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ABSTRACT

The increasing transistor density due to Moore’s law scaling continues to drive the

improvement in processor core performance with each process generation. The addi-

tional transistors are used to widen the pipeline, increase the size of the out-of-order

instruction scheduling window, register files, queues and other pipeline data struc-

tures to extract high levels of instruction level parallelism and improve upon single-

threaded performance. Such dynamically scheduled superscalar processor cores spec-

ulatively fetch and execute several instructions far ahead in a program, along the

program path predicted by its branch predictors. During branch mispredictions, the

architectural state of high performance processor cores can be restored at cost of high

latency penalties, but the speculative memory requests sent by data memory access

instructions on the mispredicted paths cannot be revoked. Such memory requests

alter the data arrangement across memory hierarchy and result in wasted memory

transactions, bandwidth and energy consumption. Even with low branch mispre-

diction rates, these processor cores spend significant time on mispredicted program

paths. In this thesis, we propose a probability based memory access controller to

curb the data memory requests sent along mispredicted paths and achieve energy

and memory bandwidth savings with minimum impact on performance. It computes

path probability of instructions and throttles memory access instructions with low

probability of execution. A deterministic or dynamically varying probability value is

used as a threshold to control speculative memory requests sent to the memory hi-

erarchy. The proposed design with a dynamic threshold reduces up to 51% of wrong

path memory accesses and maximum of 31% of wrong path execution while achiev-

ing power savings up to 9.5% and maximum of 6.3% improvement in IPC/Watt in
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a single core processor system.
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1. INTRODUCTION

High performance dynamically-scheduled superscalar processor cores have deep

pipelines, aggressive branch predictors, large instruction windows and wide issues

to exploit high levels of instruction level parallelism. The number of transistors

available per unit area continues to increase with each process generation due to

CMOS scaling. In recent years, the additional transistors are dedicated to improve

upon single-threaded performance of processor cores and integrate multiple such

cores in a single die to make powerful multicore processors. In every generation,

the single-threaded performance of the processor core is improved by widening the

pipeline and increasing the size of the out-of-order instruction scheduling window,

register files, queues and other pipeline data structures to extract more parallelism.

Dynamically-scheduled superscalar processor cores achieve high performance by

speculative execution. They speculatively fetch and execute multiple instructions

in every cycle along the program path predicted by their branch predictors. The

average accuracy of branch predictors used in such processor cores is generally high.

However, a deeply speculating core, even with low branch misprediction rates, can a

spend significant number of cycles in fetching and executing instructions along the

mispredicted program path [17], also known as the wrong path. They fetch, execute

and issue memory requests along the wrong path until the mispredicted branch is

resolved.

Upon misprediction, the architectural state of the processor can be recovered,

but the data arrangement affected along the memory hierarchy cannot be restored.

The impact of wrong-path references is significant in processors with longer memory

latencies and larger instruction windows [17]. They impact performance positively by
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indirect prefetching or negatively by causing pollution in caches [2][18][5][17]. Wrong

path memory references result in increased memory transactions [21]. When multiple

programs are run in multiple cores, the demand for memory increases in multicore

processor systems. In such cases, the memory bandwidth and energy consumption

by wrong path memory references from each core are significant in shared memory

resources such as last level cache and main memory. The wrong path instructions

are completely flushed from the pipeline following mispredictions. The work done

by the processor core in fetching and executing wrong path instructions is wasted.

Hence, wrong path instructions result in unnecessary power dissipation and energy

consumption across various pipeline resources and the memory hierarchy.

Prior works [2][18][5][17][16] studied the effects of wrong path memory accesses on

cache behaviour and performance of single core out-of-order superscalar processors.

They provided varied solutions to mitigate cache pollution and exploit the benefits

of indirect prefetching caused by wrong path memory references [19][15][20]. Earlier

works [13][11][1][3] proposed designs for improving performance per watt by gating

front end of the processor core when it is more likely to be on the wrong path. In our

thesis, we propose a design to achieve energy and memory bandwidth savings with

minimum impact on performance by controlling speculative data memory requests

sent to the memory hierarchy.

We implement a probability-based throttling mechanism to curb the speculative

data memory requests that are more likely to be on a mispredicted path. We use

the composite confidence estimator proposed by Jimenez [9] to compute confidence

of branch predictions. The ideology proposed by Malik et al [12] is used to compute

path probability of instructions from branch confidence values. The path proba-

bility of an instruction depends on number of outstanding branches in the pipeline

older than it. It is a dynamic value which increases as branches older than the in-
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struction resolve with correct predictions. In our design, we track this continuous

change in probability for all instructions in the pipeline. Using a deterministic or

dynamically varying probability value as threshold, we classify instructions as low

and high confidence. We leverage an observation that low confidence instructions are

more probable to be mispredicted than high confidence instructions. The proposed

throttling mechanism stalls low confidence speculative data memory instructions in

Load-Store Queue (LSQ) until they become those of high confidence due to correct

predictions. In the event of a misprediction, the stalled instructions are flushed from

LSQ and thus prevent wrong path memory requests from being sent to the memory

hierarchy. Reducing wrong path memory requests reduces the number of cache and

memory accesses. This decreases energy consumption and power dissipation along

memory hierarchy.

The rest of the thesis is divided into following sections. In the motivation sec-

tion, we present the motivation behind our work. In the related works section, we

discuss about works related to effects of memory accesses and execution in the wrong

path by various authors in the past. We also explain the need and use of branch

confidence estimation and path confidence in the background section. In the design

section, we elaborate the design of our probability based memory access throttling

mechanism. We explain the methodology followed to evaluate our design in the eval-

uation section. The results and analysis on performance, power, performance per

watt, prefetching/pollution effects, wrong path memory accesses and wrong path

execution of the proposed design are also presented here. In the last section, we

conclude with our findings and observations.
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2. MOTIVATION

Out-of-order superscalar processor cores fetch and execute instructions whose

data dependencies are satisfied even before their control dependencies are resolved.

They exploit instruction level parallelism by speculative execution to achieve high

performance. The aggressive out-of-order processor cores have deep pipelines on the

order of 15-19 stages. The branch instructions are executed at execute stage which

is 13-15 cycles after fetch. Control dependent instructions cannot be committed un-

til the control instruction is executed. In order to achieve higher performance, the

instructions are speculatively fetched and executed ahead of conditional branches

by predicting their outcomes. Correct predictions benefit the processor performance

by eliminating the delay that would have been incurred in fetching and executing

control dependant instructions due to late branch resolutions. On the other hand,

the misprediction penalties can be costly and negatively impact the processor per-

formance and power dissipation. In general, these processors have high accuracy in

their predictions.

2.1 Speculative Execution

Conditional branches alter the control flow of a program. They occur regularly

in the majority of program codes. Figure 2.1 shows the percentage of instructions

that are branches in SPEC2006 benchmarks. On an average, every 7th instruction

fetched is a conditional branch instruction. The high performance processor cores

have aggressive branch predictors to predict outcome of multiple such branches. The

large instruction window allows them to speculatively fetch and execute instructions

beyond them. As branches resolve with correct predictions, they speculate deeply

along the predicted program path. They have large number of instructions that are
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Figure 2.1: Average occurrence of branches every 100 instructions by baseline

processor running SPEC2006 benchmarks.

in-flight and speculatively executed in the pipeline.

Consider a baseline processor; an 8-wide processor, with a 15-stage deep pipeline,

256-entry instruction window, 32K L1 I-Cache, 32K L1 D-Cache, 256K Unified L2

Cache, 2MB Unified L3 Cache and a 8K tournament branch predictor. Figure 2.2

shows the number of unresolved branches in flight together with the branch mispre-

diction rate for applications in SPEC2006 suite. The figure shows that the base-

line processor has an average misprediction rate of 2.8% and that, on average, nine

branches are speculatively in flight at any given time.

