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ABSTRACT 

 

DC motor is widely applied in industry practices. The speed control is a key 

procedure of the design, where PID controller is still the main stream. Stability and 

transient response are two significant design requirements for the DC motor control 

system. To decrease overshoot and rising time, a lot of tuning methods were invented, 

which were used in DC motor design. However, most of rules are based on empirical 

observation and experiment experience.  

The purpose of this thesis is to theoretically design PID parameter sets which can 

guarantee both system stability and performance. The thesis starts from theoretical 

signature PID stabilizing sets design method and finds all PID parameters for DC motor 

control system. Then the thesis proposes a modified characteristic ratio assignment 

criterion to optimize previous stabilizing sets. Utilizing the parameter from new sets, better 

transient response performance can be reached. To demonstrate the method, a PID 

controller and PD controller design are integrated into the DC motor velocity control and 

DC motor position control problems separately.  

Next, the DC motor system is discretized. The digital PI and PID stabilizing sets 

are designed by using root counting algorithm.  

To sum up, the thesis gives a completed theoretical procedure to design PID 

controller parameters for DC motor system. The optimized parameter sets can not only 

satisfy stability criterion, but also achieve better transient performance.  
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1. INTRODUCTION 

 

1.1 Problem Formulation 

DC motor is popularly used in industry applications. The speed control is a key 

procedure of the design, where PID controller is still the main stream. Stability and 

transient response are two significant design requirements for the DC motor control 

system. To achieve better transient response, Ziegler-Nichols tuning formula was firstly 

introduced in 1942[1].  To decrease overshoot and rising time, a lot of tuning methods 

were invented, which were used in DC motor design.  

However, most rules are developed according to empirical observation and 

experiment experience. In this thesis, a theoretical PID stabilizing sets design method will 

be integrated into the DC motor control design, which the system stability will be 

guaranteed. Then the thesis proposes a modified characteristic ratio assignment criterion 

to optimize previous stabilizing sets. Utilizing the parameter from new sets, better 

transient response performance can be reached. To demonstrate the method, a PID 

controller and PD controller design are integrated into the DC motor velocity control and 

DC motor position control problems separately. In addition, the digital PI and PID 

stabilizing sets are designed by using root counting algorithm. Taking w transform for 

discrete time system, the optimized digital PI sets are also calculated by modified 

characteristic ratio assignment method. 
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1.2 Research Objective 

The research objectives are: 

1. For a continuous time DC motor system, use the signature method to design PI and 

PID parameter sets for the controller.  

2. Find PI and PD parameter sets that achieve desired transient response via modified 

characteristic ratio assignment for DC motor speed control and position control 

system. 

3. For a discrete time DC motor model, find the digital PI and PID controller 

stabilizing sets. 

4. Apply the w transform to the system, calculate the optimized parameter sets for 

digital PI controller that could improve transient performance. 
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2. SURVEY OF PREVIOUS WORK 
 

 

 

Starting from classical PID control design method, Neenu Thomas[2] used Genetic 

Algorithm to improve the speed of transient response. However, GA method is complex 

and fussy.  El-Gammal[3] tried to minimize the maximum overshoot, minimize the settling 

time and minimize the rise time by multi objective particle swarm optimization.  

Similarly, in 2010, Nedim Tutkun used Gravitational Search Algorithm for tune 

the PID controller to achieve less rise time, less settling time and less maximum 

overshoot[4].  

While the previous method got better results, they all needed DC model to work. 

In 2011, the iterative feedback tuning method was used to DC motor controller[5], in 

which no model is needed and uncertainty will not influence. 

One year later, Rohit G Kanojiya and PM Meshram [6] separately implemented 

PI- Partial Swarm Optimization controller, PID-Ziegler Nichols controller and PID-

Modified Ziegler Nichols controller to minimize the rise time, the settling time and 

minimize the maximum overshoot. R. Bindu[7] presented a flexible and fast tuning 

Genetic Algorithm to solve the position control of DC motor. At the same year, Azadi 

Controller was used to stabilize the DC motor controller system[8]. 

In 2014, an optimized PID parameter for DC motor position control was developed 

through multi objective genetic algorithm [9]. 

From the literature above, we could realize that a lot of tuning method are provided 

to design DC motor controller. They make it lucrative and scientifically important to 
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investigate the DC motor controller design. However, by checking their system after 

design, their stability is guaranteed.  

In my thesis, the modern design of PID controller[10] is implemented to solve the 

speed control of DC motor, which the system stability is guaranteed in advance. 

Additionally, through the modified characteristic ratio assignment, the transient response 

is improved and the PID sets are optimized.  

Moreover, we also give the solution of the digital PID controller system design 

which guaranteed system stability and achieve desired transient response performance.  
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3. PID CONTROLLER STABILIZING SETS DESIGN FOR

CONTINUOUS TIME DC MOTOR SYSTEMS 

3.1 Continuous Time DC Motor Mathematic Model 

The DC motor we introduced is separately excited[11] , which changes the motor 

velocity through control the armature voltage. The equivalent circuit is shown in [11]. 

Where 𝑅𝑎   is resistance of armature; La is inductance of armature; ia is current of 

armature;  ea  is the input voltage; 𝑒𝑏  is the back electromotive force(EMF); if  is field 

current; 𝑇𝑀  is defined as motor torque; J is the rotating inertia. Let ω be the angular 

velocity.  𝐾𝑏 is the constant of EMF. B is defined as the constant of friction. 

According to the physical law, 

Back EMF 𝑒𝑏(t) =  𝐾𝑏
𝑑𝜃

𝑑𝑡
= 𝐾𝑏𝜔(𝑡)   (3.1) 

Motor torque 𝑇𝑚(𝑡) = 𝐽
𝑑2𝜃(𝑡)

𝑑𝑡
+ B 

𝑑𝜃

𝑑𝑡
= 𝐾𝑇  𝑖𝑎(𝑡)   (3.2)     

According to the KCL law, 

Voltage  𝑒𝑎(𝑡) =  𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑒𝑏(𝑡)   (3.3)       

Take Laplace transform to the above three equations, 

𝐸𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑎𝑠) 𝐼𝑎(𝑠) + 𝐸𝑏(𝑠)   (3.4)         

𝑇𝑚(𝑠) = 𝐵𝜔(𝑠) + 𝐽𝑠𝜔(𝑠) =  𝐾𝑇𝐼𝑎(𝑠)   (3.5) 

𝐸𝑏(𝑠) =  𝐾𝑏𝜔(𝑠)  (3.6) 

To sum up, we could calculate the transfer function of speed by input voltage as 

follows, 
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G(s) =  
𝜔(𝑠)

𝐸𝑎(𝑠)
= 

𝐾𝑇

(𝐿𝑎𝑠+𝑅𝑎)(𝐽𝑠+𝐵)+𝐾𝑏𝐾𝑇
                                                                 (3.7) 

 

3.2 PID Stabilizing Sets Design Signature Method 

In the following figure 3.1, it is a general feedback control system design 

diagram[12] 

 

 

Figure 3.1 Continuous Time Feedback Control System 

 

In the above figure, r(t) is defined as the reference input. Let y(t) denote the 

output signal. Let G(s) be the plant that needs to be controlled. Let C(s) be the 

controller. 

                                               C(s) =  𝑘𝑝 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠                                                    (3.8) 

In which 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑   are the proportional, integral and derivative gains.  

Assume G(s) =
𝑁(𝑠)

𝐷(𝑠)
, hence the characteristic polynomial of the continuous time 

feedback control system is 

                         δ(s, 𝑘𝑝, 𝑘𝑖, 𝑘𝑑) = 𝑠𝐷(𝑠) + (𝑘𝑖 + 𝑘𝑑𝑠
2)𝑁(𝑠) + 𝑘𝑝𝑠𝑁(𝑠)                   (3.9) 
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Design stabilizing sets (𝑘𝑝, 𝑘𝑖 , 𝑘𝑑) is to determine those values that can make 

characteristic polynomial satisfy Hurwitz condition. In other words, all roots should be in 

the left half plane. 

