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ABSTRACT

We consider the asymptotic behavior of the `1 regularized least squares estimator

(LASSO) for the linear regression model

Y = Xβ + ξ

with training data (X, Y ) ∈ Rn×p×Rn, true parameter β ∈ Rp, and observation noise

ξ ∈ Rn. The LASSO estimator, defined by

β̂n :∈ arg min
u∈Rp

[
‖Xu− Y ‖2

2 + λn‖u‖1

]
,

introduces a bias toward 0 to encourage sparse estimates. LASSO has become a staple

in the statistician’s breadbasket; it behaves very well and is quickly computed.

In the case that ξi are i.i.d. with E|ξi|α <∞ for some 1 < α < 2, Chatterjee and

Lahiri found the exact rate, almost surely, for which the LASSO β̂n tends to β. We

consider instead ξi that are i.i.d., possess all moments less than α, and eventually

nearly follow a Pareto tail P{|ξi| > t} ≈ t−α. Specifically, we only require the tails

of ξi to be regularly varying.

We center and scale both the quantity inside the arg min and β̂n itself to prepare

for a CLT. We find conditions that promise both convergence (uniformly over a class

of designs X) of the quantity inside the arg min and uniform tightness of the centered,

scaled β̂n. Then, we use a standard theorem to pass to uniform convergence of the

centered, scaled β̂n. Finally, we use a basic inequality to prove rate consistency for

β̂n when p is allowed to increase with n.
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NOMENCLATURE

α index of stability ∈ (1, 2)

ξ α-regularly varying error

r(t), R(t) regularly varying tails (left, right) of ξ

Rα(t) rα(t) +Rα(t)

bn R−1(n)

X n× p data matrix

Y response

λ tuning constant

β̂n LASSO solution

β̃n OLS solution

ûn bn(β̂n − β)

uS u|RS

Φ Lèvy measure on Rp

ϕ spectral measure of Φ (defined on on Sp−1)

|Φ|, |ϕ| total variation, e.g. Φ(Rp), ϕ(Sp−1)

ch.f. characteristic function operator

∗ convolution operator

; weak convergence

∼ equal in distribution

A � B A−B is positive definite

lim lim supn
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1. INTRODUCTION

We study the linear regression model Y = Xβ+ξ, where we are handed X ∈ Rn×p

and Y ∈ Rn, and then asked to learn about β ∈ Rp, under some model assumptions

on the observation noise ξ ∈ Rn. Generally, this is contingent on two properties.

(1) The design X must see β well enough so that Xβ does not lose knowledge of β.

Particularly, we must have Xβ 6= 0.

(2) The random noise ξ must not overcorrupt the data.

Neither property is checkable in practice, but this is the nature of the beast in

statistics. Our goal is to mitigate this inconvenience by finding conditions on X that

capture (1) and (2) with the fewest assumptions on β and ξ. We are only concerned

with asymptotics, so we do not necessarily seek sharp estimates, and our conditions

only need to hold eventually.

Ordinary least squares (OLS) is ubiquitous in statistical applications. It’s long-

standing (Gauss 1795, Legendre 1805), easily implemented, efficiently computed, and

has a simple interpretable solution. Unfortunately, OLS is misapplied for various

reasons, including the fact that practitioners are often not aware of alternatives.

Drawbacks to OLS include nonuniquenss, nonrobustness, and overfitting. A popular

fix is to assume the true value β has a specific structure, then force the estimate to

have the same structure, whence come regularized estimators like ridge regression

and LASSO (see Section 1.2).

For observation noise ξi with an α-moment (α ∈ (1, 2)), Chatterjee and Lahiri
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[10] found the exact rate of the LASSO

β̂n :∈ arg min
u∈Rp

[
‖Xu− y‖2

2 + λ‖u‖1

]
to be β̂n − β = O(n−1/α) almost surely. We will simplify their proof (Remark

2.3.6). However, we are primarily concerned with distributional statements, wherein

regularly varying noise of order α is more fitting than noise with an α-moment [Fe,

BGT]. Then, in the i.i.d. central limit theorem for regularly varying distributions, the

normal distribution is replaced by the family of stable distributions. For background

on stable distributions and regular variation, see Section 1.1.

Section 2 works the finite dimensional case. Lemma 2.3.5 shows that β̂n has the

same rate when ξi is regularly varying of order α as the rate found in [10] when ξi has

an α-moment. Theorem 2.3.7 goes further to a CLT, then sections 4 and 3 generalize

to two different frameworks: when convergence is uniform over a class of designs

X, and when the number of regressors p is allowed to increase with n, respectively.

Theorem 4.2 from [1] will be centrally important to both these endeavors. Our

Theorems 3.4.4 and 4.2.1 are our main results.

1.1 Stable Distributions and Regular Variation

Chatterjee and Lahiri used a weighted version of the Markinciewicz strong law of

large numbers to get the exact almost sure rate of the LASSO estimator when the

errors ξi possess an α-moment [10]. It is natural, therefore, to try to prove the same

exact rate using a weak law of large numbers. This takes place in Section 2.1.

The central limit theorem prototype is “the sum of many small independent ran-

dom quantities is approximately normally distributed,” and so the normal distribu-

tion is most important in statistics. Still, there are other possible limit distributions

that fit this prototype, even if the summands are required to be identical. Moreover,
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there are many data sets which do not appear to settle into a normal distribution,

but rather into a distribution from a more general class called stable distributions.

The first instance known to the author is Mandelbrot’s long tail suspicion about

certain financial data [21], when distributions had uncommonly distant outliers.

Definition 1.1.1. Call a distribution F infinitely divisible if for any n, there is a

distribution G such that F is the n-fold convolution Gn∗ = F . Call a distribution F

stable if there are location parameters ar, br (r > 0) so that F r∗ = F (art+ br).

The characteristic function is a convenient tool, especially for distributions with

no closed form. Kolmogorov (see [18] Ch. 18) found the canonical representation of

the characteristic function of a general infinitely divisible distribution. We will use

the multivariate version in Theorem 3.1.11 from [22] (pg. 41).

Theorem 1.1.2 (Lévy Representation). The Lévy representation of the log charac-

teristic function of an infinitely divisible random vector Z ∈ Rp is

log(ch.f. Z) = i〈a, u〉 −Q(u) +

∫
x 6=0

(
ei〈x,u〉 − 1− i〈x, u〉1{‖x‖ ≤ 1}

)
dΦ(x) (1.1)

where the centering a ∈ Rp, the normal component Q(u) is a semidefinite quadratic

form (Q(u) = 〈u,Cov(Z)u〉), and the Lévy measure Φ is a Borel measure on Rp \{0}

satisfying ∫
x 6=0

min(‖x‖2, 1)dΦ(x) <∞

The triple [a,Q,Φ] uniquely determines the law of Z.

Remark 1.1.3. With a change of centering a, the i〈u, x〉1{‖x‖ ≤ 1} term in the

integrand in Theorem 1.1.2 could be replaced with i〈u, x〉/(1 + ‖x‖2) or any other

bounded function that behaves like i〈u, x〉 near x = 0. See [18] for more discussion.
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If we equip Rp with spherical coordinates and if there are measures µ, ϕ on

R+,Sp−1 (resp.) and α ∈ (0, 2) such that

dΦ(r, θ) =dµ(r)dϕ(θ)

µ[r,∞) =r−α

then Z ∼ [0, 0,Φ] is stable as in Definition 1.1.1 for ar = r1/α and br = 0 (Theorem

7.3.3 on pg. 263 of [22]). For centered stable distributions on R with α 6= 1, this

means i.i.d. sums of copies of Z only differ from Z by a scale parameter (See [13]):

r1/αZ1 + s1/αZ2 ∼ (r + s)1/αZ (1.2)

where Z1, Z2 are i.i.d copies of Z and r, s ≥ 0. Note, if Z is normal (α = 2), this

is simply the additive property of variance, even though (1.2) did not technically

address α = 2.

The rest of this section can be found in [7] and has to do with a concept inti-

mately connected to stable distributions, namely regular variation. A distribution

has regularly varying tails iff it satisfies an i.i.d. central limit theorem, converging

to a stable distribution (see [15, 25]).

Definition 1.1.4. Call R(t) regularly varying at infinity if limt→∞
R(ct)
R(t)

exists for

each c > 0. Call R(t) slowly varying at infinity if the limit is 1, regardless of c.

Surprisingly, the only possible limits are powers, as seen in the Uniform Convergence

Theorem (pg. 275 of [15] or pg. 22 of [7]).

Theorem 1.1.5 (Uniform Convergence Theorem). If R(t) is regularly varying at
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infinity, there is a number α ∈ R so that for each c > 0,

lim
t→∞

r(ct)

r(t)
= cα

Moreover, this convergence is uniform over c in


[a,∞) if α < 0

[a, b] if α = 0

(0, b] if α > 0

Definition 1.1.6. Call such R(t) in the previous theorem regularly varying of order

α.

Theorem 1.1.7. If R(t) is regularly varying of order α, then t−αR(t) is slowly

varying.

Furthermore, slowly varying functions have the following characterization in what is

called Karamata’s Representation Theorem (pg. 12 of [7]):

Theorem 1.1.8 (Representation Theorem). The function ` is slowly varying iff it

may be written in the form

`(t) = c(t)exp

(∫ t

a

ε(u)
du

u

)

for some a > 0, where c(·) is measureable, c(t)→ c ∈ (0,∞) and ε(t)→ 0 as t→∞.

Theorem 1.1.9. Every slowly varying function

`(t) = c(t)exp

(∫ t

a

ε(u)
du

u

)
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has a “smoothly slowly varying” asymptotically equivalent version

˜̀(t) = c · exp

(∫ t

a

ε̃(u)
du

u

)

That is, `(t)/˜̀(t)→ 1 as t→∞.

One of the main uses of regular variation is to obtain asymptotically equivalent

versions of integrals. The main device is Karamata’s Theorem, as stated in pg. 8 by

[32]. See also pg. 26 of [7].

Theorem 1.1.10 (Karamata’s Theorem). Let R be regularly varying of order α and

locally bounded on [T,∞). Then

lim
t→∞

∫ t
T
θR(θ)dθ

t2R(t)
=

1

|2 + α|

Karamata’s theorem is often used in tandem with H. Potter’s bounds:

Theorem 1.1.11 (Potter’s Bounds). Let `(t) be slowly varying as t → ∞. Then,

given any ε∗ > 0, C > 1, there is a cutoff t0 such that for t0 ≤ t1 ≤ t2,

C−1(t1/t2)−ε∗ ≤ `(t1)/`(t2) ≤ C(t1/t2)ε∗ (1.3)

1.2 Sparsity and Regularization

In the best case, ξ = 0 and rank X = p (full column rank), so that the response

is exact and the design X is left-invertible. Suppose, for example, that we can

accurately sample a signal f ∈ L2[−π, π] and we want to approximate f by an

element in V = span{sin(kx), cos(kx) : k = 1, 2}. Conventional wisdom tells us to

sample f at least twice as many times as the highest frequency (see Nyquist rate

[30, 31]). Recent developments in compressed sensing, however, acheive sub-Nyquist
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rates when a secret weapon called sparsity is available. We sample at four different

times t1, . . . , t4, then solve the linear system


f(t1)

...

f(t4)

 =


sin(t1) cos(t1) sin(t2) cos(2t1)

...
...

...
...

sin(t4) cos(t4) sin(2t4) cos(2t4)



β1

...

β4


or Y = Xβ. Except for select choices of t1 . . . t4, the design X will have full column

rank and we can solve β exactly. Then, β will represent the coordinates, with

respect to the basis {sin(kx), cos(kx) : k = 1, 2}, for the unique element f̃ ∈ V

that matches f at our four points f̃(ti) = f(ti), for 1 ≤ i ≤ 4. This solution

is exact (sin(kx), cos(kx) are orthogonal) so there is no need to talk about a best

approximation.

Now, suppose we still accurately (ξ = 0) sample f(t) at four times, but enlarge

V to span{sin(kx), cos(kx) : k = 1, 2, 3}. The same approach leads to an underde-

termined linear system with a 4× 6 design matrix and infinitely many solutions that

exactly fit the data. Occam’s razor suggests we look for the “simplest” solution. To

this end, we devise what is called a “regularized” estimator to enforce the kind of

simplicity that we suspect is appropriate.

For f ∈ L2, this could mean smallest norm, i.e. least total energy. The least

energy solution would then be found through arg minY=Xu ‖u‖2. Another interpre-

tation of simplicity is to have the fewest number of nonzero coordinates. This idea

of simplicity is called “sparsity” and is appropriate in many modern and diverse

contexts, including compressed sensing, computational biology, health care, and ad-

vertising. Formally, a vector u is said to have sparsity s (to be s-sparse) if it has at

7



most s nonzero coordinates. Then, the simplest solution becomes

arg min
Y=Xu

‖u‖0

where ‖u‖0 = limq→0 ‖u‖q = #{j : uj 6= 0}. Unfortunately, solving this minimization

problem reduces to searching for a solution to Y = Xu for every possible support

of u, as ‖u‖0 increases. The complexity boosts from polynomial time to NP-Hard

[20, 23], so it is imperative that we take another approach.

