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ABSTRACT 

 

Chances of cement sheath failure increase considerably when the application involves 

deep, high pressure/ high temperature (HPHT) wells. Such failures occur as a result of 

temperature and pressure-induced stresses created by well events such as hydraulic 

fracturing, well testing, enhanced oil recovery, completion, production, and work over, 

or other remedial treatments. These would impose huge operational costs and in some 

circumstances lead to loss of production. Analytical and FEA modeling research has 

been done in the past but fewer experimental studies focused on finding the fatigue 

endurance cycles of oil well cements under HPHT conditions.  

 

Abundant unconventional resources, producing from deeper horizons, numerous frac 

jobs in the US, and safety significance were the prime motivations for creating a new 

testing procedure for evaluating cement integrity under HPHT conditions. A novel 

HPHT cell was manufactured and mounted on a Chandler 7600, an extreme HPHT 

Rheometer. Cylindrical cement samples were cured and tested at constant confining 

pressure while the casing pressure varied cyclically. These samples failed after a certain 

number of cycles when reaching their fatigue endurance limit or if they had inconsistent 

chemistry to withstand the HPHT conditions.  

 

This research explains a method for cement integrity evaluation and identifies the fatigue 

failure cycles for 1,000 psi, 2,000 psi and 5,000 psi pressure differentials between the 

confining pressure and maximum casing pressure. Class H cement and class H plus 35% 

silica were used in these experiments and cement failures such as radial cracking, 

debonding and disking were observed.  
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CHAPTER I 

  INTRODUCTION AND LITERATURE REVIEW 

 

The U.S. shale gas production has grown rapidly in recent years; in 2010 production was 

at 10 bcf/day and in 2012, it raised to around 25 bcf/day.  This combined with a need for 

more domestic energy has brought more focus on U.S. shale gas drilling.  Production of 

natural gas from these shale regions is dependent on wellbore integrity and the durability 

of the cement sheath throughout the life of the well.  Shale wells are often drilled 

vertically through the upper formations, and then progress horizontally through the 

target reservoir.   

 

In the vertical section, zonal isolation and prevention of gas migration are top priority 

while in the horizontal section, cement slurry stability, set cement durability, and ability 

to withstand post cementing operations such as hydraulic fracturing and production 

through the life of the well are important concerns.  Laboratory studies focused on shale 

plays can examine the effects of post cementing operations and cyclic stresses on a 

cement sheath.   

 

The applications performed after cementing any string can have a significant effect on 

the cement sheath integrity.  The cyclic stresses due to continued drilling, fracturing and 

production can lead to bond failure at the cement interface with the casing or formation.  

This can lead to impaired zonal isolation, and sustained casing pressure, resulting in 

possible remedial work and down time.   
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Gas Migration 

  

Gas migration is defined as gas entry into a cemented annulus creating channels with the 

potential to provide a flow path of formation fluids, including hydrocarbons, into the 

wellbore.  Previous laboratory research has determined that a static gel strength (SGS) of 

500 lbf/100 ft2 or more is required to prevent short term gas migration. 

 

Short Term Gas Migration 

 

The most common problem occurring during primary cementing is the invasion of gas 

into the cement during the setting process. As cement gels, it loses the ability to transmit 

hydrostatic pressure. During this period, fluids (water and/or gas) can invade the cement 

and form channels. This flow of formation fluids can be from the pay zone to the surface 

or can be cross-flow between zones of differing pressure. This type of short term fluid 

migration problem often leads to long term zonal isolation problems and SCP.  

 

Long Term Gas Migration 

 

Changes in pressure and temperature which occur in expansion and contraction of the 

casing and cement sheath can cause cement to debond from the cement. Portland cement 

is a brittle material and susceptible to cracking when exposed to thermally induced or 

pressure induced tensile loads, (Bourgoyne and et al. 1991). Long-term gas migration 

occurs due to cracks in the cement sheath, microannuli, or channels in the set cement.  

Numerous factors during drilling operation such as poor mud removal, poor casing 

centralization, excessive free water and cement sheath shrinkage directly affect the long 

term well integrity. After drilling and reaching the total depth, events such as hydraulic 

fracturing, well testing, enhanced oil recovery, depletion, and work over, or other 

remedial treatments considerably affect the integrity of cement sheath. In addition, high 

pressure high temperature conditions impose a huge risk on effective zonal isolation if 
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the cement slurry is not properly designed. Cement sheath failures occur as a result of 

temperature and pressure-induced stresses.  

 

Flexible and expanding cements with enhanced mechanical properties have been 

introduced. Such flexible cements provide controlled expansion and have high tensile 

strength and young modulus. Resistance to corrosive gases such as CO2 is very 

important in order to reduce long term gas migration. Self-healing cement (SHC) 

provides long-term zonal isolation with a sealing material that has an intrinsic self-

healing property. Hydrocarbons activate the self-healing material whenever the integrity 

of the cement sheath is compromised (e.g., cracks and microannuli) and would then 

efficiently seal the leak path by swelling when in contact with hydrocarbons (Cavanagh 

et al. 2007). Engineering analysis must be utilized in order to assess stresses on the 

cement sheath during various well operations. Such a study keeps the cement sheath 

below its endurance limit and improves cement sheath integrity during the well life 

(Ravi et al. 2007). With the current momentum of tapping the new resources, cement 

integrity analysis is a key to operate securely offshore and onshore. 

 

Throughout the life of a well, operators and service companies implement several 

techniques such as hydraulic fracturing, EOR methods and gas lift, to produce more 

efficiently. Cement hydration, well testing, changeover from displacement fluid to 

completion fluid and depletion also inevitably affect cement integrity due to the stress 

change. There have been many studies on cement integrity (Griffith et al. 2004; Ravi et 

al. 2003; Ravi et al. 2008) but less attention has been given to the experimental side 

especially due to the lack of a HPHT equipment  for cement integrity evaluation. The 

new HPHT cell that was patented, manufactured and mounted on the Chandler 7600, 

provides the possibility of testing cement integrity under the HPHT conditions.  

 

Once the cement is repeatedly stressed, the number of cycles that it can withstand 

depends on the stress magnitude and the mechanical properties. In various industries, 
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‘endurance limit’ is the term coined for the stress below which the material can 

withstand a large number of stress cycles. Cement mechanical properties, such as 

Young’s modulus, tensile strength, and compressive strength, by themselves are not 

sufficient to determine integrity of the cement sheath.  

