
ON DEPENDENT DATA FETCHING IN CLOUD ENVIRONMENT

A Thesis

by

JIACHENG GU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jianer Chen
Committee Members, Sergiy Butenko

Anxiao (Andrew) Jiang
Head of Department, Dilma Da Silva

December 2015

Major Subject: Computer Science

Copyright 2015 Jiacheng Gu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79652025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

This work was motivated by the study of the file fetching process in a cloud

system, in particular by the recent progress in the model of transparent computing.

A transparent computing system may have many clients, each requesting a significant

set of files from the server, including user data and many commonly used softwares

(operating systems and apps). These files may have inherent dependence relations so

should be received by the clients in a specific topological order. On the other hand,

since many of these files are commonly used softwares, many clients may request

copies of the same files. This proposes an interesting problem on the server side of

how this kind of requests should be handled efficiently to improve the performance of

the system. In particular, we are interested in the processes that significantly reduce

the disk IO operations in the server, which are in general very time-consuming.

We propose a formal model for this problem and study its validity and correctness.

Heuristic algorithms for the problem are proposed and studied. Simulation results

are presented to compare the proposed heuristics and algorithms based on known

techniques in scheduling literature. 7% - 20% of the total disk IO can be reduced

via the optimizations proposed in this work.

ii

DEDICATION

To my parents, who always believe in me.

To my cat, who never cares.

To my girlfriend, who consistently supports me, especially when I am frustrated.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Jianer

Chen for his continuous support throughout my studies at Texas A&M University.

His guidance, patience and insights helped me in all the time of writing this thesis.

I could not have imagined having a better advisor for my master study.

Meanwhile, I would like to thank my committee members, Dr. Sergiy Butenko

and Dr. Anxiao Jiang, for their valuable suggestions and encouragement. My thanks

also goes to Dr. Kehua Guo, for all the time working together at the office and for

all the discussions we had about or beyond the project.

Lastly, I want to thank my family for always believing in me.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION . 1

2. RELATED WORK . 5

3. SCHEDULING MODEL AND PROBLEM DESCRIPTION 10

3.1 Scheduling Model . 10
3.2 Single-Server Scheduling . 12
3.3 Multi-Server Scheduling . 19

4. SOLUTION FOR THE VSG PROBLEM 20

4.1 Preliminary . 20
4.2 A Heuristic Algorithm for VSG Problem 24

5. SOLUTION FOR THE JP PROBLEM . 28

6. SIMULATION AND RESULTS . 30

6.1 Simulation Setup . 30
6.2 Simulation Results and Analysis . 32

6.2.1 The VSG Problem . 32
6.2.2 The JP Problem . 40

7. FUTURE WORK . 44

v

7.1 More Topics for File Fetching Process 44
7.2 Weight Assignment . 45
7.3 Beyond File Fetching . 45

8. CONCLUSION . 47

REFERENCES . 48

APPENDIX . 52

vi

LIST OF FIGURES

FIGURE Page

1.1 Transparent Computing Request Pattern 2

2.1 Transparent Computing Architecture 6

2.2 Scheduling Model for File Fetching Process. 8

3.1 Job and Subjob . 12

3.2 Segment Example. S5,8 = [s5, s6, s7, s8], where F5,8 = {file1, f ile2}
and S5,8.size = file1.size+ file2.size. 15

3.3 File Fetching Cost Example . 17

6.1 Sequence Generation via Round-Robin Scheduling 31

6.2 Performance of Candidate Solutions upon Mean µ. σ = 0.25, |Γ| = 20,
|VGi
| = 50, r = 0.3, Buffer Size = 1000, p = 30%. 33

6.3 Performance of Candidate Solutions upon Standard Deviation σ. µ =
3, |Γ| = 20, |VGi

| = 50, r = 0.3, Buffer Size = 1000, p = 30%. 34

6.4 Performance of Candidate Solutions upon the Size of Γ. µ = 3, σ =
0.25, |VGi

| = 50, r = 0.3, Buffer Size = 1000, p = 30%. 35

6.5 Performance of Candidate Solutions upon the Size of Each DAG Gi.
µ = 3, σ = 0.25, |Γ| = 20, r = 0.3, Buffer Size = 1000, p = 30%. . . . 36

6.6 Performance of Candidate Solutions upon the Amount of Edges Con-
nected to Each Vertex (r). µ = 3, σ = 0.25, |Γ| = 20, |VGi

| = 50,
Buffer Size = 1000, p = 30%. 37

6.7 Performance of Candidate Solutions upon the size of Memory Buffer.
µ = 3, σ = 0.25, |Γ| = 20, |VGi

| = 50, r = 0.3, p = 30%. 38

6.8 Performance of Candidate Solutions upon proportion p. µ = 3, σ =
0.25, |Γ| = 20, |VGi

| = 50, r = 0.3, Buffer Size = 1000. 39

6.9 The Largest Cost for a Single Server on α 41

vii

6.10 The Average Cost for All Servers on α 41

6.11 The Largest Cost for a Single Server on n/m 42

6.12 The Average Cost for All Servers on n/m 43

viii

LIST OF TABLES

TABLE Page

3.1 Target File Size . 17

3.2 Cost for Two Jobs with Difference Sequence 18

8.1 P (S) Values for Figure 6.2 . 52

8.2 P (S) Values for Figure 6.3 . 52

8.3 P (S) Values for Figure 6.4 . 53

8.4 P (S) Values for Figure 6.5 . 53

8.5 P (S) Values for Figure 6.6 . 53

8.6 P (S) Values for Figure 6.7 . 54

8.7 P (S) Values for Figure 6.8 . 54

8.8 P (S) Values for Figure 6.9 and 6.10 55

8.9 P (S) Values for Figure 6.11 and 6.12 55

ix

1. INTRODUCTION

As the emerging of Cloud Computing, the job scheduling has become a critical

operation for the performance and utilization of clusters. A typical cluster, no mat-

ter it is applied with distributed file system like Google File System (GFS) [6] or

cloud computing platform like Microsoft Azure, is faced with massive amount of task

requests continuously. Meanwhile, these task requests tend to have a huge diversity

concerning the computing power and hardware resources that need to be utilized.

Take Transparent Computing (TC) [22] as an example to illustrate the chal-

lenges in large-scale cluster scheduling. TC is an emerging service-oriented comput-

ing paradigm that aims at serving users with heterogenous OSes and applications on

terminal devices. Users are not required to pre-install any OSes or applications on

their devices, while all codes and files will be dynamically loaded from the clusters

upon users’ needs. The amount of requests from a single user can be considerable,

especially when they log in a device for the first time. Meanwhile, these requests

have huge diversity in completion time. Some may request for configuration files

with size below KB, while some may request for OS images with size beyond GB.

Therefore, the scheduling’s efficiency greatly determines whether the cluster can fit

such scalability in the amount and volume of task requests.

The increasing quantity and complexity of requests raise more potential for the

optimization of scheduling algorithms. There are two major facts that motivate this

work.

• The dependency between subjobs freqsubjobsuently exist. In a system with

service-oriented architecture (like TC example above), users deliver their ser-

vice requests to the cluster and these requests can be further decomposed into

1

���������	
������������

����������������

��������	
�	�

����������

���������

	��
���

�������������

�������

����������

���������

���������

	�
��������

���

�����������

�����

�������

����

������������

Figure 1.1: Transparent Computing Request Pattern

2

a series of subjobs with inter-dependencies. Similar case holds for database

systems with SQL-based query language like SCOPE [2]. A SCOPE execution

can be parsed into several subjobs which are presented in a directed acyclic

graph (DAG). Figure 1.1 shows how the complicated tasks are presented in the

cluster.

• Some requests from the clients are identical. Microsoft proposed their schedul-

ing framework Apollo [1] in 2014. Apollo is designed to handle clients’ requests

at a expecting rate more than 50k requests/sec. Although the user behaviors

may pull various requests, it is a strong argument that there exist requests

for identical data among such a considerable number of base. Such identical

requests appear more frequent in the TC system or clusters working as a ap-

plication store. Users tend to frequently request OS images and applications.

Some files will become ’hot spots’ due to the newly released updates for popular

applications.

