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ABSTRACT 

 

The 230Th Method of determining mass accumulation rates (MARs) assumes little to no 

fractionation during lateral syndepositional processes occurring at the seafloor. We 

examine 230Th inventories in paired jumbo piston core sediments from paired winnowed 

and focused sites to radiocarbon-dated multicore sediments at the Carnegie Ridge in the 

Panama Basin. Radiocarbon-derived coarse content MARs, likely representative of 

vertical rain of particles poorly transported by sea bottom currents, are spatially and 

temporally similar, whereas measured xs230Th-derived MARs are lower than age-model-

derived MARs at both sites. 230Th-normalization suggests focusing factors ranging from 

2 at “thin” site 11JC, and 5 at “thick” site 17JC, with little temporal differences between 

MIS 1 and MIS 2. 230Th-normalized coarse content shows no temporal or spatial 

patterns, whereas age-model-derived coarse content yields the expected temporal 

similarities between both sites. The latter method also suggests higher productivity 

(higher deposition rates) during MIS 2 compared to those measured during MIS 1. 230Th-

normalized measurements of one component of the fine-grained fraction, dust fraction as 

estimated with the 232Th concentrations, provides evidence for the utility of 230Th 

constant-flux proxy in highly focused regions in the ocean.  
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1. INTRODUCTION

Sedimentary mass accumulation rates (MARs) in the deep ocean are crucial to studies of 

paleoceanography and paleoclimatology. MARs, which are burial fluxes of sedimentary 

material at the seafloor, typically change in direct response to changes in climate.  For 

example:  1) increases in biological production, CaCO3, coming from an increase in 

planktic foraminifer, in the surface ocean (and consequent increases in rates of carbon 

burial) may result in a decrease of atmospheric CO2, which can result in cooling of the 

planet; or 2) increases in the flux of wind-blown detrital material deposited the deep 

ocean may be related to changes in atmospheric circulation which, in turn, can regulate 

the transport of heat from the equator to the poles. 

The standard MAR calculation by multiplying the linear sedimentation rate between 

dated horizons (LSR, increase in sediment thickness per unit time) with the sediment dry 

bulk density. The time horizons can be dated directly using radiocarbon analysis, or are 

indirectly estimated using oxygen-isotope stratigraphy or other stratigraphic correlation 

techniques to date horizons. This method of calculating sediment mass accumulation 

rates does not differentiate between sediments that were derived vertically (i.e., rained 

through the water column) from those that were redistributed horizontally by lateral deep 

ocean currents. 

Another technique for calculating MARs is known as the Constant-Flux Proxy (CFP) 

method (Suman and Bacon, 1989). The CFP method of calculating MARs assumes that 
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the flux of one sedimentary component to the seafloor is known and constant.  By 

simply measuring the concentration of this component in an interval of sediment the 

MAR can be calculated (Suman and Bacon, 1989). 230Th commonly is used as a 

constant-flux proxy essentially because of its distinct geochemical behavior in the ocean. 

230Th, which has a short residence time (decades; Bacon and Anderson, 1982) in the 

ocean because of its insolubility, is produced by the decay of its parent, 234U, which has 

a long residence time (~400 kyr, Henderson; 2002) and is homogenously distributed 

throughout the ocean.  When an atom of 230Th is produced by the decay of 234U, the 

thorium will be rapidly scavenged onto water column particles, which then settle to the 

seafloor.  Hence, the sediment deposited on the seafloor will have an excess of 230Th that 

is not in equilibrium with the 234U in the sediment.  It is assumed that the flux of 230Th 

falling to the ocean floor matches the rate of production of 230Th in the water column 

directly above it due to the decay of dissolved 234U (Bacon, 1984). Therefore, by 

dividing the known production rate of 230Th by the 230Th concentration within a specific 

interval of sediment one can calculate the sediment MAR for that same interval. When it 

was realized that deposition rates of Th-230 frequently exceeded production rates in the 

water column, it was suggested that the added Th-230 was a measure of horizontal 

advection and deposition of sediment (Francois et al, 2004, or variety of references) and 

could be used to normalize away the horizontally redistributed component. 