The baseline processor speculates and fetches instructions ahead of nine condi-

tional branches on an average relative to its point of recent commit. It is specula-

tively executing at least nine conditional branches and respective control dependant

instructions in the pipeline. In the event of any misprediction, the results of specula-
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Figure 2.2: Average number of unresolved branches and average conditional branch

misprediction rate in baseline processor for SPEC2006 benchmarks.

tively executed instructions are discarded and flushed from the pipeline. Significant

amount of work is wasted in fetching and executing instructions speculatively along

the mispredicted path, also known as wrong path.

Figure 2.3 shows the percentage of fetched and executed instructions that are on

the wrong path in the baseline processor running SPEC2006 benchmarks. A high

performance processor core, even with low misprediction rates (2.8%), can fetch

and execute significant number of instructions in the wrong path. In the baseline

processor, on an average, 31.6% of all fetched instructions and 18.6% of all executed

instructions are on the wrong path. The wrong path instructions are eventually

flushed from the pipeline after the misprediction is known. Hence, 31.6% of the

work done in fetching and 18.6% of work done in executing instructions is wasted

work. The wrong path instructions cause unnecessary power dissipation and energy

consumption in the processor core. 8% of all executed instructions are wrong path
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Figure 2.3: Percentage of instructions fetched and executed (memory and

non-memory) on wrong path in baseline processor for SPEC 2006 benchmarks.

data memory access instructions.

Figure 2.4: Percentage of data memory access on wrong path in baseline processor

for SPEC2006 benchmarks.
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Figure 2.4 shows the percentage of data memory requests that are on the wrong

path in the baseline processor. 23% of all data memory accesses are wrong path data

memory accesses. The additional memory accesses caused by wrong path data mem-

ory instructions change the data arrangement and increase contention and energy

consumption along the memory hierarchy.

2.2 Wrong Path Execution

The speculative program path taken by processor core from the point of mispre-

diction is referred to as the mispredicted or wrong path, and that of the actual path

can be considered as the correct or right path. The architectural state of the proces-

sor can be recovered following a misprediction, but the memory requests sent by the

data memory access instructions in the mispredicted path cannot be revoked. They

affect the arrangement of data in the memory hierarchy and also increase memory

transactions. Wrong path memory references can either result in prefetching of data

for correct path instructions and increase the performance, or pollute the cache and

reduce the performance. Wrong path memory references will result in prefecthing if

the cache lines allocated are referenced by memory access instructions on the correct

path before they are evicted. Otherwise, they cause cache pollution, unnecessary

evictions, memory transactions and bandwidth usage.

There are program scenarios where wrong path execution can result in prefetching

for correct path execution [17]. A mispredicted conditional branch inside a loop

during an iteration can prefetch data for the correct path execution in the same

iteration. Two different loops working on the same data structure can prefetch data

for each other. Misprediction of hammock branch can prefetch data for instructions

on the correct path if both paths of the hammock need the same data. If a portion

of the code is common for the mispredicted and correct path, then the wrong path

8



Figure 2.5: Program flow snippet.

memory references prefetch data for later correct path execution. If the correct path

execution has no code or data structure in common with the wrong path execution,

the wrong path memory references result in cache pollution and increase memory

transactions.

Figure 2.5 shows snippet of a program code with different paths that can be

taken by a processor. In the figure, the path p0 → p2 → (p5 → p6)i → p7 → p9

prefetches data for C[i] in path p0 → (p1 → p3 → p8)i → p9 and vice versa. If the

branch instruction in Block0 is mispredicted, the loads for C[i] are prefetched but
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the loads for D[i] or B[i] can cause cache pollution depending upon the mispredicted

path. The paths p0 → (p1 → p3 → p8)i → p9 and p0 → (p2 → p4 → p8)i → p9

execute common code in Block4 and Block0 every iteration, hence either of the path

prefetches data A[i] or F [i] for the other. The loads for B[i] or D[i] cause cache

pollution based on the load instructions on the mispredicted path. From Figure 2.5,

we can say that memory references to A[i], C[i] and F [i] are more likely to result in

prefetching while B[i], D[i] and E[i] are more likely to cause cache pollution during

mispredictions.

Eliminating the wrong path memory accesses can bring significant energy savings

by reducing data accesses in the memory hierarchy and execution of wrong path data

dependent instructions. This can impact performance in one of the two ways. It can

either improve processor performance by reducing cache pollution, or decrease the

performance by taking away the indirect data prefetching for correct path instruc-

tions. We have observed from the code snippet in Figure 2.5 that, not all wrong path

memory accesses results in prefetching. We believe that the power savings achieved

by reduction in wrong path memory accesses are more significant and deterministic

than the indirect prefetching. Our goal is to improve the performance per watt of

the processor by reducing the wrong path memory accesses.
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3. RELATED WORK

Several works in the past studied the effects of wrong path instructions on cache

behavior and performance of out-of-order processor cores. Varied solutions were

provided to reduce cache pollution and exploit benefits of indirect prefetching caused

by wrong path memory references. Fetch gating mechanisms to reduce the number of

instructions fetched and executed in the wrong path for achieving energy reduction

and power savings were also proposed in the past. The branch confidence estimators

were commonly used in these techniques to estimate the likelihood of the processor

being on the wrong path.

3.1 Wrong Path Pollution And Prefetching

Pierce and Mudge [18] did one of the earliest studies on the effects of speculative

execution on cache performance. Combs et al [5] also studied the effects of wrong-

path memory references on cache behaviour and processor performance. They showed

that wrong path memory references can positively impact performance by prefetching

data for correct path instructions and can also negatively impact performance by

causing pollution in caches. Bahar and Albera [2] proposed a branch confidence

predictor based filtering to reduce cache pollution caused by wrong path memory

references. The state of prediction counters in the McFarling [14] hybrid branch

predictor tables is used to determine the confidence of branch predictions. They

label the branch predictions as high confidence or low confidence based on the state of

counters predicting the branch outcome. If the number of unresolved low confidence

branches in the pipeline exceeds a certain pre-set threshold, the processor is estimated

to be on the wrong path. The cache refills of probable wrong path memory accesses

from second level cache are placed in a separate fully-associative 16-entry buffer

11



known as a confidence buffer instead of the first level cache. The confidence buffer

is accessed in parallel with L1 cache whenever a memory request is serviced. It

reduces pollution caused by wrong path memory instructions in caches and provides

prefetching benefit, if any, for the later memory references.

Mutlu et al. [17] analyzed performance impact of wrong path memory references

in uniprocessor systems with large instruction windows and longer memory latencies.

They studied the effects of indirect prefetching and pollution caused by wrong path

memory references. The importance of modelling wrong path memory references in

out-of-order processor simulations was emphasized. Different code structures that

cause prefetching by wrong path memory references were examined. They found that

the pollution caused by wrong path references in L2 cache has a significant negative

impact on performance than that of L1 cache. From this observation, Mutlu et

al. proposed a technique [15] to filter useless speculative memory references to the

L2 cache and reduce pollution. They made an observation that if a speculatively

fetched cache block in the L1 cache is not used, then it is more likely that the block

will not be used before it is evicted from the L2 cache. The L1 cache is used as

filter to predict usefulness of speculative memory references. Two policies to control

the writes of speculatively fetched blocks to L2 cache and reduce the L2 pollution

were proposed. One of the policies is to not write these fetched blocks into L2

cache, while the other policy writes them into LRU positions in the L2 cache. In

both the policies, speculatively fetched cache blocks unreferenced by non-speculative

memory instructions are not written into L2 cache during L1 cache evictions. IPC

improvement was observed in a few of the benchmarks by reduction of L2 cache

pollution caused by wrong path memory references.

Sendag et al. [21] studied effects of wrong path memory references in shared mem-

ory multiprocessor (SMP) systems. They noticed significant number of unnecessary

12



cache line state transitions, replacements, writebacks, invalidations, coherence traffic

and resource contention due to memory accesses along wrong path. A cache filtering

and wrong path aware cache replacement policies was proposed to reduce wrong path

memory accesses. They make use of the observation [16] that branch mispredictions

are usually resolved before most of the wrong path L1 misses complete. By using

speculative tags, misses by speculative memory accesses were tracked and identified

in MSHR entries. The cache blocks brought by them are marked as wrong path

blocks after the branch misprediction is known. They filter and reduce pollution in

the L2 cache by not writing evictions of wrong path blocks unreferenced by correct

path instructions from the L1 cache. Wrong path blocks were further filtered from

being brought into L2 cache by cancelling the miss requests of wrong path memory

accesses after the misprediction was known. In wrong path aware replacement pol-

icy, the blocks marked as wrong path are evicted first on an LRU basis. When the

blocks marked as wrong path are referenced by correct path instructions, they get

marked as correct path instructions. The evicted wrong path blocks are placed in

LRU position in the higher level cache. Their cache filtering and replacement policy

showed performance improvement in a few of the benchmarks in the SMP systems.