The main asset of ‖u‖0 comes from an embarrasing truth - it is not even homoge-

neous: ‖au‖0 = ‖u‖0 for a 6= 0. We want to replace ‖ · ‖0 with a bona fide norm and

keep the misbehavior, but improve computatational efficiency. The popular fix (jus-

tified in [9]) uses ‖·‖1 as a proxy for ‖·‖0, since ‖·‖1 is the only q-norm enjoying both

convexity and nondifferentiability at 0 (properties of ‖ · ‖2 and ‖ · ‖0, respectively).

By regularizing with a convex norm, we are able to use efficient methods from convex

programming (use [5] as reference). Nondifferentiability at 0 potentially causes small

(at the noise level) estimates to shrink all the way to 0. This “`1-regularized” version

is called basis pursuit:

β̃BP = arg min
Y=Xu

‖u‖1

(Donoho and Huo, 2001; Feuer and Nemirovski, 2003). The analysis of basis pursuit

is quite elegant. If β is s-sparse, i.e. S = {j : βj 6= 0} has cardinality s, the necessary

and sufficient condition for basis pursuit to enjoy exact recovery β̃BP = β is called

the restricted nullspace condition of order s (the terminology “restricted nullspace”

is from [11], but the condition itself originates from [12, 16]):

Xu = 0⇒ ‖uSc‖1 > ‖uS‖1

8



For our purposes, we will require the stronger “compatability” condition (first from

[34] section 2.1, but [8] section 2 uses notation closer to ours) to allow noise. It

replaces “Xu = 0” with “‖Xu‖2 < ζ‖u‖1.” The name compatability refers to the

comparison between ‖ · ‖2 and ‖ · ‖1.

We will be particularly interested in sparsity as it pertains to solving linear sys-

tems, both when X has full column rank and when X is column rank deficient. We

will also address noisy data, both in the response Y (standard linear regression) and

in the design X (errors-in-variable regression, see [17]). Either way, when noise is

present, exact solutions are no longer such a priority or even a possibility.

1.3 Noisy Problem

Ordinary least squares, or a carefully chosen variant thereof, often works well

when the columns, Xj, of X are far from linearly dependent. Otherwise, a minute

change in Y can cause a drastic change in the β̃j’s corresponding to the Xj’s that

are related.

To cope with noise, we no longer require exact solutions, but would ideally still

like to enforce sparsity via the ‖ · ‖0-norm. Of course, we don’t know a priori the

sparsity of β, so we have to guess the correct sparsity, typically with cross-validation

(see [3]). Once a sparsity s is chosen, the corresponding subset selection estimator is

defined as

β̂SS := arg min
‖u‖0≤s

‖Y −Xu‖2

Not surprisingly, this problem is again NP-Hard [37], and we again use ‖ · ‖1 as a

proxy for ‖ · ‖0. The `1-regularized regression estimator, which is usually known as

the Least Absolute Shrinkage and Selection Operator (LASSO), or just basis-pursuit

9



denoising, is defined by

β̂n :∈ arg min
‖u‖1≤s

‖Y −Xu‖2

although the following dual problem is easier to compute: let λ be a constant (like

s, to be determined by cross-validation) then

β̂n ∈ arg min
u∈Rp

[
‖Xu− y‖2

2 + λ‖u‖1

]
(1.4)

The symbol ∈ suggests there could be multiple solutions. In this work, which focuses

on point estimation, the choice is immaterial. We care more about proximity than

selecting the correct model. Therefore, when there are multiple solutions for β̂n, we

won’t prefer one over another, as long as they are close. At least, it turns out that

Xβ̂ is always unique, and so is ‖β̂‖1 for λ > 0. For the problem of uniqueness and

degrees of freedom see [33].

1.4 Equivalence of Limits of Sums

It has been said that mathematics never truly accomplishes anything. It merely

combines trivialities, such as multiplying by 1 or adding 0. Indeed, our paper is

a testament to this indictment. It is the crux of our next two lemmas, and our

cornerstone. We use them to assert equivalence of limits of sums.

The first is a well known generalization of the fact

a

b
=
c

d
=⇒ a

b
=
c

d
=

a+ c

b+ d

Yet, we state it and give a proof for completeness sake. Consequently, a multiplication

by 1 shows the asymptotic equivalence of sums of “proportionate” infinitesimals.

Lemma 1.4.1 (Times One Lemma). Let at, bt be nonnegative functions of t ∈ (0,∞)

10



such that at/bt → 1 as t → ∞ and t = (tni)i≤n be a triangular array satisfying

mini≤n tni →∞ as n→∞, then

(
n∑
i=1

atni

)/(
n∑
i=1

btni

)
→ 1

It follows that if
∑n

i=1 btni converges, then
∑n

i=1 atni converges to the same limit.

Proof. Let a, b ∈ [0,∞)n. Since

∣∣∣∣∣
n∑
i=1

(ai − bi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(
ai
bi
− 1

)
bi

∣∣∣∣∣ ≤
(

max
i≤n

∣∣∣∣aibi − 1

∣∣∣∣)
(

n∑
i=1

bi

)

we get

∣∣∣∣∣
(

n∑
i=1

ai

)/(
n∑
i=1

bi

)
− 1

∣∣∣∣∣ =

∣∣∣∣∣
(

n∑
i=1

(ai − bi)

)/(
n∑
i=1

bi

)∣∣∣∣∣
≤ max

i≤n

∣∣∣∣aibi − 1

∣∣∣∣
That is, the percent error of a sum of approximations is no worse than the worst

individual percent error. Thus,

∣∣∣∣∣
(

n∑
i=1

atni

)/(
n∑
i=1

btni

)
− 1

∣∣∣∣∣ ≤ max
i≤n

∣∣∣∣atnibtni
− 1

∣∣∣∣
≤ sup

r≥min tni

∣∣∣∣arbr − 1

∣∣∣∣
→ 0

The last convergence follows from at/bt → 1.

The second lemma aids in dealing with sums of regularly varying functions. Es-

sentially, the total difference between a regularly varying function and the same
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order power becomes negligible as the values get small. Consequently, an addition

of 0 shows the asymptotic equivalence of sums of regularly varying infinitesimals.

Lemma 1.4.2 (Plus Zero Lemma). Suppose R−α(t) is regularly varying of order

−α for some α 6= 0, that bn is a sequence of numbers so that R−α(bn) = 1/n. Let

W−(t) = tα−κR−α and W+(t) = tα+κR−α, regularly varying functions of orders −κ

and κ, respectively, for some 0 < κ < α. If ai is a sequence of positive numbers so

that

sup
n

1

n

n∑
i=1

aα+κ
i <∞,

then

n∑
i=1

∣∣∣∣R−α(bn/ai)−
aαi
n

∣∣∣∣→ 0 as n→∞

Proof. By definition of bn,

∑
i≤n
1≤ai

∣∣∣∣R−α(bn/ai)−
aαi
n

∣∣∣∣ =
1

n

∑
i≤n
1≤ai

∣∣∣∣R−α(bn/ai)

R−α(bn)
− aαi

∣∣∣∣
=

1

n

∑
i≤n
1≤ai

aα+κ
i

∣∣∣∣W+(bn/ai)

W+(bn)
− a−κi

∣∣∣∣
≤

sup
n

1

n

∑
i≤n
1≤ai

aα+κ
i

 sup
1≤t

∣∣∣∣W+(bn/t)

W+(bn)
− t−κ

∣∣∣∣
→0
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by the Uniform Convergence Theorem 1.1.5. Likewise,

∑
i≤n
ai≤1

∣∣∣∣R−α(bn/ai)−
aαi
n

∣∣∣∣ =
1

n

∑
i≤n
ai≤1

∣∣∣∣R−α(bn/ai)

R−α(bn)
− aαi

∣∣∣∣
=

1

n

∑
i≤n
ai≤1

aα−κi

∣∣∣∣W−(bn/ai)

W−(bn)
− aκi

∣∣∣∣
≤

sup
n

1

n

∑
i≤n
ai≤1

aα−κi

 sup
t≤1

∣∣∣∣W−(bn/t)

W−(bn)
− tκ

∣∣∣∣
→0

1.5 Centering and Scaling the LASSO

Assume (ξi)i≥1 are i.i.d. and that both

R−α(t) := P{ξi > t} and r−α(t) := P{−ξi > −t} (1.5a)

are regularly varying of order −α as t→∞. With no loss of generality (see Remark

1.1.9), assume R−α and r−α are continuous. Define

bn := inf{t ≥ 0 : R−α(t) + r−α(t) = 1/n} (1.5b)
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We want to work with a centered and scaled version of β̂n. To this end, substitute

Y = Xβ + ξ into the definition of β̂n, equation (1.4)

β̂n := arg min
u∈Rp

[
‖Xu− Y ‖2 + λn‖u‖1

]
= arg min

u∈Rp

[
‖Xu− (Xβ + ξ)‖2 + λn‖u‖1

]
= arg min

u∈Rp

[
‖X(u− β)− ξ‖2 + λn‖u‖1

]
Then, write the above in terms of a local parameter. That is, u becomes u+ β.

β̂n = β + arg min
u∈Rp

[
‖Xu− ξ‖2 + λn‖u+ β‖1

]
Expand the square and subtract ‖ξ‖2 + λn‖β‖1, which does not depend on u, hence

does not affect the arg min.

β̂n − β = arg min
u∈Rp

[
‖Xu‖2 − 2〈Xu, ξ〉+ λn(‖u+ β‖1 − ‖β‖1)

]
Scale the parameter by b−1

n (which is to say, u becomes b−1
n u).

β̂n − β = b−1
n arg min

u∈Rp

[
b−2
n ‖Xu‖2 − 2b−1

n 〈Xu, ξ〉

+λn(‖b−1
n u+ β‖1 − ‖β‖1)

]
Finally, we arrive at the relevant random quantity

ûn := bn(β̂n − β) = arg min
u∈Rp

[
b−2
n ‖Xu‖2 − 2b−1

n 〈u,XT ξ〉

+λnb
−1
n (‖u+ bnβ‖1 − ‖bnβ‖1)

]
(1.6)

14



Now, look at the `1 part. Firstly, if βj = 0, then

|uj + bnβj| − |bnβj| = |uj|

Secondly, if Sign(uj) = −Sign(βj) 6= 0 and |uj| > bn|βj| (equivalently bnβj is between

−uj and 0), then

|uj + bnβj| − |bnβj| = (uj + bnβj)Sign(uj)− (bnβj)Sign(βj)

= ujSign(−uj) + 2ujSign(uj) + bnβj(Sign(uj)− Sign(βj))

= ujSign(βj) + 2|uj| − 2bn|βj|

Thirdly, if either Sign(uj) = Sign(βj) 6= 0 or |uj| ≤ bn|βj|,

|uj + bnβj| − |bnβj| = (uj + bnβj)Sign(βj)− (bnβj)Sign(βj)

= ujSign(βj)

So, using as a shorthand for the Gram matrix, cross term, and the so-called “catas-

trophic correction” term

Cn := b−2
n XT

nXn (1.7a)

Zn := b−1
n

n∑
i=1

xiξi (1.7b)

En(u) := 2

p∑
j=1

(|uj|−bn|βj|)+1{Sign(ujβj) = −1} (1.7c)

with Cn ∈ Rp×p, Zn ∈ L1(Rp), and En(u) : Rp → R. Equation (1.6) becomes

ûn = arg minVn(u)
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where

Vn(u) = 〈u,Cnu〉 − 2〈u, Zn〉+ λn/bn

p∑
j=1

 ujSign(βj) ifβj 6= 0

|uj| ifβj = 0

+ λn/bnEn(u)

(1.8)

Note: We mostly work within one row of a triangular array at a time. Dependence

on n tends to be suppressed throughout this work, coming back out only when we

pass to limits.

Simply note that the function inside the arg min above evaluates to 0 when u = 0,

and that En(u) ≥ 0 for all u ∈ Rp. This begets the Basic Inequality,

〈û, Cû〉 − 2〈û, Zn〉+ λnbn

p∑
j=1

 ûjSign(βj) if βj 6= 0

|ûj| if βj = 0

 ≤ 0 (1.9-BI)

To ensure that changing a single covariate is asymptotically inconsequential, we take

‖xn‖∞ = o(bn). Equivalently,

b−1
n sup

i≤n
‖xi‖ → 0 (1.10)

so that the summands b−1
n ξixi are uniformly infinitesimal:

lim
n→∞

sup
i≤n

P{‖b−1
n ξixi‖∞ > ε} = 0
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for every ε > 0. Also, to keep the sums nearly centered, assume either

Eξi = 0 or b−1
n

n∑
i=1

xi → 0 (1.11)

with tni := bn/‖xi‖.