In this work, we fully consider the challenges for the scheduling process in a clus-

ter and aim at optimizing it. The major target for the optimization is to explore

identical tasks and schedule them in a manner that their overall cost, like disk IO

or computing time, will be reduced. Meanwhile, the inter-dependency between tasks

and the performance on the client’s side are also highly valued during the optimiza-

tion. Following are the contributions of this work.

• Abstracts a scheduling model based on Transparent Computing architecture.

The model serves file requests from multi-clients and schedule these requests

to servers in the cluster.

• Focuses on the file fetching process in awareness of the cost saving which is

brought by identical file requests from various clients.

3

• Heuristic algorithms are proposed to optimize the file fetching process.

• The heuristic algorithms are evaluated under the scheduling model, in compar-

ison with traditional scheduling methods.

The rest of the thesis is organized as follows. Section 2 includes the related

works for this research. Section 3 presents the scheduling model used for the file

fetching process and defines two scheduling problems — Single-Server Valid Sequence

Generation (VSG) problem and Multi-Server Job Partition (JP) problem. Then

section 4 proposes heuristic algorithm for these two problems. In section 5, the

heuristic algorithms are evaluated in reference to other used solutions for file fetching

process. Section 6 will cover some future topics concerning the model proposed in

the work.

4

2. RELATED WORK

The studies on job scheduling are always the core of performance optimization in

computer system. There exist some classic problems that can be adapted to cloud

scheduling and they significantly inspire this work.

1. Two and three stages production scheduling [10] is proposed by Dr. S. M. John-

son. The work proposed the decision rule that leads to an optimal scheduling

solution for the two-stage case. A restricted case of three stage problem was

also solved [10].

2. Flow shop sequencing problem [14] [16] extended the scheduling problem to

a more general n × m flow shop problem.Considering the heuristic methods

that have been proposed for this problem, the major objectives are usually

minimizing the overall makespan or minimizing the idle time of underlying

machines.

3. List scheduling [20] is another scheduling topic that are frequently used in in-

struction scheduling on multiprocessors [3] and scheduling upon heterogeneous

systems [17]. List scheduling problem adapts direct acyclic graphs (DAG) to

represent inter-dependencies of jobs, keeps a ready queue for nodes that are

ready to be processed and assigns priorities to nodes in DAG to help deciding

the processing order. These features siginificantly inspires this work.

In this work, the optimization of file fetching process is defined as a sequencing

problem upon multiple Directed Acyclic Graphs (DAGs).

Moreover, this work is motivated by the real need in Transparent Computing

(TC) Project. TC follows a Service-Oriented Architecture (SOA) [23]. Users request

5

all services from the cloud without storing any OSes or applications locally. Such ser-

vices are secured by pervasive network across heterogeneous software and hardware

platforms [24]. Figure 2.1 shows a basic service architecture of TC.

TransOS Server

Linux

Linux

Apps

Windows

Windows

Apps

Android

Android

Apps

User Data

�

network

Client

Terminal

Access Protocol

Figure 2.1: Transparent Computing Architecture

As shown in figure 2.1, there are two key features, via which users can get perva-

sive access to TC service. One is TransOS (Transparent Operating System) server

and the other is pervasive network. TransOS is responsible for access control, job

scheduling and data management. Client terminals are light-weighted devices which

6

only needs to locally store Basic Input and Output System (BIOS) and a small

fraction of booting protocols for the devices.

Concerning the design and implementation of TC infrastructure, the study [11]

points out critical issues in scheduling problems. Therefore, the research will validate

and evaluate the scheduling algorithms in an infrastructure that is abstracted with

reference to Transparent Computing [22], Apollo from Microsoft [1] and GFS from

Google [6]. The data fetching process is the major perspective and the research goal

is to minimize the file fetching cost as much as possible via taking benefits from those

identical requests from various clients.

Figure 2.2 represents the scheduling model used for this work. More details can

be found in Scheduling Model section. Centralized metadata severs (or Job Manager)

is a common solution nowadays for data center. A wide range of researches has been

proposed upon the design of Job Manager or Metadata Server. Resource Monitor, as

part of Job Manager, involves topics like dynamic resource provisioning and shared

resource pooling [13] [7]. Technical solutions to design an efficient Resource Monitor

includes hierarchy listen/announce protocol [12] or peer-to-peer self-organizational

protocol [18].

To optimize the file fetching process, finding the bottleneck is the first task to

start with. As proposed in [21], performance barriers emerge along with salient

features of cloud environment. One of them is the high-volume I/O due to server

consolidation and scalability in expansion. Both disk I/O and network bandwidth

are critical to the file fetching process in this work. Moreover, compared to network

bandwidth, the Hard Disk Drive (HDD) has a slower growth in its bandwidth (close

to the physical constraint). Solid State Drive (SSD) does bring a huge improvement

in local storage performance. However, its application is limited by its high cost and

cannot replace HDD as the major storage in the current data centers. Therefore,

7

�
�
�
�
�
�
�
�
�
	

�
�
�
�
�
�

���������

�
��
�
�
�
�

�
�
�
�
�
�
�
�
�
	
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�� �
�
�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�
�
�

�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

… ………
… ………
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
	
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�	
�
��

�
�
�	

�
�

F
ig
u
re

2.
2:

S
ch
ed
u
li
n
g
M
o
d
el

fo
r
F
il
e
F
et
ch
in
g
P
ro
ce
ss
.

8

in this work, the major barrier to be optimized will be the disk I/O. Although the

mathematical model is formatted in a more general way, the original motivation is

to save the disk I/O.

Therefore, job scheduling is considered as the breakpoint for such I/O bottleneck.

There are diverse researches on estimation based scheduler. Such scheduler assigns

jobs to underlying servers based workload estimation. The Job Manager dynamically

collects information of cloud resources (latency, bandwidth, queue status, etc) via

Resource Monitor. A classic algorithm used to balance the workload is stable match-

ing algorithm [5]. On the server side, most infrastructures use regular topological

sorting or either execute all the tasks in a FIFO manner.

9

3. SCHEDULING MODEL AND PROBLEM DESCRIPTION

3.1 Scheduling Model

The services based on cloud computing are diversified. The definition and tax-

onomy of cloud computing vary rapidly as new services are emerging all the time.

However, most of these services are faced with the challenges mentioned in the last

section: the amount of users and the cost of jobs scale considerably for each server

in the cluster. In this section, a scheduling model will be presented and a formal

definition upon the file fetching problem in the cloud environment will be given.

Figure 2.2 presents the model that will be used along this work. The model is

abstracted from common architectures of cloud-based services [15] [22] [4]. First of

all, the model in Figure 2.2 follows a basic Service Oriented Architecture (SOA),

where client’s requests are addressed in the view of ’services’ and it is the cluster’s

responsibility to interpret service requests into concrete jobs. The types of clients are

not limited here; it can be laptops, smart phones, tablets or any devices capable to get

access to the system. Meanwhile, the network connections between the clients and

the cluster are not limited to any specific types of access as well. Yet the performance

of the network IO does constrain the optimization, which will be discussed in the

later sections.

On the cluster side, the first step upon receiving a service request is to interpret

it into a corresponding job graph Gi, which includes all the subjobs needed to ac-

complish the request. Meanwhile, Gi will be delivered to Job Manager (JM), which

has three major components related to the scheduling process — Resource Monitor,

I/O Queue and Estimation-Based Scheduler. The first one is Resource Monitor. Its

job lies in keeping track of the performance and availability of underlying servers.

10

Meanwhile, the Resource Monitor will be responsible to collect heartbeat messages

within the cluster. These messages can bring periodical feedbacks concerning the

workloads and failure/recovery status. The I/O queue stores and manages all the

job requests and its corresponding information like deadline, request source and most

importantly the job graphs (formatted as DAGs) . Then the estimated-based sched-

uler will schedule the receiving jobs based on their cost estimations and workload

feedback from Resource Monitor.

Upon receiving job assignments from the Job Manager, the server will schedule all

the subjobs from received job graphs into its local sequence. This is the major process

this work will focus on. When the amount of jobs is huge and identical subjobs widely

exist, the scheduling on a single server has the potential to be optimized.