3.2 Wrong Path Fetch Gating

Manne et al. [13] proposed fetch gating mechanism based on a confidence esti-

mator to save power/energy by reducing the number of extra executed instructions

along the wrong path. The branches with low confidence were more likely to be mis-

predicted than those with high confidence. They engage gating of fetch unit of the

pipeline when the number of unresolved low confidence branches exceeds a thresh-

old value. The gating is disengaged when the number of unresolved low confidence

branches are less than or equal to the threshold. The pipeline gating technique was
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evaluated with different confidence estimators. Although the gating removes extra

work done by the wrong path instructions, it introduces performance loss.

Lee et al [11] proposed a performance aware fetch gating mechanism. The gat-

ing mechanism takes into account the possible prefetching benefits of wrong path

instructions. They introduced a wrong path usefulness predictor (WPUP) to predict

if mispredicted branches lead to useful prefetches. They proposed two schemes at

different granularities to predict the usefulness of wrong path memory references.

A branch PC based WPUP, a fine grained mechanism, predicts the usefulness of

mispredicted branch. It uses a set associative cache like structure to store PCs of

mispredicted branches causing prefetches as tags. The WPUP cache doesn’t store

any data. A phase based WPUP, a coarse grained mechanism, predicts usefulness

of wrong path memory references during different program phases. L2 MSHRs are

used to detect the usefulness of mispredicted branches and wrong path memory ref-

erences. The branch PC and branch ID of recently fetched branch are stored along

with every load/store memory request missing in L2 in the MSHRs. After the branch

misprediction is known, the ID of the mispredicted branch is sent to L2 MSHRs. All

the MSHRs entries with the same or later ID as the mispredicted branch are marked

as wrong path. If an outstanding wrong path MSHR entry is hit by later memory

requests to the same cache line, the mispredicted branch associated with the memory

request is identified as useful. In branch based WPUP, the branch PC in the MSHR

entry is stored in WPUP cache upon wrong path MSHR entry hit. While in phase

based WPUP, the wrong path usefulness counter (WPUC) is incremented. In the

WPUP mechanism, a memory request can be successfully identified as a wrong path

request if it’s not fully serviced when the misprediction is resolved. The usefulness

of this request can be detected if the correct path instructions send memory requests

to the same cache line before the request is serviced.
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Using WPUP and a number of in-flight unresolved branches information, a fetch

gating mechanism to achieve power savings with minimum impact on IPC is mod-

elled. If the number of unresolved branches in the processor pipeline is larger than a

certain threshold, then they enable fetch gating. This threshold is set based on the

branch prediction accuracy in a given time interval. The threshold is high when the

branch prediction accuracy is high. The threshold is low when the branch prediction

accuracy is low. In branch based WPUP, the fetch unit tracks the PC of the latest

branch in a register; if it is present in the WPUP cache, then the gating decision is

discarded. In phase based WPUP, if the value in WPUC exceeds a certain thresh-

old, then the gating decision is discarded. The WPUC counter is reset every 100K

cycles in order to detect the phase behaviour of wrong path usefulness. When the

number of unresolved branches in the pipeline is less than the threshold, the WPUP

mechanism disables gating to fetch useful wrong path instructions.

Aragon et al. [1] proposed a power aware branch confidence based selective

throttling of mis-speculated instructions to achieve energy reductions. They classify

branches based on predictions as very-high confidence (VHC), high confidence (HC),

low confidence (LC) and very-low confidence (VLC) branches. The fetch and decode

bandwidth of the pipeline is reduced to half, if a VLC branch is fetched, and further

reduced to quarter. The units are stalled if more VLC and LC branches are fetched

following the VLC branch. They avoid selection of instructions in the pipeline wakeup

logic that are control dependant on low confidence branches. They aggressively

throttle instructions following VLC branches and less aggressively so on instructions

that follow LC branches.

Malik et al. [12] proposed a path confidence based fetch gating mechanism to

reduce fetch and execution of wrong path instructions in the pipeline. The previ-

ous techniques use the number of unresolved branches or low confidence outstanding
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branches in the pipeline as a rough measure for probability of processor is on the

correct path. They do not consider branch misprediction rates. The authors pro-

pose a more accurate method for measuring the likelihood of the processor fetching

instructions on the correct path, also known as path confidence. The branch confi-

dence estimator associates every branch prediction with a confidence value. On a per

confidence value basis, the number of branch mispredictions in a given time inter-

val are counted. The misprediction rates are tracked for the whole range of branch

confidence values and then used to compute misprediction probabilities per branch

confidence value. The path confidence is computed as a product of misprediction

probabilities of all unresolved branches in the pipeline. They use a deterministic

path confidence value as a threshold to control gating. The fetch gating is engaged

when the path confidence of the processor goes below the threshold value. The

probability based path confidence estimate is more accurate than a counter based

estimate. Hence, the fetch gating showed better results.

The above mentioned gating mechanisms throttle the fetch and execution of all

low confidence instructions. A deeply speculating core with a high accuracy branch

predictor can spend significant amounts of time in fetching low confidence instruc-

tions. These low confidence instructions eventually become those of high confidence

when branches in flight resolve with correct predictions. The fetch gating mecha-

nisms prevent wrong path memory accesses in the event of a misprediction, but they

cause performance losses in the processor due to reduced speculative execution of

instructions. In our approach, the wrong path memory accesses are reduced by only

throttling low confidence memory access instructions instead of all low confidence

instructions. We allow speculative fetching and execution of low confidence data

independant instructions. Thus, we can reduce wrong path memory accesses with

lesser impact on the performance than the fetch gating mechanisms.
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4. BACKGROUND

The architectural designs focussed on reducing wrong path execution must dis-

tinguish wrong path instructions from the dynamic stream of fetched instructions.

Identifying wrong path instructions in an out-of-order processor is not straightfor-

ward. We cannot tell with absolute certainty if an instruction is on the correct or

wrong path until all the branch predictions older than the instruction are resolved.

However, we can tell if an instruction is on the correct or wrong path with a probabil-

ity based on the information about outstanding branches in the pipeline. Malik et al.

[12] used a path confidence predictor to estimate the probability that the processor

is on the correct path, also known as path confidence. Conventionally, the number

of unresolved, low-confidence branches is used as an estimate for likelihood that the

processor is on the correct path. They showed that this conventional approach is

inaccurate because it assumes that all low-confidence branches have the same mis-

prediction rates and high-confidence branches never mispredict. They proposed a

more accurate method of computing path confidence from the misprediction rates of

all unresolved branches having different confidence values. We extend the concept of

path confidence to compute and track the probability that an instruction is on the

correct path during its lifetime in the pipeline in our design.

The path confidence predictor [12] classifies branches based on their confidence

values and computes misprediction rates for all branch classifications. We use the

composite confidence estimator proposed by Jimenez [9] to compute branch confi-

dence values. Manne et. al [6] emphasizes that Spec and Pvn should be high for

confidence estimators employed in architectures focussed for energy reduction. Spec

and Pvn are two among four statistical metrics proposed by Manne et al. [6] for eval-
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uating and comparing the performance of confidence estimators. Specificity (Spec)

is the probability that a mispredicted branch has a low confidence value. Predictive

value of negative estimate (Pvn) is the probability that a low confidence branch is

mispredicted. Having high Spec and Pvn implies that most of the mispredicted

branches have low confidence values and most of the low confidence branches are

mispredicted. The likelihood of a processor to be on a wrong path can be estimated

from the unresolved low confidence branches which can be used for some form of

speculation control. The Composite Up/Down + JRS + Self confidence estimator

[9] has high and wide range of Spec and Pvn values than individual estimators for

hybrid branch predictors.