1.6 The Argmin Theorem

To pass from convergence in law of the LASSO objective to convergence in law

of the argmin, we need a version of the continuous mapping theorem (CMT). That

is, if arg min : `∞(U) → U were continuous, we could apply CMT. Though, requir-

ing continuity of arg min, even just locally, is often too strong. Theorem 3.2.2 in

[35] requires instead uniform tightness of the sequence of argmins, which is clearly

necessary. We state a reduced form, then distill the proof from [35].

Theorem 1.6.1. Let Mn,M be stochastic processes indexed by a metric space U

such that Mn ; M in `∞(K) for every compact K ⊂ U . Suppose that almost

all sample paths u → M(u) are lower semicontinuous and possess a unique mini-

mum at a random point û∞, which as a random map in U is tight. If the sequence

ûn ∈ arg minu∈U Mn(u) is uniformly tight, then ûn ; û in U (the symbol ; denotes

weak convergence).

Proof. The portmanteau theorem states that ûn ; û∞ is equivalent to

lim P{ûn ∈ F} ≤ P{û∞ ∈ F}

for every closed F ⊂ U . By hypothesis, for every ε > 0, we have a compact K ⊂ U

17



such that P{ûn 6∈ K or û∞ 6∈ K} < ε. Hence

P{ûn ∈ F} ≤P{ûn ∈ F ∩K}+ ε

≤P
{

inf
F∩K

Mn(h) ≤ inf
K

Mn(h)
}

+ ε (1.12)

infF∩K(·) and infK(·) are continuous mappings `∞(U) → R. By the continuous

mapping theorem,

inf
K

(Mn(u))− inf
F∩K

(Mn(u)) ; inf
K

(M(u))− inf
F∩K

(M(u))

which by the portmanteau theorem (and closedness of [0,∞)) means

lim P
{

inf
F∩K

Mn(h) ≤ inf
K

Mn(h)
}
≤P
{

inf
F∩K

M(h) ≤ inf
K

M(h)
}

=P{û∞ ∈ F ∩K}

≤P{û∞ ∈ F}+ ε (1.13)

Taking lim across (1.12) and pairing with (1.13), we get

lim P{ûn ∈ F} ≤ P{û∞ ∈ F}+ 2ε

But ε only depended on K.
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2. FIXED DESIGN, FIXED NUMBER OF REGRESSORS

We start our analysis of the LASSO with a single design X and a fixed number

of regressors Xj (columns of X). For consistency results, we mention some laws of

large numbers.

2.1 Laws of Large Numbers

The classical statement of the weak law of large numbers (WWLN) is stated in

terms of moments, but moments are not necessary. Interestingly, Feller believed

(in [14] p.152) the WLLN to be “of limited interest and should be replaced by the

more precise and more useful strong law of large numbers,” contrary to van der

Waerden’s later statement, “[The strong law of large numbers] scarcely plays a role

in mathematical statistics.” ([36] p.98). Even so, Feller gave necessary and sufficient

conditions for the WLLN in the i.i.d. case (see [15]),

Theorem 2.1.1 (Feller’s WLLN). Let ξi be i.i.d. In order that there exist constants

an so that for every ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

ξi − an

∣∣∣∣∣ > ε

}
→ 0

it is necessary and sufficient that

tP{|ξi| > t} → 0 (2.1)

as t→∞. In this case, it suffices to set an = E[ |ξi|1{|ξi| < n} ]

Of course, the classical hypothesis for the WLLN, E|ξi| <∞, implies
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tP{|ξi| > t} ≤ E[ |ξi|1{|ξi| > t} ] → 0

as t → ∞. The converse is not true in general, which is seen by considering

P{|ξi| > t} = (t log t)−1 for t ≥ 2:

E|ξi| =
∫ ∞

2

(t log t)−1dt = log(log t)
∣∣∣∞
2

=∞

Just as with the weighted (nonidentical) Marcinkiewicz SLLN in [10], we would like

a weighted version of Feller’s WLLN. With this in mind, we can break (2.1) into an

equivalent sum-of-infinitesimals version to reflect the “average” tail behavior when

ξi are not identical. That is, if n− 1 ≤ t ≤ n, then

n− 1

n
· nP{|ξi| > n} ≤ tP{|ξi| > t} ≤ n

n− 1
· (n− 1)P{|ξi| > n− 1}

So, (2.1) is equivalent to

nP{|ξi| > n} =
n∑
i=1

P{|ξi| > n} → 0

as n → ∞. From Feller’s WLLN, we could guess the weighted WLLN, which we

present as a corollary to Theorem 2.2.7 (next subsection). Then, as an appetizer, we

prove consistency of OLS for certain distributions of ξi where E|ξi| =∞.

Corollary 2.1.2 (Weighted WLLN). Let ξi be i.i.d. and xi ∈ Rp for i ∈ N so that

1

n
max
i≤n
‖xi‖ → 0 and sup

n

1

n

n∑
i=1

‖xi‖ <∞ (2.2)

For there to exist constants ani so that for every ε > 0,
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P

{∣∣∣∣∣ 1n
n∑
i=1

(xiξi − ani)

∣∣∣∣∣ > ε

}
→ 0

it is necessary and sufficient that (2.1) hold. In this case, it suffices to set

ani = xi · E[ |ξi|1{|ξi| < n/‖xi‖} ]

Proof. Write Br for the ball of radius r centered at the origin. Setting Zni = xiξi/n

in Theorem 2.2.7 (next subsection), we check (2.5a) by computing Φ(Rp \Br).

Φ(Rp \Br) = lim
n→∞

n∑
i=1

P{‖Zni‖ > r)

= lim
n→∞

n∑
i=1

P

{
|ξi| >

nr

‖xi‖

}
= lim

n→∞

1

nr

n∑
i=1

‖xi‖
(
nr

‖xi‖
P

{
|ξi| >

nr

‖xi‖

})
=0

which comes after considering (2.1), min
i≤n

(nr/‖xi‖) → ∞, and sup
n

1

n

n∑
i=1

‖xi‖ < ∞.

It follows that Φ(E) = 0 for every Borel set E ⊂ Rp \ {0}. For the Gaussian

component Q(u) in (2.5a), normalize by setting ‖u‖ = 1. Then, by the Cauchy-

Schwarz inequality,

Var(〈Zni1{‖Zni‖ ≤ r}, u〉) ≤‖xi‖
2

n2
Var

(
|ξi|1

{
|ξi| ≤

nr

‖xi‖

})
≤‖xi‖

2

n2

∫ nr/‖xi‖

0

P{|ξi| > t} · 2tdt
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then using the facts

lim
w→∞

1

w

∫ w

0

f(t)dt→ 0 if lim
t→∞

f(t) = 0

and

1

n

n∑
i=1

ai → 0 if sup
i≤n
|ai| → 0

we have

2r · 1

n

n∑
i=1

‖xi‖
nr

∫ nr/‖xi‖

0

tP{|ξi| > t}dt→ 0

showing Q(u) = 0 for every u ∈ Rp.

Theorem 2.1.3. Suppose ξi are i.i.d., satisfying (2.1). If 1
n
XT
nXn =: Cn → C∞

in norm for some positive definite C∞ ∈ Rp×p. Then, the OLS estimator, β̂n,OLS =

(XT
nXn)−1XT

n Y is consistent. That is, there are nonrandom centerings an such that

β̂n,OLS − an
P→ β

in norm.

Proof. Suppress the dependence of X on n and set

an =
(
XTX

)−1
xi · E[ |ξi|1{|ξi| < n/‖xi‖} ]
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Substitute Y = Xβ + ξ into the normal equation to get

β̂n,OLS − β − an =(XTX)−1XTXβ + (XTX)−1XT ξ − an − β

=(XTX)−1
(
XT ξ − xi · E[ |ξi|1{|ξi| < n/‖xi‖} ]

)
=

(
1

n
XTX

)−1
(

1

n

n∑
i=1

xiξi − ani

)
(2.3)

with ani as in Corollary 2.1.2. Now, let η > 0 be the smallest eigenvalue of C∞.

Note, convergence of Cn in norm implies convergence of ordered eigenvalues. So, the

smallest eigenvalue of Cn must converge to η and eventually be greater than η/2. By

Corollary 2.1.2, it follows that for large n,

∥∥∥∥∥
(

1

n
XTX

)−1
(

1

n

n∑
i=1

xiξi − ani

)∥∥∥∥∥ ≤ 2

η

∥∥∥∥∥
(

1

n

n∑
i=1

xiξi − ani

)∥∥∥∥∥
and the right side goes to 0 in probability. Referring back to equation (2.3), the

proof is finished.

2.2 Infinitely Divisible Central Limit Theorem in Rp

In 1837, Siméon Poisson published a book [26] that included a study of the number

of wrongful convictions in a country over a certain period. Suppose on any day there

is a probability 1/365 that a certain country experiences a wrongful conviction, that

the number of convictions on different days are independent of each other, and that

it is highly unlikely to have two or more in one day. The total number of convictions

in one year can then be modeled as the sum of 365 Bernoulli variables.

Binom

(
1,

1

365

)
+ · · ·+ Binom

(
1,

1

365

)
∼Binom

(
365,

1

365

)
≈Pois

(
365 · 1

365

)
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This approximation is sometimes called the law of rare events, where ‘law’ is a

synonym for distribution and convictions are considered ‘rare events’.

The law of rare events shows how a Poisson distribution can be broken into an

independent sum of many usually-zero independent random variables, a property

called infinite divisibility. The idea of usually-zero random variables will become

important when discussing the Lévy measure from Theorem 1.1.2 and compound

Poisson processes.

Traditionally, the “stable CLT” is stated in terms of i.i.d. random variables.

While we assume i.i.d. errors ξi, we also assume the covariates xi are fixed (not

i.i.d.). As with most nonparametric regressions, we are concerned with a normalized

version of
∑n

i=1 ξixi (not i.i.d.). Hence, we must work with a more general CLT

involving non-i.i.d. terms. The multivariate version of the CLT in Ch. 25 of [18] for

infinitely divisible triangular arrays was proved in [29]. Unfortunately, [29] presumed

a multivariate Khintchine representation, which was incorrect.

We follow the univariate treatment in chapter 2 of [2] to give a new proof. We

do not take any credit, for the proofs are the same. First, we present a method

called the “decoupage de Lévy,” which approximately decomposes a usually small

random variable, Z, into an always small variable, Z[, and a usually-zero variable,

Z#. Generally, small parts tend to cumulatively behave like normal distributions,

and, as will be shown (Lemma 2.2.6), usually-zero-parts tend to cumulatively behave

like Poisson distributions.

Lemma 2.2.1. Let Z be a random vector and E a Borel set in Rp bounded away from

0. Let Z# = Z|E, Z[ = Z|Ec, and W be independent of Z with Bernoulli distribution

and mean P{Z ∈ E}. Then,

L(Z) = L
(
WZ# + (1−W )Z[

)
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Proof. For any Borel F ,

P{WZ# + (1−W )Z[ ∈ F} =P{WZ# + (1−W )Z[ ∈ E ∩ F}

+ P{WZ# + (1−W )Z[ ∈ Ec ∩ F}

=P{Z# ∈ E ∩ F}P{W = 1}

+ P{Z[ ∈ Ec ∩ F}P{W = 0}

=P{Z ∈ E ∩ F}+ P{Z ∈ Ec ∩ F}

=P{Z ∈ F}

Even though W is independent of Z in Lemma 2.2.1, WZ# and (1−W )Z[ are still

dependent (disjoint supports). To achieve independence in the proof of Theorem

2.2.7, we will introduce a residual term whose size will depend on the size of Ec.

First, let us give some definitions and lemmas.

Definition 2.2.2. Suppose ν is a finite Borel measure on Rp. Define the character-

istic function of ν by

(ch.f.(ν))(t) :=

∫
ei〈t,x〉dν(x)

Write |ν| for its total variation, νk for its k-fold convolution (set ν0 = δ0, the point

mass at 0), and Pois(ν) for the compound Poisson distribution associated with ν (in

Rp):

Pois(ν) := e−|ν|
∞∑
k=0

νk

k!

Remark 2.2.3. Writing ν = |ν| · ν/|ν|, we see that if Zi are i.i.d. with distribution

ν/|ν|, then the random sum
∑N

i=1 Zi (with N ∼ Pois(|ν|) and independent from Zi)

has distribution Pois(ν).
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Proof.

∫
E

dPois(ν) =e−|ν|
∞∑
k=0

1

k!