In summary, when a job is requested to the cloud, it will go through two schedul-

ing stages.

1. Partition. Happens at Job Manager. JM will interpret all the requests it

received into DAGs. Then distribute these DAGs to underlying servers based

on criteria like job cost, server’s workload and latency etc.

2. Sequencing. Happens at each single server. The server will schedule all the

DAGs it received from JM into a local sequence. Then the server will execute

all the subjobs following the sequential order.

Here are some essential concepts related to the scheduling optimization.

• Job Graph. Each Job from clients is interpreted as a Directed Acyclic Graph

(DAG). Each vertex in the DAG represents a subjob and each directed edge

indicates the dependency relationship between two subjobs.

11

• Subjob Sequence. The sequence includes all the subjobs (vertices) from all the

job graphs (DAG) received on one server and can be executed in serial order.

• Weight. Each subjob (vertex) will be assigned with a Weight value which will

help the scheduler determine which subjob should be executed next.

For a more general description, a job can be a service request from a client like

”Update and Run Facebook Application on an Andriod Phone”. Meanwhile, this

job will be interpreted as a DAG Gi, where each vertex represents a subjob. Each

subjob includes fetching and delivering one specific file for the client.

Figure 3.1: Job and Subjob

3.2 Single-Server Scheduling

Figure 3.1 illustrates the basic information concerning job and subjob in the

model. Each job is requested by one source client for a service request.

12

During the partition stage, the JM will interpret jobs into DAGs and deliver

these DAGs to the underlying m machines via estimation-based scheduler, where

the server set is Ω = {M1,M2, ...,Mm}. A single server is assumed to have n job

DAGs needed to be scheduled and executed. We define the graph set Γ on a single

server as

Γ = {G1, G2, ..., Gn} (3.1)

A single job (interpreted as Gi) consists of k subjobs. Each subjob had a unique

identification in the set Γ and is associated with a target file. Note that two subjobs,

which can be either in the same job or in difference jobs in Γ, may be associated

with the same target file. Each subjob will have a cost c calculated according to its

context in a scheduled sequence S, which represents the cost of fetching the target

file from disk into memory buffer. (See the following discussion for more details.)

The local scheduler of each server will generate a subjob sequence S for file

fetching process. The validity of the sequence is defined in definition 3.1

Definition 3.1. Valid Sequence: Given a set of job DAGs Γ = {G1, G2, ..., Gn},

let VΓ be the collection of vertices and EΓ be the collection of edges in all DAGs in

set Γ. A valid subjob sequence S = [s1, s2, ..., sN] must satisfy:

1. Elements in the sequence S and subjobs in VΓ follow a bijective map function

π : S → VΓ. Each subjob vertex u in VΓ pairs with exactly one element in the

sequence S.

2. For any edge e(u, v) ∈ EΓ, where u = π(si) and v = π(sj), we must have i > j.

Based on definition 3.1, the following lemmas can be further derived

Corollary 3.2. For any path that can be found in a DAG in Γ starting at vertex

u = π(si) and ending at target vertex v = π(sj), we must have i > j .

13

Proof. The path in any DAG is composed of a series of vertices and directed edges.

Definition 3.1 (2) holds for all edges and its transitive feature will be contradicted if

i > j holds for any path in Γ.

Each server has a buffer B in main memory with certain pre-given size. Files will

be fetched from disk drive to buffer B and wait for further transmissions. When a

subjob si is being executed during the file fetching process, its cost will be reduced

in the following scenario.

• If the target file of si has been already loaded and still held in the buffer due

to foregoing subjobs, there is no need to fetch it again from disk drive and it

can be directly transmitted to the source client.

Therefore, when a subjob si is being executed, the context of buffer B is essential

for reducing cost. We introduce the concept of segment to help illustrating the file

fetching process. To begin with, here are some notations concerning the file fetching

process and will be further used along this work.

• f(si) refers to the target file associated with the subjob si.

• f(si).size indicates the size of memory space needed to accomplish si.

• si.source refers to the DAG that contains si.

• B.size denotes the total memory size reserved for buffer B.

Definition 3.3. Segment Given a valid sequence S = [s1, s2, ..., sN], a segment Si,j

is a subsequence of S, represented as [si, si+1, ..., sj] where i ≤ j.

Here are some features concerning a segment Si,j.

14

• Let set Fi,j be the file set that includes all the target files required for subjobs

in Si,j, i.e. Fi,j =
j∪

k=i

{f(sk)}.

• We define Si,j.size as the total size of all file objects in Fi,j, i.e Si,j.size =∑
f∈Fi,j

f.size. Si,j.size denotes the amount of memory size needed to accomplish

all subjobs in the segment Si,j.

s1 sN... s5

.........

...s6 s7 s8Subjob Sequence S

Map to Target File f(s5) f(s6) f(s7) f(s8)

Target File file1 file2

Segment

Figure 3.2: Segment Example. S5,8 = [s5, s6, s7, s8], where F5,8 = {file1, f ile2} and
S5,8.size = file1.size+ file2.size.

Figure 3.2 presents an example of the concept segment. With the definition of

segment, we can now move on to discuss the cost of each subjob in S. When the

buffer B is bounded with a certain size, the amount of files existing in B will become

restricted. A bounded segment is applied to help calculating the cost of a subjob sj.

Definition 3.4. Subjob Cost Given a valid sequence S = [s1, s2, ..., sN], when

calculating the cost for sj, let Si,j be the segment with the smallest possible i such

15

that Si,j.size ≤ B.size. Then the cost of the subjob sj will be calculated as

sj.cost =

 0 ∃k (i ≤ k < j), where f(sk) = f(sj)

f(sj).size others

The total cost for the sequence will be

CostS =
N∑
i=1

si.cost (3.2)

It need to be noticed that we assume the sizes of any files requested will not have

a size larger than the buffer size. This assumption will be held along this work.

The generation of the valid sequence will be the major focus of this work. To

optimize the valid sequence generation, the major target will be minimizing the

overall cost of all n subjobs in a single server via taking benefits from same files

requested from different clients. In other words, the sequence generated for a single

server should maximize the possibility that target files requested can be found in the

memory buffer without fetching them from disk drives. The problem can be formally

defined as following.

Definition 3.5. Single-Server Valid Sequence Generation (VSG) Prob-

lem: Given a job DAG set Γ = {G1, G2, ..., Gn} for a single server and a memory

buffer B with a fixed size, generate a valid sequence S including all subjobs and satisfy

all the dependencies in set Γ while the overall cost of the sequence is minimized.

The difficulties of the problem can be clarified in two aspects. Firstly, the amount

of valid sequences for a single graph Gi can be diverse. The order of tasks significantly

depends on the implementation of topological sorting algorithm used. Moreover, in

this work, generating a valid sequence from a set of graphs Γ brings larger set of

16

possible solutions. In the following sections, we use a heuristic way to solve the

problem and evaluate it upon the scheduling model defined.

Here is a simple example for the file fetching process to illustrate how the sequence

generation will affect the overall cost. Figure 3.3 includes two job requests in a single

server.

A

B C

D

E

A C

F

G1 G2

Figure 3.3: File Fetching Cost Example

Table 3.1: Target File Size

Target File A B C D E F
Size(MB) 100 240 170 20 10 35

We denote each subjob here with its file name and the DAG it belongs to. A1

denotes a subjob that has target file A and belongs to job DAG G1. With DAG set

Γ = {G1, G2}, both of the following sequence will be valid according to definition

17

3.1.

S1 = [A(1), C(1), B(1), D(1), E(2), A(2), C(2), F (2)]

S2 = [E(2), A(1), C(1), A(2), C(2), B(1), D(1), F (2)]

Assume a buffer B with size 300 MB is reserved in the main memory. The cost

for each sequence is calculated based on definition 3.4 and the results are included

in table 3.2

Table 3.2: Cost for Two Jobs with Difference Sequence

S1 A(1) C(1) B(1) D(1) E(2) A(2) C(2) F (2) Total Cost
Size (MB) 100 170 240 20 10 100 170 35 845
Reduced Cost? No No No No No No No No

S2 E(2) A(1) C(1) A(2) C(2) B(1) D(1) F (2) Total Cost
Size (MB) 10 100 170 100 170 240 20 35 575
Reduced Cost? No No No Yes Yes No No No

There are two subjobs that achieve reduced costs with S2. Let us have detailed

views on each of them.

