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ABSTRACT

Ridesharing services, whose aim is to gather travelers with similar itineraries

and compatible schedules, are able to provide substantial environmental and social

benefits through reducing the use of private vehicles. When the operations of a

ridesharing system is optimized, it can also save travelers a significant amount of

transportation cost. The economic benefits associated with ridesharing in turn at-

tract more travelers to participate in ridesharing services and thereby improve the

utilization of transportation infrastructure capacity.

This study addresses two of the most challenging issues in designing an efficient

and sustainable ridesharing service: ridesharing optimization and ridesharing market

design. The first part of the dissertation formally defines the large-scale ridesharing

optimization problem, characterizes its complexity and discusses its relation to classic

relevant problems like the traveling salesman problem (TSP) and the vehicle routing

problem (VRP). A mixed-integer program (MIP) model is developed to solve the

ridesharing optimization problem. Since the ridesharing optimization problem is

NP-hard, the MIP model is not able to solve larger instances within a reasonable

time. An insertion-based heuristic is developed to get approximate solutions to

the ridesharing optimization problem. Experiments showed that ridesharing can

significantly reduce the system-wide travel cost and vehicle trips. Evaluation of the

heuristic solution method showed that the heuristic approach can solve the problem

very fast and provide nearly-optimal (98%) solutions, thus, confirming its efficiency

and accuracy.

From a societal perspective, the ridesharing optimization model proposed in this

dissertation provided substantial system-wide travel cost saving (25%+) and vehicle-
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trip saving (50%) compared to non-ridesharing situation. However, the system-level

optimal solution might not completely align with individual participant interest. The

second part of this dissertation formulates this issue as a fair cost allocation problem

through the lens of the cooperative game theory.

A special property of the cooperative ridesharing game is that, its characteristic

function values are calculated by solving an optimization problem. We characterize

the game to be monotone and subadditive, but non-convex. Several concepts of fair-

ness are investigated and special attention is paid to a solution concept named nucle-

olus, which aims to minimize the maximum dissatisfaction in the system. However,

finding the nucleolus is very challenging because it requires solving the ridesharing

optimization problem for every possible coalition, whose number grows exponentially

as the number of participants increases in the system. We break the cost allocation

(nucleolus finding) problem into a master-subproblem structure and two subprob-

lems are developed to generate constraints for the master problem. We propose a

coalition generation procedure to find the nucleolus and approximate nucleolus of the

game. When the game has a non-empty core, in the approximate nucleolus scheme

the coalitions are computed only when it is necessary, and the approximate nucleolus

scheme produces the actual nucleolus. Experimental results showed that, when the

game has an empty core, the approximate nucleolus is close to the actual nucleolus.

Results also showed that, regardless of the emptiness of the game, by using our algo-

rithm, only a small fraction (1.6%) of the total coalition constraints were generated

to compute the approximate nucleolus, and the approximate nucleolus is close to the

actual nucleolus.
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1. INTRODUCTION

1.1 Background and Motivation

Travelers today have a number of options when choosing transportation modes

to go from origins to destinations. When selecting a transportation mode, people

usually consider criteria such as cost-efficiency, time, reliability, convenience, etc.

Usually people cannot achieve both cost-efficiency and convenience. For example,

the fixed-route transit (FRT) systems are considered to be cost-efficient because of

their ridesharing attribute and sufficient loading capacity. However, they are incon-

venient because the fixed stops and schedule cannot cater to individual passenger’s

demand. This lack of flexibility is the most significant constraint of FRT. At the

other end of the spectrum, private cars and taxis (demand-responsive transit, or

DRT more generally) are much more flexible and faster offering convenient door-to-

door transportation, at a much higher cost than FRT. Among the transportation

modes, ridesharing (also referred to as carpooling) lies somewhere between the two

ends. Ridesharing combines the fast travel time and convenience of private cars and

the cost-efficiency of fixed-route transit to provide an attractive and viable alterna-

tive.

Ridesharing by definition occurs when travelers share both a private vehicle and

the associated travel cost with others that have similar itineraries and compatible

time schedules. On the one hand, the popularity of smart phones and other ubiq-

uitous computing powers make the efficient sharing and communication of personal

information possible (e.g., location through global positioning systems (GPS)). On

the other hand, ridesharing arises as a viable urban transportation option in the

context of finite oil supplies, rising gas prices, never-ending traffic congestion, and
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environmental concerns. The aim of ridesharing is to improve the efficiency of trans-

portation by bringing together travelers with similar itineraries and schedules. The

following facts make ride-sharing services promising. The private car occupancy

rates are surprisingly low: According to recent reports (see European Environmental

Agency, 2005; Santos et al., 2011), the average car occupancies in Europe and the US

range from 1.8 to 1.1, meaning the vast majority of the trips are actually transporting

“empty seats”. The low-occupancies, together with the large demand for automobile

transportation at peak-hours lead to traffic congestion in many urban areas. Ac-

cording to recent reports by the Texas A&M Transportation Institute (Schrank and

Lomax, 2007; Schrank et al., 2012), the economic loss associated with congestion is

as high as 78 billion and 121 billion dollars in 2007 and 2012, respectively, indicating

a significant increase over years. Besides, private automobiles are also a major source

of fuel consumption and carbon dioxide emissions, which contribute to air pollution

and climate change.

Effective usage of ride-sharing can potentially increase occupancy rates, and thus

mitigate the above-mentioned problems (Morency, 2007). Moreover, the rideshar-

ing system has “scale effects.” As shown by Dailey et al. (1999), the relationship

between the number of ridesharing participants and the number of carpools formed

is quadratic, meaning that ridesharing can have a large effect on traffic demand

management (TDM) if large segments of the population are attracted to the service.

There are already some successful stories in the emerging ridesharing market.

Ridesharing market leader, Uber, who started as a “glorified” taxi company whose

motto was “Everybody’s Private Driver,” is currently shifting its focus to ridesharing

services in major markets. Recent data shows that half of all Uber rides in San

Francisco are for UberPool, which is Uber’s ridesharing service. Other players in the

market, such as Lyft and Sidecar share the same trend.

2



Although ridesharing as a transportation solution is promising in a lot of ways,

the operations of ridesharing systems introduce new challenges to both industry and

academia. First, an important objective of a ridesharing system is to minimize the

system-wide total vehicle mileage by gathering travelers with similar itineraries and

compatible schedules. Based on ride sharer information, the system should be able

to make decisions regarding which travelers will be assigned the role of a driver and

what route the drivers should follow regarding picking up and dropping off riders.

An efficient ridesharing system should be able to make these decisions automatically

with the objective of minimizing the system-wide total vehicle mileage. However,

this is a very difficult optimization problem to solve. Second, as the travel costs are

reallocated among the customers, a ridesharing system needs to carefully design a

fair cost allocation scheme to ensure customer satisfaction and induce more travelers

to participate in the system. This problem corresponds to mechanism design in game

theory and again, this is a very challenging problem because the calculation of the

fair cost allocation scheme is highly related to the ridesharing optimization problem.

Neither of the above problems can be solved by existing methodologies. As a result,

this dissertation develops innovative mathematical models and algorithms to handle

these challenges, in the hope of making ridesharing a sustainable and attractive

alternative to private cars.

1.2 Outline

This dissertation is organized as the following. Section 2 gives a comprehen-

sive review of three subjects: (1) the models and solution methods for routing and

scheduling problems in transportation, (2) models, applications and the algorithmic

aspects of game theory, and (3) recent progress in ridesharing study. Section 3 sum-

maries the problems in optimization and mechanism design for ridesharing services
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and provides some background in game theory and mechanism design. Section 4

gives a formal definition of the ridesharing optimization problem, characterizes its

complexity and develops models and algorithms to solve the problem, both accu-

rately and approximately. Experiments are conducted to evaluate the quality of the

developed algorithms. Section 5 is dedicated to the mechanism design problem of

ridesharing. The ridesharing cost allocation problem is formulated through the lens

of cooperative game theory. Several solution concepts about “fairness” in cost allo-

cation are investigated. In particular, an algorithm is developed to find the nucleolus

of the ridesharing game. Conclusions and future research direction are presented in

Section 6.
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2. LITERATURE REVIEW

2.1 Mechanism Design

Mechanism design lies in the intersection of computer science and economics. It

looks for overall good solutions in a distributed system where each participant acts

as a self-interested agent with private preferences. Recently mechanism design has

been successfully applied in many areas such as electronic market design and resource

allocation problems. A typical goal in mechanism design is to provide incentives to

participants to promote truth revelation from agents.

In one sentence, mechanism design is the inverse of game theory: It is the art

of designing a game (a mechanism) in which a given desired outcome is achieved in

equilibrium, i.e., the state from which no player has the incentive to deviate.

Mechanism designers have many “desired outcomes” to choose from. However,

most of the mechanisms are focused on two objectives:

1. In social welfare-maximizing (i.e., efficient) mechanism design, the goal is to

assign the items to the bidders with the highest value.

2. In revenue-maximizing (i.e., optimal) mechanism design, the goal is to achieve

as much revenue as possible for the agency in charge of creating and awarding

bids, i.e., the auctioneer.

Vickrey (1961), in his seminal paper, gave an efficient mechanism for a single-

item auction: Assign the item to the bidder with the highest bid, and charge him the

second highest price. Naturally, this kind of auction is coined as the second-price or

Vickrey auction. A Vickrey auction has two desirable properties: It achieves social

welfare optimality and at the equilibrium, all bidders give their true values for the
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item. For its simple allocation and payment rules, the Vickrey auction is easy to

implement.

Groves mechanisms (Groves, 1973) have played and will continue to play an

important role in mechanism design. Groves mechanisms can be implemented to

maximize the total value over all participants — meaning Groves mechanisms are ef-

ficient. Besides, the Groves mechanisms are strategy-proof, meaning truth-revealing

is a dominant strategy for each participant, regardless of the strategies taken by

other players. However, the value-maximization problem can only be solved after

all the participants report their complete information. Because of its combinatorial

nature, the Groves mechanism is computationally intractable. And any attempts

trying to increase its computability (e.g., relax the requirement of complete informa-

tion revelation) could easily compromise the mechanism’s game-theoretic properties

(e.g., the strategy-proofness). A step up is the Vickrey, Clarke and Groves (VCG)

mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973), which is generalized from the

Vickrey auction for multiple items. The VCG mechanism charges each bidder the

harm they cause to other bidders (i.e., their negative externality) and is both efficient

and incentive compatible. However, implementing VCG mechanism is computation-

ally infeasible (see Nisan and Ronen, 2000). The computational issues of mechanism

design has been gaining the attention of theoretical computer scientists since Nisan

and Ronen (1999) opened up the field of algorithmic mechanism design. Algorithmic

mechanism design addresses the mechanism design problem from a computer sci-

entist’s perspective in which worst-case analysis and approximation techniques are

used. Recent progress has been focused on the gap between approximability and

incentive compatibility (see Papadimitriou et al., 2008; Dobzinski, 2011; Dobzinski

and Vondrak, 2012; Dughmi et al., 2011)

For optimal mechanism design, which is focused on revenue-maximization, My-
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erson (1981) in his landmark paper solved the auction design problem to achieve

the highest expected revenue at equilibrium. Inspired by the results of Myerson

(1981) showing that the optimal single-item auction for players with independent

private values is simply the Vickrey auction with reserve prices, computer scien-

tists followed up by generalizing the auction settings. These efforts include Chawla

et al. (2007) and Hartline and Roughgarden (2009) who relaxed the assumptions on

bidders’ value distribution and proposed VCG-based mechanisms that reasonably ap-

proximated the optimal expected revenue. Unlike mechanism design problems, whose

results are dependent on the distribution of bidders’ valuations, prior-free auctions

further relax the settings and assume no distribution over bidders’ valuations before

the bid. Worst-case approximation analysis is commonly seen in prior-free auction

design problems and the resultant revenues are often compared to the well-known

benchmark mechanism (Goldberg et al., 2006). Hartline and Roughgarden (2008)

proposed a Bayesian optimal mechanism-based framework that is near-optimal and

prior-free. Leonardi and Roughgarden (2012) designed a prior-free multiple goods

auction with ordered bidders and gave its expected revenue compared with some

benchmarking results.

Note that most of the optimal mechanism design research in the literature was

focused on single-item auctions due to the complexity issues. This is one of the

challenges we’ll face in the mechanism design for ridesharing services because in the

ridesharing context we generally have multiple auctioneers (drivers) with multiple

items (passenger seats) for sale. Another challenge is due to the impossibility of

finding an efficient mechanism which is both incentive compatible and individually

rational without external subsides (Myerson and Satterthwaite, 1983).

