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ABSTRACT

This work was motivated by the study of the file fetching process in a cloud
system, in particular by the recent progress in the model of transparent computing.
A transparent computing system may have many clients, each requesting a significant
set of files from the server, including user data and many commonly used softwares
(operating systems and apps). These files may have inherent dependence relations so
should be received by the clients in a specific topological order. On the other hand,
since many of these files are commonly used softwares, many clients may request
copies of the same files. This proposes an interesting problem on the server side of
how this kind of requests should be handled efficiently to improve the performance of
the system. In particular, we are interested in the processes that significantly reduce
the disk IO operations in the server, which are in general very time-consuming.
We propose a formal model for this problem and study its validity and correctness.
Heuristic algorithms for the problem are proposed and studied. Simulation results
are presented to compare the proposed heuristics and algorithms based on known
techniques in scheduling literature. 7% - 20% of the total disk IO can be reduced

via the optimizations proposed in this work.
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1. INTRODUCTION

As the emerging of Cloud Computing, the job scheduling has become a critical
operation for the performance and utilization of clusters. A typical cluster, no mat-
ter it is applied with distributed file system like Google File System (GFS) [6] or
cloud computing platform like Microsoft Azure, is faced with massive amount of task
requests continuously. Meanwhile, these task requests tend to have a huge diversity
concerning the computing power and hardware resources that need to be utilized.

Take Transparent Computing (TC) [22] as an example to illustrate the chal-
lenges in large-scale cluster scheduling. TC is an emerging service-oriented comput-
ing paradigm that aims at serving users with heterogenous OSes and applications on
terminal devices. Users are not required to pre-install any OSes or applications on
their devices, while all codes and files will be dynamically loaded from the clusters
upon users’ needs. The amount of requests from a single user can be considerable,
especially when they log in a device for the first time. Meanwhile, these requests
have huge diversity in completion time. Some may request for configuration files
with size below KB, while some may request for OS images with size beyond GB.
Therefore, the scheduling’s efficiency greatly determines whether the cluster can fit
such scalability in the amount and volume of task requests.

The increasing quantity and complexity of requests raise more potential for the
optimization of scheduling algorithms. There are two major facts that motivate this

work.

e The dependency between subjobs freqsubjobsuently exist. In a system with
service-oriented architecture (like TC example above), users deliver their ser-

vice requests to the cluster and these requests can be further decomposed into
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a series of subjobs with inter-dependencies. Similar case holds for database
systems with SQL-based query language like SCOPE [2]. A SCOPE execution
can be parsed into several subjobs which are presented in a directed acyclic
graph (DAG). Figure 1.1 shows how the complicated tasks are presented in the

cluster.

e Some requests from the clients are identical. Microsoft proposed their schedul-
ing framework Apollo [1] in 2014. Apollo is designed to handle clients’ requests
at a expecting rate more than 50k requests/sec. Although the user behaviors
may pull various requests, it is a strong argument that there exist requests
for identical data among such a considerable number of base. Such identical
requests appear more frequent in the TC system or clusters working as a ap-
plication store. Users tend to frequently request OS images and applications.
Some files will become "hot spots’ due to the newly released updates for popular

applications.

In this work, we fully consider the challenges for the scheduling process in a clus-
ter and aim at optimizing it. The major target for the optimization is to explore
identical tasks and schedule them in a manner that their overall cost, like disk 10
or computing time, will be reduced. Meanwhile, the inter-dependency between tasks
and the performance on the client’s side are also highly valued during the optimiza-

tion. Following are the contributions of this work.

e Abstracts a scheduling model based on Transparent Computing architecture.
The model serves file requests from multi-clients and schedule these requests

to servers in the cluster.

e Focuses on the file fetching process in awareness of the cost saving which is

brought by identical file requests from various clients.
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e Heuristic algorithms are proposed to optimize the file fetching process.

e The heuristic algorithms are evaluated under the scheduling model, in compar-

ison with traditional scheduling methods.

The rest of the thesis is organized as follows. Section 2 includes the related
works for this research. Section 3 presents the scheduling model used for the file
fetching process and defines two scheduling problems — Single-Server Valid Sequence
Generation (VSG) problem and Multi-Server Job Partition (JP) problem. Then
section 4 proposes heuristic algorithm for these two problems. In section 5, the
heuristic algorithms are evaluated in reference to other used solutions for file fetching
process. Section 6 will cover some future topics concerning the model proposed in

the work.



2. RELATED WORK

The studies on job scheduling are always the core of performance optimization in
computer system. There exist some classic problems that can be adapted to cloud

scheduling and they significantly inspire this work.

1. Two and three stages production scheduling [10] is proposed by Dr. S. M. John-
son. The work proposed the decision rule that leads to an optimal scheduling
solution for the two-stage case. A restricted case of three stage problem was

also solved [10].

2. Flow shop sequencing problem [14] [16] extended the scheduling problem to
a more general n X m flow shop problem.Considering the heuristic methods
that have been proposed for this problem, the major objectives are usually
minimizing the overall makespan or minimizing the idle time of underlying

machines.

3. List scheduling [20] is another scheduling topic that are frequently used in in-
struction scheduling on multiprocessors [3] and scheduling upon heterogeneous
systems [17]. List scheduling problem adapts direct acyclic graphs (DAG) to
represent inter-dependencies of jobs, keeps a ready queue for nodes that are
ready to be processed and assigns priorities to nodes in DAG to help deciding

the processing order. These features siginificantly inspires this work.

In this work, the optimization of file fetching process is defined as a sequencing
problem upon multiple Directed Acyclic Graphs (DAGs).
Moreover, this work is motivated by the real need in Transparent Computing

(TC) Project. TC follows a Service-Oriented Architecture (SOA) [23]. Users request

5



all services from the cloud without storing any OSes or applications locally. Such ser-
vices are secured by pervasive network across heterogeneous software and hardware

platforms [24]. Figure 2.1 shows a basic service architecture of TC.