• For the subjob A(2) in S2, we can have a segment S2,4 = {A(1), C(1), A(2)} and

the corresponding file set F2,4 = {A,C}. Since subjob A(2) has a target file A,

where A(1) has the same target file and it is included in S2,4, the cost for A(2)

can be reduced.

• Similar case holds for C(2). A segment S2,5 = {A(1), C(1), A(2), C(2)} can be

derived and its file set F2,5 = {A,C}. The cost of C(2) will be reduced due to

the existing C(1) in S2,5.

18

3.3 Multi-Server Scheduling

Beyond the sequence generation on a single server, another important issue for

the cloud to deal with file fetching process is distributing all the DAGs to under-

lying servers. As discussed in the Scheduling Model section, Job Manager will be

responsible for interpreting all the jobs received into DAGs and assigning them to

the servers. This process can be turned into a partition problem, where the core

objective will still be reducing the disk IO cost of all jobs scheduled and balancing

the workloads among all servers.

Consider we have a set of job DAGs Γ = {G1, G2, ..., Gn} and a set of underlying

servers Ω = {M1,M2, ...,Mm}. We need to partition the set Γ into m subsets that

will be represented as Γi = {G(i)
1 , G

(i)
2 , ..., G

(i)
ni } i = 1, 2, ...,m, where Γ =

∪m
i=1 Γi and

n =
∑m

i=1 ni. Then for each server Mi, it will generate a valid sequence from the set

Γi as discussed in the previous sections and Cost(Γi,Mi) will be used to indicate the

total disk IO cost of executing all jobs in Γi upon the server Mi. Note that for each

Cost(Γi,Mi), the actual value of it really depends on the algorithm each server uses

for the sequence generation and the buffer size reserved for file fetching. In this work,

we assume all the underlying servers are identical for the simplicity, where all server

will have the same capability in disk IO, memory buffer and the same algorithm

applied for sequence generation. Therefore, the cost of each job will be proportional

to its file size. Then the problem can be formally defined as

Definition 3.6. Multi-Server Job Partition (JP) Problem Given a job DAG

set Γ = {G1, G2, ..., Gn} and a server set Ω = {M1,M2, ...,Mm}, partition Γ into

m subsets Γ1,Γ2, ...,Γm, where the largest disk IO cost among all Cost(Γi,Mi) is

minimized.

19

4. SOLUTION FOR THE VSG PROBLEM

In this section, a preliminary section will cover the specifics of the VSG problem

like validity check and cost calculation. Then a short survey is presented to show

the possible solutions for the VSG problem. Lastly, we propose a heuristic algorithm

that aims at reducing overall cost of a subjob sequence.

4.1 Preliminary

To begin with, since the algorithms discussed here are mostly related to DAG

and queue operations, some frequently used notations will be introduced first.

• v.indegree indicates the number of nodes having edge (u, v) that points to vertex

v. If v.indegree = 0, the vertex v represents a subjob that no other subjobs

depend on it.

• v.outdegree indicates the number of nodes u which node v has outgoing edges

(v, u) point to. If v.outdegree = 0, the vertex v is considered as a leaf vertex

and does not depend on other subjobs.

• Ready Queue Q is a global array that includes all the vertices ready to be put

into the sequence. All the elements v in Q satisfy v.outdegree = 0.

The subjob sequence S must satisfy all the dependency relations that exist in set

Γ. Algorithm 1 is proposed to verify the validity of the sequence upon the set Γ.

The algorithm traverses the whole sequence S from s1 to sN and each subjob should

have all its precedent subjobs being executed prior to it.

Note that the function π : S → VΓ maps each subjob si in S to a vertex in

some DAG in Γ. According to definition 3.1(2), a subjob si will be ready to be

20

Algorithm 1 Validity Verification

Input: Subjob Sequence S = [s1, s2, ..., sN]; Job Set Γ; Map Function π : S → Γ
Output: Whether the sequence S is valid or not;
for i = 1 to N do
if π(si).outdegree! = 0 then
return false; {si depends on tasks that will be executed after it in sequence}

end if
Let Gk ∈ Γ be the source DAG that contains vertex π(si).
for each directed edge (u, π(si)) in Gk do
u.outdegree−−;

end for
end for
return true;

executed only when all the subjobs it depends on have been executed. Algorithm

1 uses π(si).outdegree to trace the number of subjobs that si depends on and still

remains uncompleted.

Upon verifying the validity of a sequence, the cost of sequence has several features

which will help the following discussion. To begin with, for two consecutive subjobs

associated with a same target file in the sequence, their overall cost will be reducible.

Lemma 4.1. Given a sequence S = [s1, s2, ..., sj] and a subjob sj+1, let Fi,j be the

file set for the segment Si,j with the smallest i holding Si,j.size ≤ B.size. Then if

f(sj+1) ∈ Fi,j, we have

1. The sequence S ′ = [s1, s2, ..., sj, sj+1] will have the same cost as S.

2. The file set Fi,j+1 for the segment Si,j+1 is the same as Fi,j for Si,j.

Proof. With two segments Si,j = [s1, s2, ..., sj] and Si,j+1 = [s1, s2, ..., sj, sj+1], their

corresponding file sets will be Fi,j and Fi,j+1, where Fi,j+1 = Fi,j ∪ {f(sj+1)}. Since

f(si+1) ∈ Fi,j, we will have Fi,j = Fi,j+1. Moreover, according to definition 3.4,

21

sj+1.cost = 0 if there is a subjob sk in segment Si,j, where f(sk) = f(sj+1). Therefore,

since CostS′ = CostS + sj+1.cost, we must have S and S ′ with the same cost.

More generally speaking, if f(sj+1) ∈ Fi,j, appending any subjob sj+1 to the

sequence S will neither add extra cost to the sequence nor change the file set Fi,j

used to calculate the cost. Moreover, given a valid sequence S and a memory buffer

B, the sequence generated will have upper and lower bounds as shown in Theorem

4.2.

Theorem 4.2. Given a valid sequence S = [s1, s2, ..., sN] and a fixed size buffer B,

the overall execution cost will follow the bounds as

∑
f∈F1,N

f.size ≤ CostS ≤
N∑
i=1

f(si).size (4.1)

where F1,N is the file set that includes all the target files needed in S, i.e. F1,N =∪N
i=1 {f(si)}.

Proof. For the lower bound, it can be derived from the case where an infinite large

buffer is applied. With an infinite large buffer, all the files will be fully fetched

only once and all the later subjobs associated with same files can take advantage of

existing target files. The lower bound is derived as

CostS ≥
∑

f∈F1,N

f.size

For the upper bound, we can assume a buffer size only be able to hold one target

file each time. Each si need to be accomplished via loading the target file into buffer.

In such case, each task will have a full time cost without taking advantage of same

target files between different subjobs. Then the upper bound can be represented as

22

following.

CostS ≤
N∑
i=1

f(si).size

When calculate the cost for each subjob sj, it is essential to construct a segment

Si,j with the smallest i satisfying Si,j.size < B.size. Algorithm 2 is proposed to

construct such a segment Si,j to help calculate the cost for the subjob sj.

Algorithm 2 Longest Segment (LONG-SEG)

Input: Sequence S = [s1, s2, ..., sN]; Memory Buffer B; Subjob sj
Output: Segment Si,j = [si, si+1, ..., sj];
F ← empty set for target files;
size = 0;
for i = j to 1 do
if f(si) /∈ F then
Add f(si) to F ;
size = size + f(si).size;

end if
if size + f(si−1) > B.size and f(si−1) /∈ F then
break;

end if
end for

return segment Si,j = [si, si+1, ..., sj];

Next, we will start to discuss the construction of a sequence with a job set Γ

given. Suppose now we have a subjob sj+1 selected from a ready queue Q and want

to append it to partial sequence S = [s1, s2, ..., sj]. Algorithm 3 illustrates how to

append the selected subjob to the sequence and update the ready queue Q. Note

23

that the vertex set VΓ and the edge set EΓ include all the vertices and edges in set

Γ. Meanwhile, the ready queue Q is a global array which includes all the subjobs

satisfying outdegree = 0.

