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ABSTRACT

Continuously increasing capacity and scales have made flash memory an afford-

able product for both consumer electronic and system storage. However, as flash

density increases, flash memory becomes more subject to noise which leads to the

degrading of data reliability and endurance. Error-correcting codes and memory

scrubbing are two approaches to handle data reliability issues. Specifically, in flash

memory, the “out-of-place” updating mechanism leads to the existence of content-

replicated error-correcting codes (ECC) that contain the same data. The thesis

proposes a joint-decoding scheme using those content-replicated ECCs to further en-

hance the reliability of data in flash memory. Three different categories of content-

replicated ECCs are explored and analyzed. The density evolution analysis results

show that using content-replicated ECCs with the corresponding joint-decoding al-

gorithms can effectively improve the error-correcting performance. Additionally, it

is shown that increasing the diversity of content-replicated ECCs with some limits

may further extend the error-correcting ability.
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NOMENCLATURE

ECC Error-correcting Code

P/E cycle Program-erase Cycle

LDPC Low-density Parity-check Code

AWGNC Additive White Gaussian Noise Channel

BER Bit Error Rate

BP Brief Propagation

LLR Logarithmic Likelihood Ratio
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1. INTRODUCTION

During the past decade, the capacity of flash memory has been impressively

improved, which makes flash memory an economic product for a wide range of ap-

plications, from consumer electronics to modern storage systems. To customers, the

reliability of data stored in flash memory is critical. However, along with the con-

tinuously increasing density and capacity, flash memory cells become more fragile to

noise, which leads to the declining reliability of data. Even though flash memory is a

relatively mature product, it still has four main limitations: block erasure, memory

“wear-out”, read disturb and X-ray effects [2] [5] [6]. Among those four limitations,

memory “wear-out”, read disturb are directly related to the reliability of data.

In flash memory, the “wear-out” issue stands for that flash memory can only tol-

erate for a finite number of program and erase cycles (P/E cycles) before failing. For

example, the commercial single-level cells (SLC) NAND is guaranteed to withstand

around 105 P/E cycles before the rate of decoding failings reaches a certain number,

which may cause the deterioration of the storage integrity [7]. However, repeated

wears, which are caused by reading and writing data from/to flash memory, and

other external factors (e.g. temperature) degrade the accuracy of flash cells’ con-

tents. Even though MLC NAND increases the capacity of flash memory by storing

two or more bits in the same physical location, its maximum endurance (measured

in the number of P/E cycles) is significantly lower than SLC NAND. Specifically, the

P/E cycles of MLC has dropped from 10 K for 5x-nm (represents 50- to 59-nm) to

current 3K for 2x-nm (represents 20- to 29-nm) [8].

The content of a flash cell, which is represented as a flash cell level, is determined

by its voltage and the predefined voltage thresholds which divides different cell levels.
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For example, SLC NAND has two states: 0 and 1. Given the voltage threshold Vt of

a flash cell, then the bit value is 1 if its current voltage is higher than Vt, otherwise

the bit value is 0. The voltage threshold Vt is set according to a referenced voltage

distributions of that SLC cell. Reading erros occur when 1 is read as 0 or reversely 0

is read as 1. If voltage of that cell shifts a lot from its predefined voltage distribution,

the probability of reading errors will rise.

In one P/E cycle of flash memory, errors may be introduced in different stages.

To start a P/E cycle, the flash block is firstly erased and then programmed in unit

of pages. In the programming process, errors may occur when the flash block hasn’t

been reset to the initial voltage before being programmed or a programmed cell

is disturbed by the programming process of neighboring flash cells. After being

programmed, the flash block cannot be reprogrammed until be erased again. Between

two erasures, flash cells may be accessed and read multiple times. In a read operation

to a flash cell, a read reference voltage is applied to its transistor. At the same time,

the transistors of other unread cells connected to the same bitline are powered with

a pass-through voltage, which is a read reference voltage higher than any stored

threshold voltage. As a result, it is guaranteed that only the target cell is read.

Though those unread cells connected to the same bitline are not being read, the high

pass-through voltage induces electric tunneling that can shift their threshold voltages

to higher values, thereby disturbing the contents of those unread cells. Retention

errors is another kind of errors that may be introduced before the next erasure. The

charges in the floating gate of a flash cell is not constant but gradually lost through

leaking current. As the voltage declines over time, the cell content changes.

Considering the limitations of flash memory mentioned above, improving the data

reliability of flash memory is challenging, which is related to both the producing

process and the reading/writing mechanisms. In the process of reading and writing

2



data, the encoding and the decoding mechanisms are very important for keeping the

data stored in flash memory to be reliable. So, in this research, we mainly focus on

exploring and analysis the encoding and decoding algorithms.

1.1 Problem Statement

For keeping the data stored in flash memory to be accurate and reliable, error-

correction codes (ECC) are commonly used. The basic idea behind ECC is informa-

tion redundancy: transfer more information than required to increase the distances

between different valid codes and finally support detection and correction of errors.

Along with the constant growth in the capacity and density of flash memory, the

raw bit error rate increases, including read disturb errors, retention errors and other

kinds of bit errors. Furthermore, the increasing bit error rate will lead to a declining

rate of successful decoding processes. To deal with the higher raw bit error rate,

multiple approaches have been published on using strong ECC, such as BCH and

LDPC, to enhance the error-correcting performance. However, the error-correcting

ability of single ECC is limited by Shannon Capacity. How to keep the reliability

of data in flash memory on channels with a high bit error rate becomes a critical

problem.

Beside ECC, memory scrubbing is another error-correcting technique. In the

memory scrubbing scheme, a background process periodically checks the date in-

tegrity of memory and corrects errors or inconsistent data by using other copies of

data. However, in flash memory, blocks are required to be erased before updating

any cell in that block, which leads to high time complexity for “in-place” updating

processes. Thus, a “out-of-place” updating mechanism is used, in which an updated

codeword is always stored in another physical address and the original memory cells

are marked as invalid. On one hand, the “out-of-place” updating mechanism opti-
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mizes the time complexity of writing processes. On the other side, it wastes memory

space, as the original memory cells are marked as “invalid” after the updating process,

which contains a expired but useful ECC. Besides “out-of-place” updating mecha-

nism, there are other factors which may also lead this kind of “invalid” cells which

contain content-replicated data, e.g. garbage collection.

With the application of ECC, raw bit errors usually can be corrected since the raw

bit error rate in flash memory is relatively low within thousands P/E cycles. However,

there do exist a small number of situations in which error-correcting algorithm fails.

The more P/E cycles has been used, the higher bit error rate as well as the larger

probability of a decoding failure. The error-correcting performance at those rare

cases is critical for a storage system. As discussed above, the existence of content-

replicated ECCs stored in “invalid” flash memory cells provides a promising way to

keep the reliability of data under those rare cases. Specifically, content-replicated

codes can be decoded together to increasing the possibility of successful decoding.

Practically, for each storage unit, the control system of flash memory can keep

an list of addresses of other “invalid” cells which carry the same information. After

writing data into a new memory location, the original memory cell becomes an

“invalid” content-replicated cell. The control system can add the location of this

“invalid” cell into the address list of the new memory location. Once the decoding

process of the valid flash cell fails, the control system can retrieve the address of

its content-replicated codes from that list. Then, those content-replicated codes and

the valid code can be decoded together. Since the decoding process fails rarely, the

overal time complexity of decoding process will not increase a lot.

The main goal of this thesis is designing a joint decoding scheme which uses the

existence of content-replicated ECCs (ECCs contains the same information) intro-

duced by the unique updating mechanisms of flash memory. Due to its excellent
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performance, low-density parity-check(LDPC) is applied as ECC in this work. Cur-

rent researches on LDPC for flash memory focus on optimizing the error-correcting

performance of a single LDPC code and memory response delay. There’s a lack

of study on joint decoding algorithms for multiple content-replicated codes. In [3],

Qing presents a joint decoding algorithm for content-replicated codes on Binary Era-

sure Channel (BEC). In this thesis, we will discuss and explore the joint decoding

algorithms for content-replicated LDPC codes on AWGN channels.

1.2 Thesis Structure

The rest of the thesis is organized as follows. Section 2 presents an brief overview

of current approaches on data reliability design of flash memory, including error-

correcting codes and memory scrubbing.

Based on the previous investigation, Section 3 illustrates a general definition of

content-replicated LPDC codes. Three different categories of the content-replicated

LDPC codes are listed in separate subsections. Each subsection also includes a

construction method for combined LDPC codes and a joint-decoding algorithm.