The most business-wise successful application of mechanism design might be the

generalized second-price (GSP) mechanism. The GSP mechanism is the current in-
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dustry standard for search engine (e.g., Google, Yahoo!) advertisement allocation as

it practically generates stable allocation results. This mechanism was first proposed

in a static framework in which a single auction with a small number of slots were

allocated at the same time. Varian (2007) and Edelman et al. (2007) independently

developed this mechanism and analyzed its equilibrium. Note that unlike VCG mech-

anism, the GSP is not truthful, meaning truth-revealing is not a dominant strategy

for players.

2.2 Mechanism Design in Ridesharing

This research area has been largely ignored by the transportation research com-

munity until very recently. The author only found two applications of mechanism

design in ridesharing. One is due to Kamar and Horvitz (2009) who proposed the

agent-based carpooling (ABC) system that dynamically generates ride-share plans

and encourages fair payments based on a VCG mechanism. However, this VCG mech-

anism needs to compute optimal outcomes to ensure truthfulness, and the problem

itself is NP-complete (Nisan and Ronen (2000)). Thus, it is computationally infea-

sible to implement such a mechanism in a dynamic environment in which frequent

computation on payments is necessary. To address the intractability, the ABC system

makes a series of approximations such as calculating local VCG payments instead

of global VCG payments and calculating the payments based on an approximation

method used by Nisan and Ronen (2000). In this way however, their payment mech-

anism is not truthful.

Kleiner et al. (2011) proposed an auction scheme for dynamic ride-sharing with

one-driver-one-passenger setting. They showed that their system is incentive-compatible

and allows trade-off between the minimization of vehicle mileage traveled and the

overall successful matching rate. However, their work needs to be extended to
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multiple-passenger-multiple-driver before its can be implemented in the real world.

More recently, Wang (2013) studied the stability issue in the optimal ridesharing

matching problem. To the extent of our knowledge, no previous work has been

published on the general ridesharing problems with a multiple-passenger-multiple-

driver-flexible-role setting.

2.3 Algorithmic Studies on Ridesharing-related Problems

As will be shown later, the mechanism design problem is closely related to the

ridesharing optimization problem with specific objective functions. So there’s a need

to conduct a literature review on algorithmic studies related to rideharing problems.

The ridesharing problem is closely related to the pickup and delivery problem (PDP,

see Savelsbergh and Sol (1995) for a review). Extensive studies of PDP can be found

in the literature. Many of the studies involve integer programming-based exact al-

gorithms. Sexton and Bodin (1985) reported an exact algorithm based on Bender’s

decomposition. Cordeau (2006) developed an MIP formulation for a related problem

of PDP – the multi-vehicle Dial-a-Ride Problem (DARP). A branch-and-cut algo-

rithm using valid inequalities was proposed by him. Cordeau and Laporte (2003)

examined and compared different mathematical formulations and solution methods.

Lu and Dessouky (2004) developed an MIP formulation for the multiple-vehicle PDP.

New valid inequalities were utilized to develop a branch-and-cut algorithm to opti-

mally solve the problem. Cortes et al. (2010) presented a strict MIP formulation

for the PDP and allow passengers to transfer. Berbeglia et al. (2010) gave a com-

prehensive review on dynamic PDP and discussed solution strategies. Quadrifoglio

et al. (2008) developed an MIP formulation for the static single-vehicle Mobility Al-

lowance Shuttle Transit (MAST) system (a variant of the PDP system). Logic cuts

were proposed by the authors to strengthen the formulation and solve the problem.
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Other exact algorithms include dynamic programming. Psaraftis developed dynamic

programming techniques to solve the DARP (Psaraftis, 1980) and DARP with time

windows (Psaraftis, 1983). These two algorithms have a complexity of O(N23N)

(here N stands for the number of customers) and can solve instances of up to 20

customers within a reasonable time. Besides, Teodorovic and Radivojevic (2000)

developed a fuzzy logic approach for the DAR problem. Wang (2013) modeled the

single-driver, single-rider ridesharing optimization problem as a maximum-weight

bipartite matching problem.

Due to the fact that PDP is strongly NP-hard (Lenstra and Kan, 1981), besides

exact solution methods, the research community have been focusing on heuristic

approaches that can solve large instances of PDP in polynomial time, while main-

taining the quality of the solution. Insertion heuristics are very important and pop-

ular among the heuristic approaches, not only because of their fast running time,

but also due to their applicability and implementability in dynamic environments

(Campbell and Savelsbergh, 2004). Efforts in insertion heuristics include a insertion-

based construction heuristic for multiple-vehicle PDP by Lu and Dessouky (2006).

One disadvantage of insertion heuristics is that it is difficult to quantitatively evalu-

ate their performance. Another disadvantage is due to its myopic and greedy nature

when searching for local optimum. Quadrifoglio et al. (2007) resolved this disad-

vantage efficiently by introducing an insertion heuristic with the concept of “usable

slack time”. Some efforts have been put to evaluate the performance of heuristics

through worst-case analysis. These efforts can be found in PDP and more funda-

mental problems such as TSP. Through constructing a minimum spanning tree and

an Euler tour, Christofides (1976) developed a O(n3) heuristic with worst-case ra-

tio of 3/2 for metric-TSP (TSP whose cost matrix satisfies the triangle inequality).

Rosenkrantz et al. (1977) analyzed the approximation ratio of the cheapest insertion
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heuristic and several other heuristics for TSP. Archetti et al. (2003) did research

on the re-optimization version of TSP in which a new node is added to or removed

from an optimal solution. They proved that the worst-case ratio of the cheapest

insertion heuristic decreases from 2 (Rosenkrantz et al., 1977) to 3/2 when applied

to the re-optimization version of TSP. Arora (1998) developed a polynomial time

approximation scheme (PTAS) for Euclidean TSP, which is currently the best result

on approximating TSP.
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3. DEFINITIONS AND PROBLEM DESCRIPTION

We begin this section by summarizing the challenges of optimization and mech-

anism design for ridesharing:

1. The valuations of the customers largely depend on the actual assignment of

the ridesharing plan.

2. The mechanism design problem is closely related to the optimization problem of

ridesharing. For example, a VCG-based mechanism has its desired properties

(efficiency, individually-rational, and strategy-proof) only if the ridesharing

assignment solved from the optimization model is actually optimal.

3.1 Ridesharing Settings

There are two types of participants in ridesharing: riders and drivers. Drivers

use their vehicles to provide ride-sharing offers. Riders place requests to be matched

to an offer. A service is a procedure to make those matches happen, which could be

a website based on social networks.

There are four basic arrangements of ridesharing services, namely:

• Single Rider, Single Driver

• Single Driver, Multiple Riders

• Single Rider, Multiple Drivers

• Multiple Driver, Multiple Riders

This research will focus on the multiple-driver-multiple-rider setting. The fol-

lowing notation is commonly used to address the optimization matching problem of

ridesharing.
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Given a set of locations L, travel times tij and distances dij between each pair of

locations i, j ∈ L, let D be the set of drivers; R, the set of riders, and P = D ∪ R,

the set of all agents in a ridesharing system. Each driver d ∈ D (rider r ∈ R) wants

to travel from his origin (start location) ld,s ∈ L (lr,s ∈ L) to his destination (end

location) ld,e ∈ L (lr,e ∈ L). Each driver d ∈ D (rider r ∈ R) has an earliest time

et(d) (et(r)) from which she may leave her origin and a latest time lt(d) (lt(r)) at

which she may arrive at his destination. The range [et(d), lt(d)] is called the time

window.

Figure 3.1: A matching with detour

Figure 3.1 illustrates the detouring cost associated with a successful ridesharing

matching. The original cost of the driver without ridesharing with the rider is:

dst. The cost of the rider is ds′t′ . With ridesharing, the joint trip length becomes

dss′ + ds′t′ + dt′t. From the driver’s point of view, the detouring cost is thus dss′ +

ds′t′ + dt′t − dst. Since the driver is always suffering a loss equal to the detouring

cost, the runner of the service has to pay the drivers for their loss. The business

runner can use the fees collected from the riders to subsidize the drivers. From the

perspective of the business runner, an important issue of the mechanism design is
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how to subsidize the driver to attract more users to participate in the service, and

at the same time, maximize the profit of ridesharing matching.

3.1.1 Ridesharing system objective

The objective of the system is to minimize the system-wide mileage, which is the

total mileage traveled by all users. This objective is meaningful from a social per-

spective because total vehicle mileage is critically related to air pollution (emissions)

and road congestion. Also, note that this objective is closely related to minimizing

total travel costs, or alternatively speaking, maximizing total travel cost savings,

which is the direct motivation of ridesharing participants.

3.2 Mechanism Design Problem

The mechanism designs how much each participant has to pay for the shared ride.

We design mechanisms that have the following properties: For drivers, cost is shared

and perhaps, some income is gained; for passengers, their transportation needs are

satisfied without driving their own cars.

3.2.1 Value of a shared-ride for an agent

Let P be the set of participants in a ridesharing system and S ∈ P be a ridesharing

group. Denote by R(S) the set of all the feasible ridesharing tours for S. Here a

ridesharing tour R ∈ R(S) decides which participant in S will be assigned as the

driver and gives the pick-up and drop-off sequence for all the riders. The value of a

shared-ride for an agent pi ∈ S is defined as the cost savings associated with switching

from driving a vehicle from origin to destination to participating in a ridesharing

tour. Let C0(pi) be pi’s cost for an individual trip if he doesn’t participate in any

ridesharing. Let C(pi, R) be the cost of pi for ridesharing tour R, then pi puts a
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value on ridesharing tour R that is equal to

vi(R) = C0(pi)− C(pi, R)

It is noted that the cost of agent i should include the following components:

1. Agent i’s driving cost including fuel cost and vehicle usage.

2. A cognitive inconvenience cost for being a driver.

Note that the fuel cost and the vehicle usage is closely related to the driving miles.

It is also observed that agent i’s cognitive inconvenience cost for being a driver can

also be measured by the mileage he drives, as the inconvenience cost should increase

as the driving miles accumulate. As a result, it is reasonable to assume that each

participant i’s travel cost is proportional to his driving miles. Since in any ridesharing

tour R ∈ R(S), the only one that is driving is the driver pd ∈ S, then we have

C(pi, R) = 0, ∀pi ∈ S\{pd}.

Then it is not hard to see that for every agent who is not matched to any rideshar-

ing tour, his value is

vi(R) = C0(pi)− C(pi, R) = C0(pi)− C0(pi) = 0

The cumulative value of a ridesharing tour R is the summation of the values of

all the agents for participating in the ridesharing.

V (R) =
∑
pi∈S

vi(R)
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3.2.2 Mechanism design preliminaries

Before getting into the mechanism design for ridesharing, we first introduce some

definitions for the desired properties of the ridesharing mechanism.

Definition 3.1 (Truthfulness). A mechanism is truthful if any agent’s equilibrium

strategy is to report his true value for shared-ride plan R to the system,

v̂i(R) = vi(R), for ∀pi ∈ P

Definition 3.2 ((Ex post) Individual Rationality). A mechanism is ex post individ-

ual rational if no agent loses money by participating in the ridesharing,

vi(R
∗) ≥ ρi, for ∀pi ∈ P,

where R∗ is the equilibrium ridesharing plan and ρi is the value of pi if there is no

ridesharing.

Definition 3.3 (Weak budget-balance). A mechanism is weakly budget balanced

when no external subsidy is required to maintain the operations of the ridesharing

system, ∑
pi∈P

ρi ≥ 0

3.3 Mechanism Design Problem in Ridesharing

Many online ridesharing matching agencies use simple payment mechanisms such

as sharing fuel costs among passengers (see Furuhataa et al., 2013). These simple

mechanisms are easy to implement but are not capable of incorporating personal

preferences because of individually-different cognitive costs. Moreover, these pay-
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ment schemes are not truth-revealing since participants may deceptively report their

own value in hopes of biasing the ridesharing plans for their own good.

Designing a payment mechanism that has the game theoretic virtues for a dy-

namic ridesharing system is challenging. First of all, Myerson and Satterthwaite

(1983) proved the impossibility of finding an efficient mechanism that is both incen-

tive compatible and individually rational without external subsides. Second, compu-

tationally expensive payment mechanisms that require optimal outcome calculations

are not practically implementable in a dynamic ridesharing system.

According to the VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973),

each participant of the ridesharing service is charged the harm he causes to the social

welfare (his externality). Let V ∗∗−i be the cumulative value of the rideshare plans of

all the agents except pi, and V ∗−i is the cumulative value of the system when pi is not

participating in ridesharing. Then agent pi’s payment is:

ρi = V ∗∗−i − V ∗−i

On the condition that the rideshare plan calculated by the optimization problem

is optimal, this VCG-based plan has the following properties:

• Efficiency – Social welfare is maximized. This is achieved by solving the opti-

mization problem.