Algorithm 3 Update Sequence and Ready Queue (UPDATE)

Input: Subjob sj+1; DAG Set Γ; Sequence S = [s1, s2, ..., sj];
Output: Sequence S ′ = [s1, s2, ..., sj, sj+1];
for each edge e(v, π(sj+1)) ∈ EΓ do
Remove e from EΓ;
v.outdegree−−;
if v.outdegree = 0 then
Add v to the ready queue Q;

end if
end for
S ′ = S + sj+1; {where π(sj+1) = u}

4.2 A Heuristic Algorithm for VSG Problem

In this section, a specific heuristic algorithm for VSG problem is proposed aiming

at taking advantage of those subjobs associated with same target files. The core idea

is always choosing the subjob which can save the most cost for the current step and

adding it to the sequence. Therefore, the algorithm will follow a greedy strategy.

A weight value w is assigned to each subjob si to indicates how many subjobs are

depending on si. A typical way to define the weight value of a subjob si with

π(si) = u will be

wt(si) = u.indegree

24

Here, the weight wt(si) of each subjob will be the number of subjobs directly depend

on it. There are more ways to define the weight values which will be further discussed

in the following content. The core idea will be the same — higher the weight value

one subjob si has, more subjobs are currently depending on si.

Now, we can move on to discuss the heuristic solutions for the VSG problem.

Remind that the sequence generation process can be interpreted as picking subjobs

from Γ and continuously append them to the sequence. To ensure the validity of the

sequence generated, the following heuristic algorithm will only pick subjobs from the

Ready Queue Q, where all its elements satisfy outdegree = 0. Here is the strategy

applied to the heuristic solution to decide which subjobs should be picked next.

• For each subjob s′ in the ready queue Q, we define direct reduction (DR) in

cost with sequence S = [s1, s2, ..., sj] given.

DR (S, s′) =

 f(s′).size f(s′) ∈ Fi,j

0 Others

where Fi,j is the file set for the longest segment Si,j achieved from algorithm

2, i.e. Si,j= LONG-SEG(S,B, sj) .

According to lemme 4.1, if any subjobs in Q is assigned with a positive direct

reduction, adding it as sj+1 to the sequence S will not increase the overall cost

of the sequence.

• Meanwhile, we define indirect reduction (IR) for each subjob s′ in the ready

queue Q. The indirect reduction of subjob s′ indicates the amount of direct

reduction that will be created via adding s′ to the sequence. Thus, for each

s′ in the ready queue, let S ′ = [s1, s2, .., sj, sj+1], where sj+1 = s′, and let

25

Q′ = Q\{s′}, we have

IR(S, s′) =
∑
s′′∈Q′

DR(S ′, s′′)

Without the presence of positive direct reductions in Q, the algorithm will

always choose the subjob s′ with the largest indirect reduction, puts it to the

sequence and starts over to look for subjobs with direction reduction in Q.

• If neither of positive direct and indirect reduction can be found, the algorithm

picks one subjob s′ from the ready queue Q with the largest weight. We define

estimated reduction (ER) for each subjob s′ in Q as following.

ER(S, s′) = wt(s′)

Then the heuristic algorithm for VSG problem is proposed in algorithm 5

26

Algorithm 4 Heuristic and Greedy (HG) Algorithm for VSG

Input: Γ = {G1, G2, ..., Gn}; Memory Buffer B;
Output: An valid operation sequence S.
Create a empty sequence S and a ready queue Q;
for each vertex v in VΓ do
if v.outdegree = 0 then
Add vertex v to Q;

end if
end for
while Q is not empty do
m = max{DR(S, s′)|s′ ∈ Q)}; {Check whether exists direct reduction.}
if m > 0 then
let sj+1 = s′, where DR(S, s′) = m;

else
m = max{IR(S, s′)|s′ ∈ Q)}; {Check whether exists indirect reduction.}
if m > 0 then
let sj+1 = s′, where IR(S, s′) = m;

else
m = max{ER(S, s′)|s′ ∈ Q)}; {Estimate reduction based on weight.}
let sj+1 = s′, where ER(S, s′) = m;

end if
end if
Delete sj+1 from Q;
UPDATE(sj+1, S, Γ);
{Update the sequence S and the ready queue Q.}

end while

27

5. SOLUTION FOR THE JP PROBLEM

Similar to the VSG problem, here we propose a heuristic algorithm to solve the

JP problem. Before move on to the detailed algorithm design, we will first start with

some preliminaries.

• For any subset Γi = {G(i)
1 , G

(i)
2 , ..., G

(i)
ni }, we define the file set Fi that includes

the files needed to accomplish all jobs in Γi. Meanwhile we define file set FGk

for each job Gk in Γ, which includes all the files needed to accomplish Gk.

• For each file set, we define a function size() to calculate the cumulative sum of

all files in the set. For example, size(FGk
) will return the sum of the sizes of

all files needed to accomplish Gk.

Now we can discuss how the heuristic algorithm works.

1. Given the job set Γ, first sort all the Gk based the value of size(FGk
), where

G1 is supposed to have the largest cost. The new Γ achieved will satisfy that

for any Gi and Gj (i < j), size(FGi
) ≥size(FGj

).

2. Then the algorithm will start at G1 and assign all DAGs in Γ into a total m

subsets. We define the estimated workload ω to help the decision making.

ω = Cost(Γi,Mi)− α ∗ size(FGk
∩ Fi)

The Cost(Γi,Mi) indicates the current workload that the serverMi has. size(FGk
∩

Fi) denotes the estimation of the amount of cost can be reduced if assigning

Gk to Mi. For each Gk, the algorithm will pick a subset Γi having the smallest

estimated workload ω and add Gk to Γi. The factor α is used to control the

28

partition strategy. For a larger α, the algorithm will favors the cost reduction

can be created by assigning Gk to a server Mi. On the other hand, when α is

set to be small, the algorithm will prefer the well-balanced workloads for all

the servers.

3. Repeat step 2 until all DAGs in Γ have been partitioned into subsets.

Algorithm 5 Heuristic Algorithm for JP Problem (HP)

Input: Job set Γ = {G1, G2, ..., Gn}; server Set Ω = {M1,M2, ...,Mm};
Output: m subsets Γ1,Γ2, ...,Γm;
Sort all the Gk in Γ with descending size(FGk

) value;
for k=1 to n do
for i=1 to m do
Calculate weight wi= Cost(Γi,Mi)− α ∗ size(FGk

∩ Fi);
end for
Assign Gk to the machine with the minimum weight;

end for

The key concept here is similar to Graham’s List Scheudling algorithm and the

Longest Job First (LJF) algorithm, which always schedules the job having longest

completion time to the machine with least workload each time. Here, the algorithm

considers both workloads and the cost reduction that can be achieved.

29

6. SIMULATION AND RESULTS

6.1 Simulation Setup

To evaluate the performance of the heuristic algorithm proposed, a set of simula-

tion experiments are conducted. All the simulations are implemented with C++11

standard and conducted under Mac OS environment. Meanwhile, the simulations

adopt Boost Graph Library (BGL) to provide the generic interfaces of graph struc-

ture.

To evaluate the performance of the HG algorithm, we propose other two algo-

rithms that can generate a valid sequence with the set Γ given. Both of them are

based on the topological sorting of a single DAG.

1. For each DAG Gi in Γ, topological sorting will generate a valid sequence Si.

Catenate all the Si arbitrarily into one sequence S, which will be a valid se-

quence for the set Γ. We use CA (catenate arbitrarily) as the abbreviation of

the solution.

2. Similarly, for each DAG Gi in Γ, apply topological sorting upon Gi to con-

struct the sequence Si. Different from CA, we apply a round-robin principle

to construct the overall sequence S. Figure 6.1 shows how the sequence S is

generated. For each round, exact one subjob will be picked from each Gi and

put into S until all the subjobs are included. We use RR (round-robin) as the

abbreviation of the second solution.

