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ABSTRACT 

Core data and well-log interpretation results are usually comparable in homogenous 

conventional reservoirs. However, in the case of thinly-bedded, heterogeneous formations 

consisting of organic-rich mudrocks and carbonates, core-log calibration and integration 

are challenging. The calibration of well-log interpretation results with core data is hence 

justified for thick homogeneous beds. Consequently, petrophysical properties (e.g., fluid 

saturation) estimated from well logs are not generally in agreement with core 

measurements. Therefore, upscaling of petrophysical properties from core-scale to log-

scale is essential to reconcile measurements obtained from different scales. Although 

petrophysical measurements vary from core-scale to log-scale, previous publications have 

shown that the relationship between formation factor and porosity is consistent over a 

wide-scale range in homogenous sandstones. These correlations, however, do not persist 

in rocks with complex pore structure and rock fabric (e.g., carbonates). 

This research investigated the persistence of a correlation between the electrical resistivity 

and the directional connectivity tensor at different scales within the micron scale in 

sandstone and carbonate examples. To fulfill this objective, three-dimensional (3D), pore-

scale rock images were obtained from micro-CT (Computed Tomography) images. Then, 

each 3D pore-scale image was divided into subsamples of varying sizes. Afterwards, 

tortuosity of the networks of the electrically conductive rock components (e.g., formation 

water) was estimated in each subsample. The next step was to numerically solve the 

Laplace’s equation to estimate electric field distribution and effective electrical resistivity 

of each subsample. The last step involved calculating the directional connectivity tensor 
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based on the estimated tortuosity and volumetric concentration of each conductive 

component in the samples and subsamples. Finally, the impact of directional connectivity 

of pore network on electrical resistivity was quantified.  

The results confirmed the existence of a correlation between directional connectivity and 

electrical resistivity at different micron scales in the samples studied in this thesis. 

Improvements of up to 59% and 54% were observed in the proposed relationship 

compared to the conventional relationship between porosity and electrical resistivity in 

fully and partially water-saturated samples, respectively. An improvement of up to 50% 

in estimates of water saturation was observed when the directional connectivity of pore 

network was taken into account.   
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1. INTRODUCTION AND LITERATURE REVIEW 

Interpretation of data from different scales (i.e., core-scale and log-scale) does not provide 

comparable results in complex carbonates due to the heterogeneity and anisotropy present 

in the formation. Using numerical simulation, this research achieved its objective to 

quantitatively identify a relationship between the directional connectivity tensor and the 

formation factor that persists at different scales in heterogeneous and anisotropic 

formations. The proposed relationship can be used in assessment of water saturation. This 

section elaborates on the background of this topic and presents its outline, statement of the 

problem, and research objectives. 

1.1 Literature Review 

The literature review is organized into four main sections. The first section presents the 

work done on the impact of rock structure on the electrical resistivity. The second section 

describes previous literature written discussing tortuosity in complex formations (e.g., 

carbonate formations) and how tortuosity is related to directional connectivity. The third 

section covers different methods used to estimate water saturation. The final section 

covers how the rock physical properties vary from reservoir-scale to pore-scale and 

previous work done to relate the different petrophysical properties at different scales.  This 

subsection presents a comprehensive literature review to establish the current status of the 

work done related to this thesis’s objectives. 
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1.1.1 Impact of the Rock Structure on Electrical Resistivity 

Electrical conductivity of the rock is affected by the type of fluid present in the rock, the 

respective saturation, and the minerals forming the rock (Karato and Wang 2012). 

Measured electrical resistivity from well logs and lab measurements are used to examine 

the lithology and specify fluid saturations, which helps to estimate reserves and predict 

production performance (Schlumberger 1972, 1974; Doveton 1994). Fluid saturation in 

the log-scale is estimated using resistivity-porosity-saturation models (e.g., Archie’s 

model (Archie 1942)). However, interpretation of electrical resistivity in complex and 

anisotropic formations is challenging (Man and Jing 1999). As a result of diagenesis in 

sedimentary rocks (i.e., compaction, dissolution, and cementation), the rock structure (i.e., 

pore and grain structure) in carbonate formations is complex (Moore 2001). 

Experimentally investigating the effect of pore structure on the rock electrical behavior 

has been challenging due to the large number of variables affecting such behavior (Suman 

and Knight 1997). As a result, some theoretical studies have shown that pore structure 

significantly affects estimation of electrical resistivity of the rock (Chatzis and Dullien 

1985; Wardlaw et al. 1987; Tsakiroglou and Payatakes 1991). Furthermore, other studies 

have shown that wettability also affects the resistivity of the rock. The saturation exponent 

in Archie’s model was found to be higher in oil-wet systems than water-wet systems 

(Mungan and Moore 1968; Keller 1953; Sweeney and Jennings 1960; Rust 1957; Morgan 

and Pirson 1964; Lewis 1988; Donaldson and Bizerra 1985; Donaldson and Siddiqui 

1989). Several studies have also experimentally concluded that for oil-wet rocks, the ‘non-

Archie’ behavior can be observed (Swanson 1985; Diederix 1982; Worthington and Pallatt 
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1992; Worthington et al. 1989; Moss et al. 1999; Jing et al. 1990). Electrical resistivity of 

the rock is also affected by the stress applied to it (Brace and Orange 1966; Brace et al. 