Client ~1, @2
Terminal = “-i =2
:A: Access Protocol
network
<~ <~
TransOS Server
Linux Windows Android
Apps Apps Apps
Linux Windows » Android
User Data

Figure 2.1: Transparent Computing Architecture

As shown in figure 2.1, there are two key features, via which users can get perva-
sive access to TC service. One is TransOS (Transparent Operating System) server
and the other is pervasive network. TransOS is responsible for access control, job

scheduling and data management. Client terminals are light-weighted devices which



only needs to locally store Basic Input and Output System (BIOS) and a small
fraction of booting protocols for the devices.

Concerning the design and implementation of TC infrastructure, the study [11]
points out critical issues in scheduling problems. Therefore, the research will validate
and evaluate the scheduling algorithms in an infrastructure that is abstracted with
reference to Transparent Computing [22], Apollo from Microsoft [1] and GFS from
Google [6]. The data fetching process is the major perspective and the research goal
is to minimize the file fetching cost as much as possible via taking benefits from those
identical requests from various clients.

Figure 2.2 represents the scheduling model used for this work. More details can
be found in Scheduling Model section. Centralized metadata severs (or Job Manager)
is a common solution nowadays for data center. A wide range of researches has been
proposed upon the design of Job Manager or Metadata Server. Resource Monitor, as
part of Job Manager, involves topics like dynamic resource provisioning and shared
resource pooling [13] [7]. Technical solutions to design an efficient Resource Monitor
includes hierarchy listen/announce protocol [12] or peer-to-peer self-organizational
protocol [18].

To optimize the file fetching process, finding the bottleneck is the first task to
start with. As proposed in [21], performance barriers emerge along with salient
features of cloud environment. One of them is the high-volume I/O due to server
consolidation and scalability in expansion. Both disk I/O and network bandwidth
are critical to the file fetching process in this work. Moreover, compared to network
bandwidth, the Hard Disk Drive (HDD) has a slower growth in its bandwidth (close
to the physical constraint). Solid State Drive (SSD) does bring a huge improvement
in local storage performance. However, its application is limited by its high cost and

cannot replace HDD as the major storage in the current data centers. Therefore,
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in this work, the major barrier to be optimized will be the disk 1/O. Although the
mathematical model is formatted in a more general way, the original motivation is
to save the disk I/0O.

Therefore, job scheduling is considered as the breakpoint for such 1/0O bottleneck.
There are diverse researches on estimation based scheduler. Such scheduler assigns
jobs to underlying servers based workload estimation. The Job Manager dynamically
collects information of cloud resources (latency, bandwidth, queue status, etc) via
Resource Monitor. A classic algorithm used to balance the workload is stable match-
ing algorithm [5]. On the server side, most infrastructures use regular topological

sorting or either execute all the tasks in a FIFO manner.



3. SCHEDULING MODEL AND PROBLEM DESCRIPTION

3.1 Scheduling Model

The services based on cloud computing are diversified. The definition and tax-
onomy of cloud computing vary rapidly as new services are emerging all the time.
However, most of these services are faced with the challenges mentioned in the last
section: the amount of users and the cost of jobs scale considerably for each server
in the cluster. In this section, a scheduling model will be presented and a formal
definition upon the file fetching problem in the cloud environment will be given.

Figure 2.2 presents the model that will be used along this work. The model is
abstracted from common architectures of cloud-based services [15] [22] [4]. First of
all, the model in Figure 2.2 follows a basic Service Oriented Architecture (SOA),
where client’s requests are addressed in the view of ’services’ and it is the cluster’s
responsibility to interpret service requests into concrete jobs. The types of clients are
not limited here; it can be laptops, smart phones, tablets or any devices capable to get
access to the system. Meanwhile, the network connections between the clients and
the cluster are not limited to any specific types of access as well. Yet the performance
of the network IO does constrain the optimization, which will be discussed in the
later sections.

On the cluster side, the first step upon receiving a service request is to interpret
it into a corresponding job graph G;, which includes all the subjobs needed to ac-
complish the request. Meanwhile, G; will be delivered to Job Manager (JM), which
has three major components related to the scheduling process — Resource Monitor,
I/O Queue and Estimation-Based Scheduler. The first one is Resource Monitor. Its

job lies in keeping track of the performance and availability of underlying servers.
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Meanwhile, the Resource Monitor will be responsible to collect heartbeat messages
within the cluster. These messages can bring periodical feedbacks concerning the
workloads and failure/recovery status. The I/O queue stores and manages all the
job requests and its corresponding information like deadline, request source and most
importantly the job graphs (formatted as DAGs) . Then the estimated-based sched-
uler will schedule the receiving jobs based on their cost estimations and workload
feedback from Resource Monitor.

Upon receiving job assignments from the Job Manager, the server will schedule all
the subjobs from received job graphs into its local sequence. This is the major process
this work will focus on. When the amount of jobs is huge and identical subjobs widely
exist, the scheduling on a single server has the potential to be optimized.

In summary, when a job is requested to the cloud, it will go through two schedul-

ing stages.

1. Partition. Happens at Job Manager. JM will interpret all the requests it
received into DAGs. Then distribute these DAGs to underlying servers based

on criteria like job cost, server’s workload and latency etc.

2. Sequencing. Happens at each single server. The server will schedule all the
DAGs it received from JM into a local sequence. Then the server will execute

all the subjobs following the sequential order.

Here are some essential concepts related to the scheduling optimization.

e Job Graph. Each Job from clients is interpreted as a Directed Acyclic Graph
(DAG). Each vertex in the DAG represents a subjob and each directed edge

indicates the dependency relationship between two subjobs.

11



e Subjob Sequence. The sequence includes all the subjobs (vertices) from all the

job graphs (DAG) received on one server and can be executed in serial order.

e Weight. Each subjob (vertex) will be assigned with a Weight value which will

help the scheduler determine which subjob should be executed next.

For a more general description, a job can be a service request from a client like
”Update and Run Facebook Application on an Andriod Phone”. Meanwhile, this
job will be interpreted as a DAG G;, where each vertex represents a subjob. Each

subjob includes fetching and delivering one specific file for the client.

Job

JobDAG G

Subjob

id Global Identification
wi  Weight

¢ Total Cost
file  Target File

Figure 3.1: Job and Subjob

3.2 Single-Server Scheduling

Figure 3.1 illustrates the basic information concerning job and subjob in the

model. Each job is requested by one source client for a service request.

