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ABSTRACT 

 

History Matching is the process of calibrating uncertain parameters of a reservoir 

model in order to reach the best plausible match with the observed data. By integrating the 

dynamic data of a reservoir, the reservoir properties can be estimated so that it is a key 

step in developing reservoir performance, which is normally time consuming and 

computationally infeasible.  

With the rise of global energy demand, the reliance on enhanced oil recovery 

(EOR) has increased and the model calibration for chemical flooding also becomes 

significant. However, due to large amounts of uncertain parameters and complicated 

relationships among them, it is hard to apply a traditional manual history matching with a 

single deterministic model to chemical flooding. Instead, a stochastic method using the 

genetic algorithm (GA) can be efficient in that it can consider several parameters 

simultaneously. However, this probabilistic-assisted history matching generates several 

updated models, all of which have a potential to be good matches. Therefore, there is a 

need to evaluate history matching results consistently without any subjectivity.  

In addition, the assessment of results from model calibration is also difficult when 

it comes to large field cases, which are involved with a number of wells and different types 

of objectives. Since each well and objective presents contrasting results, a comprehensive 

decision making for selecting a better history matching model is necessarily complicated. 

However, current approaches mostly rely on reviewers’ experience, which is too 

subjective or uses a misfit function without any consideration for the data.  
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We first introduce a History Match Quality Index (HMQI) in assessing the quality 

of history matching and ranking among those results. This method assigns index a value 

of either 0 or 1 based on the quality of the match. Moreover, combining the HMQI with a 

Moving Linear Regression Analysis (MLRA) provides the more robust assessment by 

removing outliers which come from a variety of sources of errors.  

Secondly, we apply the HMQI to the synthetic case of alkaline-surfactant-polymer 

(ASP) flooding as well as that of polymer flooding. Moreover, we compare the results 

with other method for evaluating the quality of history match to prove the feasibility of 

our approach. Lastly, field-scale simulations are conducted to demonstrate the reliability 

and robustness of our methodologies.  

The HMQI with the MLRA has proven its ability to identify outliers of data using 

the case study from synthetic to field. In addition, in comparison with the misfit 

calculation, it has been shown to eliminate subjectivity, using normalized values without 

the bias toward outliers.  



 

iv

 

 

DEDICATION 

 

To my beloved family and friends. 

 

 



 

v

 

 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere gratitude to my committee chair, especially Dr. 

Datta-Gupta for his academic guidance and support, and my committee members, Dr. 

King and Dr. Efendiev for their valuable discussions throughout the course of this 

research.  

Thanks also go to my MCERI colleagues, alumni and current students, for their 

friendship and mentorship. 

Last but not least, special thanks to my family with their great support and 

encouragement for my life.  



 

vi

 

 

NOMENCLATURE 

 

BHP Bottomhole Pressure 

HMQI History Matching Quality Index 

MLRA Moving Linear Regression Analysis 

GA Genetic Algorithm 

WCT Water Cut 

𝑑𝑖
𝑜𝑏𝑠   Observed Values at Time Step i 

𝑑𝑖
𝑐𝑎𝑙𝑐.

  Simulated Values at Time Step i 

𝑤𝑖 Weighting Factor  
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CHAPTER I 

INTRODUCTION AND STUDY OBJECTIVE  

 

Enhanced oil recovery (EOR), the last stage of an oil and gas field, plays an 

increasingly pivotal role in crude oil development. Especially since the infrastructure for 

chemical flooding does not require additional facilities after waterflooding, chemical EOR 

is more beneficial, compared to other thermal or gas EORs, in that most oil fields have 

been already under waterflooding. Consequently, it becomes more significant to reproduce 

past historical performance in chemical flooding to characterize the reservoir. This is 

where assisted history matching using the genetic algorithm comes into play. Due to large 

amounts of parameter affecting each other, the deterministic history matching method, 

which depends strongly on the initial model is not appropriate for chemical flooding. In 

contrast, genetic algorithms have been known to be highly effective global search 

techniques and give us multiple solutions. 

However, one of the challenging aspects of history matching using the stochastic 

method is to evaluate how well the calibrated model matches with the measured data 

among several simulation runs. Therefore, the main focus of this research is to assess the 

quality of history matching results with a new approach and its application. Traditionally, 

evaluation has been conducted by visually or comparing sum of square of error (SSE). 

Since the former usually relies on the experience of experts, which is too subjective and 

the latter sometimes cannot account for the general trend of the observed dynamic data, 

more systematic methods should be considered.    
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Except for the standard way to plot the observed data values versus time, along 

with corresponding simulation results, some statistical methods have been proposed for 

history matching evaluation (Uldrich et al. 2002). All of the methods anticipate computing 

a set of deviation values, each of which is defined to be a calibrated model minus the 

corresponding production history. Although those methods provide an indicator of 

confidence whether the reservoir description in the simulator properly represents the 

actual reservoir or not, it gives only a relative comparison of the degree of match between 

two or more simulation runs.  

 

1.1 Overview of History Matching 

In order to develop reliable reservoir models, the successful integration of dynamic 

data is a critical step. Since reservoir models are affected by a large number of subsurface 

uncertainties, only considering the static data cannot help to reproduce past historical 

performance. Therefore, adjustments to the model should be made until simulated results 

and the past observation are well-matched. 

Conventional manual history matching usually uses a single deterministic model 

to reconcile the model with observed data, which is time consuming and subjective with 

a trial-and-error approach (Williams et al. 1998; Williams et al. 2004). Due to 

impracticability of this manual process, an automatic history matching, which is the 

process of calibrating parameters of a reservoir model by way of an automated algorithm, 

has been heavily investigated (Landa et al. 2003). In assisted history matching (AHM), 

the production history is compared to the simulation results by a misfit function, trying to 
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minimize the misfit so that the best reservoir model can be achieved. Over the last years, 

several approaches to the minimization process has been widely demonstrated in the 

literature: gradient-based, sensitivity-based and derivative-free methods. Compared to 

gradient-based methods, sensitivity-based methods converge rapidly (Bissell et al. 1992). 

Although the derivative-free methods are easy to implement, they are limited to only a 

small number of parameters due to computational issue. Lastly, gradient-based methods 

have the slower rate of convergence than sensitivity-based methods (Gill et al. 1981; 

McCormick 1972). Since local search techniques have the problem of convergence to 

local optimum nearest to the initial point, global search algorithms, such as genetic 

algorithm (Holland 1992) and the simulated annealing (Ouenes et al. 1994; Kirkpatrick et 

al. 1983; Galassi et al. 2009), have been known to be highly powerful for history-matching 

process. In addition, these stochastic search methods do not require a smooth response 

space or complicated differential equations. The limitation of those methods is, however, 

that it is computationally expensive when having a large number of parameters.  

 

1.2 Overview of Statistical Methods for Evaluation of a History Match 

Typically, comparing the quality of history match for different simulation runs has 

been conducted by the expert opinion or using weighted root mean square error. Even if 

the experience of experts provides sufficient assessment based on visual inspection by 

graph, the different knowledge of reviewers can influence their evaluation, which is too 

subjective. In order to avoid that subjectiveness, it is better to have as many experts as 

possible with enough experience. Weighted root mean square error, frequently regarded 
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as the sum of square of errors (SSE), represents the data misfit by calculating the 

cumulative square of error between observed data and simulation results.  

𝑆𝑆𝐸 =  ∑ 𝑤𝑖(𝑑𝑖
𝑜𝑏𝑠 − 𝑑𝑖

𝑐𝑎𝑙𝑐)2𝑛
𝑖=1                                    (1.1) 

Although this method is quantitative, compared to the expert opinion, it can be easily 

affected by the data outliers, which might lead to an erroneous conclusion. 

Uldrich (2002) proposed methods using statistics for an evaluation of history on 

the basis of deviation values. Deviation values can be defined from the observed and 

predicted value, and then plotted in two ways: the deviation distribution plot and the 

deviation band plot. The deviation distribution plot quickly gives us whether one case is 

better matched than the other. Finding positive or negative bias in the match is vital when 

comparing history match results in order to decide what changes to make next for the 

history match. The deviation band plot is also a convenient way to demonstrate the degree 

of match by evaluating the total amount of deviation, regardless of whether the simulator 

is over or under-predicting the production history. However, the above approaches enable 

only a relative comparison among several simulation runs. They do not suggest any 

minimum criteria to be satisfied for declaring a model sufficiently matched.  

 

1.3 Research Objectives and Thesis Outline 

The objective of this research is to present the History Matching Quality Index 

(HMQI) with the Moving Linear Regression Analysis (MLRA), and an emphasis is placed 

on the application to chemical flooding and large field cases with implementation of the 
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proposed method to evaluate the results of history matching. Now, we will outline the 

specific procedure of this thesis in Chapters II-V.    

This research consists of three main parts. First, in Chapter II, we present a 

background of history matching with the Genetic Algorithm and give a summary of 

History Matching Quality Index to evaluate the history matching results.  