The new and high efficient method to determine stabilizing set is developed by Dr. 

Shankar Bhattacharyya[12, 13], which uses root counting and signature formulas. 

Signature Formulas: 

Assume p(s) is a polynomial as follows 

                                     p(s) ≔  𝑝0 + 𝑝2𝑠
2 +⋯+ 𝑠(𝑝1 + 𝑝3𝑠

2 +⋯)                         (3.10) 

where coefficients are real and there is no zeros on the jω axis. 

                                                𝑝𝑒𝑣𝑒𝑛(𝑠
2) =  𝑝0 + 𝑝2𝑠

2 +⋯                                        (3.11) 

                                              𝑃𝑜𝑑𝑑(𝑠
2) =  𝑝1 + 𝑝3𝑠

2 +⋯                                               (3.12) 

Therefore 

                                             p(jω) = 𝑝𝑟(𝜔) + 𝑗𝑝𝑖(𝜔)                                               (3.13) 

Definition 1: 

We define a signum function here. If a real number y is positive, signum function 

of y is sgn[y] = 1. If y is 0, signum function sgn[y] = 0. If real number y is negative, 

signum function of y is sgn[y] = −1. 

Definition 2: 

Assume p is a polynomial and define l as the amount of roots at left half plane. 

Also define r as the amount of roots at the right half plane[12]. 

∆𝜔1
𝜔2∠ p(jω) is the change of angle as ω runs from 𝜔1 to 𝜔2. 
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Lemma: 

                                                   ∆0
∞∠p(jω) =  

𝜋

2
 (l − r)                                            (3.14) 

Theorem: 

The p(jω) can be written  as 

                                                p(jω) = 𝑝𝑟(𝜔) + 𝑗𝑝𝑖(𝜔)                                            (3.15) 

and 𝜔0, 𝜔1, 𝜔3, … , 𝜔𝑙−1 indicate the real nonnegative roots of 𝑝𝑖(𝜔) . 

From Shankar Bhattachayya’s results in[12], we have 

When n is even, 

δ(p) = sgn[𝑝𝑖(0
+)](𝑠𝑔𝑛[𝑝𝑟(0)] + 2∑(−1)𝑗𝑠𝑔𝑛[𝑝𝑟(𝜔𝑗)] + (−1)

𝑙𝑠𝑔𝑛[𝑝𝑟(∞)])

𝑙−1

𝑗=1

 

                                                                                                                                     (3.16) 

When n is odd, 

                     δ(p) = sgn[𝑝𝑖(0
+)](𝑠𝑔𝑛[𝑝𝑟(0)]+2∑ (−1)𝑗𝑠𝑔𝑛[𝑝𝑟(𝜔𝑗)])

𝑙−1
𝑗=1              (3.17) 

 

3.3 PID Parameter 𝒌𝒑, 𝒌𝒔, 𝒌𝒅  Design for the DC Motor Control 

                                         G(s) =  
𝜔(𝑠)

𝐸𝑎(𝑠)
= 

𝐾𝑇

(𝐿𝑎𝑠+𝑅𝑎)(𝐽𝑠+𝐵)+𝐾𝑏𝐾𝑇
                                  (3.18) 

One set of DC motor parameters [11] are shown in following table 3.1.  
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Table 3.1 DC MOTOR PARAMETERS 

Parameters values 

𝑅𝑎(𝛺) 2 

𝐿𝑎(𝐻) 0.5 

J(Kg𝑚2) 0.02 

B(Nms) 0.2 

𝐾𝑇(𝑁𝑚/𝐴) 0.015 

𝐾𝐵(𝑉𝑠/𝑟𝑎𝑑) 0.01 

 

 

Therefore, 

                                                     G(s) =
0.015

0.01𝑠2+0.14𝑠+0.40015
                                     (3.19) 

We have, 

                                                           N(s) = 0.015                                                   (3.20) 

                                         D(s) = 0.01𝑠2 + 0.14𝑠 + 0.40015                                  (3.21) 

So degree of N(s) is 2, and order of D(s) is 0. 

     σ(s, 𝑘𝑝, 𝑘𝑖, 𝑘𝑑) = 0.01𝑠
3 + 0.14𝑠2 + 0.40015𝑠 + (𝑘𝑖 + 𝑘𝑑𝑠

2) ∗ 0.015 + 0.015𝑘𝑝𝑠   

                                                                                                                                     (3.22) 

v(s) = σ(s) = 0.014𝑠2 + (𝑘𝑖 + 𝑘𝑑𝑠
2) ∗ 0.015 + 0.01𝑠3 + 0.40015𝑠 + 0.015𝑘𝑝𝑠 

                                                                                                                                     (3.23) 
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v(jω) = −0.14𝜔2 + (𝑘𝑖 − 𝑘𝑑𝜔
2) ∗ 0.015 + 𝑗𝜔(−0.01𝜔2 + 0.40015 + 0.015𝑘𝑝) 

                                                                                                                                     (3.24) 

The closed loop system is stable when 

                                                        σ(ν) = n + 1 = 3                                               (3.25) 

                                    p(ω) = −0.14𝜔2 + (𝑘𝑖 − 𝑘𝑑𝜔
2) ∗ 0.015                             (3.26) 

                                  q(ω) = ω(−0.01𝜔2 + 0.40015 + 0.015𝑘𝑝)                          (3.27) 

There should be at least one positive zero of q(ω)  

                                                       𝑘𝑝 =
0.01𝜔2−0.40015

0.015
                                              (3.28) 

ω ≥ 0, so  𝑘𝑝 ≥ −26.6767 

Fix 𝑘𝑝 = 1 and calculate real, positive frequencies of ν𝑜𝑑𝑑(−𝜔
2, 𝑘𝑝

∗) = 0. It will 

have 𝜔1 = 6.44321. In addition, j = sgn[𝜈𝑜𝑑𝑑(0
+, 𝑘𝑝

∗)] = 1. 

Then we have the signature balance equation, 

                                                          j ∗ (𝑖0 − 2𝑖1) = 3                                              (3.29) 

             Hence 𝑖0 = 1, 𝑖1 = −1. 

The stabilizing sets of  𝑘𝑖 , 𝑘𝑑  can be got by linear inequalities 

                                                  𝜈𝑒𝑣𝑒𝑛(−𝜔𝑡
2, 𝑘𝑖 , 𝑘𝑑) 𝑖𝑡 > 0                                         (3.30) 

{
𝑘𝑖 > 0

0.015𝑘𝑖 − 0.6227𝑘𝑑 < 5.8121
 

 According to the linear inequalities, the stabilizing parameter sets can be plotted 

as following figure 3.2. 
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Figure 3.2 The Stabilizing Parameter Sets (𝑘𝑖 , 𝑘𝑑) Values with Fixed 𝑘𝑝 

 

If we sweep 𝑘𝑝, and repeat the procedure of getting the linear equalities, we will 

have the following stabilizing sets figure 3.3: 
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Figure 3.3 The Stabilizing Parameter Sets (𝑘𝑝, 𝑘𝑖 , 𝑘𝑑)  

 

We could pick up a set of parameter to design the controller. 

If we choose 𝑘𝑝 = 1, 𝑘𝑖 = 20, 𝑘𝑑 = 1, 𝐶(𝑠) =
𝑠+20+𝑠2

𝑠
. The diagram can be 

shown in figure 3.4. 