12



During the partition stage, the JM will interpret jobs into DAGs and deliver
these DAGs to the underlying m machines via estimation-based scheduler, where
the server set is = {M;, Ms, ..., M,,}. A single server is assumed to have n job
DAGs needed to be scheduled and executed. We define the graph set I' on a single
server as

I'={Gy,Gs,...G,} (3.1)

A single job (interpreted as G;) consists of k subjobs. Each subjob had a unique
identification in the set I' and is associated with a target file. Note that two subjobs,
which can be either in the same job or in difference jobs in I', may be associated
with the same target file. Each subjob will have a cost ¢ calculated according to its
context in a scheduled sequence S, which represents the cost of fetching the target
file from disk into memory buffer. (See the following discussion for more details.)

The local scheduler of each server will generate a subjob sequence S for file

fetching process. The validity of the sequence is defined in definition 3.1

Definition 3.1. Valid Sequence: Given a set of job DAGs ' = {G1, G, ...,G,},
let Vi be the collection of vertices and Er be the collection of edges in all DAGSs in

set T'. A walid subjob sequence S = [s1, Sa, ..., Sn] must satisfy:

1. Elements in the sequence S and subjobs in Vi follow a bijective map function
m: S — Vp. FEach subjob vertex u in Vr pairs with exactly one element in the

sequence S.
2. For any edge e(u,v) € Er, where u = w(s;) and v = m(s;), we must have i > j.
Based on definition 3.1, the following lemmas can be further derived

Corollary 3.2. For any path that can be found in a DAG in ' starting at vertex

u=7(s;) and ending at target vertex v = m(s;), we must have i > j .

13



Proof. The path in any DAG is composed of a series of vertices and directed edges.
Definition 3.1 (2) holds for all edges and its transitive feature will be contradicted if

1 > j holds for any path in T'. ]

Each server has a buffer B in main memory with certain pre-given size. Files will
be fetched from disk drive to buffer B and wait for further transmissions. When a
subjob s; is being executed during the file fetching process, its cost will be reduced

in the following scenario.

o [f the target file of s; has been already loaded and still held in the buffer due
to foregoing subjobs, there is no need to fetch it again from disk drive and it

can be directly transmitted to the source client.

Therefore, when a subjob s; is being executed, the context of buffer B is essential
for reducing cost. We introduce the concept of segment to help illustrating the file
fetching process. To begin with, here are some notations concerning the file fetching

process and will be further used along this work.
e f(s;) refers to the target file associated with the subjob s;.
e f(s;).size indicates the size of memory space needed to accomplish s;.
e s;.source refers to the DAG that contains s;.
e B.size denotes the total memory size reserved for buffer B.

Definition 3.3. Segment Given a valid sequence S = [s1, Sa, ..., SN], a segment S; ;

is a subsequence of S, represented as [si, Siy1, ..., ;| where i < j.

Here are some features concerning a segment .S; ;.

14



o Let set F}; be the file set that includes all the target files required for subjobs
J
n S@j, i.e. E,j = U {f(Sk)}
k=i

e We define S;;.size as the total size of all file objects in Fj;, i.e S;;.size =

> f.size. S;j.size denotes the amount of memory size needed to accomplish
fEF;;
all subjobs in the segment S; ;.

— Segment —_—
Subjob Sequence S S1 S5 S6 s7 58 SN
| |
Map to Target File f(s5) f(s6) f(s7) f(ss)
Target File filey files

Figure 3.2: Segment Example. S5 = [s5, Sg, S7, Ss], where F5g = { filey, files} and
Ss.8.512¢ = filey.size + filey.size.

Figure 3.2 presents an example of the concept segment. With the definition of
segment, we can now move on to discuss the cost of each subjob in S. When the
buffer B is bounded with a certain size, the amount of files existing in B will become

restricted. A bounded segment is applied to help calculating the cost of a subjob s;.

Definition 3.4. Subjob Cost Given a valid sequence S = |[sq,Sa,...,Sn], when

calculating the cost for s;, let S;; be the segment with the smallest possible i such

15



that S; j.size < B.size. Then the cost of the subjob s; will be calculated as

0 3k (1 <k < j), where f(s;) = f(s;)
8j.cost =

f(s;j).size others

The total cost for the sequence will be

N

Costg = Z s;.cost (3.2)

=1

It need to be noticed that we assume the sizes of any files requested will not have
a size larger than the buffer size. This assumption will be held along this work.

The generation of the valid sequence will be the major focus of this work. To
optimize the valid sequence generation, the major target will be minimizing the
overall cost of all n subjobs in a single server via taking benefits from same files
requested from different clients. In other words, the sequence generated for a single
server should maximize the possibility that target files requested can be found in the
memory buffer without fetching them from disk drives. The problem can be formally

defined as following.

Definition 3.5. Single-Server Valid Sequence Generation (VSG) Prob-
lem: Given a job DAG set T' = {G1, G, ...,G,} for a single server and a memory
buffer B with a fixed size, generate a valid sequence S including all subjobs and satisfy

all the dependencies in set I while the overall cost of the sequence is minimized.

The difficulties of the problem can be clarified in two aspects. Firstly, the amount
of valid sequences for a single graph ; can be diverse. The order of tasks significantly
depends on the implementation of topological sorting algorithm used. Moreover, in

this work, generating a valid sequence from a set of graphs I' brings larger set of

16



possible solutions. In the following sections, we use a heuristic way to solve the
problem and evaluate it upon the scheduling model defined.

Here is a simple example for the file fetching process to illustrate how the sequence
generation will affect the overall cost. Figure 3.3 includes two job requests in a single

server.

NG

Figure 3.3: File Fetching Cost Example

Table 3.1: Target File Size

Target File A B C D E F
Size(MB) 100 240 170 20 10 35

We denote each subjob here with its file name and the DAG it belongs to. A;

denotes a subjob that has target file A and belongs to job DAG G;. With DAG set

I' = {G;,G2}, both of the following sequence will be valid according to definition

17



3.1.