Section 4 demonstrates an error-correcting performance analysis for the joint-

decoding algorithms. Particularly, this Section firstly compares two density evolution

mechanisms: Gaussian Approximation and Ergodicity theory based approximation

and analyzes their adaptability to the performance analysis of the combined LDPC

codes. Then, density evolution analysis is conducted exclusively for each category

of the content-replicated LDPC codes. Finally, an experimental result of density

evolution analysis is presented, which indicates that the combined content-replicated

codes with a joint decoder can tolerant a higher error rate compared to single LDPC

codes. This work has been published in 53rd Annual Allerton Conference on Com-

munication, Control, and Computing [4].
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On the practical side, this thesis uses the unique updating mechanisms in flash

memory and provides a promising error-correcting scheme. On the theoretical side,

this thesis shows that utilizing the content-replicated data stored in flash memory

and the joint decoding algorithms can effectively improve the error-correcting perfor-

mance. Meanwhile, it is indicated that increasing the diversity of content-replicated

ECCs may increase the reliability of the combined code even if there exist constraints

in the joint decoding algorithms.

6



2. LITERATURE REVIEW

Together with its extraordinary capacity, flash memory also experiences reliability

issues introduced by read disturb, data retention and other failure factors. From the

view of the flash memory controller, Yu et al. [1] classified flash memory errors in a

P/E cycle into four different categories: erase errors, programming errors, retention

errors and read disturb error. In Figure 2.1, Yu illustrates and compares the error

rates of different kinds of errors. The result shows that the error rate of retention

errors is significantly higher than other types of errors. The error rate of retention

errors is dependent on the retention test time. The longer before a retention test,

the more likely to lose more electrons which leads to higher probability of retention

errors.

Figure 2.1: Error rates of different types of errors in Flash Memory [1].
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2.1 Background on Data Reliability Design in Flash Memory

Currently, there are mainly two approaches for solving data reliability issues in

flash memory: ECC and memory scrubbing. Both of them are briefly introduced

and analyzed in the following sections.

2.1.1 Error-correcting Codes in Flash Memory

ECC is used to improve the reliability of flash memory by reducing raw bit error

rate (BER) [6]. Figure 2.2 demonstrates the raw BER of a MLC flash memory with

and without using ECC. For a SLC NAND flash memory, without using ECC, the

bit error rate is around 10−9 after 105 P/E cycles. After applying a 4-bit ECC, in

which up to 4 errors can be corrected for every 512 bytes, the bit error rate is reduced

to 10−20.

Figure 2.2: ECC improvement of raw BER as a function of P/E cycles [2]

The basic idea behind ECC is transferring more information than required to

increase the distance between valid codewords. Classified by the encoding principles,
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there are two basic types of ECCs: block codes and convolution codes [9]. Ham-

ming codes and BCH codes are currently widely used in commercial flash memory.

For example, Micron NAND Flash memory devices use cyclic and Hamming codes.

Hamming codes are defined as (2n − 1, 2n − n − 1), where n represents the number

of over head bits, 2n − 1 represents the code block size and (2n − n − 1) represents

the number of information bits. Common used Hamming codes are (7, 4), (15,11),

and (31, 26). They have the same Hamming distance and are able to correct and

detect single bit error. Wei et al. [10] show a high-throughput and low-power BCH

(4148,4096) scheme for MLC NAND flash memories.

However, along with the continuously increasing capacity of NAND flash memory

and the usage of MLC technique, the data reliability and endurance problems become

more challenging. It leads to a need of strong ECC with higher error-correcting

performance to handle the increasing BER.

2.1.2 Memory Scrubbing

Memory scrubbing is a technique that periodically checks the date integrity of

memory and corrects errors or inconsistent data by using other copies of data. Gon-

zalez et al. [10] present a flash memory data correction method based on data scrub-

bing. By systematically scrubbing the data stored in different memory cells, they are

able to reduce corruption of stored data. In DRAM memory, scrubbing mechanism is

applied together with single-error correct double-error detect (SECDED) to address

uncorrectable errors in a single ECC. To prevent the occurrence of second error, the

memory periodically checks data correctness. If a decoding process fails, system will

trigger the event that scrubs data from another location to correct error and finally

write the recovered data back to its original address.
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2.2 Low-density Parity-check Codes (LDPC)

Low-density parity-check (LDPC) codes are linear block codes using a very sparse

parity check matrix. LDPC were originally introduced by Robert G. Glallager in

1962 [11]. The powerful capabilities of LDPC codes has led it to its usage in several

standards [12]. In both historical and recent approaches, LDPC has demonstrated

its outstanding error correction performance.

Symbol mK×1 represents the original message with length M. Let N to be the

length of a (N,ωc, ωr) LDPC code cN×1 which is encoded from message mK×1. K is

the length of redundant parts such that M = N − K. Following the definitions in

[11], symbol HM×N represents the parity check matrix of the LDPC code and GN×K

represents the corresponding generating matrix, such that H×G = 0. The column

weight of the LDPC code is ωc, which means each column contains a fix number, ωc,

of 1’s. Similarly, the row weight is ωr representing the number of 1s in each row. ωc

and ωr is significantly smaller than N.

cN×1 = GN×K ×mK×1 (2.1)

An LDPC code is specified and defined by a parity check matrix H. Since the

introduction of Gallager LDPC Codes in 1962 [11], multiple approaches have been

published on the construction of LDPC codes, mainly divided into two areas: regular

codes and irregular codes. In regular codes, column weight and row weight are con-

stant. While, in irregular codes, λ(x) defines the probability distribution of column

weights and respectively ρ(x) defines the probability distribution of row weights. In

Gallager Codes, a parity matrix H with column weight ωc and row weight ωr is con-

structed by firstly generating a K
ωc
×N sub-matrix H1. In H1, there is only one 1 in
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each column and 1’s in columns [(i− 1)ωr + 1, iωr] for ith row.

H1 =



11×ωr 01×ωr . . . 01×ωr

01×ωr 11×ωr . . . 01×ωr

. . . . . .
. . . . . .

01×ωr 01×ωr . . . 11×ωr


K
ωc
×N

(2.2)

Afterwards, the other ωc − 1 sub-matrices are generated by randomly permuting

H1. The final parity check matrix H is constructed as:

HN×K =



H1

H2

. . .

Hωc


(2.3)

The encoding process is conducted by firstly using Gaussian Elimination to con-

vert H into the following form:

H̃ =
[
I(N−K)×(N−K) A2(N−K)×K

]
(2.4)

Having calculated H̃, the generating matrix G is defined as

GN×K =

 IK×K

A2M×K


N×K

(2.5)

After Gaussian Elimination, the real rate of the (N,ωc, ωr)-regular LDPC code R is

always higher than designed rate: R = K
N
> N−M

M
. Associated with the parity check

matrix H, tanner graph is applied to demonstrate the iterating decoding process by
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R. Michael Tanner [13]. Tanner graph is a bipartite graph, which contains two kinds

of nodes: variable nodes and check nodes.

The decoding process of a LDPC code uses iterative decoding algorithm, which

is mainly classified into hard decision decoding and soft decision decoding.

Hard decision decoding: In hard decision schema, a check node detects bit

errors by checking whether the parity-check equation of the incoming messages is

satisfied or not. Then, the result message is sent back to variable nodes. The

decoding process will terminate if all parity check equations become satisfied or

reach the maximum number of iteration. Bit flipping algorithm is an example of

hard decision based decoding algorithms. The details of bit flipping algorithm is

illustrated below.

1. Initialization. Variable nodes are initialized with the original received LDPC

code.

2. All variable nodes send a bit message to their connected check nodes. In the

initial iteration, the message from a variable node vi to a check node cj is the

same as its initial bit message. In other iterations, the message is calculated as

the majority of initial bit value and all incoming message from vi’s connected

check nodes excluding cj.

3. Every check nodes send back a message to its connected variable nodes. The

message from a check node ci to a variable node vj is calculated as the binary

sum of all received incoming message at ci from its connected variable nodes

excluding vj.

4. Repeat step 2-3 until satisfying all parity check equations or reaching a certain

number of iterations.
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Soft decision decoding: Soft decision decoding improves performance of LDPC

by utilizing sum-product decoding algorithms [14]. In soft decision, messages between

variable nodes and check nodes are obtained as the a-priori probability of received

bits. For example, in sum product message passing algorithm, likelihood ratio is

introduced as message. Figure 2.3 illustrates the message updating mechanism at a

variable node and a check node.

Figure 2.3: Diagram of sum-product message passing schema in variable nodes and
check nodes.