 

 

Figure 3.4 Continuous Motor Control System Simulink Diagram 
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Step response with the controller is as figure 3.5: 

 

 

Figure 3.5 Step Response of Continuous System 1 

 

If we choose 𝑘𝑝 = 1, 𝑘𝑖 = 100, 𝑘𝑑 = 1, 

𝐶(𝑠) =
𝑠 + 100 + 𝑠2

𝑠
 

Step response with above controller is as figure 3.6: 
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Figure 3.6 Step Response of Continuous System 2 

 

From the above figure, we could see the system is stable and could track step 

signal. However, the rising time is a little bit slow of system 1 and overshoot is too high 

for system 2, which means transient response needs improvement. In next chapter, we 

would propose the method to get optimized stabilizing sets which will improve transient 

response. 
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4. OPTIMIZED PID CONTROLLER PARAMETER DESIGN 

FOR DC MOTOR 

 

4.1 Introduction to Characteristic Ratio Assignment 

 Transient response is very significant while designing the practical system. For the 

second order system, we knew the exact relationship between transient response and 

system coefficient. However, for the higher order system, the relationship is complex and 

hard to describe.  

            Naslin[14, 15] first introduced the characteristic ratio and tried to give some 

methods to answer this question. 

            Consider the following characteristic polynomial: 

                           σ(s) = 𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 + 𝑎𝑛−2𝑠
𝑛−2 +⋯+ 𝑎1𝑠 + 𝑎0                  (4.1) 

in which the coefficients 𝑎𝑖 > 0. 

 The characteristic ratio are: 

                                 𝛼1 =
𝑎1
2

𝑎0𝑎2
,   𝛼2 =

𝑎2
2

𝑎1𝑎3
,   ⋯    , 𝛼𝑛−1 =

𝑎𝑛−1
2

𝑎𝑛−2𝑎𝑛
                            (4.2) 

The time constant is defined as  

                                                                  τ =
𝑎1

𝑎0
                                                          (4.3) 

There are some results[16] [17] showing the transient response related with the 

characteristic ratio and time constant. There are several theorems for all pole transfer 

function system. 

Theorem: 
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Consider two all pole system of degree n: 

                        𝐺1(𝑠) =
𝑐0

𝑃1(𝑠)
=

𝑐0

𝑐𝑛𝑠𝑛+𝑐𝑛−1𝑠𝑛−1+⋯+𝑐1𝑠+𝑐0
,          𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑖 > 0              (4.4) 

 

                       𝐺2(𝑠) =
𝑑0

𝑃2(𝑠)
=

𝑑0

𝑑𝑛𝑠𝑛+𝑑𝑛−1𝑠𝑛−1+⋯+𝑑1𝑠+𝑑0
,          𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑𝑖 > 0            (4.5) 

Then, we have 

𝜏1 =
𝑐1
𝑐0
     𝑎𝑛𝑑      𝜏2 =

𝑑1
𝑑0

 

To an arbitrary input, let zero state response of 𝐺𝑖(𝑠) be  𝑦𝑖(𝑡).  

Consequently, we have 

                                                      𝑦1(𝑡) = 𝑦2 (
𝜏1

𝜏2
𝑡)                                                     (4.6) 

When both 𝑃1(𝑠) and 𝑃2(𝑠) have the same characteristic ratios: 

𝑐𝑖
2

𝑐𝑖−1𝑐𝑖+1
=

𝑑𝑖
2

𝑑𝑖−1𝑑𝑖+1
= 𝛼𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 − 1 

Proof. 

Sufficiency: 

Assume that 
𝑐𝑖
2

𝑐𝑖−1𝑐𝑖+1
=

𝑑𝑖
2

𝑑𝑖−1𝑑𝑖+1
= 𝛼𝑖 holds. Then for an arbitrary input r(t), we 

have 

                   𝑐0𝑟(𝑡) = 𝑐𝑛
𝑑𝑛𝑦1(𝑡)

𝑑𝑡𝑛
+ 𝑐𝑛−1

𝑑𝑛−1𝑦1(𝑡)

𝑑𝑡𝑛−1
+⋯+ 𝑐1

𝑑𝑦1(𝑡)

𝑑𝑡
+ 𝑐0𝑦1(𝑡)                (4.7) 

Rewrite the coefficients 𝑐𝑖 by its characteristic ratios 𝛼𝑖𝑠, 
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r(t) =
𝜏1
𝑛

𝛼𝑛−1𝛼𝑛−2
2 ⋯𝛼1

𝑛−1

𝑑𝑛𝑦1(𝑡)

𝑑𝑡𝑛
+

𝜏1
𝑛−1

𝛼𝑛−2𝛼𝑛−3
2 ⋯𝛼1

𝑛−2

𝑑𝑛−1𝑦1(𝑡)

𝑑𝑡𝑛−1
+⋯+

𝜏1
2

𝛼1

𝑑2𝑦1(𝑡)

𝑑𝑡2

+ 𝜏1
𝑑𝑦1(𝑡)

𝑑𝑡
+ 𝑦1(𝑡) 

                                                                                                                                       (4.8) 

Similarly 

r(t) =
𝜏2
𝑛

𝛼𝑛−1𝛼𝑛−2
2 ⋯𝛼1

𝑛−1

𝑑𝑛𝑦2(𝑡)

𝑑𝑡𝑛
+

𝜏2
𝑛−1

𝛼𝑛−2𝛼𝑛−3
2 ⋯𝛼1

𝑛−2

𝑑𝑛−1𝑦2(𝑡)

𝑑𝑡𝑛−1
+⋯+

𝜏2
2

𝛼1

𝑑2𝑦2(𝑡)

𝑑𝑡2

+ 𝜏2
𝑑𝑦2(𝑡)

𝑑𝑡
+ 𝑦2(𝑡) 

                                                                                                                                    (4.9) 

For 𝑦2(𝑡), 𝑟eplace  

t ←  
𝜏1
𝜏2
𝑡 ≔ ε 

So  𝑦2(𝑡) becomes 𝑦2 (
𝜏1

𝜏2
𝑡). 

                                            
𝑑𝑦2(

𝜏1
𝜏2
𝑡)

𝑑𝑡
=

𝑑𝑦2(ε)

𝑑(
𝜏1
𝜏2
𝜀)
=

𝜏1

𝜏2

𝑑𝑦2(ε)

𝑑𝜀
                                      (4.10) 

                                           
𝑑2𝑦2(

𝜏1
𝜏2
𝑡)

𝑑𝑡2
= (

𝜏1

𝜏2
)
2 𝑑2𝑦2(ε)

𝑑𝜀2
                                            (4.11) 

                                           
𝑑𝑛𝑦2(

𝜏1
𝜏2
𝑡)

𝑑𝑡𝑛
= (

𝜏1

𝜏2
)
𝑛 𝑑𝑛𝑦2(ε)

𝑑𝜀𝑛
                                            (4.12)                          

Hence, the time domain r(t) can be written as 

r(ε) =
𝜏1
𝑛

𝛼𝑛−1𝛼𝑛−2
2 ⋯𝛼1

𝑛−1

𝑑𝑛𝑦2(𝜀)

𝑑𝑡𝑛
+

𝜏1
𝑛−1

𝛼𝑛−2𝛼𝑛−3
2 ⋯𝛼1

𝑛−2

𝑑𝑛−1𝑦2(𝜀)

𝑑𝑡𝑛−1
+⋯+

𝜏1
2

𝛼1

𝑑2𝑦2(𝜀)

𝑑𝑡2
+ 𝜏1

𝑑𝑦2(𝑡)

𝑑𝑡
+

                           𝑦2(𝜀)                                                                                                 (4.13) 
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It is obvious that the solution of (4.13) is the same as time domain of (4.8) . 

Therefore 

𝑦2(ε) = 𝑦2 (
𝜏1
𝜏2
𝑡) = 𝑦1(𝑡) 

Necessity is similarly to be proved.  