Meanwhile, the upper bound and the lower bound of the cost will be applied as

references to the performance evaluation as well. For any sequence S generated, we

30

G1 G2 G
n−1 G

n......

......

s1 s2 sn−1 sn

sn+1 sn+2 s2n−1 s2n

...

...

...

...

s1 s2 ... sN−1 sNSequence S

Figure 6.1: Sequence Generation via Round-Robin Scheduling

evaluate the cost of S in the form of

P (S) =
CostS

cost lower bound

The cost lower bound of a sequence S is derived as
∑

f∈F1,N
f.size in Theorem 4.2,

where F1,N is the file set that includes all the target files needed in S, i.e. F1,N =∪N
i=1 {f(si)}.

Since this research is motivated by the practical scheduling issue in Transparent

Computing (TC) environment. The data sets used in the simulation will also consider

the real needs in TC. Remind that clients with various types of terminal devices will

request for operating systems, drivers, compliers or applications from TC servers.

We use the model proposed in Herraiz, et al.[8] to construct the data sets used in

31

the simulations. Herraiz, et al.[8] presents a complete analysis upon the distribution

of file sizes in a linux distribution. The work concludes that the source files in a

Linux system follow a lognormal distribution. Therefore we generate the test cases

with the size of target files following a lognormal distribution with two distribution

parameters µ and σ, where µ represents the mean of the variables, which, in our

case, is the average size of the target files, and σ is the standard deviation of the

variable’s natural logarithm, which will be interpreted as the amount of variation of

the sizes of target files used in the simulations.

In sum, we will evaluate the performance of candidate algorithms upon the fol-

lowing parameters.

• The proportion p of all subjobs eligible for cost reduction in set Γ.

• The mean µ of the lognormal distribution of all target files requested by clients.

• The standard deviation σ in target file size distribution.

• The size of memory buffer B.

• The size of DAG set Γ.

• The ratio r that indicates the number of edges connected to each vertex. If

r = 0.3, it means each vertex are connected to 30% of the total number of

vertices in Gi, either as a source vertex or a target vertex.

6.2 Simulation Results and Analysis

6.2.1 The VSG Problem

To begin with, we evaluate the performance of heuristic algorithms with varying

average target file size. Seven data sets are created with target file size following a

lognormal distribution, where the mean value µ varies from 1 to 4 and the standard

32

devision is fixed as σ = 0.25. It indicates that the average target file size will vary

between 2.7 MB to 54.6 MB (All the size mentioned in the section will be in the unit

of MB). Morever, all cases are simulated with a Γ set with 20 DAGs. Each DAG

is composed with 50 vertices and about 375 edges (r = 0.3). The buffer size is set

to be 1000 and a maximal 30% of total subjobs in Γ can be reduced in cost. The

simulation results are shown in Figure 6.2 and more detailed simulation results are

included in the Table 8.1 in the Appendix section.

Figure 6.2: Performance of Candidate Solutions upon Mean µ.
σ = 0.25, |Γ| = 20, |VGi

| = 50, r = 0.3, Buffer Size = 1000, p = 30%.

As shown in Figure 6.2, the sequences generated by HG have costs that are 10%

higher than lower bound when average size is small. And it is about 30% higher when

the mean value increases to 4. When the average target file size is increasing, the

number of files can be hold in the memory buffer will be decreased. Therefore, all the

heuristic solutions have decreasing performance with the increasing µ. Compared to

33

CA and RR, the performance of HG is better by 7%− 10% in reference to the lower

bound. Larger the mean value is, better performance improvement can be achieved

by HG compared to CA and RR.

Furthermore, consider a fixed mean value µ = 3, we will explore the impact of

the standard deviation. Six test cases are conducted with the standard deviation

that varies from 0 to 1.25. All other parameters are kept as same as the previous

simulation.

Figure 6.3: Performance of Candidate Solutions upon Standard Deviation σ.
µ = 3, |Γ| = 20, |VGi

| = 50, r = 0.3, Buffer Size = 1000, p = 30%.

As shown in the Figure 6.3, when the standard deviation increases, the perfor-

mance of all three algorithms will converge to the upper bound. Compared to CA

and RR, HG will have more obvious advantage when the standard deviation is low.

Besides the distribution of the target file size, the features of the DAG set Γ will

34

also affect the performance of algorithm. Starting with the size of Γ, six simulation

tests are conducted with the size of Γ scale from 10 to 60. The size of target files

follows a lognormal distribution with µ = 3 and σ = 0.25. Other parameters are

kept as same as previous cases.

Figure 6.4: Performance of Candidate Solutions upon the Size of Γ.
µ = 3, σ = 0.25, |VGi

| = 50, r = 0.3, Buffer Size = 1000, p = 30%.

From Figure 6.4, we can find that the performance of HG is not significantly by

the size of Γ. While for CA and RR, their performances will converge to the upper

bound when the set Γ increases in size.

In addition, within a single DAG Gi, the number of vertices and edges will also

affect the performance, since the dependency relations are extremely essential to the

generation of a valid sequence. Figure 6.5 includes six cases, where the number of

vertices in each DAG Gi varies from 10 to 110 and the ratio r is kept as constant.

35

All three algorithms will be affected by the increasing vertices number. When the

DAG has fairly small number of vertices, HG’s performance is fairly close to the

lower bound.

Figure 6.5: Performance of Candidate Solutions upon the Size of Each DAG Gi.
µ = 3, σ = 0.25, |Γ| = 20, r = 0.3, Buffer Size = 1000, p = 30%.

The ratio r is another important parameter concerning the structure of a DAG.

Note that the ratio r indicates how many edges that a single vertex is connected

with, either as a source vertex or a target vertex. Each vertex is connected via a

total r ∗ |VGi
| edges, where |VGi

| is the number for vertices in Gi. Figure 6.6 presents

a full survey with the ratio r varying from 0.1 to 1.0. It can be concluded that

compared to CA and RR, HG will have more advantage upon DAGs with simpler

dependency relations. Both CA and RR are not edge-sensitive as indicated in the

Figure 6.6.

36

Figure 6.6: Performance of Candidate Solutions upon the Amount of Edges Con-
nected to Each Vertex (r).
µ = 3, σ = 0.25, |Γ| = 20, |VGi

| = 50, Buffer Size = 1000, p = 30%.

The next parameter discussed will be the buffer size. Figure 6.7 covers cases with

buffer size ranging from 200 to 2000. HG has a average ∆P (S) = 0.07 better than

CA and RR and its performance converges to the lower bound as the buffer size

increases.

Lastly, we analyze the performance of candidate solutions upon the proportion

p, which indicates the number of subjobs that are eligible for cost reduction. More

generally speaking, the proportion p can be interpreted with upper bound and lower

bound as

p = 1− lower bound

upper bound

Figure 6.8 presents simulation cases with proportion p ranging from 0.2 to 0.8. The

37

Figure 6.7: Performance of Candidate Solutions upon the size of Memory Buffer.
µ = 3, σ = 0.25, |Γ| = 20, |VGi

| = 50, r = 0.3, p = 30%.

performance of HG indicates its potential in cost reduction with a high redundancy

in target files.

In summary, according to all the simulation results above, we can derive the

following conclusions concerning three candidate solutions. For HG, it shows great

performance in the following cases.

• Compared to CA and RR, HG brings more reduction in cost in most cases.

Especially when the redundancy in target files is frequent, HG will take more

benefits from it.

• HG can generate sequences with costs close to the lower bound for those DAGs

with less dependencies.

• HG has a stable performance independent of the size of Γ.

38

Figure 6.8: Performance of Candidate Solutions upon proportion p.
µ = 3, σ = 0.25, |Γ| = 20, |VGi

| = 50, r = 0.3, Buffer Size = 1000.

• HG has more advantages over CA and RR when the average file size is large

and the standard deviation is small.

Moreover, concerning CA and RR, we can derive the following conclusion.

• CA and RR are not edge-sensive. They will have a more stable performance

compared to HG in case the indegree and outdegree for vertices are diverse.

• CA and RR share almost same performance and complexity in sequence genera-

tion. Their sequence generation process is faster than the one of HG. Especially

when the set Γ includes more DAGs and each DAG has more vertices.