In the eastern equatorial Pacific (EEP), marine sediment MARs calculated using the two 

methodologies outlined above are significantly different.  Specifically, sediment MARs 

near the equator calculated using the standard approach are always significantly greater 
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than those calculated using the 230Th CFP method (e.g., Marcantonio et al., 2014; Singh 

et al., 2011; Francois et al., 2007; Kienast et al., 2007; Loubere et al., 2004; Lyle et al., 

2005, 2007). In addition, the proportional difference between the two techniques is 

greater for sediment deposited during the last glacial interval (11500-25000 ybp) than 

those deposited during the Holocene. 

This dramatic difference is explained by invoking focusing, i.e., the lateral redistribution 

of sediment by deep-sea currents. Proponents of the 230Th technique suggest that by 

dividing the inventory of 230Th within an interval of sediment, for which a known 

amount of 230Th should be present, a sediment “focusing factor (ψ)” (Suman and Bacon, 

1989; Francois et al., 2004) can be calculated. Focusing Factors are calculated using the 

following formula: 

ψ =  
∫ (230𝑇ℎ𝑥𝑠,0)𝜌𝑟𝑑𝑟

𝑟2
𝑟1

𝛽𝑧(𝑡1−𝑡2)
… (1)

where r1 and r2 are sediment depths (cm), 𝜌𝑟 is mean dry bulk density (g/cm3), t1 and t2

are the corresponding sediment ages (kyr) for intervals r1 and r2, β is the production of 

230Th from 230Th decay in the water column (0.0267 
𝑑𝑝𝑚

𝑚3𝑦𝑟
) and z is the water depth (m). 

The xs230Th0 and 𝜌𝑟are averaged over the depth interval z1 to z2 in the sediment core.

When ψ>1, there is additional sediment that is being transported to the site laterally by 

deep-sea currents, while ψ<1 suggests that sediments are being winnowed from the site. 

In the EEP, ψ is almost always greater than 1 with the largest factors being ~4-
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5(Marcantonio et al., 2014; Singh et al., 2011: Kienast et al., 2008) at the equator and 

slightly south of the equator close to the Carnegie Ridge in the Panama Basin.  

Such high sediment focusing factors suggest that greater than 80% of the sediments in 

some regions of the Panama Basin were transported there via lateral sediment 

redistribution along the seafloor rather than by falling vertically by raining through the 

water column. Some suggest the assumptions inherent in the 230Th methodology are not 

valid and, that, therefore, interpretations of sediment focusing are exaggerated (Lyle et 

al., 2005; Lyle et al., 2007). The purpose of this thesis is to study the inventories of 230Th 

in the Panama Basin close to the Carnegie Ridge.  We look in detail at the focusing 

process by analyzing new cores from near the Carnegie Ridge in the Panama Basin, 

where 230Th-derived focusing factors are the highest in all of the Pacific Ocean.  We 

compare our 230Th record to those calculated by Singh et al. (2011) in similar regions of 

the Panama Basin and to those determined by Marcantonio et al. (2014) in some of the 

same multicores studied here. Our main emphasis will be to investigate particle sorting 

and how it affects 230Th inventories in the Panama Basin over the past 25 kyr. 
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2. METHODOLOGY 

 

2.1 Sampling and age models 

 

We sampled piston cores collected during an oceanographic research expedition in 

November 2010 (R/V Melville cruise MV1014). During this cruise, seismic surveying 

identified thicker-than-average sediment packages in regional basins that were 

potentially focused, and thinner-than-average sediment packages closer to ridge tops that 

were potentially winnowed.    We concentrate on material retrieved from the Carnegie 

Ridge (for location see Table 1, Figure 1), and compare 230Th inventories at (1) an 

apparently winnowed site on the north flank of Carnegie Ridge but where sediments still 

accumulate (MV1014-11JC and 9 MC), (2) a site at the base of Carnegie Ridge where 

excess sediments seem to have accumulated (MV1014-12JC; not compared in this 

paper), and a site on an abyssal hill near the equator but beyond the basin at the foot of 

the Carnegie Ridge (MV1014-17JC).  

In order to calculate meaningful 230Th inventories good age control is required. 

Sedimentary mass accumulation rates (MAR) are estimated by multiplying sediment dry 

bulk density with the linear sedimentation rate (LSR), calculated using dated sediment 

horizons which are typically derived from δ18O tie-point stratigraphy, volcanic ash 

chronology, correlation to nearby well-dated cores, or  from 14C dating. 