 

A detailed engineering analysis should to be conducted to determine how such 

operations change the stresses in the cement sheath and if the sheath can withstand these 

changes, (Ravi et al. 2004). Cement sheath failure cycle under cyclical loading could be 

determined from lab experiments. The objective of this research is to evaluate the 

integrity of class H plus 35% silica under cyclical loading at HPHT conditions. Figure 1 

shows different types of four cement failure that might occur during the life of a well. 

This study, between the five mechanical damages that can be induced to a cement 

sheath, focuses mainly on radial cracking, disking and inner debonding.  

Long-term cement integrity under downhole HPHT conditions and an approach for 

determining the integrity of cements under elevated pressure and temperature conditions 

have been investigated (Bois et al. 2012), however, this study offers new sets of data on 

cement failure under cyclical loadings at higher pressures and temperatures.  

 

 
Figure 1. Types of cement sheath damage.  
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Hydraulic Fracturing  

 

Hydraulic fracturing has been evolving since the 1940s to boost production from 

reservoirs with declining productivity. In addition, this technology along with horizontal 

drilling has enabled upstream industry to initiate production from unconventional oil and 

gas formations. Hydraulic fracturing is defined as injecting large volumes of water, sand 

or other proppant, and chemicals into production wells with enough pressure to create a 

crack in low-permeability geologic formations. The sand or other proppant holds the 

new fractures open and facilitates the oil or gas to flow out of the formation and into a 

production well. Water and the fracturing fluid remaining in the fracture zone can inhibit 

oil and gas production and must be pumped back to the surface, (Murrill 2013). Figure 2 

shows the global assessed shale plays.  

 

 
Figure 2. Global assessed shale plays. 
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In-situ Stresses  

 

Underground formations are confined and under stress. The local stress state at depth for 

an element of formation can be divided into 3 principal stresses: σ1 is the vertical stress, 

σ2 is the maximum horizontal stress and σ3 is the minimum horizontal stress, where 

σ1>σ2>σ3. Depending on geologic conditions, the vertical stress could also be the 

intermediate (σ2) or minimum stress (σ3). These stresses are often compressive and are 

distinguished in magnitude particularly in the vertical direction. The direction and 

magnitude of principal stresses are significant since they control the pressure needed to 

initiate and propagate a fracture, the shape and vertical extent of the fracture, the 

direction of the fracture.  A proper understanding on stress state distribution is a key to 

have a successful horizontal drilling and consistent production after hydraulic fracturing 

operation.  Figure 3 demonstrates hydraulic fracturing in a horizontal well versus a 

vertical well, (American Petroleum Institute 2009). 

 



 

7 

 

 

Figure 3. Hydraulic fracturing in a vertical well vs. a horizontal well. 

Knowledge about fatigue is extremely valuable both from an economic point of view 

and from the aspect of safety of the structures. New cement chemistries have become 

resistant to harsh downhole conditions. In other words, they can withstand higher 

concentrations of stresses and a higher percentage of varying loads. The Haynesville 

Shale, which is located in northwestern Louisiana, is a recent play with massive 

potential, estimated by some to hold four times the reserves of the Barnett. The 

Haynesville is not only becoming one of the hottest plays with respect to activity, but 

also in regards to one of the hottest downhole temperatures. Indeed, some of this play’s 

wells are reaching 380°F in bottomhole temperatures. Hydraulic fracturing creates 

artificial fractures inside the low permeability formations which allow more 

hydrocarbons to be produced. This procedure, however, will cause an inevitable series of 

fatigue cycles in downhole structures. The fatigue cycles may vary according to the well 

events and number of stages in hydraulic fracturing.  Doubtlessly higher pressures and 

temperatures add complexity to daily well operations and hydraulic fracturing has to be 
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properly utilized in a sense that not only it unleashes undeveloped unconventional 

resources but also responsibly stays compatible with environmental constraints. 

 

Fatigue 

 

The American Society for Testing and Materials (ASTM) defines fatigue life, Nf, as the 

“number of stress cycles of a specified character that a specimen sustains before failure 

of a specified nature occurs”, (Wikipedia). Fatigue is defined as the initiation of micro 

cracks and their propagation due to repeated applications of stress. A structural member 

that may not fail under a single application of static load may easily fail under the same 

load if it is applied repeatedly. Failure under cyclic (repeated) loads is called fatigue 

failure, (Petrowiki). Damage due to fatigue may be divided into different categories 

dependent of the loading conditions. Different types of fatigue are as follows: 

• High-cycle fatigue: When the material requires more than 103 cycles to fail, the 

material undergoes the high-cyclic fatigue. The deterioration process is related to 

load frequencies. 

• Low-cycle fatigue: This type of fatigue is defined by a number to failure which is 

less than 103. The low-cycle fatigue is often connected to high loading 

amplitudes which results in loss of material stiffness. 

• Thermal fatigue: Result of temperature gradient that varies with time in such a 

manner as to produce cyclic stresses in a material specimen. This type of fatigue 

exists when rapid cycles of alternate heating and cooling occur. Due to 

expansions and extensions, crack propagation will start and the fatigue process 

will be accelerated significantly by increasing of temperature variation.  

Oil and gas wells usually go through low cycle and thermal fatigue during the life of a 

well. Occurrence of fatigue failure in the drill string is one of the most common and 

expensive type of failures in drilling operations. Cyclic stresses along with corrosion can 

considerably shorten the life of a drill pipe. Figure 4 shows a long term pressure 
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transient test to understand the reservoir limits and define the reservoir potential. Such a 

test occurs with several pressure and temperature changes and it can cause low-cycle and 

thermal fatigue in the cement. 

 

 
Figure 4. Extended well test results in pressure and temperature cycles. 

Characteristics of Fatigue 

There are five important fatigue characteristics:  

I. The greater the applied stress range, the shorter the life. 

II. Fatigue life scatter tends to increase for longer fatigue lives. 

III. Fatigue is a stochastic process, often showing considerable scatter even in 

controlled environments. 

IV. Damage is cumulative. Materials do not recover when rested. 

V. Fatigue life is influenced by temperature, surface finish, microstructure, presence 

of oxidizing or inert chemicals, residual stresses, etc. Cements with higher 

Poisson’s ratio and lower Young’s Modulus show better.  