1965).   

Previous research endeavors studied the influence of complexity and anisotropy on 

electrical resistivity measurements (Garing et al. 2014; Verwer et al. 2011). Garing et al. 

(2014) showed that pore network complexity in carbonate formations influences the 

electrical resistivity. The pore network complexity in carbonate formations impacts the 

relationship between electrical resistivity and porosity, which leads to uncertainty in fluid 

saturation estimation when conventional models (e.g., Archie’s model (Archie 1942)) are 

used (Garing et al. 2014). Verwer et al. (2011) indicated that besides porosity, electrical 

resistivity is also affected by the pore structure. Reduced number of pores and poor 

connections impede the electric current flow (Verwer et al. 2011).  

Besides electrical resistivity, the rock structure affects other properties such as tortuosity. 

The next subsection presents the relevant previous research performed on tortuosity of 

pore network and how it relates to electrical resistivity.  

1.1.2 Tortuosity of Porous Media 

Carman (1937) introduced tortuosity and defined it as the ratio of the effective path of 

flow to the length of the sample, given by 
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el

l
  ,                               (1) 

where τ is the dimensionless tortuosity, le is the effective path, and l is the length of the 

sample. Although tortuosity is widely studied in many research fields besides petroleum 

(e.g., human brain and blood vessels) (Azegrouz et al. 2006; Hrabe et al. 2004), the 

understanding of tortuosity is still limited (Brakel and Heertjes 1974; Clennell 1997; 

Cornell and Katz 1953; Garrouch et al. 2001; Katsube 2010). 

Tortuosity has been stated as a scalar property in some experimental work (Wyllie and 

Spangler 1952; Winsauer et al. 1952; Faris et al. 1954; Pirson 1983; Kastube 2010), where 

it is a function of porosity. However, there is evidence that tortuosity is dependent on 

permeability (Dullien 1975; Witt and Brauns 1983; Scheidegger 1954; Rice et al. 1970; 

Salem and Chilingarian 2000; Chapuis and Gill 1989), geodesic reconstruction of pore 

network (Selomulya et al. 2006), and diffusion process (Kim et al. 1987; Greenkorn and 

Kessler 1970; Ohkubo 2008; Whitaker 1999). 

Clennell (1997) discussed four types of tortuosity, including geometrical, hydraulic, 

diffusional, and electrical tortuosity. Geometrical tortuosity (τg) is defined as the ratio of 

the shortest path connecting points in the fluid medium to the length of the sample. 

Hydraulic tortuosity (τh) is defined as the ratio of the shortest path a fluid takes from one 

point to another to the horizontal distance between the two points. Diffusional tortuosity 

(τd), introduced by Satterfiled and Sherwood (1963) and further studied by Greenkorn 

(1983) and Gao et al. (2014), is the ratio between the effective and bulk diffusivity. Finally, 
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electrical tortuosity (τe) is the ratio of the effective path of electric current to the length of 

the sample.  

Although tortuosity affects electrical properties of the rocks and their interpretation for 

assessment of water saturation, there is no common agreement on how to measure or 

calculate tortuosity (Wyllie and Spangler 1952; Winsauer et al. 1952; Faris et al. 1954 

Pirson 1983; Katsube 2010; Cornel and Katz 1953). The models proposed in previous 

publications calculate tortuosity as a function of formation factor and porosity. Table 1 

summarizes some of the models introduced to estimate tortuosity. 

 

Table 1: Models Proposed to Estimate Tortuosity of Rock 

Reference  Equation 

Wyllie and Spangler (1952) 2( FF )   

Winsauer et al. (1952) 2 1.2( FF )   

Faris et al. (1954) 2 1.41( FF )   

Pirson (1983) 0.5( FF )   

Kastube (2010) 0.5

f

FF
( )

b


   

Cornell and Katz (1953) FF   

Bear (1972); Dullien (1979); Mota et al. (2001); Dias et al. (2006) 

 

p    

Comiti and Renaud (1989); Mauret and Renaud (1997) 

 

1 pln( )    

Weissberg (1963); Iversen and Jorgensen (1993); Boudreau and 

Meysman (2006) 

1 p(1 )     

Duda et al. (2011) 1 p 1     
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In equations included in Table 1, τ is the tortuosity, FF is the formation factor which is 

the ratio of total electrical resistivity of the sample to electrical resistivity of the formation 

water,   is porosity, and bf  and p are constants that are functions of the shape of the 

connected pores.  

Direct and indirect methods have been developed to estimate tortuosity in porous media. 

These methods include electrical resistivity (Barrande et al. 2007; Mast and Potter 1963), 

hydraulic conductivity (Comiti and Renaud 1989; Witt and Brauns 1983; Salem and 

Chilingarian 2000), and gas tracer tests (Kreamer et al. 1988). Three-dimensional (3D) 

images from X-ray microtomography can also be used to estimate tortuosity based on 

geodesic reconstruction (Gommes et al. 2009; Selomulya et al. 2006; Al-Omari and Masad 

2004; Khan et al. 2012; Gao et al. 2012). 