𝐵𝑢𝑙𝑘 𝑀𝐴𝑅 =  𝜌𝑑𝑟𝑦  × 𝐿𝑆𝑅 
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where 𝐿𝑆𝑅 =  (𝑧2 −  𝑧1) (𝑡2 − 𝑡1)⁄  (cm/kyr) and 𝜌𝑑𝑟𝑦 is the dry bulk density (𝑔/𝑐𝑚3),

z1 and z2 are sediment horizon depths 1 and 2 respectively (cm), and t1 and t2 are the 

corresponding sediment ages (kyr).  The MAR of a sediment component like CaCO3 is 

achieved by multiplying the bulk MAR by the weight fraction of the component in the 

sediment (e.g., 0.85 for a sediment with 85% CaCO3). 

To help construct age models, oxygen isotope analyses of specimens of the planktic 

foraminifer, N. dutertrei, were picked from the >250 µm fraction of samples taken every 

20 cm starting from the top of the piston cores.  The foraminifer samples were analyzed 

in the laboratory of Dr. Jean-Lynch Stieglitz at the Georgia Institute of Technology.   

The oxygen isotope analysis allowed marine isotope stage boundaries MIS 1-MIS 2 

(11500 ybp) and MIS 2-MIS 3 (25000 ybp) to be determined in piston cores 11JC and 

17JC (Table 2, Figures 2 and 3). 

Additional age tie-points were obtained by correlating CaCO3 concentrations in our 

piston core sediments with variations in CaCO3 concentrations in a nearby well-dated 

core (ME0005-24JC; Kienast et al,. 2007).  High-resolution XRF Ca analysis of core 

material was effectively used as a proxy for calcium carbonate concentrations (Lyle et 

al., 2012). Our piston cores (11JC, 12JC, 17JC) were scanned by an X-ray fluorescence 

(XRF) spectrometer at the Integrated Ocean Drilling Program (IODP) Gulf Coast 

Repository at the Texas A&M University campus. Each core was scanned at 10 mm 

intervals at 10 kV and scanned again at 50 kV. Both runs scanned for the following 

elements: Al, Si, P, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe, Rh, and Ba. Raw Ca peak areas are 
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first scaled to a median component concentration and then summed. The sum is 

normalized to 100%, using the equation  

𝑁𝑀𝑆𝐶 = 𝐶 × 100/(𝑟𝑎𝑤 𝑠𝑢𝑚)… (2) 

where NMSc is the normalized median-scaled value for the component and C is the 

median-scaled value of that component (Lyle et al,. 2012). A regionally abundant ash 

layer deposited at 84 ka (Drexler et al., 1980) was also used to correlate the various core 

depths to each other.  This ash layer occurs at 829.6 cm in core 12JC, 954.7 cm in core 

17JC, and 386.8 cm in core 11JC and 980 cm in 24JC.   Together, the Ca (proxy for 

CaCO3) correlations, the ash layer chronology and the oxygen isotope stratigraphy 

(Figures 2, 3, and 4) are used to generate a general chronological framework for 11JC, 

12JC, and 17JC (Table 3). 

2.2 Radionuclide isotope measurements 

 

Individual sediment intervals were sampled and dried (1-2 days) in the laboratory oven. 

After being homogenized with a mortar and pestle, 0.3-0.4 g of each sediment sample 

was spiked with known amounts of 229Th and 236U. The samples were then digested with 

a series of acids (HClO4, HNO3, HF, and HCl).  After dissolution, NH4OH was added to 

each sample (to generate a pH between 7 and 8) in order to precipitate Fe 

oxyhydroxides, onto which thorium and uranium are scavenged. 

The oxyhydroxide precipitates were centrifuged, washed, and then dissolved in 

hydrochloric acid, at which point, the samples were processed via traditional ion 
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exchange chromatography for U and Th.  The purified U and Th were analyzed on the 

Element XR high-resolution inductively-coupled plasma mass spectrometer (HR-ICP-

MS) at TAMU. Procedural blanks were analyzed throughout the course of this study and 

were insignificant, so that blank corrections were unnecessary. 
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3. RESULTS 

 

3.1 Age-model-derived sedimentation rates 

 

The δ18O analysis for core 11JC suggests that of the interval of sediment deposited 

during MIS 1 is from 0 to 48 cm (Figure 2). This corresponds to a linear sedimentation 

rate of about 4 cm/kyr. The sedimentation rate during the same interval for core 17JC is 

about 3 times as great (i.e., 12 cm/kyr) since the boundary between MIS 1 and MIS 2 

occurs deeper at 148 cm (Figure 3). MIS 2 spans 48 cm to 147 cm for 11JC, and 148 cm 

to 436 cm for 17JC. This suggests double the sedimentation rate for both cores during 

MIS 2 compared to that determined for MIS 1 (i.e., 8 and 24 cm/kyr for 11JC and 17JC, 

respectively). The 3-fold greater sedimentation rate at 17JC compared to that at 11JC is 

consistent with the seismic identification of a thicker sediment package at the down-

slope position of core 17JC (Figure 3). 