At temperatures below 300 ° F, the temperature has negligible effects on the cement low 

cycle fatigue. The elastic strain and plastic strain developed by thermal stress in cement 

are very small compared to the strain developed by the bottomhole pressure under low 

http://en.wikipedia.org/wiki/Stochastic
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cycle fatigue range, (Yuan and et al., 2013a, 2012b).  As the confining pressure 

increases, the cement shows more plasticity and can take more pressure cycles.  

 

In high pressure wells, the cement fatigue failure probability increases as the reservoir 

pore-pressure decreases. Cements with higher Poisson’s ratio and lower Young’s 

Modulus show better low cycle fatigue behavior.  Within the requirement of 

compressive strength, the cement with higher plasticity is preferred for HPHT wells and 

steam injection wells.  

 

More investigations need to be carried out to verify cement fatigue behavior at the 

confining pressure above 10,000 psi and temperature above 300 ° F. Beyond 300 ° F, the 

temperature may have effect on cement low cycle fatigue however below 300 ° F, the 

temperature may have effect on the high cycle cement fatigue (Yuan et al. 2012b). 

Cyclic stress state, geometry, cement porosity, loading direction, environment and crack 

closure affect fatigue-life of a cement sheath.  

 

The basis of the analytical model for determination of stresses in wellbores was 

presented by Ugwu (2008). It takes the mechanical properties of casing, cement and the 

formation into account and the casing and cement are treated as multi-cylinder-setup as 

assumptions.  The stress distributions are expected in the cement sheath depending on 

the loading situation. Figure 5 illustrates the radial and tangential stress. These stresses 

might create microannuli or cause a tensile or compressional failure. The ideal cement 

with high durability must have excellent tensile strength. 

 

Most of the commercial software have not yet been validated by experimental data and 

they purely are derived of FEA analysis. In addition, the initial stress in the cement 

sheath is another key unknown which the industry has been trying to understand. 

Extreme conditions and how different cements would react to downhole environments is 

still being researched.    
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Figure 5. Stress distributions in the cement sheath.  

Sustained Casing Pressure  

 

Sustained Casing Pressure (SCP) is a major concern of wellbore integrity. If the casing 

string is cemented properly, gauges on the casing annulus should read zero psi. A small 

amount of pressure can be created by thermal expansion of fluids, but once that pressure 

has been bled off, the pressure on the casing annulus should remain at zero psi. If the 

pressure returns after the well has been bled down, then the well is said to exhibit SCP. 

This could be the result of the cement slurry not having been placed in the entire annulus 

and/or the inability of the cement sheath to withstand stresses from well operations (Ravi 

and Darbe 2010). Bourgoyne et al. (1991) identified 11,000 casing strings in 8,000 wells 

in the Gulf of Mexico that indicated sustained casing pressure. According to an MMS 

report in 2004, about 6,650 wells had SCP and 33% of them were linked to leaking 

cement. The cost of removal was estimated as $650 MM. In 2006 the Petroleum Safety 

Authority of Norway (PSA) determined that about 18 % of wells on the Norwegian 

Continental shelf (NCS) may suffer from well integrity issues. According to Watson and 
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Bachu (2007, 2009), in onshore Alberta, about 142,000 wells surveyed, exhibited 

surface casing gas migration, Figure 6, (Feather 2011). Sustained casing pressure 

buildup over time may be analyzed to determine cement permeability, location of leak 

and the nature of the leakage process. SCP can be caused by tubing or casing leaks, poor 

cementing, or damage to the cement sheath resulting from thermal and pressure loading. 

 

 
Figure 6. A global percentage of wells with integrity issues. 

There are two main solutions for SCP. First, cement slurry should be designed with 

optimal elasticity and tensile strength which allows cement sheath to withstand cyclic 

loads and reduces the likelihood of fatigue failure. The second solution would be using 

self- healing cement which repairs itself automatically when is exposed to formation 

fluids such as crude oil or gas. Figure 7 shows Crystal Geyser, where CO2 is leaking out 

from an abandoned well, Photo courtesy of Gouveia2.   

 

Figure 8 displays the Deep Horizon blowout which occurred in 2010 in Gulf of Mexico, 

(U.S Coast Guard via Getty image). Experimental results indicated that the thermal and 

stress induced fatigue affect the integrity of cement sheath. Changing the pressure of a 

casing string was researched by Jackson and Murphey (1993) while Goodwin and Crook 

(1990) investigated both pressure and temperature effects. Casing pressure tests are 
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routinely conducted to verify the competency of each string. Pressure tests are also 

performed prior to perforating, fracturing and after setting packers or bridge plugs.  

 

 
Figure 7. Crystal Geyser, CO2 from abandoned well. 

High pressures are also experienced during acidizing, fracturing, and cementing 

operations, (Bourgoyne and et al. 1991). Goodwin and Cook (1992) showed that at the 

time that the pressure inside the casing is reduced, the cement may not have full elastic 

recovery. This can result in damage to the casing/cement bond by making small micro 
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annulus. Casing expansions induced by excessive internal casing pressures can cause 

radial stress cracks in the set cement as well.   

 

 
Figure 8. Deep Horizon blowout, 2010.   

Cement sheath stress cracking as a result of excessive temperature changes, generally 

occurs in the upper one-third to one half of the well. Typical causes of such cracks 

include pressure testing the casing after the cement has attained high compressive 

strength. Low-compressive-strength (500 to 1,000 psi) cements are more ductile than 

other cements and can withstand the stress cycling (Goodwin and Crook 1992). Also, 

cement with ultrahigh compressive strength (> 12,000 psi) will withstand stress cycling 

without cracking. One suggestion for circumventing the cracking problem is to use low 

density cement slurry to for the entire well (deleting the high-strength tail slurry); where 

pumping low-density, low-compressive strength cements was possible, the cracking 

problem practically was eliminated (Goodwin and Crook 1992). Chevron researchers 

(Jackson and Murphey 1993) examined the effect of increasing internal casing pressure. 
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The cement was cured with the internal casing pressure of 1,000 psi and then pressurized 

and depressurized cyclically to investigate the effect of increasing internal casing 

pressure as observed during pressure testing. A microannulus was made which resulted 

in flowing gas after a cycle to 8,000 psi followed by a depressurization to 1,000 psi. This 

micro annulus stayed active whenever internal casing pressure was below 3,000 psi, 

(Bourgoyne and et al. 1991). Table 1 shows the consequences of poor well integrity 

before and at the time of production, (Sminchak et al. 2013). 

 

Table 1: Wellbore integrity: what can go wrong?   