S, = [A(l)7 c® W ph ER A@ @) F(2)}

Sy = [E(2),A(1), 0(1)714(2)’ 0(2)73(1)’ D(l), F(Q)}

Assume a buffer B with size 300 MB is reserved in the main memory. The cost

for each sequence is calculated based on definition 3.4 and the results are included

in table 3.2

Table 3.2: Cost for Two Jobs with Difference Sequence
Sy AL o O ph  E®  A® 0@ F®  Total Cost
Size (MB) 100 170 240 20 10 100 170 35 845
Reduced Cost? No No No No No No No No
Sy E@ AL ch  A® c® pBO pO  F®  Total Cost
Size (MB) 10 100 170 100 170 240 20 35 575

Reduced Cost? No No No Yes Yes No No No

There are two subjobs that achieve reduced costs with Sy. Let us have detailed

views on each of them.

e For the subjob A® in S, we can have a segment Sy 4 = {A®Y, O AP} and
the corresponding file set Fy4 = {A, C'}. Since subjob A® has a target file A,
where A®) has the same target file and it is included in S 4, the cost for A®)

can be reduced.

e Similar case holds for C®. A segment Sy5 = {AD CW AR CP} can be
derived and its file set Fy5 = {A,C}. The cost of C® will be reduced due to

the existing CM) in Sy 5.
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3.3  Multi-Server Scheduling

Beyond the sequence generation on a single server, another important issue for
the cloud to deal with file fetching process is distributing all the DAGs to under-
lying servers. As discussed in the Scheduling Model section, Job Manager will be
responsible for interpreting all the jobs received into DAGs and assigning them to
the servers. This process can be turned into a partition problem, where the core
objective will still be reducing the disk IO cost of all jobs scheduled and balancing
the workloads among all servers.

Consider we have a set of job DAGs I' = {G, G, ..., G,,} and a set of underlying
servers Q) = {My, My, ..., M,,}. We need to partition the set I into m subsets that
will be represented as I'; = {Ggi), Gg), . GEZ}} i=1,2,..,m, where I' = J" | T; and
n =Y., n;. Then for each server M;, it will generate a valid sequence from the set
I'; as discussed in the previous sections and Cost(T';, M;) will be used to indicate the
total disk IO cost of executing all jobs in I'; upon the server M;. Note that for each
Cost(T';, M;), the actual value of it really depends on the algorithm each server uses
for the sequence generation and the buffer size reserved for file fetching. In this work,
we assume all the underlying servers are identical for the simplicity, where all server
will have the same capability in disk IO, memory buffer and the same algorithm
applied for sequence generation. Therefore, the cost of each job will be proportional

to its file size. Then the problem can be formally defined as

Definition 3.6. Multi-Server Job Partition (JP) Problem Given a job DAG
set I' = {G1,Gs,...,G,} and a server set Q = {My, My, ..., M,,}, partition T into
m subsets I'y, Iy, ..., 'y, where the largest disk 10 cost among all Cost(I';, M;) is

minimaized.
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4. SOLUTION FOR THE VSG PROBLEM

In this section, a preliminary section will cover the specifics of the VSG problem
like validity check and cost calculation. Then a short survey is presented to show
the possible solutions for the VSG problem. Lastly, we propose a heuristic algorithm

that aims at reducing overall cost of a subjob sequence.
4.1 Preliminary

To begin with, since the algorithms discussed here are mostly related to DAG

and queue operations, some frequently used notations will be introduced first.

e v.indegree indicates the number of nodes having edge (u,v) that points to vertex
v. If v.indegree = 0, the vertex v represents a subjob that no other subjobs

depend on it.

e v.outdegree indicates the number of nodes u which node v has outgoing edges
(v,u) point to. If v.outdegree = 0, the vertex v is considered as a leaf vertex

and does not depend on other subjobs.

e Ready Queue @ is a global array that includes all the vertices ready to be put

into the sequence. All the elements v in @) satisfy v.outdegree = 0.

The subjob sequence S must satisfy all the dependency relations that exist in set
I'. Algorithm 1 is proposed to verify the validity of the sequence upon the set I.
The algorithm traverses the whole sequence S from s; to sy and each subjob should
have all its precedent subjobs being executed prior to it.

Note that the function 7 : S — V maps each subjob s; in S to a vertex in

some DAG in I". According to definition 3.1(2), a subjob s; will be ready to be
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Algorithm 1 Validity Verification

Input: Subjob Sequence S = [s1, s9, ..., sy]; Job Set I'; Map Function 7 : S — T’
Output: Whether the sequence S is valid or not;
fori=1to N do
if 7(s;).outdegree! =0 then
return false; {s; depends on tasks that will be executed after it in sequence}
end if
Let Gy € I' be the source DAG that contains vertex m(s;).
for each directed edge (u,7(s;)) in Gy do
u.outdegree — —;
end for
end for
return true;

executed only when all the subjobs it depends on have been executed. Algorithm
1 uses m(s;).outdegree to trace the number of subjobs that s; depends on and still
remains uncompleted.

Upon verifying the validity of a sequence, the cost of sequence has several features
which will help the following discussion. To begin with, for two consecutive subjobs

associated with a same target file in the sequence, their overall cost will be reducible.

Lemma 4.1. Given a sequence S = [s1, S, ..., sj| and a subjob sji1, let F;; be the
file set for the segment S;; with the smallest i holding S; ;.size < B.size. Then if

f(sj11) € F;;, we have
1. The sequence S" = [s1, Sa, ..., Sj, Sj+1] will have the same cost as S.
2. The file set F; j1 for the segment S; j11 is the same as Fj; for S; ;.

Proof. With two segments S, ; = [s1, S2, ..., §;] and S; j41 = [s1, S2, ..., Sj, Sj41], their
corresponding file sets will be F; ; and Fj j.q, where F; j11 = F;; U{f(sj11)}. Since

f(sit1) € F;;, we will have F;; = F, ;1. Moreover, according to definition 3.4,
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s;j+1.cost = 0 if there is a subjob sy, in segment S; j, where f(s;) = f(sj11). Therefore,

since Costgr = C'ostg + sj41.cost, we must have S and S’ with the same cost. H

More generally speaking, if f(s;+1) € F;;, appending any subjob s;i; to the
sequence S will neither add extra cost to the sequence nor change the file set F; ;
used to calculate the cost. Moreover, given a valid sequence S and a memory buffer
B, the sequence generated will have upper and lower bounds as shown in Theorem

4.2.