3.2 230Th-derived sediment mass accumulation rates 

 

230Th-derived MARs for 11JC were, on average, 1.7 g/cm2/kyr during MIS 1 and 2.6 

g/cm2/kyr during MIS 2 (Figure 5 and Table 4).  The lower 230Th-derived accumulation 

rates, compared to those derived using the age model, are suggestive of significant 

focusing, during both time periods even at this up-slope, more slowly deposited site. 

Core 17JC had 230Th-derived MARs of 1.5 g/cm2/kyr during MIS 1, and 1.8 g/cm2/kyr 

during MIS 2 (Figure 5 and Table 4). Age-model-derived MARs are much higher at this 
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site compared to those derived using the 230Th technique, and suggest significant 

amounts of focusing at this seismically-identified “thick” site. 

3.3 Sediment coarse fraction 

 

The coarse fraction (>63µm) was measured for piston cores 11JC and 17JC at evenly 

spaced depth intervals throughout MIS 1 and MIS 2. For core 11JC, during MIS 1, the 

coarse fraction ranged from 27.5% to 35.5%, with an average of 31.9% (Table 5). For 

the same core, during MIS 2, coarse fractions were higher and ranged between 58.1% 

and 77.2%, with an average of 67.6%. Coarse fractions for 17JC ranged from 18.5% to 

21.5%, with an average of 20.4%, and from 19.6% to 22.2%, with an average of 20.9%, 

during MIS 1 and MIS 2, respectively (Table 5). Holocene coarse fraction values for 

both piston cores are in agreeance well with paired multicore data (Marcantonio et al., 

2014).     
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4. DISCUSSION 

 

4.1 Differences between MAR estimates, focusing factors, and estimates of export 

production 

 

A comparison of the accumulation rates derived using the two methodologies (230Th-

derived versus age-model-derived) at both the thick (down slope) and thin sites (up 

slope) reveals significant inconsistencies (Figures 5 and 6).  While the 230Th-derived 

accumulation rates show minimal variability both spatially and temporally (Figure 5), 

the age-model-derived accumulation rates are more variable (Figure 6) at both scales.  

The differences in the two methodologies lead to a determination of the 230Th-derived 

focusing factors (see equation 2 above).  In a study of Carnegie multicores, which are 

paired with the piston cores studied here (9MC with 11JC, and 16MC with 17JC), it was 

suggested, using 230Th-derived focusing factors, that focusing of sediments occurred 

both close to the ridge top (9MC) and downslope from the ridge (16MC) (Marcantonio 

et al., 2014).  The up-slope, low sedimentation rate site (11JC) has 230Th-derived 

sediment focusing factors of about 2 (similar to the value of 1.5 at 9MC) during both 

MIS1 and MIS 2 (Figure 7, Table 6). Focusing factors at the down-slope, high 

sedimentation rate site (17JC) are significantly higher during both MIS 1 (4.8) and MIS 

2 (5.8) (Figure 7, Table 6) being two of the highest recorded in the equatorial Pacific. 

This analysis of lower (9MC, 11JC) versus higher (16MC, 17JC) 230Th-derived sediment 

focusing factors is consistent with the sediment isopach map since the ash layer 

deposited at 84 ka (Figure 18, Brooks, 2014) and with the relative position of the ash 

layer in the analyzed cores (Figure 4).   
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The 230Th technique of estimating sediment mass accumulation rates (MARs) was 

assessed recently and determined that for regions in which sediment focusing by deep-

sea currents is known to occur there can be significant fractionation of fine particles 

from coarser particles (Marcantonio et al., 2014).  Such fractionation can bias 230Th-

derived MARs such that they are inaccurate representations of vertical deposition rates.  