The basic BP algorithm consists of the following main steps:

1. Initialization. The message at a variable node is initialized as the LLR of

original bit value, which is denoted as u0. Given the original code is ŷ =

y1, y2, . . . , yn, the LLR message sequence u0 is calculated by Equation 2.6

u0,i = log
Pr[ci = 0|yi]
Pr[ci = 1|yi]

(2.6)

2. Updating variable nodes. The LLR message from a variable node to a check

node is updated using Equation 2.7. dv is the degree of a variable node, which

13



is the same as ωc.

v = u0 +
dv−1∑
i=1

ui (2.7)

3. Updating check nodes. The LLR message from a check node to a variable node

is updated by Equation 2.8. dc is the degree of a check node, which is the same

as ωr.

u = 2tanh−1
dc−1∏
i=1

tanh
vi
2 (2.8)

4. At one variable node vi, calculate its current bit value xi such that xi = 1

if the probability of bit xi to be 1 is greater than 0.5 and xi = 0 for other

cases. Respectively, calculated the bit value for i = 1, 2, . . . , n. Finally, having

generating x̂ = x1, x2, . . . , xn, terminate the iterative decoding process if

H × x̂ = 0

or the iterator reaches a certain number. Otherwise, repeat step 2 and step 3.

Having demonstrated construction and decoding algorithms of LDPC codes, the

following part discusses density evolution, which is an approximation technique used

to analyze the error correction ability of LDPC codes. Under density evolution, it

assumes that the length of LDPC codes is infinite and parity check matrix H is

cycle-free, which means no cycles in its tanner graph. For general message pass-

ing decoding algorithms, there are three density evolution methods: quantization,

Gaussian Approximation and population dynamics. In [15], Chung modified the

original sum-decoding algorithm by using quantized input and output message in

Equation 2.7 and Equation 2.8. Thus, 2.7 becomes Q(v) = ∑dv−1
i=0 Q(ui) and 2.8

becomes Q(u) = 2tanh−1∏dc−1
i=1 tanhQ(vi)

2 . Q(w) is the quantization operator. Then,

the distribution evolution can be estimated by pv = pu0

⊗dv−1 pu, which can be done
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efficiently using FFT. Similarly, the quantized message Q(u) can be calculated in

time complexity O(n2).

Chung [16] proposed Gaussian Approximation based density evolution for both

regular and irregular LDPC codes under Additive White Gaussian Noise(AWGN)

Channels. In that approach, there’s one important assumption called ”symmetry

condition” which is expressed as f(x) = f(−x)ex. For AWGN channels, this as-

sumption can be simplified to σ2 = 2m, in which sigma and m is the standard

deviation and mean of the Gaussian distribution. The accuracy of Gaussian Ap-

proximation greatly relies to this assumption. The third density evolution algorithm

is based on the usage of a large population of “samples”. Fu [17] presents an ergod-

icity theory based density evolution. With the ”cycle-free” assumption, the input

messages at variable nodes are independent. Additionally, the updating mechanisms

of variable nodes and check nodes preserve ergodicity. So, the iteration decoding

process can be approximated by using a large number of samples.

The performance of LDPC relies on error location, soft decision accuracy and

number of iterations. Typically, flash memory uses hard decision for a single cell

voltage. Hard-decision sensing means memory only uses one quantization level be-

tween two adjacent storage states, e.g. 0 and 1. Respectively, soft-decision sensing is

reading mechanism which uses more than one quantization levels between two adja-

cent states. Soft decision based decoding of LDPC can be obtained by reading with

soft-decision sensing or transfer voltage into likelihood ratios (LLR). However, soft-

decision sensing could increase response delay in flash memory. To solve this issue,

Zhao [18] presents three approaches in optimizing reading delay in flash memory and

presents the performance of hard decision LDPC and soft decision LDPC. The result

of this work shows LDPC’s strength in error correction and its better performance

than BCH codes.
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3. JOINT-DECODING DESIGN FOR CONTENT-REPLICATED CODES*

3.1 Problem Statement

This section discusses the joint-decoding scheme for two content-replicated LDPC

codes, which can be easily extended to multiple content-replicated codes. Given an

original message m = {m0,m1, . . . ,mK−1} with length of K bits. Suppose there

are two independent encoders: Encoder1 and Encoder2 with the same rate R = K
N

.

Let x1 = {x1,0, x1,1, . . . , x1,N−1} and x2 = {x2,0, x2,1, . . . , x2,N−1} to be the respective

codewords generated by Encoder1 and Encoder2. Having X to be the alphabet sets

of flash cell levels such that x1,i ∈ X and x2,i ∈ X . Those ECCs like x(1)
0 and x(2)

0

are named as content-replicated ECCs which carry the same information. Let P and

Q to be two independent Additive White Gaussian Noise (AWGN) channels. Figure

3.1 shows the model of joint decoding scheme for ECCs.

Figure 3.1: An illustration of the joint-decoding scheme for the content-replicated
ECCs [3].

*Reprinted with permission from “Joint Decoding of Content-Replication Codes for Flash Mem-
ories ” by Q. Li, H. Chang, A. Jiang and E. F. Haratsch, 53rd Annual Allerton Conference on
Communication, Control, and Computing, Sept 29-Oct 2, 2015, Allerton Park and Retreat Center,
Monticello, IL, USA, Copyright (2015) by IEEE.
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The joint-decoding mechanism is applied under the cases that the decoding pro-

cess of a single ECC fails. Here’s a brief description of the joint-decoding problem

for two content-replicated ECCs.

Definition 3.1.1. Given two content-replicated ECCs x1 and x2 with a certain rate

R. y1 and y2 are the received noisy codes through two AGWNC P and Q. The target

is designing a joint decoding function to reduce the probability of decoding failures.

Specifically, for two content-replicated LDPC codes on AWGN channels P ∼

N (µ, σ), Q ∼ N (µ, σ), the target becomes designing a joint-sum-product decoding

algorithm PJSP to maximize the threshold σ∗, which denotes the upper bound of

variance of AWGN channels such that ECC can be decoded correctly.

σ∗ = sup{σ : PJSP (σ)N→inf → 0}

According to [11], an LDPC code is defined by a parity-check matrix H. Suppose

that Encoder1 and Encoder2 are two (N,ωc, ωr)-regular LDPC encoders with gener-

ating matrices G1 and G2. H1 and H2 are the corresponding parity check matrices.

In this section, we will discuss three different categories of content-replicated

LPDC codes which are classified by the relationship between x1 and x2. Firstly, we

considered the identical cases in which two content-replicated LDPC codes shares

the same information bits and the same parity-check constraints.

Definition 3.1.2. Identical content-replicated codes are ECCs which are encoded

using the same encoder and the same original message. Having two LDPC encoders

with H1 = H2 and G1 = G2, then x1 and x2 are identical content-replicated LDPC

codes if x1 = G1 ×m and x2 = G2 ×m.

Identical content-replicated LDPC codes can reduce the noise variance by averag-
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ing each bit of two LDPC, however, the parity-check equations stay the same as the

single LDPC code. Introducing different LPDC codes can increase the diversity of

parity-check equations, which may lead to higher probability of successful decoding.

Thus, we further explore the joint-decoding method for content-replicated LDPC

codes with different parity-check constraints.

Definition 3.1.3. Content-replicated LDPC codes with different parity-check con-

straints are LDPC codes which are encoded using the same information but different

encoders. Particularly, two LPDC codes x1 and x2 are different replicated only if

x1 = G1 ×m, x2 = G2 ×m and H1 6= H2.

Finally, we explore the joint-decoding algorithm for content-replicated codes with

an intermediate parity-check matrix. The intermediate matrix defines a one-to-one

mapping between information bits of two LDPC codes. By using this intermediate

matrix, both of the two LDPC codes can be decoded individually. Besides, they can

be decoded together and communicate through the intermediate matrix.

Definition 3.1.4. Content-replicated LPDC codes with an intermediate parity-check

matrix are content-replicated in the way that x1 = G1 × m1, x2 = G2 × m2 and

H1 6= H2. m1 and m2 are the information bits and parity-check bits of a code x3

which are encoded using original message m and Encoder3. Encoder3 is a LDPC

encoder with rate 1/2, generating matrix G3 and parity-check matrix H3.

3.2 Identical Content-replicated LDPC Codes

As previous definition, two identical content-replicated LDPC codes x1 and x2

maintains that x1 = G1×m, x2 = G2×m and G1 = G2. x1 and x2 are transferred

through two AWGN channels P and Q such that P ,Q ∼ N (µ, σ2). The received

noisy codes y1 and y2 can be decoded using the sum-product algorithm withH1 = H2
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if the variance of AWGN channel noise σ stands within a certain range: σ < σ∗SP .

σ∗SP represents the threshold of channel noise variance such that yi can be decoded

correctly with the parity-check matrix Hi for i = 1, 2. If σ > σ∗SP , neither y1 nor

y2 can be decoded errorless. Then, a combined codeword y = {y0, y1, . . . , yN−1} is

obtained as follows:

yi = ω1 ∗ y1,i + ω2 ∗ y2,i (3.1)

in which i = 0, 1, . . . , N − 1 and ω1 + ω2 = 1. Suppose AWGN channel P is as same

significant as channel Q, it lead to that ω1 = ω2 = 1
2 .