4.1 Composite Up/Down+JRS+Self Confidence Estimator

The Composite Up/Down + JRS + Self confidence estimator [9] is built by

combining Enhanced JRS, Up/Down and Self branch confidence estimators. If Cjrs,

Cud and Cself are branch confidence estimations of Enhanced JRS, Up/Down and Self

estimators respectively, then the branch confidence estimation of composite estimator

Ccomp is given as,

Ccomp = Cjrs + Cud + Cself (4.1)

The branch confidence estimators use tabular structures and history registers

either similar to or that of hybrid branch predictor for confidence estimation. Branch

confidence tables and branch prediction tables are looked up and updated in parallel

when branches are fetched and resolved respectively.

4.1.1 Enhanced JRS estimator

The JRS estimator [8] uses miss distance counter (MDC) table in addition to

branch predictor tables for confidence estimation. The miss distance counter counts
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number of correct branch predictions since a misprediction. It is a saturating counter

which is incremented when a branch prediction is correct and reset upon mispredic-

tion. The global MDC table is similar to GAg prediction history table (PHT). It

consists of miss distance counters indexed by a global history register. In the en-

hanced JRS estimator, the branch confidence estimation is done after the branch

prediction. The branch prediction is updated in the global history register and then

the miss distance counters are referenced.

4.1.2 Up/Down estimator

The Up/Down estimator [10] uses up/down counter (UDC) table in addition to

branch predictor tables for confidence estimation. The up/down counter also counts

number of correct branch predictions since a misprediction similar to the JRS esti-

mator. However, the counter is decremented instead of resetting upon misprediction.

It is a saturating counter which is incremented when a branch prediction is correct.

The local UDC table is similar to second level PAg prediction history table (PHT)

structure. The first level PAg predictor table containing local history registers in-

dexed by the branch address is used to index the local UDC table. The local UDC

is a second level table table which consists of up/down counters.

4.1.3 Self estimator

The self estimator [6] computes confidence estimation from the saturating coun-

ters in the branch prediction history tables. If c is the value in saturating counter

and n is its width in bits, then the confidence estimate for the branch which is taken

is c and for the branch which is not taken is 2n − c− 1. The self estimator does not

need any additional tabular structures. The global branch confidence can be com-

puted directly from the counter value referred by the branch in global GAg PHT.

Similarly the local branch confidence is computed from the counter value referred
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by the branch in local PAg PHT table. The total confidence is a sum of global and

local confidence values.

4.2 Path Confidence Estimation

The path confidence [12] is the probability that the processor is fetching instruc-

tions on the correct path. It considers contributions of all unresolved branches, both

high and low confidence. The path confidence is the product of correct prediction

rates of all unresolved branch instructions in the pipeline. In other words, it is the

product of the probability of correct prediction of all outstanding branches. If there

are n outstanding branches in the pipeline, the path confidence of the processor is,

PathConf =

j∏
i=0

Pbri 0 ≤ Pbri ≤ 1 ∀j in Unresolved Branches (4.2)

where Pbri refers to the probability of correct prediction of ith unresolved branch in

the pipeline.

The branches are classified into different confidence buckets based on the confi-

dence value obtained from the branch confidence estimator. If the composite con-

fidence estimator has n confidence estimators and wi is the width of confidence

counters in ith confidence estimator, then the confidence value c is bounded by,

0 ≤ c ≤
n∑

i=0

2wi − n− 1 (4.3)

The total number of confidence buckets is the range of confidence values which

is
∑n

i=0 2wi − n. In each confidence bucket we count the number of branches with

confidence c that resulted in correct predictions and mispredictions in last N cycles. If

Rc and Wc are number of branches with confidence c that had correct predictions and
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mispredictions respectively in last N cycles, then the probability of correct prediction

of a branch with confidence c is given as,

Pbrc =
Rc

Rc + Wc

(4.4)

For example if a composite confidence estimator has enhanced JRS with 3-bit

miss distance counters, Up/Down estimator with 5-bit up/down counters and the Self

estimator with 3-bit saturating counter, then the confidence value of the composite

confidence estimator is an integer c such that 0 ≤ c ≤ 44. So, we have 45 confidence

buckets in total, one bucket per confidence value.
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5. PROBABILITY-BASED MEMORY ACCESS CONTROLLER (PMAC)

DESIGN

In this section we elaborate on the architectural design of Probability-Based Mem-

ory Access Controller (PMAC) to reduce the wrong path data memory accesses. Our

proposed design aims to identify probable wrong path memory access instructions

and stall them until the branch mispredictions are known. We extend the concept

of path confidence introduced by Malik et al. [12] to compute path probability of

instructions. The path confidence predictor [12] computes the probability that the

processor is on the correct path. Here, we use similar technique to compute and track

path probability of dynamic instructions in the pipeline. The correct path instruc-

tions are eventually committed in-order while wrong path instructions are flushed by

the processor core. The probability of an instruction getting executed and commit-

ted depends on the program path it lies on. It is the same as the probability of the

processor taking the path containing the instruction from its point of recent commit.

We refer to this as path probability of an instruction.

Figure 5.1 illustrates the overall architecture of the Probability-based Memory

Access Controller (PMAC) in an out-of-order processor core. The unshaded regions

constitute the major components in an out-of-order CPU pipeline. The light shaded

regions correspond to existing components in the CPU pipeline which are modified

to implement PMAC. The dark shaded regions are the newly added components in

the out-of-order core parallel to the main CPU execution pipeline. They operate

in parallel with main CPU pipeline. The BlockID counter is used for assigning

unique identification number for every branch fetched by the CPU fetch engine.

The conditional branch and its control dependent instructions are assigned with
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Figure 5.1: Microarchitecture of probability based memory throttle

same BlockID. The branch predictor and confidence estimator provides prediction

and confidence values respectively for the fetched branches. The prediction rate

estimator provides correct prediction rate for the fetched or resolved branch. The
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in-flight branch tracking table keeps track of unresolved branches in the pipeline.

The throttling block estimator identifies the BlockID of oldest program block in the

pipeline with path probability less than the threshold. It provides the BlockID of

memory instructions to be throttled at the load store unit. The Load-Store Queue

(LSQ) structure in the main CPU pipeline is modified to store BlockID and a stall

bit for every entry. The Load-Store Unit (LSU) is modified to control the issue

of memory instructions. It does not issue memory requests for loads and stores

with BlockID greater than or equal to the BlockID provided by the throttling block

estimator. In the remainder of this section we describe each of these components in

detail, followed by a detailed discussion of their operation together.

5.1 BlockID Counter

The control instruction altering the dynamic flow of a program and its control

dependant instructions constitute a program block. All the instructions in a pro-

gram block are identified with a unique block identification number (BlockID). The

BlockID counter at the fetch unit is used to keep track of BlockID of currently

fetching program block. The processor is fetching next dynamic program block in

the program code whenever a new control instruction is encountered. Hence, the

BlockID counter is incremented whenever a new control instruction is fetched. The

fetched instructions are assigned to BlockID of recently fetched control instruction.

Thus, all the instructions in a program block are assigned with the same BlockID.

5.2 Branch Predictor And Confidence Estimator

The branch predictor predicts the outcome of conditional branches fetched by

the processor. The branch confidence estimator provides a confidence level for the

predictions made by the branch predictor. Higher the value, higher is the confidence

in its prediction and vice-versa. Tracking and maintaining correct prediction rates for
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every branch in the program is difficult. We determine and manage correct prediction

rates for branches having same confidence value. The branch confidence value is

used to track and maintain the correct prediction rates of branches encountered in

a program. This technique was initially proposed by Malik et al. [12]. Wider the

range of branch confidence estimator, greater is the number of branch confidence

levels, finer is the granularity and greater is the accuracy of correct prediction rate of

branches. The McFarling hybrid branch predictor [14] with JRS+Up/Down+Self

composite confidence estimator [9] provides a wide range of confidence values than the

individual confidence estimators. Hence we employ a composite confidence estimator

in our design.