Marcantonio et al. (2014) suggested that age-model-derived MARs of the coarse-grained 

fraction may be a better representation of the rate of particles falling from the surface 

ocean in regions of the seafloor in which sediment was redistributed laterally by deep-

sea currents.  Since the >63 µm fraction of the sediment is unlikely to be as affected by 

such currents (i.e. 20-25 m/s needed, McCave et al., 2006), the age-model-derived 

MARs of this fraction should reflect the true vertical deposition rates.  In the absence of 

grain size fractionation, as is assumed in the 230Th technique, one would expect little 

difference in the relative variability of 230Th-derived MARs and age-model-derived 

vertical deposition rates. 

The age-model-derived coarse content accumulation rates are plotted in Figure 8. The 

two most important features are that the coarse content accumulation rates are a) similar 

at both the thin (11JC) and thick (17JC) sites during the same time intervals (i.e., MIS 1 

and MIS 2), and b) are 2.5-3 times higher during MIS 2 than those determined during 

MIS 2.  The similar deposition rates measured at each site during the same time period 

are to be expected given the proximity (~54 km) of sites 11JC and 17JC (Figure 1).  

More importantly, however, is that the higher vertical deposition rates are likely 

indicative of greater primary production during MIS 2 in this region of the EEP.  While 
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some EEP studies based on MARs suggest there were greater fluxes during glacial 

events (Lyle et al., 2002; Paytan et al., 2004), others shows minor glacial to interglacial 

variations in the fluxes (Marcantonio et al., 2001; Higgins et al., 2002; Loubere et al., 

2004). 

Notably, the 230Th-derived MARs (Figure 5), which are thought to reflect vertical 

deposition rates, have some semblance to the patterns observed in age-model-derived 

coarse content accumulation rates (Figure 8). For example, at both sites 17JC and 11JC 

during MIS 1, similar 230Th-derived MARs are observed despite the greater than factor 

of 2 difference in sediment focusing factor.  Although at 11JC, the average 230Th-derived 

MAR during MIS 2 is higher than that derived during MIS 1, the extent of the increase 

of the apparent rain rate (~60%) is significantly lower than the 3-fold difference 

indicated by age-model-derived coarse content accumulation rate.  At 17JC, there is little 

difference between the 230Th-derived MARs measured during MIS 1 and MIS 2 in 

contrast to the 2.5-fold difference measured in the age-model-derived coarse content 

accumulation rates. Furthermore, the MIS 2 average 230Th-derived MAR for 17JC is 

significantly lower than the rate measured during the same time period for 11JC.  Given 

the proximity of the two sites, this is an unexpected result if 230Th-derived MARs are 

representing true vertical deposition rates.  Apparently, the likelihood of size 

fractionation effects that result in 230Th-derived MARs that are not representative of true 

MARS is greatest in regions that have undergone the greatest degree of sediment 

redistribution. 
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4.2 Constraints on 230Th fluxes due to grain size fractionation effects 

 

Dissolved thorium in the water column is highly particle reactive and gets preferentially 

scavenged onto fine-grained silt and clay-sized particles (Kretschmer et al., 2010). This 

is due to the greater number of reactive surfaces on the smaller particles. For example, it 

was suggested that more than 90% of the total thorium is in grains <20 μm in size 

(Kretschmer et al., 2010).  On the other hand, only 2-4 % of all 230Thxs was in the coarse-

grained fraction (i.e., >63 μm). Once the fine particles settle to the seafloor they can be 

resuspended and transported depending on the velocity of the bottom currents.  It is 

highly unlikely that the coarse fraction would be redistributed by the typical weak 

currents in the deep sea (Masson et al., 2004, McCave et al., 2006).  Oddly, in a study of 

drift deposits of the Blake Nose in the North Atlantic, that although the sediments 

contained enhanced concentrations of fine-grained particles (i.e., likely redistribution has 

occurred) the 230Th systematics were not disturbed (McGee et al. 2010).  They explained 

this by pointing to the potential cohesive effect that moderate-strong currents have on the 

<10 m grain size fraction (McCave, 2008).  This hypothesis led Marcantonio et al. 