Theorem 3.2.1. Given an LDPC code xN and the corresponding parity-check ma-

trix H. Let yP and yQ denote the received noisy codes transferred through two

AWGN channels P and Q. Then, for the combined LDPC code y = ωPyP + ωQyQ,

the parity matrix is H.

Proof. From the statement, it is known that H ×yP = 0 and H ×yQ = 0, if there’s

no errors. Thus, H×y = ωPH×yP+ωQH×yQ = 0. So, H is a parity-check matrix

for LDPC code y.

Since x1 and x2 are encoded using the same generating matrix G1 = G2 and the

same original message m. Based on Theorem 3.2.1, the parity-check matrix for y is

constructed as

H = H1 = H2. (3.2)

The joint-sum-product decoding algorithm for identical content-replicated LDPC

codes is presented as below.

1. Given two received identical content-replicated LDPC codes y1 and y2 and

respective parity-check matrices H1 and H2. Construct a combined code and

its parity-check matrix by Equation 3.1 and Equation 3.2.
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2. Using logarithmic likelihood ratio(LLR) replacing probability, the initial mes-

sage µ0 at variable node Vi is calculated as µ0,i = ln(Pr[Vi=0|yi]
Pr[Vi=1|yi]) for i =

0, 1, . . . , N − 1.

3. Let Ci to be the set of check nodes which are connected to variable node Vi.

Then, the message that Vi sends to Cj, which denotes a check node connected

to Vi, at round l becomes:

ml
ij = µ0,i +

∑
j′∈Ci&&j′ 6=j

ml−1
j′i (3.3)

in which l > 0 and m0
ij = µ0,i.

4. Let Vj to be the set of variable nodes which are connected to check node Cj.

Then, the message that Cj sends to Vi at round l is obtained by:

ml
ji = 2tanh−1 ∏

i′∈Vj&&i′ 6=i

tanh(ml
i′j)

2 (3.4)

5. The joint sum-product decoding algorithm is executed for a maximum number

of iterations or until the LLRs at variable nodes are closed to ±∞, whichever

comes first.

3.3 Content-replicated LDPC Codes with Different Parity-check Constraints

With the insight of joint sum-product decoding algorithm for identical content-

replicated LDPC codes, this section will explore joint decoding algorithm for content-

replicated codes which are encoded using different encoders. As defined in Section

3.1, two LDPC codes are different content-replicated if x1 = G1 ×m, x2 = G2 ×m

and G1 6= G2, H1 6= H2.
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Several approaches exists in constructing practical LDPC codes. To construct

a LDPC code, a parse parity-check matrix is first constructed. Having a parity-

check matrix H, the corresponding generating matrix G is generated by Gaussian

Elimination or lower triangle modification [19]. Gaussian Elimination based encoding

algorithm leads to a generating matrix G defined as Equation 2.5. Therefore, a code

is obtained as c = G ×m = {m × I,m × A2}T = {m,p}. In [19], Richardson

presents an efficient encoding algorithm, in which a LDPC code c is generated as

c = {m,p1,p2}. p1 and p2 are parity-check bits. p1 has length g, p2 has length

(k-g) and g is the gap. From those encoding algorithms of LDPC codes, it is obvious

that a LDPC code can be divided into two parts: information bits and parity-check

bits. Information bits are one-to-one mapped to the original message m, and parity-

check bits are generated as linear combinations of parts of information bits.

For LDPC codes y1 and y2, let I1, I2 denotes the set of information bit index

and P1,P2 denotes the set of parity-check bit index. I1, I2 ⊆ {0, 1, . . . , N − 1} and

P1,P2 ⊂ {0, 1, . . . , N−1}. Meanwhile, let g(·) : I1 → I2 to be a one-to-one mapping

such that y1,i = y2,g(i).

To construct a combined code, firstly, received codes y1 and y2 are divided into

information bits and parity bits such that y1 = {y1,I1 ,y1,P1}, y2 = {y2,I2 ,y2,P2}.

y1,I1 = {y1,i|i ∈ I1} and y1,P1 = {y1,i|i ∈ P1}. Similar notations are applied to y2,I2

and y2,P2 . Since the information bits of y1 and y1 carry the same original message

m, thus a combined code y is constructed as:

y = {yI ,y1,P1 ,y2,P2} (3.5)
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Information bits yI are obtained as

yI = {yi = y1,i + y2,g(i)

2 |i ∈ I = I1} (3.6)

Then, a constructed combined codeword is y2N−K−1
0 = (yI1 , (yN−1

0 )(1)P1 , (yN−1
0 (2)P2).

Having generated the combined code y, the next step is constructing its parity-check

matrix.

Theorem 3.3.1. Given two LDPC encoders Encoder1 and Encoder2 with parity-

check matrices H1 and H2. c1 and c2 with length of N are encoded using the

same original message and Encoder1 and Encoder2. For a combined code c =

{cI , c1,P1 , c2,P2}, cI is defined in Equation 3.6, its parity-check matrix H is con-

structed as follows.

H =

H1,I1 H1,P1 0

H2,I2 0 H2,P2

 (3.7)

Proof. Suppose that H1 = [H1,0,H1,1, . . . ,H1,N−1], where HM×1
1,i is a sub-matrix

representing the ith column of H1. Divide H into two sub-matrix according to infor-

mation bits and parity-check bits as H1,I1 = [H1,i|i ∈ I1] and H1,P1 = [H1,i|i ∈ P1].

Similarly, H2 is divided into H2,I2 = [H2,g(i)|i ∈ I1] and H2,P2 = [H2,i|i ∈ P2]. Ij

and Ij are information bits and parity check bits of code cj for j = 1,2.

From the statement, it has that H1 × c1 = 0 and H2 × c2 = 0. By dividing

each code into information bits and parity check bits, these equations lead to that

[H1,I1 ,H1,P1 ] × [c1,I1 , c1,P1 ]T = 0 and [H2,I2 ,H2,P2 ] × [c2,I2 , c2,P2 ]T = 0. Afterward,

22



applying them to combined code c results in

H× cT =

H1,I1 H1,P1 0

H2,I2 0 H2,P2

×


cIT

c1,P1
T

c2,P2
T



T

=

H1,I1 × cIT H1,P1 × c1,P1
T 0

H2,I2 × cIT 0 H2,P2 × c2,P2
T


(3.8)

Since information bits cI is constructed as cI = {ci = c1,i+c2,g(i)
2 |i ∈ I = I1}.

Additionally, the information bits is supposed to be the same as original massage s,

which means ci = c1,i = c2,g(i), i ∈ I. Therefore, combining Equation 3.13, it proofs

that H× cT = 0.

According to Theorem 3.3.1, the parity-check matrix H for y is constructed of

the form shown in Equation 3.7. An example is illustrated in Figure 3.2. The joint

sum-product decoding algorithm is similar as joint decoding algorithm for identical

content-replicated codes. First, construct a combined code y by Equation 3.5 and

its parity-check matrix H by Equation 3.7. Then, apply the sum-product iterative

decoding process for the combined code y until the iteration reaches a certain amount

or the LLRs at variable nodes becomes infinite.

1. Construct a combined code and its parity-check matrix referring to Equation

3.5 and Equation 3.7. Let λ(Vi) to be the edge distribution at variable node Vi

and ρ(Cj) to be the edge distribution at parity-check node Cj. Then, λ(Vi) =

2ωc, for i ∈ I1, and λ(Vi) = ωc, for i ∈ P1
⋃P2.

2. Calculate the initial LLR message µ0 at variable node Vi for i ∈ [0, N +K−1].

3. Let Ci to be the set of check nodes which are connected to variable node Vi in
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Figure 3.2: Illustration of the parity-check matrix H for combined LDPC code c
of two content-replicated LDPC codes c1 and c2 with different parity-check con-
straints [3] [4].

parity-check matrix H. Then, the message that Vi sends to Cj, which denotes

a check node connected to Vi, at round l becomes:

ml
ij = µ0,i +

∑
j′∈Ci&&j′ 6=j

ml−1
j′i (3.9)

in which l > 0 and m0
ij = µ0,i.

4. Let Vj to be the set of variable nodes which are connected to check node Cj.

Then, the message that Cj sends to Vi at round l is obtained by:

ml
ji = 2tanh−1 ∏

i′∈Vj&&i′ 6=i

tanh(ml
i′j)

2 (3.10)
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5. The joint sum-product decoding algorithm is executed for a maximum number

of iterations or until the LLRs at variable nodes are closed to ±∞, whichever

comes first.