∫
E

dνk

=e−|ν|
∞∑
k=0

|ν|k

k!

∫
E

d

(
ν

|ν|

)k
=P[Z1 + · · ·+ ZN ∈ E]

Realizing Pois(ν) as a random sum is convenient both in computation and as a

reference model. For example, in the single variable (p = 1) case, if the number of

cars passing by a booth is Pois(|ν|) distributed and the amounts of marijuana in

each car are i.i.d. distributed as ν/|ν|, then the total amount of marijuana passing

by the booth is distributed as Pois(ν).

Now, we state some basic facts about compound Poisson distributions.

Lemma 2.2.4. If νn, ν are finite Borel measures on Rp, then

(i) The distribution Pois(ν) is a probability measure and

ch.f.(Pois(ν)) = exp(ch.f.(ν)− |ν|) (2.4)

(ii) Pois(ν) has mean
∫
xdν(x) and covariance

∫
xxTdν(x). Hence, the square norm

of a Pois(ν) RV has variance
∫
‖x‖2dν(x).

(iii) If νn ; ν, then Pois(νn) ; Pois(ν).

(iv) Pois (
∑n

i=1 νi) = Pois(ν1) ∗ . . . ∗ Pois(νn)

(v) sup
A∈B
|Pois(ν(A))− ν(A)| ≤ (ν(Rp \ {0}))2
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Proof. Let N ∼ Pois(|ν|) and Zi ∼ ν/|ν|, so that we have the random sum represen-

tation
∑N

i=1 Zi ∼ Pois(ν). Then,

(i)

ch.f.(Pois(ν)) =E exp

(
i

〈
t,

N∑
i=1

Zi

〉)

=E[(ch.f.(ν/|ν|))N ]

=e−|ν|
∞∑
k=0

|ν|k

k!
· (ch.f.(ν/|ν|))k

= exp(ch.f.(ν)− |ν|)

(ii)

E

(
N∑
i=1

Zi

)
= E

(
E

(
N∑
i=1

Zi

∣∣∣∣∣N
))

= E(N)E(Z1) = |ν|
∫
xd

(
ν

|ν|

)
(x)

Also, since E(N) = |ν| and E(N2 −N) = |ν|2,

E

( N∑
i=1

Zi

)(
N∑
i=1

Zi

)T
 =E

[
E

(
N∑
i=1

N∑
l=1

ZiZ
T
l

∣∣∣∣∣N
)]

=E

E

∑
i=l
i≤N

+
∑
i 6=l

i,l≤N

ZiZ
T
l

∣∣∣∣∣∣∣N



=|ν|E(ZiZ
T
i ) + |ν|2(E(Zi)E(Zi)

T )

=|ν|E(ZiZ
T
i ) + E

(
N∑
i=1

Zi

)
E

(
N∑
i=1

Zi

)T

Taking the trace of both sides yields the next statement.
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(iii) By Lévy’s Continuity Theorem and Lemma 2.2.4(i),

ch.f. Pois(νn) = exp((ch.f. νn)− a)

→ exp((ch.f. ν)− a)

=ch.f. Pois(ν)

(iv) By Lemma 2.2.4(i),

ch.f. Pois

(
n∑
i=1

νi

)
= exp

((
ch.f.

n∑
i=1

νi

)
−

n∑
i=1

|νi|

)

=ch.f. Pois(ν1) · · · ch.f. Pois(νn)

(v) Set ε = ν(Rp \ {0}) and ν0 = ν{0}δ0 and ν1 = ν − ν0. Since Pois(aδ0) = δ0,

we have by part (ii) that Pois(ν) = Pois(ν{0}δ0 + ν1) = Pois(ν1). Now, for a

general Borel set A, first consider the case Pois(ν)(A) ≥ ν(A).

0 ≤ Pois(ν)(A)− ν(A) =e−ε
∞∑
k=0

νk(A)

k!
− (1− ε)δ0(A)− ν(A)

≤(e−ε + ε− 1)δ0(A) +
∞∑
k=2

εk

k!

≤ε
2

2
+
ε2

2

Secondly, consider the case ν(A) ≥ Pois(ν)(A)

0 ≤ ν(A)− Pois(ν)(A) =(1− ε)δ0(A) + ν(A)− e−ε
∞∑
k=0

νk(A)

k!

≤(1− e−ε)ν(A)

≤ε2
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The next lemma is similar in spirit to Lemma 1.4.1, bounding the approximation

error of a sum by a function of the individual approximation errors. See [2] for the

univariate case.

Lemma 2.2.5. Let F be a family of real bounded Borel functions on Rp and µi, νi

Borel probability measures on Rp. Then if F is closed under translations,

sup
f∈F

∣∣∣∣∫ fd(µ1 ∗ · · ·µn − ν1 ∗ · · · ∗ νn)

∣∣∣∣ ≤ n∑
i=1

sup
f∈F

∣∣∣∣∫ fd(µi − νi)
∣∣∣∣

Proof. It suffices to prove the lemma when n = 2. By definition of the convolution

of measures,
∫
fd(µ ∗ ν) =

∫ ∫
f(x+ y)µ{dx}ν{dy}. Then,

sup
f∈F

∣∣∣∣∫ fd(µ1 ∗ µ2 − ν1 ∗ ν2)

∣∣∣∣ = sup
f∈F

∣∣∣∣∫ ∫ f(x+ y)(µ1{dx}µ2{dy} − ν1{dx}ν2{dy})
∣∣∣∣

≤ sup
f∈F

∣∣∣∣∫ ∫ f(x+ y)(µ1 − ν1){dx}µ2{dy}
∣∣∣∣

+ sup
f∈F

∣∣∣∣∫ ∫ f(x+ y)(µ2 − ν2){dx}ν1{dy}
∣∣∣∣

≤
∫

sup
f∈F

∣∣∣∣∫ fd(µ1 − ν1)

∣∣∣∣ dµ2 +

∫
sup
f∈F

∣∣∣∣∫ fd(µ2 − ν2)

∣∣∣∣ dν1

≤ sup
f∈F

∣∣∣∣∫ fd(µ1 − ν1)

∣∣∣∣+ sup
f∈F

∣∣∣∣∫ fd(µ2 − ν2)

∣∣∣∣

Theorem 2.2.6. For any n ∈ N, let {Zi}i≤n be independent Rp-valued random

variables. Then,

sup
A∈B

∣∣∣∣∣L
(

n∑
i=1

Zi

)
(A)− Pois

(
n∑
i=1

L(Zi)

)
(A)

∣∣∣∣∣ ≤
n∑
i=1

(P{Zi 6= 0})2
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Proof. Let F be the set of indicator functions of Borel sets, then apply Lemmas

2.2.4(iv,v) and 2.2.5

Now, we are ready to prove the infinitely divisible CLT for Rp-valued random vari-

ables.

Theorem 2.2.7. Let (Zni)i≤n be a uniformly infinitesimal triangular array of random

vectors in Rp with independent rows. Define the truncation Zniδ := Zni1{‖Zni‖ ≤ δ}

and Zδ
ni := Zni1{‖Zni‖ > δ}. For there to exist ani, a ∈ Rp so that the sums∑n

i=1(Zni − ani) converge to an infinitely divisible distribution with Lèvy representa-

tion [a,Q,Φ], it is necessary and sufficient that

(i) Φ is a Borel measure on Rp \ {0}, satisfying
∫

min(1, ‖v‖2)dµ(v) <∞ and

n∑
i=1

P{Zδ
ni ∈ E} → Φ|{‖v‖>δ}(E) (2.5a)

for every δ > 0 and every Borel set E satisfying Φ(∂E) = 0.

(ii) Q is a nonnegative definite quadratic form with

Q(u) = lim
δ→0

lim Var

(
n∑
i=1

〈Zniδ, u〉

)
(2.5a)

for each u ∈ Rp where lim means either lim or lim as n→∞.

The centering constants ani, a may be chosen to be

ani = EZniδ0 ; a :=

∫
{δ0<‖x‖≤1}

xdΦ (2.5c)

for any 0 < δ0 < 1 such that Φ{‖v‖ = δ0} = 0.
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Proof. It follows from condition (ii) and Lindeberg’s CLT (see e.g. [15]) that if

δn → 0 slowly enough, then

n∑
i=1

(Zniδn − EZniδn) ; N(0, Q) (2.6)

We will now show convergence of
∑n

i=1(Zδ
ni − EZδ

ni) for every continuity value δ, i.e.

those for which Φ{‖v‖ = δ} = 0. From Theorem 2.2.6 (B is the collection of Borel

sets in Rp),

sup
E∈B

∣∣∣∣∣L
(

n∑
i=1

Zδ
ni

)
(E)− Pois

(
n∑
i=1

L(Zδ
ni)

)
(E)

∣∣∣∣∣ ≤
n∑
i=1

(P{Zni > δ})2

But, since hypothesis (i) holds and Zni is uniformly infinitesimal,

n∑
i=1

(P{Zni > δ})2 ≤
(

sup
i≤n

P{Zni > δ}
) n∑

i=1

P{Zni > δ} → 0

as n→∞. Hence for each δ, we have an infinitely divisible surrogate (usually called

the accompanying law), Pois(
∑n

i=1 L(Zδ
ni)), to approximate the distribution of the

sum
∑n

i=1 Z
δ
ni. Fortunately, infinitely divisible distributions are well understood. By

Lemma 2.2.4(i),

log ch.f.Pois

(
n∑
i=1

L(Zδ
ni)

)
− i

〈
u,

n∑
i=1

ani

〉

=
n∑
i=1

∫ (
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖ ≤ δ0}

)
dL(Zδ

ni)(x)

→
∫ (

ei〈u,x〉 − 1− i〈u, x〉1{‖x‖ ≤ δ0}
)
dΦ|{‖v‖>δ}(x)

with convergence holding by hypothesis (i) and the Portmanteau Theorem. Finally

31



as δ → 0, we use Theorem 1.1.2 to get

∫
‖v‖>δ

(
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖ ≤ δ0}

)
dΦ(x)→ i〈u, a〉+ log ch.f.Pois(Φ)

The proof will be completed by the decoupage de Lévy in Lemma 2.2.1 with

En = {‖v‖ > δn} and W1i ∼ W2i mean P{Zniδn ∈ En} Bernoulli RV’s if

n∑
i=1

(W1i −W2i)Z
[
niδn ; 0

Indeed, we even have convergence in L2:

E

(
n∑
i=1

(W1i −W2i)Z
[
niδn

)2

=
n∑
i=1

E(W1i −W2i)
2EZ[2

niδn

=2
n∑
i=1

E(W1i)E(1−W2i)EZ
2
niδn

≤2 max
i≤n

(EZ[2
niδn)

n∑
i=1

P{‖Zni‖ > δn}

→0

for δn → 0 slowly enough.

2.3 Applications to LASSO

Apply Theorem 2.2.7 to the sequence of random variables Zni := b−1
n ξixi in Rp.

Because xi are fixed, the distributions of Zni are supported by the countable union

of lines
∞⋃
i=1

xi · (−∞,∞),

Interestingly, the limit distribution of Zni will seldom have the same support. The

following lemma allows us to utilize the support of Zni with no structural assumptions
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on the limit. For any continuous function Γ(θ) : Sp−1 → [0,∞], call Γ(θ) the polar

representation of E = {u ∈ Rp : ‖u‖ ≤ Γ(u/‖u‖)}.

Lemma 2.3.1. Let Φn be a sequence of finite measures on Rp and Π be the collec-

tion of subsets of Rp with a polar representation. If there is a measure Φ such that

Φn(Ec)→ Φ(Ec) for all E ∈ Π, then Φn ; Φ.

Proof. Π is closed under finite unions and intersections (max(Γ1,Γ2) and min(Γ1,Γ2)

are continuous if Γ1,Γ2 are), and

(E1 \ E2) ∩ (F1 \ F2) = (E1 ∩ F1) \ (E2 ∪ F2)

so

Π \ Π := {E1 \ E2 : E1, E2 ∈ Π}

is a π-system (nonempty and closed under finite intersections).

Next, for any nonzero w ∈ Rp, write Bw (resp. int(Bw)) for the closed (resp.

open) ball centered at w of radius less than ‖w‖ and write B0 for a closed ball

centered at 0 of radius exactly ‖w‖. Set

E1 =B0 ∪Bw

E2 =B0 \ int(Bw)

To see that E1 ∈ Π, note that the length of a tangent segment from the origin to

Bw is less than ‖w‖. Hence, the point of tangency lies inside B0. Think of E2 as the

death star, with an OSHA non-compliant hypermatter reactor core. For the purposes

of this thesis however, we mostly care about the crater looking thing. Accordingly,

w ∈ E1 \ E2 ⊂ Bw. Theorem 2.2 in [24] then says that if Φn/|Φn| is a sequence of
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probability measures, then

(
Φn

|Φn|
;

Φ

|Φ|

)
iff

(
Φn

|Φn|
(E) ;

Φ

|Φ|
(E) for all E ∈ Π

)

to jump from probability measures to finite measures as the theorem claims, we only

need that Φn(Rp)→ Φ(Rp). This is true since Rp ∈ Π.