There exist other previous publications which correlated tortuosity to permeability 

(Dullien 1975; Bear and Bachmat 1990; Ghassemi and Park 2010). Furthermore, previous 

work introduced numerical techniques to estimate tortuosity of the pore network using 

pore-scale images (Nakashima et al. 2004; Nakashima and Kamiya 2007). Tortuosity has 

been estimated using nuclear magnetic resonance (NMR) as well (Latour et al. 1993; 

Latour et al. 1995; Sen 2004; Armatas 2006). Latour et al. (1993) succeeded in measuring 

tortuosity in a synthetic sample using NMR pulsed field gradient diffusion measurements. 

Latour et al. (1995) performed additional work to determine tortuosity using NMR pulsed 

field gradient technique (PFG). The equation proposed to calculate tortuosity is given by 
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1 2

3/2

0

1

( )D t

D t t


 



 

,              (2) 

where D(t) is the diffusion coefficient, Do is the fluid steady-state diffusion coefficient in 

the porous medium, t is the observation time, and β1 and β2 are constants that vary with 

microgeometry. 

As mentioned earlier in this subsection, tortuosity serves as an input for some conventional 

resistivity-porosity-saturation models that are used to estimate water saturation. The next 

subsection covers previous literature that discusses the different models used in water 

saturation estimation.     

1.1.3 Water Saturation Estimation   

Water saturation is used to estimate hydrocarbon in place and reserves. Biases in estimates 

of reserves and hydrocarbon in place can occur when water saturation estimation is in 

error (Bowers and Fitz 2000; Hamada 2008; Widarsono 2012). Several models can be 

applied to estimate water saturation, and previous work has shown that significant 

difference in water saturation estimates can be observed from using different models 

(Worthington 1985; Widarsono 2012). Table 2 contains some of the models used to 

estimate water saturation. 
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Table 2:  Water Saturation Estimation Models 

Reference  Equation 

Archie (1942) 
o

n
w

t

R
S

R
  

Hossin (1960) 2nw
t w sh shS V

FF


    

Simandoux (1963) nw
t w sh shS V

FF


    

Bardon & Pied (1969) nw
t w sh sh wS V S

FF


    

Poupon and Leveaux 

(1971) 
1

/2 2

shV

n nw
t w sh sh wS V S

FF


 



   

De Witte (1957) 2w
t w wS AS

FF


    

Waxman & Smits (1968) 1

* *

n nw v
t w w

BQ
S S

FF FF


    

Dual water model: 

Clavier et al. (1984) 
1

( )bw w Q vn nw
t w w

o o

v Q
S S

FF FF

 
 


   

Poupon et al. (1954) 2(1 )sh w w
t sh Sh

V S
V

FF


 


   

De Witte (1955)  22.15 w sh
t w w

km km
S

FF FF
    

Patchett & Rausch (1967) 2w
t w s wS S

FF


    

Schlumberger (1972) 2

(1 )

w
t w sh sh w

sh

S V S
FF V


  


 

Juhasz (1981) 2 ( )mw sh sh w
t w sh w

V S
S

FF

 
   


    

Alger et al. (1963) 2 2 2(1 ) (1 ))( )w w sh w sh
t w

q S q q q
S

FF FF FF

   


  
    
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In equations included in Table 2,  Sw is the water saturation, Ro is the resistivity of the 

sample when the water saturation is 100%, n is the saturation exponent, Rt is the true 

sample resistivity, σt, σw, and σsh are the conductivities of the whole sample, water, and 

shale respectively, FF  is the formation factor, Vsh  is the volumetric concentration of shale 

in the sample, A is the shaliness factor, Qv is the cation exchange capacity per unit pore 

volume, B is the equivalent conductance of sodium clay exchange cations, FF* is the 

intrinsic formation factor for a shaly sand, vq is the amount of clay water associated with 

1 unit of clay counterions,  mw and msh are the momal concentration of exchangeable 

cations in formation water and shale respectively, k is the conversion of mw and msh to 

conductivity, m is the cementation factor,    is porosity, a is tortuosity, and q is the fraction 

of total porosity occupied by clays.  

Table 2: Continued  

Reference  Equation 

Husten & Anton (1981) 2
2 22 (1 ) (1 )w w w sh w w

t sh w sh sh

bw bw

S
V S V

FF FF

    
 

 
      

Winsauer et al. (modified 

Archie’s model) (1952) 
w

n
w m

t

aR
S

R
  

Patchett & Herrick (1982) 
2(1 ) (1 )sh w sh

t w v w sh sh

V V
S BQ S V

FF FF


 

 
    

Woodhouse (1976) 2 2
2 22 2 22

sh

sh

V
Vw w sh sh

t w w sh sh w

V
S S V S

FF FF

  
 




    
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All the equations mentioned in Table 2 have an empirical origin. Worthington (1985) 

further categorized these water saturation equations. The first category includes the water 

saturation equations that take into account the volumetric concentration of shale. The 

second category includes the water saturation equations that take into account the 

volumetric concentration of shale as well as the double-layer models. The third category 

contains the equations that do not take into account the volumetric concentration of shale. 

Other work introduced some probabilistic solutions to estimate water saturation by using 

Monte Carlo simulation (Bowers and Fitz 2000). However, there is no agreement on one 

way to accurately estimate water saturation.  

The previous subsections have discussed literature dealing with different physical and 

petrophysical properties of carbonate and sandstone formations (i.e., electrical resistivity, 

tortuosity, and water saturation). The upcoming subsection discusses how physical 

properties can be obtained from measurements at different scales. It further discusses 

models that correlate physical and petrophysical properties at different scales. Finally, it 

presents problems that occur from applying data from the pore-scale to the log-scale.  

