks due to the spatially different responses to 

temperature and precipitation along with other physical and human factors. 

 To compare the model predictability, we calculated root mean squared errors of 

predicted shares based on the estimation results of each model using 1997–2010 as in-

sample periods and 2010–2011 as out-of-sample periods.  The results are shown in table 

21, and FMNL with heterogeneity considered has superior performance to other methods 

including FMNL without time-averaged covariate (�̅�) terms, FE linear, and RE linear 

regressions.  Since FE shows negative predicted shares of lightning fire (36.2%) and 

human-caused fire (35.8%) and RE shows negative predicted shares of lightning fire 

(26.3%) and human-caused fire (24.0%), it is evident that the model predictability of 

fractional regressions is superior to linear probability model such as FE and RE. 

 To compare the model performance, we also compare the FMNL regression with 

the FMNL without the time-averaged terms.  According to the McFadden’s R2 (FMNL: 

0.163; FMNL without �̅�: 0.137) and Cox & Snell’s R2 (FMNL: 0.020; FMNL without �̅�: 
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0.017), our proposed model performs better than that without controlling for state 

heteroskedasticity.   

 

Table 21. Root Mean Squared Error based on Estimations in 1997–2010 
 RMSE (1997–2010): In-sample RMSE (2011–2012): Out-of-sample 

Model Lightning Human-caused Lightning Human-caused 

FMNL 0.006 0.004 0.008 0.007 

FMNL without �̅� 0.008 0.005 0.009 0.008 

FE 0.019 0.020 0.020 0.020 

RE 0.010 0.007 0.009 0.008 

 Note: FMNL, FE, and RE indicate fractional multinomial logit, fixed effects ordinary least squares, and 

random effects generalized least squares, respectively. 

 

 

4.5 Wildfire Risk under Climate Change 

Based on the estimation results and the projected climate change based on the 

Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios of Global 

Climate Models, we projected future changes of wildfire risks in the US.   

 For projections of wildfire risk in the next decades, we obtained the projections 

for the years 2015–2099 from six climate models under four RCP scenarios in Coupled 

Model Intercomparison Project Phase 5 (CMIP5).  We obtained these from the Archive 

of CONUS 1/8 degree BCSD (Bias-Corrected and Spatially Downscaled) files available 

at: “Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections” (Brekke, et al. 

2013).  The six Global Climate Models used were CanESM2, CCSM4, CESM1-CAM5, 

GFDL-CM3, HadGEM2-ES, and MPI-ESM-MR.  Mean near-surface air temperature 

and monthly mean of the daily precipitation were obtained for RCP 4.5 and RCP 8.5 

scenarios which are two extreme emission scenarios.  
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 RCPs indicate a possible range of radiative forcing values in the year 2100 

relative to pre-industrial values (+4.5 and +8.5 Watts per square meter for RCP 4.5 and 

RCP 8.5, respectively).  A moderate but not extremely low level of greenhouse gas 

emissions is assumed for RCP 4.5 scenario and a highest level of emissions is assumed 

in RCP 8.5 scenario.  Under the two climate scenarios, we would project the wildfire 

risk when the emissions are both moderate and extremely high emissions.  We then 

averaged out the outputs of the six different climate models under each RCP.  The grid 

data were converted to state-level data using the mean of the grid-point values inside 

each state. 

 The annual wildfire risks by human and nature were estimated up to 2030 and 

2050 and compared with the baseline scenario, which is the historical average of fire 

incidence from 1997 to 2010. 

 Our projected changes of human-caused and lightning-caused wildfire risks are 

demonstrated in figure 21 and figure 22, respectively.  The differences were estimated as 

the projected risk in the periods 2015–2030 and 2031–2050 minus the baseline risk in 

1997–2010.  Human-caused and natural wildfire risks seem complementary to each 

other in the figures, if not always.  Based on both temperature and precipitation varying, 

some western states encounter decreasing human-caused wildfire risk and some southern 

states encounter decreasing lightning-caused fire compared to the historical baseline 

scenario.  
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Figure 21. Changes in percent change of human-caused wildfire risk from baseline 

under RCP 4.5 and 8.5 scenarios, for the periods of 2015–2030 and 2031–2050 

relative to 1997–2010 
 

Note: The differences of wildfire risk are calculated by subtracting the baseline (1997–2010) wildfire risk 

from the projected wildfire risk with the average climatic conditions of the GCMs. 
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Figure 22. Changes in percent change of lightning-caused wildfire risk from 

baseline under RCP 4.5 and 8.5 scenarios, for the periods of 2015–2030 and 2031–

2050 relative to 1997–2010 
 

Note: The differences of wildfire risk are calculated by subtracting the baseline (1997–2010) wildfire risk 

from the projected wildfire risk with the average climatic conditions of the GCMs. 

 

 

 However, in most states, wildfire risks from both causes increase under both the 

RCP 4.5 and RCP 8.5 climate scenarios.  To see the long-run impacts of climate change, 

we also attached a table of average differences in 2010–2050 from the baseline in the 

Appendix (table A-8).  Based on the comparison, the highest increases of human-caused 

wildfire risk occur in North Dakota, Arizona, and Mississippi under RCP 4.5 and 

Mississippi, North Dakota, and Louisiana under RCP 8.5 in decreasing order.  On the 
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other hand, increases in natural wildfire risk are largest in Oregon, Idaho, and Montana 

under RCP 4.5 and RCP 8.5 in decreasing order.  Although the pattern for human-caused 

and natural fire risks is consistent for each cause across different climate scenarios, the 

predicted changes of human-caused fires are more volatile and spatially heterogeneous 

depending on varying climate conditions than those of lightning-caused fires.  This also 

implies that considering physical factors and spatial differences is needed for effective 

preventive actions. 

 Previous literature which found that the most severe effects of altered climate on 

wildfire in the western US also conform to some of the results of our study.  Yue, et al. 

(2013) found that the biggest driver for wildfires in the next decades would be 

temperature so the wildfire risks increase if we encounter large increases in temperature 

over years.  Yet, including not just specific regions but nationwide regions in the US, we 

find that the separate effects of human and natural factors would play a different role in 

overall wildfire risks.  Since the temperature and precipitation changes would differently 

affect the risks, it would be advised to assess the impacts carefully with considering the 

human and natural characteristics as well as spatial heterogeneity. 

 As shown in figure 21, under the RCP 4.6 and RCP 8.5, human-caused wildfire 

would become more severe in southern regions than Northern Plains states because the 

southern regions have much higher share of forested lands and are hot already.  As 

shown in the Appendix (figure A-8), the Northern Plains regions show relatively small 

share of forested lands so the wildfire in forests would be less serious than the southern 

states which have high share of forested lands.  Some states show decreasing human-
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caused wildfire risks but increases of the risks in the other states become more 

significant as time advances. 