Theorem: 

For all pole system: 

                                             G(s) =
𝑎0

𝑎𝑛𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+𝑎0
                                      (4.14) 

𝑎1 = 𝑎0𝜏 

𝑎𝑖 =
𝑎0𝜏

𝑖

𝛼𝑖−1𝛼𝑖−2
2 𝛼𝑖−3

3 ⋯𝛼2
𝑖−2𝛼1

𝑖−1
      𝑓𝑜𝑟 𝑖 = 2,… , 𝑛 

For  all pole system whose frequency response magnitude is monotonically 

decreasing[17]: 

                                          |𝐺(𝑗𝜔)|2 =
𝑎0
2

𝛿(𝑗𝜔)𝛿(−𝑗𝜔)
=

1

𝑄̅2(𝜔)
                                 (4.15) 

Define: 

∆𝑖
𝑗
≔ {

𝛱𝑘=𝑖,𝑖<𝑗
𝑗

𝛼𝑘 ,           𝑖𝑓 𝑖 < 𝑗

𝛼𝑖,                           𝑖𝑓 𝑖 = 𝑗
 

𝑄̅2(𝜔) = 1 + 𝜂1𝜏
2𝜔2 +

𝜂2𝜏
4

(∆1
1)2

+⋯
𝜂𝑛𝜏

2𝑛

(∆1
1∆1

2∆1
3⋯∆1

𝑛−1)2
𝜔2𝑛 

Where 𝜂𝑘 ≔ 1 −
2

𝛼𝑘
+

2

𝛼𝑘∆𝑘−1
𝑘+1 −

2

𝛼𝑘∆𝑘−1
𝑘+1∆𝑘−2

𝑘+2 +⋯+ (−1)𝑘
2

𝛼𝑘𝛱𝑗=1
𝑘−1∆

𝑘−𝑗
𝑘+𝑗 

We consider the approximated curve of  |𝐺(𝑗𝜔)|2 𝑣𝑠. frequency [17], which is 

shown as Pseudo-asymptotic Diagram of |𝐺(𝑗𝜔)|2 . 
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Let us focus on some critical frequencies: 

                                           𝜔𝑖 ≔ √
𝜂𝑖

𝜂𝑖+1

∆1
𝑖

𝜏
,           i = 0,1, … , n − 1                            (4.16) 

And define: 

                                                     𝑙𝑖 ≔ 𝑙𝑜𝑔𝜔𝑖 − 𝑙𝑜𝑔𝜔𝑖−1                                           (4.17) 

Therefore we have 

                                                  𝑙0 = −(𝑙𝑜𝑔𝜏 +
1

2
𝑙𝑜𝑔𝜂1)                                          (4.18) 

                                   𝑙𝑖 = 𝑙𝑜𝑔𝜂𝑖 −
1

2
(𝑙𝑜𝑔𝜂𝑖−1 + 𝑙𝑜𝑔𝜂𝑖+1) + log𝛼𝑖,                         (4.19) 

In which i=1,2,…..,n-1. 

It is evident that 𝜂𝑖 ≈ 𝜂𝑖+1 𝑓𝑜𝑟 𝑖 = 1,2, … 𝑛 − 1 when 𝛼𝑖  is larger than 2. And 

we also could see 𝑙𝑖 ≈ 𝑙𝑜𝑔𝛼𝑖 and 𝜔𝑖 < 𝜔𝑖+1. 

For the time domain response of strictly proper system, frequency magnitude of 

low frequency dominantly influence the system. We could find that 𝑙0, 𝑙1, 𝑙2, 𝑙3 play the 

key role corresponding to response. Hence, 𝛼1,𝛼2, 𝛼3 𝑎𝑛𝑑 𝜏 have much more influence to 

the transient response 

 

4.2 Modified Characteristic Ratio Assignment Method Used in Optimized Parameter 

Sets Design for DC Motor 

We have got the stabilizing sets for DC motor design. However, the good 

performance of transient response could not be guaranteed  if we arbitrarily choose the 

parameters. It will cause severe extreme problems for practical design. 
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In order to optimize the stabilizing sets to guarantee the performance of transient 

response. We will propose a modified characteristic ratio assignment method to solve this 

problem. 

From the previous chapter, we have got the closed loop system transfer function 

for DC motor design. 

The transfer function is: 

G(s) =
0.015 ∗ 𝑘𝑑𝑠

2 + 0.015𝑘𝑝𝑠 + 0.015𝑘𝑖

0.01 ∗ 𝑠3 + (0.015𝑘𝑑 + 0.14)𝑠2 + (0.015𝑘𝑝 + 0.40015)𝑠 + 0.015 ∗ 𝑘𝑖
 

                                                                                                                       (4.20) 

We have used signature method and found all stabilizing sets. 

For this model, it is evident that the transfer function is not all pole system. It 

means that we could not apply the theorem directly.  

Revisit the theorem, we could find that the numerator is a constant of all pole 

system. Therefore, if we could add some specific criterions to high order coefficients of 

numerator, we could apply the characteristic ratio assignment method. 

In this function, if the second and first order coefficients is very small compared 

to the constant term, it would not influence the overall performance in low frequency 

magnitude. For the high frequency situation, the denominator is third order and it would 

dominant the system response. So we could add criterion to this transfer function and use 

a modified characteristic ratio assignment method. 

For the above system: 

Characteristic ratio is: 
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                                                 𝛼1 =
(0.40015+0.015∗𝑘𝑝)

2

𝑘𝑖∗0.015∗(0.14+0.015∗𝑘𝑑)
                                        (4.21) 

                                                 𝛼2 =
(0.14+0.015∗𝑘𝑑)

2

0.01∗(0.40015+0.015∗𝑘𝑝)
                                         (4.22) 

Time constant is: 

                                                      τ =
0.40015+0.015∗𝑘𝑝

0.015∗𝑘𝑖
                                               (4.23) 

Fix kp=1,  

and we let the stabilizing sets satisfy time response criterion: 

                                           {
𝛼1 > 2
𝛼2 > 2

0.45 < 𝜏 < 1
     &    {

0.015𝑘𝑖

0.015𝑘𝑑
> 20

0.015𝑘𝑖

0.015𝑘𝑝
> 20

                                (4.24) 

After adding this criterion, we would have optimized parameter set as figure 4.1: 

 

 

Figure 4.1 Optimized Parameter Sets for PID Controller with Fixed 𝑘𝑝 
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This parameter sets are much smaller than stabilizing sets. 

We could choose 3 groups of parameter to show the step response (system 3 is 

desired system) . The parameters are in Table 4.1. 

 

Table 4.1 Three System PID Parameters 

system 𝒌𝒑 𝒌𝒊 𝒌𝒅 

#1 1 100 1 

#2 1 20 1 

#3 1 30 3 

 

 

In Table 4.2, the system’s characteristic ratio and time constant are given. 

 

Table 4.2 Three System Characteristic Ratio and Time Constant Comparison 

systems 𝛕 𝜶𝟏 𝜶𝟐 

#1 0.27 0.62 5.78 

#2 1.38 3.71 5.78 

#3 0.92 2.07 8.24 

 

 

The step responses are as following figure 4.2: 
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Figure 4.2 Comparison of Three System Step Response                                                                    

 

The overshoot of system 3 is much less than system 1. And the rising time of 

system 3 is better than system 2. 