39

6.2.2 The JP Problem

We perform a set of simulations upon the heuristic algorithm proposed for the

JP problem. The setup is similar to the simulations of VSG problem. We use

Longest Job First (LJF) algorithm as a reference when we evaluate the heuristic

(HP) algorithm proposed in this work. To has better focus on the partition problem,

we define the following settings for sequence generation problem identically for each

underlying servers.

• Each server will use HG algorithm proposed in this work to calculate the actual

cost for each Γi.

• The buffer size will be set to be 1000 MB.

• The target file size follows a lognormal distribution with mean µ = 3 (about

20MB) and standard deviation σ = 0.25.

Then the first parameter this section will cover is the parameter α. We want to figure

out how the value of α will affect the final cost for file fetching. Here we assume

we have 50 DAGs need to be distributed and each DAG having 40 vertices. The

redundant portion of identical target files p is set to be 0.3, where indicates half of

the subjobs may be reducible in cost. We test the partition algorithm upon 5 server,

where make a Job-to-Server ratio n/m = 10.

Figure 6.9 includes the cost for the Mi, which has the largest cost after the

partition. The two algorithms have really close performance when α is small and

HP algorithm does have an advantage compared to LJF. However, when the α gets

larger, the HP starts to lose the good workload balance between underlying servers.

However, according to the results in Figure 6.10, HP have a better average cost

compared to LJF in most cases. As the α increases, the HP will have a even better

40

Figure 6.9: The Largest Cost for a Single Server on α

Figure 6.10: The Average Cost for All Servers on α

41

cost reduction referring to LJF.

Another important parameter we think may relate to the performance will be the

Job-to-Server ratio n/m. We take a α value equal to 10 and keep other parameters

as the same as the previous simulation.

Figure 6.11: The Largest Cost for a Single Server on n/m

Figure 6.11 and 6.12 both show the relation between the performance of the

candidate algorithms and the ratio n/m. While both algorithms have a close per-

formance in the largest cost for a single server, HP does have better cost reduction

when each machine is responsible for more jobs.

In summary, the heuristic algorithm HP proposed for the job partition algorithm

have a close performance to the Longest Job First algorithm concerning the workload

balance. Beyond that, HP does reduce the amount of disk IO cost via assigning each

42

Figure 6.12: The Average Cost for All Servers on n/m

job to a server, where exits extra disk IO cost reduction for the file fetching fetching

process.

43

7. FUTURE WORK

7.1 More Topics for File Fetching Process

This works aims at proposing the model where the disk IO cost can be reduced

via optimized scheduling. We use heuristic algorithms to validate and show the value

of the problems we defined. However, these heuristic algorithms have great room to

be further optimized concerning the running time complexity. The followings are

some interesting topics that are valuable upon this work.

• For the single-server VSG problem, each DAG can be scheduled into a valid

sequence Si and the overall sequence S for the set Γ can be considered as

the result of merging all the Si together. To minimize the disk IO cost of the

sequence S, the subjobs requesting for identical target files should be scheduled

to be next or close to each other in S. Therefore, the sequence generation can

be interpreted as a sequence alignment problem with the valid sequences for

each DAG are given.

• Beyond the sequence alignment mentioned above, the permutation of difference

valid sequences from difference DAGs is also an interesting topic to cover.

Upon having a valid sequence Si generated from the DAG Gi, some subjobs

in Si can be swapped while the sequence S ′
i after the swapping is still valid.

Therefore, exploring the permutations of sequences Si for each DAG to achieve

a minimized disk IO cost in the sequence alignment will be a valuable topic.

• For the multi-server scheduling, we also found interpreting this with a limited-

budget in disk IO can bring valuable perspectives. More than a simple makespan

problem, now we can define a budget for each DAG and each underlying server

44

has a price reflecting its current workload. Considering the disk IO reduction

as the reward, the target of the algorithm will be maximizing the reward via

assigning each DAG to servers, where the budget of the DAG can afford the

price of the server it will be assigned to.

7.2 Weight Assignment

For the HG algorithm proposed, the estimation reduction is derived from the

weight of each subjob vertex. The core idea of the weight of si is to indicate how

many subjobs are depending on si. In section 4.2, we define the weight of each

subjob si is equal to the indegree of π(si). There actually exist alternative methods

in defining the weight here. All of them are stick to the core idea we have here and

can fit into the HG algorithm proposed.

1. Let wt(si) equal to the cumulative sum of the target file size of all the subjobs

directly depend on si.

2. Let wt(si) to the number of subjobs sj, which has a path starting from sj and

ended at si. In other words, wt(si) can be equal to the total number of subjobs

directly or indirectly depend on si.

3. Combine 1 and 2 together, wt(si) can be defined as the cumulative sizes of all

the subjobs directly or indirectly depend on si.

It need to be noticed that some methods of weight assignment may have favors in

specific types of subjobs. It will be an interesting topic to explore the features of

different methods.

7.3 Beyond File Fetching

Since this work is motivated by the real need in Transparent Computing, the

file fetching process is the major focus. However, the core idea of this work can

45

be further extended beyond file fetching process. The cloud will be faced with all

kinds of job requests and the overlap between these jobs can be significant. When

scheduling these jobs, taking benefits for these overlapped jobs can a breakthrough

point to the performance optimization of the cloud.

Meanwhile, the model proposed in this work can be further extended to consider

not only just the reading/fetching of files, but also updating/writing files in the

cloud. The dependency will become more complicated and there will be more mutex

requirements need to be satisfied.

46

8. CONCLUSION

The whole discussion starts from a core idea — dependent data fetching can be

optimized via benefiting from identical data requests. This idea comes from the

recent studies on transparent computing, where clients continuously request large

number of files from the cloud and some commonly used files (like OS and software

source files) may be requested by several clients concurrently and repeatedly. To

validate the value of this idea, we define the valid sequence generation problem, which

aims at reducing the disk IO cost of file fetching under the model abstracted from the

transparent computing architecture. A heuristic algorithm is proposed specifically

for the problem and the simulation results indicate the optimization in disk IO cost

brought by the algorithm proposed. Beyond that, a Job Partition Problem is defined

for the multi-server scheduling and its validity and correctness is shown with the

heuristic algorithm specifically proposed for the problem. Further research can be

conducted following the core idea here and bring more efficient solutions for file

fetching process in cloud environment.

47

REFERENCES

[1] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping

Qian, Ming Wu, and Lidong Zhou. Apollo: scalable and coordinated scheduling

for cloud-scale computing. In Proceedings of the 11th USENIX conference on

Operating Systems Design and Implementation, pages 285–300. USENIX Asso-

ciation, 2014.

[2] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib,

Simon Weaver, and Jingren Zhou. Scope: easy and efficient parallel processing

of massive data sets. Proceedings of the VLDB Endowment, 1(2):1265–1276,

2008.

[3] Edward G Coffman, Jr, Michael R Garey, and David S Johnson. An applica-

tion of bin-packing to multiprocessor scheduling. SIAM Journal on Computing,

7(1):1–17, 1978.

[4] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile

cloud computing: architecture, applications, and approaches. Wireless commu-

nications and mobile computing, 13(18):1587–1611, 2013.

[5] David Gale and Lloyd S Shapley. College admissions and the stability of mar-

riage. American mathematical monthly, pages 9–15, 1962.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-

tem. ACM SIGOPS operating systems review., 37(5), 2003.

[7] Ajay Gulati, Ganesha Shanmuganathan, Anne Holler, and Irfan Ahmad. Cloud-

scale resource management: challenges and techniques. In Proceedings of the

48

3rd USENIX conference on Hot topics in cloud computing, pages 3–3. USENIX

Association, 2011.

[8] Israel Herraiz, Daniel M Germán, and Ahmed E Hassan. On the distribution of

source code file sizes. In ICSOFT (2), pages 5–14, 2011.

[9] Robert W Irving. An efficient algorithm for the stable roommates problem.

Journal of Algorithms, 6(4):577–595, 1985.

[10] Selmer Martin Johnson. Optimal two-and three-stage production schedules with

setup times included. Naval research logistics quarterly, 1(1):61–68, 1954.