 

 

 

 

Pre-Production 

Formation damage during drilling (caving)  

Casing decentralization (incomplete cementing)  

Inadequate drilling mud removal 

Incomplete cement placement 

Inadequate formation-cement/cement-casing bond 

Cement shrinkage  

Contamination of cement by mud or formation fluids 

 

 

Production 

 

Mechanical Stress/Strain 

 

Micro-annulus at casing-cement 

interface 

Disruption of formation cement bond 

Fracture formation within cement 
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High Pressure High Temperature Wells 

 

Drilling into some shale plays such as Haynesville or deep formations and producing oil 

and gas at HPHT condition, have been crucially challenging. Therefore, companies are 

compelled to meet or exceed a vast array of environmental, health and safety standards.   

Projections of continued growth in hydrocarbon demand are driving the oil and gas 

industry to explore new or under-explored areas. As the search for petroleum becomes 

more extreme in terms of depths, pressures, and temperatures, companies are leading the 

way with innovative technologies and products for HPHT drilling. A number of 

innovations are in the pipeline to help companies access hydrocarbon that were once 

deemed too difficult to exploit.   

 

HPHT Cementing Challenges 

 

HPHT conditions add many complexities to well cementing operations. Such harsh 

conditions can raise the risk of short term gas migration during the placement of the 

cement slurry and eventually create cracks in the set cement during the life of the well 

(Wray and Bedford 2009) . Cement sheath integrity is extremely critical in the salt 

during the production phase and narrow margin formations in which the fracture 

pressure and pore pressure are very close. Primary cementing is a critically important 

operation in construction of a well. Apart from providing structural integrity to the well, 

the chief purpose of the operation is to provide a continuous impermeable hydraulic seal 

in the annulus, preventing uncontrolled flow of reservoir fluids behind the 

casing(Yetunde and Ogbonna 2011). It is however speculative to believe that cementing 

is the only consideration for effective zonal isolation.  
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CHAPTER II 

 HPHT CEMENT EXPERIMENTAL SET UP  

 

The Model 7600 Ultra HPHT Viscometer is the highest pressure viscometer available to 

the oil and gas industry. It is designed specifically for the most severe conditions, it 

handles any temperature or pressure encountered during drilling and completion 

operations. The device also has proper safety features that ensure proper protection along 

with a removable sample vessel assembly with vessel elevator mechanism to facilitate 

set-up and cleaning. 

 

HPHT Cell 

 

This chapter presents the components of the high-pressure/high-temperature (HPHT) cell 

that were designed at Clausthal University of Technology, in Clausthal, Germany. The 

new setup which allows testing cement samples under wellbore conditions and geometry 

uses the Chandler 7600’s controlling software to reduce the cost of the experiment. 

Therefore, a cell-in-cell system was designed consisting of a large cell which is used to 

apply a confining pressure on a cement sample and a small cell which simulates the 

casing. 

 

Every sample is a cement sheath around the small cell located in the outer cell. After a 

confining pressure is applied to the outer cell, the pressure in the small cell can be cycled 

and thus the failure cycle of cement would be investigated. To reduce the expenses 

necessary to setup the experiment, a HPHT cell was built as an extension packet for the 

Ultra HPHT Chandler 7600 Rheometer. Also, the Chandler 7600’s controlling software, 

which is originally designed for measuring the rheological properties of drilling fluids, 

could be used for cement integrity evaluation experiments. This chapter also provides a 

better understanding about the equipment and how it operates. The top cell and the cell 
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body are made of 42Cr4Mo-steel. This material is also commonly used in manufacturing 

drill collars. The cell top has two high pressure connections to pressurize the cell itself 

with the first one and an inner cell with the second one. This inner cell can be 

surrounded by a cement sheath, which can be tested on the strength against tensile 

failure under cyclic loading. The setup allows the recreation of the situation as it appears 

in the borehole during production operations. Figure 9 shows the top cell which screws 

to the cell body (Teodoriu et al. 2013 and Kosinowski, C. 2012). Figure 10 

demonstrates different part of an small cell which basically simulates a casing's role in 

these experiments.  Figure 11 compares the small cell under no pressure versus when it 

expands due to increasing internal pressure. 

 

 
Figure 9. HPHT cell body and cell top. 
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Figure 10. Inner small cell. 

 

 
Figure 11. Casing and cement sheath expansion. 
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Sample Preparation 

 

The preparation of the samples is one of the most important steps in the testing 

procedure and special attention should be given to this part of the experiment. The inner 

cell has to be molded with cement sheath which will be tested in the cell. The small cells 

should be kept clean at all times and in case they get rusted, they should be instantly 

cleaned. Chipboard should be prepared where the molds can be glued on; it should be 

around ½ inch thick. Circles of 4 inch indicate the position of the Plexiglas mold for the 

cement sheath and 1 inch holes are drilled into it to center the cement on the inner cell. 

Second chipboard is attached to the bottom of the first one to prevent the cement slurry 

from flowing out to the bottom, Figure 12.  

 

 
Figure 12. Chipboard, PVC pipes and smalls cells. 

In order to clean the inner cells, a solvent like acetone could be used. It is important that 

no oil is on the surface before cementing the samples in order to achieve a good cement-

cell bond.  A few drops of silicone may be put into the drilled holes in the chipboard, the 
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cell gets inserted while being rotated. Some of the silicone will be squeezed out of the 

holes and should be removed to avoid impurities in the cement. Silicone will be also 

used to glue the PVC pipes on the chipboard. The tube should have an axial cut which is 

patched off with tape. This makes it far easier to remove the PVC pipe after the cement 

has cured for a sufficient amount of time. After the cells and the PVC pipe has been 

glued, the silicone sealant should dry for at an hour to avoid cement leaking from the 

mold. 

 

The next step would be mixing the cement according to API recommended practices 

10B, using the constant speed mixer. The molds should be filled a little bit over the top 

with slurry due to cement volume shrinkage during the curing process. Initial curing 

must take place under water to receive optimum hydration of the cement.  Curing under 

air might either cause cracks in the cement which significantly reduce its strength or 

create in situ stresses which affect the sample failure behavior. After curing, sample 

should be removed from the chipboard and PVC mold from cement sheath.  To remove 

the samples from the chipboard we can either try to lift them by using a large 

screwdriver or unscrew the second chipboard and push them through the bore.  