Now, we state the only condition needed for convergence of Zni.

(F1) There is a finite Borel measure ϕ on the sphere Sp−1 ⊂ Rp defined by

ϕ(E) := lim
n→∞

n∑
i=1

(
r−α(tni)1

{
xi
‖xi‖

∈ −E
}

+R−α(tni)1

{
xi
‖xi‖

∈ E
})

for all Borel sets E satisfying ϕ(∂E) = 0 and where tni := bn/‖xi‖.

Theorem 2.3.2. Assume (F1). Let µ[a,∞) = a−1/α and Φ{da, dθ} = µ{da}ϕ{dθ}.

Then, we have convergence in distribution

Zn :=
n∑
i=1

b−1
n ξixi ; Z∞ ∼ [0, 0,Φ]

Proof. Again, let Zni = b−1
n ξixi. We verify conditions (2.5a-2.5c) of Theorem 2.2.7

in order.

Fix a truncation level δ > 0. By the portmanteau theorem for finite measures

and Lemma 2.3.1, we only need to check (2.5a) on Ec for every E with a polar

decomposition and Φ|{‖v‖>δ}(∂Ec) = 0. Meanwhile, each of the supports of Zniδ are

contained in the countable union of rays
⋃∞
i=1 xi ·((−∞,−δ]∪ [δ,∞)). Hence, to each

Ec are associated sequences a−i , a
+
i ≥ δ such that
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Ec ∩

(
∞⋃
i=1

xi · ((−∞,−δ] ∪ [δ,∞))

)
=
∞⋃
i=1

xi · ((−∞,−a−i ] ∪ [a+
i ,∞))

Φ-almost everywhere. For uniqueness of representation, assume that a+
i = a+

j (resp.

a+
i = a−j ) and a−i = a−j (resp. a−i = a+

j ) when xi is a positive (resp. negative) multiple

of xj. We will check convergence for sets Ec where E ∈ Π. Call tni := bn/‖xi‖.

n∑
i=1

P{Zni ∈ Ec} =
n∑
i=1

P{−ξi ≥ a−i tni}+ P{ξi ≥ a+
i tni}

=
n∑
i=1

r−α(a−i tni) +R−α(a+
i tni)

Now since E ∈ Π, it has a polar decomposition ΓE. By the Uniform Convergence

Theorem 1.1.5 and the Times One Lemma 1.4.1, since −a−i , a+
i ≥ δ and mini≤n tni →

∞, we have

n∑
i=1

P{Zni ∈ Ec} =
n∑
i=1

(a−i )−αr−α(tni) + (a+
i )−αR−α(tni)

=
n∑
i=1

(
ΓE

(
− xi
‖xi‖

))−α
r−α(tni) +

(
ΓE

(
xi
‖xi‖

))−α
R−α(tni)

→
∫

ΓE(θ)−αϕ{dθ}

=

∫
Ec

Φ{dr, dθ}

and (2.5a) holds. Next is the Gaussian part. Since the Lévy representation in

Theorem 1.1.2 is unique, we can call Q(t) the Gaussian component. In our case,

where ξi are i.i.d., limiting distributions are always stable and have no Gaussian

component, so we show (2.5a) for Q(t) = 0. Again, let tni = bn/‖xi‖, δ > 0, and

‖u‖ = 1,
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Var〈Zni1{‖Zni‖ < δ}, u〉 ≤E〈Zni1{‖Zni‖ < δ}, u〉2

≤E[ ‖Zni‖21{‖Zni‖ < δ} ]

≤
∫ δ2

0

P{‖Zni‖2 > θ}dθ

=

∫ δ

0

P
{
‖Zni‖2 > θ2

}
· 2θdθ

=

∫ δ

0

P {|ξi| > θtni} · 2θdθ

=

∫ δtni

0

P {|ξi| > θ} · 2θdθ

t2ni

Denote the regularly varying function of order −α

R−α(t) := P {|ξi| > θ} = r−α(θ) +R−α(θ)

Karamata’s Theorem 1.1.10 says

∫ δtni
0

θR−α(θ)dθ

(δtni)2R−α(δtni)
→ 1

2− α

as tni →∞ and regular variation of R−α(θ) says

R−α(δtni)

R−α(tni)
→ δ−α

as tni → ∞. By the Times One Lemma 1.4.1, we can approximate summing over
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i ≤ n. For some constant c > 1 and large n,

Var

(
n∑
i=1

〈Zni1{‖Zni‖ < δ}, u〉

)
≤ 2c

2− α

n∑
i=1

R−α(tni)(δtni)
2−α

t2−αni

=
2cδ2−α

2− α

n∑
i=1

R−α(tni)

→2cδ2−α

2− α
|ϕ|

as n→∞. Letting δ → 0 shows that Q(u) = 0 for all u ∈ Rp.

Finally, with E|ξi| <∞, (1.11) implies condition (2.5c) of Theorem 2.2.7.

Theorem 2.3.2 is stated with exact knowledge of the distribution of ξi, but we

would like to reduce the requirement. The following conditions are “nearly” equiv-

alent in that the regularly varying parts come from the random noise. It is usually

preferable to turn this into a condition involving data. So, we introduce the following

conditions:

(F1′) There is a finite Borel measure ϕ0 on the sphere Sp−1 ⊂ Rp defined by

ϕ0(E) := lim
n→∞

1

n

n∑
i=1

(
‖xi‖α

(
(1− d)1

{
xi
‖xi‖

∈ −E
}

+ d1

{
xi
‖xi‖

∈ E
}))

for all Borel sets E satisfying ϕ0(∂E) = 0. (d comes from F3′)

(F2′) There is 0 < κ < α such that

sup
n

1

n

n∑
i=1

‖xi‖α+κ <∞
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(F3′) As t→∞, with R−α(t) = r−α(t) +R−α(t),

P{ξi > t}
P{|ξi| > t}

=
R−α(t)

R−α(t)
→ d ∈ [0, 1]

The purpose of the next corollary is to replace the annoying R−α(tni) with ‖xi‖α
n

.

Corollary 2.3.3. Assume (F1′), (F2′), (F3′). Let µ[r,∞) = r−1/α, and Φ0{dr, dθ} =

µ{dr}ϕ0{dθ}. Then, we have the convergence in distribution

Zn :=
n∑
i=1

bnξixi ; Z∞ ∼ [0, 0,Φ0]

Proof. We only need to show that ϕ0 satisfies (F1) under the new hypotheses. Denote

R−α(t) = R−α(t) + r−α(t). Simply note that

∣∣∣∣R−α(t)

R−α(t)
− d
∣∣∣∣→ 0

by (F3′). Again, set tni = bn/‖xi‖. The Times One Lemma along with the combina-

tion of condition (F2′) and the Plus Zero Lemma 1.4.2 give

lim
n→∞

n∑
i=1

(
R−α(tni)1

{
xi
‖xi‖

∈ E
})

= lim
n→∞

n∑
i=1

(
d(R−α(tni))1

{
xi
‖xi‖

∈ E
})

= lim
n→∞

1

n

n∑
i=1

(
‖xi‖α · d1

{
xi
‖xi‖

∈ E
})

Similarly,

lim
n→∞

n∑
i=1

(
r−α(tni)1

{
xi
‖xi‖

∈ −E
})

= lim
n→∞

1

n

n∑
i=1

(
‖xi‖α · (1− d)1

{
xi
‖xi‖

∈ −E
})
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We conclude that ϕ(E) = ϕ0(E) for all Borel sets E satisfying ϕ0(∂E) = 0.

Remark 2.3.4. The proof of Theorem 2.3.2 still holds if the covariates xi change

with n, since Theorem 2.2.7 is formulated for triangular arrays.

Now, asymptotics for the minimizers û follow easily. We introduce two more condi-

tions to handle the rest of the objective in the LASSO criterion.

(F2) b−2
n XTX =: Cn → C∞ � 0 element-wise (using � to mean positive definite).

(F3) λn/bn → λ∞ > 0

Lemma 2.3.5. Assume (F2)-(F3), and either (F1) or each of (F1′), (F2′) and (F3′).

Then

ûn := b−1
n (β̂n − β) = OP (1)

Proof. Let N1 be large enough so that C∞ � 0 renders

b−2
n ‖Xu‖2

2 = 〈u,Cnu〉 ≥
1

2
〈u,C∞u〉 ≥

η

2
‖u‖2

1 (2.7)

for all n ≥ N1 and η > 0 the minimum eigenvalue of C∞. In the same fashion, let N2

be large enough that λ ≤ 2λ∞ for all n ≥ N2. From (2.7) and the Basic Inequality

(1.9-BI),

η

2
‖ûn‖2

1 − 2‖ûn‖‖Zn‖ − 2λ∞
√
p‖ûn‖ ≤ 0

Dividing through by ‖ûn‖, we see that

‖ûn‖ ≤
4

η
(‖Zn‖+ λ∞

√
p) (2.8)
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for all n ≥ max(N1, N2). Then, Theorem 2.3.2 or Corollary 2.3.3 imply that ‖Zn‖ =

Op(1).

Theorem 2.3 of [10] follows from the basic inequality (1.9-BI) and the Marcinkiewicz

SLLN:

Remark 2.3.6 (Strong Consistency). Suppose ξi is centered as Eξi = 0 with an

α-moment, and assume supi≥1 ‖xi‖ < ∞. Then, under conditions (F2) and (F3),

ûn = O(1) almost surely.

Proof. Lemma 3.2 of [10] is the weighted Marcinkiewicz SLLN, which shows ‖Zn‖ =

o(1) a.s. The inequality in (2.8) shows that ‖ûn‖ = O(1) a.s. and that as remarked

in [10], the rate is slowed from o(1) a.s. for λn = 0 (OLS) to O(1) a.s. under (F3).

Theorem 2.3.7. Under (F1)-(F3),

ûn ; arg min
u∈Rp

V∞(u)

where

V∞(u) := 〈u,C∞u〉 − 2〈u, Z∞〉 − 2λ∞

p∑
j=1


ujSignβj if βj 6= 0

|uj| if βj = 0

,

Z∞ is the limit as in Theorem 2.3.2, and C → C∞ � 0 elementwise. Refer to

(1.7a-1.7c) for definitions.

Proof. Lemma 2.3.5 establishes ûn as uniformly tight, i.e. for every ε > 0, there

exists a compact interval K ⊂ R such that P{‖ûn‖ 6∈ K} < ε for large n, and so,

En(û) = op(1). Theorem 2.3.2 gives 〈u, Zn〉 ; 〈u, Z∞〉 in `∞(K), and 〈u,Cnu〉 →
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〈u,C∞u〉 in `∞(K) since pointwise convergence implies uniform convergence over

finite sets

max
1≤i,j≤p

|(Cn)ij − (C∞)ij| → 0

Hence, with Vn(u) from (1.8), Vn(u) ; V∞(u) in `∞(K) for every compact K ⊂ Rp.

By strict convexity, V∞(u) has a unique minimum. The proof is finished by Theorem

1.6.1.
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3. VARIABLE DESIGN, FIXED NUMBER OF REGRESSORS

In this section, we think of the design X as coming from a class X and we think

of quantities from section 2 as functions of X ∈ X. For example, if Ψ ∈ X has

columns ψi, then Zn(Ψ) := n−1/α
∑n

i=1 ψiξi. We discuss the centered scaled LASSO

ûn(X) as a random element of `∞(X,Rp), the space of maps X→ Rp with finite norm

‖u‖X := supX∈X ‖u(X)‖. As is usual, define the norm on `∞(X) by

|v|X := sup
X∈X
|v(X)|

and ei ∈ `∞(X,Rp), eij ∈ C(X) to be coordinates:

ei(X) :=xi

eij(X) :=xij

3.1 A General CLT

Theorem 4.2 from [1] gives sufficient conditions for triangular arrays of random

`∞(X)-valued elements to converge to an infinitely divisible limit with no Gaussian

component. We paraphrase a special case of this theorem, specifically for parameters

which fit their Example 4.1(1) (ϕ(x) = x1−1/α) and for Borel measurable processes

that concentrate on a separable subspace of `∞(X).