Secondly, in Chapter III, we implement this algorithm and demonstrate the 

capability of the HMQI with the synthetic case of polymer flooding and ASP flooding. 

We will run the polymer flooding with different degrees of noise, and compare the results 

with the sum of square error to show whether the HMQI method accounts for eliminating 

outliers efficiently or not. In addition, we apply this new ranking method to an Alkaline-

Surfactant-Polymer flooding to do assessment on the quality of history matching results. 

We analyze the results with the HMQI and other methodsz in order to demonstrate the 

ability of this approach to consider different types of objective functions. 

In Chapter IV, two field cases will be presented to test applicability of the HMQI 

with MLRA. This chapter includes details of model description, history matching results 

and evaluation of history matching results on the field case study. 

In Chapter V, the research is concluded with a summary of the key findings. 

Recommendations and proposals for further research are also presented. 



 

6

 

 

CHAPTER II 

HISTORY MATCHING USING GENETIC ALGORITHM AND HISTORY 

MATCHING QUALITY INDEX 

 

In recent years, understanding the uncertainty of subsurface, and calibrating static 

and dynamic parameters, have been done with a probabilistic method. This stochastic 

approach has a variety of advantages over the deterministic one, which uses a single initial 

geological model. The stochastic method has been known to be effective since global 

search algorithms do not require complicated differential equations, and can avoid the 

problem of convergence to local optimum nearest to the initial starting point (Cheng et al. 

2008). Although they have been extensively applied to many history-matching problems 

because of their powerful ability to deal with several sets of parameters, stochastic search 

algorithms give us multiple solutions that are need to be assessed in terms of which history 

matching results could be the best match (Bittencourt and Horne 1997; Floris et al. 2001; 

Romero and Carter 2001; Schulze-Riegert et al. 2002; Williams et al. 2004).  

Even if there has been a few ways to investigate history matching results, it is still 

challenging for all reservoir engineers to evaluate whether the results are good enough to 

be matched with the observed data. Lack of systematic and well-organized methods to 

evaluate on the history matching results gives rise to the demand for History Match 

Quality Index (HMQI).  

In this chapter, we have a discussion about a stochastic method using the Genetic 

Algorithm (GA) for model calibration. The Genetic Algorithm, one of the derivative-free 
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global techniques, shows its global search nature and the advantage of calibrating diverse 

types of parameters simultaneously. After the assisted history matching process using the 

Genetic Algorithm, we introduce the concept of the History Match Quality Index with the 

Moving Linear Regression Analysis for data and error analysis. The coupling of HMQI 

and MLRA together during an evaluation of history matching results leads to an increase 

on the reliability of analyzing history matching results.  

 

2.1 History Matching Using Proxy-Assisted Genetic Algorithm 

We have mainly adopted the Genetic Algorithm (GA) to conduct model calibration 

in order to adjust parameters. The GA is favorable to take into account a variety of 

parameters at the same time, and hence it provides more flexibility when it comes to the 

choice of parameters (Xie et al. 2014). In addition, the GA is applicable to carry out the 

analysis of uncertainty, as well as the history matching, since it works with the population 

of the parameters. As one of the evolutionary algorithms, the GA follows the survival of 

the fittest describing the mechanism of natural selection. It applies the biological principle 

of evolution to the selection process during the history matching. The flowchart in Figure 

2.1 below shows the outline of model calibration with the Genetic Algorithm, which is 

followed by the explanation of several essential concepts for the GA.  
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Figure 2.1 Flowchart of GLOBAL. 

 

 

 

• Key parameter selection by sensitivity analysis 

The purpose of history matching is to match the dynamic data considering only 

key parameters, which have great impact on the objective function. Hence, 

sensitivity analysis should be performed to distinguish influential parameters to be 



 

9

 

 

calibrated. This parameter screening step needs several simulation runs with the 

high and low values of each parameter. To begin with, only one parameter is 

changed into either low or high value from the base model. Afterwards, the effects 

of each parameter on predefined objective functions will be ranked to identify 

sensitive parameters and remove insensitive parameters for the following history 

matching process. Parameters that has a large range of objective function with 

upper and lower boundaries of value are significant to be kept as main parameters.  

• Construction of objective function 

One of the ways to evaluate the quality of history matching is to define objective 

function. During performing inverse problem, the simulation case, which has 

smaller value of objective function will have higher opportunity to be selected 

from the genetic algorithm. It quantifies the quality of history matching results 

from the weighted sum of squares difference between historical dynamic data and 

calculated production response from the simulation. The weighting factors (𝑤𝑖) are 

incorporated since they take account into the importance of the observed values. x 

represents uncertain parameters. 

 𝑓 = ∑ 𝑤𝑖(𝑓𝑖
𝑜𝑏𝑠(𝑥) − 𝑓𝑖

𝑐𝑎𝑙𝑐(𝑥))2

𝑛𝑜𝑏𝑠

𝑖=1

;  ∑ 𝑤𝑖

𝑛𝑜𝑏𝑠

𝑖=1

= 1 (2.1) 

However, multi-objective problems usually have difficulty in determining the 

weighting factors since they are not readily available. Instead, objective function 

is defined by using sum of logarithm of the absolute misfits rather than weighting. 
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 𝑓(𝑚𝑖) = 𝑓(𝑚1, 𝑚2, 𝑚3 ⋯ , 𝑚𝑁) = ln|∆𝑝| + ln|∆𝑄| +  (2.2) 

where m is the list of global variables. By using the sum of logarithm residual, not 

only overall objective misfits are reduced continuously, but also conflicting 

objectives will be reconciled automatically.   

• Initial proxy construction by experimental design 

Although GA has been expected to outperform other deterministic methods, a 

number of simulations required, especially for field cases with large sets of 

parameters, are challenging when it comes to computational costs. A proxy model 

allows the response surface to be used to filter potential cases, an objective 

function of which is larger than a predefined threshold. This procedure prevents 

redundant forward simulation, which enhances the feasibility of stochastic 

algorithms. In this research, Latin Hypercube design, one of the methods of 

experimental design, contributes to establishing the initial proxy as it gives the 

methods to cover a full range of each variable. 

• Response surface construction through Kriging 

A response surface, the proxy model, is used to represent a true model or its 

simulation. It is indispensable when evaluating a random sample directly is 

computationally unreasonable. A response surface becomes more desirable to 

some degree as a new simulation takes place. However, as more and more 

experiments are conducted, the further improvement of a proxy model will be 

restricted if we use all of the current samples. Therefore, only a small number of 
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experiments should be considered for Kriging in order to construct an accurate 

response surface. 

• Operators to reproduce the generation 

Evolutionary algorithms are determined by an iterative sequence of variation and 

selection operations (Schulze-Riegert et al. 2002). First, the selection process is 

performed by the combination of an objective function and the fitness of genomes 

that consist of binary strings of 0’s or 1’s (GA uses the binary strings to represent 

the solutions). It is encouraged to maximize the fitness while minimizing the misfit 

function between the observed and calculated data, which is equivalent to 

maximizing a fitness function g(𝑚𝑖). The probability of model 𝑚𝑖 is given by: 

 𝑃(𝑚𝑖) =
exp [−

𝑓(𝑚𝑖)
𝑇𝑛

]

∑ exp [−
𝑓(𝑚𝑖)

𝑇𝑛
]𝑖

 ;  𝑇𝑛 =  𝜆𝑛𝑇0 ; 0 <  𝜆 < 1 (2.3) 

If the models are fitter, they are much more likely to be chosen to reproduce the 

next generation.  Secondly, crossover and mutation operators have been used for 

the diversity of population. By recombining the samples of the previous 

generation, crossover plays a pivotal role in producing various models. There are 

several algorithms to conduct the crossover based on different ways to choose the 

position where the binary bits can be switched.  As the process of selection and 

crossover has been repeated, however, the variability of a polulation will be 

reduced inevitably. Mutation leads to increasing the diversity of a generation by 

giving a genome the opportunity to flip the bits with the very low probability.  
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• Cluster analysis 

After the simulation has been finished, the stochastic method provides a reduced 

range of each parameter with history matching results. A number of updated 

models can be subdivided by a similarity among parameters. From the subset of 

calibrated cases, representative models will be selected for further comparison 

between the history matching results and the reference model.  

 

The genetic algorithm starts with a first generation of a population, which consists 

of randomly generated individuals. The fitness of individuals in the population is 

evaluated to select possible individuals for a new population of a next generation. In 

general, the process of calibration will be completed if either it reaches the maximum 

number of generation or a certain fitness level has been achieved.   

 

2.2 History Match Quality Index with Moving Linear Regression Analysis 

2.2.1 Introduction 

Evaluating how well the results of a simulation match observed field behavior is 

often controversial when it comes to history matching process. There has been qualitative 

methodologies, such as the subject matter expert, or quantitative methodologies, such as 

the sum of square of error, used for assessing the quality of history match. Each method 

has been performed quite successfully but cannot satisfy in all aspects. For a qualitative 

approach conducted by sophisticated engineers, reviewers do careful examination on the 

data visually and classify the results. This evaluation may vary depending on individuals` 
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experience and their subjectivity, which leads to different judgements on every evaluation. 