(2014) to a suggestion that weak bottom currents, such as those influence by tidal action 

in the Panama Basin (1-2 cm/s, Gardner et al., 1984), are actually better at separating the 

fine- from the coarse-grained sediments (Marcantonio et al., 2014). Similarly, data from 

the central equatorial Pacific suggests a 230Th-enriched nepheloid layer near the sea floor 

that causes enhanced apparent deposition in sediment traps within 500 m of the bottom 

(Lyle et al., 2014).   
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Lateral focusing of sediments at the Carnegie Ridge sites likely fractionates the fine-

grained and coarse-grained sediments and, in the process causes artifacts in the 230Th-

derived MARs.  Given the greater concentration of 230Th in fine particles, sediments that 

have undergone significant focusing and, thus, fractionation of the fines, should produce 

230Th-derived MARs that are lower than the actual MARs. At 11JC, where the sediment 

pile is not as thick, 230Th inventories are higher than those expected from water column 

production alone, but only by two-fold. In contrast, at 17JC (thick site), 230Th inventories 

are about five times than those estimated from water production. One would expect, 

therefore, a greater underestimation of true MARs at the 17JC site, than that at the 11JC 

site. A comparison between the 230Th-derived MARs and the age-model-derived coarse 

content MAR should help address the likelihood of this expectation. Indeed, the pattern 

of changing MARs between MIS 1 and MIS 2 at 11JC is similar for both 230Th- and age-

model-derived coarse content MARs (Figures 8 and 9).  That is, an approximate two-

fold increase from Holocene to glacial is determined for both deposition rate estimations. 

On the other hand, at 17JC, the 230Th-derived MARs are lower than those derived for 

11JC during MIS 1 and MIS 2.  Furthermore, the pattern of a significant increase in 

deposition rates from MIS 1 to MIS 2 is not observed in the 230Th-derived MARs, as 

they are in the age-model-derived coarse content MARs (Figures 5 and 6).   It is likely, 

therefore, that the 230Th-derived MARs are significantly underestimated at 17JC, the 

thicker site with the greatest focusing. 

230Th-derived MARs underestimate 230Th-derived fluxes of the coarse content (Figure 9) 

by 50%, at the slightly focused site of 11JC, to an order of magnitude, at the highly 



 

16 
 

 

focused site of 17JC.  These results are similar to those determined for the multicores 

9MC and 16MC (Marcantonio et al., 2014).  Previous work, which normalized CaCO3 

content (predominantly in the coarse-grained fractions) to 230Th concentrations may need 

to be rethought if the study areas had undergone significant sediment focusing 

(Marcantonio et al., 2014).  On the other hand, those fine-grained components of the 

sediment (including the dust, barite, and opal contents) have 230Th-derived fluxes that 

are likely meaningful, at least in a qualitative manner (Marcantonio et al., 2014).  Here 

we corroborate this conclusion in our determination of the 230Th-derived 232Th (a proxy 

for the sedimentary lithogenic dust component) fluxes. In Figure 10 we plot these fluxes 

for both MIS 1 and MIS 2 at both Carnegie sites.  If the 230Th-derived 232Th fluxes were 

to represent the rain of dust falling through the water column at each site, one would 

expect the temporal slices of these values to be similar.  This expectation is based on the 

proximity of the sites (~54 km apart) and the nature of the relative homogeneity of dust 

fallout over the ocean.  For the Holocene, the difference between 232Th fluxes at 11JC 

and 17JC is only about 16%.  Similarly, during MIS 2, the difference between the same 

fluxes at the sites is also approximately 20%.  Assuming the 232Th fluxes represent dust 

fluxes, it is important to note that the temporal variability in dust flux from the last 

glacial to the Holocene is small, being 35% smaller at the position of 17JC, and 2% 

temporal variability at 11 JC.   
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5. CONCLUSIONS 

 

In the Panama Basin, measured xs230Th-derived MARs (excess) are lower than age-

model derived MARs at two sites, one that has a thin and the other a thick sediment pile.  

Normalization to 230Th concentrations suggests focusing factors that range from about 2 

(thin site, 11JC) to 5 (thick site, 17JC), with little difference in these factors on glacial-

interglacial timescales.  The coarse content at each of these sites should be representative 

of the preserved deposition of particles from the surface since these particles are large 

enough that typical tidal deep-sea currents (1-2 cm/s, Gardner et al., 1984) in the Panama 

Basin are likely unable to transport them. However, when these coarse contents are 

normalized to 230Th concentrations, the results are erratic with no spatial or temporal 

patterns observed. On the other hand, normalizing the coarse content to the age-model-

derived MAR produces the expected result of similar rain rates at both sites despite the 

greater extent of focusing at the thick (17JC) compared to the thin (11JC) site.   

Additionally, using the latter method suggests greater deposition rates (higher 

productivity) during the last glacial compared to those measured during the Holocene.  