5.3 Prediction Rate Estimator

The prediction rate estimator contains a branch probability table which provides

correct prediction rates for branches with different confidence values. It classifies

branches based on their confidence value into different confidence buckets of size 1.

It tracks the number of branches that are fetched and committed over a period of

N cycles for all confidence buckets in a per confidence branch fetch count (BFCT)

and commit count table (BCCT). The BFCT table entry is incremented following

every branch fetch while the BCCT table entry is incremented following every correct

branch resolution. After every N cycles, the per confidence branch probability table

(BPT) is updated with Number of Branch Commits
Number of Branch Fetches

value for every confidence bucket.

The BPT table contains the correct prediction rate of branches for all confidence

buckets. All the per confidence based tables in the prediction rate estimator are

accessed using branch confidence value.
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5.4 In-flight Branch Tracking Table

The in-flight branch tracking table tracks the outstanding branches in the pipeline.

It consists of a per BlockID Branch Confidence Table (BBCT) which contains branch

confidence values of in-flight branches. It is a direct mapped structure where table

entries are accessed using lower bits of the BlockID of the branch. Whenever a

branch is fetched, the table entry directly mapped to its BlockID is updated with

its confidence value and marked as valid. Whenever a branch is resolved or flushed,

the table entry directly mapped to its BlockID is invalidated. Unlike direct mapped

cache, this structure does not store any tags.

5.5 Throttling Block Estimator

The throttling block estimator identifies the BlockID of oldest program block

with path probability less than the threshold. The path probability of an instruction

is dependant on the correct prediction rates of in-flight branches older than the

instruction. All instructions in a given program block have same path probability as

they all lie on same speculative program path determined by the in-flight branches

older than them. We refer to this as path probability of a program block.

5.5.1 Calculating the path probability of program blocks

If there are n outstanding branches in the pipeline, the path probability of any

jth program block is,

Pj =

j∏
i=0

Pbri 0 ≤ Pbri ≤ 1

∀j ∈ Unresolved Branches | BlockIDbranch ≤ BlockIDinstruction (5.1)
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where Pbri refers to the probability of correct prediction of ith older and unresolved

branch in the pipeline. The path probability of a younger program block cannot be

greater than the path probability of any older program blocks.

Pj−1 ≤ Pj ≤ Pj+1 ∀j in Unresolved Branches (5.2)

The throttle block estimator has a path probability register (PPR) to hold the path

probability of program block under consideration.

5.5.2 Determining the program blocks to be throttled

If PThresh refers to the pre-set or dynamically varying path probability threshold,

we need to identify a program block j whose path probability is such that,

Pj−1 > PThresh ≥ Pj (5.3)

If ∃ an outstanding program block j with path probability satisfying Equation 5.3,

then this block is known as throttling block. From Equation 5.2, all the instructions

in and after the program block j have path probability less than PThresh. These

instructions are referred as low confidence instructions. All the instructions before

the jth program block are referred as high confidence instructions.

5.5.3 Block ID based throttling

The block identification number of any outstanding program block j in the

pipeline is such that,

BlockIDj−1 > BlockIDj > BlockIDj+1 ∀j in Outstanding Program Blocks

(5.4)
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If BlockIDT is the block identification number of program block satisfying Equation

5.3, then all the memory access instructions with block identification number greater

than or equal to BlockIDT will be stalled in the Load-Store Queue (LSQ). All the

memory access instructions with block identification number less than BlockIDT

will go ahead to issue data memory requests. The BlockIDT is used to demarcate

the low confidence and the high confidence instructions. The low confidence memory

access instructions are stalled while the high confidence memory access instructions

are allowed to issue memory requests.

As the outstanding branches in the pipeline resolve with correct prediction, the

throttling block satisfying the Equation 5.3 is recovered. The BlockIDT of recov-

ered throttling block will be greater than or equal the old BlockIDT . The stalled

memory access instructions with block identification number less than the recovered

BlockIDT are released. The low confidence memory instructions become high con-

fidence when branches resolve with correct prediction and goes ahead to issue data

memory requests.

When an outstanding branch in the pipeline is resolved with misprediction,

then all the instructions fetched after the mispredicted branch are flushed from the

pipeline. All the stalled memory access instructions younger than the mispredicted

branch are flushed from the Load-Store Queue, thus avoiding the issue of wrong path

memory requests.

The throttle block estimator has a throttling block register (TBR) and a throttle

control (TC) bit. When the value in path probability register (PPR) is less than

or equal to the threshold, then the TBR holds the BlockID of oldest program block

with path probability less than the threshold. When the value in PPR is greater

than the threshold, then the TBR holds the BlockID of currently fetching program

block. TC bit is used to specify whether the memory request throttling has to be
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engaged or disengaged at the Load-Store Unit in the pipeline.

5.5.4 Determining the path probability threshold

We define two approaches for determining the path probability threshold. The

first approach is a static methodology, where the path probability threshold is a pre-

set empirical value and remains constant throughout the program execution. The

path probability threshold indirectly controls the depth of speculation or amount

of speculative execution in an out-of-order processor core. A high threshold value

decreases the speculation depth of the processor and can inhibit the progress of

correct path instructions. While, a low threshold value can miss out opportunities

to reduce wrong path execution. For any given program, a suitable static threshold

can only be determined experimentally. Also, having a constant pre-set threshold

value may not be beneficial at all executing conditions. When the average execution

time of instructions and the number of stalled memory access instructions in the

processor core is low, it is favorable have a higher threshold. Similarly, when the

average execution time of instructions in processor core and the number of stalled

memory access instructions is high, it is preferable to have a lower threshold. It is

desirable to have different threshold values at different circumstances. Hence our

second approach is a dynamic methodology, where the path probability threshold is

varied during the program execution. In the dynamic approach, we vary the threshold

based on number of free entries in the instruction window, current threshold value and

the number of stalled memory access instructions. We use the average execution time

of instructions indicated by the number of free entries in the instruction window to

determine whether the threshold value has to be increased or decreased. The current

threshold value is used to decide the step size for incrementing or decrementing the

threshold value. While, the number of stalled memory access instructions is used to
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select the frequency of threshold update.

The path probability threshold is initially set to 0.01. The threshold is increased

in steps of 0.1 for every n cycles when the instruction window is less than 75% full

and the current threshold value is less than 0.5. When the instruction window is

less than 75% full and the current threshold is between 0.5 and 0.95, the threshold

is increased in steps of 0.01 for every n cycles. The threshold remains unchanged

when the instruction window is 75% to 85% full. If the instruction window is more

than 85% full and the memory access instructions are stalled, then the threshold is

decreased in steps of 0.1 every n cycles. The threshold is decreased to 0.01 when

the instruction window becomes full and the memory access instructions are stalled.

The interval n is a variable which varies exponentially with the number of stalled

memory instructions m. When more than 25% of the instruction window is free,

n = K1 ∗ 2bm/C1c (5.5)

where K1 and C1 are constants. The n is doubled for every C1 number of stalled

memory access instructions. When 85% of the instruction window is free,

n = K2 ∗ 2b−m/C2c (5.6)

where K2 and C2 are constants. The n is halved for every C2 number of stalled

memory access instructions. Table 5.1 shows how the path probability threshold is

varied under various scenarios.

5.6 Logarithmic encoding and storing of probability values

Malik et al. [12] has proposed the use of logarithmic encoding and scaling of

probability values between 0 and 1 to ease the hardware implementation. Simi-
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Table 5.1: Varying path probability threshold

Free Entries in Current No. of New Interval
Inst. Window Threshold Stalled Insts. Threshold (n)

≥ 25% ≤ 0.50 ≥ 0 ↑ by 0.10% K1 ∗ 2bm/C1c

≥ 25% > 0.50 & < 0.95 ≥ 0 ↑ by 0.01% K1 ∗ 2bm/C1c

≤ 15% ≤ 0.95 > 0 ↓ by 0.10% K2 ∗ 2b−m/C2c

0% ≤ 0.95 > 0 ↓ to 0.01% 0

lar logarithmic encoder and scaler can be employed in our design. The multipliers

required for computing the path probability in Equation 5.1 can be replaced with

simple adders. When the log is taken in both sides of Equation 5.1, it results in

following equation which requires only additions instead of multiplications,

log2(Pj) =

j∑
i=0

log2(Pbri) ∀j in Unresolved Branches (5.7)

The probability value lies between 0 and 1. log2(Pj) is a negative number, which

is scaled by multiplying with -1024 and rounded off to the closest integer. We can

logarithmically encode and scale all the probability values in our design.