• Individual rationality – All agents have non-negative utility by participating in

ridesharing.

• Strategy-proof – Truth-telling is a dominant strategy for each agent regardless

of what strategy other players are taking.

There are several challenges when solving the mechanism design problem. First,
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payments usually need to be repeatedly calculated in a dynamic ridesharing set-

ting. Second, to ensure truthfulness, the embedded optimization problem, which

maximizes social benefits (NP-hard in its nature) needs to be solved.
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4. RIDESHARING OPTIMIZATION PROBLEM

4.1 Introduction

In a large-scale ridesharing system, we assume that all the customers that are

considered in the optimization problem are time-compatible. This assumption is

realistic when the time windows are sufficiently large and travelers are less sensitive

to time windows (e.g, end of business days). Furthermore, the proposed optimization

problem has a nice sub-structure. That is, it can be easily divided into smaller

subproblems with similar structure whose customers share similar time schedule and

solved in a parallel algorithm fashion.

4.1.1 Ridesharing system objectives

The objective of the ridesharing organizer is to minimize the system-wide mileage,

which is the total mileage traveled by all users. This objective is meaningful from a

social perspective because total vehicle mileage is critically related to the air pollution

(emissions) and road congestion. Note that this objective is also closely related to

minimizing total travel costs, or alternatively speaking, maximizing total travel cost

savings, which is the direct motivation of ridesharing participants. And we will later

show that this system-wise objective has an alignment with individual participant’s

interest - minimizing personal travel cost.

4.1.2 Problem definition

Let P be the set of participants in a ridesharing system. Each participant i ∈ P

wants to travel from his origin si to his destination ti. Let Vs = {si|i ∈ P}, Vt =

{ti|i ∈ P}, and the entire location set V = Ls ∪ Lt. Let A = V × V denote the

edge set connecting all the vertices in V and C ∈ R|V |×|V | denote the cost matrix
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with cij representing traveling cost from location i to j. Then we have a complete

graph G = (V,A) and its edge cost matrix C as input. To formally introduce the

ridesharing optimization problem, we first present some definitions.

Definition 4.1 (ridesharing tour). Let S ⊆ P be a ridesharing group and let V (S)

denote the location set of customers in S, therefore V (S) = ∪i∈S(si∪ ti). A rideshar-

ing tour for ridesharing group S, R(S) is a directed Hamiltonian path on the graph

G(S) = (V (S), A(S)) where A(S) = V (S)× V (S) such that

1. R(S) starts from agent d’s origin s(d) and ends at d’s destination t(d).

2. Let S−d = S\{d}. For every agent i in S−d, s(i) precedes t(i).

Note that the above definition implies that agent d is assigned as the driver in

the ridesharing group S.

Definition 4.2 (ridesharing partition). A ridesharing partition SP = {S1, . . . , Sm}

is a set of ridesharing groups such that

1. ∪Sj∈SPSj = P

2. Sj ∩ Sk = Ø 1 ≤ j 6= k ≤ m

Definition 4.3 (ridesharing plan). A ridesharing plan for a ridesharing partition

SP is a set of ridesharing tours RP = {R(Sj)|Sj ∈ SP}

Define f(RP ) as the value of ridesharing plan RP that corresponds to a function

f . Define the objective function of the ridesharing optimization problem as:

max{f(RP )}
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In this research f is the accumulated social values of all the ridesharing tours,

which is defined by:

f(RP (SP )) =
∑
Sj∈SP

V (R(Sj)) (4.1)

Definition 4.4 (ridesharing optimization problem (RSP)). An optimization problem

of ridesharing is a 4-tuple 〈IQ, SQ, fQ, optQ〉, where:

• IQ: the set of the participants P and the corresponding graph G = (V,A)

• SQ: the set of all ridesharing plans for all the ridesharing partitions of P

• fQ: f(RP ) is the value of ridesharing plan RP

• optQ: max.

4.1.3 Cost and value of a shared-ride for an agent

Recall from Section 3, for every agent who is not matched to any ridesharing

tour, his value is

vi(R) = C0(pi)− C(pi, R) = C0(pi)− C0(pi) = 0

On the other hand, for an agent that is matched in a ridesharing tour, his value

is

vi(R) =


C0(pi), ∀pi ∈ S\{pd},

C0(pi)− d(R), pi = pd.

Here d(R) is the tour length of R.

The cumulative value of a ridesharing tour R is the summation of the values of
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all the agents for participating in the ridesharing.

V (R) =
∑
pi∈S

vi(R)

=
∑
pi∈S

C0(pi)− d(R)

=
∑
pi∈S

d(pi)− d(R)

Given a set of ridesharing group S ⊆ P and suppose the ridesharing organizer

wants to maximize the cumulative value of S. Since d(pi) is a constant for every pi ∈

S when S is given, this objective is equivalent to minimizing d(R). And minimizing

d(R) is equivalent to finding the optimal solution for the corresponding TSP on

S with pick-up and drop-off precedence constraints. We call the optimal solution

for this problem the optimal ridesharing tour of S and denote it as C∗(S). The

associated value of C∗(S) is called the optimal value of S and is denoted by V ∗(S).

Now suppose the given set of ridesharing participants P has formed m ridesharing

groups. Let SP = {S1, . . . , Sm} denote the set of these groups. Then we must have

∪Sj∈SPSj = P and Sj ∩ Sk = Ø for every 1 ≤ j 6= k ≤ m. Note that here SP is also

known as a partition of P . We define the cumulative value of the participant set P

under a partition SP as the sum of the optimal values of sets in SP , that is

VSP (P ) =
∑
Sj∈SP

V ∗(Sj)

Now suppose the ridesharing organizer is more ambitious, not only it wants to

maximize V (R) for a given ridesharing group S ⊆ P , instead it aims to maximize the

cumulative value of P . This objective is equivalent to find the optimal set partition
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SP ∗ such that

SP ∗ = arg max
SPi∈SP(P )

VSPi
(P )

4.2 Modeling

4.2.1 Setting

The ridesharing organizer seeks to minimize system-wide total vehicle traveling

miles, namely the total driven miles by all the ridesharing users, either in a shared

ride or in a solo drive if unmatched.

Unlike cab-drivers that are hired by a company, drivers in a ridesharing service are

independent users. Suppose we have n ridesharing participants P = {1, 2, . . . , n}.

Each of them has a origin location and a destination location. Denote the node

set of origin and destination locations as VO and VD, respectively. Let node i be

customer i’s origin node (1 ≤ i ≤ n) and i+n be his destination node, then we have

VO = {1, 2, . . . , n} and VD = {n+ 1, n+ 2, . . . , 2n}.

Then we have a complete digraph GR = (VR, AR), where VR = VO ∪ VD is the set

of all nodes and AR = VR × VR is the set of all edges. Let CR ∈ R2n×2n be the cost

matrix with c0
ij representing the travel cost from node i to node j.

Figure 4.1 provides an illustration showing two feasible solutions to RSP on GR.

Note that the number in a node indicates its associated customer index. Nodes with

a rectangular shape and a “+” label represent the destinations. Figure 4.1(a) is a

solution that consists of individual trips (no ridesharing at all). On the other hand,

in Figure 4.1(b) customers 1 and 2 form a ridesharing group and customers 4, 5 and

6 form a ridesharing group. Nodes in red belong to the customers that are assigned

as drivers.

23



Figure 4.1: (a) Individual trips vs. (b) organized ridesharing trips

4.2.2 Hardness

Theorem 4.1. RSP is NP-hard.

Proof. Given a case in the 3-set covering problem, we can construct a RSP case like

this. For a given case P in the 3-partition problem, where U = {e1, e2, . . . , en} is

the finite element set, and S = {S1, S2, . . . , Sm} is the collection of sets of U . Each

Sj ∈ S is associated with a cost c(Sj). Note that this includes singletons. For any

X ⊆ S, let C(X ) denote the total costs of the sets in X , i.e., C(X ) =
∑

Sj∈X c(Sj).

The objective function of problem P is to find the X ⊆ S with smallest cost that

covers each element exactly once. It is known that this problem is NP-hard (Karp,

1972), and P can be reduced to RSP in the following way.

For any given case of P , we construct a case of RSP P0 like this. We build a

graph G = (V,E) where V = U+U ′, here U is still the finite element set as in P , and

U ′ is the set formed by corresponding “destination” of each element in U . For every

element e ∈ U , we have a corresponding destination as e′, and we set the distance

c0(ee′) = c(e). For every duplet, triplet and above in S, that we denote it by S in P,

24



in P0 we have c0(S) = c(S). Here c0(S) denotes the cost of the optimal ridesharing

tour (as defined before) of the nodes in S. Because a solution to the RSP on G (P0)

includes a solution to the optimal set covering problem on U (P ), and the latter is

NP-hard, we can conclude that RSP is NP-hard as well.

4.2.3 Transformation

The RSP is transformed to the single-depot multiple traveling salesman problem

with pickup and delivery constraints (SDMTSP-PD) in the following manner. Let

V0 = {0} be a “dummy” depot. The transformed graph is represented by G = (V,A)

where V = VR ∪ {V0} and A is the set of all the directed edges connecting any two

vertices in V . The cost of the arcs in A is defined as

cij =


0, if i = 0 or j = 0,

c0
ij, otherwise.

Then the solution in Figure 4.1(b) is equivalent to the solution in Figure 4.2,

where dash lines indicate zero-cost arcs. Since SDMTSP-PD is NP-hard, RSP is

NP-hard too.

4.2.4 Integer program

In this section, we introduce an integer program for the transformed SDMTSP-

PD problem.

For each edge (i, j) ∈ A we define a binary variable xij such that

xij =


1, if (i, j) ∈ A is in the solution,

0, otherwise.

Then we can immediately perform some reductions on the problem.
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Figure 4.2: Corresponding feasible solution for SDMTSP-PD on the transformed
graph

Lemma 4.1. Given G = (V,A) and P = (V,R), then

(I) x0j = 0 ∀(i, j) ∈ R

(II) xi0 = 0 ∀(i, j) ∈ R

(III) xji = 0 ∀(i, j) ∈ R

Proof. Obvious.

Additionally, we define a binary variable yik as follows

yik =


1, if node i is visited by driver k, i ∈ V \{0}, k ∈ VO

0, otherwise.
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Note that here yik = 1 implies customer i is a driver. Thus constraints that

connect y variables and x variables need to be added in the integer program.

min Z =
∑

(i,j)∈A

cijxij (4.2)

2n∑
i=0

xij = 1, j = 1, 2, . . . , n (4.3)

2n∑
j=0

xij = 1, i = 1, 2, . . . , n (4.4)

x0i − x(i+n)0 = 0, i = 1, 2, . . . , n (4.5)

ui − uj + pxij ≤ p− 1, 1 ≤ i 6= j ≤ 2n (4.6)

ui < ui+n, i = 1, 2, . . . , n (4.7)∑
k

yik = 1, i = 1, . . . , 2n; k = 1, . . . , n (4.8)

yik = y(i+n)k, i = 1, . . . , n; k = 1, . . . , n (4.9)

x0i = yii, i = 1, . . . , n (4.10)

xij ≤M1(1− zij), 1 ≤ i 6= j ≤ 2n (4.11)

−M2zij ≤ yik − yjk ≤M2zij, 1 ≤ i 6= j ≤ 2n; k = 1, . . . , n (4.12)

xij ∈ {0, 1}, 0 ≤ i 6= j ≤ 2n (4.13)

yik ∈ {0, 1}, i = 1, . . . , 2n; k = 1, . . . , n (4.14)

zij ∈ {0, 1}, 1 ≤ i 6= j ≤ 2n (4.15)

Constraints (4.3) and (4.4) are the continuity constraints. Constraints (4.5) make

sure that a tour starts at its driver’s origin and ends at his destination. Constraints

(4.6) are a group of subtour-elimination constraints (SECs) first proposed by Miller
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et al. Miller et al. (1960). Here ui are continuous variables called node potentials

that indicate the visit order of node i in the tour, while p denotes the maximal

number of nodes a driver can visit in a tour. This parameter can be used to specify

the seat capability of drivers. Generally in a typical dynamic ridesharing setting

where most participating vehicles are private vehicles whose seats are fewer that 5,

p won’t exceed 10. Constraints (4.7) ensure that a customer’s origin precedes his

destination. Constraints (4.8) ensure that each node is visited by exactly one driver.