Theorem 4.2. Given a valid sequence S = [s1, Sa, ..., sny] and a fized size buffer B,

the overall execution cost will follow the bounds as

N
Z f.size < Costg < Zf(si).size (4.1)

fer N i=1

where Iy n is the file set that includes all the target files needed in S, i.e. Fyny =

Proof. For the lower bound, it can be derived from the case where an infinite large
buffer is applied. With an infinite large buffer, all the files will be fully fetched
only once and all the later subjobs associated with same files can take advantage of

existing target files. The lower bound is derived as

Costg > Z f.size

fer N

For the upper bound, we can assume a buffer size only be able to hold one target
file each time. Each s; need to be accomplished via loading the target file into buffer.
In such case, each task will have a full time cost without taking advantage of same

target files between different subjobs. Then the upper bound can be represented as
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following.
N
Costs < Z f(si).s1ze
i=1
m
When calculate the cost for each subjob s;, it is essential to construct a segment

S;; with the smallest 7 satisfying S; ;.size < B.size. Algorithm 2 is proposed to

construct such a segment S; ; to help calculate the cost for the subjob s;.

Algorithm 2 Longest Segment (LONG-SEG)

Input: Sequence S = [s1, So, ..., Sy]; Memory Buffer B; Subjob s;
Output: Segment S; ; = [s;, Sit1, ..., Sjl;
F + empty set for target files;
size = 0;
fori=jto1do
if f(s;) ¢ I’ then
Add f(s;) to F;
size = size + f(s;).size;
end if
if size + f(s;—1) > B.size and f(s;_;) ¢ F then
break;
end if
end for

return segment S;; = [Si, Sit1, ..., S4];

Next, we will start to discuss the construction of a sequence with a job set I
given. Suppose now we have a subjob s;; selected from a ready queue ) and want
to append it to partial sequence S = [sq, S2, ..., 5;]. Algorithm 3 illustrates how to

append the selected subjob to the sequence and update the ready queue (). Note

23



that the vertex set Vi and the edge set Er include all the vertices and edges in set
I'. Meanwhile, the ready queue () is a global array which includes all the subjobs

satisfying outdegree = 0.

Algorithm 3 Update Sequence and Ready Queue (UPDATE)

Input: Subjob s;;11; DAG Set I'; Sequence S = [sq, g, ..., S;];
Output: Sequence S’ = [s1, Sa, ..., Sj, Sj41];
for each edge e(v,m(sj41)) € Er do
Remove e from Er;
v.outdegree — —;
if v.outdegree = 0 then
Add v to the ready queue @
end if
end for
S" =S5+ sj11; {where 7(s;11) = u}

4.2 A Heuristic Algorithm for VSG Problem

In this section, a specific heuristic algorithm for VSG problem is proposed aiming
at taking advantage of those subjobs associated with same target files. The core idea
is always choosing the subjob which can save the most cost for the current step and
adding it to the sequence. Therefore, the algorithm will follow a greedy strategy.
A weight value w is assigned to each subjob s; to indicates how many subjobs are
depending on s;. A typical way to define the weight value of a subjob s; with

m(s;) = u will be

wt(s;) = u.indegree
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Here, the weight wt(s;) of each subjob will be the number of subjobs directly depend
on it. There are more ways to define the weight values which will be further discussed
in the following content. The core idea will be the same — higher the weight value
one subjob s; has, more subjobs are currently depending on s;.

Now, we can move on to discuss the heuristic solutions for the VSG problem.
Remind that the sequence generation process can be interpreted as picking subjobs
from I' and continuously append them to the sequence. To ensure the validity of the
sequence generated, the following heuristic algorithm will only pick subjobs from the
Ready Queue (), where all its elements satisty outdegree = 0. Here is the strategy

applied to the heuristic solution to decide which subjobs should be picked next.

e For each subjob s in the ready queue ), we define direct reduction (DR) in

cost with sequence S = [s1, s, ..., sj] given.

f(s').size f(s') € F;
0 Others

DR (S,s) =

where F; ; is the file set for the longest segment S; ; achieved from algorithm

2, ie. Si,j: LONG—SEG(S,B,S]) .

According to lemme 4.1, if any subjobs in @ is assigned with a positive direct
reduction, adding it as s;41 to the sequence S will not increase the overall cost

of the sequence.

e Meanwhile, we define indirect reduction (IR) for each subjob s’ in the ready
queue (). The indirect reduction of subjob s’ indicates the amount of direct
reduction that will be created via adding s’ to the sequence. Thus, for each

s’ in the ready queue, let S’ = [s1,59,..,5;,5j41], where s;11 = &', and let
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Q' = Q\{s'}, we have

IR(S,s') = > DR(S's")

S”EQI

Without the presence of positive direct reductions in @), the algorithm will
always choose the subjob s’ with the largest indirect reduction, puts it to the

sequence and starts over to look for subjobs with direction reduction in Q.

e If neither of positive direct and indirect reduction can be found, the algorithm
picks one subjob s’ from the ready queue @ with the largest weight. We define

estimated reduction (ER) for each subjob ¢ in @ as following.

ER(S,s") = wt(s")

Then the heuristic algorithm for VSG problem is proposed in algorithm 5
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Algorithm 4 Heuristic and Greedy (HG) Algorithm for VSG

Input: I' = {G4,Go, ..., G, }; Memory Buffer B;
Output: An valid operation sequence S.
Create a empty sequence S and a ready queue @;
for ecach vertex v in Vr do
if v.outdegree = 0 then
Add vertex v to Q;
end if
end for
while () is not empty do
m = max{DR(S, s")|s" € Q)}; {Check whether exists direct reduction.}
if m >0 then
let s;41 = &', where DR(S,s") = m;
else
m = max{IR(S,s)|s' € @)}; {Check whether exists indirect reduction.}
if m >0 then
let s;11 = s, where IR(S,s") = m;
else
m = max{ER(S,s')|s' € Q)}; {Estimate reduction based on weight.}
let s;41 = &', where ER(S,s') =m;
end if
end if
Delete s;1; from Q;
UPDATE(s;41, S, I');
{Update the sequence S and the ready queue Q.}
end while
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5. SOLUTION FOR THE JP PROBLEM

Similar to the VSG problem, here we propose a heuristic algorithm to solve the
JP problem. Before move on to the detailed algorithm design, we will first start with

some preliminaries.

e For any subset I'; = {GV, G{", ..., GSf)}, we define the file set F; that includes
the files needed to accomplish all jobs in I';. Meanwhile we define file set Fg,

for each job G} in I', which includes all the files needed to accomplish G}.

e For each file set, we define a function size() to calculate the cumulative sum of
all files in the set. For example, size(Fg, ) will return the sum of the sizes of

all files needed to accomplish Gy.
Now we can discuss how the heuristic algorithm works.