1.1.4 Rock Properties from Reservoir-Scale to Pore-Scale 

The role of petrophysical properties is essential to a better understanding of the reservoir. 

Petrophysical properties (e.g., porosity, water saturation, and permeability) provide 

valuable information which can be used to select zones of completion. Estimation of 

petrophysical properties occur at different scales such as the reservoir scale where 

information is gathered from separate sources such as seismic measurements, gravity 
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surveys, and magnetic surveys. At the log-scale, data are gathered using well logs (e.g., 

gamma ray, resistivity, density, and neutron-porosity logs). At the core-scale, core-scale 

measurements (e.g., core flood) are conducted to estimate petrophysical properties (e.g., 

permeability). Finally, petrophysical properties can be estimated at the micro- or nano-

scale using images obtained by scanning computed tomography (CT) and scanning 

electron microscope (SEM). 

Some models correlate physical properties (e.g., electrical resistivity) to petrophysical 

properties (e.g., porosity) at different scales. However, these models can only be applied 

in homogenous formations. For instance, in the reservoir scale, previous publications 

investigated the scale-dependent acoustic wave propagation in heterogeneous formations 

(Mukerji and Mavko 1994; Yin et al. 1994). These studies investigated how the P-wave 

and S-wave vary at different scales of measurement relative to the reservoir scale. The 

results showed a significant variation of P-wave velocity and S-wave velocity at different 

reservoir scales in heterogeneous formations. At smaller scales (i.e., log-scale and pore-

scale), other researchers assumed that core measurements are representative of the entire 

formation (Teh et al. 2011). Cinar et al. (2012) showed that the correlation between 

formation factor and porosity persists in conventional and homogenous formations. 

However, in heterogeneous formations, log-scale correlations between physical and 

petrophysical properties, such as electrical resistivity and porosity, are weak (Cinar et al. 

2012; Teh et al. 2011). These weak correlations lead to unreliable assessment of 

petrophysical properties such as fluid saturation.  
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Still, other work applies core-scale data to the log-scale for rock typing (Pittman 1992). 

However, Xu (2013) mentioned four problems that occur when core-scale data are 

extrapolated to the log-scale. These problems are indirect measurements, poor data 

quality, scale discrepancy, and variable reservoir conditions. In the log-scale, 

petrophysical properties are not directly measured; rather the petrophysical properties are 

estimated using log-scale physical measurements (e.g., resistivity log and density log). 

Serra and Abbott (1980) categorized well logs depending on their sensitivity to the rock 

properties (i.e., composition, texture, structure and fluid). As an example, the nuclear 

magnetic resonance (NMR) log is most sensitive to the texture of the rock. On the other 

hand, other logs show high sensitivity to the composition of the rock (e.g., gamma ray log, 

photoelectric log, and acoustic log). Moreover, the structure of the rock influences the 

electrical resistivity logs. Finally, fluid saturation of the rock affects other types of logs 

(e.g., neutron porosity log, bulk density log, electrical resistivity log, acoustic log, and 

NMR).  

Furthermore, the downhole environment and the complications that occur during 

operation affect well-log data quality. Theys (1999) explained some of these problems, 

including depth shift, mud filtrate invasion, and borehole rugosity. Deep mud filtration 

sometimes changes the fluid saturation near the borehole which results in inaccurate data 

acquired from the well logs (Salazar, 2004; Gandhi et al. 2010). Regarding scale 

discrepancy, measurements in well logs are conducted in the foot-scale resolution, 

whereas core data measurements are conducted in the inch-scale (Diniz and Torres 2012). 

Another scale-discrepancy problem results from different volumes of investigations 
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between well logging tools, which leads to increased uncertainty in estimating 

petrophysical properties in laminated and thinly bedded formations (Diniz and Torres 

2012).  Xu (2013) explained that reservoir properties (e.g., temperature, pressure, fluid 

saturations, and capillary pressure) change within the reservoir column. These changes in 

reservoir properties results in inconsistent log measurements of the same zones. 

Overall, this literature review shows that previous studies found consistent relationships 

between physical properties (e.g., electrical resistivity) and petrophysical properties (e.g., 

porosity) at different scales (i.e., reservoir-scale and pore-scale) only in homogenous and 

isotropic formations. Furthermore, researchers do not agree on the definition of tortuosity, 

let alone a method to estimate either tortuosity or water saturation. In response to this 

problem, this thesis carries out numerical simulations to find a persistent correlation 

between physical and petrophysical properties at the pore-scale in heterogeneous and 

anisotropic formations. This correlation can then be used in assessment of water 

saturation. The sections below review the problem, present specific research objectives, 

and provide a preview of the methods used in this thesis.           