Constraints (4.9) make sure that a customer’s origin and destination are visited by

the same driver. Constraints (4.10) mean that customer i is selected as a driver

if and only if his origin is visited by himself. The intuitive meaning of constraints

(4.11) and (4.12) is that if edge (i, j) is selected in the solution then nodes i, j must

be served by the same driver. This set of constraints serve as a bridge between x

variables and y variables. Here M1 and M2 are large numbers.

4.3 Solution Methods

4.3.1 Profitability of ridesharing

Since the ridesharing problem aims to combine trips with similar itineraries to-

gether to save total travel cost, a natural question to ask is, when does ridesharing

makes the greatest economic sense, and thus should be encouraged, and in what case

should inefficient ridesharing be discouraged. The following example illustrates this

thought.

In Figure 4.3(a), the total travel cost assuming no ridesharing happens is dSDtD +

dSP tP = 10. When P,D decide to do share a ride, the optimal route yields a travel

cost of 9 (e.g. SD−SP − tP − tD), resulting a cost saving equal to 1. In Figure 4.3(b)

however, the optimal route has a travel cost of 11, resulting a cost loss equal to 1

instead of cost saving.
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(a) Profitable ridesharing

(b) Nonprofitable ridesharing

Figure 4.3: A two-player example

From this example we know that, the profitability of ridesharing depends largely

on the relative geographical location of the participants. To generalize our obser-

vation, we conclude that, for a two-player ridesharing to be profitable, the com-

bined route cost must be less than the sum of the two solo trip costs. That is,

dSDSP
+ dtDtP + dSP tP < dSDtD + dSP tP , i.e. dSDSP

+ dtDtP < dSDtD . This is equivalent

to say, the cost saving of ridesharing, dSDtD − (dSDSP
+dtDtP ), has to be greater than

0.

4.3.2 One-to-one match

Recall that the objective of minimizing total travel cost is equivalent to maxi-

mizing total cost saving. The above observation motivates Wang (2013) to solve an
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alternate version of ridesharing optimization problem: the optimal rideshare match-

ing problem. In the optimal rideshare match problem, each customer can be matched

with at most another customer to form a shared-ride. Obviously, the solution to this

problem must have a greater cost than the solution to the ridesharing optimization

problem. Nevertheless, the solution to this problem can provide insight to solving

the ridesharing optimization problem and can serve as a benchmark to our proposed

heuristic solution methods.

The optimal ridesharing matching problem (see Wang, 2013) can be modeled on

a graph. Let G = (V,A) be a digraph with V = {1, . . . , N} standing for the set

of customers and A = {(i, j)|i, j ∈ V } representing the possible rideshare match

between agent i and j. A directed arc (i, j),∀i, j ∈ V is associated with an edge

cost cij equal to the cost saving when i serves as the driver and j as the rider in the

i− j rideshare match. The objective function of this problem aims to maximize the

cost savings of rideshare matches over all possibilities:
∑

(i,j)∈A cijxij. Here xij is a

binary decision variable that is defined as

xij =


1, if rideshare match (i, j) ∈ A is selected,

0, otherwise.

The constraints of this optimization model can be represented by
∑

j∈V \{i} xij +∑
j∈V \{i} xji ≤ 1 ∀i ∈ V .

4.3.3 An insertion heuristic

Note that the optimal matching solution in Section 4.3.2 is not necessarily the op-

timal solution to the RSP. Apparently, as long as the vehicle capacity is not reached,

the route plan could be further improved by inserting unmatched customers. The

following example shows that the further improvement through insertion is possible.
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(a) An optimal match (b) Insertion

Figure 4.4: A profitable insertion

The optimal match solution by solving the optimization model in Section 4.3.2 is

represented in Figure 4.4(a). This solution can be potentially further improved. As

is shown in Figure 4.4(b), when a third customer (customer 3) participates in the

system, the total travel cost can be saved by including 3 into the existing route of 1

and 2. The saved cost by including traveler 3 is d22 − d23 − d2′3′ = 3.

The observation from Figure 4.4 motivates the researchers to develop an insertion-

based heuristic to improve the solution to the ridesharing optimization problem.

Insertion heuristic is an efficient algorithm for solving transportation routing and

scheduling problems. The basic idea of insertion-based heuristic involves finding

the “cheapest” feasible insertion position in an existing route. Jaw et al. (1986)

first adapted the traditional insertion approach to solve the multi-vehicle dial-a-

ride problem with time windows. Insertion-based constructive heuristic has then

been developed to solve the pickup and delivery problem with time windows (Lu

and Dessouky, 2006), the single-vehicle mobility allowance shuttle transit service

(MAST) scheduling problem (Quadrifoglio et al., 2007), and the multiple-vehicle

MAST problem (Lu et al., 2011).

The insertion-based heuristic algorithm we develop is based on the optimal match-
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ing solution found in Section 4.3.2. After the optimal matching solution is obtained,

for each of the unmatched participant, the algorithm loop through all the existing

routes to find a feasible insertion position that has the greatest cost saving. This

process repeats until either no unmatched participant is left or an insertion position

with positive cost saving cannot be found. The input of the algorithm is the locations

of the customers and the optimal matching solution as found in Section 4.3.2. The

output of the algorithm is the improved ridesharing solution (a route plan). This

insertion heuristic is formally described in Algorithm 4.1.

4.4 Experiments

We implemented the algorithms in Java with CPLEX 12.6 and the Concert li-

brary. The data set1 we used in the experiments were selected from Dumitrescu et al.

(2010). The origins and destinations of customers were randomly generated in the

square [0, 1000] × [0, 1000]. The Euclidean distances were used. The instances are

named probnX, where n is the customer size and X stands for different instances

with the same customer size. The (partial) experimental results are summarized in

Table 4.1.

Both the optimal matching and the insertion heuristic are able to find the solu-

tions instantly (in less than 1 second). So in Table 4.1 we focus on how much time

the MIP model spends on finding the optimal solutions. Because RSP is NP-hard,

not all prob10 instances can be solved to optimality within the 3600s time limit. For

those could not be solved to optimality, the integral gap ranged from 5% to 16%. It

is noteworthy to point out that the solution obtained from the insertion heuristic is

not far from the optimal solution via solving MIP: for all the prob5X instances and

the instance of prob10c, the insertion heuristic actually found the optimal solution;

1The data sets can be downloaded from http://www.diku.dk/~sropke/
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for prob10d, the gap between the insertion heuristic solution and the MIP solution

was only 1.64%.

To further compare the solution qualities of insertion heuristic (Insertion) and

optimal matching (Match) in terms of cost saving, the average solution values for

each problem size are summarized in Table 4.2. The percentage in parenthesis for

each solution method indicates the cost saving percentage compared to the non-

ridesharing route plan (Solo). It can be seen that Insertion always outperforms

Match, and can further save about 5 percent of the total travel cost – a non-trivial

amount of mileage.

Table 4.3 summarizes the saved vehicle trips by adopting ridesharing. As can

be seen, Match and Insertion can save 20% - 38% and 24% - 55% vehicle trips on

road respectively, depending on the problem size. Once again, Insertion always beats

Match by a significant margin (as high as 18%). Also note that the percentage of

vehicle trips saving increases as the problem size – a fact that confirms the scale

effect of ridesharing.

4.5 Conclusions

In this section we approached ridesharing problem from the service provider’s

point of view. Particularly, we try to answer the question that, given the participants’

origin and destination, how should the service provider organize (assign driver/rider

role and suggest a route) the ridesharing, with the objective of minimizing system-

wide travel cost? This problem may well arise in the context of large-scale, dynamic

ridesharing. Although ridesharing service provider may face this challenging prob-

lem, it has never been studied in the literature. The authors formally defined this

problem as the ridesharing optimization problem (RSP) and showed how to trans-

form RSP to the single-depot multiple traveling salesman problem with pickup and
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delivery constraints (SDMTSP-PD). A mixed-integer problem (MIP) model was then

developed for RSP.

Since RSP is NP-hard, we resort to approximation algorithms to solve the problem

with larger size. An insertion-based heuristic is developed based on the optimal

matching solution (see Wang, 2013). The insertion heuristic was then compared with

optimal matching solution and the optimal solution of RSP MIP. We found that the

insertion heuristic can consistently save more mileage than optimal matching, and

the gap between the heuristic solution and the MIP optimal solution was very small,

thus confirmed the effectiveness of the insertion heuristic. It is also found out that it

can save a significantly large amount of vehicle trips by adopting ridesharing. In our

experiments, the insertion algorithm can save vehicle trips by up to 55%, putting

more than half of the cars on road back to garage. We also found that ridesharing

has scale effect, as the percentage of vehicle trip-saving increases as more customers

join the ridesharing service.

The researchers identify several future research directions on the ridesharing op-

timization problem. The special structure of the RSP MIP model is still to be inves-

tigated and exploited, thus developing valid inequalities and logic cuts is a promising

direction. The insertion heuristic has the potential to be further improved by better

and deeper understanding of the characteristics of RSP. We note that the experi-

ments conducted in this section were using totally randomly-generated geographical

locations. But this can be far from the real-world scenario in which travelers’ origins

and destinations are more likely to be clustered. In these situations, the insertion

heuristic can potentially perform even better. So it will be interesting to collect

real-world data and further evaluate the models and solution methods developed for

RSP.

34



Algorithm 4.1: An insertion algorithm based on the optimal matching solution

input : Geolocations of customers and the optimal match solution
output: An improved ridesharing solution

SAVING = 0 ;
while true do

if UNMATCHED= ∅ then
break ;

end if
SOLUTION = ∅ ;
SAVING = 0 ;
for a ∈ UNMATCHED do

for r ∈ all routes do
for each feasible insertion position do

∆ = cost saving after insertion ;
if ∆ < SAV ING then

SAVING = ∆ ;
record the incumbent solution ;

end if

end for

end for

end for
if SAVING< 0 then

update UNMATCHED ;
update all routes ;
update SOLUTION ;

end if
else

break ;
end if

end while
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Table 4.1: Experiment results

Instance n Total cost Time (s) Gap
Solo Match Insertion MIP MIP

prob5a 5 2722.0 2338.2 2338.2 2338.2 0.3 -
prob5b 5 2378.4 2115.1 2115.1 2115.1 0.5 -
prob5c 5 3189.2 2856.0 2662.8 2662.8 0.3 -
prob5d 5 2086.3 1842.0 1842.0 1842.0 0.0 -
prob5e 5 2171.4 2171.4 2171.4 2171.4 0.8 -
prob10a 10 6109.6 4680.9 4680.9 4267.0 3600 8.95%
prob10b 10 5576.9 4965.5 4618.4 4487.1 3600 15.9%
prob10c 10 5514.1 4109.3 3591.9 3591.9 501.9 0.0%
prob10d 10 4126.2 3662.0 3662.0 3603.5 239.4 0.0%
prob10e 10 5302.8 4964.9 4810.3 4545.4 3600 5.0%

Table 4.2: Performance of algorithms - saving cost

Problem Total cost (saving%)
size Solo Match Insertion
5 2509.5 2264.5 (9.8%) 2225.9 (11.3%)
10 5325.9 4476.5 (15.9%) 4272.7 (19.8%)
15 7929.6 6654.7 (16.1%) 6499.7 (18.0%)
20 10561.8 8454.6 (19.9%) 8201.7 (22.4%)
25 12695.5 10430.8 (17.8%) 9826.4 (22.6%)
30 16490.1 12975.2 (21.3%) 12190.0 (26.1%)
35 18367.0 14327.1 (22.0%) 13576.6 (26.1%)

Table 4.3: Performance of algorithms - saving vehicles

Problem Vehicle trips (saving%)
size Solo Match Insertion
5 5 4.0 (20.0%) 3.8 (24.0%)
10 10 7.2 (28.0%) 5.8 (42.0%)
15 15 9.8 (34.7%) 8.2 (45.3%)
20 20 12.2 (39.0%) 9.8 (51.0%)
25 25 16.2 (35.2%) 11.6 (53.6%)
30 30 18.2 (39.3%) 13.8 (54.0%)
35 35 21.8 (37.7%) 15.8 (54.9%)
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5. COOPERATIVE RIDESHARING GAME

5.1 Introduction

In Section 4 the ridesharing optimization problem is modeled as a mixed-integer

program and the optimal solution is found to minimize the system-wide travel cost.

This is beneficial in the society’s point of view, assuming each agent accepts the

system’s assignment. This is, however, a strong assumption considering agents might

form their own ridesharing groups if they find doing so is more of their own interest.