 Figure 22 shows that lightning-caused wildfires increase the most in the western 

states perhaps due to their aridity as has been found in previous literature (Westerling 

and Swetnam 2003; Westerling and Bryant 2006; Yue, et al. 2013).  Under both 

scenarios, the changes would be more severe in the longer run (2031–2050) in the 

western states.  In southeastern states, lightning wildfires decrease by only a little 

percent.  The non-western states would have relatively small changes in lightning 

wildfire risks under all scenarios and periods.  This also implies that the impacts of 

climate change on lightning wildfire risk would be much higher in the western states 

than in the other states. 

 As previous studies argue, the western states would be affected the most by 

climate change given their generally warmer and drier characteristics.  Accordingly, in 

terms of fire causality climate change would likely have a more significant impact on 

lightning wildfires opposed to human-caused wildfires and this is found in our results.  

Based on the projections, we argue that each caused wildfire would be better managed 

by considering spatial characteristics and different responses to climate conditions. 

 

4.6 Concluding Comments  

We econometrically assess the relationship between forest wildfires, climate, 

demographics, and forest stand characteristics.  The truncated nature of the probability 

of a wildfire is dealt with a fractional regression model that forces the predicted 
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outcomes to be between zero and one.  Human- and lightning-caused fires plus the 

chance that a parcel will not catch fire probability are simultaneously estimated.  Also, 

average marginal effects of climate, stand characteristics and demographics are 

estimated.  Results are compared with the fixed effects linear regression results.  Then 

we project the wildfire effects of future climate change under the IPCC RCP scenarios.   

 We find that climate conditions affect the chance of forest wildfires.  In 

particular, we find that increasing spring and summer temperature increases both human 

and natural wildfire risks but that decreasing spring, autumn, and winter precipitation 

increases only human-caused fire risks.  Also, increases in area population enhance 

human-caused wildfire risk.  Increasing tree mortality and decreasing biomass density 

are found to increase the wildfire risk caused by lightning. 

 Predicted future wildfire risk changes under climate change scenarios also show 

different impacts on the wildfire risks caused by different sources.  Although both 

human-caused and natural wildfire risks in most states would increase under the 

projected climate change, we find that western states would encounter more intense 

wildfire risks caused by lightning than other states that would face more human-caused 

wildfire risk.  The findings indicate that different approaches are needed to prevent the 

two classes of wildfires: for instance, preventive actions to reduce human-caused 

wildfire in populated areas and to reduce natural wildfire in forests with high tree 

mortality.  We also find that under moderate and extreme climate scenarios, human 

wildfires are more affected by climate mitigation than naturally caused wildfires. 
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 The study has some limitations and suggests further research.  Since the effects 

are different on human and natural caused fires, we are advised to examine effective 

preventive actions in different regions.  To study the issues, we also need more 

consistent data across regions nationwide.  Forests inherently change very slowly but 

wildfires can abruptly wipe out the long-life species and highly spoil the efforts on 

climate change mitigation and environmental protection.  The future study would need to 

incorporate the uncertainty with consistent time series data nationwide. 
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5. SUMMARY AND CONCLUSIONS 

 

This study examines climate influences on land uses and the incidence of wildfires.  

Specifically, we look at how climate change is altering human decisions on crop mix, 

and major land use plus the occurrence of wildfire in the US.  This is done using 

econometric methods over panel data with censored dependent variables in three 

separate analyses.  All look at how probabilities of items are altered by climate and other 

factors. 

 In the first and second essays, a crop mix and land use study analysis is done at 

the county and finer level.  We employ a fractional multinomial logit to examine crop 

mix and predict the way crop mix proportions will shift in the next few decades using 

the latest climate change scenarios.  Also, we examine land use transitions considering 

spatial dependence with 10×10km cell level data.  The results show that that climate 

significantly affects crop mix and land use transitions.  This study also find that climate 

change adaptation has significant spatial dependence on the nearby area.  Under different 

CMIP5 climate scenarios, most major crops are expected to move north and to higher 

altitudes except for corn in the next decades.  Also, cropland in central and eastern 

regions and grassland in western and southeastern regions are expected to decrease 

under the scenarios. 

 In the second essay, major land transitions and how those are influenced by 

climate change are considered.  We find opposite responses to changing temperature and 

precipitation on behalf of crop and grass lands.  In particular, we find cropped land 



 

 108 

declines in aggregate as temperatures increase with grasslands increasing but with a 

degree of response that is heterogeneous by region.   

 Regarding wildfire incidence in the third essay, we found that human-caused and 

natural wildfire risks in forested lands respond to climate conditions but in a different 

manner.  Under both moderate and extreme climate scenarios, altering climate has more 

impacts on human-induced wildfire than natural wildfire.  We also find that projected 

climate change would aggravate the wildfire risks from both cases in most states.  Thus, 

along with mitigating varying climate, a different approach for various regions would be 

desirable due to the heterogeneous impacts of climate. 

 In terms of limitations and further research, our study on land use changes can be 

extended by endogenizing price and cost as well as the crop yield under altered land use 

and crop mix.  Also, we believe greenhouse gas effects may be estimated to deal with 

mitigation issues in the future research.  Furthermore, further studies would be better 

conducted by using longer and consistent data on land usage and socioeconomic 

variables at the finer scale than the currently available data.  Additionally, the analyses 

have implicit assumptions on market prices and risk neutral behaviors.  Better results on 

human and natural adaptation to climate change could be obtained with by incorporating 

market, policy, risk preference, and indirect land use change factors explicitly. 
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APPENDIX 

 

This appendix provides information on data descriptions, tables, and figures that are not 

shown in the main text due to limited space.  Headings in the Appendix follow the rule: 

A.c. The first letter (A) indicates Appendix, and the second number (c) after a period 

indicates the section number related to the appendix.  

 

 

 

A.2 Additional tables and figures in section 2 

 

 

 

 
Figure A-1. Sampled counties (N = 2693) 
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Table A-1. Average Marginal Effects of Temperature and Precipitation on Proportions 

of Planted Acres by Region 
Variable Barley Corn Cotton Rice Sorghum Soybeans Wheat 

(winter) 

Wheat 

(spring) 

Wheat 

(durum) 

Hay 

(alfalfa) 

Appalachian           
Temperature 0.0005  –0.0060  0.0092 ***   0.0029 * 0.0146 *** 0.0059 **     –0.0272 *** 

 (0.0009)  (0.0047)  (0.0022)    (0.0016)  (0.0042)  (0.0025)      (0.0034)  

Precipitation –0.0040 *** –0.0125 *** 0.0092 ***   0.0001  0.0114 *** 0.0034      –0.0077 *** 

 (0.0008)  (0.0036)  (0.0018)    (0.0008)  (0.0031)  (0.0024)      (0.0027)  

                     

Corn Belt                     

Temperature –0.0000  –0.0376 *** 0.0011 *** –0.0009 *** 0.0057 *** 0.0244 *** 0.0178 ***     –0.0120 *** 