  

The PVC pipe should be easy to remove if you widen the cut in it by inserting a 

screwdriver. After atmospheric curing, the sample would be placed in the HPHT cell and 

get cured under pressure and temperature. Curing under HPHT conditions is a straight 

process. It must be ensured that the small cell is fully centralized unless fitting it in the 

cell might be problematic due to insufficient clearance in the cell. Figure 13 displays a 

schematic of the experiment while Figure 14 demonstrates a correct cement assembly to 

the top cell.    
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Figure 13. Experimental set up schematic. 

 

 
Figure 14. Cement sample. 
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CHAPTER III 

CEMENT INTEGRITY EVAULATION TESTING PROCEDURE  

 

The primary step in the slurry design is to quantify the stresses the cement sheath will be 

exposed to. This step enables the cement engineer to choose the right mechanical 

properties for the set cement. For this purpose, computer-aided stress analysis software 

is the key to understanding stresses in the cement sheath, (Taoutaou et al. 2007). 

According to the API procedure, in order to make 600 mL of slurry of 16.4ppg class H 

cement, 328 grams of water and 851 grams of cement is required. They should be 

weighed up separately and the water gets poured into a waring blender. The blender is 

set to shear at 4000 rpm for 15 seconds and all of the cement is added to the water during 

this period. After 15 seconds, the blender is set to high shear (12000 rpm) for 35 

seconds.  

Once the 35 seconds is up, the slurry can be used for any standard testing.  Weights of 

cement and water may change slightly based on the actual specific gravity of the cement 

sample. Different classes of cement have different water requirements.  It is based on 

reactivity and grain size, highly reactive cements use more water so that they do not 

react too quickly, also cements with smaller grain size use more water because they tend 

to react more quickly.  

 

Set Cement Properties 

 

Standard 16.4 ppg neat Class H slurry will build 4,000 to 5,000 psi overtime at any 

temperature below 230°F.  Depending on the temperature, this can take hours or weeks.  

The higher the temperature, the quicker the strength will build.  Above 230°F, standard 

16.4 ppg Class H slurry, builds strength and then begin to degrade.  Due to the 

temperature, the crystalline structure formed becomes unstable and the cement loses 

compressive strength and becomes more permeable over time.  In order to mitigate the 
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instability, 35% by weight of cement silica can be added to the slurry. By adding silica, 

the molar ratios of calcium and silica are shifted from that of normal cement and the 

crystalline structure that is created (xonolite) is stable at temperatures above 230°F.  

Final compressive strengths will be in about the same range as neat cements.  

 

Set A: Class H Cement  

 

Previously a cement integrity evaluation test was not performed under HPHT conditions 

thus set A was prepared to evaluate the class H cement durability at elevated pressures 

and temperatures under cyclical loadings. 16.4 ppg neat class H slurry was prepared for 

three identical samples according to the API standard procedure. Shortly after the slurry 

set, samples were placed under water at 110 °F and curing phase started, Figure 15. 

After a day of curing at 110°F and 15 psi, one of the three samples was tested under 

HPHT conditions while the other two were still curing under water.  

This sample was exposed to the constant confining pressure of 8,000 psi and casing 

pressures between the minimum of 8,000 psi and maximum of 19,000 psi, Figure 16. In 

real field operations 11,000 psi pressure difference might be rare however for the first 

set, high pressure differentials was chosen to ensure that the system operates properly 

and smoothly under HPHT conditions.  

In this experiment, as 8,000 psi was reached at the very first stage of the test, 5th second, 

T valve was closed while the sample’s temperature was 130 ̊ F. The temperature of the 

confining fluid, mineral oil, kept increasing until it reached 300 ̊ F. Since the volume 

was constant, the confining pressure started increasing while it was supposed to stay at 

8,000 psi. Inconsistent confining pressure caused the sample to catastrophically fail.  

Figure 17, shows sample I-A before and after the test. Therefore, it was decided to keep 

the T valve open until the final temperature is reached.  
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Figure 15. Set A, Class H cement. 

 
Figure 16. Plot of pressure and temperature versus time, sample I-A. 
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Figure 17. Inconsistent confining pressure caused severe cement sheath destruction.   

Sample II-A which was cured for two days under water was tested at HPHT conditions 

in a cyclical mode with different time intervals. For this test, the T valve remained open 

until the temperature of 300 ̊ F was achieved and the confining pressure remained 

constant while the casing pressure was changing from 8,000 to 17,000 psi, Figure 18. 

Figure 19, shows the sample II-A before (left) and after (middle and right). Cyclical 

loading at HPHT condition caused a radial crack.   

 

Sample III-A, which was cured for three days under water, got tested under HPHT 

conditions with the confining pressure of 8,000 psi and 35 casing pressure cycles 

between 8,000 psi and 17,000 psi, Figure 20. The purpose of this test was to evaluate 

the equipment capability for higher cycles at HPHT conditions. One radial crack was 

observed after the test. Figure 21 displays One radial crack in sample III-A after the test. 
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Figure 18. Pressure and temperature versus time, sample II-A. 

 

 
Figure 19. Cyclical loading caused a radial crack in sample II-A. 
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Figure 20. Sample III-A, pressure and temperature vs. time. 

 

 
Figure 21. One radial crack in sample III-A after the test. 
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Analysis on Set A, Class H Cement 

 

Test on sample I-A showed that in order to simulate the formation pressure in this 

experimental set-up, the confining pressure during the test must remain constant. Any 

test with inconsistent confining pressure is not valid and should be repeated. The second 

test performed on sample II-A showed the capability of this set-up to run cycles with 

different time intervals. The amount of time during which each cycle is performed, can 

be critical to simulate the time intervals in a well-test operation or a multi-stage frac job. 

The third test represents a higher cycle experiment at the similar HPHT conditions. 

 
Table 2: Analysis test matrix for three samples, Set A 

Sample # I II III 

 

 

Curing 

 

Time, hours  24 48 72 

Pressure, psi 15 15 15 

Temperature, ̊ F 110 110 110 

 

 

Testing 

Confining Pressure, psi      Variable 8,000 8,000 

Casing Pressures, psi 8,000 - 17,000 8,000 - 17,000 8,000 - 17,000 

Sample Temperature, ̊ F 300 300 300 

Cycle # 10 6 35 

Failure Type Totally 

Destructed 

One Radial 

Crack 

One Radial 

Crack 

 

Sample III-A and II-A end up both with a radial crack failure. It appears that curing one 

extra day for sample III-A made it more resistant towards higher cycles while sample 

IIA had the same failure by only 6 cycles due to one day less curing time, Table 2 and  

Figure 22. 
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Figure 22. Set A, cement failures after at HPHT conditions. 