3.4 Content-replicated LDPC Codes with An Intermediate Parity-check Matrix

This section will discuss the joint decoding mechanism for the content-replicated

LDPC codes with an intermediate parity-check matrix between information bits,

named as related content-replicated LDPC codes. Two content-replicated LDPC

codes are related in the case that there is a intermediate parity-check matrix between

the information bits of two codes. More specifically, given two codes y1 = G1 ×m1

and y2 = G2 × m2, yi,I1 and yi,P1 , are information bits and parity-check bits of

codes yi as notated in Section 3.3, i = 1,2. y1 and y2 are related content-replicated

if they satisfy that y3 = G3×m and m1 = y3,I3 , m2 = y3,P3 . m3 is an intermediate

LDPC code between m1 and m2 with rate as 1
2 . I3 and P3 denotes the index set of

information bits and parity-check bits of y3. An example is presented in Figure 3.3

A combined code y is constructed by jointing y1 and y2 linearly in the following

way:

y = {y1,I1 ,y1,P1 ,y2,I2 ,y2,P2} (3.11)

Theorem 3.4.1. Given two LDPC code cN1 and cN2 with parity-check matrix H1

and H2. cN1 and cN2 are related content-replicated and has the same rate R = K
N

.

Let c2K
3 to be the intermediated LDPC codes with rate 1/2. cN1 is encoded using

the information bits of c3 and cN2 is encoded using the parity-check bits of c2K
3 .

For a combined code c generated using Equation 3.11, the parity-check matrix H is
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Figure 3.3: Illustration of two related content-replicated LDPC codes along with
their tanner graphs and parity-check matrix [3] [4].

constructed as following.

H =


H1,I1 0 H1,P1 0

0 H2,I2 0 H2,P2

H3,g(I3) H3,f(P3) 0 0

 (3.12)

Proof. Let Hi,j to be the jth column of parity-check matrix Hi. Similar as 3.3.1,

Hi,Ii
= {Hi,j|j ∈ I3} and Hi,Pi

= {Hi,j|j ∈ P3} for i = 1, 2 and 3. From the

statement, we have that H3 × c3 = [H3,I3 , H3,P3 ] × [c3,I3 , c3,P3 ]T = 0. Likely, c1

and c2 maintain that H3 × c1 = [H1,I1 , H1,P1 ] × [c1,I1 , c1,P1 ]T = 0 and H2 × c2 =

[H2,I2 , H2,P2 ] × [c2,I2 , c2,P2 ]T = 0. Meanwhile, let g(·) : I3 → I1 to be a one-to-one

mapping such that c3,i = c1,g(i) and let f(·) : P3 → I2 to be a one-to-one mapping
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such that y3,i = y2,f(i). Therefore, we have:

H× cT =


H1,I1 0 H1,P1 0

0 H2,I2 0 H2,P2

H3,g(I3) H3,f(P3) 0 0

×



c1,I1
T

c2,I2
T

c1,P1
T

c2,P2
T



=


H1,I1 × cI1

T 0 H1,P1 × c1,P1
T 0

0 H2,I2 × cI2
T 0 H2,P2 × c2,P2

T

H3,g(I3) × c1,I1
T H3,f(P3) × c2,I1

T 0 0



=


H1,I1 × c1,I1

T 0 H1,P1 × c1,P1
T 0

0 H2,I2 × c2,I2
T 0 H2,P2 × c2,P2

T

H3,g(I3) × c3,g(I3)
T H3,f(P3) × c3,f(P3)

T 0 0


(3.13)

Finally, it proofs that H× cT = 0.

According to Theorem 3.4.1, the parity-check matrix H for y is constructed of the

form shown in Equation 3.11 and Equation 3.12. The joint sum-product decoding

algorithm is similar as joint decoding algorithm for identical content-replicated codes.

First, construct a combined code y by Equation 3.11 and its parity-check matrix H

by Equation 3.12. Then, apply the sum-product iterative decoding process for the

combined code y until the iteration reaches a certain amount or the LLRs at variable

nodes becomes infinite.

This section defines the joint decoding problems for content-replicated LDPC

codes and lists three kinds of content-replicated codes. Further, for each category

of content-replicated codes, the joint decoding algorithm for AWGN channels are

explored. Next section will analyze the error correction performance of identical
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content-replicated LDPC codes, different content-replicated LDPC codes and related

content-replicated LDPC codes.
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4. DENSITY EVOLUTION ANALYSIS*

Previous section presents the joint sum-product decoding algorithm for content-

replicated codes. This section will further analyze error correction performance of

the constructed joint sum-product decoding algorithms on AWGN channels. For

LDPC codes, one measure of error correction performance is the expected fraction of

incorrect messages passed at lth iteration. In [20], Richardson shows that, assuming

the tanner graph doesn’t contain any cycle with length equal or smaller than 2l,

limn→∞P
n
e (l) = P∞e (l), where n is the length of LPDC code. Thus, P∞e (l) could be

estimated by density distribution evolution. Let σ2 to be the variance of AWGN.

There exist an threshold of AWGN channel noise variance σ∗ with the properties: if

σ < σ∗ then liml→∞ P
∞
e (l) = 0, else if σ < σ∗ then there exists an constant υ(σ) > 0

such that liml→∞ P
∞
e (l) > υ(σ) for all l > 0.

Chung [16] present Gaussian Approximation method to estimate the thresh-

old σ∗of LDPC codes using sum-product decoding on memory-less binary-input

continuous-output AWGN channel. As mentioned previously, Gaussian Approxi-

mation based density evolution requires two assumptions: symmetry assumption

and ”cycle-free” assumption. ”Cycle-free” assumption means that there is no cycles

with length 2l or less in tanner graph which eliminates the existence of infinitely

long loops in iterative decoding process. Symmetry assumption can be expressed

as f(x) = f(−x)ex. For a Gaussian distribution N (µ, σ2), symmetry assumption is

reduced to σ2 = 2µ. The accuracy of Gaussian Approximation is largely improved by

applying symmetry assumption. Another approach on density evolution is proposed

*Reprinted with permission from “Joint Decoding of Content-Replication Codes for Flash Mem-
ories ” by Q. Li, H. Chang, A. Jiang and E. F. Haratsch, 53rd Annual Allerton Conference on
Communication, Control, and Computing, Sept 29-Oct 2, 2015, Allerton Park and Retreat Center,
Monticello, IL, USA, Copyright (2015) by IEEE.
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by Fu [17]: represent the density distribution by a large population of ”samples” and

take advantage of the ergodic properties of iterative decoding process. To start the

density evolution analysis of content-replicated codes with joint decoding algorithms,

we firstly discussed the density distribution properties of combined LDPC codes and

then compare the performance of Gaussian Approximation and Ergodicity theory

based density evolution algorithm, typically for the joint-decoding problem.

As same as the notations in previous section, y1 and y2 are two noisy (N,ωc, ωr)−

regular LDPC codes. Let P ∼ N (µP, σ
2
P) and Q ∼ N (µQ, σ

2
Q) are memory-less

binary-input continuous-output AWGN channels. This thesis concentrates on the

case that P and Q have the same properties such that µ = µP = µQ and σ = σP = σQ.

Other cases will be explored in future studies.

4.1 Performance of Identical Content-replicated LDPC Codes

According to Equation 3.1 in Section 3.2, given two identical content-replicated

LDPC codes y1 and y2, a combined code y is obtained as y = y1+y2
2 . For simplify

the density evolution analysis process, it is assumed that the original code x is all

zeros. Given that y1 and y2 are noisy codes transferred through AWGN channels

P and Q, thus we have that the probability distribution function of y1 and y2 is

N (µ, σ2). Gaussian distribution has the following properties:

• If X and Y are two independent Gaussian distribution with means µ1, µ2 and

standard deviation σ2
1, σ2

2, then their sum X + Y will also be Gaussian distri-

bution with mean µ1 + µ2 and variance σ2
1 + σ2

2.

• If X belongs to a Gaussian distribution with mean µ and standard deviation

σ2, then the variable Y = aX + b is also a Gaussian distribution with mean

aµ+ b and standard deviation (|a|σ)2, for ∀a,∀b ∈ R.
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These properties of Gaussian distribution leads to that, if X1 and X2 are two

independent Gaussian distributions, thus variable X = X1+X2
2 is also a Gaussian

distribution with mean µ1+µ2
2 and variance σ2

1+σ2
2

4 . Therefore, the probability distri-

bution of noise in the combined code y should be a Gaussian distribution with mean

µ and variance σ2

2 .