Compared to the results for the coarse-grained fraction of the sediment, 230Th-

normalized measurements of one component of the fine-grained fraction (the dust 

fraction as estimated with the 232Th concentrations) provide evidence for the usefulness 

of 230Th constant-flux proxy in highly focused regions in the ocean. 
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APPENDIX A FIGURES 

This appendix includes figures to be used in conjunction with the text. 
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Figure 1. Bathymetry map of the sites in the study area. 

24JC is at the same location as IODP Site 1240. Red indicates shallower depths and blue indicates deeper ocean 

bottom depths. 
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Figure 2. Oxygen isotope record of piston core 11JC. 

Marine Isotope Stage (MIS) 1 and 2 boundary at 48 cm indicates end of Last Glacial Maximum (LGM) and beginning 

of Holocene and MIS2-MIS3 boundary at 147cm depth indicates beginning of LGM. Sedimentation rate during MIS 2 

is twice the rate during MIS 1.
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Figure 3. Oxygen isotope record of piston core 17JC. 

Marine Isotope Stage (MIS) 1 and 2 boundary at 148 cm indicates end of Last Glacial Maximum (LGM) and 

beginning of Holocene and MIS2-MIS3 boundary at 436cm depth indicates beginning of LGM. Sedimentation rate 

during MIS 2 is twice the rate during MIS 1. 
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Figure 4. XRF Ca – CaCO3 correlative stratigraphy at Carnegie Sites in the Panama Basin. 

Ash layer dated to be 84 kya is used as a tie point for chronostratigraphy of these cores 
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Figure 5. 230Th-derived MARs. 

MIS 2 has a temporal increase of MARs for both core sites. Sites 11JC has roughly 30% higher values than downslope 

17JC.
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Figure 6. Age-model-derived sediment MARs. 

MIS 2 has a temporal increase of MARs for both core sites. Sites 17JC has roughly 250-300% higher values than 

upslope 11JC. 
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Figure 7. Sediment focusing factors. 

Expected focusing at downslope 17JC is seen, and definitively higher values than 11JC, which also shows sediment 

focusing. 
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Figure 8. Age-model-derived coarse content accumulation rates. 

Temporal and spatial similarities expected to be seen are shown in both cores. Higher productivity during MIS 2 

indicated. 
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Figure 9. 230Th-normalized coarse content accumulation rates. 

Expected MIS 2 increase is seen, however higher core 11JC MIS 2 values indicate 230Th inconsistency with expected 

result if Constant Flux Proxy (CFP) method was the correct method. 
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Figure 10. 230Th-derived 232Th accumulation rates. 

Dust flux (<10 µm) is accurately measured using 230Th, as variability between cores is no greater than 35%, and 17JC 

is consistently only has 16-20% variability spatially with core 11JC. 
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APPENDIX B TABLES 

This appendix includes tables to be used in conjunction with the text. 
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Table 1. Cores from the Melville cruise and other studies. 

MV = Melville cruise, MC = multicore, JC = jumbo piston core. 

Core ID Latitude Longitude Water Depth (m) 

MV1014-02-09MC 00° 41.630’ S 85° 19.996’ W 2452 

MV1014-02-11JC 00° 41.630’ S 85° 19.996’ W 2452 

MV1014-02-12JC 00° 28.2539’ S 86° 02.9205’ W 2821 

MV1014-02-16MC 00° 10.8297’ S 85° 52.0042’ W 2486 

MV1014-02-17JC 00° 10.8297’ S 85° 52.0042’ W 2486 

ME0005-24JC 00° 01.302’ N 86° 27.788’ W 2941 
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Table 2. Oxygen isotope tie points for piston cores 11JC and 17JC. 

Core ID Core Top Age 

(ybp) 

MIS1-MIS2 

boundary 

MIS2-MIS3 

boundary 

MV1014-02-11JC 5049 48 147 

MV1014-02-17JC 2000 148 436 
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Table 3. Oxygen isotope age model data. 

Interpolated using constant sedimentation rates between tie points) for piston cores 11JC and 17JC. End of MIS 2 and 

beginning of Holocene is 11.5 kya, and beginning of MIS 2 is 25 kya. 