On the other hand, more consistent assessments are conducted by calculating the misfit 

between historical dynamic data and calculated results. Although this approach allows us 

to obtain the degree of mismatch quantitatively, it can be readily influenced by outliers of 

the data, which originate in diverse sources of error. The following proposed method, the 

History Matching Quality Index (HMQI), offers a much more robust and reliable process 

to decide the quality of history matching results. The HMQI functions with the Moving 

Linear Regression Analysis (MLRA) in order to manage data outliers. In Figure 2.2, the 

outline for the combination of the MLRA and HMQI is summarized.  

 

 

 

 

Figure 2.2 Workflow of MLRA and HMQI. 
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2.2.2 Moving Linear Regression Analysis  

In general, random noises in the data make interpretation of history matching 

results less precise. Ideally, we would like to remove outliers while keeping the trend of 

original observed data before evaluating the history matching results. By removing 

possible outliers, the assessment of history matching results could be improved. Even if 

some data noises, which should be removed are discernible and straightforward to detect, 

many others may not. In addition, there has not been efficient way to examine possible 

outliers automatically and thus mostly one should have studied history data to screen out 

those outliers case-by-case. In this section, we introduce the systematic method to exclude 

plausible data outliers while preserving the initial tendency of measured data.   

• Linear Regression (Jensen et al. 1997) 

Regression is the methodology to identify and estimate the relationships between 

a dependent variable and independent variable. Linear Regression, one of widely 

used type of regression approaches, is that dependent variable can be represent as 

a linear combination of predictors like following equation (2.4).  

 𝑌 =  𝛽0 + 𝛽1𝑋 + 𝜀  (2.4) 

In constructed regression model above, the X is the predictor; Y is the response; ε 

is a random error; and 𝛽0 and 𝛽1 are the parameters of the regression model. Since 

the variation of X will have an impact on the result of changing Y, the Y is called 

a dependent variable. Consequently, the measurement of X and its accuracy are 

closely related to the errors. Sometimes, we have to use simplistic regression 
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models because it is difficult to measure the predictor correctly so that mostly 

prediction error should be considered. However, regression can still be the reliable 

approach for establishing a prediction model. Since the Y is not independent of X, 

we use conditional operator to obtain the mean value and variance of Y. 

Accordingly, we take the conditional expectation of Eq. (2.4) to give 

 𝐸(𝑌|𝑋 = 𝑋0) =  𝛽0 + 𝛽1𝑋0 (2.5) 

 We achieve Eq. (2.5) by assuming that 𝐸(𝜀) = 0. Similarly, the variance can be  

 𝑉𝑎𝑟(𝑌| 𝑋 = 𝑋0) = 𝑉𝑎𝑟(𝛽0 + 𝛽1𝑋 + 𝜀 | 𝑋 = 𝑋0) =  𝜎2
𝜀 (2.6) 

The equation (2.6) yields the variance of errors because the term, 𝛽0 + 𝛽1𝑋, is 

constant at 𝑋 = 𝑋0 and only the errors are not affected by variable X. Therefore, 

only the error term is left after taking variance.  

• t distribution (Devore et al. 1999) 

When we analyze the population, a sample from the population can be used to 

characterize the mean and standard deviation of the data. If we assume that the 

population has normal distribution, the sampling distribution is also normal for any 

size of sample. Accordingly, standardized variable z, 𝑧 =  
𝑥̅−𝜇

𝜎/√𝑛
, follows a standard 

normal distribution, which can be represented by z distribution curve. For large 

number of sample n, 𝜎 can be replaced by sample variance (s) since this 

substitution does not cause a lot of variability, which indicates that 
𝑥̅−𝜇

𝑠/√𝑛
 has 

generally normal distribution. On the other hand, it cannot be applied for small 

number of sample n since the value of sample variance may differ in every case of 
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sampling. Therefore, a new type of probability distribution has been needed, which 

is suitable for a small number of sample.  

If 𝑥1, 𝑥2, 𝑥3 ⋯ , 𝑥𝑛 is a set of random sample from the population that has a normal 

distribution, the standardized variable t can be represented as follows. 

 𝑡 =  
𝑥̅ − 𝜇

𝑠/√𝑛
 (2.7) 

Equation (2.7) has a type of probability distribution called t-distribution with n-1 

degrees of freedom. The spread of t curves is affected by the number of degree of 

freedom. As the degree of freedom increases, t curves are approaching z curve 

(Figure 2.3). t critical values are required to take certain either central or 

cumulative areas under t curves and they are used to calculate t confidence interval. 

A t value is specified with certain value of confidence level, corresponding to the 

particular t curve area and degree of freedom.  

 

 

 

 

Figure 2.3 Comparison of t curves to z curve 
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• Tolerance (Jensen et al. 1997) 

The confidence interval for predetermined confidence level and certain degree of 

freedom could be used as the tolerance for excluding data outliers during the 

process of MLRA. The following shows that how the tolerance is obtained from 

the procedure of regression. 

If we estimate 𝐸(𝑌|𝑋 = 𝑋0), an unbiased point estimator is  

 𝑌0̂ = 𝛽0̂ + 𝛽1̂𝑋0 (2.8) 

𝑌0̂ has variance 

 

𝑉𝑎𝑟(𝑌0̂) = 𝑉𝑎𝑟(𝛽0̂ + 𝛽1̂𝑋0) = 𝑉𝑎𝑟(𝑌̅ + 𝛽1̂(𝑋0 − 𝑋̅) 

(Since 𝛽̂0=𝑌̅ − 𝛽̂1𝑋̅ by linear relationship) 

= 𝜎2
𝜀 (

1

𝐼
+  

(𝑋0 − 𝑋̅)2

∑(𝑋𝑖 − 𝑋̅)2
) 

(The variance of 𝛽̂1 is given by Var(𝛽1) = 
𝜎𝜀

2

∑(𝑥𝑖−𝑥̅)2) 

(2.9) 

When we replace 𝜎2
𝜀 by its estimate, this provides the following sample variance: 

 

𝑠𝑌0̂

2 = 𝑀𝑆𝜀(
1

𝐼
+ 

(𝑋0 − 𝑋̅)2

∑(𝑋𝑖 − 𝑋̅)2
) 

(The estimate of 𝜎2
𝜀 is given by 𝑀𝑆𝜀 =  

∑(𝑦𝑖−𝑦̂𝑖)2

𝐼−2
) 

(2.10) 

The sample variance (𝑠𝑌0̂

2), the estimate for 𝑉𝑎𝑟(𝑌0̂), is then used to determine 

the (1 − 𝛼) confidence intervals for the estimate of 𝐸(𝑌|𝑋 = 𝑋0) : 

 𝑌0̂  ± 𝑡(
𝛼

2
, 𝐼 − 2)𝑠𝑌0̂

 (2.11) 
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To take a confidence interval into account regarding a new response (𝑋0, 𝑌∗), we 

incorporate the variability of error (𝑉𝑎𝑟(𝜀)). 

 𝑉𝑎𝑟(𝑌∗) = 𝑉𝑎𝑟(𝑌0̂) + 𝑉𝑎𝑟(𝜀) = 𝜎2
𝜀 (1 +

1

𝐼
+  

(𝑋0 − 𝑋̅)2

∑(𝑋𝑖 − 𝑋̅)2
) (2.12) 

Since the error (𝜀) is independent, the variance of the error can be included. Using 

the sample values, this results in the confidence interval: 

 𝑌0̂  ± 𝑡(
𝛼

2
, 𝐼 − 2)√ 𝑀𝑆𝜀(1 +

1

𝐼
+  

(𝑋0 − 𝑋̅)2

∑(𝑋𝑖 − 𝑋̅)2
) (2.13) 

• Steps for Moving Linear Regression Analysis (Darman et al. 2010) 

(1) Determine the size of window on which to perform linear regression analysis. 

The size of the span is estimated by checking the measured data. Within that 

interval, estimated value behaves linearly assuming that a linear relationship 

can adequately represent the production history.  

(2) Repeating until all the data points have been considered: 

a. Conduct a linear regression analysis for the points preceding and following 

the evaluation point to calculate the estimated value and confidence 

interval. 

b. Compute the difference between the observed data and the estimated value. 

c. Compare the difference with the confidence radius of the estimated value 

to determine if the point is outlier which will be excluded. 