In Gaussian Approximation, one of the important assumptions is ”symmetry

assumption”: f(x) = f(−x)ex, which can be reduced to 2µ = σ2 for Gaussian dis-

tributions. While, for joint-decoding process of identical LDPC codes, it is approved

that y ∼ N (µ, σ2/2). Suppose that y1 and y1 satisfy ”symmetry assumption”, then

it has that 2µ1 = σ2
1 and 2µ2 = σ2

2. With σ1 = σ2 and µ1 = µ2, it lead to that

2µ = 2µ1 = σ2
1 = σ2. Finally, it shows that the combine code y cannot hold the

”symmetry assumption” as y ∼ N (µ, σ2/2): 2µy = 2µ 6= σ2
y = σ2/2 = µ. As a

result, the one parameter Gaussian Approximation model is not applicable to the

density evolution of identical content-replicated LDPC codes with joint sum-product

decoding algorithm.

Also, there is another approach on density evolution proposed by Fu. As men-

tioned previously, this ergodicity theory based density evolution algorithm takes

advantages of a well- known property of ergodicity: any statistical parameter of the

random process, including the density function itself, can be arbitrarily closely ap-

proximated by averaging over a sufficient number of samples [17]. There are two

assumptions for this density evolution methods: cycle-free assumption and infinite

size assumption, that the code is of infinite length. Under those two assumptions,

it was approved that the updating process preserves ergodicity if the input message

is i.i.d. So, for the identical content-replicated LDPC codes, firstly, this section will

proof that the combined code y is i.i.d. Having that y1 and y2 are codes with additive

white noise which is independent and random noise, it is shown that, for y, the noisy
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in each bit is also independent distributed with the same probability distribution.

Based on above consideration, the ergodicity theory based density evolution algo-

rithm is used to estimate the threshold σ∗JSP in the following sections. The ergodicity

theory based density evolution algorithm for identical content-replicated LDPC codes

using joint sum-product decoding algorithm is stated as below:

1. Choose a large number N and generate N LLR samples of combined code as

u0. In particularly, each sample is generated according to Gaussian distribution

N (µ, σ2/2).

2. Update messages from variable nodes to parity-check nodes. For iteration 0, let

the message from variable node Vi to all its connected parity-check nodes be ini-

tialed as v(0)
i = u0,i. At other iterations l, take the N samples of messages send

from parity-check nodes u(l−1). Generate dv − 1 incoming message sequences

for each variable node by randomly interleaving u(l−1)
i for i = 1, 2, . . . , dv − 1.

Then, update the N samples of messages send from variable nodes to parity-

check nodes as v(l)
i = u0,i+

∑dv−1
k=1 uk,i, where uk = {uk,0, uk,1, . . . , uk,N−1} is the

kth incoming message sample sequence. Figure 4.1 illustrates an example of

the randomly interleaving based updating mechanism.

3. Update messages from parity-check nodes to variable nodes. For iteration l,

take the N samples of messages send from variable nodes v(l). Similarly as

Step 2, generate dc − 1 incoming message sequences for each variable node

by randomly interleaving v
(l)
i for i = 1, 2, . . . , dc − 1. Then, update the N

samples of messages send from parity-check nodes to variable nodes as u(l)
i =

2tanh−1∏dc−1
k=1

tanh(vk,i)
2 , where vk = {vk,0, vk,1, . . . , vk,N−1} is the kth incoming

message sample sequence.
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4. Repeat Step 2 and Step 3 until the iteration number reaches a certain amount

or the LLRs at variable nodes converge to ±∞. For the message at ith variable

node, LLRi =∞ represents that Pr(yi = −1) = 1 and LLRi = −∞ represents

that Pr(yi = 1) = 1.

Figure 4.1: An example of updating mechanism based on random interleaving in-
coming sequence. Given an sample sequence a with length 10. For j = 1, . . . , K,
each times randomly interleaves a to get an incoming message sequence aj. Finally,
update b based on the K incoming message sequences. Let f(·) to be the updating
function: b,i = f(a1,i, . . . , aK,i).

Using the ergodicity theory based density evolution, the threshold σ∗JSP,Identical for

identical content-replicated LDPC codes with joint sum-product decoding algorithm

is calculated. Different combinations of ωc and ωr is considered: (3,4), (3,5), (3,6),

(4,6) and (4,8). Besides, in the following density evolution analysis, the number

of samples is defined as 105, which is large enough to achieve good approximating

accuracy in [17]. The maximum number of iterations is set to be 1000. The results

are shown in Table 4.1 compared with σ∗SP which represents the threshold of regular

LDPC with sum-product decoding algorithm.
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(ωc,ωr) (3,4) (3,5) (3,6) (4,6) (4,8)

σ∗SP 1.261 1.004 0.880 1.002 0.838

σ∗JSP,Identical 1.555 1.264 1.116 1.242 1.044

Table 4.1: Density evolution analysis results of identical content-replicated LDPC
codes with joint sum-product decoding algorithm σ∗SP,Identical and regular LDPC code
with sum-product decoding algorithm σ∗SP . Both results are obtained by using the
ergodicity theory based density evolution algorithm.

4.2 Joint Decoder for Different Content-replicated Codes

This section will extend the density evolution analysis to different content-replicated

codes defined in Section 3.3. The two content-replicated LDPC codes y1 and y2 are

different in that way: G1 6= G2, H1 6= H2. Using the same notations as before, let

I1, I2 denote the index set of information bits and P1,P2 denote the index set of

parity-check bits. g(·) is a one-to-one mapping: I1 → I2. According to Equation

3.5, a combined code is obtained as y = {yI ,y1,P1 ,y2,P2}. The information bits of

y is generated as yI = {yi = y1,i+y2,g(i)
2 |i ∈ I = I1}. Meanwhile, the corresponding

parity-check matrix H for code y is constructed as Equation 3.7 as:

H =

H1,I1 H1,P1 0

H2,I2 0 H2,P2

 (4.1)

Theorem 3.3.1 in Section 3.3 proofs that H is the parity-check matrix of combined

LDPC code y. So, this section will conduct density evolution for parity-check matrix

H and code y with joint sum-product algorithm.

For the combined code constructed based on two identical content-replicated
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codes, each bit is generated using the same method which leads to the same prob-

ability distribution of noise. However, for different content-replicated codes, the

generating mechanism varies between information bits and parity-check bits. As a

result, information bits and parity-check bits will have different probability distri-

butions. Given two AWGN channels P and Q similar defined as previous section as

P,Q ∼ N (µ, σ2). Based on the combination method of different content-replicated

codes, it easy to see that noise in information bits belongs to Gaussian distribution

N (µ, σ2/2) and noise in parity-check bits is a Gaussian distributed as N (µ, σ2). In

this case, information bits and parity-check bits should be considered separately.

4.2.1 Edge Distribution

In the tanner graph of a LDPC code, an edges represents the connection between

a variable node and a parity-check node. Each variable node represents one bit of

the LDPC code. Each parity-check node represents one parity-check equations on

partial of information bits. An edge is called information edge if one of its end is

connected to an information bit. Otherwise, the edge is a parity edge such that

one of its end is connected to an parity-check bits. For an information edge, the

distribution function of the degree of its connected variable nodes is

λInfo(x) =
ωInfo∑
i=1

λInfoi xi−1 (4.2)

where λInfoi is the fraction of edges connecting to an variable node with degree i and∑ωInfo

i=1 = 1. ωInfo is the upper bound of the degree of a variable node which stands

for an information bits. Similarly, for parity-check edges, that distribution function
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of the degree of its connected variable nodes is

λParity(x) =
ωP arity∑
i=1

λParityi xi−1 (4.3)

where λParityi is the fraction of edges connecting to an variable node with degree i

and ∑ωP arity

i=1 = 1. ωParity is the upper bound of the degree of a variable node which

stands for a parity-check bit.

Theorem 4.2.1. Given two (N,ωc, ωr) − regular LDPC code with parity-check

matrix H1 andH2, which are not necessarily the same, a combined LDPC code is

constructed according to Equation 3.5. The edge degree distribution of the variable

nodes in the tanner graph of the combined LDPC code is:

λInfo(x) = x2ωc−1, λParity(x) = xωc−1 (4.4)

Proof. Based on the construction method of the parity-check matrix H of the com-

bined code shown in Equation 3.7, in the corresponding tanner graph, information

bits are connected to both check nodes in H1 andH2. Thus, the degree of information

bits are doubled. Meanwhile, for the parity-check bits, which are only connected to

either H1 or H2, the degree remains the same as ωc.

Figure 4.2a shows an example with two (6, 2, 4)-regular LDPC codes with parity-

checck matrices H1 and H2.

H1 =



1 0 1 1 0 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 1 1


, H2 =



0 0 0 1 1 1

0 1 1 0 0 1

1 1 0 0 1 0

1 0 1 1 0 0


(4.5)
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(a) The tanner graphes of H1(left) and H2(right) according to Equation 4.5.

(b) The tanner graph of combined LDPC codes which are generated based on two regular
LDPC codes shown in Figure 4.2a.

Figure 4.2: An example of identical content-replicated codes.