Recall that the agents of ridesharing system participate in this system in the hope

of saving travel cost. So it is up to the ridesharing service provider to decide how the

travel cost would be shared among customers after a ridesharing plan is proposed

and accepted by the customers. This is a non-trivial task because if the agents find

the cost allocation scheme unfair, they may leave the system and form their own

ridesharing group in the long run. This fair cost-allocation situation is critical to the

sustainability of a ridesharing system and thus is the motivation of the study in this

section.

The ridesharing cost allocation problem is modeled as a cooperative game. Co-

operative game theory, due to its close relation to combinatorial optimization, has

drawn significant attention of the operations research community. Since its intro-

duction by von Neumannn and Morgenstern (1944), cooperative game theory has

developed several solution concepts that aim to resolve the benefits (cost) allocation

issues among cooperative players. In this section, we are primarily concerned with

a particular cost allocation solution concept - the nucleolus. The nucleolus of a co-

operative game has several nice properties. Intuitively, it is a solution to the cost

allocation problem that minimizes the maximal dissatisfaction among the customers.
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The concept of nucleolus was first suggested by Schmeidler (1969) and since then

was developed by Shapley (1967) and Maschler et al. (1979). Although the nucleolus

has several game theoretic virtues, the computation of nucleolus is very difficult. In

fact, for a n-player game, as the size of the characteristic function grows exponentially

with the number of players, any enumeration algorithm that computes the nucleolus

that requires the entire information of the characteristic function takes O(2n) time,

assuming the characteristic function is readily available. Moreover, as will be shown

in later section, finding the characteristic function value of ridesharing game involves

solving an optimization problem related to TSP, which is NP-hard itself. This means

the computation of the nucleolus of RSG can easily become intractable and more

efficient algorithm needs to be developed.

In this section, we utilize the nucleolus-finding procedure by successively solving

a number of linear programs. This technique was first proposed by Dragan (1981)

and Kopelowitz (1967). We combine this technique with a constraint generation

framework proposed in Hallefjord et al. (1995), such that the explicit information of

the characteristic function of a coalition is only computed when it is necessary. In

this way the computational burden is significantly reduced.

Note that the constraint generation approach was first proposed in Gilmore and

Gomory (1961) and was successfully applied to solving the cutting stock problem.

Utilizing a similar idea, Göthe-Lundgren et al. (1996) studied the basic vehicle rout-

ing game (VRG) in which a fleet with homogeneous capacity are available. The

authors analyzed the properties of this game and proposed a nucleolus-finding pro-

cedure based on coalition generation. Engevall et al. (2004) generalized the model

of Göthe-Lundgren et al. (1996) to consider vehicles with heterogeneous capacities

and studied a real-world case based on their model.

This section is organized as the following. In Section 5.2 the basics of cooperative
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game theory are covered. In Section 5.3, a formulation of the RSP cost allocation

problem is developed from a game theory perspective and the properties of the

characteristic function are analyzed. Section 5.4 discusses the fairness issues in the

RSP game regarding the core and the nucleolus. A coalition generation scheme is

then developed to compute the nucleolus. The constraint generation subproblem

is explicitly formulated by a mathematical formulation related to the ridesharing

optimization problem. In Section 5.5, numerical experiments are conducted and the

performance of the proposed nucleolus procedure is evaluated. Finally, conclusions

and future research ideas are presented in Section 5.6.

5.2 Cooperative Game Theory Background

In this section we discuss specifically cooperative games with transferable utility

(TU game), in which the earnings (costs) of a coalition can be expressed by one

number. A cooperative game with transferable utility is given by specifying a value

for every coalition. The game is defined by a tuple (N, v) where N = {1, 2, . . . , n}

is a finite set of players and v is a characteristic function v : 2S → R from the set of

coalitions of players in N to a set of payment schemes satisfying v(Ø) = 0. Here 2N

denotes the power set of N .

Definition 5.1 (Superadditivity). A TU game is superadditive if and only if

v(s ∪ t) ≥ v(s) + v(t), ∀s, t ⊆ S satisfying s ∩ t = Ø (5.1)

Definition 5.2 (Monotonicity). Larger coalitions have higher values.

v(s) ≤ v(t), ∀s ⊆ t ⊆ S (5.2)
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Definition 5.3 (Cohesiveness). A TU game is cohesive if we have

v(N) ≥
K∑
k=1

v(Sk) (5.3)

for every partition {S1, . . . , SK} of N .

Note that cohesiveness ensures that the equilibrium coalition will form.

5.2.1 Solution concepts

In a value game in which players have net profit, a solution concept is a payoff

vector x ∈ R|S| that dictates the value allocated to each player in S, i.e. the earnings

each player gets. In a cost game the payoff vector is the cost each player pays.

Definition 5.4 (Efficiency). A solution is efficient if the total value is divided exactly

by the payoff vector:
∑

i∈N xi = v(N).

Definition 5.5 (Individual rationality). A solution is individually rational if any

player gets at least as much as what he would get on his own: xi ≥ v({i}),∀i ∈ N

5.2.1.1 Imputation

Definition 5.6 (Imputation). A payoff vector is an imputation if it’s individually

rational and efficient at the same time.

5.2.1.2 The core

Definition 5.7 (Core). The core of a TU game is the set of payoff vectors

C(v) =

{
x ∈ RN :

∑
i∈N

xi = v(N);
∑
i∈S

xi ≥ v(S),∀S ⊆ N

}
. (5.4)

In other words, the core of a game is the set of imputations under which no

coalition S has a value x(S) that is larger than its members’ payoffs’ summation.

40



Thus no coalition has the incentive to leave the grand coalition.

5.2.1.3 The nucleolus

Let v : 2S → R denote the payoff characteristic function of a cooperative profit

game. Then the function gives the amount of collective payoff a set of players could

get through forming a coalition. The excess of x for a coalition S ⊆ N is defined as

e(x, S) = v(S) −
∑

i∈S xi. Let θ(x) ∈ R2N be the excess vector of x, with elements

v(S) −
∑

i∈S xi arranged in non-increasing order, that is, θi(x) ≥ θj(x),∀i < j.

Note that a cost allocation vector x is in the core if and only if it is efficient and

θ1(x) ≤ 0. Consider the lexicographic ordering of excess vectors: for any two payoff

vectors x, y, θ(x) is said to be lexicographically smaller than θ(y) if ∃k such that

θi(x) = θi(y),∀i < k and θk(x) < θk(y). We denote this ordering by θ(x) ≺ θ(y).

Definition 5.8 (Nucleolus). The nucleolus of a cooperative game is the lexicograph-

ically minimal imputation. Denote the nucleolus by x and let X̄ be the set of impu-

tations, then we have

θ(x) � θ(x′), ∀x′ ∈ X\(x). (5.5)

The following bankruptcy game gives an example that clarifies the definition of

nucleolus.

Example 5.1 (The Bankruptcy Game). A company goes bankrupt and owes $10,000

to creditor A, $20,000 to creditor B and $30,000 to creditor C. If only $36,000 is

available for this company to cover these debts, how should this company split its

money to pay the creditors?

If the money is divided proportionally, the company would pay $6,000 to A,

$12,000 to B, and $18,000 to C. We denote this allocation by x = (6, 12, 18). We will

calculate the nucleolus of this game and compare it with the pro rata allocation.
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First, we decide the characteristic function of this game. Apparently, v(∅) = 0

and v(ABC) = 36 in thousands of dollars. By himself A would not get anything

because B and C would split the whole amount; therefore we have v(A) = 0. v(B) = 0

similarly. For creditor C, even if A and B get the whole amount of their claim, that

is 30, 000, C would still get 36, 000− 30, 000 = 6, 000. Therefore we have v(C) = 6.

It is not hard to get v(AB) = 6, v(AC) = 16, and v(BC) = 26.

Table 5.1: Calculation of nucleolus - the bankruptcy game

S v(S) e(x, S) (6, 12, 18) (5, 12, 19) (5, 10.5, 20.5)
A 0 −x1 -6 -5 -5
B 0 −x2 -12 -12 -10.5
C 6 6− x3 -12 -13 -14.5

AB 6 6− x1 − x2 -12 -11 -9.5
AC 16 16− x1 − x3 -8 -8 -9.5
BC 26 26− x2 − x3 -4 -5 -5

Let x = (x1, x2, x3) be an efficient allocation (i.e., x1 + x2 + x3 = 36), we find the

excesses in Table 5.1. Note that we can ignore the empty set and the grand coalition

since they always have zero excesses. We start from the proportional allocation

(6, 12, 18). As is in Table 5.1, the excesses vector is θ = (−6,−12,−12,−12,−8,−4),

with the largest number −4 belonging to the coalition BC. The coalition of BC will

complain that every other coalition has a better excess value than it does. As a

result the next step is to improve BC’s excess by increasing x2 + x3 (i.e., decreasing

x1 as x1 = 36− x2 + x3). However, as we make the excess of BC smaller, the excess

of A will get larger synchronously. When x1 = 5, these two excesses meet at −5. It

is not hard to see that no matter how we select the values of x, the maximal excess

is at least −5 because at least one of A or BC would have an excess that is greater
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than or equal to −5. Therefore, x1 = 5 is in the nucleolus.

Since x1 is fixed, we choose x2 and x3 to make the next largest excess smaller.

Choosing the solution x = (5, 12, 19), we find that the largest excess excluding the

−5’s is −8 which belongs to coalition AC. In order to make e(x,AC) smaller, we

have to make x3 larger (make x2 smaller). However, when we do so the excesses of B

and AB will increase synchronously. Because coalition AB’s excess (−11) is closer to

−8, the nucleolus must be found when e(x,AB) = e(x,AC). Solving the equations,

16− x1 − x3 = 6− x1 − x2

x2 + x3 = 31

x1 = 5,

we find the nucleolus as (5, 10.5, 20.5).

Recall that we defined θ(x) as the excesses vector which is arranged in non-

increasing order. In this example, θ(x) = (−4,−6,−8,−12,−12,−12) when x =

(6, 12, 18). Similarly, let x′ = (5, 12, 19) and x′′ = (5, 10.5, 20.5), then θ(x′) =

(−5,−5,−8,−11,−12,−13) and θ(x′′) = (−5,−5,−9.5,−9.5,−10.5,−14.5). Recall

the definition of lexicographical ordering, since θ1(x′) = −5 < θ1(x) = −4 we have

θ(x′) ≺ θ(x). Because θ3(x′′) = −9.5 < θ3(x′) = −8 we have θ(x′′) ≺ θ(x). There-

fore, θ(x′′) ≺ θ(x′) ≺ θ(x), meaning x′′ is the lexicographically minimal imputation

and thus the nucleolus.

5.3 RSP From A Game Theory Perspective

Consider a set of ridesharing participants and denote it by N . Each participant

wants to travel from her origin si to her destination ti. Denote the capacity of a

vehicle by Q. Consider the subsets of participants that do not exceed the vehicle
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capacity, i.e. |S| ≤ Q. For each such participant subset s, assume the feasible route

with minimum cost is known. Here by feasible it means the following conditions are

met

1. the route r starts from an agent d′s origin and ends at his destination.

2. Let s−d = s\{d}. For every agent i ∈ s−d, si precedes ti in r.

Denote by cr the cost of such a feasible route and by R the set of feasible routes

with minimal cost. Let air = 1 if participant i (both si and ti) is served by route r

and 0 otherwise. The RSP can be formulated as

(RSP) z = min
∑
r∈R

crxr (5.6)

s.t.
∑
r∈R

airxr = 1, i ∈ N (5.7)

xr ∈ {0, 1}, r ∈ R (5.8)

In the formulation xr = 1 if feasible route r is selected and 0 otherwise. Con-

straints (5.7) guarantee that each participant is covered by exactly one route. Note

that the coefficient cr in the objective function is obtained by finding the minimal

cost route that covers the participants for which air = 1, that is, by finding the

solution to the corresponding TSP with precedence constraints.

It is noted that this formulation is characterized by its large number of columns.

Therefore, this formulation is practically solvable by a column generation solution

method. Similar approaches were successfully applied to the vehicle routing problems

(VRP) (Balinski and Quandt, 1964; Desrochers et al., 1992, see). When we solve the
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RSP with a column generation approach, it is of our interest to reduce the number

of columns. We show this is possible as follows.

We first introduce the definition of the profitable ridesharing route.

Definition 5.9 (profitability). Denote by r(S) the corresponding minimum cost fea-

sible route of participant subset S. r(S) is non-profitable if there exists two non-

empty subsets S1 ∪ S2 = S, S1 ∩ S2 = ∅ such that cr(S) > cr(S1) + cr(S2). A route is

defined profitable otherwise.

Intuitively, a shared-ride route becomes non-profitable if by ridesharing the par-

ticipants end up spending more money on the transportation cost.