Enc(Pj) = −1024 ∗ log2(Pj) ∀j in Unresolved Branches (5.8)

Due to logarithmic encoding and negative scaling done in Equation 5.8, the higher

the probability value, the lower the final encoded value. For example the encoded

value of 0.25 will be 2048, the encoded value of 0.75 will be 425. Hence, the in-

structions with encoded probability greater than or equal to the encoded path prob-

ability threshold will be low confidence instructions. The instructions with encoded

probability less than the encoded path probability threshold will be high confidence
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instructions. We never need to convert the encoded probabilities back into real prob-

abilities. The hardware complexity and implementation of logarithmic encoder and

scaling is discussed by Malik et al in [12].

5.7 Load Store Queue (LSQ) And Load Store Unit

The Load Store Queue (LSQ) contains the information of in-flight loads and

stores until the memory requests are serviced. The LSQ structure is modified to

store BlockID and a stall bit for each entry. The BlockID in TBR and TC bit is

used to search and set/clear stall bits for loads and stores in the LSQ. The Load

Store Unit picks eligible loads and stores from LSQ to issue memory request to the

memory hierarchy. It is modified to ignore picking up and issuing memory requests

for eligible loads and stores with stall bit set when throttling is engaged (or TC is

set).

5.8 PMAC Operation

The components proposed in our design execute in parallel to the main CPU

pipeline. They process branch instructions after they are fetched and executed in the

main CPU pipeline to compute path probabilities of in-flight program blocks. The

BlockID of program block with path probability less than the threshold is identified

and communicated to Load-Store Unit (LSU) of the pipeline. The LSU is modified

to throttle low confidence memory requests. Figure 5.2 shows a flow chart briefing

the operation of PMAC during different phases.

5.8.1 Fetch phase

Whenever the fetch unit encounters a branch instruction, the global BlockID

counter (BIDC) is incremented and assigned as the BlockID of the branch. The

branch prediction and confidence tables are looked up for the prediction and confi-
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Figure 5.2: Flow chart of operation of PMAC during Fetch, Execute and

Load/Store phases.

dence values respectively. Using the BlockID of the fetched branch, the per BlockID

branch confidence table (BBCT) is updated with its confidence value and marked as

valid. The correct prediction rate of the fetched branch is obtained by looking up
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the per confidence branch probability table (CBPT) with its confidence value. When

the throttle control (TC) bit is not set, the value in path probability register (PPR)

is multiplied with the correct prediction rate of the fetched branch and the result is

stored in PPR. The TC bit is set if the value in PPR exceeds the path probability

threshold in PPTR, otherwise the TC bit is cleared. When the TC bit is not set, the

throttling block register (TBR) is updated with the BlockID of the fetched branch,

otherwise TBR is not updated. The per confidence branch commit table (BCCT)

is looked up with the fetched branch confidence value and the commit counter is

incremented.

We have a probability table age register (PTAR) which keeps track of number

of cycles since the last update of per confidence branch probability table (CBPT).

PTAR in incremented every cycle until N which is the time interval for updat-

ing probability values in CBPT. When the value in PTAR counter equals N , the

fetch counter and commit counter for every confidence bucket is looked up in the

branch fetch count (BFCT) and branch commit count table respectively. Then the

probability value for each confidence bucket is calculated as Number of Branch Commits
Number of Branch Fetches

.

Respective CBPT entries are updated with the new probability values and the PTAR

counter is reset to 0.

5.8.2 Execute phase

Whenever a branch is resolved with correct prediction, the tables in branch pre-

dictors and composite confidence estimator are updated. The direct mapped entry

of the resolved branch in the per BlockID branch confidence table (BBCT) is looked

up for its confidence value and it is invalidated. The correct prediction rate of the

resolved branch is obtained by looking up the per confidence branch probability ta-

ble (CBPT) with its confidence value. When the TC bit is set and the BlockID
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of the resolved branch is less than or equal to the BlockID in TBR, the value in

PPR is divided by the correct prediction rate and the result is stored in PPR. The

per confidence branch commit table (BCCT) is looked up with the resolved branch

confidence value and the commit counter is incremented.

If the throttle control (TC) bit is not set and the BlockID in TBR is not same

as the BlockID of the recently fetched branch, then the path probability of program

blocks fetched since the last TBR update is computed iteratively. The computation

is done until the program block with path probability less than threshold in PPTR

is identified. The branches with BlockID greater than the BlockID in TBR are

looked up in BBCT one after the other until the TC bit is set or until the most

recently fetched branch is encountered. Following every look up in BBCT, the correct

prediction rate of the corresponding branch is obtained from the per confidence

branch probability table (CBPT). Then the value in PPR is multiplied with the

correct prediction rate of the branch and the result is stored in PPR. The TC bit is

set when the value in PPR exceeds the path probability threshold in PPTR, otherwise

the TC bit is cleared. When the TC bit is not set, the throttling block register (TBR)

is updated with the BlockID of the in-flight branch under consideration.

Whenever a branch is resolved with misprediction, the tables in branch predictors

and composite confidence estimator are updated. The BBCT entries of in-flight

branches in the mispredicted path are looked up and invalidated. When the BlockID

of mispredicted branch is less than or equal to the BlockID in TBR, the value in

PPR is divided by the correct prediction rates of all branches with BlockID less than

or equal to the BlockID in TBR iteratively. The result is stored in PPR and TC bit

is cleared when the value in PPR exceeds the threshold in PPTR.
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5.8.3 Load-Store phase

The BlockID in TBR and the throttle (TC) bit is used by the Load Store Unit

to stall or allow memory access instructions to issue memory requests. Whenever

the TBR and the TC bit is updated, the stall bits of loads and stores with BlockID

greater than or equal to the BlockID in TBR are set while the the stall bits of loads

and stores with BlockID less than the BlockID in TBR are cleared. When the TC

bit is set the Load Store Unit ignores picking up and issuing memory requests for

eligible loads and stores with stall bit set.
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6. EVALUATION

In this section we outline our experimental methodology followed by a detailed

exploration and analysis of the effects of our proposed technique.

6.1 Methodology

Gem5[4], a full system cycle accurate simulator is used to evaluate our technique.

Table 6.1 shows the baseline configuration of the processor core and the memory

hierarchy used in our evaluation. We use a subset of SPEC CPU2006 benchmarks to

run simulations in a single-core processor system. McPAT1.3 [7] model is used to es-

timate energy consumed by the processor, caches and the DRAM memory controller

for 65nm technology node.

Table 6.1: Baseline system configuration

CPU
2GHZ, 8-wide out-of-order processor
256-entry Instruction window

Branch Predictor
8KB tournament predictor
2.8% conditional branch mispredict rate

L1I & L1D Cache
64KB 8-way
3 cycle latency

L2 Cache
Unified 256KB 8-way
10 cycle latency

Shared L3 Cache
2MB/Core 16-way
20 cycle latency

Off-Chip DRAM
2GB 8-banks
200 cycle latency

We employ a 8K McFarling [14] hybrid branch predictor. The choice predictor

table has 8K entries of 2-bit saturating counters. The prediction history table in
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GAg has 8K entries of 2-bit saturating counters indexed by a 13-bit global history

register. The first level per address branch history table in PAg has 2K entries of 11-

bit local history registers indexed by branch PC address. The second level prediction

history table in PAg has 2K entries of 3-bit saturating counters indexed by entries

of first level table. A 4K global miss distance counter table of 3-bit saturating

counters is used for JRS confidence estimation. It is indexed by the lower 12-bits of

global history register in GAg. A 1K local Up/Down Counter table consisting of 5-

bit saturating counters is used for Up/Down confidence estimation. It is indexed by

lower 10-bits of local history registers in the first level PAg. The composite confidence

estimator combines enhanced JRS, Up/Down and self estimators. The prediction

rate estimator classifies branches into 45 confidence buckets. It has a 45 entry branch

Fetch-Count and Commit-Count tables containing 16-bit saturating counters. The

per confidence branch probability table is also a 45 entry table containing branch

prediction rates in last 500000 cycles. In-flight branch tracking table is a 256 entry

per block confidence table. The table entries hold 6-bit confidence values of in-flight

branches. They are accessed using using lower 7 bits of the BlockID of a branch.