Then, the parity matrix for combined code is defined by the tanner graph shown

in Figure 4.2b. In this example, according to Theorem 4.2.1, the degree distribution

of variable nodes are λInfo(x) = x2ωc−1 = x3, λParity(x) = xωc−1 = x.

For a check node with degree ωr, let ρj,k to be the possibility that j edges are

information edges and k edges are parity-check edges, and j + k = ωr. Thus, ρj,k =(
j+k
j

)
(ωr−ωc

ωr
)j(ωc

ωr
)k. The degree distribution function of a check node becomes:

ρ(x, y) =
ωr∑

j=0,j+k=ωr

ρj,kx
jyk

Then, the degree distribution function for an information related check nodes which
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is a check node which is connected to at least one information edge is

ρInfo(x, y) =
ωr∑

j=1,j+k=ωr

ρj,k
1− ρ0,ωr

xj−1yk

Similarly, the degree distribution function of a parity related check node which is a

check node which is connected to at least one parity-check edges is

ρParity(x, y) =
ωr∑

k=1,j+k=ωr

ρj,k
1− ρωr,0

xjyk−1

For the example shown in Figure 4.2b, ρ(x, y) = 1
8y

3 + 1
4xy

2 + 5
8x

2y. For information

related check node, the degree distribution function is ρ(x, y) = 2
7y

2 + 5
7xy. Mean-

while, for parity related check node, the degree distribution function is ρ(x, y) =
1
8y

2 + 1
4xy + 5

8x
2.

4.2.2 Density Evolution Analysis

Previous discussion has shown that the probability distribution function varies

between information bits and parity-check bits. Therefore, in the updating mech-

anism at check nodes and variable nodes, the incoming message send through an

information edge and a parity-check edge should be treated separately. The message

send from a check node to a variable node is estimated by considering all possible

edge distribution cases.

To a check node which is connected to at least one information edges, in detail,

there are ωr possible edge distribution cases: there are j information edges, and

k = ωr − j parity edges with 1 ≤ j ≤ ωr. For each case, let u(l)
i (j, k) denotes the

message under the case: the check node is connected to j information edges and k

parity edges. Having v(l)
i ,v(l)

p to be the received message from an information/parity
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edge, then u
(l)
i (j, k) is obtained as

u
(l)
i (j, k) = 2tanh−1

( j−1∏
s=1

tanh
ν

(l)
i (s)

2

k∏
s=1

tanh
ν(l)
p (s)

2

)
(4.6)

By weighted summing up u
(l)
i (j, k), for j = 1, . . . , ωr, the message from a check

node to an information related variable node could be approximated as:

u
(l)
i =

ωr∑
j=1

ρInfoj,k u
(l)
i (j, k) (4.7)

where ρInfoj,k is notated the same as previous section.

Similarly, the message send from a check node to a parity related variable node

will be estimated by summing up generated message for all possible edge distribution

cases. Let u(l)
p (j, k) represent the message calculated under the case that the check

node has j parity edges and k information edges. u(l)
p (j, k) is defined by

u(l)
p (j, k) = 2tanh−1

( k∏
s=1

tanh
ν

(l)
i (s)

2

j−1∏
s=1

tanh
ν(l)
p (s)

2

)
(4.8)

Finally, the averaging message send from a check node to an parity related variable

node is updated as:

u(l)
p =

ωr∑
j=1

ρParityj,k u(l)
p (j, k) (4.9)

where ρParityj,k is notated the same as previous section.

The density evolution analysis for different content-replicated codes is conducted

based on the average probability distribution. Let v(l)
i to be the average message

send from an information bit to a check node and v(l)
p to be the average message

send from a parity-check bit to a check node. Meanwhile, let u(l)
i and u(l)

p to be the

average message send from a check node to an information bit and a parity-check bit
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respectively. u(0)
i and u(0)

p denotes the LLRs of received noisy LDPC code y. Then,

the updating mechanism is defined as follows.

Theorem 4.2.2. Given a combined LDPC code which is constructed based on dif-

ferent content-replicated LDPC codes as shown in Equation 3.5 and Equation 3.7.

At the l− round of sum-product decoding process, the message from a variable node

to a check node is given by:

v
(l)
i = u

(0)
i +

2ωc−1∑
s=1

u
(l−1)
i (s),

v(l)
p = u(0)

p +
ωc−1∑
s=1

u(l−1)
p (s),

where u(0)
i is the LLRs of information bits of received code y2N−K−1

0 , and u(0)
p is the

LLRs of parity bits. The updating mechanism of the message from a check node to

a variable node is defined as:

u
(l)
i =

ωr∑
j=1

ρ
(i)
j,kv

(l)
i (j, k),

u(l)
p =

ωr∑
j=1

ρ
(p)
j,kv

(l)
p (j, k),

where j + k = dc, ρ(i)
j,k, ρ

(p)
j,k represent edge degree distribution functions and are the

same as previous sections.

Finally, this section presents a density evolution algorithm using the updating

mechanism defined in Theorem 4.3.1. Similarly as the discussion on the density

evolution method for identical content-replicated codes, the density evolution anal-

ysis will be conducted based on ergodicity theory using a large number of samples.

There are two reasons for choosing ergodicity theory based density evolution algo-

rithm rather than Gaussian Approximation: 1) the information bits and parity-check
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bits of the combined code has different probability distribution functions, 2) message

through information edges and parity edges is updated using different mechanisms.

The method presented in [16] obtains approximate threshold for AWGN channel with

sum-product decoding by making use of the so-called symmetry condition which re-

quires a density function f(x) to satisfy f(x) = f(−x)ex. Because of these factors,

the symmetry condition clearly does not hold for our joint decoder here, therefore we

turn to the method presented in [17] to obtain the approximated threshold, which

is verified by intensive numerical calculations as shown in Figure 4.3. The density

evolution algorithm is listed below.
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Figure 4.3: The evolution of µ and σ2 in the joint decoding process of two content-
replicated LDPC codes with different parity-check constraints [4].

1. Generate one initial LLR sequences u(0)
i with N samples as information bits

according to N (0, σ2/2), and respectively generate a N-sample sequence u(0)
p

as parity bits according to N (0, σ2).

2. Update message from variable nodes to check nodes. For information bits,

at iteration 0, v(l)
i = u

(0)
i . At other iterations, generate a incoming message

41



sequence by randomly interleaving u(l−1)
i , which is the LLR samples of parity

nodes sent to information bits at (l − 1)-round. Repeatedly generating ωc − 1

incoming message sequences. Then, calculate N samples of v(l)
i by Theorem

4.2.2. Similarly, update N samples of v(l)
p .

3. Update u(l)
i : message from a check node to an information bit. Firstly, calcu-

late u(l)
i (j, k): generate (ωr − 1) incoming message sequences, in which (j − 1)

by interleaving v(l)
i , and the rest by interleaving v(l)

p ; calculate N samples of

u
(l)
i (j, k) using these incoming sequences. Then, repeatedly calculated N sam-

ples of u(l)
i (j, k) for j = 1, . . . , ωr. Finally u(l)

i is updated by Theorem 4.2.2.

4. Update u(l)
p : message from a check node to a parity bit. Firstly, calculate

u(l)
p (j, k): generate (ωr − 1) incoming message sequences, in which (j − 1)

by interleaving v(l)
p , and the rest by interleaving v(l)

i ; calculate N samples of

u(l)
p (j, k) using these incoming sequences. Then, repeatedly calculated N sam-

ples of u(l)
p (j, k) for j = 1, . . . , ωr. Finally u(l)

p is updated by Theorem 4.2.2.

5. Repeat Step 2-3 until the iteration number reaches a certain amount or the

LLRs at variable nodes converge to ±∞. For the message at ith variable node,

LLRi =∞ represents that Pr(yi = −1) = 1 and LLRi = −∞ represents that

Pr(yi = 1) = 1.

Using the ergodicity theory based density evolution, the threshold σ∗JSP,Diff for

identical content-replicated LDPC codes with joint sum-product decoding algorithm

is calculated. As same as previous section, different combinations of ωc and ωr

is considered: (3,4), (3,5), (3,6), (4,6) and (4,8). The results are shown in Table

4.2 compared with σ∗SP which represents the threshold of regular LDPC with sum-

product decoding algorithm.
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(ωc,ωr) (3,4) (3,5) (3,6) (4,6) (4,8)

σ∗SP 1.261 1.004 0.880 1.002 0.838

σ∗JSP,Diff 1.690 1.379 1.190 1.300 0.065

Table 4.2: Density evolution analysis results of different content-replicated LDPC
codes with joint sum-product decoding algorithm.