The following proposition shows that we only need to consider a subset of the

columns when solving RSP.

Proposition 5.1. Let X = {xr1 , xr2 , . . . , xrm} be an optimal solution to RSP, i.e.

xri = 1, i = 1, . . . ,m. Then ri,∀i = 1, . . . ,m must be a profitable route.

Proof. Proof by contradiction. Let X = {xr1 , xr2 , . . . , xrm} be an optimal solution

to RSP. Suppose there exists i∗ such that ri∗ is a non-profitable route. Let S∗ be

the corresponding participants that are covered by this route. Then by definition

there must be two non-empty subsets S∗1 ∪ S∗2 = S∗, S∗1 ∩ S∗2 = ∅ such that cr(S∗) >

cr(S∗1 )+cr(S∗2 ). Since all the customers that are covered by ri∗ are also covered by r(S∗1)

and r(S∗2), we can get a new feasible solution X ′ to RSP by substituting xri∗ = 1 with

xr(S∗1 ) = 1, xr(S∗2 ) = 1 and xri∗ = 0 while keep all the other x variables unchanged.

This feasible solution has a strictly less cost than X. Contradiction.

From a game theory perspective, we denote each ridesharing participant, i ∈ N ,

by a player and each subset of participants, S ⊆ N , by a coalition.
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The ridesharing cost allocation problem is the problem of finding a “fair” cost

allocation scheme for the ridesharing optimization problem (RSP).

A cooperative ridesharing game is defined by specifying a travel cost for each

coalition. The game is defined by a ridesharing group S, and a characteristic function

c(S) : 2S → R from the set of all possible coalitions (sub-ridesharing group) of players

in S to a set of payment schemes satisfying c(Ø) = 0. Here 2S denotes the power

set of S. In the context of RSP game the characteristic function can be seen as the

travel cost occurring if coalition S ⊆ N is formed. Each coalition can be defined by

a binary vector s as

si =


1, if customer i is a member of the coalition,

0, otherwise,

Define c as the objective value of a mathematical program. For all coalitions

S ⊆ N,S 6= ∅, let c(S) be the solution to the following mathematical program

c(S) = min
∑
r∈R

crxr (5.9)

s.t.
∑
r∈R

airxr = si, i ∈ N (5.10)

xr ∈ {0, 1}, r ∈ R (5.11)

Intuitively, c(S) represents the cost of an optimal route that covers the players

in S, i.e. the players for which si = 1. It is noted that this program is very similar

to VRP. In fact, the columns of this program can be reduced in a similar fashion as

VRP. This is stated in the following proposition.

Proposition 5.2. Let X = {xr1 , xr2 , . . . , xrm} be an optimal solution to C(S), i.e.
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xri = 1, i = 1, . . . ,m. Then ri,∀i = 1, . . . ,m must be a profitable route.

Proof. Similar to the proof of Proposition 5.1.

When studying a cooperative game, it is of great interest to study the properties

of its characteristic function. Assuming that the singleton coalitions have a positive

cost, we show the RSP game has the following properties. From here on we denote

by C(·) the mathematical program that defines the characteristic function value of

·, i.e. c(·).

Proposition 5.3 (Monotonicity). The characteristic function of the RSP game is

monotone, that is, c(S) ≤ c(T ), S ⊂ T ⊂ N .

Proof. Proof by contradiction. Suppose there exists S ⊂ T ⊂ N and c(S) > c(T ).

Let X = {xr|r ∈ R} be an optimal solution to C(T ). Let RT = {ri|xri = 1}. For

r ∈ R, we construct a feasible solution to C(S) in the following manner. Let

xr =


1, if ∃i ∈ S such that air = 1,

0, otherwise.

Let X ′ be the solution constructed in the above way. Denote by RS the set of

selected routes. Intuitively, we keep those routes in RT that covers at least one player

in S and discard those don’t.

It is known that X must satisfy

∑
r∈R

airxr = 1, i ∈ T

∑
r∈R

airxr = 0, i ∈ N − T
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Because S ⊂ T , then X ′ must satisfy

∑
r∈R

airxr = 1, i ∈ S

∑
r∈R

airxr = 0, i ∈ T − S

∑
r∈R

airxr = 0, i ∈ N − T

This is equivalent to ∑
r∈R

airxr = si, i ∈ N

SoX ′ is a feasible solution to C(S). In addition, since the cost matrix {cij} is positive,

the route cost is also positive. Therefore the cost of X ′ is less than c(T ), which is

less than c(S). Note that c(S) is the optimal cost, so this is a contradiction.

Proposition 5.4 (Subadditivity). The characteristic cost function of RSP game is

subadditive, i.e., c(S) + c(T ) ≥ c(S ∪ T ), S, T ⊂ N,S ∩ T = ∅.

Proof. Let RS, RT be the optimal solution to C(S), C(T ), respectively. Because

S, T ⊂ N and S ∩ T = ∅, RS,T = RS ∪ RT must cover all the players in S ∪ T , i.e.

RS,T is a feasible solution to C(S ∪ T ). Since this solution has an objective value

equal to c(S) + c(T ), we have c(S) + c(T ) ≥ c(S ∪ T ).

It is noteworthy that subadditivity implies larger coalitions save more. So it is

always beneficial to include more people to participant in ridesharing and this is a

desirable property of the RSP game.

Denote a coalition S whose cardinality is smaller than the vehicle capacity (|S| ≤

Q) as a feasible coalition and otherwise as an infeasible coalition. Denote by S the
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set of feasible coalitions. Then we get

c(S) = cr, ∀r ∈ R and S ∈ S such that air = si, i ∈ N.

In addition, denote a coalition such that
∑

i∈S c(i) ≥ c(S) by a profitable coalition

and otherwise by a nonprofitable coalition.

(a) Profitable Coalition, c(S) = 13 (b) Nonprofitable Coalition,
c(S) = 11

Figure 5.1: Profitable vs. nonprofitable coalition

Figure 5.1 gives an example where forming a coalition will not always produce

desirable results: instead of reducing total transportation cost as Figure 5.1(a), Fig-

ure 5.1(b) actually increases the total cost, meaning it doesn’t make much sense to

form such a coalition. In this case the players are better off on their own. Note

that the profitability of forming a coalition in a large extent depends on the relative

geo-locations of the players.
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5.4 Fairness and Stability in RSP Game

5.4.1 The core and the nucleolus

5.4.1.1 The core

Let yi be the cost allocated to agent i, i ∈ N . The core of the RSP game is the

set of the cost allocation plans y, such that

∑
i∈N

yi = c(N), (5.12)

∑
i∈S

yi ≤ c(S), ∀S ⊂ N. (5.13)

The above inequalities can be interpreted as no single player or coalition should

make a payment that is greater than their cost on their own. A cost allocation

scheme that is in the core is a good allocation as no coalition has the incentive to

leave the grand coalition. An inequality in (5.13) is called a core defining inequality

(CDI).

It is observed that the number of CDIs is in the scale of O(2N). As will be shown

in later sections, in order to find the core and the nucleolus efficiently, it is important

and of our great interest to reduce the number of CDIs. This is possible through the

following propositions.

Proposition 5.5. Any CDI with a nonprofitable coalition S, S 6= N , is not needed

in (5.13).

Proof. Consider any nonprofitable coalition Ŝ, Ŝ 6= N . Denote by {1, 2, . . . ,m} the

players in Ŝ. By definition of nonprofitable coalition we have
∑

i∈Ŝ c(i) < C(Ŝ).
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Note that all individual players are also singleton coalitions. It follows that

yi ≤ c(i),∀i ∈ Ŝ =⇒
∑
i∈Ŝ

yi ≤
∑
i∈Ŝ

c(i) < c(Ŝ).

Proposition 5.6. (Göthe-Lundgren et al., 1996) For a RSP game with non-empty

core, any CDI with an infeasible coalition S, S 6= N , is not needed in (5.13).

Proof. Let Ŝ, Ŝ 6= N be an infeasible coalition. Denote by {r1, . . . , rm} the corre-

sponding optimal routes and {s1, . . . , sm} the disjoint feasible coalitions correspond-

ing to the optimal routes. Since we have
∑m

j=1

∑
i∈Sj

yi =
∑

i∈Ŝ yi and
∑m

j=1 c(Sj) =

c(Ŝ), then we have the following

∑
i∈Sj

yi ≤ c(Sj),∀j = 1, . . . ,m =⇒
∑
i∈Ŝ

yi ≤ c(Ŝ).

From Proposition 5.1 and Proposition 5.6 we have

C = {y|
∑
i∈S

yi ≤ c(S), S ∈ S;
∑
i∈N

yi = c(N)}.

Thus, when the core of the RSP game is non-empty, the only characteristic

function values of our interests are those corresponding to profitable and feasible

coalitions. This, as will be stated in later sections, reduces the size of the coalition-

generating subproblem dramatically. Note that the calculation of c(S) for a coali-

tion S is equivalent to solving the corresponding TSP with pick-up and drop-off

constraints for the customers for which si = 1.
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5.4.1.2 The nucleolus

Note that the previous definitions in Section 5.2 are based on value game. In

a cooperative ridesharing game, in which players share travel cost, allocations are

the payments each player need to pay. That is to say, cooperative ridesharing game

(RSP game) is a cost game.

Let c : 2S → R denote the cost characteristic function of a cooperative ridesharing

game. Then the function gives the amount of collective cost a group of players need

to pay through forming a coalition. Before we define the nucleolus of the RSP game,

first recall the definition of excess. In an RSP game, the excess of y for a coalition

S ⊆ N is defined as e(y, S) = c(S) −
∑

i∈S yi and measures the amount of cost-

saving of coalition S in the allocation y, compared to c(S). Note that when e(y, S)

is negative, it means the sum of the cost of S in the allocation y must exceed c(S).

Thus e(y, S) measures the dissatisfaction of S in the allocation y. Recall that the

core is defined as the set of imputations such that c(S) ≥
∑

i∈S yi for all coalitions

S, then we have that an imputation y is in the core if and only if all its excesses

are positive or zero. Denote by θ(y) ∈ R2N the excess vector of y whose elements

c(S) −
∑

i∈S yi are arranged in non-decreasing order, that is, θi(y) ≤ θj(y),∀i < j.

Then a cost allocation vector y is in the core if and only if it is efficient and θ1(y) ≥ 0.

Consider the lexicographic ordering of excess vectors: for two payment vectors x, y,

we say θ(x) is lexicographically greater than θ(y) if ∃k such that θi(x) = θi(y), ∀i < k

and θk(x) > θk(y). Denote this ordering by θ(x) � θ(y).

Definition 5.10 (Nucleolus). The nucleolus of a RSP game is the lexicographically

maximal imputation. Denote the nucleolus by y and let Ȳ be the set of imputations,

then we have

θ(y) � θ(y′), ∀y′ ∈ Y \y.
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Intuitively, the nucleolus minimizes the maximal dissatisfaction of all the coali-

tions in the ridesharing system. As a result, on the condition that the core is

nonempty, the nucleolus is the center of the core. It is of our interest to investi-

gate the non-emptiness of the core of RSP game because the definitions of nucleolus

and the core are related. In fact, the following example shows that the core of RSP

game may be empty.

Figure 5.2: A three player example

The transportation costs of three players 1, 2, 3 are given in Figure 5.2. Assuming

that each player’s vehicle has a capacity of one extra passenger seats, the character-

istic function of this 3-player game is then defined by c({1}) = c({2}) = c({5}) = 5,

c{1, 2} = c({2, 3}) = 7 (e.g., 1− 2− 2′ − 1′), c({1, 3}) = 9 (e.g., 1− 3− 3′ − 1′) and

c({1, 2, 3}) = 12. The optimal route configuration is, for example, 2− 3− 3′− 2′ and

1− 1′. We show the calculation of nucleolus of this example in Table 5.2.

As an initial guess, we try (4, 4, 4). In Table 5.2, we find that the minimum
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Table 5.2: Calculation of nucleolus - empty core

S c(S) e(y, S) (4, 4, 4) (42
3
, 22

3
, 42

3
)

1 5 5− y1 1 1
3

2 5 5− y2 1 21
3

3 5 5− y3 1 1
3

1 and 2 7 7− y1 − y2 = y3 − 5 -1 −1
3

2 and 3 7 7− y2 − y3 = y1 − 5 -1 −1
3

1 and 3 9 9− y1 − y3 = y2 − 3 1 −1
3

excess happens at coalition (1, 2) and (2, 3). These are the coalitions with maximum

dissatisfaction. To improve this, we must increase both y1 and y3. This involves

decreasing y2, and will decrease the excess for (1, 3) at the same rate. Also note that

player 1 and player 3 have symmetrical roles in this game, thus we can conclude that

the best scenario occurs when the excesses for (1, 2), (2, 3) and (1, 3) are all equal.