 (0.0002)  (0.0029)  (0.0004)  (0.0003)  (0.0008)  (0.0037)  (0.0021)      (0.0027)  

Precipitation 0.0007 *** 0.0047  0.0009 *** 0.0004 *** –0.0000  –0.0098 *** –0.0030      0.0049 ** 

 (0.0002)  (0.0032)  (0.0003)  (0.0002)  (0.0006)  (0.0031)  (0.0019)      (0.0022)  

                     

Delta States                     

Temperature –0.0008 *** 0.0142 *** 0.0056  0.0157 *** 0.0013  –0.0373 *** 0.0015        

 (0.0002)  (0.0041)  (0.0063)  (0.0053)  (0.0034)  (0.0069)  (0.0039)        

Precipitation 0.0001  0.0026  –0.0069 * –0.0046 * 0.0091 *** 0.0054  –0.0056 *       

 (0.0001)  (0.0030)  (0.0039)  (0.0026)  (0.0025)  (0.0050)  (0.0030)        

                     

Lake States                     

Temperature –0.0078 *** 0.0177 **       0.0479 *** 0.0032  –0.0046 *** –0.0002 *** –0.0560 *** 

 (0.0013)  (0.0075)        (0.0054)  (0.0021)  (0.0017)  (0.0001)  (0.0064)  

Precipitation –0.0048 ** 0.0405 ***       –0.0441 *** –0.0001  –0.0155 *** –0.0003 ** 0.0242 *** 

 (0.0022)  (0.0074)        (0.0062)  (0.0018)  (0.0024)  (0.0001)  (0.0058)  

                     

Mountain                     

Temperature –0.0085 *** 0.0053 *** 0.0020 **   0.0048 ***   0.0198 *** –0.0114 *** –0.0012  –0.0109 ** 

 (0.0025)  (0.0019)  (0.0010)    (0.0014)    (0.0039)  (0.0028)  (0.0015)  (0.0046)  

Precipitation 0.0073  0.0093 ** 0.0006    0.0043 *   0.0403 *** –0.0164 *** 0.0032 *** –0.0486 *** 

                     

Northeast             (0.0075)  (0.0039)  (0.0012)  (0.0088)  

Temperature 0.0052 *** 0.0004      –0.0001  0.0229 *** 0.0077 ***     –0.0361 *** 

 (0.0012)  (0.0049)      (0.0002)  (0.0036)  (0.0018)      (0.0052)  

Precipitation 0.0021  0.0001      0.0010 *** 0.0073  –0.0093 ***     –0.0012  

 (0.0019)  (0.0052)      (0.0003)  (0.0051)  (0.0025)      (0.0067)  

                     

Northern Plains                     

Temperature –0.0062 *** –0.0352 *** 0.0014 ***   0.0128 *** –0.0072 *** 0.0670 *** –0.0134 *** –0.0077 *** –0.0115 *** 

 (0.0008)  (0.0026)  (0.0003)    (0.0023)  (0.0019)  (0.0040)  (0.0017)  (0.0013)  (0.0023)  

Precipitation –0.0051 *** 0.0246 *** 0.0004 **   –0.0086 *** 0.0409 *** –0.0283 *** –0.0198 *** –0.0101 *** 0.0060  

 (0.0016)  (0.0048)  (0.0002)    (0.0029)  (0.0033)  (0.0063)  (0.0047)  (0.0030)  (0.0044)  

                     

Pacific                     

Temperature 0.0063  0.0087  –0.0007  0.0039 ** 0.0007    0.0162 ** –0.0028  0.0008  –0.0331 *** 

 (0.0052)  (0.0060)  (0.0012)  (0.0018)  (0.0010)    (0.0082)  (0.0024)  (0.0013)  (0.0087)  

Precipitation –0.0092 ** 0.0106 ** –0.0037  0.0063 *** 0.0024 *   0.0047  –0.0016  0.0002  –0.0097 * 

 (0.0037)  (0.0050)  (0.0029)  (0.0018)  (0.0014)    (0.0064)  (0.0027)  (0.0021)  (0.0053)  

                     

Southeast                     

Temperature 0.0004  0.0145 ** 0.0344 ***   0.0061 * –0.0447 *** –0.0108        

 (0.0015)  (0.0067)  (0.0072)    (0.0037)  (0.0073)  (0.0076)        

Precipitation –0.0048 *** 0.0044  0.0099 **   0.0011  –0.0116 *** 0.0010        

 (0.0011)  (0.0035)  (0.0049)    (0.0022)  (0.0041)  (0.0034)        

                     

Southern Plains                     

Temperature 0.0013  0.0209 *** 0.0436 *** –0.0059 *** 0.0274 *** –0.0183 *** –0.0628 ***     –0.0062 *** 

 (0.0012)  (0.0039)  (0.0053)  (0.0019)  (0.0041)  (0.0032)  (0.0062)      (0.0016)  

Precipitation 0.0032 ** 0.0122 *** –0.0136 ** 0.0007  –0.0066  0.0167 *** –0.0126 *     0.0001  

 (0.0015)   (0.0030)   (0.0069)   (0.0008)   (0.0057)   (0.0027)   (0.0066)           (0.0021)   

Note: Standard errors via delta method are shown in parentheses and *, **, and *** indicate statistically 

significance at the 10%, 5%, and 1% levels, respectively. 
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Table A-2. Predicted  land use Shares of Crops under Climate Scenarios by Region 
  Base 

 

RCP 2.6 

 

RCP 4.5 

 

RCP 8.5 

  1975-2010 

 

2020-2050 2051-2099 

 

2020-2050 2051-2099 

 

2020-2050 2051-2099 

Applachian 

Corn 0.489 

 

0.442 0.432 

 

0.438 0.404 

 

0.435 0.370 

Barley 0.008 

 

0.005 0.004 

 

0.005 0.004 

 

0.005 0.003 

Cotton 0.033 

 

0.056 0.065 

 

0.060 0.086 

 

0.062 0.111 

Rice 0.005 

 

0.007 0.008 

 

0.007 0.009 

 

0.007 0.012 

Sorghum 0.013 

 

0.020 0.019 

 

0.020 0.023 

 

0.020 0.028 

Soybeans 0.303 

 

0.302 0.312 

 

0.300 0.314 

 

0.307 0.327 

W.Wheat 0.150 

 

0.168 0.159 

 

0.169 0.159 

 

0.164 0.149 

S.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

D.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

           

Corn Belt 

Corn 0.461 

 

0.423 0.407 

 

0.420 0.375 

 

0.413 0.330 

Barley 0.001 

 

0.001 0.001 

 

0.001 0.001 

 

0.001 0.000 

Cotton 0.003 

 

0.008 0.010 

 

0.009 0.020 

 

0.010 0.040 

Rice 0.001 

 

0.002 0.002 

 