All simulations are fast-forwarded by 10 billion instructions, warmed-up for addi-

tional 1 billion instructions and then run in the out-of-order detailed mode for next 1

billion instructions. We ran simulations with path probability thresholds pre-set to a

constant value and dynamically varying path probability threshold. The simulations

with pre-set threshold are run for several values that are multiples of 0.05 between

0.05 and 0.95. In simulations with dynamic threshold, we vary the threshold by

choosing following empirical values as constants,

K1 = 128, K2 = 32, C1 = C2 = 8 (6.1)
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6.2 Results And Analysis

In this section, we present our results and analysis on the performance, average

dynamic power consumption and the performance per watt of the processor. We also

show the effects of memory access throttling on cache pollution, data prefetching and

execution of instructions. The processor core with path probability threshold as zero

is used as baseline for comparisons. The benchmarks showed in the graphs are sorted

from left to right in the increasing order of misprediction rates.

6.2.1 Effect on dynamic power consumption of the processor

(a) Benchmarks with misprediction rates ≥ 1%

(b) Benchmarks with misprediction rates < 1%

Figure 6.1: Decrease in dynamic power consumption of processor.
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Figure 6.1 shows the decrease in dynamic power consumption of the processor

which includes out-of-order core, caches and memory controller. In benchmarks with

misprediction rates ≥ 1%, we observe that the dynamic power consumption of the

processor decreases significantly at higher pre-set path probability thresholds. It is

primarily due to the decrease in execution of wrong path memory access instruc-

tions and their data dependant instructions. When the threshold is sufficiently high,

the wrong path memory access instructions are stalled until the mispredictions are

known. They are flushed from the pipeline before the memory requests are issued

and respective data dependant instructions are executed. At lower thresholds, the

stalled wrong path memory requests are released even before the mispredictions are

known when their path probability exceeds the threshold. This corresponds to missed

out opportunities on reducing the wrong path memory accesses. With a dynamically

varying threshold, in benchmarks with misprediction rates ≥ 1%, we observe that the

dynamic power dissipation of the processor decreases by 3.4% (upto 9.55% in sphinx)

on an average. The power savings are negligible in benchmarks with misprediction

rates < 1%.

6.2.2 Effect on performance of the processor

Figure 6.2 shows the decrease in performance (IPC) of the processor. In bench-

marks with misprediction rates ≥ 1%, we observe a significant drop in IPC at higher

pre-set path probability thresholds. The low confidence memory access instructions

are stalled until they become those of high confidence. A high threshold value in a

deeply speculating core will mark several correct path memory access instructions as

low confidence. The issue of memory requests are delayed, consequently the execu-

tion of respective data dependent instructions are delayed and increases the overall

execution time of instructions. The path probability threshold acts as a form of
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(a) Benchmarks with misprediction rates ≥ 1%

(b) Benchmarks with misprediction rates < 1%

Figure 6.2: Decrease in IPC.

speculation control. It limits the amount of speculation done by the processor and

inhibits the progress of correct path instructions. Hence, a higher threshold value

restricts the speculative execution and decreases the performance. A lower threshold

value allows more speculative execution in the processor but it misses out on oppor-

tunities to reduce wrong path execution. Having a pre-set threshold as a constant

throughout the program execution is not beneficial. When the average execution time

and number of stalled memory access instructions are low, increasing the threshold

has less negative impact on the performance. When the average execution time of

instruction and number of stalled is high, decreasing the threshold mitigates the

performance loss. We vary the threshold accordingly, to reduce wrong path memory
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accesses with minimum impact on performance (IPC). With this kind of dynamic

threshold scheme, we observe that the performance (IPC) on an average decreases

by 0.99% (upto 4.26% in sjeng) in benchmarks with misprediction rates ≥ 1%. The

performance (IPC) loss is negligible in benchmarks with low misprediction rates (<

1%). The dynamic threshold technique continuously adjusts the threshold according

to executing conditions and minimizes the negative impact on performance.

6.2.3 Effect on performance per watt of the processor

(a) Benchmarks with misprediction rates ≥ 1%

(b) Benchmarks with misprediction rates < 1%

Figure 6.3: Change in IPC/Watt.

Figure 6.3 shows the variation in performance per watt of the processor. In
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benchmarks with misprediction rates ≥ 1%, we observe that the performance per

watt decreases significantly at higher pre-set path probability thresholds. The re-

duction in wrong path memory accesses comes at the cost of performance (IPC)

of the processor. At higher thresholds, the IPC loss due to decrease in speculative

execution outweighs the benefit of power savings due to reduction in wrong path

memory accesses. In the dynamic threshold scheme, the threshold is varied to re-

duce wrong path memory accesses with minimum negative impact on performance

(IPC). The achieved dynamic power savings outweighs the performance (IPC) loss

in all benchmarks except sjeng. We observe an IPC/Watt improvement of 1.83%

(upto 6.3% in sphinx). The variation in IPC/Watt is negligible in benchmarks with

misprediction rates < 1%.

6.2.4 Effect on prefetching and pollution

Figure 6.4: Effect on prefetching and cache pollution.

Figure 6.4 shows the variation in combined miss rate of L1 cache, L2 cache and
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L3 cache of the processor. We use the combined miss rate of all caches which is

product of L1, L2 and L3 cache miss rate to analyse the effect on prefetching versus

pollution caused by wrong path memory references. In the bzip2, mcf, namd, sphinx

and zeusmp benchmarks the combined miss rate increases at higher path probability

thresholds. The increase in miss rate compared to baseline suggests that the decline

in wrong path memory accesses has resulted in decrease of data prefetching for correct

path instructions. We can observe from Figure 6.4 that, in sphinx benchmark the

prefetching by wrong path memory access instructions is reduced by 21% when the

path probability threshold is pre-set to 0.95. In the calculix, gamess, gcc, sjeng

and soplex benchmarks the combined miss rate decreases at higher thresholds. The

decrease in miss rate compared to baseline suggests that the decline in wrong path

memory accesses has resulted in decrease of pollution in caches. From Figure 6.4

we can observe that, in gcc benchmark the cache pollution decreases by 29% when

the path probability threshold is pre-set to 0.95. The wrong path memory references

provide benefit of prefetching for correct path instructions in few benchmarks while it

causes cache pollution in others. The dynamic threshold scheme decreases the cache

pollution by 0.8% (upto 10.66% in gamess) on an average across all benchmarks.

6.2.5 Effect on the number of issued memory requests

Figure 6.5a shows the decrease in total number of issued memory requests due to

a decrease in number of wrong path memory requests as shown in Figure 6.5b. We

observe that the number of wrong path memory references decreases significantly

at higher thresholds in benchmarks with higher misprediction rates. In gcc and

sjeng benchmarks more than 80% of wrong path memory references are eliminated

when the path probability threshold is pre-set to 0.95. We also observe significant

decline in number of wrong path memory references in other benchmarks like bzip2,
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(a) Decrease in number of issued memory requests

(b) Decrease in number of issued wrong path memory requests

Figure 6.5: Number of memory requests issued.

calculix, gamess, h264ref, mcf, namd, soplex and sphinx at higher thresholds. In

dynamic threshold scheme, the threshold is varied to minimize the negative impact

in performance. When we dynamically vary the threshold, we decrease the path

probability threshold when the average execution time of instructions and number

of stalled instructions is high. When the threshold is low, the wrong path memory

requests are not stalled until the mispredictions are known. This corresponds to a

lost opportunity in reducing the wrong path memory accesses. Due to such missed
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out opportunities in order to minimize the IPC loss, we observe an average decrease

of only 20.75% in wrong path references across all benchmarks (upto 51.02% in gcc).