1. Given the job set I', first sort all the Gy based the value of size(Fy, ), where
(G is supposed to have the largest cost. The new I' achieved will satisfy that

for any G; and G (i < j), size(Fg,) >size(Fg,).

2. Then the algorithm will start at GGy and assign all DAGs in I into a total m

subsets. We define the estimated workload w to help the decision making.
w = Cost(L';, M;) — ax size(Fg, N F})

The Cost(I';, M;) indicates the current workload that the server M; has. size(Fg, N
F;) denotes the estimation of the amount of cost can be reduced if assigning
G}, to M;. For each Gy, the algorithm will pick a subset I'; having the smallest

estimated workload w and add G to I';. The factor « is used to control the
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partition strategy. For a larger «, the algorithm will favors the cost reduction
can be created by assigning Gy to a server M;. On the other hand, when « is
set to be small, the algorithm will prefer the well-balanced workloads for all

the servers.

3. Repeat step 2 until all DAGs in I" have been partitioned into subsets.

Algorithm 5 Heuristic Algorithm for JP Problem (HP)

Input: Job set I' = {G1,Go, ..., G, }; server Set Q = { My, My, ..., M, };
Output: m subsets ['1, s, ..., T');
Sort all the Gy in I' with descending size(Fg, ) value;
for k=1 ton do
for i=1 to m do
Calculate weight w;= Cost(I';, M;) — a * size(Fg, N F;);
end for
Assign GG, to the machine with the minimum weight;
end for

The key concept here is similar to Graham’s List Scheudling algorithm and the
Longest Job First (LJF) algorithm, which always schedules the job having longest
completion time to the machine with least workload each time. Here, the algorithm

considers both workloads and the cost reduction that can be achieved.
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6. SIMULATION AND RESULTS

6.1 Simulation Setup

To evaluate the performance of the heuristic algorithm proposed, a set of simula-
tion experiments are conducted. All the simulations are implemented with C++11
standard and conducted under Mac OS environment. Meanwhile, the simulations
adopt Boost Graph Library (BGL) to provide the generic interfaces of graph struc-
ture.

To evaluate the performance of the HG algorithm, we propose other two algo-
rithms that can generate a valid sequence with the set I given. Both of them are

based on the topological sorting of a single DAG.

1. For each DAG G, in I'; topological sorting will generate a valid sequence S;.
Catenate all the S; arbitrarily into one sequence S, which will be a valid se-
quence for the set I'. We use CA (catenate arbitrarily) as the abbreviation of

the solution.

2. Similarly, for each DAG G; in IT', apply topological sorting upon G; to con-
struct the sequence S;. Different from CA, we apply a round-robin principle
to construct the overall sequence S. Figure 6.1 shows how the sequence S is
generated. For each round, exact one subjob will be picked from each G; and
put into S until all the subjobs are included. We use RR (round-robin) as the

abbreviation of the second solution.

Meanwhile, the upper bound and the lower bound of the cost will be applied as

references to the performance evaluation as well. For any sequence S generated, we
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Figure 6.1: Sequence Generation via Round-Robin Scheduling

evaluate the cost of S in the form of

Costg
cost lower bound

P(S) =

The cost lower bound of a sequence S is derived as > fEF N f.size in Theorem 4.2,
where F} n is the file set that includes all the target files needed in 5, i.e. Fyn =
UL, {F (s}

Since this research is motivated by the practical scheduling issue in Transparent
Computing (TC) environment. The data sets used in the simulation will also consider
the real needs in TC. Remind that clients with various types of terminal devices will
request for operating systems, drivers, compliers or applications from TC servers.

We use the model proposed in Herraiz, et al.[8] to construct the data sets used in
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the simulations. Herraiz, et al.[8] presents a complete analysis upon the distribution
of file sizes in a linux distribution. The work concludes that the source files in a
Linux system follow a lognormal distribution. Therefore we generate the test cases
with the size of target files following a lognormal distribution with two distribution
parameters p and o, where p represents the mean of the variables, which, in our
case, is the average size of the target files, and o is the standard deviation of the
variable’s natural logarithm, which will be interpreted as the amount of variation of
the sizes of target files used in the simulations.

In sum, we will evaluate the performance of candidate algorithms upon the fol-

lowing parameters.
e The proportion p of all subjobs eligible for cost reduction in set I'.
e The mean u of the lognormal distribution of all target files requested by clients.
e The standard deviation o in target file size distribution.
e The size of memory buffer B.
e The size of DAG set T.

e The ratio r that indicates the number of edges connected to each vertex. If
r = 0.3, it means each vertex are connected to 30% of the total number of

vertices in (5}, either as a source vertex or a target vertex.

6.2 Simulation Results and Analysis
6.2.1 The VSG Problem

To begin with, we evaluate the performance of heuristic algorithms with varying
average target file size. Seven data sets are created with target file size following a

lognormal distribution, where the mean value p varies from 1 to 4 and the standard
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devision is fixed as o = 0.25. It indicates that the average target file size will vary
between 2.7 MB to 54.6 MB (All the size mentioned in the section will be in the unit
of MB). Morever, all cases are simulated with a I' set with 20 DAGs. Each DAG
is composed with 50 vertices and about 375 edges (r = 0.3). The buffer size is set
to be 1000 and a maximal 30% of total subjobs in I" can be reduced in cost. The
simulation results are shown in Figure 6.2 and more detailed simulation results are

included in the Table 8.1 in the Appendix section.
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Figure 6.2: Performance of Candidate Solutions upon Mean .
o =0.25, |I'| = 20, |Vg,| = 50, r = 0.3, Buffer Size = 1000, p = 30%.