If we sweep 𝑘𝑝, we could get following optimized stabilizing sets as figure 4.3: 
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Figure 4.3 Optimized Parameter Sets (𝑘𝑝, 𝑘𝑖 , 𝑘𝑑) for PID controller 

 

4.3 Modified Characteristic Ratio Assignment Method Used in Optimized Parameter 

Sets Design for DC Motor Position Control 

4.3.1 DC Motor Position Control Model[2] 

DC motor position control transfer function is: 

                                         
𝜃(𝑠)

𝑉(𝑠)
=

𝐾𝑏

𝐽𝐿𝑎𝑠3+(𝑅𝑎𝐽+𝐵𝐿𝑎)𝑠2+(𝐾𝑏
2+𝑅𝑎𝐵)𝑠

                                   (4.25) 

From the results in [2], there is one set of parameters in Table 4.3. 
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Table 4.3 DC Motor Model Parameters [2] 

Parameters  Values 

𝑅𝑎(Ω) 2.45  

𝐿𝑎(𝐻) 3.5 × 10−2  

𝐾𝑏(𝑉 ∙ 𝑟𝑎𝑑/𝑠) 1.2  

J(kg𝑚2/𝑟𝑎𝑑) 2.2 × 10−2 

B(𝑁 ∙ 𝑚 ∙ 𝑟𝑎𝑑/𝑠) 5 × 10−4 

 

 

Therefore we have: 

                                                 
𝜃(𝑠)

𝑉(𝑠)
=

1.2

0.00077𝑠3+0.0539𝑠2+1.441𝑠
                                     (4.26) 

4.3.2 DC Motor Position PD Control Stabilizing Sets Design 

Define PD controller as: 

                                                        C(s) = 𝑘𝑝 + 𝑘𝑑𝑠                                               (4.27) 

                                                            N(s) = 1.2                                                    (4.28) 

                                    D(s) = 0.00077𝑠3 + 0.0539𝑠2 + 1.441𝑠                           (4.29) 

So n=3, m=0. 

Therefore the characteristic polynomial of the overall system is 

              v(s) = δ(s) = 0.00077𝑠3 + 0.0539𝑠2 + 1.441𝑠 + 1.2𝑘𝑑𝑠 + 1.2𝑘𝑝       (4.30) 

Next 

             δ(jω) = −0.0539𝜔2 + 1.2𝑘𝑝 + jω(−0.00077𝜔
2 + 1.441 + 1.2𝑘𝑑)      (4.31) 
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It needs to satisfy following conditions to make the system stable: 

                                                          σ(ν) = n = 3                                                  (4.32) 

                                              p(ω) = −0.0539𝜔2 + 1.2𝑘𝑝                                     (4.33) 

                                  q(ω) = ω(−0.00077𝜔2 + 1.441 + 1.2𝑘𝑑)                          (4.34) 

 q(ω) needs at least 1 positive zero. 

                                                    𝑘𝑑 =
0.00077𝜔2−1.441

1.2
                                             (4.35) 

ω ≥ 0, therefore 𝑘𝑑 ≥ −1.2 

Fix 𝑘𝑑 = 1 and calculate real positive frequencies of ν𝑜𝑑𝑑(−𝜔
2, 𝑘𝑝

∗) = 0 

                                                           𝜔1 = 58.56                                                  (4.36) 

                                              j = sgn[𝜈𝑜𝑑𝑑(0
+, 𝑘𝑝

∗)] = 1                                      (4.37) 

Write signature balance equation, 

                                                     j ∗ (𝑖0 − 2𝑖1) = 3                                             (4.38) 

Therefore 𝑖0 = 1, 𝑖1 = −1. 

The Stabilizing sets can be given by linear inequalities: 

                                               {
𝑘𝑝 > 0

−184.87 + 1.2𝑘𝑝 < 0
                                        (4.39) 

Hence，  

0 < 𝑘𝑝 < 154 

Sweep  𝑘𝑑, we could get following stabilizing sets as figure 4.4. 
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Figure 4.4 Stabilizing Sets (𝑘𝑝, 𝑘𝑑) for PD Controller 

 

4.3.2 Optimized Sets of PD Parameters 

The overall transfer function of above system is 

                                     G(s) =
1.2𝑘𝑑𝑠+1.2𝑘𝑝

0.00077𝑠3+0.0539𝑠2+1.441𝑠+1.2𝑘𝑑𝑠+1.2𝑘𝑝
                       (4.40) 

Time Constant: 

                                                         τ =
1.441+1.2𝑘𝑑

1.2𝑘𝑝
                                                 (4.41) 

Characteristic Ratio: 

                                                    𝛼1 =
(1.441+1.2𝑘𝑑)

2

0.0539×1.2𝑘𝑝
                                               (4.42) 

                                                 𝛼2 =
0.05392

0.00077×(1.441+1.2𝑘𝑑)
                                       (4.43) 
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Use our modified characteristic ratio assignment method and we have the 

following criterions: 

                                       

{
 
 

 
 0.1 <

1.441+1.2𝑘𝑑

1.2𝑘𝑝
< 0.6

(1.441+1.2𝑘𝑑)
2

0.0539×1.2𝑘𝑝
> 2

0.05392

0.00077×(1.441+1.2𝑘𝑑)
> 2

  &  
𝑘𝑝

𝑘𝑑
> 10                               (4.44) 

Fix 𝑘𝑑 = 1 and we will have  

3.6 < 𝑘𝑝 < 22 

We could use specific values to demonstrate our method.  

For first system, we choose  𝑘𝑑 = 1,  𝑘𝑝 = 1, that is in stabilizing sets but not in 

optimized sets. For second system, we choose  𝑘𝑑 = 0.1,  𝑘𝑝 = 10, that is in optimized 

sets. The rising time of second is much better than the first one. The step response is as 

following figure 4.5. 

 

 

Figure 4.5 Comparison of System 1 and System 2 
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Sweep kd, all the optimized sets are as following figure 4.6: 

 

 

Figure 4.6 Optimized Sets (𝑘𝑝, 𝑘𝑑) for PD Controller 

 

 The optimized sets are very small compared with stabilizing sets. 
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5. DIGITAL PID CONTROLLER DESIGN FOR DC MOTOR 

 

5.1 Introduction to Tchebyshev Representation 

Through implementing the Tchebyshev representation for a z domain system and 

implement the root counting method[12], we could design PID stabilizing parameters for 

DC motor.  

Consider z domain polynomial P(z) = 𝑎𝑛𝑧
𝑛 +⋯+ 𝑎0 with real coefficients. We 

could draw the image of P(z) in 2-D plane, that is evaluated on the circle ∁𝜌.  

                                                {P(z): z = ρ𝑒𝑗𝜃 , 0 ≤ 𝜃 ≤ 2𝜋}                                       (5.1) 

Because coefficients 𝑎𝑖 of real P(ρ𝑒𝑗𝜃) and P(ρ𝑒−𝑗𝜃) are in conjugate complex 

form, it can be described using the circle as follows: 

                                              {P(z): 𝑧 = 𝜌𝑒𝑗𝜃, 0 ≤ 𝜃 ≤ 𝜋}                                          (5.2) 

As 

𝑧𝑘|𝑧=𝜌𝑒𝑗𝜃 = 𝜌
𝑘(𝑐𝑜𝑠𝑘𝜃 + 𝑗𝑠𝑖𝑛𝑘𝜃), 

So 

P(ρ𝑒𝑗𝜃) = (𝑎𝑛𝜌
𝑛𝑐𝑜𝑠𝑛𝜃 +⋯𝑎1𝑐𝑜𝑠𝜃 + 𝑎0) + 𝑗(𝑎𝑛𝜌

𝑛𝑠𝑖𝑛𝑛𝜃 +⋯𝑎1𝜌𝑠𝑖𝑛𝜃) 

                                   = 𝑅̅(𝜌, 𝜃) + 𝑗𝐼(̅𝜌, 𝜃)                                                                   (5.3) 

By using Tchebyshev polynomials, we could rewrite coskθ, and 
𝑠𝑖𝑛𝑘𝜃

𝑠𝑖𝑛𝜃
 by cosθ. 

Let u = −cosθ. When θ changes from 0 to π, u will change from -1 to +1, 

𝑒𝑗𝜃 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃 = −𝑢 + 𝑗√1 − 𝑢2 

In addition, we have 
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cos 𝑘𝜃 =: 𝑐𝑘(𝑢) and 
𝑠𝑖𝑛𝑘𝜃

𝑠𝑖𝑛𝜃
=: 𝑠𝑘(𝑢) 

In which 𝑐𝑘(𝑢) and 𝑠𝑘(𝑢) are polynomials with real coefficients and is written by 

u[12].  They are known as Tchebyshev Polynomials. 