The decrease in wrong path memory accesses decreases the total number of issued

memory requests on an average by 5.51% across all benchmarks (upto 13.76% in

sphinx).

6.2.6 Effect on the number of dynamic instructions executed

(a) Decrease in number of executed instructions

(b) Decrease in number of wrong path instructions

Figure 6.6: Number of instructions executed.
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Figure 6.6a shows the decrease in total number of dynamic instructions executed

due to a decrease in number of wrong path instructions executed as shown in Figure

6.6b. When wrong path memory access instructions are stalled, respective wrong

path memory dependant instructions are also stalled. If the wrong path instructions

are stalled until the branch mispredictions are known, they are flushed from pipeline

without executing. At higher thresholds, the number of wrong path memory ac-

cess instructions and data dependant instructions executed decreases which results

in decrease of total number of executed dynamic instructions. In dynamic threshold

scheme, the threshold is varied in order to minimize the negative impact in perfor-

mance while reducing the wrong path execution. When the average execution time

of instruction increases, the speculative execution which can result in wrong path

execution is allowed to go ahead by decreasing the threshold. Hence, we observe

an average decrease of only 10.73% in number of executed wrong path instructions

across all benchmarks (upto 31% in gcc). The decrease in wrong path execution

decreases the total number of dynamic instructions executed by 2.31% on an average

across all benchmarks (upto 9.03% in gcc).

6.3 Effect Of Correct Prediction Rate Of Mispredicted Branches

Figure 6.7a shows the percentage of mispredicted branches with correct predic-

tion rates greater than 0.55, 0.75 and 0.95. We can observe that, more than 40%

of the mispredicted branches have correct prediction rate greater than 0.95. The

probability that 40% of the mispredicted branches and respective control dependant

instructions will be executed and committed by the processor is greater than 0.95.

More than 70% of the mispredicted branches have correct prediction rate greater

than 0.75. The cactusADM, lbm, leslie3d, milc have more than 80% and libquantum

has 65% of mispredicted branches with likelihood of correct prediction greater than
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(a) % of mispredicted branches with higher correct prediction rates

(b) Average correct prediction rates of mispredicted branches

Figure 6.7: Mispredicted branches with different correct prediction rates.

0.95. The processor has high accuracy of prediction (> 99%) in these benchmarks.

The throttling mechanism does not reduce wrong path memory requests because

the likelihood that the processor is on the correct path is very high while executing

these benchmarks. Hence, they show no variation in IPC or power at high thresh-

olds upto 0.95. More than 70% of the mispredicted branches in bzip2, gcc, sjeng,

namd and calculix benchmarks have probability of correct prediction between 0.55
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and 0.95. The processor has relatively lower accuracy of branch predictions (< 98%)

in these benchmarks. The throttling mechanism reduces significant number of wrong

path memory requests for thresholds greater than 0.55 in these benchmarks. Rest

of the benchmarks have moderate number of mispredicted branches (30%-60%) with

probability of correct prediction between 0.55 and 0.95. They show modest varia-

tions in IPC or power at high thresholds upto 0.95 based on the accuracy of branch

predictions.

The average correct prediction rate of mispredicted branches is 0.85 as shown

in Figure 6.7b. The probability based memory access controller should have higher

path confidence threshold in order to eliminate execution of significant number of

wrong path instructions. But higher threshold inhibits speculative execution of pro-

cessor and decreases the performance. Higher correct prediction rate of mispredicted

branches makes the probability based memory access controller harder to reduce

wrong path memory accesses and achieve power savings without impacting the per-

formance negatively.

6.4 Design Overhead Estimate

The additional structures used in the design of probability based memory access

controller require 2.8KB of storage. 2.1KB of storage is required by the 4K composite

confidence estimator. The tables used in probability based memory access controller

require 570B of storage. Tables 6.2 and 6.3 shows the storage required for tables and

structures used in the composite confidence estimator and PMAC respectively. The

Load-Store Queue requires 288B of storage for storing BlockID and a stall bit for

each entry. The power consumption is < 0.4% of the total processor power.

The prediction rate estimator in our probability based memory request controller

classifies branches across n confidence buckets for a given composite confidence es-
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timator configuration. It employs n entry branch commit-count, squash-count and

probability tables with 16-bit entries. The 256 entry per block confidence table has

dlog2ne bit entries to hold confidence value of unresolved program blocks. Hence,

the tables require additional storage of (3 ∗ n ∗ 16 + 256 ∗ dlog2ne) bits.

Table 6.2: Composite confidence estimator storage overhead

Composite Confidence Estimator
Estimator Tables Global JRS Local UDC
No. of Counters 4K 1K
Counter Size 3-bit 5-bit
Table Size 1.5KB 640B

Table 6.3: PMAC storage overhead

Probability-Based Memory Access Controller
Tables BCCT BFCT CBPT BBCT
No. of Entries 45 45 45 256
Entry Size 16-bit 16-bit 32-bit 6-bit
Table Size 90B 90B 90B 192B

BlockID Counter PPR PPTR TBR PTAR
8-bit 64-bit 32-bit 9-bit 24-bit
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7. CONCLUSION

In this thesis we proposed a probability-based memory access controller (PMAC)

to reduce the wrong path data requests sent to memory. Branches are classified into

different confidence buckets and correct prediction rates for each confidence bucket

are computed. We used a composite confidence estimator proposed by Jimenez [9]

to compute branch confidence values. The path probability of an instruction is com-

puted as a product of correct prediction rates of all in-flight branches fetched before

the instruction. Using a deterministic or dynamically varying probability value as

a threshold the instructions are classified as low confidence and high confidence.

PMAC stalls low confidence speculative memory access instructions and prevents

data requests from being sent to the memory hierarchy. In the event of a mispre-

diction, the stalled instructions are flushed. We achieve energy reduction and power

savings by reducing wrong path execution. However, the threshold acts as a form

of speculation control. It limits the speculative execution of the processor and neg-

atively impacts its performance. A higher threshold value inhibits the progress of

correct path instructions while a lower threshold value misses out on opportunities

to reduce wrong path execution. A deterministic threshold is not beneficial. At

higher thresholds, the IPC loss due to speculation control outweighs the benefit of

power savings due to reduction in wrong path execution. We dynamically vary the

threshold to minimize the negative impact on performance while reducing the wrong

path memory accesses. It is desirable to have high threshold when the average exe-

cution time of instructions and the number of stalled memory access instructions is

low and vice versa. The threshold is varied based on the number of free entries in

instruction window, the current threshold value and the number of stalled memory
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access instructions. Table 7.1 shows the summary of results for processor employing

dynamic threshold. With the dynamic threshold scheme, we improved IPC/Watt by

reducing wrong path execution and achieve dynamic power savings with minimum

negative impact on performance.

The average correct prediction rate of mispredicted branches is 0.85 while 40%

of them have correct prediction rate greater than 0.95. It means that the threshold

should be as high as 0.85 or greater to identify and reduce at least 50% of the

wrong path memory accesses. However, a high threshold decreases the performance

of the processor significantly. Due to high correct prediction rates of mispredicted

branches, the wrong path memory accesses cannot be eliminated without impacting

the performance significantly. The probability-based memory access controller is

more beneficial when the mispredicting branches have low correct prediction rates.

Table 7.1: Summary of results for processor with dynamic threshold

Effects of Dynamic Threshold Average Maximum

Dynamic Power Consumption ↓ by 2.08% ↓ by 9.55%
Performance (IPC) ↓ by 0.96% ↓ by 4.26%
IPC/Watt ↑ by 1.15% ↑ by 6.3%
Total Instructions Executed ↓ by 2.31% ↓ by 9.03%
Wrong Path Instructions Executed ↓ by 10.73% ↓ by 30.97%
Total Memory Requests ↓ by 5.51% ↓ by 18.76%
Wrong Path Memory Requests ↓ by 20.75% ↓ by 51.02%
Cache Pollution ↓ by 0.80% ↓ by 10.66%
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