4.3 Joint Decoder for Related Content-replicated Codes

In this subsection, we present the density evolution analysis for related content-

replicated codes using joint sum-product decoding algorithm. According to Section

3.4, given two (N,ωc, ωr)− regular LDPC codes y1 and y2, y1 and y2 are related if

there is an intermediate generating matrix between their information bits with rate

1/2. Let I1, I2 and P1, P2 be the same notations as before. Then, a combined LDPC

code is obtained as y = {y1,I1 ,y1,P1 ,y2,I2 ,y2,P2}. Meanwhile, the corresponding

parity-check matrix H is constructed as shown in Equation 3.12.

For the density evolution, a (2K,ω′c, ω′r) − regular LDPC codes with rate as

1/2 is used as the intermediate LDPC code between y1,I1 and y2,I1 . Due to the

existence of the intermediate LDPC codes, the updating mechanism is different for

information bits and parity-check bits. Let u(l)
i and u(l)

p denote the message send

from a information bit and a parity-check bit to a check node respectively. Similarly,

let v(l)
i and v(l)

p denote the message send from a check node to a information bit and

a parity-check bit. To give the updating algorithms for the combined code, firstly

we explored the updating mechanism of the intermediate LDPC code.

Theorem 4.3.1. For the intermediate LDPC code, let xl to be the average message
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send from a variable node to a check node and yl to be the average message send

from a check node to a variable node. Thus, xl and yl are updated by

x(l) = u
(0)
i +

ωc−1∑
k=1

u
(l−1)
i (k) +

ω′
c−1∑
k=1

y(l−1)(k)

y(l) = 2tanh−1
ω′

c−1∏
k=1

tanh(x(l−1)(k))
2

(4.10)

Proof. Both information bits and parity-check bits of the intermediate LDPC code

are updated in the same way, since the information bits and parity-check bits share

the same initial probability distribution function, which is independent white noise,

also, H1 and H2 have the same rate and ωc, ωr. According to Equation 3.12, the

parity check matrix of the combined code is constructed as

H =


H1,I1 0 H1,P1 0

0 H2,I2 0 H2,P2

H3,I3 H3,P3 0 0



In the tanner graph of H, for variable nodes, there are two kinds of incoming message:

one is from the edges which are involved in H1 or H2 and the other one is from the

edges involved in H3. Therefore, the message send from a variable node is updated by

combining the incoming message from check nodes in H1/H2 and H3. The incoming

message send from the check nodes in H1/H2 is represented by u
(l)
i . On the other

side, the check nodes of the intermediate code are only connected to the variable

nodes of the intermediate code. So, the message from a check node to a variable

node in the intermediate LDPC code is updated by combining all incoming message

from its connected variable nodes.

Based on the updating algorithms of the intermediate LDPC code, the message
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between variable nodes and check nodes of H are updated using the following mech-

anism.

Theorem 4.3.2. For the joint sum-product decoding algorithm defined in Section

3.4, the message send from a variable node, which represents an information bit of

the combined code, to a check node is updated as:

v
(l)
i = u

(0)
i +

ωc−1∑
k=1

u
(l−1)
i (k) +

ω′
c−1∑
k=1

y(l−1)(k) (4.11)

Meanwhile, the message send from a variable node, which represents a parity-check

bit of the combined code, to a check node is obtained as

v(l)
p = u(0)

p +
ωr−1∑
k=1

u(l−1)
p (k) (4.12)

Similarly as the updating algorithms for the check nodes of different content-replicated

codes, the message send from a check node to a variable node(information bit or

parity-check bit) is updated as:

u
(l)
i =

ωr∑
j=1

ρ
(i)
j,kv

(l)
i (j, k),

u(l)
p =

ωr∑
j=1

ρ
(p)
j,kv

(l)
p (j, k),

where j + k = ωr and ρ
(i)
j,k, ρ

(p)
j,k denotes the degree distribution probability of check

nodes with j information edges and k parity edges.

According to the updating mechanism at variable nodes and check nodes shown

in Theorem 4.3.2, We present the density evolution algorithm for different content-

replicated codes using joint sum-product decoding algorithm below.
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1. Choose a large number N and generate N sample of initial LLR message at

information related variable nodes as u(0)
i according to N (µ, σ2). Similarly,

generate N samples of u(0)
p as the initial message at parity-check related variable

nodes with the same probability distribution function as u(0)
i .

2. Update message from information related variable nodes to check nodes v(l)
i .

For iteration 0, copy u
(0)
i to v(0)

i and u(0)
p to v(0)

p . For other iterations, take N

samples of u(l−1)
i from previous iteration. For j = 1, . . . , ωc−1, each times gen-

erate a sample sequence of incoming message u(l−1)
i (k) by randomly interleav-

ing u(l−1)
i . Similarly, obtain ω′c − 1 sample sequences by randomly interleaving

y(l−1). Then, update N samples of v(l)
i by the formula 4.11 of Theorem 4.3.2.

3. Update message from parity-check related nodes to check nodes v(l)
p . For iter-

ation 0, copy u(0)
p to v(0)

p . For other iterations, take N samples of u(l−1)
p from

previous iteration. For j = 1, . . . , ωc−1, each times generate a sample sequence

of incoming message u(l−1)
p (k) by randomly interleaving u

(l−1)
i . Then, update

N samples of v(l)
p by the formula 4.12 of Theorem 4.3.2.

4. Update message from check nodes to variable nodes u(l)
i and u(l)

p . Take N sam-

ples of v(l)
i and v(l)

p . For j = 1, . . . , ωr−1, each times generate a sample sequence

of incoming message v(l)
i (k) by randomly interleaving u(l−1)

i . Correspondingly,

generate (ωr − 1) sample sequences of incoming message for parity check bits

by interleaving v(l)
p .Then, update N samples of u(l)

i and u(l)
p by the formula 4.13

of Theorem 4.3.2.

5. Update message from check nodes to variable nodes of intermediate LDPC

code y(l). Take N samples of x(l). For j = 1, . . . , ω′r − 1, each times generate

a sample sequence of incoming message x(l)(k) by randomly interleaving x(l).
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Then, update N samples of y(l) by the formula 4.10.

6. Repeat Step 2-3 until the iteration number reaches a certain amount or the

LLRs at variable nodes converge to ±∞. For the message at ith variable node,

LLRi =∞ represents that Pr(yi = −1) = 1 and LLRi = −∞ represents that

Pr(yi = 1) = 1.

Using the ergodicity theory based density evolution, the threshold for related

content-replicated LDPC codes with joint sum-product decoding algorithm is cal-

culated. Different intermediate LDPC codes are considered: (N,ω′c, ω′r) − regular

LDPC code with degree (2, 4), (3, 6) and (4, 8). Let σ∗JSP,ω′
c,ω

′
r

be to threshold of

different content-replicated codes with the intermediate LDPC code as (N,ω′c, ω′r)−

regular such that σ∗JSP,ω′
c,ω

′
r

= sup{σ : u(l)
i → 0 as l →∞}. The results are shown in

Table 4.3 compared with σ∗SP which represents the threshold of regular LDPC with

sum-product decoding algorithm.

(dv,dc) (3,4) (3,5) (3,6) (4,6) (4,8)

σ∗SP 1.261 1.004 0.880 1.002 0.838

σ∗JSP,2,4 1.655 1.462 1.358 1.382 1.300

σ∗JSP,3,6 1.500 1.267 1.161 1.207 1.091

σ∗JSP,4,8 1.450 1.201 1.085 1.145 0.007

Table 4.3: Threshold of joint sum-product decoding algorithm for related content-
replicated codes on AWGNC.
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5. CONCLUSION

In this thesis, we study the joint-decoding problem of content-replicated codes in

flash memory, especially the case that two LDPC codes carrying the same message.

Also, we discuss three different kinds of content-replicated LDPC codes, which are

classified according to the relationship between two noisy LDPC codes. For each

category of content-replicated codes, I present the joint sum-product decoding al-

gorithm along with the error-correcting performance analysis. The findings of this

thesis include two parts:

• Using content-replicated codes with the corresponding joint sum-product de-

coding algorithm can effectively increase the error-correcting ability of LDPC

codes, and further improve the data reliability of flash memory. All three kinds

of content-replicated LDPC codes: identical, different and related content-

replicated LDPC codes, show better performance than single LDPC on AWGN

channels.

• Increasing the diversity of content-replicated codes may lead to the improve-

ment of error-correcting performance under some constraints, according to

the comparison of error-correcting performance of identical content-replicated

LDPC codes and different/related content-replicated LDPC codes.

We propose the following future work: 1) In this study, we assume that two

AWGN channels have the same properties. It is interesting to explore the joint

decoding mechanism on channels with the same type but with different parameters or

even different channels. 2) This thesis focuses on the joint decoding design for regular

LDPC codes. Compared with regular LDPC codes, irregular LDPC codes have show
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better error-correcting performance. Thus, exploring the joint decoder performance

of content-replication codes consisting of irregular LDPC codes is another future

work.
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