0.002 0.003 

 

0.002 0.004 

Sorghum 0.011 

 

0.019 0.019 

 

0.019 0.024 

 

0.019 0.028 

Soybeans 0.445 

 

0.449 0.466 

 

0.451 0.478 

 

0.459 0.504 

W.Wheat 0.075 

 

0.097 0.094 

 

0.097 0.098 

 

0.096 0.093 

S.Wheat 0.003 

 

0.001 0.001 

 

0.001 0.000 

 

0.001 0.000 

D.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

           

Delta 

Corn 0.227 

 

0.215 0.211 

 

0.213 0.201 

 

0.212 0.193 

Barley 0.002 

 

0.002 0.002 

 

0.002 0.002 

 

0.002 0.001 

Cotton 0.152 

 

0.171 0.175 

 

0.172 0.166 

 

0.171 0.136 

Rice 0.044 

 

0.060 0.066 

 

0.061 0.071 

 

0.061 0.080 

Sorghum 0.032 

 

0.035 0.034 

 

0.036 0.042 

 

0.038 0.052 

Soybeans 0.424 

 

0.402 0.405 

 

0.401 0.416 

 

0.402 0.446 

W.Wheat 0.119 

 

0.115 0.107 

 

0.115 0.102 

 

0.114 0.091 

S.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

D.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

           

Lake 

Corn 0.672 

 

0.644 0.631 

 

0.643 0.603 

 

0.638 0.561 

Barley 0.028 

 

0.022 0.018 

 

0.021 0.014 

 

0.020 0.009 

Cotton 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

Rice 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

Sorghum 0.002 

 

0.003 0.004 

 

0.003 0.005 

 

0.003 0.007 

Soybeans 0.197 

 

0.200 0.212 

 

0.205 0.227 

 

0.209 0.251 

W.Wheat 0.055 

 

0.107 0.117 

 

0.107 0.140 

 

0.110 0.166 

S.Wheat 0.045 

 

0.023 0.018 

 

0.021 0.011 

 

0.020 0.005 

D.Wheat 0.001   0.001 0.000   0.000 0.000   0.000 0.000 
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Table A-2. Continued 
  Base 

 

RCP 2.6 

 

RCP 4.5 

 

RCP 8.5 

  1975-2010 

 

2020-2050 2051-2099 

 

2020-2050 2051-2099 

 

2020-2050 2051-2099 

Mountain 

Corn 0.133 

 

0.176 0.182 

 

0.175 0.186 

 

0.180 0.180 

Barley 0.255 

 

0.268 0.253 

 

0.268 0.209 

 

0.259 0.156 

Cotton 0.035 

 

0.031 0.031 

 

0.031 0.041 

 

0.032 0.059 

Rice 0.003 

 

0.003 0.003 

 

0.003 0.004 

 

0.003 0.007 

Sorghum 0.016 

 

0.024 0.026 

 

0.024 0.030 

 

0.025 0.037 

Soybeans 0.010 

 

0.013 0.014 

 

0.013 0.015 

 

0.014 0.017 

W.Wheat 0.361 

 

0.370 0.389 

 

0.371 0.439 

 

0.380 0.492 

S.Wheat 0.167 

 

0.105 0.092 

 

0.105 0.064 

 

0.098 0.037 

D.Wheat 0.020 

 

0.010 0.010 

 

0.010 0.012 

 

0.010 0.015 

           

Northeast 

Corn 0.670 

 

0.639 0.622 

 

0.633 0.593 

 

0.630 0.555 

Barley 0.009 

 

0.008 0.006 

 

0.007 0.005 

 

0.007 0.003 

Cotton 0.001 

 

0.005 0.007 

 

0.006 0.011 

 

0.006 0.017 

Rice 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.001 

Sorghum 0.002 

 

0.003 0.003 

 

0.003 0.004 

 

0.003 0.004 

Soybeans 0.225 

 

0.221 0.235 

 

0.224 0.246 

 

0.225 0.269 

W.Wheat 0.090 

 

0.123 0.126 

 

0.126 0.140 

 

0.127 0.150 

S.Wheat 0.003 

 

0.001 0.001 

 

0.001 0.001 

 

0.001 0.000 

D.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

           

Northern Plains 

Corn 0.262 

 

0.242 0.239 

 

0.241 0.217 

 

0.240 0.190 

Barley 0.029 

 

0.026 0.023 

 

0.026 0.018 

 

0.025 0.012 

Cotton 0.009 

 

0.028 0.031 

 

0.031 0.057 

 

0.032 0.093 

Rice 0.001 

 

0.001 0.001 

 

0.001 0.001 

 

0.001 0.002 

Sorghum 0.051 

 

0.079 0.083 

 

0.080 0.095 

 

0.082 0.111 

Soybeans 0.149 

 

0.140 0.148 

 

0.139 0.149 

 

0.144 0.158 

W.Wheat 0.343 

 

0.400 0.408 

 

0.402 0.419 

 

0.403 0.414 

S.Wheat 0.139 

 

0.076 0.061 

 

0.074 0.040 

 

0.068 0.020 

D.Wheat 0.016   0.007 0.005   0.006 0.003   0.005 0.001 
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Table A-2. Continued 
  Base 

 

RCP 2.6 

 

RCP 4.5 

 

RCP 8.5 

  1975-2010 

 

2020-2050 2051-2099 

 

2020-2050 2051-2099 

 

2020-2050 2051-2099 

Pacific 

Corn 0.334 

 

0.387 0.383 

 

0.383 0.375 

 

0.388 0.352 

Barley 0.154 

 

0.141 0.129 

 

0.145 0.108 

 

0.135 0.086 

Cotton 0.078 

 

0.060 0.065 

 

0.062 0.074 

 

0.060 0.092 

Rice 0.021 

 

0.021 0.024 

 

0.020 0.030 

 

0.023 0.039 

Sorghum 0.014 

 

0.017 0.019 

 

0.017 0.021 

 

0.018 0.026 

Soybeans 0.028 

 

0.036 0.037 

 

0.035 0.039 

 

0.037 0.040 

W.Wheat 0.319 

 

0.296 0.306 

 

0.296 0.323 

 

0.301 0.337 

S.Wheat 0.046 

 

0.033 0.027 

 

0.033 0.019 

 

0.030 0.011 

D.Wheat 0.005 

 

0.009 0.010 

 

0.009 0.012 

 

0.009 0.017 

           

Southeast 

Corn 0.335 

 

0.315 0.312 

 

0.313 0.301 

 

0.312 0.290 

Barley 0.017 

 

0.009 0.008 

 

0.009 0.007 

 

0.009 0.007 

Cotton 0.147 

 

0.146 0.149 

 

0.146 0.142 

 

0.146 0.116 

Rice 0.015 
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Sorghum 0.034 
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W.Wheat 0.208 

 

0.177 0.164 

 