Theorem 3.1.1. Suppose (Zni)i≤n is a row-wise independent triangular array of

random elements in `∞(X). Suppose also that (Zni)i≤n concentrates on a separable
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subspace V ⊂ `∞(X) with envelope

F (v) := sup
X∈X
|v(X)|

so that F (v) <∞ for all v ∈ V. Assume the following

(i) For every ε > 0,

sup
n

n∑
i=1

P{|Zni|X > ε} <∞

(ii) For every ε > 0, there is a compact (convex, symmetric) K ⊂ `∞(X) s.t.

lim
n∑
i=1

P{Zni(·) 6∈ K, |Zni|X > ε} < ε (3.1)

(iii) There is a semimetric d on X and a Borel probability measure µ on (X, d) such

that

(a) limε→0 supX∈X
∫ ε

0
(− lnµ(Bd(X, t)))

1−1/αdt = 0 with supX∈X finite for ε =

∞, and

(b) There are constants σ > 0, n0 > 0, and L1 ≥ 1 such that for all Ψ ∈ X, l ≥

L1, n ≥ n0, and δ > 0,

n∑
i=1

P

{
sup

X∈Bd(Ψ,δ)

|Zni(X)− Zni(Ψ)| > σδ/l1/α

}
≤ l/3 (3.2)

(iv) For each k and X1, . . . Xk ∈ X, the triangular array of Rk-valued random vectors

(Zni(X
1), . . . , Zni(X

k))i≤n is infinitesimal and the sequence

{
n∑
i=1

(Zni(X
1), . . . , Zni(X

k))

}
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converges in law to an infinitely divisible law with a degenerate Gaussian com-

ponent.

Then, the sequence of random elements {
∑n

i=1 Zni(X) : X ∈ X} converges in law to a

Radon infinitely divisible measure on `∞(X) with a degenerate Gaussian component.

The finite dimensional distributions are given by (iv).

3.2 Choosing a Semimetric

By Prohorov’s Theorem, for a sequence of processes Mn to converge, it must be

uniformly tight and have a unique limit. Uniqueness follows if the finite dimensional

distributions converge, to which Theorem 2.2.7 applies. Usually, proving tightness

is the tougher task. The next criterion allows us to jump from finite subsets of an

index set to totally bounded subsets (under a certain semimetric). Note, asymptotic

tightness is equivalent to uniform tightness in separable, completely metrizable spaces

(visit Theorem 1.5.7 of [35] for reference).

Theorem 3.2.1. A sequence of processes Mn in `∞(X) is asymptotically tight iff

there is a semimetric ρ on X which makes X totally bounded and Mn asymptotically

uniformly ρ-equicontinuous in probability, i.e. for all ε > 0,

lim
δ→0

lim P

{
sup

ρ(X,Ψ)<δ

|Mn(X)− Mn(Ψ)| > ε

}
= 0 (3.3)

Ideally, ρ(X,Ψ) should follow |Mn(X) − Mn(Ψ)| closely, although Mn is random. If

first moments are finite, it would be correct to let ρ(X,Ψ) = lim E|Mn(X)−Mn(Ψ)|.

But, since our random variables lie in the domain of attraction of a stable, we have

a quicker route. As n gets large, only the tails of ξi are important, which we know to

vary regularly of order α. For each j ≤ p, we create a seminorm | · |j by comparing

the distribution of ξi to a symmetric strictly α-stable (SαS) distribution, which also
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has regularly varying tails of order α and sums nicely, according to (1.2). Indeed, if

ξi were SαS, and Mnj(X) = n−1/α
∑n

i=1 xijξi, we get

Mnj(X)− Mnj(Ψ) =n−1/α

n∑
i=1

(xij − ψij)ξi

∼

(
1

n

n∑
i=1

|xij − ψij|α
)1/α

ξ1

by equation (1.2) with 1 < α < 2. Thus, a natural choice for ρ is ρ(X,Ψ) :=

supj |X −Ψ|j where

|X|j := lim
1

n

n∑
i=1

|xij|α (3.4)

3.3 Convergence of the Cross Term

Let us make (F1′) and (F2′) uniform over X.

(D1) There is a finite Borel measure ϕX on the ‖·‖X-sphere in `∞(X,Rp) so that

ϕX(E) = lim
n→∞

1

n

n∑
i=1

(1− d) ‖ei‖αX 1

{
ei
‖ei‖X

∈ −E
}

+ d ‖ei‖αX 1

{
ei
‖ei‖X

∈ E
}

for all Borel sets E satisfying ϕX(∂E) = 0. Again, denote by |ϕX | the total

variation of ϕX .

(D2) For each j, there is a κ such that

sup
n

1

n

n∑
i=1

‖ei‖α+κ
X <∞

It follows from |ϕX| <∞ that | · |j is finite on X for every j ∈ N. In view of Theorem

3.1.1, we state the following conditions:
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(D3) For every ε > 0, there is Iε ⊂ N and (qi)i∈Iε such that

sup
ρ(X,0)≤δ
i∈Iε

qi‖xi‖ → 0

as δ → 0 and

lim
1

n

∑
Iε

q−αi < ε and lim
1

n

∑
Icε

|eij|αX < ε1+α

(D4) There is a Borel probability measure µ on X satisfying

lim
ε→0

sup
X∈X

∫ ε

0

(− log µ(Bρ(X; t)))1/αdt = 0

with supX∈X finite for ε =∞.

Theorem 3.3.1. Let µ[r,∞) = r−1/α and ϕX as in (D1) and

φX{dr, dθ} = µ{dr}ϕX{dθ}

Then, under (D1)-(D4), (F3′), and the uniform version of (1.10), i.e.

sup
i≤n
‖ei‖X = sup

i≤n
X∈X

‖xi‖ = o (bn) (3.5)

we have that

Zn := b−1
n

n∑
i=1

eiξi

is tight as an element of `∞(X,Rp). Hence,

Zn ; Z∞ ∼ [0, 0, φX]
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Proof. Let Zni = b−1
n eiξi be regarded as a function X×{1, . . . , p} → R, i.e. Zni(X, j) =

b−1
n xijξi. We will use Theorem 3.1.1 to prove that

∑n
i=1 Zni is tight as a sequence of

elements in `∞(X× {1, . . . , p}). First, condition (i) comes by

n∑
i=1

P{‖Zni‖X > t} =
n∑
i=1

P

{
|ξi| >

bnt

‖ei‖X

}
→t−α|ϕX| as n→∞

<∞

for every t > 0 (convergence holding thanks to equation (3.5) and the Times One

Lemma 1.4.1).

As for (ii) of Theorem 3.1.1, let ε > 0 and q, Iε be as in (D3). Let Kq :=

conv.hull{aei : i ∈ Iε, |a| ≤ qi}. Therefore, if X,Ψ ∈ Kq, then X −Ψ ∈ Kq. Now, we

use Ascoli’s Theorem to prove Kq is compact. Kq is (uniformly) equicontinuous by

sup
ρ(X,Ψ)≤δ
X,Ψ∈Kq

sup
|a|≤qi
i∈Iε

‖aei(X)− aei(Ψ)‖ = sup
ρ(X,Ψ)≤δ

sup
i∈Iε

qi‖xi − ψi‖

= sup
ρ(X,0)≤δ

sup
i∈Iε

qi‖xi‖

→0 (3.6)

as δ → 0, which holds by (D3). Then, pointwise boundedness holds if for each

X ∈ Kq, we have

sup
|a|≤qi
i∈Iε

‖aei(X)‖ = sup
i∈Iε

qi‖xi‖ <∞
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By (3.6), there must be δ > 0 so that

sup
ρ(X,0)≤δ

sup
i∈Iε

qi‖xi‖ <∞

Since ρ
(

δX
ρ(X,0)

, 0
)

= δ, it must be that

sup
i∈Iε

qi

∥∥∥∥ δxi
ρ(X, 0)

∥∥∥∥ <∞
Also, ρ is finite by the comment after definition (3.4). It follows that Kqj ⊂ `∞(X) is

equicontinuous and pointwise bounded, hence compact. Then, condition (ii) is met

by Lemma 1.4.2 and (D3):

lim
n∑
i=1

P{Zni 6∈ Kq, ‖Zni‖X > ε} =lim
n∑
i=1

P

{
|ξi| > max

(
bnqi,

εbn
‖ei‖X

)}
≤lim

p

n

∑
i∈Iε

q−αi + lim
pε−α

n

∑
i 6∈Iε

‖ei‖αX

≤2pε|ϕX|

Condition (iiia) is the same as (D4). For condition (iiib) use (D1) with σ = 3|ϕX|1/α

n∑
i=1

P

 sup
ρ(X,Ψ)<δ

‖Zni(X)− Zni(Ψ)‖ > 3δ

(∣∣ϕX
∣∣

l

)1/α


=
n∑
i=1

P

 sup
ρ(X,0)<δ

‖b−1
n xiξi‖ > 3δ

(∣∣ϕX
∣∣

l

)1/α


→
(
3(
∣∣ϕX
∣∣ /l)1/α

)−α · 1

n

n∑
i=1

sup
ρ(X,0)<1

‖xi‖α

≤l/3α
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Choose N large enough that this convergence is within 1/3− 1/3α for n ≥ N .

Finally, to show that the finite dimensional distributions converge to stable limits,

let X1, · · ·Xk ∈ X be arbitrary and consider the process Z∗ni := b−1
n eiξi indexed by

X∗ := {0 =: X0, X1, . . . , Xk ∈ X}. By the Cramer-Wold device and linearity of Z∗ni,

convergence as in Z∗ni ; Z∗∞ ∼ [0, 0, ϕX∗ ] is equivalent to the convergence

Z∗ni

(
n∑
i=1

clX
l

)
; Z∗∞

(
k∑
l=0

clX
l

)
Or, assuming X to be convex and symmetric, we only need pointwise convergence.

Since ϕX|X coincides with ϕ from (F1′) and conditions (D1),(D2) are stronger than

(F1′), (F2′), we are done.

3.4 LASSO

Now, we get to throw in the rest of the objective V X
n . Assume the following.

(D5) For each X ∈ X, there exists a p× p matrix C∞(X) � 0 so that

(a) With the semimetric ρ from (3.4) and the operator norm of Rp → Rp

denoted by ‖ · ‖op,

lim sup
ρ(X,Ψ)<δ

‖CX
∞ − CΨ

∞‖op → 0

as δ → 0

(b) infX∈X ‖CX
∞‖op ≥ ηmin > 0 and

sup
X∈X
‖Cn(X)− C∞(X)‖op → 0

(D6) λn/bn → λ∞
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Theorem 3.4.1. (D5b),(D6) and |Zn|X = OP (1) imply

‖ûn(X)‖ . ‖Zn(X)‖+ λ∞

for each X ∈ X, up to a constant not depending on X. Hence

sup
X∈X
‖ûn(X)‖ = OP (1)

Proof. Take n large enough that supX∈X ‖CX
n − CX

∞‖op ≤ 1
2

infX∈X ‖C∞(X)‖op and

λn/bn ≤ 2λ∞. Then,

0 ≥ inf
u∈Rp

Vn(X;u) ≥ 〈ûn(X), Cn(X)ûn(X)〉 − 2‖ûn(X)‖‖Zn(X)‖ − 2λ∞‖u‖

≥ ηmin

2
‖ûn(X)‖2 − 2‖ûn(X)‖(‖Zn(X)‖+ λ∞)

=
(ηmin

2
‖û(X)‖ − 2(‖Zn(X)‖+ λ∞)

)
‖ûX‖1

and so

‖ûn(X)‖ ≤ 4

ηmin

(‖Zn(X)‖+ λ∞)

Take supX.

Next is a partial converse to Theorem 3.4.1, taking standard bounded eigenvalues.

Theorem 3.4.2. Assume (D5), (D6) and sup
X
‖Cn(X)‖op ≤ ηmax < ∞ for all n.