(3) Keep the confidence interval to define a tolerance level for subsequent 

procedure to assign the History Match Quality Index  
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2.2.3 History Match Quality Index 

One of the conventional methods of assessing the matching quality is the sum of 

square of error (SSE): 

 𝑆𝑆𝐸 =  ∑ 𝑤𝑖(𝑑𝑖
𝑜𝑏𝑠 − 𝑑𝑖

𝑐𝑎𝑙𝑐.)2

𝑛

𝑖=1

 (2.14) 

where 𝑑𝑖
𝑜𝑏𝑠

 and  𝑑𝑖
𝑐𝑎𝑙𝑐.

 are the observed data and the calculated response at time step i; 

𝑤𝑖 is the weighting factor. This cumulative square of error has been widely used as an 

objective function to be minimized in the history matching process. Despite the fact that 

this standard approach allows an evaluation of history matching results to be judged from 

quantitative values, it cannot serve as a direct indication of match quality. Since it does 

not represent normalized values but relative values, we have to compare between more 

than two cases to determine if the simulation is well matched or not. The alternative way 

to do evaluation of match quality more conveniently uses the History Matching Quality 

Index (HMQI), which gives not only quantitative indication but also normalized values.  

 𝐻𝑀𝑄𝐼 =
1

𝑛
∑ 𝑤𝑖

𝑛

𝑖=1

 (2.15) 

 

Where 𝑤𝑖 = {
1  𝑖𝑓 𝑎𝑏𝑠(𝑑𝑖

𝑜𝑏𝑠 − 𝑑𝑖
𝑐𝑎𝑙𝑐.) < 𝑡𝑜𝑙

0  𝑖𝑓 𝑎𝑏𝑠(𝑑𝑖
𝑜𝑏𝑠 − 𝑑𝑖

𝑐𝑎𝑙𝑐.) > 𝑡𝑜𝑙
 

tol is the predefined tolerance level obtained from the procedure of MLRA.  

The advantage of normalization is also suitable for analyzing the history matching 

results between different objective functions, such as BHP and water cut, which have 
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different magnitude of scales. We can incorporate the score of each objective function into 

one composite value for a particular simulation run, not considering the weighting factors. 

The following figure (Figure 2.4) shows the outline of how to obtain a single composite 

value for the simulation case.   

 

 

 

 

Figure 2.4 Outline of obtaining the hierarchical HMQI. 
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CHAPTER III 

APPLICATION TO CHEMICAL FLOODING 

 

As reserves have been depleted, an efficient way to enhance oil recovery becomes 

significant. About 60% of oil is still remaining after the water flooding; chemical EOR 

has moved from a potential technique in producing remaining oil to one of the major 

interests regarding enhanced oil recovery. Therefore, reservoir management, such as 

model calibration, should be considered for chemical flooding at the same time. However, 

due to large amount of parameters related to complex mechanisms during the chemical 

flooding process, it is crucial to efficiently constrain subsurface uncertainties. In order to 

take several parameters into account together, we use the Genetic Algorithm to calibrate 

a model, which generates diverse plausible updated models. Accordingly, history 

matching should be followed by the evaluation of a number of results to determine which 

simulation case is closer to the true model.  

This chapter is organized in mainly two parts. In subchapter 3.1, we implement the 

combination of the MLRA and the HMQI on the polymer flooding synthetic case after the 

history matching has been done. The results of HMQI are compared with the sum of square 

of error to discuss how adequately outliers are removed, which contributes to accurate 

history matching assessments. In subchapter 3.2, the ASP flooding synthetic case is used 

to exhibit the effectiveness of the HMQI in terms of different scales of objectives.  
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3.1 Application to Polymer Flooding 

3.1.1 Introduction to Polymer Flooding 

For hydrocarbon reservoirs in which the mobility of the displacing fluids is higher 

than the one of the displaced fluids, injecting water only into the reservoir cannot achieve 

a sufficient recovery factor. Polymer flooding has been commonly applied to chemical 

enhanced oil recovery techniques with a higher success rate. Shao et al. (2008) 

demonstrates that the incremental oil recovery is 15.3% and the oil production increased 

by polymer mass per ton is 75.14 at the area of northwest.  In addition to the practicability 

of polymer flooding, favorable oil and polymer prices allow polymer flooding to be 

performed in many hydrocarbon reservoirs. The main objective of polymer flooding is to 

increase sweep efficiency by improving the mobility ratio of oil compared to water. 

Injected polymer helps water to have more viscosity, which will result in better oil 

displacement efficiency. The significant mechanism in polymer flooding is reducing 

viscous fingering; improving the water-injection profile (Sorbie 1991); reducing the 

relative permeability of water flow more than the permeability of oil flow through 

disproportionate permeability reduction (Sheng 2015). Furthermore, waterflooding 

becomes more practical with less water injected and produced since permeability has been 

remained reduced after polymer flooding (Sheng 2011). On top of that, polymer 

contributes to the synergy with other components when it is added into the combination 

process.  
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3.1.2 Model Description 

This synthetic case shows a three-dimensional two-phase reservoir consisting of 

15 × 15 × 3 grid blocks (1640.5 ft × 1640.5 ft × 10.8 ft), with one injector and four 

producers perforated throughout the whole vertical layers. The area is heterogeneous 

permeability within each layer (Figure 3.1). Five-spot pattern is applied to flood this area 

with polymer for 762 days and total simulation time is 1540 days. UTCHEM, developed 

by the University of Texas at Austin, is used to run the simulations as the chemical flood 

simulator. Since polymer flooding typically does not change displacement efficiency 

whereas it contributes to improving sweep efficiency, the initial oil saturation before 

polymer flooding should be higher than the residual oil saturation at the final time steps 

(Figure 3.2). Description of major parameters for this synthetic case is given below (Table 

3.1) 

 

 

 

 

Figure 3.1 Permeability distribution in x direction. 
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Figure 3.2 (a) Initial oil saturation (b) Final oil saturation. 

 

 

 
Table 3.1 Input parameters for the simulation. 

Parameter Value 

Well data 

4 Producer Pressure constrained at 100 psi 

1 Injector Rate constrained at 1412.59 𝑓𝑡3/day 

Components 
Water, Oil, Surfactant, Polymer, Chloride, 

Calcium, Alcohol 

Reservoir porosity Avg. = 30% 

Reservoir permeability Avg. 𝑘ℎ = 1552.5 md, Avg. 𝑘𝑣 = 1548.5 md 

Water viscosity 0.73 cp 

Oil viscosity 40 cp 
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Figure 3.3 and Figure 3.4 shows the measured data from the producer in the true 

model. Figure 3.3 represents cumulative injected polymer and cumulative produced 

polymer. One of the reasons for big drop from injected to produced polymer is polymer 

adsorption, which results from the fact that the porous medium adsorbs the polymer 

molecules. This adsorption can cause not only decreasing the mobility of aqueous phases 

but also delaying the propagation of the polymer front. In Figure 3.4, you can see that oil 

cut increases with regard to polymer injection and after polymer flooding oil cut gradually 

decreases. 

 

 

 

 

Figure 3.3 Cumulative produced and injected polymer. 
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Figure 3.4 Oil cut and injected polymer. 

 

 

 

3.1.3 Procedure 

One of advantages of the HMQI with the MLRA over the SSE method is that 

during the process of MLRA, outliers that possibly come from errors can be screened out 

efficiently and automatically. That would lead to a more precise evaluation of history 

matching results, still preserving the tendency of observed data. On the other hand, the 

SSE method calculates misfit on every data point without reviewing historical dynamic 

data, which has an opportunity to result in inaccurate conclusion due to influence of 

outliers. In this subchapter, we demonstrate how the noisy observed data can impact on 

the assessment of history matching results. First, we add the some degree of noise to our 

synthetic polymer-flooding case in order to show whether the MLRA can conveniently 

exclude outliers. The case of having some suspicious points in history is able to cause 

unreliable evaluation on history matching results, compared to the original polymer-

flooding case. Therefore, by comparing the results of the SSE and the HMQI, we can 
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validate how easily the HMQI can prevent biased history matching evaluation from the 

reference models with outliers. A whole workflow for a model calibration and an 

interpretation of history matching is shown below in Figure 3.5. A specific description for 

each step follows after the flowchart.   

 

 

 

 

Figure 3.5 Flowchart of model calibration and history matching evaluation. 

 

 

 

Step 1: Add noise to observe data 

The main purpose of adding unnecessary data into the observed response is to 

demonstrate the impact of noises on history matching and a subsequent evaluation of the 

quality of history matching results. By introducing certain degree of aberrant data points 

randomly into a reference model, we can estimate not only the significance of removing 

outliers, but also the effectiveness of our HMQI method with the MLRA. Hence, a noisy 

polymer-flooding case (Case 2) has been used for the purpose of comparison with the 
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original model (Case 1). After modifying the initial observed data, the Case 1 and Case 2 

are shown in Figure 3.6. 

 

 

 

Table 3.2 Description of Case 1 and Case 2. 

Case 1 Case 2 

Original model Add noise at every 3 point 

 

 

 

 

Figure 3.6 Observed data after adding noise (every 3 points). 