As shown in Figure 6.2, the sequences generated by HG have costs that are 10%
higher than lower bound when average size is small. And it is about 30% higher when
the mean value increases to 4. When the average target file size is increasing, the
number of files can be hold in the memory buffer will be decreased. Therefore, all the

heuristic solutions have decreasing performance with the increasing . Compared to
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CA and RR, the performance of HG is better by 7% — 10% in reference to the lower
bound. Larger the mean value is, better performance improvement can be achieved
by HG compared to CA and RR.

Furthermore, consider a fixed mean value p = 3, we will explore the impact of
the standard deviation. Six test cases are conducted with the standard deviation

that varies from 0 to 1.25. All other parameters are kept as same as the previous

simulation.
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Figure 6.3: Performance of Candidate Solutions upon Standard Deviation o.
w=3, || =20, |Vg,| =50, r = 0.3, Buffer Size = 1000, p = 30%.

As shown in the Figure 6.3, when the standard deviation increases, the perfor-
mance of all three algorithms will converge to the upper bound. Compared to CA
and RR, HG will have more obvious advantage when the standard deviation is low.

Besides the distribution of the target file size, the features of the DAG set I' will
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also affect the performance of algorithm. Starting with the size of I, six simulation
tests are conducted with the size of I' scale from 10 to 60. The size of target files
follows a lognormal distribution with 4 = 3 and ¢ = 0.25. Other parameters are

kept as same as previous cases.
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Figure 6.4: Performance of Candidate Solutions upon the Size of T'.
uw=3,0=0.25 |Vg| =50, r=0.3, Buffer Size = 1000, p = 30%.

From Figure 6.4, we can find that the performance of HG is not significantly by
the size of I'. While for CA and RR, their performances will converge to the upper
bound when the set I' increases in size.

In addition, within a single DAG G, the number of vertices and edges will also
affect the performance, since the dependency relations are extremely essential to the
generation of a valid sequence. Figure 6.5 includes six cases, where the number of

vertices in each DAG G varies from 10 to 110 and the ratio r is kept as constant.
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All three algorithms will be affected by the increasing vertices number. When the
DAG has fairly small number of vertices, HG’s performance is fairly close to the

lower bound.
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Figure 6.5: Performance of Candidate Solutions upon the Size of Each DAG G;.
p=3,0=0.25 || =20, r=0.3, Buffer Size = 1000, p = 30%.

The ratio r is another important parameter concerning the structure of a DAG.
Note that the ratio r indicates how many edges that a single vertex is connected
with, either as a source vertex or a target vertex. Each vertex is connected via a
total 7% |V, | edges, where |V, | is the number for vertices in G;. Figure 6.6 presents
a full survey with the ratio r varying from 0.1 to 1.0. It can be concluded that
compared to CA and RR, HG will have more advantage upon DAGs with simpler
dependency relations. Both CA and RR are not edge-sensitive as indicated in the

Figure 6.6.
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Figure 6.6: Performance of Candidate Solutions upon the Amount of Edges Con-
nected to Each Vertex (r).
w=3,0=0.25 || =20, |Vg,| = 50, Buffer Size = 1000, p = 30%.

The next parameter discussed will be the buffer size. Figure 6.7 covers cases with
buffer size ranging from 200 to 2000. HG has a average AP(S) = 0.07 better than
CA and RR and its performance converges to the lower bound as the buffer size
increases.

Lastly, we analyze the performance of candidate solutions upon the proportion
p, which indicates the number of subjobs that are eligible for cost reduction. More
generally speaking, the proportion p can be interpreted with upper bound and lower

bound as

lower bound
p=1L-——"—
upper bound

Figure 6.8 presents simulation cases with proportion p ranging from 0.2 to 0.8. The
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Figure 6.7: Performance of Candidate Solutions upon the size of Memory Buffer.
w=3,0=0.25 | =20, |Vg|=50,r=0.3, p=30%.

performance of HG indicates its potential in cost reduction with a high redundancy
in target files.

In summary, according to all the simulation results above, we can derive the
following conclusions concerning three candidate solutions. For HG, it shows great

performance in the following cases.

e Compared to CA and RR, HG brings more reduction in cost in most cases.
Especially when the redundancy in target files is frequent, HG will take more

benefits from it.

e HG can generate sequences with costs close to the lower bound for those DAGs

with less dependencies.

e HG has a stable performance independent of the size of I'.
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Figure 6.8: Performance of Candidate Solutions upon proportion p.
w=3,0=0.25 |I'| =20, |Vg,| =50, r = 0.3, Buffer Size = 1000.

e HG has more advantages over CA and RR when the average file size is large
and the standard deviation is small.
Moreover, concerning CA and RR, we can derive the following conclusion.

e (A and RR are not edge-sensive. They will have a more stable performance

compared to HG in case the indegree and outdegree for vertices are diverse.

e (A and RR share almost same performance and complexity in sequence genera-
tion. Their sequence generation process is faster than the one of HG. Especially

when the set I includes more DAGs and each DAG has more vertices.
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6.2.2 The JP Problem

We perform a set of simulations upon the heuristic algorithm proposed for the
JP problem. The setup is similar to the simulations of VSG problem. We use
Longest Job First (LJF) algorithm as a reference when we evaluate the heuristic
(HP) algorithm proposed in this work. To has better focus on the partition problem,
we define the following settings for sequence generation problem identically for each

underlying servers.

e Each server will use HG algorithm proposed in this work to calculate the actual

cost for each T';.
e The buffer size will be set to be 1000 MB.

e The target file size follows a lognormal distribution with mean p = 3 (about

20MB) and standard deviation o = 0.25.

Then the first parameter this section will cover is the parameter a. We want to figure
out how the value of o will affect the final cost for file fetching. Here we assume
we have 50 DAGs need to be distributed and each DAG having 40 vertices. The
redundant portion of identical target files p is set to be 0.3, where indicates half of
the subjobs may be reducible in cost. We test the partition algorithm upon 5 server,
where make a Job-to-Server ratio n/m = 10.