Then, for any X ∈ X,

‖Zn(X)‖ − 3λ∞ . ‖ûn(X)‖
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for each X ∈ X, up to a constant not depending on X. Hence

‖ûn‖X = OP (1) =⇒ ‖Zn‖X = OP (1)

Proof. Pick ‖u̇(X)‖ = 1 so that 〈u̇(X), Zn(X)〉 = ‖Zn(X)‖. Then, as long as

λn/bn ≤ 2λ∞, we have for each X ∈ X

inf
u∈Rp

Vn(X;u) ≤ inf
t∈R

Vn(X; u̇(X)t)

≤ inf
t∈R

(
ηmaxt

2 − 2t‖Zn(X)‖+ 2λ∞t
)

= −(‖Zn(X)‖ − λ∞)2

ηmax

Also,

inf
u∈Rp

Vn(X;u) ≥ −2‖ûn(X)‖‖Zn(X)‖ − 2λ∞‖ûn(X)‖1

= −2‖ûn(X)‖(‖Zn(X)‖+ λ∞)

Combining these,

‖ûn(X)‖ ≥ (‖Zn(X)‖ − λ∞)2

2ηmax(‖Zn(X)‖+ λ∞)

=
1

2ηmax

(
‖Zn(X)‖ − 3λ∞ +

4λ2
∞

‖Zn(X)‖+ λ∞

)

To continue, keep a fixed design Ψ = [ψ1 . . . ψp] for some ψj ∈ Rp. We want to

analyze ûX for X relative to Ψ, so we center accordingly.
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Lemma 3.4.3. Under (D1)-(D6), we have for every ε > 0, as δ → 0

lim P

 sup
ρ(X,Ψ)|<δ
‖u‖≤1

|Vn(X;u)− Vn(Ψ;u)| > ε

→ 0

Proof. First, rewrite

Vn(X;u)− Vn(Ψ;u) = 〈u, (Cn(X)− Cn(Ψ))u〉 − 2〈u, Zn(X)− Zn(Ψ)〉

which splits the proof into

lim
δ→0

lim P

{
sup

ρ(X,Ψ)<δ

‖ZX − ZΨ‖ > ε

}
→ 0

(true by Theorems 3.3.1 and 3.2.1) and

lim
δ→0

lim sup
ρ(X,Ψ)<δ

‖u‖≤1

|〈u, (Cn(X)− Cn(Ψ))u〉| ≤ lim
δ→0

lim sup
ρ(X,Ψ)<δ

‖Cn(X)− Cn(Ψ)‖

≤ lim
δ→0

lim sup
ρ(X,Ψ)<δ

‖Cn(X)− C∞(X)‖

+ lim
δ→0

lim sup
ρ(X,Ψ)<δ

‖C∞(X)− C∞(Ψ)‖

+ lim
δ→0

lim sup
ρ(X,Ψ)<δ

‖C∞(Ψ)− Cn(Ψ)‖

→0

which is true by (D5).

Now we’re ready for a CLT.
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Theorem 3.4.4. If X is totally bounded under ρ, then (D1)-(D6) imply that ûn(X)

is uniformly tight as a random element in `∞(X), so

ûn(X) ; arg min
u∈Rp

 〈u,C∞(X)u〉 − 2〈u, Z∞(X)〉+ λ∞

p∑
j=1

 ujSignβj if βj 6= 0

|uj| if βj = 0




uniformly in X. Recall, Z∞(X) is the w-limit as in Theorem 3.3.1.

Proof. From Theorem 3.4.1, E(u) = oP (1). Also, 〈u,Cn(X)u〉 → 〈u,C∞(X)u〉 in

`∞(X) by (D5a), Zn(X) ; Z∞(X) in `∞(X) by Theorem 3.3.1, and λn/bn → λ∞ by

(D6). If follows that

V X
n (u) ; V X

∞ (u)

in `∞(X). To apply Theorem 1.6.1, we only need to prove ûX is uniformly tight, or

since X is ρ-totally bounded,

lim P

{
sup

ρ(X,Ψ)<δ

‖ûX − ûΨ‖ > ε

}
→ 0 (3.7)

for every ε > 0, as δ → 0.

To this end, notice for each ‖u‖, ‖w‖ ≤ 1 and X,Ψ ∈ X,

Vn(X;u)− Vn(X;w) + 2 max
{u,w}

|Vn(X; ·)− Vn(Ψ; ·)| > Vn(Ψ;u)− Vn(Ψ;w)

Then, set u = ûn(X) and w = ûn(Ψ). Pick n large enough that ΨTΨ � 0, so for
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every ε > 0 there is ε̃ s.t.

‖ûn(X)− ûn(Ψ)‖ > ε⇒Vn(Ψ; ûn(X))− Vn(Ψ; ûn(Ψ)) > ε̃

⇒2 sup
‖u‖≤1

|Vn(X;u)− Vn(Ψ;u)| > ε̃

Finally,

lim P

{
sup

ρ(X,Ψ)<δ

‖ûn(X)− ûn(Ψ)‖ > ε

}
≤ lim P

 sup
ρ(X,Ψ)<δ

‖u‖≤1

|Vn(X;u)− V (
nΨ;u)| > ε̃


3.7 then follows by Lemma 3.4.3
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4. STOCHASTIC BOUNDEDNESS WITH INCREASING NUMBER OF

REGRESSORS

When the number of regressors p is fixed as the number of data n grows, we can

wait until the design becomes sufficiently uncorrelated (unless there is some inherent

dependence in the designs). If, on the other hand, p is allowed to increase with n (as

will be the case throughout this section, and sometimes emphasized by the subscript

pn), correlation among the regressors (columns of X) becomes a bigger problem. M-

estimation as p→∞, even with nongaussian tails, has been studied in the 70’s and

80’s ([19, 27]).

No matter how fast p grows, solving for the LASSO solution is always a finite

dimensional problem. Yet, concerning asymptotics, finite dimensional tools neces-

sarily turn up lacking. We will think of β as a sequence of real numbers, and set

βn = (βj)j≤pn . The regularization term suggests we measure the accuracy of the

LASSO with ‖β̂n− βn‖1, which in turn suggests that xi be thought as an element of

the dual (`1)∗ = `∞. Then, Zn := b−1
n

∑n
i=1 xiξi will be a random process indexed by

the unit ball in `1, denoted by B1. Note, when we treat B1 as an index set, we will

use a seminorm other than ‖ · ‖1 that is tailored to fit with X.

4.1 Boundedness of Zn

Now, we state Proposition 4.3 from [1] in the `∞ case, using constants as in their

Example 4.1(1) (H(x) = x1/α):

Theorem 4.1.1. Suppose {Zni}i≤n is a triangular array of row-wise independent

`∞-valued random variables and {εi}i≥1 be a Rademacher sequence independent of

{Zni}i≤n. Assume the following
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(i)

lim
M→∞

sup
n

n∑
i=1

P{‖Zni‖∞ > M} = 0

(ii) There is a seminorm | · | on the pointset B1, and a probability measure µ on

the | · |-Borel sets satisfying

(a)

lim
ε→0

sup
‖u‖1≤1

∫ ε

0

(− lnµ(B|·|(u, t)))
1−1/αdt = 0

with sup
‖u‖1≤1

finite for ε =∞, and

(b) There are constants σ > 0, n0 > 0, and L1 ≥ 1 such that for all ‖u1‖ ≤ 1,

l ≥ L1, n ≥ n0, we have

n∑
i=1

P

{
sup
|u|≤1

|〈u, Zni〉| > σl−1/α

}
≤ l/3 (4.1)

Similar to (3.4), we address (ii) by defining the seminorm on `1 as

|u|α := lim
1

n

n∑
i=1

|〈u, xi〉|α

Then, we state a couple assumptions.

(P1) For some κ > 0,

d := sup
n

n∑
i=1

‖xi‖α+κ
∞
n

<∞

(P2) There is a probability measure µ on the | · |-Borel sets s.t.

lim
ε→0

sup
‖u‖1≤1

∫ ε

0

(− lnµ(B|·|(u; t)))1−1/αdt = 0

with sup
‖u‖≤1

finite for ε =∞.
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Then, we conclude that ‖Zn‖∞ is stochastically bounded:

Theorem 4.1.2. Assume (P1), (P2). Then, ‖b−1
n

∑n
i=1 xiξi‖∞ = Op(1).

Proof. Let Zni := b−1
n xiξi. According to Theorem 4.1.1, we only need the following

in addition to (P2):

(i)

sup
n

n∑
i=1

P{‖Zni‖∞ > M} = sup
n

n∑
i=1

P{|ξi| > Mbn/‖xi‖∞}

= sup
n

n∑
i=1

R−α
(
Mbn
‖xi‖∞

)
= sup

n
M−α

n∑
i=1

R−α
(

bn
‖xi‖∞

)
+ o(1)

= sup
n

M−α

n

n∑
i=1

‖xi‖α∞ + o(1)

by the Uniform Convergence Theorem 1.1.5 and Lemma 1.4.2. By (P1), the

last line goes to 0 as M →∞.

(ii) For constants σ = (4d)1/α, n0 ≥ 1, and l0 ≥ 1 s.t. for all ‖u‖1 ≤ 1, l > l0,
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n > n0, and ε > 0,

n∑
i=1

P{‖Zni‖∞ > σl−1/α} =
n∑
i=1

P

{
|ξi| >

σl−1/αbn
‖xi‖∞

}
=

n∑
i=1

R−α
(
σl−1/αbn
‖xi‖∞

)
=
(
σl−1/α

)−α n∑
i=1

R−α
(

bn
‖xi‖∞

)
+ o(1)

=
l

nσα

n∑
i=1

l · ‖xi‖α

σα
+ o(1)

≤ l/4 + o(1)

4.2 The Oracle

In the case that Rank X < p, it could be that Xβ = 0, in which case it

is not possible to learn about β from our model. To begin to absolve this is-

sue, define S := {j ≤ p : βj 6= 0} (which depends on n) and the “restricted set” as

U = {u ∈ Rp : ‖uSc‖1 ≤ 4‖u‖1}. Then, let us give some moduli of continuity, or com-

patibility conditions (so called for making different norms compatible, see [34]):

(P3) There is a constant ζ > 0 such that

inf
n

inf
u∈U

‖Xu‖
bn‖uS‖1

≥ ζ > 0 (4.2)

(P4) There is a constant η > 0 such that

sup
n

sup
u∈RS

‖XuS‖∞
bn‖uS‖1

≤ η
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This is all we need before we use arguments similar to [6] in the proof of Theorem

4.2.1. For now, to gain perspective, suppose an oracle told us the support S of β

beforehand. Then, there would be no reason to shrink the estimates, and we could

regress XS onto β with ordinary least squares as follows. Call

β̃ = (XT
SXS)−1XT

S Y

which is a random element in RS. Substitute Y = Xβ + ξ = XSβS + ξ,

β̃ =(XT
SXS)−1XT

S (XSβS + ξ)

=βS + (XT
SXS)−1XT

S ξ

Now, subtract βS and left-multply by CS := b−2
n (XT

SXS),

CS(β̃ − βS) =b−1
n (b−1

n XT
S ξ)

=b−1
n ZS (4.3)

From equation (4.3), we can get an upper bound for ‖β̃−βS‖1 by assuming (P3), and

a lower bound by assuming (P4). Let us start with the upper bound. Left-multiply

equation (4.3) by β̃ − βS,

〈β̃ − βS, CS(β̃ − βS)〉 = b−1
n 〈β̃ − βS, ZS〉
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Now, β̃ − βS ∈ R because β̃ has support in S, so (P3) implies

ζ2‖β̃ − βS‖2
1 ≤b−1

n ‖β̃ − βS‖1‖ZS‖∞

ζ2‖β̃ − βS‖1 ≤b−1
n ‖ZS‖∞ (4.4)

Next, the lower bound will follow from (P4). Again, from equation (4.3),

b−1
n ‖ZS‖∞ = ‖CS(β̃ − βS)‖∞

≤ η‖β̃ − βS‖1 (4.5)

Thus, with the addition of condition (P4), the bound in equation (4.4) is opti-

mal up to a constant factor. Supposing condition (F1) for the design XS, we have

‖ZS‖∞ = Op(1), and so these bounds imply that ‖β̃ − β‖1 = Op(b
−1
n ). Similar to

Theorem 6.2 of [6] and Theorem 3 of [38], the next theorem shows that the LASSO

β̂ performs nearly as well as this ”oracle” rate, which is the rate from using OLS

regression on the support of β.

Theorem 4.2.1. Suppose λn/bn → ∞ in addition to (P1)-(P3). It follows that

‖β̂n − β‖1 = Op(λn/b
2
n).