Solving the equations,

y3 − 5 = y1 − 5 = y2 − 3

y1 + y2 + y3 = 12,

we find the nucleolus of this game is y = (42
3
, 22

3
, 42

3
) and C = ∅ (note that

c(1, 2) < y1 + y2).

Interestingly, if we increase the capacity of the vehicles to two extra seat, then

we obtain a game with a nonempty core. In this case, the characteristic function

is defined in the following fashion. For the singleton coalitions and the 2-coalitions,

characteristic function values remain the same. However, for the grand coalition

c({1, 2, 3}) = 9. The optimal route configuration is, for example, 1−2−3−3′−2′−1′.

The calculation of nucleolus of this example is shown in Table 5.3.

Initially, we try (3, 3, 3). In Table 5.3, we find that the minimum excess happens
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Table 5.3: Calculation of nucleolus - nonempty core

S c(S) e(y, S) (3, 3, 3) (11
3
, 5

3
, 11

3
)

1 5 5− y1 2 4/3
2 5 5− y2 2 10/3
3 5 5− y3 2 4/3

1 and 2 7 7− y1 − y2 = y3 − 2 1 5/3
2 and 3 7 7− y2 − y3 = y1 − 2 1 5/3
1 and 3 9 9− y1 − y3 = y2 3 5/3

at coalition (1, 2) and (2, 3). These are the coalitions with maximum dissatisfaction.

To improve this, we must increase both y1 and y3. This involves decreasing y2, and

will decrease the excess for (1, 3) at the same rate. Also note that player 1 and

player 3 have symmetrical roles in this game, therefore we can conclude that the

best scenario we can achieve happens when the excesses for (1, 2), (2, 3) and (1, 3)

are all equal. Solving the equations,

y3 − 2 = y1 − 2 = y2

y1 + y2 + y3 = 9,

we find the nucleolus of this game is y = (11/3, 5/3, 11/3). Here, C 6= ∅ and the

nucleolus of this game is the center of the core.

These observations can be generalized below.

Proposition 5.7. (Göthe-Lundgren et al., 1996) Let R be an optimal route configu-

ration of N , i.e. R consists of routes serving the players of feasible disjoint coalitions

S1, S2, . . . , Sm. Then we have

∑
j∈Sr

yj = c(Sr), ∀y ∈ C and 1 ≤ r ≤ m.
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Proof. Note that c(N) =
∑m

r=1 c(Sr) and
∑m

r=1

∑
j∈Sr

yj =
∑

j∈N yj, ∀y ∈ Rn. In

addition any y ∈ C satisfies
∑

j∈N yj = c(N) and
∑

j∈Sr
yj,∀1 ≤ r ≤ m. Therefore,

c(N) =
∑

j∈N yj =
∑m

r=1

∑
j∈Sr

yj ≤
∑m

r=1 c(Sr) = c(N). It implies that all inequal-

ities must be equalities for this equation to hold, meaning
∑

j∈Sr
yj = c(Sr), ∀y ∈

C and 1 ≤ r ≤ m.

Therefore, if the core of RSP game is nonempty, then the cost of an optimal route

should be split only among the players served by that route.

5.4.2 An algorithm to find the nucleolus

5.4.2.1 The master problem

Since the nucleolus is the cost allocation which minimizes the maximal dissatis-

faction, it can be represented by the solution to

max
y∈Y

min
∀S⊂N

(c(S)−
∑
i∈S

yi),

which can be transformed to a linear program

(P 1) max w (5.14)

s.t. w ≤ c(S)−
∑
i∈S

yi, S ∈ S (5.15)

∑
i∈N

yi = c(N). (5.16)

Notice that the LP program has O(|S|) constraints, and computing c(S), S ∈ S

involves solving the corresponding TSPPD. So the LP program can easily become

intractable. We therefore approach this problem with a constraint generation proce-

dure. Hallefjord et al. (1995) has suggested such an approach for linear programming

games. Göthe-Lundgren et al. (1996) has used a similar approach to solve the vehicle
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routing problem (VRP) game.

Since before searching for the nucleolus, we should already know the solution to

the corresponding RSP, thus the optimal route configuration, we can start (P1) with

the coalitions corresponding to the optimal routes. Besides, the singleton coalitions’

cost values are readily available. Denote by Ω ∈ S the available coalitions, then (P1)

can be replaced by the following relaxed problem

(P 1
M) max w (5.17)

s.t. w ≤ c(S)−
∑
i∈S

yi, S ∈ Ω (5.18)

∑
i∈N

yi = c(N). (5.19)

If the solution to (P 1
M) is unique, let it be (y∗, w∗), i.e. θ1(y∗) > θ1(y′),∀y′ ∈

Y \{y∗}, then y∗ is the nucleolus of the game. If the solution to (P 1
M) is not unique,

we continue to find the greatest θ2(y) among the y ∈ Y with θ1(y) = w∗. We continue

this process until the solution to the linear program is unique. At stage t the master

LP problem to be solved is

(P t
M) max wt (5.20)

s.t. wt ≤ c(S)−
∑
i∈S

yi, S ∈ S\
t−1⋃
τ=1

Γτ , (5.21)

wτ = c(S)−
∑
i∈S

yi, S ∈ Γτ , τ = 1, . . . , t− 1, (5.22)

∑
i∈N

yi = c(N). (5.23)

The solution to the last program in this series is the nucleolus of this game. Let

Πt,S be the dual variable corresponding to constraint w ≤ c(S) −
∑

i∈S yi. Let Γt
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denote the set of coalitions whose corresponding constraints are binding, that is,

�t = {S 2 S
St�1

⌧=1 �⌧ |⇧⇤
t,S > 0}.

The essential idea of constraint generation approach is trying to find the nucleolus

with explicit information of only a small portion of the entire coalition set. This goal

is realized by finding the most violated constraint that is not yet included in ⌦ via

a subproblem after the master problem is solved at each stage. Denote the optimal

solution to (P 1
M) by y⇤ = (y⇤1, . . . , y

⇤
n). The constraint that is violated the most, aka

the most unhappy coalition given the cost allocation scheme y⇤, is obtained through

solving the following subproblem

(PS) min
S2S\⌦

c(S)�
X

i2S

y⇤i � w⇤

This nucleolus-finding procedure for a ridesharing game is developed based on

the theories and techniques proposed in Dragan (1981) and Kopelowitz (1967) and

a general constraint generation framework proposed in Hallefjord et al. (1995). The

pseudocode of this procedure is given in Algorithm 5.1. First, at stage t the master

LP problem P t
M is solved and both the primal and dual solutions are returned.

Second, a subproblem PS is solved and the least satisfied constraint (s⇤) that is not

yet included is identified. If c⇤  0, then we include s⇤ in ⌦INEQ and resolve P t
M

with newly included constraint wt  c(s⇤) �
P

i2s⇤ y
⇤
i . This stage iterates between

the master problem and the subproblem until no coalition violates the rationality

constraints of the master problem (i.e. c⇤ � 0). When this is achieved, we identify

the active and binding constraints, reformulate the master problem (modify ⌦INEQ

and ⌦EQ) and proceed to the next stage (t = t+1). This process continues until the

solution y⇤ to the master problem is unique. And this last solution is the nucleolus

of the RSP game. Note that in the procedure SP.addCut(s⇤), a cut of the type
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Algorithm 5.1: Procedure of finding the nucleolus of a cooperative ridesharing
game
input : Geolocations of customers
output: Nucleolus of the ridesharing game

t := 1 ;
⌦INEQ ;
STOP := false ;
while !STOP do

Solve a master problem P t
M ;

Solve a subproblem PS ;
c⇤ = minS c(S)�

P
i2S y

⇤
i � w⇤ ;

s⇤ = argmin c(S)�
P

i2S y
⇤
i � w⇤ ;

if c⇤  0 then

SP.addCut(s⇤) ;
⌦INEQ := ⌦INEQ [ {s⇤} ;

end if

else

STOP := true ;
for every active and binding constraint s do

STOP := false ;
⌦INEQ := ⌦INEQ\{s} ;
⌦EQ := ⌦EQ [ {s} ;

end for

t := t+ 1 ;
end if

end while

of inequality (5.46) is added to the subproblem to prevent the duplication of row

associated with coalition s⇤.

5.4.3 Coalition generation subproblem – general

Recall in the nucleolus-finding scheme described in Algorithm 5.1, it involves

finding the most violated constraint in the subproblem. This is equivalent to finding

the “least satisfied” subset of customers with a given allocation proposal. A general
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formulation of the subproblem is thus

(P 0
S) min

S∈S\Ω
c(S)−

∑
i∈S

y∗i − w∗ (5.24)

∑
{i|sji=0}

si +
∑
{i|sji=1}

(1− si) ≥ 1, j|Sj ∈ Ω (5.25)

si ∈ {0, 1}, i ∈ N (5.26)

Constraints (5.25) are preventing the re-generation of constraints.

Note that calculating c(S) is equivalent to solving the RSP model for customers

i ∈ S, i.e. those si = 1. This implies that we can formulate the subproblem

P 0
S explicitly. Denote by G = (V,E) the graph of the RSP game with vertex set

V = VO ∪ VD ∪ {0} and edge set E = {(i, j)|i, j ∈ V, i 6= j}. Here vertex 0 is the

“dummy” depot such that any edge incident with it has a cost of 0. VO(VD) is the

origin (destination) vertex set of players in N . Each player is associated with a profit

(prize) equal to y∗i . The subproblem of the constraint generation procedure is to find

a subset of customers in N which maximizes the total prize minus the total cost,

while conforming to certain constraints.
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(P 1
S) π = max

∑
k∈N

y∗ksk −
∑
i∈V

∑
j∈V

cijλij + w∗ (5.27)

∑
{i|sji=0}

si +
∑
{i|sji=1}

(1− si) ≥ 1, j|Sj ∈ Ω (5.28)

λ0i − λ(i+n)0 = 0, i = 1, 2, . . . , n (5.29)

2n∑
i=0

λik = sk, k ∈ N (5.30)

2n∑
i=0

λki = sk, k ∈ N (5.31)

2n∑
i=0

λi,k+n = sk, k ∈ N (5.32)

2n∑
i=0

λk+n,i = sk, k ∈ N (5.33)

ui − uj + pλij ≤ p− 1, 1 ≤ i 6= j ≤ 2n (5.34)

ui < ui+n, i = 1, 2, . . . , n (5.35)∑
k

yik = 1, i = 1, . . . , 2n; k = 1, . . . , n (5.36)

yik = y(i+n)k, i = 1, . . . , n; k = 1, . . . , n (5.37)

λ0i = yii, i = 1, . . . , n (5.38)

λij ≤M1(1− zij), 1 ≤ i 6= j ≤ 2n (5.39)

−M2zij ≤ yik − yjk ≤M2zij, 1 ≤ i 6= j ≤ 2n; k = 1, . . . , n (5.40)

xij ∈ {0, 1}, 0 ≤ i 6= j ≤ 2n (5.41)

yik ∈ {0, 1}, i = 1, . . . , 2n; k = 1, . . . , n (5.42)

zij ∈ {0, 1}, 1 ≤ i 6= j ≤ 2n (5.43)
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Easily to see, this program (P 1
S) is closely related to the RSP model in Section 4.

This problem can be termed as prize-collecting RSP (see (Balas, 1989) for an analogy

of TSP and prize-collecting TSP). An explanation of the constraints in the model

can be found in Section 4.