 

 

 

Step 2: Identify parameters to be matched 

Before carrying out the history matching, key variables to be matched for the GA 

should be specified through the literature review of polymer flooding. In this polymer 
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flooding case, possible variables, such as relative permeability, permeability reduction due 

to polymer and effective porosity for polymer, has been considered over an objective 

function of oil cut. The endpoint (kr1low and kr2low) and the exponent (e1low and e2low) 

for water and oil phase at low trapping number are selected regarding relative 

permeability. Also, the effect of permeability reduction (crk) has been chosen since it 

affects reducing the mobility of the polymer rich phase. Lastly, effective porosity for 

polymer (ephi4) is used to account for inaccessible pore volume in the case of polymer. 

Table 3.3 describes the final list of parameters, including the value of low and high 

boundaries as well as that of initial and true model.  

 

 

 
Table 3.3 List of key parameters and their ranges (Polymer flooding). 

 Uncertainty Reference Base Low High 

Relative Permeability 

kr1low 0.2 0.8 0.1 1.0 

kr2low 1.0 0.2 0.1 1.0 

e1low 1.5 2.0 1.0 7.0 

e2low 2.0 3.5 1.0 7.0 

Permeability Reduction crk 0.2 0.35 0.0 0.6 

Effective Porosity for Polymer ephi4 0.85 0.95 0.5 1.2 
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Step 3: History matching results 

Based on the selected parameters in the previous step, we have performed history 

matching process using the GLOBAL (software by MCERI group), which takes the 

Genetic Algorithm as a global search algorithm. Once the convergence criterion is met, 

updated models are selected as history matching results. Among updated simulation 

models, we have chosen five cases that have different values of uncertain parameters in 

order to rank the results. As shown in Figure 3.7 and Figure 3.8, although both cases have 

initial huge discrepancies in oil cut between the base and true model, eventually the 

updated models agree well with the observed response. Compared to the Case 1, selected 

simulation models for the Case 2 have larger difference at the early time because of 

included outliers. In addition, the overall history matching results of Case 2 slightly vary 

with those of Case 1 due to the effect of aberrant data points. 

 

 

 

 

Figure 3.7 History matching results (Case 1). 
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Figure 3.8 History matching results (Case 2). 

 

 

 

Step 4: Results in MLRA 

Before evaluating history matching results, a thorough inspection on production 

history is required. Identifying possible outliers from the history data enables more 

improved assessment of updated models. While the MLRA is performed, every data point 

is able to calculate the confidence interval of the estimated value with certain size of span 

(n) and t-value (Table 3.4).  The size of window (n) for linear regression can be chosen by 

examining the observed data. For this case, t-value has been selected with the degree of 

freedom (n=10) and 90% confidence interval. 
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Table 3.4 Key input parameters for the MLRA (Polymer flooding). 

Case 1 

Window (n) 8 

t-value (90% confidence interval) 1.860 

Case 2 

Window (n) 10 

t-value (90% confidence interval) 1.812 

 

 

 

That confidence interval serves not only as the tolerance level for screening out outliers 

but also as the criteria when assigning the quality index at the next step. The observed 

data, which is located above upper bound (red dash line) or below lower bound (blue dash 

line) from the estimated value, has an opportunity of being errors. Accordingly, they need 

to be marked, which are no longer considered for the following steps. As we can expect, 

the Case1 does not have any suspicious data (Figure 3.9) whereas the Case 2 has some 

abnormal data that are successfully excluded during the process of the MLRA (Figure 

3.10) 
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Figure 3.9 Result from MLRA (Case 1). 

 

 

 

 

Figure 3.10 Result from MLRA (Case 2). 
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Step 5: Results in HMQI 

Once the several well-matched history matching are selected, the quality index is 

assigned on each data point, depending on the tolerance level that is predefined at the 

previous step. If the difference between the measured and calculated data is within the 

tolerance level, that data point obtains the index of 1. Otherwise, the index of 0 is assigned, 

which implies that simulated response is located in unacceptable range. After assigning 

the index on every point, overall scores of wells can be achieved by averaging. These 

scores can be used as a criteria to decide the quality of history matching well by well. 

Furthermore, if we average indexes from all wells to obtain one single composite value 

for the simulation run, it becomes proper standards with respect to the comparison of 

history matching results. Figure 3.11 represents the averaged HMQI from all wells, 

indicating the quality of history matching for oil cut. Here, since we only use one 

objective, this HMQI is identical to the indication of history matching quality for each 

simulation run. Although Case 2 has a lot of noisy data, the result of HMQI of the Case 2 

shows higher value than that of Case 1. Because the value of the HMQI is affected by t 

value, which is determined by confidence level and the degree of freedom, the value of 

HMQI means that how many points are located within the predefined tolerance. Due to a 

large number of outliers in observed data, the size of span for Case 2 is bigger than for 

Case 1, which leads to wider confidence interval. It allows the Case 2 to have a bit more 

higher value of HMQI.  
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Figure 3.11 Results from HMQI (Oil Cut): Case 1 (left) and Case 2 (right). 

 

 

 

3.1.4 Results and Discussion 

Figure 3.12 and Figure 3.13 show the comparison of the HMQI to the SSE method 

and the L1-norm for the Case 1 and Case 2 respectively, which have different degrees of 

noises in their observed data. The effect of data outliers can be noticed from the distinct 

results of the Case 1 and Case 2. In the Case 1, the result of the HMQI is consistent with 

that of the SSE. In contrast, the HMQI indicates a different simulation case as a good 

history matching result for the Case 2, which is different from the SSE method. Since the 

Case 2 has more data outliers than the Case 1, the calculation of the data misfit has been 

significantly affected by the outliers. In Figure 3.14, it is noticed that the considerable 

portion of data misfit derives from the doubtful data in Case 2 when calculating the SSE. 

This perceptible amount of misfit from outliers implies that those possible noisy data can 

substantially influence evaluation of history matching results, based on the data misfit 

calculation. In addition, it is possible that worse history matching results that are close to 

noise points can result in smaller data misfit, which causes an erroneous conclusion as a 

better history matching model. However, the HMQI with the MLRA ignores aberrant data 
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before the evaluation of history matching so that the quality of history matching results 

can be determined only by the meaningful observed data. Table 3.5 shows the list of global 

variables and comparison of two realizations (model 143 and 144) with the reference 

model for Case 2. Updated parameters of model 143, which has been ranked as the best 

case according to the HMQI, are closer to those of true model than model 144. This 

indicates that the HMQI are more effective to determine the best-matched history 

matching result than the calculation of misfit, including the ability to screen-out the 

suspicious data automatically. 

 

 

 

 

Figure 3.12 Comparison of the HMQI to the SSE (Case 1). 

 

 
 



 

37

 

 

 
Figure 3.13 Comparison of the HMQI to the SSE (Case 2). 

 

 

 

 

Figure 3.14 Portion of misfit from outliers in Case 2 (Red). 
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Table 3.5 Comparison of key global parameters. 

 Uncertainty Reference 143 144 

Relative Permeability 

kr1low 0.2 0.34 0.34 

kr2low 1.0 0.94 0.82 

e1low 1.5 2.6 2.6 

e2low 2.0 1.0 1.0 

Permeability Reduction crk 0.2 0.28 0.32 

Effective Porosity for Polymer ephi4 0.85 0.87 0.87 

 

 

 

3.2 Application to ASP Flooding 

3.2.1 Introduction to ASP Flooding 

Despite the considerable costs of chemicals, ASP (Alkaline-Surfactant-Polymer) 

flooding has been proposed as one of the promising enhanced oil recovery techniques. 

Typically, chemical processes have been failed to overcome inherent disadvantages, such 

as significant amounts of surfactant loss due to adsorption. The ASP flooding is carried 

out by injecting the combination of alkali, surfactant and polymer together to solve those 

problems and also obtains the synergy of those components. The primary objective of ASP 

flooding is to mobilize the remaining oil mainly by reducing the oil-water interfacial 

tension (IFT). First of all, alkali reacts with the acid component in a crude oil, generating 

the surfactant in situ. This in-situ surfactant, petroleum soap, is different from an injected, 

artificial surfactant. In addition, alkali prevents the retention of surfactant on the rock 
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surface, which allows small amounts of surfactant to be injected during the ASP process. 

Secondly, surfactant, including the one generated from the alkali, plays a significant role 

in lowering the interfacial tension, which enhances the microscopic sweep efficiency 

(Nelson et al., 1984). As surfactant is added to the system, the hydrophilic part of the 

surfactant is directed into aqueous phase whereas hydrophobic part toward hydrocarbon 

phases. Decrease in IFT can be achieved by the increase of the solubility between water 

and oil resulting from above mechanism. At last, the addition of polymer supports the 

progress of the sweep efficiency and makes emulsions, which are created by soap and 

surfactant, stable because of its high viscosity to delay coalescence (Sheng 2013). When 

it comes to the adsorption, alkaline and polymer injections with surfactant help to reduce 

the surfactant adsorption significantly, thereby decreasing the required amount of 

chemicals to be used. As an additional advantage, the mixture of surfactant with the soap 

generated in situ allows a wider range of salinity in which the interfacial tension is low 

since the petroleum soap and synthetic surfactant have different optimum salinity. The 

synergy of ASP flooding has been demonstrated by comparing with other chemical 

flooding methods showing that the oil recovery of the ASP flooding is even much higher 

than the sum of other methods (Olsen et al. 1990).  The recovery factors from ASP, 

Alkaline and Polymer flooding are 45.3%, 10% and 11.6% respectively.  