Proof. Define S := {j ≤ p : βj 6= 0} with |S| = s. Note that since λn/bn → ∞,

Theorem 4.1.2 implies that

‖XT ξ‖∞ = bn‖Zn‖∞ = Op(bn) = op(λn) (4.6)

Consider u ∈ `p1 (e.g. u = β̂n − β) satisfying the Basic Inequality

‖Xu‖2 − 2〈Xu, ξ〉+ λn‖u+ β‖1 ≤ λn‖β‖1 (4.7-BI)
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We will use the hypotheses to get an upper bound on u. Consider the case that

‖XT ξ‖∞ ≤ λn/4, which holds with high probability by (4.6). Use Hölder’s inequality

on equation (4.7-BI) to get

‖Xu‖2 − 2

(
λn
4

)
‖u‖1 + λn‖u+ β‖1 ≤ λn‖β‖1

Now, separate the Sc terms and the S terms, use reverse triangle inequality, then

add λn‖uS‖1/2 to both sides

‖Xu‖2 − λn
2
‖uSc‖1 + λn‖uSc‖1 ≤

λn
2
‖uS‖1 + λn(‖β‖1 − ‖uS + β‖1)

‖Xu‖2 +
λn
2
‖uSc‖1 ≤

3λn
2
‖uS‖1

‖Xu‖2 +
λn
2
‖u‖1 ≤ 2λn‖uS‖1

This implies u belongs to the restricted set U = {u ∈ Rp : ‖uSc‖1 ≤ 4‖u‖1}. Hence,

we can continue with

‖Xu‖2 +
λn
2
‖u‖1 ≤ 2λn

(
‖Xu‖
ζbn

)
which immediately gives ‖Xu‖ ≤ 2b−1

n λn/ζ. Turn the inequality on itself to rid u

from the right hand side,

‖Xu‖2 +
λn
2
‖u‖1 ≤

4λ2
n

ζ2b2
n

Thus, we have a bound for both the prediction error ‖Xu‖ and the estimation error

‖u‖1 of those u that satisfy (4.7-BI), including u = β̂n − β.
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5. INCREASING NUMBER OF REGRESSORS

Section 4 got close to the ”exact” rate of convergence for the LASSO estimator

when p is allowed to increase with n. Nevertheless, even if we set the noise ξ = 0,

and λn > 0, LASSO will incur some amount of shrinkage and fail to exactly recover

β 6= 0 (see [4]). In the same vein, any deterministic choice for λn will not compare

well to the cross term. This seems to result in either negligible shrinkage or too

much bias. Luckily, the square root LASSO, written
√

LASSO, introduced in [4],

automatically handles the penalty level λn and exactly recovers β when ξ = 0. We

define it by

β̂SQ := arg min
u∈Rp

[‖Y −Xu‖+ λn‖u‖1] (5.1)

The most striking benefit to omitting the square is that if we scale the data (X, Y )

and the penalty level λn by a constant, then β̂SQ stays fixed. This proportionality

suggests that λn may be more easily decided for
√

LASSO than for LASSO, as

mentioned before. Interestingly, [4] found that
√

LASSO performs well even with

heteroscedastic errors. Though we’ve only allowed i.i.d. errors, heteroscedasticity

appears to be a natural pursuit due to our use of triangular arrays. Additionally,

[4] found a bound for β̂SQ − β in the prediction norm for an infinite variance case

(when ξi is distributed like the t-distribution with two degrees of freedom). For this

section, for computation’s sake, let us assume ξi are symmetric Pareto distributed

P{±ξi > t} = t−α (when t ≥ 1) and bn = n1/α.

The first challenge in finding an exact rate of convergence is to find conditions

on X (perhaps sparse conditions) that subdue the crazy. We may even think of a
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different kind of sparsity wherein a vector is sparse if most of its coordinates are only

very small (as compared to exactly zero)[38]. Then, of course, we must modify our

restricted eigenvalues to the new kind of sparsity.

Moreover, we readily accept condition (P3) to handle the case that Xβ ≈ 0.

Also, we would like to use Theorem 3.1.1 to prove convergence of the cross term.

Verily, conditions (i),(ii) of Theorem 3.1.1 are necessary and contained in condition

(C1) in subsection 5.2. Next, (P2) implies condition (iii), and Theorem 2.3.2 handles

convergence of finite dimensional distributions. So, assume that

n∑
i=1

Zni = n−1/α

n∑
i=1

xiξi ; Z∞

Finally, we normalize the covariates to n−1/α‖xi‖α = 1 for each i ≤ n. Alterna-

tively we could use penalty loadings (as in [4]), or weights, inside the `1 term. We

suggest considering λj =
(

1
n

∑n
i=1 ‖xi‖α∞

)1/α
, or perhaps functions thereof, since we

are expecting the objective Vn(u) to converge, in preparation for Theorem 1.6.1.

5.1 Reformulation of
√

LASSO

Write the
√

LASSO objective in terms of a local `1 parameter and center at 0

just as in section 1. This entails substituting u + β for u in the objective of (1.6)

then subtracting

‖X(0 + β)− Y ‖+ ‖(0 + β)‖1 =‖Xu− Y ‖+ ‖β‖1

=‖ξ‖+ ‖β‖1
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Thus, the objective that n1/α(β̂SQ − β) minimizes becomes

‖X(n−1/αu+ β)− Y ‖ − ‖ξ‖+ ‖(n−1/αu+ β)‖1 − ‖β‖1

=‖n−1/αXu− ξ‖ − ‖ξ‖+

p∑
j=1

λj(|n−1/αuj + β| − |β|) (5.2)

Reformulating |n−1/αuj +β|− |β| works the same as in the logic succeeding equation

(1.6). But, with the square root, ‖ξ‖ doesn’t cancel right away. We can use the

“conjugate trick” as in

‖n−1/αXu− ξ‖ − ‖ξ‖ =
‖n−1/αXu− ξ‖2 − ‖ξ‖2

‖n−1/αXu− ξ‖+ ‖ξ‖

=
n−2/α‖Xu‖2 − 2n−1/α〈u,XT ξ〉
‖n−1/αXu− ξ‖+ ‖ξ‖

Then, we will assume that n−2/α‖Xu‖2 converges uniformly to a quadratic form

C∞(u). If we further scale the parameter by substituting n−1/αu for u, the ξ’s in the

denominator of the last display overtake n−1/αXu. In other words,

2|ξ‖
‖n−1/αXu− ξ‖+ ‖ξ‖

p→ 1 (5.3)

Thus, the objective for
√

LASSO. Finally, multiply the objective (5.2) through by

2‖ξ‖. It follows that the only effective difference between LASSO and
√

LASSO is

that λ is multiplied by 2‖ξ‖,

β̂SQ − β ≈ arg min 〈u,Cnu〉 − 2〈u, Zn〉+ 2λn‖ξ‖ · ‖u+ β‖1

Usually, the penalty is assumed to be of a larger order than Zn (as was the case in
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section 4). To find the exact rate of convergence, though, requires λ to be of the

same order as Zn. Ostensibly, the randomization of λ will facilitate this goal and

manage the balance between the noise and the bias introduced by the regularization

term.

5.2 Controlling the Cross Term

Since u is chosen after ξ is realized, u may align somewhat with XT ξ when min-

imizing the objective. So, we believe that Cauchy-Schwarz |〈Xu, ξ〉| ≤ ‖u‖1‖XT ξ‖∞

is not too loose.

Similar to section 4, we still want the penalization to be heavy enough to allow us

to focus on a “restricted set.” Recall how we normalized ‖Xj‖α = n1/α. We should

also divide through by ‖ξ‖ (normalize ‖ξ‖ = 1). So, we are compelled to analyze

the distributions of ξ/‖ξ‖ as random elements of Sp−1. Since ξi are i.i.d., these

distributions will be symmetric and we might as well analyze the order statistics

ξ(1) ≥ ξ(2) ≥ · · · ≥ ξ(n). Interestingly, the Pareto distribution is characterized by

the fact that if ξ1, . . . , ξn are Pareto, then ξ(1)/ξ(N), . . . , ξ(N−1)/ξ(N) are again Pareto

distributed and independent of ξ(N). Of course, this observation suggests normalizing

to ‖ξ‖∞ = 1. On the other hand, ‖ξ‖ appears in the effectively random
√

LASSO

penalty, so normalizing to ‖ξ‖ = 1 makes sense, too. We’ve found the former to be

useful for intuitively handling ξ, and the latter to be useful for formulating results.

Define

Qn(t) :=P

{
n−1/α‖XT ξ‖∞ > t · ‖ξ‖

n1/α

}
=P

{∣∣∣∣〈Xj,
ξ

‖ξ‖

〉∣∣∣∣ > t for some j ≤ pn

}

We seek conditions on X that promise Qn(λ∞)→ 0 for some constant λ∞. Now, we
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(a) The Rn sphere (n = 2) with
regions {v ∈ S1 : |〈Xj , v〉| > t}
colored for j = 0, 1.

(b) The Rn sphere (n=3) partitioned
according to which j maximizes
|〈Xj , v〉|/‖Xj‖α.

Figure 5.1: ξ/‖ξ‖ as a random map on the Rn sphere.

can think of ξ/‖ξ‖ as a random element of the sphere in Rn.

Figure 5.1a illustrates a way of calculating Qn(t). Given a cutoff level t, each Xj

will define a region {v : |〈v,Xj〉| > t} of the Rn sphere. The probability Qn(t) is the

probability that ξ/‖ξ‖ belongs to the union of these regions. Analyzing the behavior
Thx Parth Sarin and Cinema4D

of Qn(t) is crucial for us to utilize the
√

LASSO.

Figure 5.1b is related to Figure 5.1a. In it, each Xj also determines a region, but

instead of comparing to a parameter t, it compares to all the other Xj’s. Accordingly,

define

Pj := {v ∈ Rn : ‖v‖ = 1, |〈Xj, v〉| ≥ |〈Xk, v〉| for all k ≤ pn}

which will partition the sphere (almost everywhere). It gives an idea of who the

key players are among the Xj’s. The bigger (Lebesgue measure) regions tend to
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correspond to Xj’s that are more important than those corresponding to smaller

regions. Also, since we normalize ‖Xj‖α = n1/α and ‖Xj‖α ≈ ‖Xj‖ when Xj has

a few coordinates much larger than the rest, the regions concentrating near an axis

tend to correspond to more important Xj’s. If Xj has many moderate coordinates

and none extreme, then 〈Xj, ξ/‖ξ‖〉 tends to be only moderate. All the action

seems to happen near the axes. Therefore, we guess that approximating ξ/‖ξ‖ by n

equiprobable point masses at ei will maintain sufficient conditions.

Qn(t) ≈ 1

n
#{i ≤ n : |xij| > t for some j ≤ p}

=
1

n
#{i ≤ n : ‖xi‖∞ > t}

This approximation leads to

(C1) For every ε, there is an M ≥ 1 s.t.

sup
n

1

n

n∑
i=M

‖xi‖α∞ < ε

Another consideration is the growth of p. Authors such as Huber [19] and Portnoy

[27, 28] have assumed p = o(n1/2) in the case of finite variance errors. We think

p = o(n1/α) is appropriate for errors with α tails. Rather,
√

LASSO should allow p

to increase even faster, as long as the cardinality of the support of β is o(n1/α).

Conjecture 5.2.1. Assume (P1)-(P3), (C1) and p = o(n1/α). Let λn → λ∞. Then,

the following is sufficient for β̂SQ − β = OP (n−1/α):

1

n
#{i ≤ n : ‖xi‖∞ > λ∞} → 0
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5.3 Subregressions

For tightness, we are looking to characterize compact sets (complete and totally

bounded). In normed sequence spaces, relatively compact sets are those which are

bounded and have uniformly small tails in norm. In `1, this amounts to a finite enve-

lope. That is, each element v ∈ `1 determines a compact set {u : |uj| ≤ |vj| for all j},

and every compact set in `1 is a subset of such an example.

ûn will be tight if for every ε, there is a compact K ⊂ `1 such that P{ûn 6∈

K} < ε. Since we are presuming at this stage that ûn is stochastically bounded,

we can focus on proving ûn also has small tails. The best idea we have found is to

perform a subregression, or a regression where we leave out finitely many coordinates

j = 1, . . . ,M and subtract off the projections of XM+1, . . . Xp onto span{X1, . . . , Xp}.

Then, if the norm of this estimate is small with high probability, we will have a

compact set. It’s beautiful. Unfortunately, I just attempted to cut this section with

CTRL+X on a computer that has cleverly substituted the CTRL button for a FN

button (leaving just ‘x’ and no undo).
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6. CONCLUSIONS

The LASSO estimator is a very hot topic due to its quick computation time

and its effectiveness for sparse data. Much has been written about LASSO under

gaussian errors, or even errors with finite variance. Yet, little is known in the case

that the errors have infinite variance.

In section 2, we explored the asymptotic behavior of LASSO in a basic multi-

variate setup with i.i.d. regularly varying errors. Our methods seem to generalize

to nonidentical, infinitely divisible error distributions, but notation would of course

bear the burden.

Section 3 extended that study to consider infinitely many data matrices at once.

We found conditions that promised the same fidelity of estimates for each data ma-

trix, simultaneously. This could potentially be useful for error-in-variables models,

as long as noisy data matrices tend to fall in a class satisfying our conditions. Also,

our result feels like a stability theorem of machine learning. That is, if we perturb

the data matrix some, we can still expect LASSO to perform well.

A very interesting setup comes when we allow the number of variables to increase

as we gather more data. Huber and Portnoy began studying such regressions, in-

cluding asymptotics, in [19, 27, 28]. Today, asymptotics seem to be understudied,

compared to inequalities like error bounds. We found some success with LASSO

when we categorized the variables as OLD or NEW, then subtracted from NEW the

projections of NEW onto OLD (representing the explanatory data not yet used in

OLD), and performed another regression (which we called a subregression) on the

modified NEW set.
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[33] Ryan J Tibshirani, Jonathan Taylor, et al. Degrees of freedom in lasso problems.

The Annals of Statistics, 40(2):1198–1232, 2012.

[34] Sara van de Geer. The deterministic lasso. Seminar für Statistik, Eidgenössische
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