1.2 Statement of the Problem 

Conventional resistivity-porosity-saturation models such as Archie’s model (Archie 

1942), dual-water model (Clavier et al. 1984), and Waxman-Smits model (Waxman and 

Smits 1968) correlate borehole electrical resistivity measurements to pore-scale 

petrophysical properties in conventional reservoirs. To predict petrophysical properties 

such as fluid saturation at different scales (i.e., pore-scale and log-scale), a persistent 
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correlation must exist between physical properties (e.g., electrical resistivity) and 

petrophysical properties (e.g., porosity) at those scales. However, these correlations do not 

persist in rocks with complex pore structure and fabric (e.g., laminated shaly-sand 

formations and carbonate formations)  due to the heterogeneity and anisotropy that causes 

variations in the measurements of physical and petrophysical properties at different scales 

(Knackstedt et al. 2005). Thus, correlations that persist at a certain scale in homogeneous 

formations are not reliable methods to estimate petrophysical properties in general. These 

correlations will incur uncertainties when applied to heterogeneous and anisotropic 

formations.    

Previous work showed that the electrical resistivity measurements are not only affected 

by volumetric concentration of conductive components (i.e., formation water and pyrite) 

but also by the directional connectivity of these components (Chen et al. 2014). However, 

the relationship between directional connectivity of conductive components in anisotropic 

and complex formations and electrical resistivity at different scales (i.e., pore-scale and 

log-scale) has yet to be thoroughly understood. This thesis aims to find a persistent 

correlation at different scales in heterogonous and anisotropic formations. The following 

section states the specific research objectives of this thesis.  

1.3 Research Objectives 

To address the need for a reliable correlation to estimate petrophysical properties (e.g., 

fluid saturation and porosity) at different scales (i.e., log-scale and pore-scale), this 

research focuses on (a) quantifying directional connectivity tensor at different scales using 
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numerical simulations, (b) investigating the persistence of a relationship between 

electrical resistivity and the directional connectivity tensor at different micro-scales in 

heterogeneous and anisotropic rocks, and (c) applying this relationship in assessment of 

water saturation. 

The methods designed to achieve these research objectives include using micro-CT 

(Computed Tomography) scan images from variable rock types and estimating physical 

and petrophysical properties at different scales (i.e., pore-scales). These methods are 

explained in detail in the following section. 
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2. METHOD 

This section first explains the pixel-based segmentation process of the 3D micro-CT 

images of the rocks used in this thesis. These 3D images then serve as inputs to the 

numerical simulations to estimate the different properties (i.e., electrical resistivity, 

porosity, and directional tortuosity). Next, the methods used to estimate the directional 

connectivity tensor, introduced by Chen and Heidari (2015), and directional tortuosity are 

explained. Afterwards, the method used in the estimation of effective electrical resistivity 

of the samples is discussed, followed by sample resizing which is used to reduce the 

computational time required to run the numerical simulations. Finally, this section 

presents the method proposed for the assessment of water saturation.  

2.1 Pixel-Based Segmentation of Micro-CT Images 

The pore-scale images of the carbonate and sandstone samples used in this thesis are 

acquired from two sources: the Petroleum Engineering and Rock Mechanics Group at 

Imperial College London, and a carbonate field. The grey-scale micro-CT images were 

then segmented and binarized using a Trainable Segmentation in ImageJ (Schneider et al. 

2012). The images were then stacked and converted to a 3D data matrix including 0s and 

1s (0 represents grain pixel and 1 represents pore pixel). Figures 1 and 2 represent a two-

dimensional (2D) slice of a sandstone micro-CT image before and after segmentation, 

respectively. Afterwards, all the samples were divided into subsamples at smaller sizes 

and then served as input for tortuosity, directional connectivity, and electrical resistivity 

estimation (Figure 3).  
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Figure 1: Raw 2D micro-CT image of a sandstone sample.  

 

Figure 2: Binarized 2D micro-CT image of a sandstone sample. White and black regions 

represent grains and pore space, respectively.  

250 µm 

250 µm 
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2.2 Estimation of Tortuosity and Directional Connectivity 

Tortuosity is a reliable indication of the heterogeneity and anisotropy of rock samples 

(Pfleiderer and Halls 1990; Siegesmund et al. 1991). The algorithm used in this thesis to 

estimate tortuosity was introduced by Nakashima and Kamiya (2007). It uses 3D micro-

CT segmented images as the input. This algorithm Figure 4 generates random walkers in 

the percolated pore space for a specific time, t. The directional-mean square displacement 

covered by random walkers is given by 

2 2

1

1
( ) ( ( ) (0))

n

k k

k

i t i t i
n 

    ,                           (3)   

where ik denotes the position of the kth random walker in the ith direction at time t and n is 

the total number of random walkers used in the algorithm. The total mean-square 

displacement is given by  

3D Rock Images  Subsamples 

Figure 3: 3D binarized image divided into smaller subsamples where they are used as 

inputs to estimate different petrophysical properties.  
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2 2 2 2( ) ( ) ( ) ( )r t x t y t z t           .                           (4) 

In order to estimate the tortuosity, the time derivative of the displacement covered by the 

walkers is used. The tortuosity is given by  

2

2( )

h dt

d r t
 

 
,                (5) 

where τ is the dimensionless tortuosity, h is the dimension of the cubic voxel, and 

(d(r(t)2)/dt) is the rate of change of the total mean-square displacement with respect to 

time.  