 

3.2.2 Model Description 

The ASP flooding case, the pilot application, is history matched through the 

calibration of reservoir properties, especially with regard to permeability and adsorption. 
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The three-dimensional grid consists of 15 × 15 × 36 cells with the pilot area of 492 ft × 

492 ft × 157.5 ft. The initial oil saturation in the reservoir model with the pattern of 5 

wells—4 injectors and 1 producers— is shown in Figure 3.15. Four peripheral injectors 

flood this area, starting from water injection for the first 122 days through ASP flooding 

for 150 days, and lastly polymer has been injected for 300 days with the total simulation 

time of 578 days. In order to capture the essential chemical and flow properties of an ASP 

flood, a comprehensive reservoir-simulation model is built by the chemical compositional 

simulator UTCHEM, developed by the University of Texas at Austin. It has been known 

as the most advanced chemical flood simulator, which is used to run simulation for 

multiphase, multicomponent and three-dimensional in the displacement processes at both 

laboratory and field cases. The permeability and porosity distribution are shown in Figure 

3.16. Other key parameters as an input for the simulation are summarized in Table 3.6.  

 

 

 

 

Figure 3.15 Initial oil saturation. 



 

41

 

 

 

Figure 3.16 (a) Permeability distribution (b) Porosity distribution. 

 

 

 
 

Table 3.6 Input parameters for the simulation model. 

Parameter Value 

Well data 

1 Producer Pressure constrained at 1300 psi 

4 Injectors Rate constrained at 2105.5 𝑓𝑡3/𝑑𝑎𝑦 

Components 

Water, Oil, Surfactant, Polymer, Anion, Calcium, 

Sodium, Hydrogen, Alkali 

Reservoir permeability Avg. = 3511 md, 
𝑘𝑣

𝑘ℎ
= 0.3 

Initial reservoir pressure 1436 psia 

Depth 2632 ft 

Water viscosity 0.48 cp 

Oil viscosity 17 cp 
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The production of oil obviously increase between 0.19 PV and 0.43 PV, which is 

during the ASP flooding and about 54% of the initial amount of oil has been recovered 

(Figure 3.17). It implies that after significant drop in terms of oil cut with the 

waterflooding, the ASP flooding definitely helps to improve the oil recovery. At the 

beginning stage of polymer flooding, oil cut goes to zero because of a large amount of 

microeumulsion. One of the main issues in chemical flooding is adsorption of surfactant 

and polymer, which are shown in Figure 3.18 below. The difference between cumulative 

surfactant injected and produced, the same as for the polymer, represents the amount of 

adsorption. 

 

 

 

 
Figure 3.17 Oil cut, oil saturation and oil recovery. 
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Figure 3.18 Adsorption of surfactant (above) and polymer (below) in reference model. 

 

 

 

3.2.3 Procedure 

The history matching process for chemical flooding, which is involved with plenty 

of uncertain parameters, often needs the investigation of objective functions on the basis 

of the production history. After determining which objectives are more global and 

dominant among several types of objectives, we can identify corresponding parameters to 

a certain objective. Eventually, by classifying objective functions, we do history matching 

in hierarchical manner in order to achieve more efficient way of model calibration. 

However, while evaluating history matching results in terms of several objective 
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functions, the scale of each objective is not negligible. The SSE of all objective functions 

is affected by mainly the one having large scale, not considering the influence of every 

objective equivalently. In order to reduce the impact of different magnitude of scale, an 

objective function should take a proper weight factor that is normally not available or 

objectives have to be normalized before calculating the misfit. Therefore, in this 

subchapter, we make a comparison between the SSE method and the HMQI to show how 

effectively the HMQI approach manages objective functions, which has a various 

magnitude of scale. All the procedure regarding evaluation of history matching results is 

shown in Figure 3.19.  

 

 

 

 

Figure 3.19 Flowchart of model calibration and history matching evaluation. 
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Step 1: Identify parameters to be matched 

In order to evaluate the influence of possible parameters on production history, a 

set of variables, regarding relative permeability and adsorption in ASP flooding, has been 

selected. Sensitivity analysis has been already performed over the objective functions, 

such as oil cut, chloride concentration history, surfactant concentration and polymer 

concentration (Zhang 2014). The outcome of sensitivity analysis is displayed in Figure 

3.20 with the range of each parameter used for the sensitivity studies in Table 3.7. 

According to the results of sensitivity analysis, the model calibration has been divided in 

a hierarchical manner. Since the uncertain parameters of relative permeability like the 

endpoint and exponent for water, oil and microemulsion phase at low trapping number 

(kr1low, kr2low, kr3low, e1low and e3low) are dominant for all the objective functions, 

those parameters has been matched at the first stage of history matching over the objective 

functions of oil cut and chloride concentration. On top of that, due to increasing impact of 

parameters, associated with adsorption (ad31, b3, ad41 and b4) on history data of 

surfactant and polymer concentration, the second stage of history matching has been 

conducted on those uncertain parameters although they still are not influential, compared 

to relative permeability.  
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Table 3.7 List of key parameters and their ranges (ASP flooding). 

 Uncertainty Reference Base Low High 

Relative Permeability 

kr1low 0.6 0.3 0.1 0.7 

kr2low 0.93 0.5 0.1 1.0 

kr3low 0.6 0.3 0.1 1.0 

e1low 2.5 5 2 6 

e3low 2.5 5 1 7 

Surfactant Adsorption 

ad31 1.7 1.4 1.2 2.0 

ad32 0.05 0.08 0.01 0.09 

b3 1000 700 500 1500 

Polymer Adsorption 

ad41 2.0 2.3 1.5 2.5 

ad42 0.1 0.06 0.05 0.15 

b4 100 70 50 150 

 

 

 

 
 

Figure 3.20 Tornado charts for sensitivity analysis: oil cut, surfactant concentration, chloride 
concentration and polymer concentration. 
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Step 2: Results from first stage of history matching  

Based on the selected parameters in the previous step, we have performed history 

matching using the GLOBAL (software by MCERI group), which takes the GA as a global 

search algorithm. Once the convergence criterion is met, updated models are selected as a 

history matching results. As shown in Figure 3.21, although there are initially huge 

discrepancies in oil cut and chloride concentration between the base and true model, most 

of updated simulation cases show significant improvement.  

 

 

 

 

Figure 3.21 History matching results (a) Oil cut and (b) Chloride concentration. 

 

 

 

Step 3: Results from second stage of history matching 

After the first stage of history matching, local and less dominating parameters 

regarding surfactant and polymer adsorption have been matched while honoring the results 

of dominating parameters in the previous history matching with the calibrated range. In 

addition, the surfactant and polymer concentration has been included as the new objective 
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functions for the second stage. Figure 3.22 shows history matching results for all the 

objective functions in the second stage of history matching. Oil cut and chloride 

concentration are already well-matched with the initial model due to the first stage of 

calibration. In contrast, it has been noticed that the updated models for surfactant and 

polymer concentration has been close to the production history, compared to the base 

model, which indicates a good agreement with the observed data.   

 

 

 

 
 

Figure 3.22 History matching results (a) Oil cut, (b) Chloride conc., (c) Surfactant conc. and (d) 
Polymer conc. 

 

 

 

Step 4: Results in MLRA 

The results from the process of MLRA can be seen in Figure 3.23. Each graph 

shows the result of each objective function. Since this ASP flooding case has only one 
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production well, we do not show the result of the well particularly. Reference model does 

not have any data errors so that all the observed data are placed within the range of the 

confidence interval. Red and blue dashed line represent upper-bound and lower-bound of 

confidence interval respectively. Although this step does not contribute to the examination 

of probable data outliers, it provides the tolerance that is needed for the subsequent step. 

The size of window (n) for linear regression can be chosen by examining the observed 

data. For this case, t-value has been selected with the degree of freedom (n=10) and 90% 

confidence interval for both 1st stage and 2nd stage of history matching evaluation (Table 

3.8). 

 

 

 

Table 3.8 Key input parameters for the MLRA (ASP flooding).  

Window (n) 10 

t-value (90% confidence interval) 1.812 

 

 

 



 

50

 

 

 

Figure 3.23 Results from MLRA. 

 

 

 

Step 5: Results in HMQI 

Similar to the polymer-flooding case, we evaluate the history matching results by 

comparing the results of a reference and simulation models. After assigning the index on 

every data point, the single number of quality index of each simulation run is shown in 

Figure 3.24 by averaging for all the objectives. As a result of HMQI, the simulation cases, 

#158 and #20, have been selected as the best-matched history matching result respectively 

for each stage. Furthermore, since this ASP flooding case uses four objective functions 

that have different scales for model calibration, overall HMQI of one simulation run can 

be indicative of the history matching quality, integrating results of all the objectives 
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readily with the normalized value. Regardless of the scale of each objective, which ranges 

from the order of 10−4to10−1, the total HMQI is within the range of 0 to 1.  