 

Set B: Failure Cycle Investigation   

 

After successfully evaluating the HPHT cement integrity set up, it was intended to find 

out when the failure happens for class H cement samples, therefore set B was prepared. 

Sample I-B was cured for one day at atmospheric pressure and 170 ̊ F. This sample then 

went through 106 cycles between 8,000 psi and 17,000 psi while the confining pressure 

remained constant at 8,000 psi, Figure 23. Figure 24 shows three types of cement 

failures after 106 cycles, one radial cracking and two disking failures. Also after the test 

and when the sample cooled down, a slight twist caused the cement sheath to debond 

from the casing. The second sample was cured for two days under the same conditions. 

During the second test unfortunately while the temperature was stable and the T valve 

was closed, the delta pressure could not be achieved thus the test was stopped. This 

could be due to a mechanical leak in the small cell. The damaged cell was removed from 
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the set to prevent future use. Figure 25 and Figure 26 show the test results on sample 

III-B. Two radial cracks were created after 28 cycles.   

 
Figure 23. Sample I-B, pressure and temperature vs. time, 106 cycles. 

 

 
Figure 24. Sample I-B, radial cracking and disking, cement failures after 106 cycles. 
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Figure 25. A cycle was attempted at the beginning of the test, Sample III-B 

 

 
Figure 26. Two radial cracks, cement failures after 28 cycles, Sample III-B. 
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Analysis on Set B, Class H Cement 

 

Sample I-B faced inner debonding, radial cracking and disking failures after 106 cycles 

with one day of curing time however sample III-B was cycled 28 times and with more 

curing period (three days). Less repetition of cycles with 9,000 psi magnitude and higher 

curing time (more compressive strength) caused fewer fatigue effects in sample III-B, 

Table 3. Figure 27 shows the failure in three samples after being cycled at HPHT 

conditions. In the field, production casings are usually more susceptible to higher 

pressure and temperature cycles rather than intermediate casings. The cement systems 

designed for different casings might vary. It is prudent to schedule a fatigue endurance 

list experiment for each specific formulation with the realistic curing time, load and 

frequency of occurrence (cycles). 

 

Table 3: Analysis test matrix for three samples, Set B 

 

 

 

 

 

 

 

 

 

 

 

 

Sample # I III 

 

 

Curing 

 

Time, hours  24 72 

Pressure, psi 15 15 

Temperature, ̊ F 170 170 

 

 

Testing 

Confining Pressure, psi 8,000 8,000 

Casing Pressures, psi 8,000 -  17,000 8,000 - 17,000 

Sample Temperature, ̊ F 350 350 

Cycle # 106 28 

 

Failure Type/s 

Two Radial, One 

Disking and 

Inner Debonding   

Two Radial  



 

34 

 

 
Figure 27. Set B, neat class H failures after the HPHT test 

 

Set C: HPHT Curing  

 

Another two samples of neat class H cement were mixed to evaluate how curing at 

HPHT conditions and cyclical loadings might affect the subsequent cement failure. A 

new confining pressure and casing pressures were selected. For this set, the confining 

pressure was held constant at 10,000 psi and the casing pressure cycles changed between 

10,000 psi to 15,000 psi. The differential pressure between the confining and casing was 

reduced to 5,000 psi while for Set B it was 9,000 psi. Moreover the one minute time 

span could have caused a hammering effect defined as applying excessive loads in 

insufficient amount time for the cement sheath to recover. Therefore more time was 

given for the delta to hold at the higher pressure cycle (15,000 psi).  

Sample I-C was cured for 3 hours at 15 psi and 170 ̊ F. Then it was placed immediately 

in 7600 and cured for another 22 hours at 12,500 psi and 380  ̊ F. 12,500 psi was chosen 

as a middle value between 10,000 psi and 15,000 psi. After the curing process and one 

cycle, the pressure differential between the confining pressure and casing pressure could 

not be held anymore and the test was stopped and the sample was taken out, Figure 28. 
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The second sample, which was cured under water for two days, went through 18 hours 

of curing. Since the pressure differential could not be achieved for sample one, HPHT 

curing was done for a shorter time. Sample II-C went through four cycles and had two 

radial failures after the test. Table 4 summarizes the experiments in set C. 

 

Table 4: Analysis test matrix for two samples, Set C 

 

Analysis on Set C, Class H Cement 

 

Experiments performed in this section were intended to assure a successful HPHT curing 

process and subsequently perform cyclical loadings. Two samples were cured at 10,000 

psi and 12,500 at least for 18 hours and the system stayed reliable. These tests showed 

samples can be cured at HPHT conditions prior to cyclical loadings. 

 

 

Sample # I II 

 

 

Curing 

 

Time, hours  3 22 48 18 

Pressure, psi 15 12,500 15 12,500 

Temperature, ̊ F 170 380 170 380 

 

 

Testing 

Confining Pressure, psi 10,000 12,500 

Casing Pressures, psi 10,000 -  15,000 12,500 -  15,000 

Sample Temperature, ̊ F 380 390 

Cycle # 1 4 

Cycle Intervals, min 10 10 

Failure Type/s One Radial and One Slicing Two Radial 
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Figure 28:Sample I-C, slicing and radial failures for neat class H 

 

 

Set D: Cement Integrity at Ultra High Pressure High Temperature 

 

Three samples of class H were prepared and tested under Ultra HPHT conditions. Table 

5 shows that sample I-D had one radial and two disking failures at the first cycle. More 

cycles yielded more catastrophic failures however three failures after one cycle seemed 

not enough to create such failures based on previous experience. Ultra high temperature 

of 400  F was recognized as the dominant reason behind creating three failures after only 

one cycle. Then sample II-D was tested under 25 cycles and consequently 5 failures 

were observed. Sample III-D was cured for 10 hours under 25,000 psi and 500 F. Severe 

failures and shattered sheath was observed after the test due to extreme conditions. 