 

 

 

 

Chen and Heidari (2015) proposed a new directional connectivity tensor expressed as a 

function of volumetric concentration of conducting components and their tortuosity. The 

directional connectivity tensor is defined as   

Figure 4: Elaboration of the random walk algorithm. The left image is the 3D sample with 

black and white representing pore and grain, respectively. The right image shows the path 

of the random walker in the pore.  
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1 ,

m
k

j

k k j

C


  ,                (6) 

where m is the total number of the connected conductive clusters (e.g., formation water 

and pyrite), α is a sample dependent connectivity parameter, Ck is the volumetric 

concentration of the kth connected conductive cluster, and τk,j is the directional tortuosity 

in the jth direction of the kth connected conductive cluster. In partially water-saturated 

samples, Ck is defined as the product of porosity and water saturation for the pore network. 

2.3 Numerical Estimation of Effective Electrical Resistivity 

The 3D micro-CT images of the field samples and subsamples serve as inputs for the 

numerical simulation which estimates the electric potential distribution. For the case 

where the electric potential is independent of time, it must satisfy the Laplace’s equation 

given by  

( ) 0U    ,                           (7) 

where σ is the electrical conductivity and U is the electric potential. To calculate the 

electric potential distribution, Laplace’s equation is numerically solved using a finite 

difference approach. The numerical solver was developed by Chen et al. (2014). The 

differential form of Ohm’s law then helps to estimate effective electrical resistivity of the 

samples and subsamples. Table 3 summarizes the resistivity values assumed for the rock 

components in the numerical simulations.  
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After estimating electrical resistivity, formation factor was estimated (FF) via  

( )T j

j

w

R
FF

R
 ,                           (8) 

where FFj is the formation factor in the jth direction, (RT)j is the bulk electrical resistivity 

of the rock-fluid system in the jth direction, and Rw is the formation water electrical 

resistivity. 

2.4 Sample Resizing 

Electrical resistivity and tortuosity were estimated using numerical simulations. All the 

numerical simulations were conducted with the supercomputing facility at Texas A&M 

University, with 3168-core IBM (iDatePlex) and 372 nodes. Each node is a 64-bit shared-

memory multi-processor system. The computational time needed to estimate electrical 

resistivity is directly proportional to both the size and complexity of the sample (Figure 

5). A sample size of 2563 pixel can take up to 72 hours to run in the Texas A&M 

supercomputing facility.   

Table 3:  Assumed Electrical Resistivity of The Rock Components in The Numerical 

Simulations 

Rock components Electrical resistivity at 175 oF (ohm-m) 

Hydrocarbon 

Grains 

 107 

107 

Formation Water  0.05 
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Figure 5: Sample size (x-axis) plotted against computational time in the Texas A&M 

supercomputing facility (y-axis) to estimate electrical resistivity of 3D samples.  

 

 

 

On the other hand, the voxel size of the largest sample size used in this thesis is 

1320x1320x931. To overcome the problem of the long computational time required for 

large samples, sample resizing was introduced. The purpose of sample resizing is to 

decrease the voxel size of a large sample, by using some sort of averaging, without 

changing the physical and petrophysical properties of the samples (i.e., porosity, electrical 

resistivity and tortuosity). Bakke et al. (2007) showed that the same sample with different 

resolutions can have similar physical and petrophysical properties, as long as the two 

resolutions are not very different from each other. Resizing was performed using ImageJ 

(Schneider et al. 2012). Resizing in ImageJ can be performed with or without 
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interpolation. ImageJ has two built-in interpolation methods, bilinear and bicubic. To 

identify the best method for resizing, physical and petrophysical properties of the original 

samples and the resized samples were compared. Figures 6 and 7 compare the porosity 

and formation factor, respectively, between the actual samples and the resized samples. In 

the comparison, resizing was first done without interpolation, then the two interpolation 

methods were used. The bicubic interpolation method provided the closest estimation of 

the physical and petrophysical properties of the resized 3D rock images compared to the 

original images. This resizing method was used throughout the rest of this thesis for 

samples of voxel size larger than 2563.  

 

Figure 6: Comparison between the porosity of the original images and the resized images. 
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Figure 7: Comparison between the formation factor of the original images and the resized 

images. 

 

 

 

2.5 Assessment of Water Saturation 

One of the goals of this thesis is to propose a relationship between formation factor and 

directional connectivity that persists at different micro-scales in heterogeneous and 

anisotropic rocks. This relationship is intended to be used in the assessment of water 

saturation in the pore-scale. Figure 8 is a flowchart that describes the proposed steps for 

the assessment of water saturation using the proposed relationship. 
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3. RESULTS 

This section documents the results of the numerical simulations used to investigate a 

persistent relationship between formation factor and directional connectivity at different 

sample sizes. First, an investigation was conducted to show how the formation factor 

varied as a function of porosity at different subsample sizes in six samples fully and 

partially saturated with water. Second, the variation of formation factor as a function of 

directional connectivity was investigated for the six samples with full and partial water 

saturation.  

3.1 Application to Carbonate and Sandstone Samples  

Six carbonate and sandstone samples were analyzed. Table 4 summarizes the properties 

of the samples and the subsamples in this thesis. Figures 9 through 14 show the 3D pore-

scale micro-CT image of the six samples. The first five samples in Table 4 were obtained 

from the Petroleum Engineering and Rock Mechanics Group at Imperial College London 

(Dong 2007).  