 

 

 

 

Figure 3.24 Results from HMQI (1st stage). 

 

 

 

 
Figure 3.25 Results from HMQI (2nd stage). 
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3.2.4 Results and Discussion 

Obtaining not only the overall index of each objective, but also overall one 

simulation model can be achieved by averaging. The averaging of HMQI among different 

objectives is not difficult because HMQI provides already normalized value, while 

additional normalizing processes should be required for the calculation of misfit. This 

advantage also allows absolute evaluation on history matching results as well as relative 

comparison among several simulation cases. In other words, a score of 0.9 implies that 

90% of data points are located within the predefined interval, which is tolerance. 

Therefore, the HMQI approach successfully functions as the indicator of history matching 

quality for the evaluation of one simulation case. On the other hand, although we 

normalize all objectives in order to reduce the effect of different scale of objectives, the 

total value of SSE is meaningless when considering only one simulation case. Another 

way to rank the results of history matching, Sum of Square of Error (SSE), is shown in 

Figure 3.26. Due to the large difference of the scale of objectives, especially between oil 

cut and surfactant concentration, normalization has been performed before calculating the 

misfit. However, the overall SSE is still affected by certain objective. In other words, the 

ranking of the simulation models primarily reflects oil cut and surfactant concentration, 

not considering every objectives identically since the sum of the square of errors has 

different degree of value (Figure 3.28). It could result in an inaccurate conclusion during 

the evaluation of history matching quality. On the other hand, the advantage of HMQI, 

which already has the normalized value between 0 and 1, provides more consistent and 

robust way to rank the simulation models since the magnitude of unit of objectives does 
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not impact on the evaluation. In Figure 3.26 and Figure 3.27, the smallest SSE is not the 

case that has the highest value of HMQI. The SSE method may fail to reach the right 

conclusion because its result does not take all the objectives into account evenly. For most 

of the parameters, the highest ranking Case 158 from the HMQI shows better improvement 

than Case 61 from the SSE at the 1st stage (Table 3.9). Similarly, best-matched Case 20 

from the HMQI at the 2nd stage has closer parameters to the reference model (Table 3.10). 

 

 

 

 

Figure 3.26 Comparison of the results between HMQI (left) and SSE (right) (1st stage). 
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Figure 3.27 Comparison of the results between HMQI (left) and SSE (right) (2nd stage). 

 

 

 

 

Figure 3.28 Results of SSE: All objectives. 
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Table 3.9 Comparison of key global parameters (1st stage). 

 Uncertainty Reference Case 158 Case 61 

Relative Permeability 

kr1low 0.6 0.46 0.42 

kr2low 0.93 0.94 0.82 

kr3low 0.6 0.34 0.52 

e1low 2.5 2.27 2.27 

e3low 2.5 2.2 2.2 

 

 

 
Table 3.10 List of key parameters and their ranges (2nd stage) 

 Uncertainty Reference Case 20 Case 94 

Surfactant Adsorption 

ad31 1.7 1.71 1.68 

b3 1000 746 733 

Polymer Adsorption 

ad41 2.0 2.16 2.4 

b4 100 95 123 
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CHAPTER IV 

FIELD APPLICATION 

  

This chapter gives two field applications of the History Matching Quality Index 

with the Moving Linear Regression Analysis. Using those methods, we show the capacity 

of this approach when it comes to readily evaluating history matching results. We 

implement the HMQI in field cases that were calibrated by a structured history matching. 

Each example performs the global calibration, followed by the local calibration, such as 

water cut matching. Similar to the synthetic case, we apply the MLRA in order to exclude 

possible data outliers. Then, we also use the HMQI to quantify the degree of history 

matching results and thus compare several simulation models to determine the best 

matched case efficiently. These two cases validate the convenience and simplicity of this 

approach and show the feasibility and practicability by applying the method to the real 

field cases successfully.  

 This chapter also includes the usability of this new evaluating method with regard 

to displaying the improvement of history matching results quantitatively. In contrast to the 

Sum of Square of Error, the HMQI represents the quality of a simulated model as a 

normalized number, allowing us to observe the progress of the history matched model 

from the initial model. 
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4.1 Application to Channelized Reservoir 

The data regarding this field has been provided by an oil and gas company for the 

purpose of research and education. Due to confidentiality, the references of information 

related to this field, such as the location and production history, are not given. This 

reservoir has 7 producers and 2 water injectors, which is characterized as sand-field 

channels. The model of the reservoir contains 50 by 30 by 20 cells and the geologic model 

consists of 7 geological regions that are divided by seismic amplitude difference. The 

structure and well location of the reservoir are given in Figure 4.1. 

 

 

 

 

Figure 4.1 Structure and well location of the reservoir (permeability distribution).  
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4.1.1 Procedure 

The history matching workflow for this channelized reservoir case is divided into 

two stages: global calibration and local calibration. In the global calibration, we use the 

Genetic Algorithm to match the global parameters that are related to reservoir energy, such 

as pore volume multipliers, transmissibility multipliers and aquifer strength. In order to 

calibrate the model at a global level, field total fluid productions, bottomhole pressure 

(BHP) and modular dynamic tester (MDT) are selected as objectives. The Following 

stages for local calibration use local parameters to match well by well water-cut response. 

Globally updated models are calibrated again using a streamline-based history matching 

software in MCERI (Destiny). Evaluation has been conducted on each stage to determine 

the overall ranking of the history matching results. Figure 4.2 illustrates a complete 

flowchart of the evaluation of history matching results, as well as the model calibration 

process, followed by detailed explanation and its result of each step.  

   



 

59

 

 

 

Figure 4.2 Flowchart of model calibration and history matching evaluation. 

 

 

 

Global calibration 

Step 1: Define uncertain parameters and their range for GLOBAL 

Table 4.1 shows the selected list of global parameters and their ranges for global 

model calibration. Multipliers for horizontal permeability and pore volume are used 

instead of real values and also aquifer strength is included.  
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Table 4.1 List of key global parameters and their ranges. 

Uncertainty (Multipliers) Base Low High 

PERMX3 1 0.1 1 

PERMX5 1 0.1 2 

PERMX6 1 0.1 1 

𝐾𝑉/𝐾𝐻 1 0.05 1 

MULTPV5 1 0.1 1.0 

MULTPV6 1 0.1 1.5 

AQUIFER 300 100 500 

 

 

 

Step 2: History matching results 

After global model calibration, bottomhole pressure shows improvement from the 

initial response. Figure 4.3 represents some of the enhanced well responses, which is 

closer to the history data than initial response. Originally, BHP of the base model is higher 

than the actual data. However, the overall BHP has been adjusted to the production history 

after we update global key parameters.  
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Figure 4.3 History matching results after global calibration (BHP). 

 

 

 

Step 3: Results in MLRA (BHP) 

For the purpose of obtaining the tolerance and excluding suspicious data, the 

MLRA has been performed. The major input parameters to implement the MLRA are 

shown in Table 4.2. Appropriate size of the span (n) should be selected after examining 

observed data. With the size of the window (n) and the certain level of confidence interval, 

the t-value is determined for the regression. Figure 4.4 shows that the outcome after 

conducting the MLRA. The history data of BHP is relatively smooth and does not have 

many outliers, which means most of the observed data are located within the confidence 
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interval on the basis of estimated values (between upper-bound and lower-bound, which 

are a red dashed line and a blue dashed line respectively).  

 

 

 
Table 4.2 Key input parameters for the MLRA (BHP). 

Window (n) 8 

t-value (90% confidence interval) 1.860 

 

 

 

 

Figure 4.4 Result from MLRA (BHP). 
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Figure 4.4 Continued. 

 

 

 

Step 4: Results in HMQI (BHP) 

Based on the tolerance from the previous step, each data point of history matching 

results has been evaluated whether the difference between the actual and updated response 

is smaller than the tolerance. Consequently, one simulation run has a single composite 

HMQI value by averaging indexes of every point. We use this HMQI value to assess the 

history matching quality. Not only does HMQI represent the relative comparison between 

several simulation models, but also it indicates the absolute evaluation. For the objective 

of bottomhole pressure, the simulation of #610 has been chosen as a well matched model. 

It will be considered for overall objectives together after the local calibration. 
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Figure 4.5 Results from HMQI (BHP). 

 

 

 

Local calibration 

Step 5: Perform Destiny 

Further history matching procedures have been conducted in order to match the 

well-level parameters. Compared to the initial response, updated models show a 

reasonable match although well A9 has not been improved sufficiently.  
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Figure 4.6 History matching results after local calibration (WWCT). 