Results clearly showed that a better chemistry could be utilized for HPHT conditions and 

25,000 psi and 450 F as the limit for cement integrity evaluation test. 
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Table 5: Analysis test matrix for three Samples, Set D 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Sample # I II III 

 

 

Curing 

 

Time, hours  18 18 10 

Pressure, psi 12,500 12,500 25,000 

Temperature, ̊ F 400 400 500 

 

 

Testing 

Confining 

Pressure, psi 

10,000 10,000 20,000 

Casing Pressures, 

psi 

10,000- 15,000 10,000- 15,000 20,000- 25,000 

Sample 

Temperature, ̊ F 

400 400 500 

Cycle # 1 25 7 
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CHAPTER IV 

 CEMENT FATIGUE ENDURANCE LIMIT MATRIX  

 

Previously, the capability of the HPHT cement integrity evaluation set up was measured. 

The purpose of the experiments in this chapter is to provide comparable data for cement 

failure under cyclical loadings. Three sets of class H cement plus 35% Silica were 

prepared. All samples were cured for 15 hours at 15,000 psi and 330 ̊ F. They were 

tested under various pressure differentials between the maximum casing pressure and 

confining pressure. 

Set E was tested under 1,000 psi differential pressure, set F was tested under 2,000 psi 

differential pressure and set G was tested under 5,000 psi differential pressure. The 

purpose was to find out the fatigue endurance cycle for class H cement plus 35% silica 

under these pressure differentials, examine how different pressure magnitude affects the 

cement failure and generate comparable data. 

 

Set E: 1,000 psi Differential Pressure 

 

Set E was tested with 1,000 psi pressure differentials. Confining pressure was kept 

constant at 15,000 psi and casing pressure varied from 15,000 psi to 16,000 psi. After 

one, three and five cycle test no crack was observed. In other words it was found that 

cumulative of 9 cycles is not the fatigue endurance limit for 1,000 psi differentials 

however after performing another 11 cycles (total of 20 cycles), a radial failure was 

observed, Figure 29. Cracking at 20 cycles implied that the failure cycle number is 

either equal to or less than 20 cycles and surely more than 9 cycles. As a result another 

sample (II-E) was prepared and tested with 11 cycles but it ultimately did not crack. 

After cycling this sample 5 more times, a radial crack was observed, Figure 30. At this 

point, it was clear that the fatigue endurance limit is either 16 or less than 16 and for sure 

more than 11 cycles. 
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Figure 29. Sample I-E, 11 more cycles with 1,000 psig differential, total of 20 cycles. 

 

 
Figure 30. Sample II-E, one radial crack was observed after cumulative of 16 cycles 

with 1,000 psi pressure differentials (11 cycles plus 5 cycles). 
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Finally third test was performed on sample III-E with 12 cycles but it did not crack, 

Figure 31 and Figure 32, therefore another 2 cycles were performed and ultimately a 

radial crack was observed, Figure 33. This test was repeated and another sample 

similarly cracked at cycle no. 14. 

 

 
Figure 31. Sample III-E, 12 initial cycles with 1,000 psig differentials, and no crack. 

The fifth sample was cycled 13 times however no failure was observed. The 16.4 ppg 

class H cement with 35% Silica failed and radially cracked after the cumulative of 14 

cycles of 1,000 psi differentials between the confining pressure and the maximum casing 

pressure. Cycle no. 14 is the fatigue endurance limit for 1,000 psi differential at 15,000 

psi confining pressure. However this number might be different for various chemistries. 

It is clear that adding silica significantly added to the strength of cement. Figure 34 

summarizes all the experiments done on set E. Every color represents one sample which 

was tested. 
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Figure 32. Sample III-E, 12 initial cycles, no crack. 

 

 
Figure 33. 1,000 psig differentials caused a radial crack. 
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Figure 34. Failure cycle for 1,000 psi differential. 

 

Set F: 2,000 psi Differential Pressure 

 

Set F was tested with 2,000 psi differentials. Confining pressure was kept constant at 

15,000 psi and casing pressure varied from 15,000 psi to 17,000 psi, Sample I-F was 

cycled 7 times and after the test a micro crack was observed at the top of the sample, 

Figure 35 and Figure 36. To investigate whether or not cycle no.7 is the fatigue 

endurance limit, sample II-F was prepared, cured at HPHT conditions. Then it was 

cycled five times however no crack was detected therefore it went through another 3 

cycles. 

After a cumulative of 8 cycles no failure was observed so it was cycled for 5 more cycles 

till finally it cracked. In fact at this time it was evident that 2,000 psi differential pressure 

after 13 cycles caused a crack in sample II-F. As a result the failure cycle should be 

more than 8 cycles and less than or equal to 13 cycles, Figure 37 and Figure 38 . 
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Figure 35. Sample I-F, a micro crack. 

 

 
Figure 36. 7 cycles in sample I-F, micro crack. 
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Figure 37. Sample II-F, cracked after three phases of cycling. 

 

 
Figure 38. Sample II-F, cracked after 13 cycles. 
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Sample III-F which had been cured at 15,000 psi and 330  ̊ F for 15 hours, was tested 

with the confining pressure of 15,000 psi and varying casing pressures between 15,000 

psi to 17,000 psi. During this test periodically the casing pressures slightly went under 

15,000 psi (confining pressure) but its effect was negligible since neither any debonding 

nor other cement sheath failures was observed after 12 cycles, Figure 39. 

 

 
Figure 39. Sample III-F, did not crack after 12 cycles. 

A fourth sample, IV-F, was tested with 8 cycles followed by another 4 cycles and no 

crack was observed after a cumulative of 12 cycles, Figure 40 and Figure 41. However 

when one more cycle is added, a failure happened. Figure 42 summarizes the test on set 

E and shows cycle no. 13 as the failure cycle, fatigue endurance limit, for 2,000 psi 

differentials at the 15,000 psi confining pressure for class H cement plus 35% silica. 
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Figure 40. Sample IV-E, did not crack after 8 cycles, repeatability test. 

 

 
Figure 41. Sample IV-E, No crack after 8 cycles, repeatability test. 
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Figure 42. Failure cycle for 2,000 psi differential 

Set G: 5,000 psi Differential Pressure 

 

Set G was tested with 5,000 psi differentials. Confining pressure was kept constant at 

15,000 psi and casing pressures varied from 15,000 psi to 20,000 psi. Sample I-G was 

cycled 10 times however it did not crack therefore it went through another 3 cycles. 