[11] Ren Ju, Zhang Yaoxue, and Chen Jianer. Analysis on the scheduling problem in

transparent computing. In High Performance Computing and Communications

& 2013 IEEE International Conference on Embedded and Ubiquitous Computing

(HPCC EUC), 2013 IEEE 10th International Conference on, pages 1832–1837.

IEEE, 2013.

[12] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia distributed

monitoring system: design, implementation, and experience. Parallel Comput-

ing, 30(7):817–840, 2004.

[13] Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang, Eric Bouillet, and

Dimitrios Pendarakis. Efficient resource provisioning in compute clouds via vm

multiplexing. In Proceedings of the 7th international conference on Autonomic

computing, pages 11–20. ACM, 2010.

[14] Muhammad Nawaz, E Emory Enscore, and Inyong Ham. A heuristic algorithm

for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95,

1983.

49

[15] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and sur-

vey of cloud computing systems. In INC, IMS and IDC, 2009. NCM’09. Fifth

International Joint Conference on, pages 44–51. Ieee, 2009.

[16] Eric Taillard. Some efficient heuristic methods for the flow shop sequencing

problem. European journal of Operational research, 47(1):65–74, 1990.

[17] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective and

low-complexity task scheduling for heterogeneous computing. Parallel and Dis-

tributed Systems, IEEE Transactions on, 13(3):260–274, 2002.

[18] Robbert Van Renesse, Kenneth P Birman, and Werner Vogels. Astrolabe: A

robust and scalable technology for distributed system monitoring, management,

and data mining. ACM transactions on computer systems (TOCS), 21(2):164–

206, 2003.

[19] Hong Xu and Baochun Li. Egalitarian stable matching for vm migration in cloud

computing. In Computer Communications Workshops (INFOCOM WKSHPS),

2011 IEEE Conference on, pages 631–636. IEEE, 2011.

[20] Tao Yang and Apostolos Gerasoulis. List scheduling with and without commu-

nication delays. Parallel Computing, 19(12):1321–1344, 1993.

[21] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art

and research challenges. Journal of internet services and applications, 1(1):7–18,

2010.

[22] Yaoxue Zhang and Yuezhi Zhou. Transparent computing: a new paradigm for

pervasive computing. Ubiquitous Intelligence and Computing, 1-11, 2006.

[23] Yuezhi Zhou and Yaoxue Zhang. Transparent computing: concepts, architecture,

and implementation. Cengage Learning Asia, 2010.

50

[24] Yuezhi Zhou, Yaoxue Zhang, Hao Liu, Naixue Xiong, and Athanasios V Vasi-

lakos. A bare-metal and asymmetric partitioning approach to client virtualiza-

tion. Services Computing, IEEE Transactions on, 7(1):40–53, 2014.

51

APPENDIX

All the detailed simulation results used in section 5 will be included here. All

data will be presented

Table 8.1: P (S) Values for Figure 6.2

Mean Upper Bound MS RR HG
µ = 1.0 1.422553752 1.192189557 1.166739798 1.113207547
µ = 1.5 1.403819918 1.240381992 1.219918145 1.166166439
µ = 2.0 1.412428398 1.29178962 1.297517792 1.239715327
µ = 2.5 1.390916808 1.325870119 1.319927844 1.25360781
µ = 3.0 1.427411168 1.372182741 1.373401015 1.293265651
µ = 3.5 1.402521746 1.372955071 1.374551113 1.28433485
µ = 4.0 1.404404208 1.381967213 1.388182041 1.29168094

Table 8.2: P (S) Values for Figure 6.3

Standard Deviation Upper Bound MS RR HG
σ = 0 1.449275362 1.402898551 1.392753623 1.324637681
σ = 0.25 1.4050895 1.348650815 1.346112744 1.282594176
σ = 0.5 1.341178552 1.303014216 1.308499971 1.233233056
σ = 0.75 1.25832497 1.233053554 1.239211751 1.175348965
σ = 1 1.175679655 1.164360258 1.162299212 1.110642196
σ = 1.25 1.10354928 1.098423305 1.099064052 1.076020046

52

Table 8.3: P (S) Values for Figure 6.4

Γ Size Upper Bound MS RR HG
10 1.414852411 1.313075998 1.338319754 1.282890343
20 1.395581659 1.346459321 1.346058867 1.29179737
30 1.396700396 1.360844699 1.373119226 1.28658161
40 1.392916599 1.36833687 1.37078505 1.29714379
50 1.40118997 1.38079048 1.384296643 1.306337654
60 1.395954718 1.379051375 1.381133831 1.290369747

Table 8.4: P (S) Values for Figure 6.5

DAG Vertex Size Upper Bound MS RR HG
10 1.412874958 1.1809909 1.2157061 1.041793057
30 1.398634512 1.323422531 1.307234886 1.165180046
50 1.391372243 1.351616891 1.34341857 1.269308348
70 1.403874321 1.375147649 1.366406804 1.319253485
90 1.403318745 1.375747629 1.364697301 1.327534646
110 1.394437421 1.36966468 1.374119559 1.336764794

Table 8.5: P (S) Values for Figure 6.6

Ratio r Upper Bound MS RR HG
0.1 1.406620324 1.358556769 1.356636875 1.179410791
0.2 1.414622642 1.375471698 1.355727763 1.25680593
0.3 1.401617782 1.345126924 1.34880968 1.275088781
0.4 1.389775317 1.339238033 1.345555194 1.279908824
0.5 1.398130597 1.356886071 1.349434604 1.291718413
0.6 1.404527754 1.367896508 1.36030625 1.300706224
0.7 1.394312169 1.35734127 1.348148148 1.3125
0.8 1.418434479 1.348885607 1.36929377 1.325523631
0.9 1.408239451 1.357442837 1.361842544 1.32064529
1 1.421320477 1.379603589 1.370429892 1.324829249

53

Table 8.6: P (S) Values for Figure 6.7

Buffer Size Upper Bound MS RR HG
200 1.415104482 1.408654169 1.408385406 1.322045287
400 1.403615655 1.389444408 1.381895239 1.290841666
600 1.408838671 1.372735174 1.384970248 1.295045798
800 1.425884582 1.382382789 1.388606995 1.270888303
1000 1.391745298 1.354900828 1.342769112 1.268695038
1200 1.400961412 1.332674832 1.337284341 1.27887528
1400 1.391459537 1.340061003 1.324615484 1.248231553
1600 1.394804005 1.327138276 1.313068516 1.241410902
1800 1.401174685 1.31030159 1.300666535 1.235992873
2000 1.403176502 1.318979266 1.29917597 1.242025518

Table 8.7: P (S) Values for Figure 6.8

Proportion r Upper Bound MS RR HG
0.2 1.234543208 1.215012648 1.204894406 1.164244956
0.3 1.418482293 1.369376054 1.358381113 1.283777403
0.4 1.618259188 1.527040619 1.547466151 1.400077369
0.5 1.920405599 1.791636755 1.78436827 1.54971285
0.6 2.380286455 2.1401827 2.1401827 1.771174016
0.7 3.031047865 2.589047003 2.616357625 2.078913325
0.8 4.456661817 3.356059031 3.463936811 2.425483268

54

Table 8.8: P (S) Values for Figure 6.9 and 6.10

α HP(max) 2A(max) HP(avg) 2A(avg)
2 7148 7385 7018 7294.8
4 7053 7523 6940.4 7296
6 7177 7562 7093 7448.4
8 7126 7461 7102.2 7362.2
10 7138 7303 6909.4 7208.8
12 7097 7473 6986.2 7335.6
14 7042 7209 6998.2 7151.4
16 7318 7509 6883.6 7282.4
18 7461 7294 6883 7241
20 7467 7455 6939.8 7319.4
22 7559 7567 6960 7366.6
24 7437 7424 6868.2 7299.8
26 7538 7373 6865.2 7305.4
28 7899 7480 6971.4 7457
30 7989 7482 6888 7322

Table 8.9: P (S) Values for Figure 6.11 and 6.12

n/m HP(max) 2A(max) HP(total) 2A(total)
1 962 962 42263 42263
2 1648 1662 40103 41550
5 4303 3977 37242 39067
10 7397 7470 34492 36190
25 15033 15270 29520 32120

55