 

 

 

Step 6: Results in MLRA (WCT) 

The process of MLRA is the same as the application in the BHP. Table 4.3 shows 

the list of the size of the window and corresponding t-value with the certain confidence 

interval. Contrary to bottomhole pressure, water cut has some doubtful data that has been 

excluded by the MLRA for accurate history matching evaluation (Figure.4.7). Black 

unfilled dots indicate possible data outliers and black filled dots are preserved data. 
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Table 4.3 Key input parameters for the MLRA (WWCT). 

Window (n) 10 

t-value (90% confidence interval) 1.812 

 

 

 

 

 

 

Figure 4.7 Result from MLRA (WWCT). 
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Step 7: Results in HMQI (WCT) 

Based on the tolerance given by the process of MLRA, Index has been assigned 

on each data point by comparing the difference between simulated and observed data. 

Similar to bottomhole pressure, each simulation model has one HMQI value, which can 

be used as a criteria of ranking the history matching results. The simulation of #610 has 

been selected as the best matched model.  

 

 

 

 

Figure 4.8 Results from HMQI (WWCT). 

 

 

 

4.1.2 Results and Discussion 

In this subchapter, the HMQI approach is successfully applied to a field case. First, 

we eliminate suspicious data outliers from the observed data by performing the Moving 

Linear Regression. Secondly, our proposed approach provides a consistent way to make a 

judgement on the history matching results for a large number of wells. Although experts 



 

68

 

 

can visually assess the history matching results well by well on the basis of their 

experience, they have no clear criteria to integrate the assessment for overall wells. 

Thirdly, water-cut matching and bottomhole pressure matching, which have a 

distinguishable difference in their scale, have been evaluated equally. In Figure 4.9, the 

ranking of history matching results from the HMQI does not agree with the SSE method. 

This phenomenon might occur because the SSE method does not consider bottomhole 

pressure and water cut identical when calculating misfit. Figure 4.10 shows that the 

amount of misfit for water-cut matching is much larger than that of misfit for bottomhole 

pressure even if each objective is already normalized before calculating misfit. 

Accordingly, the total sum of square of error is significantly affected by water-cut misfit, 

resulting in biased evaluation for history matching results.  At last, the overall index from 

the HMQI approach not only allows relative comparison among several simulation cases 

but also implies absolute quality of history matching. For example, the Case 610, relatively 

the best-matched model among updated models, has an index of 0.8473, which means that 

the model is within the predefined tolerance with approximately 85% possibility.  

 

 

 

 

Figure 4.9 Results from HMQI (left) and SSE (right) for all objectives. 
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Figure 4.10 Results of overall SSE (top), BHP SSE (bottom left) and WWCT (bottom right). 

 

 

 

4.2 Application to Norne Field 

All grid information, associated with the properties and history of production data, 

were provided by the operator. The Norne field was discovered in 1991 and began 

producing in November 1997. The geologic model of the Norne field consists of five 

zones; the porosity ranges from 25 to 30%; the permeability has been within 20 to 2500mD 

(Steffensen and Karstade, 1995; Osdal et al. 2006). The reservoir model includes 113,334 

cells (active cells: 44,927) and has 27 producers and 9 injectors (Figure 4.11) The history 

matching period was selected from 1997 to 2006 for the objective functions of water cut 

and bottomhole pressure.  
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Previously, Kam (2015) has already matched history data using joint inversion 

with a multiscale approach to capture from larger- to smaller-scale heterogeneity 

efficiently. He proposed a novel semi-analytic approach to compute the sensitivity of the 

bottomhole pressure data in order to solve the problem that calibration through a 

streamline-based method does not maintain pressure matches. In this section, we apply the 

HMQI to quantify the degree of history matching quality, compared to the initial model. 

By performing the HMQI to this field, which has a lot of producing wells and different 

scale of objective functions, we could assess simulated models quantitatively and 

conveniently.  

 

 

 

 

Figure 4.11 Structure and well location of the Norne field. 
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4.2.1 Procedure 

 

Figure 4.12 Flowchart of model calibration and history matching evaluation. 

 

 

 

Step 1: History matching results 

After model calibration, some of well responses for bottomhole pressure and water 

cut are shown in Figure 4.13. Compared to an initial model, the final updated model shows 

improvement or maintains the initial response if it was already close to the history data. 
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Figure 4.13 History matching results: bottomhole pressure (left column) and water cut (right 
column). 
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Step 2: Results in MLRA 

For the purpose of obtaining the tolerance and excluding suspicious data, the 

MLRA has been performed. The major input parameters to implement the MLRA are 

shown in Table 4.4. Appropriate size of the span (n) should be selected after examining 

observed data. With the size of window (n) and certain level of confidence interval, t-

value is determined for the regression. Figure 4.14 shows the outcome after conducting 

the MLRA. The history data has some outliers, which are located outside of the confidence 

interval on the basis of estimated values. 

 

 

 
Table 4.4 Key input parameters for the MLRA (Norne field). 

Bottomhole pressure 

Window (n) 8 

t-value (90% confidence interval) 1.860 

Water cut 

Window (n) 10 

t-value (90% confidence interval) 1.812 
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Figure 4.14 Result from MLRA: bottomhole pressure (left column) and water cut (right column). 
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Step 3: Results in HMQI 

Based on the tolerance from the previous step, each data point of a history 

matching result has been evaluated whether the difference between actual and updated 

response is smaller than the tolerance. Consequently, one simulation run has a single 

composite HMQI value by averaging indexes of every point. We use the value of HMQI 

to assess the history matching quality. In Figure 4.15, the comparison of the HMQI 

between an initial model and a final history matched model is given for each objective 

function. 

 

 

 

 

Figure 4.15 Results from HMQI: BHP (left) and WWCT (right). 

 

 

 

4.2.2 Results and Discussion 

In this field application, we also show feasibility of the HMQI with the MLRA 

method. This field case is composed of a larger number of producing wells, which requires 

a more careful and consistent tool to evaluate each well response. The overall HMQI of 

both initial and history matched models are compared in Figure. 4.16. Since total HMQI 
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itself represents the quality of history matching results, further processing is not needed to 

quantify the improvement of an updated model. Therefore, it is noticed that the final 

history matched model shows about 18% progress, based on the HMQI. In Figure 4.17, 

the result of HMQI is then compared from the normalized data misfit. For the bottomhole 

pressure, the History Matching Quality Index shows less improvement than the 

normalized data misfit does. When the HMQI is assigned, relying on the predefined 

tolerance, all the history matching results that are not within the tolerance are regarded as 

the same. This approach does not have exhaustive tools to differentiate among data points, 

which are not within the tolerance. In particular, bottomhole pressure responses for both 

the initial and final models have some points that are not located within the tolerance even 

if the final model is relatively closer to the observed data than the initial one. As a result, 

the HMQI cannot take the difference between the base and history matched model into 

account, considering them identically as an index of 0.   

 

 

 

 

Figure 4.16 HMQI for the initial model (left) and the final updated model (right).  
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Figure 4.17 HMQI (left) and normalized data misfit (right). 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

  

In this work, we have presented and summarized the History Matching Quality 

Index (HMQI) for evaluation of history matching results, including identifying and 

preparing the observed data efficiently with the Moving Linear Regression Analysis 

(MLRA). The HMQI has proven its ability to cleanse data of outliers and to eliminate 

subjectivity with the case study from synthetic to field cases. The Sum of Square of Error 

(SSE) method has been selected for a comparison to validate the feasibility of the HMQI. 

First, we demonstrated that the MLRA has efficiently excluded suspicious data 

points such as outliers. In order to prevent bias toward outliers in the evaluation of history 

matching results, careful analysis of the observed data and screening out outliers are 

required. With a certain degree of freedom and confidence level, the t-value is determined 

to perform the moving linear regression, which results in the confidence interval 

(tolerance). Depending on this confidence interval, the observed data that are not located 

within that interval was marked as the suspicious data outliers. Accordingly, marked 

points are not used to conduct the following steps when evaluating the history matching 

results. Furthermore, this process allows us to identify the trend of observed data 

simultaneously, not simply quantifying the degree of history matching quality.  

Second, we considered objective functions that have a different magnitude of scale 

equally through the HMQI. We tested the HMQI approach with the ASP flooding case, 

which used four types of objective functions, it leads to easier ranking, compared to the 



 

79

 

 

SSE method. Since the value of HMQI is already normalized, it does not require additional 

processes when comparing the results among several simulation cases. Consequently, the 

HMQI enables comprehensive decisions to be made, including all objectives as well as 

wells with one single composite value for the simulation run. 

Finally, the practicability of the HMQI with MLRA has been confirmed from field 

applications. For both channelized reservoir and Norne field applications, the HMQI 

showed advantages over the SSE method when it comes to excluding outliers, normalized 

values and a large number of wells. However, in the field case study that shows less 

improvement of history matching results, compared to the synthetic case, the different 

degrees of quality of history matching results are not well captured when they are outside 

of the predefined tolerance. Once the history matching results are not located within the 

tolerance, they are considered all the same way as an index of 0. The developed HMQI 

could benefit from the consideration of more detailed evaluation from this issue.  
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