Table 4: Properties of Six Carbonate and Sandstone Samples 

Sample Voxel size 

(pixels3) 

Resolution 

(µm/pixel) 

Porosity 

(%) 

Subsample 

sizes (pixels3) 

Sandstone sample no. 1 300x300x300 8.6 23.3 1503, 2003, and 

3003 

Sandstone sample no. 2 400x400x400 5.35 19.5 3003 and 2003  

Carbonate sample no. 1 1024x1024x1024 2.65 15 5123 and 2563 

Carbonate sample no. 2 400x400x400 2.85 23.3 1503, 2003, and 

3003 

Carbonate sample no. 3 400x400x400 5.35 16.8 1503, 2003, and 

3003 

Carbonate sample no. 4 1320x1320x931 2.5 17.7 2333 and 4663 
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Figure 9: The 3D pore-scale image of sandstone sample no. 1. White and black regions 

represent grains and pore space, respectively. 

Figure 10: The 3D pore-scale image of sandstone sample no. 2. White and black regions 

represent grains and pore space, respectively. 

1000 µm 

600 µm 
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Figure 11: The 3D pore-scale image of carbonate sample no. 1. White and black regions 

represent grains and pore space, respectively. 

Figure 12: The 3D pore-scale images of carbonate sample no. 2. White and black regions 

represent grains and pore space, respectively.  

1000 µm 

500 µm 
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Figure 13: The 3D pore-scale images of carbonate sample no. 3. White and black regions 

represent grains and pore space, respectively. 

Figure 14: The 3D pore-scale images of carbonate sample no. 4. White and black regions 

represent grains and pore space, respectively. 

1000 µm 

1500 µm 
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3.1.1 Fully Water-Saturated Samples 

The samples were first saturated with water. Then, porosity was estimated for all the 

samples and subsamples. Afterwards, the formation factor was estimated. Finally, the 

directional connectivity was estimated. The following is a summary of the results of the 

first five samples. 

Figures 15, 17, 19, 21, and 23 illustrate the estimated formation factor from numerical 

simulations plotted against porosity for the subsamples taken at different scales in 

sandstone and carbonate samples. The relationship between formation factor and porosity 

provides a weak correlation. However, a stronger correlation is observed (improvement of 

59% in correlation coefficient) between formation factor and directional connectivity 

(Figures 16, 18, 20, 22, and 24) compared to the relationship between formation factor 

and porosity.  
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Figure 15: Sandstone sample no. 1: Formation factor plotted against porosity at different 

scales. All the rock samples are fully water-saturated. 

Figure 16: Sandstone sample no. 1: Formation factor plotted against directional 

connectivity tensor at different scales. All the rock samples are fully water-saturated. 
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Figure 17 : Sandstone sample no. 2: Formation factor plotted against porosity at different 

scales. All the rock samples are fully water-saturated. 

Figure 18: Sandstone sample no. 2: Formation factor plotted against directional 

connectivity tensor at different scales. All the rock samples are fully water-saturated. 
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Figure 19: Carbonate sample no. 1: Formation factor plotted against porosity at different 

scales. All the rock samples are fully water-saturated. 

Figure 20: Carbonate sample no. 1: Formation factor plotted against directional 

connectivity tensor at different scales. All the rock samples are fully water-saturated. 
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Figure 21: Carbonate sample no. 2: Formation factor plotted against porosity at different 

scales. All the rock samples are fully water-saturated.  

Figure 22: Carbonate sample no. 2: Formation factor plotted against directional 

connectivity tensor at different scales. All the rock samples are fully water-saturated.  
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Figure 23: Carbonate sample no. 3: Formation factor plotted against porosity at different 

scales. All the rock samples are fully water-saturated.  

Figure 24: Carbonate sample no. 3: Formation factor plotted against directional 

connectivity tensor at different scales. All the rock samples are fully water-saturated.  
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3.1.2 Partially Water-Saturated Rock Samples 

All the samples were then saturated with both water and hydrocarbon. Afterwards, the 

formation factor and the directional connectivity were estimated. The following is a 

summary of the results obtained. 

Table 5 summarizes hydrocarbon saturation for the six samples. Figures 25, 27, 29, 31, 

and 33 show the estimated formation factor from numerical simulations plotted against 

porosity for the subsamples taken at different scales in the first five samples. Figures 26, 

28, 30, 32, and 34 illustrate the estimated formation factor from numerical simulations 

plotted against directional connectivity for the subsamples taken at different scales in the 

first five samples. A stronger correlation was observed (improvement of 54% in 

correlation coefficient) between formation factor and directional connectivity compared 

to the correlation between formation factor and porosity. 

In addition to the previously tested rock samples, this section includes the results for 

another heterogeneous and anisotropic carbonate sample, carbonate sample no. 4.  Figures 

35 and 36 show the resulting plot of formation factor against porosity and directional 

connectivity, respectively, in carbonate sample no. 4 for both fully- and partially-saturated 

samples. A stronger correlation was observed (improvement of 52% in correlation 

coefficient) between formation factor and directional connectivity, compared to the 

correlation between formation factor and porosity in carbonate sample no. 4. 
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Table 5: Hydrocarbon Saturation in Six Samples 

Sample Hydrocarbon saturation (%) 

Sandstone sample no. 1 13 

Sandstone sample no. 2 10 

Carbonate sample no. 1 51 

Carbonate sample no. 2 36 

Carbonate sample no. 3 21 

Carbonate sample no. 4 32 

Figure 25: Sandstone sample no. 1: Formation factor plotted against porosity at different 

scales. Water saturation is 87% in the original sample. 
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Figure 26: Sandstone sample no. 1: Formation factor plotted against directional 

connectivity tensor at different scales. Water saturation is 87% in the original sample. 