0.176 0.153 
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S.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

D.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

           

Southern Plains 

Corn 0.162 

 

0.136 0.134 

 

0.133 0.125 

 

0.131 0.115 

Barley 0.010 

 

0.011 0.011 

 

0.011 0.011 

 

0.011 0.010 

Cotton 0.201 

 

0.202 0.197 

 

0.207 0.201 

 

0.208 0.171 

Rice 0.013 

 

0.014 0.014 

 

0.014 0.013 

 

0.013 0.012 

Sorghum 0.123 

 

0.193 0.204 

 

0.197 0.237 

 

0.204 0.295 

Soybeans 0.106 

 

0.092 0.094 

 

0.087 0.095 

 

0.088 0.101 

W.Wheat 0.382 

 

0.346 0.339 

 

0.345 0.306 

 

0.338 0.265 

S.Wheat 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

D.Wheat 0.004   0.004 0.006   0.006 0.013   0.007 0.031 
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Figure A-2 Weighted mean of location change for barley 

 

 
Figure A-3 Weighted mean of location change for cotton 
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Figure A-4 Weighted mean of location change for rice 

 

 
Figure A-5 Weighted mean of location change for sorghum 
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Figure A-6 Weighted mean of location change for spring wheat 

 

 
Figure A-7 Weighted mean of location change for durum wheat 
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A.3 Major land use classifications and micro-level estimates in section 3 

 

 

Table A-3. National Land Cover Database (NLCD) 2011 Legend 

Class\ Value Classification Description 

Water  

11 Open Water - areas of open water, generally with less than 25% cover of 

vegetation or soil. 

12 Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or 

snow, generally greater than 25% of total cover. 

Developed  

21 Developed, Open Space - areas with a mixture of some constructed 

materials, but mostly vegetation in the form of lawn grasses. Impervious 

surfaces account for less than 20% of total cover. These areas most 

commonly include large-lot single-family housing units, parks, golf courses, 

and vegetation planted in developed settings for recreation, erosion control, 

or aesthetic purposes. 

22 Developed, Low Intensity - areas with a mixture of constructed materials 

and vegetation. Impervious surfaces account for 20% to 49% percent of total 

cover. These areas most commonly include single-family housing units. 

23 Developed, Medium Intensity – areas with a mixture of constructed 

materials and vegetation. Impervious surfaces account for 50% to 79% of 

the total cover. These areas most commonly include single-family housing 

units. 

24 Developed High Intensity -highly developed areas where people reside or 

work in high numbers. Examples include apartment complexes, row houses 

and commercial/industrial. Impervious surfaces account for 80% to 100% of 

the total cover. 

Barren  

31 Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, 

scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip 

mines, gravel pits and other accumulations of earthen material. Generally, 

vegetation accounts for less than 15% of total cover. 

Forest  

41 Deciduous Forest - areas dominated by trees generally greater than 5 

meters tall, and greater than 20% of total vegetation cover. More than 75% 

of the tree species shed foliage simultaneously in response to seasonal 

change. 

42 Evergreen Forest - areas dominated by trees generally greater than 5 

meters tall, and greater than 20% of total vegetation cover. More than 75% 

of the tree species maintain their leaves all year. Canopy is never without 

green foliage. 

43 Mixed Forest - areas dominated by trees generally greater than 5 meters 

tall, and greater than 20% of total vegetation cover. Neither deciduous nor 

evergreen species are greater than 75% of total tree cover. 
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Table A-3. Continued 

Class\ Value Classification Description 

Shrubland  

51 Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 

centimeters tall with shrub canopy typically greater than 20% of total 

vegetation. This type is often co-associated with grasses, sedges, herbs, and 

non-vascular vegetation. 

52 Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub 

canopy typically greater than 20% of total vegetation. This class includes 

true shrubs, young trees in an early successional stage or trees stunted from 

environmental conditions. 

Herbaceous  

71 Grassland/Herbaceous - areas dominated by gramanoid or herbaceous 

vegetation, generally greater than 80% of total vegetation. These areas are 

not subject to intensive management such as tilling, but can be utilized for 

grazing. 

72 Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, 

generally greater than 80% of total vegetation. This type can occur with 

significant other grasses or other grass like plants, and includes sedge 

tundra, and sedge tussock tundra. 

73 Lichens - Alaska only areas dominated by fruticose or foliose lichens 

generally greater than 80% of total vegetation. 

74 Moss - Alaska only areas dominated by mosses, generally greater than 80% 

of total vegetation. 

Planted/Cultivated  

81 Pasture/Hay – areas of grasses, legumes, or grass-legume mixtures planted 

for livestock grazing or the production of seed or hay crops, typically on a 

perennial cycle. Pasture/hay vegetation accounts for greater than 20% of 

total vegetation. 

82 Cultivated Crops – areas used for the production of annual crops, such as 

corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody 

crops such as orchards and vineyards. Crop vegetation accounts for greater 

than 20% of total vegetation. This class also includes all land being actively 

tilled. 

Wetlands  

90 Woody Wetlands - areas where forest or shrubland vegetation accounts for 

greater than 20% of vegetative cover and the soil or substrate is periodically 

saturated with or covered with water. 

95 Emergent Herbaceous Wetlands - Areas where perennial herbaceous 

vegetation accounts for greater than 80% of vegetative cover and the soil or 

substrate is periodically saturated with or covered with water. 
Source: NLCD 2011 Product Legend. MRLC-USDA. http://www.mrlc.gov/nlcd11_leg.php (accessed 

August 24, 2014). 

 

 

http://www.mrlc.gov/nlcd11_leg.php
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Table A-4. Micro-level estimation results: land use transitions (2002-2012) 
 To land uses in 2012 