CORE Depth 

(cm) 

Age model (yr) 

11JC 1 5049 

11 6527 

21 7871 

31 9215 

41 10559 

51 11903 

61 13166 

71 14428 

81 15691 

91 16954 

101 18216 

17JC 1 2000 

21 3348 

41 4632 

61 5916 

81 7199 

101 8483 

121 9767 

141 11051 

161 12127 
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Table 3. Continued 

181 12995 

201 13863 

221 14731 

241 15599 

261 16467 

281 17335 

301 18203 

321 19071 

341 19939 

361 20807 

381 21675 

401 22543 

421 23411 

441 24279 

461 25147 

Depth 

(cm) 

Age model (yr) 
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Table 4. Comparison of 230Th-derived and age-model-derived bulk and coarse-grained accumulation rates. 

Core 

ID 

AR (g cm-2 kyr-1) Coarse-grained (>63µm) AR (g cm-2 

kyr-1) 

230Th-derived Age-Model-

derived 

230Th-derived Age-Model-

derived 

MIS I MIS II MIS I MIS II MIS I MIS II MIS I MIS II 

9MC 1.6 - 2.4 - 0.50 - 0.74 - 

16MC 1.1 - 3.4 - 0.16 - 0.50 - 

11JC 1.7 2.6 3.3 5.0 0.54 1.8 1.1 3.4 

17JC 1.5 1.8 7.1 13.8 0.30 0.38 1.5 2.9 
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Table 5. Grain size fractionation. 

Coarse rate increases two-fold from MIS 1 to MIS 2 does not match focusing in other data. 

Core ID Depth (cm) Coarse % MIS 1 and 2 

Averages 

11JC 0-2 32.7 31.9 

10-12 27.5 

20-22 35.5 

60-62 58.1 67.6 

70-72 77.2 

80-82 67.4 

17JC 0-2 18.5 20.4 

60-62 21.5 

140-142 21.2 

260-262 20.9 20.9 

300-302 19.6 

320-322 22.2 
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Table 6. 230Th-derived focusing factors. 

Focusing Factors (FF) at 11JC are consistently 2, indicating sediment focusing, in agreeance with 9MC. Downslope 

17JC shows expected increase in FF over upslope 11JC. 11JC does not show expected increase in productivity during 

MIS 2, as shown in core 17JC during MIS 2. 

Core ID FF MIS I FF MIS II FF (Glacial/Holocene) 

9MC 1.5 - - 

16MC 3.7 - - 

11JC 2.0 1.9 1.0 

17JC 4.8 5.8 1.2 
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Table 7. Data 

CORE Depth 

(cm) 

xs230Th(o)
a 

(dpm g-1) 

232Th 

(µg g-1) 

230Th-derived 

MARb 

(g cm-2 kyr-1) 

Uauthigenic
a 

(µg g-1) 

11JC 1 4.38 0.57 1.50 0.37 

11 4.56 0.61 1.39 0.90 

21 3.96 0.60 1.54 2.83 

31 3.23 0.49 1.83 2.19 

41 2.65 0.38 2.18 2.72 

51 2.14 0.33 2.58 2.24 

61 2.15 0.33 2.49 3.02 

71 1.64 0.32 3.02 3.72 

81 1.49 0.35 3.06 3.53 

91 2.04 0.44 2.20 2.27 

101 1.83 0.44 2.30 2.08 

17JC 1 7.08 0.70 1.07 0.54 

21 7.18 0.68 1.06 1.71 

41 6.72 0.68 1.13 3.19 

61 4.90 0.49 1.55 3.33 

81 3.97 0.44 1.92 5.30 

101 4.56 0.40 1.67 4.87 

121 5.13 0.47 1.48 4.35 

141 4.00 0.39 1.90 6.18 

161 3.79 0.37 2.00 7.03 
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Table 7. Continued 

181 3.33 0.44 2.28 9.40 

201 3.37 0.58 2.26 11.48 

221 3.36 0.54 2.26 12.29 

241 3.36 0.56 2.26 10.42 

261 3.91 0.59 1.94 10.26 

281 4.56 0.68 1.67 10.93 

301 5.50 0.80 1.38 10.06 

321 4.32 0.69 1.76 10.74 

341 4.70 0.82 1.62 9.24 

361 4.83 0.66 1.57 6.25 

381 4.73 0.69 1.61 6.88 

401 4.89 0.76 1.55 8.09 

421 4.77 0.75 1.59 7.02 

441 4.91 0.73 1.55 7.20 

461 4.17 0.62 1.82 8.22 

Depth 

(cm) 

xs230Th(o)
a 

(dpm g-1) 

232Th 

(µg g-1) 

230Th-derived 

MARb 

(g cm-2 kyr-1) 

Uauthigenic
a 

(µg g-1) 