They have: 

                                               𝑠𝑘(𝑢) = −
𝑐𝑘
′ (𝑢)

𝑘
  k=1,2,…                                              (5.4) 

If in the form 

                                          (ρ𝑒𝑗𝜃)
𝑘
= 𝜌𝑘𝑐𝑜𝑠𝑘𝜃 + 𝑗𝜌𝑘𝑠𝑖𝑛𝑘𝜃                                      (5.5) 

We could define generalized Tchebyshev polynomials: 

                          𝑐𝑘(𝑢, 𝜌) = 𝜌𝑘𝑐𝑘(𝑢), 𝑠𝑘(𝑢, 𝜌) = 𝜌𝑘𝑠𝑘(𝑢), 𝑘 = 0,1,2…                    (5.6) 

Therefore, we have 

                            P(ρ𝑒𝑗𝜃) = 𝑅(𝑢, 𝜌) + 𝑗√1 − 𝑢2𝑇(𝑢, 𝜌) =: 𝑃𝑐(𝑢, 𝜌)                      (5.7) 

In which 

                R(u, ρ) = 𝑎𝑛𝑐𝑛(𝑢, 𝜌) + 𝑎𝑛−1𝑐𝑛−1(𝑢, 𝜌) + ⋯+ 𝑎1𝑐1(𝑢, 𝜌) + 𝑎0           (5.8) 

                  T(u, ρ) = 𝑎𝑛𝑠𝑛(𝑢, 𝜌) + 𝑎𝑛−1𝑠𝑛−1(𝑢, 𝜌) +⋯+ 𝑎1𝑠1(𝑢, 𝜌)                   (5.9) 

 

5.2 Discrete Time System Root Clustering Method 

 Consider the discrete time system with single input and single output. In the 

following figure 5.1, G(z) is the discrete time plant transfer function and C(z) is the 

controller. 
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Figure 5.1 Discrete Time System Diagram [12] 

 

The transfer functions are  

G(z) =
𝑁(𝑧)

𝐷(𝑧)
,          C(z) =

𝑁𝐶(𝑧)

𝐷𝐶(𝑧)
 

Then it leads to characteristic polynomial 

                                         Π(z) ≔ 𝐷𝐶(𝑧)𝐷(𝑧) + 𝑁𝐶(𝑧)𝑁(𝑧)                                     (5.10) 

The system is stable only when characteristic roots have magnitude less than unity, 

which is well known and called Schur Stability of Π(z). 

 

5.2.1 Interlacing Conditions for root clustering 

Define P(z) as real polynomial and its degree is n, 

P(ρ𝑒𝑗𝜃) = 𝑅̅(𝜃, 𝜌) + 𝑗𝐼(̅𝜃, 𝜌) 

                                                              = R(u, ρ) + j√1 − 𝑢2𝑇(𝑢, 𝜌)                       (5.11) 

In which R(u, ρ) is real polynomial and its order is n, while 𝑇(𝑢, 𝜌) is polynomial of 

degree n-1. 

For Schur stability, ρ = 1. 

So we have following theorem 5.1: 



 

33 

 

 

All zeros of P(z) are within 𝐶𝜌 if and only if 

(a) There are n real distinct zeros 𝑟𝑖 inside (-1,+1) for R(u, ρ). 

(b) There are n-1 real distinct zeros 𝑡𝑗  in (-1,+1) for 𝑇(𝑢, 𝜌). 

(c) The zeros interlace between 𝑟𝑖 and 𝑡𝑗. 

 

5.2.2 Root Counting formulas 

Lemma: 

For P(z), if there are j roots within circle 𝐶𝜌 and no roots on the circle.  

We have 

                                                            ∆0
𝜋[∅𝑃] = 𝜋𝑗                                                  (5.12) 

Theorem 5.2 

Define P(z) as a real polynomial which does not have roots on the circle 𝐶𝜌. And 

assume 𝑇(𝑢, 𝜌) contains p roots at u=-1. 

Next we have the total amount of roots i of P(z) within circle[12]: 

i =
1

2
𝑠𝑔𝑛[𝑇(𝑝)(−1, 𝜌)](𝑠𝑔𝑛[𝑅(−1, 𝜌)]

+ 2∑(−1)𝑗𝑠𝑔𝑛[𝑅(𝑡𝑗 , 𝜌)] + (−1)
𝑘+1𝑠𝑔𝑛[𝑅(+1, 𝜌)])

𝑘

𝑗=1

 

                                                                                                                                     (5.13) 

Theorem 5.3 

Assume H(z) =
𝑃1(𝑧)

𝑃2(𝑧)
, in which 𝑃1(𝑧) and 𝑃2(𝑧) are real polynomials. There are 

𝑖1 zeros for 𝑃1(𝑧) and 𝑖2 zeros for 𝑃2(𝑧) inside circle 𝐶𝜌 without zero on it. 
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Then  

𝑖1 − 𝑖2 =
1

2
𝑠𝑔𝑛[𝑇(𝑝)(−1, 𝜌)](𝑠𝑔𝑛[𝑅(−1, 𝜌)] + 2∑ (−1)𝑗𝑠𝑔𝑛[𝑅(𝑡𝑗 , 𝜌)] +

𝑘
𝑗=1

                    (−1)𝑘+1𝑠𝑔𝑛[𝑅(+1, 𝜌)])                                                                           (5.14) 

 

5.3 Stabilizing Sets Design for PI Controller 

Define plant G(z) =
𝑁(𝑧)

𝐷(𝑧)
, in which N(z) , D(z) are polynomials which have real 

number coefficients[18]. D(z)’s degree is n and N(z)’s degree is less or equal to n.  

Implement a discrete time PI controller as follows: 

                                                           C(z) =
𝐾0+𝐾1𝑧

𝑧−1
                                               (5.15) 

 The characteristic polynomial of overall system is 

                                    σ(z) = (𝑧 − 1)𝐷(𝑧) + (𝐾0 +𝐾1𝑧)𝑁(𝑧)                           (5.16) 

 The overall system is stable only when the σ(z) is Schur stable. 

Multiplying N(𝑧−1) to the characteristic polynomial, we get 

σ(z)N(𝑧−1) = (−𝑢 − 1 + 𝑗√1 − 𝑢2) (𝑃1(𝑢) + 𝑗√1 − 𝑢2𝑃2(𝑢)) 

                                             +j𝐾1√1 − 𝑢2𝑃3(𝑢) − 𝐾1𝑢𝑃3(𝑢) + 𝐾0𝑃3(𝑢)                      (5.17) 

Hence,  

σ(z)N(𝑧−1)|𝑧=𝑒𝑗𝜃,𝑢=−𝑐𝑜𝑠𝜃=
𝜎(𝑧)𝑁𝑟(𝑧)

𝑧𝑙
|𝑧=𝑒𝑗𝜃,𝑢=−𝑐𝑜𝑠𝜃 

                                                                                        =R(u,𝐾0, 𝐾1) + √1 − 𝑢2T(u, 𝐾1) 

                                                                                                                                    (5.21) 

In which 𝑁𝑟(z) is defined as the reverse polynomial of N(z) 

             R(u, 𝐾0, 𝐾1) = −(𝑢 + 1)𝑃1(𝑢) − (1 − 𝑢
2)𝑃2(𝑢) − (𝐾1𝑢 − 𝐾0)𝑃3(𝑢)     (5.22) 
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                               T(u, 𝐾1) = 𝑃1(𝑢) − (𝑢 + 1)𝑃2(𝑢) + 𝐾1𝑃3(𝑢)                         (5.23) 

For the fixed value of 𝐾1, we need to calculate real distinct roots 𝑡𝑖 of T(u, 𝐾1)   

in u ∈ (−1,+1): 

𝑡𝑖 < 𝑡𝑖+1 

Define  𝑖𝛿 is the number of zeros of σ(z) and 𝑖𝑁𝑟 is the amount of zeros of  𝑁𝑟(z) 

inside the circle with radius 1[18], then 

𝑖𝜎 + 𝑖𝑁𝑟 − 𝑙 =
1

2
𝑆𝑔𝑛[𝑇(𝑝)(−1)](𝑆𝑔𝑛[𝑅(−1,𝐾0, 𝐾1)]

+ 2∑(−1)𝑗𝑆𝑔𝑛[𝑅(𝑡𝑗 , 𝐾0, 𝐾1)] + (−1)
𝑘+1𝑆𝑔𝑛[𝑅(+1, 𝐾0, 𝐾1)])

𝑘

𝑗=1

 

                                                                                                                                     (5.24) 

To guarantee the overall system closed loop stability, it is required 𝑖𝜎 = 𝑛. 