From Crop in 2002 Crop Grass Forest Urban Water 

Temperature 0.0014 0.0809*** 0.0308** 0.0233*** 0.0201 

Precipitation –0.8745*** –1.1283*** –0.5794*** –0.5029*** –0.8756* 

Temperature SD 0.4525*** 1.1618*** –0.1770 –0.4113** –0.1744 

Precipitation SD 0.6843*** 3.6926*** 0.5588* 0.5016* 2.5054 

Drought index 0.0752*** –0.2211*** 0.0418 0.0579* –0.0044 

Altitude –0.0401*** –0.0013 –0.0047 0.0147 –0.0098 

Slope 0.0097*** 0.0058*** 0.0082*** –0.0003 –0.0040 

Inverse LCC 0.0790*** 0.0836*** 0.1202*** 0.0716*** –0.0361 

Irrigation rate –1.4050*** –0.8302*** 0.1354 –0.8137*** –0.2228 

Asset value of agland 0.5335*** 0.2447*** 0.1855** 0.2316*** 0.2214* 

Farm income ($/ha) 0.0000 0.0000 0.0000 0.0000 0.0000*** 

Non-farm income ($/ha) –0.0001*** –0.0002 –0.0092*** 0.0000 0.0000 

Housing value –0.6043*** 0.4197*** 0.0758 –0.5304*** –0.3757 

Housing rent 0.2898*** –1.4086*** –0.1842 0.5827** 0.8186 

Log(Population density) –0.1664*** –0.1585*** 0.0895* 0.2211*** –0.0913 

Share of crop 2002 3.1160*** –0.0779 0.8170** 0.3877** 0.8532 

Constant 6.5134*** 1.9712*** –1.6468 –0.2571 –2.3011 

WX 0.0860*** –0.0159 0.9212*** 0.7801*** 0.5393** 

 
 To land uses in 2012 

From Grass in 2002 Crop Grass Forest Urban Water 

Temperature –0.0009 –0.0408*** 0.0222*** 0.0698*** 0.0107 

Precipitation –2.0713*** –0.4309*** –0.1415 –0.7666*** –1.1141*** 

Temperature SD 0.3230*** 0.3032*** 0.0728 –0.1873 0.0550 

Precipitation SD 0.5615* –1.3650*** –0.5313* –0.4744* 0.8656 

Drought index 0.2125*** 0.0905*** 0.0091 0.2265*** 0.1396** 

Altitude –0.0151** 0.0375*** –0.0624*** 0.0455*** 0.0216 

Slope 0.0067*** 0.0167*** 0.0178*** 0.0086*** –0.0058 

Inverse LCC 0.0742*** 0.0491*** 0.0519*** 0.0254*** 0.0053 

Irrigation rate –0.6041*** –0.8279*** –0.2607 –0.9131*** –0.5213* 

Asset value of agland 0.1499*** 0.2967*** 0.1511*** 0.1760*** –0.0004 

Farm income ($/ha) –0.0001*** 0.0000*** 0.0000 0.0000 0.0000 

Non-farm income ($/ha) –0.0001 0.0000 –0.0070*** –0.0001*** 0.0000*** 

Housing value –0.7344*** –0.4989*** –0.1886** –0.5297*** –0.3924 

Housing rent 0.5560*** 0.8473*** 0.1138 1.1060*** 0.8423** 

Log(Population density) –0.0324 –0.0722*** 0.0574* 0.3081*** –0.0506 

Share of grass 2002 –0.3817*** 1.5331*** –0.0455 –1.4642*** –1.4510*** 

Constant 5.8584*** 3.9083*** 0.5029 –3.4750*** –0.1612 

WX 0.1289*** 0.0793* 0.7439*** 0.6935*** 0.3746* 
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Table A-4. Continued 
 To land uses in 2012 

From Forest in 2002 Crop Grass Forest Urban Water 

Temperature –0.0241** 0.0993*** –0.0259*** 0.0308*** –0.0737*** 

Precipitation –0.2359 –0.4931*** –0.9058*** –0.4979*** –1.6073** 

Temperature SD –0.4277* 0.4186*** 0.2008*** 0.1365 2.2303*** 

Precipitation SD –2.4914*** 0.136 –2.9591*** 0.9742*** 2.0533 

Drought index 0.0964** –0.1410*** 0.2096*** 0.1804*** 0.1895*** 

Altitude –0.007 –0.0562*** –0.0344*** 0.0284*** 0.0356* 

Slope 0.0109** 0.0114*** 0.0200*** 0.0139*** –0.0048 

Inverse LCC 0.0989*** 0.0725*** 0.0793*** 0.0538*** 0.0561* 

Irrigation rate 0.6533*** –1.0215*** –0.6773*** –2.2924*** 0.0184 

Asset value of agland 0.1677** 0.2950*** 0.5693*** 0.2460*** 0.3579*** 

Farm income ($/ha) –0.0002** 0 0 0.0000** 0 

Non-farm income ($/ha) –0.0001 –0.0001 –0.0001** –0.0003*** –0.0006 

Housing value –0.6232*** 0.1691*** –0.7552*** –0.9148*** –1.8208*** 

Housing rent –0.1739 0.3418*** 1.1023*** 1.2750*** 2.1312*** 

Log(Population density) 0.0945** –0.2708*** –0.0398*** 0.3442*** 0.1367* 

Share of forest 2002 –0.3481 3.0652*** 2.5466*** 0.201 –8.7354*** 

Constant 7.0505*** –5.4449*** 4.4592*** –1.3715 4.696 

WX 0.0834 0.1903*** –0.0431** 0.7597*** 0.2615 

 
 To land uses in 2012 

From Urban in 2002 Crop Grass Forest Urban Water 

Temperature –0.0569*** –0.0023 –0.0133 –0.0549*** –0.9769*** 

Precipitation –0.5900** 0.4445* 1.2270** –0.2613* –24.0883*** 

Temperature SD 1.1226** 0.6552 1.6467* 0.2695 –3.3208*** 

Precipitation SD –1.3078 –0.3292 –2.3620*** –1.9813*** 75.4363*** 

Drought index 0.0814 –0.1101* –0.0810 0.3132*** 2.9209*** 

Altitude 0.0132 –0.0054 –0.1657** 0.0854*** 1.0166*** 

Slope 0.0087 0.0071 0.0164*** 0.0182*** –0.0459*** 

Inverse LCC 0.1656*** 0.0744*** 0.0954*** 0.1202*** –0.2871*** 

Irrigation rate 3.8058*** –0.4270 –6.4412** 1.7723*** 5.3959*** 

Asset value of agland 0.1715 0.4446*** 0.4445** 0.3205*** 9.1242*** 

Farm income ($/ha) –0.0001 0.0000 0.0000 0.0000 0.0000 

Non-farm income ($/ha) –0.0011 0.0001 –0.0002 0.0000 –0.0050*** 

Housing value –0.0547 –0.3374 –0.2884 –0.4723** –7.5423*** 

Housing rent –0.3970 0.6401* 0.1274 0.3721 14.6306*** 

Log(Population density) –0.1966** –0.4803*** –0.4204*** –0.2719*** –5.4415*** 

Share of urban 2002 0.7190 0.9136 0.8976 2.0458*** –4.1486 

Constant 1.4153 –1.8957 –1.4086 11.0398*** –34.4784*** 

WX –0.0126 0.3207* 0.2095 0.1906*** –11.2632*** 
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Table A-4. Continued 
 To land uses in 2012 