5.4.4 Coalition generation subproblem – non-empty core

Recall that in Algorithm 5.1 searching the most violated constraint in each iter-

ation is a non-trivial task. Also recall that when the RSP game has a non-empty

core, the only coalitions that are non-redundant are the feasible coalitions. Notice

that c(S), S ∈ S is the minimum cost of a feasible route that covers the origin and

destination of all the players in S, that is, those si = 1, i ∈ N . This inspires us to

formulate the subproblem explicitly. Let G = (V,E) be the graph with vertex set

V = VO ∪ VD ∪ {0} and edge set E = {(i, j)|i, j ∈ V, i 6= j}. Here vertex 0 is the

“dummy” depot such that any edge incident with it has a cost of 0. VO(VD) is the

origin (destination) vertex set of players in N . Each player is associated with a profit

(prize) equal to y∗i . The constraint generation subproblem finds a feasible route in

G which maximizes the total prize minus cost, while conforming to the following

constraints

1. Exactly one player is assigned as the driver in the route

2. The route length does not exceed two times the seat capacity of a passenger

car Q

3. The route starts from the driver’s origin and ends at his/her destination

4. The pick-up drop-off precedence constraints are respected
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Denote the edge selection variable in the graph by λ. This problem is represented

by

(P 2
S) π = max

∑
k∈N

y∗ksk −
∑
i∈V

∑
j∈V

cijλij + w∗ (5.44)

s.t.
∑
k∈N

sk ≤ Q (5.45)

∑
{i|sji=0}

si +
∑
{i|sji=1}

(1− si) ≥ 1, j|Sj ∈ Ω (5.46)

λ0i − λ(i+n)0 = 0, i = 1, 2, . . . , n (5.47)∑
k∈N

λ0k = 1 (5.48)

∑
k∈N

λk+n,0 = 1 (5.49)

2n∑
i=0

λik = sk, k ∈ N (5.50)

2n∑
i=0

λki = sk, k ∈ N (5.51)

2n∑
i=0

λi,k+n = sk, k ∈ N (5.52)

2n∑
i=0

λk+n,i = sk, k ∈ N (5.53)

ui − uj + pλij ≤ p− 1, 1 ≤ i 6= j ≤ 2n (5.54)

ui < ui+n, i = 1, 2, . . . , n (5.55)

λij ∈ {0, 1}, i, j ∈ V, i 6= j (5.56)

sk ∈ {0, 1}, k ∈ N (5.57)

Constraints (5.46) put the restriction that a constraint that is generated before

is not generated again. Constraints (5.45) are the capacity constraints and (5.47)
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forces a tour to start at a driver’s origin and end at a driver’s destination. Con-

straints (5.48) and (5.49) stipulate that exactly one player is assigned as the driver.

Constraints (5.50), (5.51), (5.52) and (5.53) are the flow balancing constraints for

each vertex. Constraints (5.54) are the subtour elimination constraints and (5.55)

are the precedence constraints.

It is not hard to notice that this program is closely related to the RSP model

developed in Section 4 and the explicit formulation P 1
S in the previous subsection.

Note that although related, P 2
S is much easier to solve than P 1

S .

5.5 Experiments

We have implemented the nucleolus algorithm (with both P 1
S and P 2

S as subprob-

lem) in Java with CPLEX 12.6 and the Concert library. In this section, we first

show the results of nucleolus algorithm with P 2
S as subproblem. Because P 2

S is much

easier to solve than P 1
S , and the coalitions needed are much fewer in P 2

S than in P 1
S ,

nucleolus algorithm with P 2
S can not only calculate the nucleolus when the RSP has

a non-empty core, but can also be used to find an approximate nucleolus when the

corresponding RSP has an empty core. Next, we show a comparison between the

nucleolus and the approximate nucleolus, obtained by using the nucleolus algorithm

with P 1
S and P 2

S as the subproblem, respectively.

5.5.1 Approximate nucleolus

We report results for two instances of the 10-player problem, which is the largest

problem we have solved. As will be shown later, the computational bottleneck is not

at the nucleolus algorithm but at solving the corresponding ridesharing optimization

problem (RSP). The data set used here is the same as the data set in the experiments

of Section 4. Table 5.4 shows the geographical locations of the players. After solving

the RSP MIP model, the optimal ridesharing plan is {1}, {3, 5}, {4, 6, 7}, {8}, {2, 9},
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{10}. These, along with other singleton coalitions are used to generate the initial

constraints of the master LP problem.

At stage 1 three constraints are generated by solving the subproblem. They

correspond to the coalitions of {3, 4, 6}, {4, 6}, and {2, 3, 4, 5, 9}. Active constraints

corresponding to coalitions {8}, {10} and {1} are then identified at the end of stage

1. At stage 2, we notice that the solution to the master problem (P 2
M) is unique,

thus we find the approximate nucleolus. The approximate nucleolus of this game is

listed in the last column of Table 5.4.

In total, 10 + 3 + 3 = 16 out of 210− 2 = 1022 constraints are needed to compute

the approximate nucleolus, which is only a very small fraction (1.6%).

Table 5.4: Data and approximate nucleolus of prob10c

Customer
Number

Pickup
Coordinates

Drop-off
Coordinates

Nucleolus
Cost

1 (387, 137) (918, 786) 346.2
2 (595, 4) (852, 236) 267.1
3 (514, 483) (9, 481) 627.5
4 (342, 655) (609, 55) 729.7
5 (715, 887) (372, 215) 434.3
6 (111, 687) (777, 91) 250.4
7 (692, 933) (203, 173) 97.5
8 (791, 847) (488, 312) 226.1
9 (702, 762) (928, 755) 520.8
10 (543, 443) (90, 700) 92.4

In our second experiment of prob10d (see Table 5.5), the optimal ridesharing con-

figuration is {1}, {2, 3, 4, 6}, {7}, {5, 8}, {9} and {10}. At stage 1, four constraints

are generated after via solving the subproblem. They correspond to the coalitions

of {2, 3, 4, 9}, {3, 6}, {2, 9} and {2, 3, 4, 5, 6}. At stage 2, the master LP problem is
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found to have a unique solution. This solution is thus the approximate nucleolus of

this game. The approximate nucleolus is listed in the last column of Table 5.5. In

total, (10+2+4)/1022 ≈ 1.6% constraints were needed to compute the approximate

nucleolus.

Table 5.5: Data and approximate nucleolus of prob10d

Customer
Number

Pickup
Coordinates

Drop-off
Coordinates

Nucleolus
Cost

1 (60, 742) (34, 697) 52.0
2 (730, 471) (390, 845) 444.1
3 (964, 151) (39, 78) 808.7
4 (336, 763) (11, 332) 481.2
5 (330, 593) (570, 862) 326.9
6 (496, 333) (88, 346) 374.1
7 (168, 403) (432, 341) 271.2
8 (343, 502) (525, 846) 173.3
9 (600, 534) (585, 615) 83.0
10 (18, 952) (494, 605) 589.0

It is noteworthy to point out that the computational time for both instances

is very small (less than 10s), indicating the bottleneck is the optimization solution

method (recall this takes more than 100 seconds).

5.5.2 Nucleolus vs. approximate nucleolus

In this subsection we conduct two experiments to compare the actual nucleolus

and the approximate nucleolus. Finding the actual nucleolus by using Algorithm 5.1

with P 1
S as subproblem is a very time-consuming process. In our first example,

problem8a, it takes 5 hours to find the actual nucleolus. In our second example,

problem8b, the time it takes to find the actual nucleolus goes up to 20 hours.

The actual nucleolus cost and approximate nucleolus cost are summarized in

66



Table 5.6 and Table 5.7. As we can see, the solutions obtained by the approximate

nucleolus algorithm are a close approximation for the actual nucleolus in both cases.

It is of our interest to see the computational performance of Algorithm 5.1 using

P 1
S and P 2

S . In problem8a, a total of 193 constraints are generated by P 1
S , comparing

to a total of 9 constraints generated by P 2
S . In problem10d, a total of 184 coalitions

are generated by P 1
S , comparing to a total of only 9 coalitions generated by P 2

S . Note

that the total number of coalitions (not including the empty set and the universal

set) is 28 − 2 = 254 for problem8a and problem8b. Therefore, Algorithm 5.1 using

P 1
S generated 193/254 = 76% and 184/254 = 72% of the total constraints to find

the nucleolus in problem8a and problem8b, respectively. So Algorithm 5.1 using

P 1
S is more like an enumeration procedure. Thus P 2

S is much more computationally

efficient than P 1
S . Since the number of constraints generated by P 1

S are significantly

higher than that of P 2
S . This along with the fact that P 1

S is much harder to solve

than P 2
S explains the significant time difference between Algorithm 5.1 using P 1

S and

P 2
S .

In Figure 5.3 and 5.4 we measure the Euclidean distance between the incum-

bent nucleolus and the actual nucleolus (
√∑

i∈N(y∗i − yi)2) as the algorithm iter-

ates. These two figures show the solution path of the algorithm in both cases. As

can be seen, in both cases, the algorithm found the nucleolus before it stopped. This

happened before the 20th iteration in problem8a, and before 75 constraints were

generated in problem8b. It means the majority of the running time of this algorithm

is consumed after the actual nucleolus is found.

5.6 Conclusions

In this section, we studied an important problem faced by ridesharing service

provider: how to allocate cost among ridesharing participants to ensure sustainabil-
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Table 5.6: Nucleolus vs. approximate nucleolus – problem8a

Customer
Number

Nucleolus
Cost

Approximate
Nucleolus Cost

1 442.1 449.9
2 505.0 512.8
3 639.2 636.6
4 409.3 406.7
5 527.6 525.0
6 465.8 463.2
7 228.4 225.8
8 519.4 516.8

Table 5.7: Nucleolus vs. approximate nucleolus – problem8b

Customer
Number

Nucleolus
Cost

Approximate
Nucleolus Cost

1 366.5 366.5
2 507.1 457.7
3 594.1 617.1
4 387.6 456.7
5 1012.5 1035.6
6 258.1 235.1
7 545.3 571.8
8 235.9 166.8
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Figure 5.3: Solution path – problem8a

Figure 5.4: Solution path – problem8b

ity and fairness. This fair cost allocation problem was modeled as a cooperative

game. A special property of the cooperative ridesharing game is that, its character-

istic function values are calculated by solving an optimization problem. To better

understand this game, we further studied the characteristic function and proved

it to be monotone, subadditive, but non-convex. We then proposed an iterative

constraint-generation algorithm (Algorithm 5.1) for calculating the nucleolus of the
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RSP game in two situations – the game has an empty core and the game has a

non-empty core. In both cases the algorithm utilizes an explicitly formulated MIP

as the subproblem to generate constraints. When the game has an empty core, the

algorithm uses P 1
S as the subproblem and becomes an enumeration procedure to find

the nucleolus of the game. When the game has a non-empty core, this algorithm uses

P 2
S as the subproblem which utilizes the special properties of the RSP game such that

the characteristic function values are computed only when they are needed. There-

fore the number of subproblems (an NP-hard optimization problem) that need to be

solved is significantly reduced. Experiments showed that by adopting this algorithm

with P 2
S only a small fraction (1.6%) of the coalition constraints were needed to find

the nucleolus. It is also found in the experiments that when the emptiness of the RSP

game is unclear, the algorithm with P 2
S can be used to find an approximate nucleolus

that is close to the actual nucleolus. This indicates that our proposed algorithm is

promising in finding nucleolus of dynamic, large-scale RSP game.
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6. CONCLUSIONS

Ridesharing services, whose aim is to gather travelers with similar itineraries

and compatible schedules, are able to provide substantial environmental and social

benefits through reducing the use of private vehicles. When the operations of a

ridesharing system is optimized, it can also save travelers a significant amount of

transportation cost. The economic benefits associated with ridesharing in turn at-

tract more travelers to participate in ridesharing services and thereby improve the

utilization of transportation infrastructure capacity.

The first part of the dissertation formally defined the large-scale ridesharing op-

timization problem (RSP), characterized its complexity and discussed its relation to

classic relevant problems such as TSP and VRP. A mixed-integer program is devel-

oped to solve RSP to optimality. Since RSP is NP-hard, heuristic algorithms are

then developed to efficiently solve larger instances of RSP. The quality of heuristic

solutions are evaluated by using the optimal matching solutions (see Wang, 2013)

and the MIP solutions as benchmarks. Experimental results showed that adopting

ridesharing can save a significant amount of travelers’ cost and vehicle trips. It was

also found that solutions produced by heuristic are good-enough approximations of

the optimum and outperformed the matching solution by a non-trivial margin.

From a societal perspective, the RSP models can provide a ridesharing plan that

minimizes the system-wide travel cost. However, the system-level optimal solution

might not completely align with individual participants’ interest. The second part of

this dissertation formulates the fair cost allocation problem in ridesharing through

the lens of cooperative game theory. An algorithm based on coalition generation

techniques is developed to find the nucleolus and approximate nucleolus of the game.
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This algorithm utilizes a master-slave problem solving structure with the subproblem

explicitly formulated. Different subproblems are used in different situations. Exper-

iments showed that this algorithm can save a significant amount of computational

resources compared to the enumeration method.

Future research directions might include (1) developing heuristic or algorithms

to solve the RSP MIP model more efficiently and (2) investigating other solution

concepts in cooperative game theory such as the Shapley value. Anticipating that a

dynamic large-scale ridesharing system might emerge in the foreseeable future, it is

not computationally practical to find the optimal solution repeatedly when agents

consistently join and leave the system. So it is of interest to study nearly-fair cost

allocation schemes under a nearly-optimal ridesharing plan.
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