 Applying this with above methods, we can get the signum function of real part. 

Next we have the linear inequalities in 𝐾0. Sweep the 𝐾1 and we will have the whole 

sets. 

 

5.4 Digital PI Stabilizing Sets Design for DC Motor System 

DC motor discrete time model: 

                                                𝑃(𝑧) =
0.004802𝑧+0.003013

𝑧2−1.038𝑧+0.2466
                                        (5.25) 

Applying the PI controller 

                                                        𝐶(𝑧) =
𝑘0+𝑘1𝑧

𝑧−1
                                                (5.26) 

For the discrete time plant, 
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                                          𝐷(𝑧) = 𝑧2 − 1.038𝑧 + 0.2466                                  (5.27) 

                                        𝑁(𝑧) = 0.004802𝑧 + 0.003013                                        (5.28)  

𝐷(𝑒𝑗𝜃) = 𝑒2𝑗𝜃 − 1.038𝑒𝑗𝜃 + 0.2466                             

                                      = 2𝑢2 + 1.038𝑢 − 0.7534 + 𝑗√1 − 𝑢2(−2𝑢 − 1.038)     (5.29) 

Then we have 

                                       𝑅𝐷(𝑢) = 2𝑢2 + 1.038𝑢 − 0.7534                                      (5.30) 

                                                 𝑇𝐷(𝑢) = −2𝑢 − 1.038                                               (5.31) 

𝑁(𝑒𝑗𝜃) = 0.004802𝑒𝑗𝜃 + 0003013 

                                  = 0.004802𝑐𝑜𝑠𝜃 + 𝑗0.004802𝑠𝑖𝑛𝜃 + 0.003013 

                                           = −0.004802𝑢 + 0.003013 + 𝑗0.004802√1 − 𝑢2      (5.32) 

                                      𝑅𝑁(𝑢) = −0.004802𝑢 + 0.003013                                    (5.33) 

                                                    𝑇𝑁(𝑢) = 0.004802                                                 (5.34) 

                                𝑃1(𝑢) = 0.006026𝑢
2 − 0.0029𝑢 − 0.0073                              (5.35) 

                                         𝑃2(𝑢) = −0.006026𝑢 + 0.0005                                       (5.36) 

                               𝑃3(𝑢) = −0.000014468𝑢 + 0.000032059                               (5.37) 

            Then we could get 

R(u, 𝑘0, 𝑘1) = −0.012052𝑢
3 − 0.0026𝑢2 + 0.0162𝑢 + 0.0068 

                                          −(𝑘1𝑢 − 𝑘0)(−0.000014468𝑢 + 0.000032059)           (5.38) 

T(u, 𝑘1) = 0.012052𝑢
2 + 0.0026𝑢 − 0.0078 + 𝑘1(−0.000014468𝑢 +

                                     0.000032059)                                                                           (5.39) 
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Therefore, in order to guarantee the system stability, the amount of roots of 

σ(z) inside circle with radius 1 should be 3. 

𝑖𝜎 = 3 

The amount of roots of the Nr(z): 𝑖𝑁𝑟 = 0 

The order of N(z) is l = 1 

Therefore,  

𝑖1 − 𝑖2 = (𝑖𝜎 + 𝑖𝑁𝑟) − 𝑙 = 2 

Hence, the T(u, 𝑘1) needs to have two real roots to make the system stable. 

Let T(u, 𝑘1) = 0, we have 𝑘1 =
0.012052𝑢2+0.0026𝑢−0.0078

0.000014468𝑢−0.000032059
. So the range of 𝑘1 is 

𝑘1 ∈ [−389.5174,243.8580]. 

To give an specific controller, we fix 𝑘1 = 200. 

The roots of T(u, 𝑘1) inside unit circle are -0.327426 and 0.351787. 

Sgn[T(−1)] = +1 

And since  

𝑖1 − 𝑖2 = 2 

Therefore, 

1

2
𝑆𝑔𝑛[𝑇(−1)](𝑆𝑔𝑛[𝑅(−1)] − 2𝑆𝑔𝑛[𝑅(−0.3274)] + 2𝑆𝑔𝑛[𝑅(0.351787)] −

                                                     𝑆𝑔𝑛[𝑅(+1)]) = 2                                                       (5.40) 

We could set 

𝑆𝑔𝑛[𝑅(−1)] = 1 

𝑆𝑔𝑛[𝑅(−0.3274)] = −1 
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𝑆𝑔𝑛[𝑅(0.351787)] = 1 

𝑆𝑔𝑛[𝑅(+1)] = 1 

Therefore we have following linear inequalities: 

                                                   {

4.65𝑘0 + 935.7 > 0
3.68𝑘0 + 404.96 < 0
2.70𝑘0 + 975.5 > 0
1.76𝑘0 + 482.98 > 0

                                         (5.41) 

These inequalities describes the stability region in 𝑘0 space for fixed 𝑘1 = 200. 

By repeating the procedure and change 𝑘1, we could get stability sets shown in figure 

5.2. 

 

 

Figure 5.2 Discrete Time PI Controller Stabilizing Sets (k1,k0) 

 

If we set 𝑘0 = −150, we could get the PI controller as 
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                                                        C(z) =
−150+200𝑧 

𝑧−1
                                              (5.42) 

The system is shown in following figure 5.3: 

 

 

Figure 5.3 Discrete Time Motor Control with PI Controller Simulink  

 

The step response is as following figure 5.4:  

 

 

Figure 5.4 Discrete Time Motor Control with PI Controller Step Response 
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5.5 Digital PI Optimized Parameter Design for DC Motor 

Y.C. Kim [19] showed that w-domain can preserve z-domain in transient 

response design. The w transform is given by: z ≔
2+𝑇𝑠𝜔

2−𝑇𝑠𝜔
. 

We will use this transformation to solve our problem with 𝑇𝑠 = 0.1. 