From Water in 2002 Crop Grass Forest Urban Water 

Temperature –0.0532*** 0.0551*** 0.0460*** 0.0018 –0.0658*** 

Precipitation 0.9200*** –0.4620*** 1.9762*** 0.0792 0.4479*** 

Temperature SD 0.3542 0.7324*** 0.4850 0.0792 0.2375*** 

Precipitation SD –1.6141** –0.7868 –3.5816*** –2.6960*** –2.5012*** 

Drought index 0.1271*** 0.1693*** 0.0021 0.1905*** 0.0685*** 

Altitude 0.0283** 0.0614*** 0.1105*** 0.0454*** –0.0169*** 

Slope –0.0142** 0.0110*** 0.0251*** –0.0039 0.0133*** 

Inverse LCC 0.0695*** 0.0066 0.0695*** –0.0037 0.0363*** 

Irrigation rate 3.1447*** –0.5370*** –1.4588*** –0.3227 –0.8305*** 

Asset value of agland –0.1272* 0.1261*** 0.1956** 0.1728** 0.4334*** 

Farm income ($/ha) –0.0002** 0.0000 0.0000 0.0000 0.0000 

Non-farm income ($/ha) 0.0000 0.0000 –0.0001 –0.0001 0.0000 

Housing value –0.2293 –0.3557*** 0.4982** –0.8095** –0.1084* 

Housing rent –1.1305*** –0.0495 –1.7767*** 1.3879** –0.1217 

Log(Population density) 0.1066** –0.0364 –0.0357 0.6435*** –0.0347** 

Share of water 2002 –2.9856** –2.6480 18.6570 –9.0126 0.4885 

Constant 8.2273*** 2.2705** –1.1433 –4.9157*** 3.1908*** 

WX 0.2047*** 0.3516*** 0.1502* 0.3155*** 0.0545** 

Note: ***, **, and * indicate statistical significance at the 1%, 5%, and 10%, respectively, based on 

heteroskedasticity-robust standard errors.  
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A.4 Additional tables and figures in section 4 

 

Table A-5. Full Estimation Results of Fractional Multinomial Logit on Wildfire Risk 
 Fire: lightning-caused (%) Fire: human-caused (%) 

Covariates Coefficients SE Coefficients SE 

Explanatory variables (𝑥𝑖𝑡)     

Temperature - spring (C) 0.507** (0.212) –0.119 (0.155) 

Temperature squared - spring (°C) –0.009 (0.010) 0.014* (0.008) 

Temperature - summer (C) –1.249* (0.694) –0.570 (0.485) 

Temperature squared - summer (°C) 0.041** (0.018) 0.020** (0.009) 

Temperature - autumn (C) –0.004 (0.335) 0.462* (0.237) 

Temperature squared - autumn (°C) 0.004 (0.017) –0.012 (0.008) 

Temperature - winter (C) –0.074 (0.127) 0.036 (0.077) 

Temperature squared - winter (°C) –0.007 (0.008) –0.003 (0.004) 

Precipitation - spring (hundred mm) 1.231* (0.715) –0.320 (0.324) 

Precipitation squared - spring (hundred mm) –0.354* (0.187) –0.016 (0.057) 

Precipitation - summer (hundred mm) 0.359 (0.393) 0.738 (0.486) 

Precipitation squared - summer (hundred mm) –0.095 (0.073) –0.101* (0.056) 

Precipitation - autumn (hundred mm) –1.214* (0.675) –2.308*** (0.515) 

Precipitation squared - autumn (hundred mm) 0.198* (0.109) 0.342*** (0.088) 

Precipitation - winter (hundred mm) –0.155 (0.486) –0.980** (0.480) 

Precipitation squared - winter (hundred mm) –0.038 (0.069) 0.159** (0.080) 

     

Time-invariant variables (𝑥𝑖)     

Population density (persons / km2): Fixed –0.146*** (0.036) 0.004 (0.003) 

Tree mortality (m3 / ha): Fixed 3.530*** (1.189) –0.478 (0.629) 

Tree removal (m3 / ha): Fixed –0.264 (0.300) 0.117 (0.195) 

Biomass (hundred tonne / ha): Fixed –4.473*** (1.516) 0.419 (0.860) 

     

Time-averaged variables (�̅�𝑖)     

Temperature - spring (C) 1.103 (1.714) 0.868 (0.711) 

Temperature squared - spring (°C) –0.133* (0.078) –0.098*** (0.033) 

Temperature - summer (C) 10.229*** (2.818) 4.110*** (1.207) 

Temperature squared - summer (°C) –0.262*** (0.076) –0.061** (0.026) 

Temperature - autumn (C) –3.653** (1.692) –3.625*** (0.934) 

Temperature squared - autumn (°C) 0.222*** (0.081) 0.055 (0.038) 

Temperature - winter (C) 0.788 (0.729) 1.505*** (0.280) 

Temperature squared - winter (°C) 0.038 (0.033) 0.069*** (0.018) 

Precipitation - spring (hundred mm) 7.835*** (2.091) 0.486 (0.824) 

Precipitation squared - spring (hundred mm) –1.579*** (0.502) 0.260 (0.198) 

Precipitation - summer (hundred mm) –1.327 (1.568) –0.306 (0.784) 

Precipitation squared - summer (hundred mm) 0.001 (0.294) –0.174 (0.150) 

Precipitation - autumn (hundred mm) 0.518 (1.816) 7.208*** (1.555) 

Precipitation squared - autumn (hundred mm) 0.339 (0.330) –1.404*** (0.306) 

Precipitation - winter (hundred mm) –1.908 (1.376) –2.195** (1.004) 

Precipitation squared - winter (hundred mm) 0.351 (0.296) 0.303** (0.143) 

     

Constant –87.011*** (24.644) –34.513*** (10.389) 

Quasi-log likelihood –39.804    

Number of observations 782    

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust 

standard erorrs are in parentheses. 
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Table A-6. Estimates of Random Effects Linear Regression on Wildfire Risk 
 Fire: lightning-

caused burned 

area / forest (%) 

Fire: human-

caused burned 

area / forest (%) 

Fire: area not 

burned / forest 

(%) 

Temperature - spring (C) 0.00369** –0.00004 –0.00378* 

 (0.00159) (0.00106) (0.00212) 

Temperature squared - spring (°C) –0.00012* 0.00004 0.00009 

 (0.00006) (0.00006) (0.00011) 

Temperature - summer (C) 0.00180 –0.00691* 0.00575 

 (0.00369) (0.00359) (0.00589) 

Temperature squared - summer (°C) –0.00000 0.00018** –0.00020 

 (0.00008) (0.00008) (0.00013) 

Temperature - autumn (C) –0.00310** 0.00017 0.00281* 

 (0.00132) (0.00127) (0.00161) 

Temperature squared - autumn (°C) 0.00005 –0.00002 –0.00002 

 (0.00005) (0.00005) (0.00007) 

Temperature - winter (C) –0.00040 –0.00027 0.00066 

 (0.00031) (0.00037) (0.00061) 

Temperature squared - winter (°C) –0.00000 –0.00002 0.00003 

 (0.00003) (0.00004) (0.00007) 

Precipitation - spring (hundred mm) –0.00433 –0.00046 0.00600 

 (0.00326) (0.00246) (0.00522) 

Precipitation squared - spring (hundred mm) 0.00051 –0.00017 –0.00053 

 (0.00053) (0.00038) (0.00083) 