Figure 27: Sandstone sample no. 2: Formation factor plotted against porosity at different 

scales. Water saturation is 90% in the original sample. 
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Figure 28: Sandstone sample no. 2: Formation factor plotted against directional 

connectivity tensor at different scales. Water saturation is 90% in the original sample. 

Figure 29: Carbonate sample no. 1: Formation factor plotted against porosity at different 

scales. Water saturation is 49% in the original sample. 
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Figure 30: Carbonate sample no. 1: Formation factor plotted against directional 

connectivity tensor at different scales. Water saturation is 49% in the original sample. 

Figure 31: Carbonate sample no. 2: Formation factor plotted against porosity at different 

scales. Water saturation is 64% in the original sample. 
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Figure 32: Carbonate sample no. 2: Formation factor plotted against directional 

connectivity tensor at different scales. Water saturation is 64% in the original sample. 

Figure 33: Carbonate sample no. 3: Formation factor plotted against porosity at different 

scales. Water saturation is 79% in the original sample. 
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Figure 34: Carbonate sample no. 3: Formation factor plotted against directional 

connectivity tensor at different scales. Water saturation is 79% in the original sample. 

Figure 35: Carbonate sample no. 4: Formation factor plotted against porosity at different 

scales. Some of the rock samples are fully water-saturated, others are partially water-

saturated. 
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Figure 36: Carbonate sample no. 4: Formation factor plotted against directional 

connectivity tensor at different scales. Some of the rock samples are fully water-saturated, 

others are partially water-saturated. 

3.2 Assessment of Water Saturation 

To illustrate how incorporating directional connectivity can improve water saturation 
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Afterwards, a comparison was performed between the actual water saturation and the 

estimated water saturation using the introduced method (Figure 38). The estimates of 

water saturation were improved by 50% when water saturation was estimated using the 

introduced method. 

Figure 37: Carbonate sample no. 4: The estimated water saturation using Archie’s model 

plotted against the actual water saturation in the subsamples. 
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Figure 38: Carbonate sample no. 4: The estimated water saturation using the introduced 

method plotted against the actual water saturation in the subsamples.  
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4. SUMMARY AND CONCLUSIONS

This section is a summary of the work and results obtained in this thesis. It also presents 

the conclusions and recommendations for future work. 

4.1 Summary 

The main objectives of this thesis included: 

 Quantifying the directional connectivity tensor at different scales in the presence

of complex pore structure and anisotropy. 

 Finding a relationship between directional connectivity and electrical resistivity

that persists at different micro-scales in heterogeneous formations. 

 Investigating the possibility of using the concept of scale-dependent pore-network

connectivity in assessment of water saturation. 

The aforementioned objectives were accomplished by analyzing micro-CT scan images in 

six rock samples from different rock types (i.e., sandstone and carbonate). The micro-CT 

scan images were segmented and binarized into pores and grains. Afterwards, the 3D pore-

scale images of each sample were divided into smaller subsamples. Then, all the digital 

samples and subsamples were fully and then partially saturated with water. Porosity, 

formation factor, tortuosity, and directional connectivity were estimated for all the 

samples and subsamples.  A stronger correlation between directional connectivity and 

electrical resistivity at different micro-scales was observed in the six samples, when 

compared to the conventional correlation between electrical resistivity and porosity. 
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4.2 Conclusions 

This research involved a series of numerical simulations to find a consistent relationship 

between the directional connectivity and formation factor at different micro-scales in the 

presence of complex pore structure and anisotropy. 

The conclusions that can be drawn from this research are as follows: 

1. Conventional volumetric correlation between porosity and formation factor do

not persist at different scales for heterogeneous and anisotropic rock samples 

studied in this thesis. 

2. For fully water-saturated carbonate and sandstone samples, the correlation

between directional connectivity and formation factor showed an improvement 

of up to 59% in the correlation coefficient compared to the correlation between 

formation factor and porosity. 

3. For partially water-saturated samples, for the same set of samples, the

correlation between directional connectivity and formation factor showed an 

improvement of up to 54% in the correlation coefficient compared to the 

correlation between formation factor and porosity. 

4. The obtained relationship between directional connectivity and formation

factor was used in estimating water saturation. An improvement of up to 50% 

in estimates of water saturation was observed, if the directional connectivity of 

the pore network is taken into account.  
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4.3 Recommendations 

Although this thesis focused on finding a persistent relationship between formation factor 

and directional connectivity at different micro-scales, many problems of interpreting 

petrophysical properties at different scales remain unsolved. 

A list of possible research avenues for future work that could expand the contributions of 

this thesis is presented below: 

1. Apply the proposed method in organic-rich mudrocks where pore structure is more

complex and there are more conductive components (i.e., pyrite, wet clays, and 

kerogen). 

2. Conduct a comprehensive study of the nature of tortuosity and how to accurately

estimate it at larger scales beyond the pore-scale. 

3. Investigate the relationship between formation factor and directional connectivity

in larger scales (e.g., log scales) and investigate the possibility of using this 

relationship in assessment of well-log-based water saturation. 
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