After the cumulative of 13 cycles, this sample cracked, Figure 43.  Sample II-G was 

prepared and cured at the same conditions, Figure 44 and Figure 45. It was then cycled 

for 11 straight cycles and hence it cracked. For repeatability, another sample (III-G) was 

cured at the same conditions of 15,000 psi and 330  ̊ F. After cycling this sample for 10 

times it was observed that it did not crack so another cycle was performed and sample 

III-G ultimately cracked. As a result cycle no. 11 is recognized the fatigue endurance 

limit for class H cement plus 35% silica with confining pressure of 15,000 psi and 5,000 

psi differentials, Figure 46. 
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Figure 43. Sample I-G did not crack at 10 cycles but cracked after 13 cycles. 

 

 
Figure 44. Sample II-G, cracked after 11 cycles. 
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Figure 45. Sample II-G, catastrophic failures.  

 

 
Figure 46. Sample III-G, no failure after 10 cycles- repeatability test.  
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Figure 47. Failure cycle for 5,000 psi differential 

 

Table 6 summarizes the failure cycle number and the type of failures for sets E, F and G. 

All samples were prepared and cured under the same condition of 15,000 psi and 330  ̊ F. 

Set E was tested for the maximum pressure differentials of 1,000 psi. Running tests with 

low pressure differentials sometimes is hard and the pump steps should be tuned if low 

pressure differentials is intended to be achieved. Set F was tested for the maximum 

pressure differentials of 2,000 psi. Disking failure observed for this set is the only 

distinguishable criteria with 1,000 psi pressure differentials. Set G which was tested for 

the maximum pressure differentials of 5,000 psi more catastrophically failed at reaching 

its fatigue endurance limit.  

The failure cycle might vary if the length of the sample increases or it is given more time 

to for building up higher compressive strength. Mechanical properties of the material 

placed at the outer boundary of the cement will be another dominating factor. These tests 

were performed by no outside bond between cement and the formation. The samples 

were all submerged in oil with the confining pressure of 15,000 psi.      
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Table 6: Analysis test matrix for set alpha, class H and 35% Silica 

Set E F G 

 

 

Curing 

 

Time, hours  15 15 15 

Pressure, psi 15,000 15,000 15,000 

Temperature, ̊ F 330 330 330 

 

 

Testing 

Confining Pressure, psi 15,000 15,000 15,000 

Casing Pressures, psi 15,000- 16,000 15,000- 17,000 15,000- 20,000 

Sample Temperature, ̊ F 330 330 330 

Failure Cycle # 14 13 11 

Failure Type/s Radial Crack Radial Crack & 

Disking 

Radial Crack 

& Disking& 

Combination 

of Both 

 
 

Several mechanical failure tests emanated from civil engineering have been done on 

cement samples however results represent a more realistic picture of what happens to oil 

well cement. Figure 48 shows the behavior of class H cement plus 35% silica which was 

cured at 15,000 psi and 330 ̊ F for 15 hours. Higher pressure differentials have caused 

the cement sheath to fail more catastrophically and at the lower cycle number.  The 

failure behavior (failure cycle number) of class H cement plus 35% silica does not have 

a linear behavior at HPHT conditions. 
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Figure 48. Delta Pressure vs. Failure Cycle #, Class H cement plus 35% silica. 
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CHAPTER V  

CONCLUSION 

 

1) To prevent cement sheath failure a HPHT testing procedure was developed 

which can help unconventional wells to achieve better zonal isolations by 

providing a realistic fatigue endurance limit for well cement. 

 

2) Samples of class H cement plus 35% silica were cured under 15,000 psi and    

330 ̊ F for 15 hours. They failed at cycle no. 11 under 5,000 psi, pressure 

differentials, at cycle no. 13 under 2,000 psi, pressure differentials and at cycle 

no. 14 under 1,000 psi pressure differentials. Higher pressure differentials will 

cause a more catastrophic failures when the fatigue endurance limit (cycle) is 

reached.     

 

3) Cyclical loadings at very low cycles usually cause a radial failure for class H but 

the failure cycle is higher, e.g. 11 with 5,000 psi differentials, when 35% silica is 

added to class H. Adding Silica will result in modifying some chemical reactions 

above 220 ̊ F which ultimately lead to a better integrity of cement sheath.  

 

4) Radial failure (cracking) occurred before or along with other types of cement 

failures. In the entire experiments with class H and class H plus 35% Silica, 

radial failure is likely to be the primary failure that takes place under cyclical 

loadings at HPHT conditions.  

 

5) Disking failure for neat class H cement happened only for pressure differentials 

more than 5,000 psi and temperatures beyond 350 ̊ F. Higher pressure 

differentials are more likely causing disking failure for class H. On the other 

hand, for class H plus 35% silica disking failure happened for pressure 
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differentials beyond 2,000. No such a failure was detected for 1,000 pressure 

differentials.   

6) Types of failure can be effective in fluid flow through the cracks and reasonably 

fewer failures will reduce the chance of gas migration therefore testing the 

integrity of the cement sheath is critical before applying it in the field. 

 

7) Class H cements is not a good comparison criterion for evaluating cement 

integrity at HPHT conditions due to the unstable chemistry and cement 

retrogression phenomenon. Modifying the slurry by adding 35% Silica 

considerably added to the performance of cement under cyclical loadings at 

HPHT conditions.   

 

8) Inconsistent confining pressure can have very detrimental effects on the integrity 

of the cement. This can imply that pressure maintenance methods should not be 

carried out while hydraulic fracturing is being done in close by wells.  
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CHAPTER VI  

RECOMMENDATIONS AND FUTURE WORK 

 

1) A more accurate pressure gauge could be installed to accurately monitor the 

possible changes of the confining pressure. 

 

2) The design of the cell could be modified so that the samples that are not perfectly 

centered can be also tested. The current set up does not have enough room for 

asymmetrically set samples.  

 

3) Disassembling is quiet easy except for taking out the top cell. Modifications in 

design or disassembling procedure might be helpful. 

 

4) Other types of slurry could be tested and the effect of various curing time should 

be practiced for a more comprehensive matrix development of a cement integrity 

behavior under HPHT conditions.  

 

5) The experimental results should be compared with the commercial cement 

integrity simulation software and real field data since they are complementary to 

each other.  

 

6) The set up should be modified with a new design in which the failure cycle could 

be investigated while the cement is under HPHT conditions. Also flowing a fluid 

through the sheath under cyclical testing at HPHT conditions would be an ideal 

and realistic way to ensure the optimum cement integrity evaluation.  
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7) Fatigue analysis is a complex subject for even homogeneous alloys and more 

complicated for cement. Curing process and the effect of the percentage of air 

bubbles trapped in the sheath should be considered and more researched. 
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