Apply w transform to our DC motor model: 

                                 P(ω) =
−0.000018𝜔2−0.0012052𝜔+0.0313

0.022846𝜔2+0.30136𝜔+0.8352
                          (5.43) 

Apply w transform to PI controller: 

                                          C(ω) =
0.1𝜔(𝑘1−𝑘0)+2(𝑘0+𝑘1)

0.2𝜔
                                (5.44) 

Therefore, the closed loop system transfer function will be: 

𝐺(𝜔)

=

−0.0000018𝜔3(𝑘1 − 𝑘0) − 𝜔
2(0.00015652𝑘1 − 0.00008452𝑘0)

−𝜔(0.0055403𝑘0 − 0.0007196𝑘1) + 0.0626(𝑘0 + 𝑘1)

𝜔3(0.0045692 − 0.0000018𝑘1 + 0.0000018𝑘0) + 𝜔
2(0.060272 − 0.00015652𝑘1

+0.00008452𝑘0) + 𝜔(0.16704 − 0.0055404𝑘0 + 0.0007196𝑘1) + 0.8352 + 0.0626(𝑘0 + 𝑘1)

 

                                                                                                                        (5.45) 

Define  𝑎0 = 0.8352 + 0.0626(𝑘0 + 𝑘1) 

            𝑎1 = (0.16704 − 0.0055404𝑘0 + 0.0007196𝑘1) 

            𝑎2 = 0.060272 − 0.00015652𝑘1 + 0.00008452𝑘0 

            𝑎3 = 0.0045692 − 0.0000018𝑘1 + 0.0000018𝑘0 

            𝑏0 = 0.0626(𝑘0 + 𝑘1) 

            𝑏1 = 0.0055403𝑘0 − 0.0007196𝑘1 

            𝑏2 = 0.00015652𝑘1 − 0.00008452𝑘0 

            𝑏3 = 0.0000018(𝑘1 − 𝑘0) 
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Apply modified characteristic ratio assignment criterion: 

                                       

{
 
 

 
 𝛼1 =

𝑎1
2

𝑎0𝑎2
> 2

𝛼2 =
𝑎2
2

𝑎1𝑎3
> 2

0.1 < 𝜏 < 0.5

         &&     

{
 
 

 
 
𝑏0

𝑏1
> 10

𝑏0

𝑏2
> 10

𝑏0

𝑏3
> 10

                             (5.46) 

Based on the stabilizing sets and above criterion, the optimized sets can be got as 

following figure 5.5: 

 

 

Figure 5.5 Optimized (k1,k0) sets of Digital PI Controller 

 

If we select k0=-30, k1=39, then the step response is as figure 5.6: 
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Figure 5.6 The Step Response of Optimized Digital PI Controller 

 

It is evident that the overshoot is much less than the previous result. 

 

5.6 Digital PID Controller Stabilizing Sets Design for DC Motor 

Discrete time PID controller is: 

                                                         𝐶(𝑧) =
𝐾2𝑧

2+𝐾1𝑧+𝐾0

𝑧(𝑧−1)
                                          (5.47) 

                                                    𝑃(𝑧) =
0.004802𝑧+0.003013

𝑧2−1.038𝑧+0.2466
                                      (5.48) 

The characteristic polynomial is 

                                𝜎(𝑧) = 𝑧(𝑧 − 1)𝐷(𝑧) + (𝐾2𝑧
2 + 𝐾1𝑧 + 𝐾0)𝑁(𝑧)                   (5.49) 

Applying the Tchebyshev representations, then 
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𝑧−1𝛿(𝑧)𝑁(𝑧−1)

= −(𝑢 + 1)𝑃1(𝑢) − (1 − 𝑢
2)𝑃2(𝑢) − [(𝐾0 + 𝐾2)𝑢 − 𝐾1]𝑃3(𝑢)

+ 𝑗√1 − 𝑢2[−(𝑢 + 1)𝑃2(𝑢) + 𝑃1(𝑢) + (𝐾2 − 𝐾0)𝑃3(𝑢)] 

                                  = 𝑅(𝑢, 𝐾0, 𝐾1, 𝐾2) + 𝑗√1 − 𝑢2𝑇(𝑢, 𝐾0, 𝐾2)                            (5.50) 

Let  

𝐾3 ≔ 𝐾2 − 𝐾0 

Then we have as follows: 

                                      𝑅𝐷(𝑢) = 2𝑢
2 + 1.038𝑢 − 0.7534𝑢                               (5.51) 

                                                𝑇𝐷(𝑢) = −2𝑢 − 1.038                                        (5.52) 

                                     𝑅𝑁(𝑢) = −0.004802𝑢 + 0.003013                             (5.53) 

                                                    𝑇𝑁(𝑢) = 0.004802                                          (5.54) 

                                    𝑃1(𝑢) = 0.006026𝑢
2 − 0.0029𝑢 − 0.0073                      (5.55) 

                                        𝑃2(𝑢) = −0.006026𝑢 + 0.0005                               (5.56) 

                                     𝑃3(𝑢) = 0.000014468𝑢 + 0.000032059                        (5.57) 

Therefore 

𝑅(𝑢, 𝐾1, 𝐾2, 𝐾3) = −0.012052𝑢3 − 0.002626𝑢2 + 0.016226𝑢 + 0.0068 −

                                  [(2𝐾2 − 𝐾3)𝑢 − 𝐾1](0.000014468𝑢 + 0.000032059)               (5.58) 

T(u, 𝐾3) = 0.012052𝑢2 + 0.002626𝑢 − 0.0078 + 𝐾3(0.000014468𝑢 +

                                                0.000032059)                                                                  (5.59) 

Let T=0 

Then 𝐾3 = −
0.012052𝑢2+0.002626𝑢−0.0078

0.000014468𝑢+0.000032059
 



 

44 

 

 

As −1 ≤ 𝑢 ≤ 1 

−92 ≤ 𝐾3 ≤ 271 

The amount of roots of 𝜎(𝑧) inside the circle with radius 1 should be 4. 

𝑖𝜎 = 4 

𝑖𝑁𝑟 = 0 

𝑙 = 1 

𝑖1 − 𝑖2 = (𝑖𝜎 + 𝑖𝑁𝑟) − (𝑙 + 1) = 2 

Fix 𝐾3 = 0, 

For  𝑇(𝑢, 𝐾3), the real roots in the range (-1,1) are -0.920760 and 0.703120 

𝑆𝑔𝑛[𝑇(−1)] = 1 

1

2
𝑆𝑔𝑛[𝑇(−1)](𝑆𝑔𝑛[𝑅(−1)] − 2𝑆𝑔𝑛[𝑅(−0.920760)] + 2𝑆𝑔𝑛[𝑅(0.703120)] −

                                                                 𝑆𝑔𝑛[𝑅(1)])=2                                                    (5.60) 

𝑆𝑔𝑛[𝑅(−1)] = 1 

𝑆𝑔𝑛[𝑅(−0.920760)] = −1 

𝑆𝑔𝑛[𝑅(0.703120)] = 1 

𝑆𝑔𝑛[𝑅(1)] = 1 

Then the following linear inequalities can be got 

−(−2𝐾2 − 𝐾1) ∗ 0.000017591 > 0 

−0.00001494 − (−1.84𝐾2 − 𝐾1) ∗ 0.00001874 > 0 

0.012721 − (2𝐾2 − 𝐾1) ∗ 0.00004223 > 0 

0.008348 − (2𝐾2 − 𝐾1) ∗ 0.000046527 > 0 
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We could choose 𝐾3 = 0, that is 𝐾2 − 𝐾0 = 0 

Let us set 𝐾1 = 𝐾2 = 𝐾0 = 1 

Therefore 

𝐶(𝑧) =
𝑧2 + 𝑧 + 1

𝑧(𝑧 − 1)
 

The system diagram is shown as following figure 5.7: 

 

 

Figure 5.7 Discrete Time Motor Control with PID Controller Simulink 

 

The step response of this system is as figure 5.8: 

 

 

Figure 5.8 Discrete Time Motor Control with PID Controller Step Response 
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 From above figure, the system is stable by applying the PID controller designed 

by stabilizing sets.  
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6.    CONCLUSION 

 

This thesis provides a complete theoretical procedure to design PID controller 

parameters for DC motor system.  

 For the continuous time DC motor system, signature method gives us a tool to find 

all stabilizing sets. But the transient response performance are not considered. To decrease 

overshoot and rising time, the thesis proposed the modified characteristic ratio assignment 

method. Using the proposed criterion, the new parameter sets can guarantee better 

transient response performance.  

Using above method, the PID controller and PD controller design are integrated 

into the DC motor velocity control and DC motor position control problems separately.  

The selected parameter successfully design the DC motor control system and achieve a 

good step response. 

 For the discrete system, digital PI and PID stabilizing sets are designed by using 

root counting algorithm.  In addition, by using w transform and modified characteristic 

ratio assignment method, the optimized digital PI parameter sets are also got.
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