Precipitation - summer (hundred mm) –0.00856** 0.00177 0.00634 

 (0.00405) (0.00274) (0.00537) 

Precipitation squared - summer (hundred mm) 0.00112* –0.00022 –0.00083 

 (0.00060) (0.00040) (0.00083) 

Precipitation - autumn (hundred mm) –0.01403** –0.01791*** 0.03221*** 

 (0.00615) (0.00650) (0.01106) 

Precipitation squared - autumn (hundred mm) 0.00233** 0.00275*** –0.00513*** 

 (0.00102) (0.00100) (0.00179) 

Precipitation - winter (hundred mm) –0.00062 –0.00667** 0.00733* 

 (0.00193) (0.00275) (0.00393) 

Precipitation squared - winter (hundred mm) –0.00008 0.00112** –0.00104 

 (0.00028) (0.00049) (0.00065) 

Population density (persons / km2): Fixed 0.00000 0.00000 –0.00000 

 (0.00001) (0.00001) (0.00002) 

Tree mortality (m3 / ha): Fixed –0.00290 –0.00302 0.00547 

 (0.00755) (0.00410) (0.00954) 

Tree removal (m3 / ha): Fixed 0.00114 –0.00094 –0.00006 

 (0.00258) (0.00167) (0.00356) 

Biomass (hundred tonne / ha): Fixed 0.00763 0.01362*** –0.02206** 

 (0.00666) (0.00506) (0.01093) 

Constant 0.00414 0.08524* 0.90514*** 

 (0.04002) (0.04391) (0.06970) 

Number of observations 782 782 782 

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust 

standard erorrs are in parentheses. 
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Table A-7. Estimates of Fixed Effects Linear Regression on Wildfire Risk 
 Fire: lightning-

caused burned 

area / forest (%) 

Fire: human-

caused burned 

area / forest (%) 

Fire: area not 

burned / forest 

(%) 

Temperature - spring (C) 0.00362** 0.00031 –0.00393* 

 (0.00160) (0.00126) (0.00225) 

Temperature squared - spring (°C) –0.00012* 0.00003 0.00009 

 (0.00006) (0.00007) (0.00011) 

Temperature - summer (C) 0.00974* –0.00800* –0.00174 

 (0.00487) (0.00458) (0.00771) 

Temperature squared - summer (°C) –0.00013 0.00023** –0.00010 

 (0.00010) (0.00011) (0.00018) 

Temperature - autumn (C) –0.00150 0.00155 –0.00005 

 (0.00145) (0.00124) (0.00207) 

Temperature squared - autumn (°C) 0.00001 –0.00005 0.00004 

 (0.00005) (0.00005) (0.00008) 

Temperature - winter (C) –0.00012 0.00025 –0.00013 

 (0.00041) (0.00044) (0.00075) 

Temperature squared - winter (°C) 0.00001 –0.00005 0.00004 

 (0.00002) (0.00005) (0.00005) 

Precipitation - spring (hundred mm) –0.00599* –0.00539* 0.01137* 

 (0.00341) (0.00301) (0.00586) 

Precipitation squared - spring (hundred mm) 0.00080 0.00065 –0.00145 

 (0.00053) (0.00044) (0.00089) 

Precipitation - summer (hundred mm) –0.00144 0.00329 –0.00185 

 (0.00427) (0.00432) (0.00767) 

Precipitation squared - summer (hundred mm) 0.00011 –0.00046 0.00034 

 (0.00059) (0.00061) (0.00110) 

Precipitation - autumn (hundred mm) –0.01137* –0.01801** 0.02938** 

 (0.00609) (0.00679) (0.01120) 

Precipitation squared - autumn (hundred mm) 0.00180* 0.00278** –0.00459** 

 (0.00101) (0.00104) (0.00179) 

Precipitation - winter (hundred mm) –0.00146 –0.00533* 0.00679 

 (0.00298) (0.00299) (0.00449) 

Precipitation squared - winter (hundred mm) 0.00009 0.00092* –0.00101 

 (0.00043) (0.00055) (0.00075) 

Constant –0.12514** 0.08752 1.03762*** 

 (0.05941) (0.05793) (0.09386) 

Number of observations 782 782 782 

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust 

standard erorrs are in parentheses. 
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Figure A-8. Forested land share to total land area by state in 2010 
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Table A-8. Differences of wildfire risks between the baseline in 1997-2010 and the RCP 

2.6 and 8.5 scenarios in 2010-2050 
 Differences from the baseline (%) 

 
Human-caused wildfire Lightning-caused wildfire 

State RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

AL 0.882 1.062 –0.055 –0.066 

AZ 2.165 2.076 2.327 3.562 

AR 0.419 0.722 –0.004 –0.006 

CA –0.157 0.496 0.507 2.293 

CO –0.119 –0.114 0.457 0.663 

CT 0.072 0.074 0.000 0.000 

FL 0.049 0.212 1.776 0.173 

GA 0.474 0.547 –0.006 –0.015 

ID 0.115 0.113 5.028 6.576 

IL 0.040 0.045 0.000 0.000 

IN 0.048 0.064 0.000 0.000 

IA 0.103 0.103 0.022 0.023 

KS 0.398 0.342 0.179 0.210 

KY 0.106 0.130 0.001 0.000 

LA 0.940 2.327 –0.140 –0.161 

ME 0.007 0.007 0.195 0.296 

MD 0.308 0.326 0.000 0.000 

MA 0.123 0.133 0.000 0.000 

MI 0.071 0.100 0.000 0.000 

MN 0.819 0.976 0.217 0.269 

MS 1.948 2.802 –0.020 –0.022 

MO 0.082 0.080 0.002 0.002 

MT 0.234 0.152 3.924 4.335 

NE 0.749 0.688 1.253 1.440 

NV 0.202 0.058 0.665 2.824 

NH 0.016 0.018 0.000 0.000 

NJ 0.369 0.413 0.000 0.000 

NM 0.602 0.709 1.032 1.793 

NY 0.040 0.047 0.000 0.000 

NC 0.084 0.055 –0.001 –0.002 

ND 3.158 2.689 1.035 1.505 

OH 0.073 0.107 0.000 0.000 

OK 0.856 0.929 0.049 0.056 

OR 1.622 1.597 7.333 10.781 

PA 0.055 0.074 0.000 0.000 

SC 0.101 0.078 0.000 –0.032 

SD 1.457 1.546 1.558 2.285 

TN 0.284 0.391 0.000 0.000 

TX 0.839 1.173 0.400 0.688 

UT –0.196 –0.207 0.875 1.809 

VT 0.008 0.009 0.002 0.003 

VA 0.217 0.214 0.000 0.000 

WA 0.829 0.929 1.913 2.017 

WV 0.059 0.087 0.009 0.008 

WI 0.122 0.158 0.007 0.007 

WY 0.489 0.516 3.482 4.169 
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