Figure 6.9 includes the cost for the M;, which has the largest cost after the
partition. The two algorithms have really close performance when « is small and
HP algorithm does have an advantage compared to LJF. However, when the « gets
larger, the HP starts to lose the good workload balance between underlying servers.

However, according to the results in Figure 6.10, HP have a better average cost

compared to LJF in most cases. As the a increases, the HP will have a even better
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cost reduction referring to LJF.

Another important parameter we think may relate to the performance will be the
Job-to-Server ratio n/m. We take a a value equal to 10 and keep other parameters

as the same as the previous simulation.
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Figure 6.11: The Largest Cost for a Single Server on n/m

Figure 6.11 and 6.12 both show the relation between the performance of the
candidate algorithms and the ratio n/m. While both algorithms have a close per-
formance in the largest cost for a single server, HP does have better cost reduction
when each machine is responsible for more jobs.

In summary, the heuristic algorithm HP proposed for the job partition algorithm
have a close performance to the Longest Job First algorithm concerning the workload

balance. Beyond that, HP does reduce the amount of disk 10 cost via assigning each
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job to a server, where exits extra disk 10 cost reduction for the file fetching fetching

process.
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7. FUTURE WORK

7.1 More Topics for File Fetching Process

This works aims at proposing the model where the disk IO cost can be reduced

via optimized scheduling. We use heuristic algorithms to validate and show the value

of the problems we defined. However, these heuristic algorithms have great room to

be further optimized concerning the running time complexity. The followings are

some interesting topics that are valuable upon this work.

e For the single-server VSG problem, each DAG can be scheduled into a valid
sequence S; and the overall sequence S for the set I' can be considered as
the result of merging all the S; together. To minimize the disk IO cost of the
sequence S, the subjobs requesting for identical target files should be scheduled
to be next or close to each other in S. Therefore, the sequence generation can
be interpreted as a sequence alignment problem with the valid sequences for

each DAG are given.

Beyond the sequence alignment mentioned above, the permutation of difference
valid sequences from difference DAGs is also an interesting topic to cover.
Upon having a valid sequence S; generated from the DAG G, some subjobs
in S; can be swapped while the sequence S after the swapping is still valid.
Therefore, exploring the permutations of sequences S; for each DAG to achieve

a minimized disk IO cost in the sequence alignment will be a valuable topic.

For the multi-server scheduling, we also found interpreting this with a limited-
budget in disk 1O can bring valuable perspectives. More than a simple makespan

problem, now we can define a budget for each DAG and each underlying server
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has a price reflecting its current workload. Considering the disk IO reduction
as the reward, the target of the algorithm will be maximizing the reward via
assigning each DAG to servers, where the budget of the DAG can afford the

price of the server it will be assigned to.
7.2 Weight Assignment

For the HG algorithm proposed, the estimation reduction is derived from the
weight of each subjob vertex. The core idea of the weight of s; is to indicate how
many subjobs are depending on s;. In section 4.2, we define the weight of each
subjob s; is equal to the indegree of 7(s;). There actually exist alternative methods
in defining the weight here. All of them are stick to the core idea we have here and

can fit into the HG algorithm proposed.

1. Let wt(s;) equal to the cumulative sum of the target file size of all the subjobs

directly depend on s;.

2. Let wt(s;) to the number of subjobs s;, which has a path starting from s; and
ended at s;. In other words, wt(s;) can be equal to the total number of subjobs

directly or indirectly depend on s;.
3. Combine 1 and 2 together, wt(s;) can be defined as the cumulative sizes of all

the subjobs directly or indirectly depend on s;.

It need to be noticed that some methods of weight assignment may have favors in
specific types of subjobs. It will be an interesting topic to explore the features of

different methods.
7.3 Beyond File Fetching

Since this work is motivated by the real need in Transparent Computing, the

file fetching process is the major focus. However, the core idea of this work can
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be further extended beyond file fetching process. The cloud will be faced with all
kinds of job requests and the overlap between these jobs can be significant. When
scheduling these jobs, taking benefits for these overlapped jobs can a breakthrough
point to the performance optimization of the cloud.

Meanwhile, the model proposed in this work can be further extended to consider
not only just the reading/fetching of files, but also updating/writing files in the
cloud. The dependency will become more complicated and there will be more mutex

requirements need to be satisfied.
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8. CONCLUSION

The whole discussion starts from a core idea — dependent data fetching can be
optimized via benefiting from identical data requests. This idea comes from the
recent studies on transparent computing, where clients continuously request large
number of files from the cloud and some commonly used files (like OS and software
source files) may be requested by several clients concurrently and repeatedly. To
validate the value of this idea, we define the valid sequence generation problem, which
aims at reducing the disk 1O cost of file fetching under the model abstracted from the
transparent computing architecture. A heuristic algorithm is proposed specifically
for the problem and the simulation results indicate the optimization in disk 1O cost
brought by the algorithm proposed. Beyond that, a Job Partition Problem is defined
for the multi-server scheduling and its validity and correctness is shown with the
heuristic algorithm specifically proposed for the problem. Further research can be
conducted following the core idea here and bring more efficient solutions for file

fetching process in cloud environment.
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APPENDIX

All the detailed simulation results used in section 5 will be included here. All

data will be presented

Table 8.1: P(S) Values for Figure 6.2

Mean Upper Bound MS RR HG
w=1.0 | 1.422553752  1.192189557 1.166739798 1.113207547
pw=1.5|1.403819918  1.240381992 1.219918145 1.166166439
=20 | 1.412428398  1.29178962  1.297517792 1.239715327
=25 11390916808  1.325870119 1.319927844 1.25360781
pw=3.0 1| 1.427411168 1.372182741 1.373401015 1.293265651
w=3.5|1.402521746  1.372955071 1.374551113 1.28433485
w=4.0 | 1.404404208  1.381967213 1.388182041 1.29168094
Table 8.2: P(S) Values for Figure 6.3
Standard Deviation | Upper Bound MS RR HG
c=0 1.449275362  1.402898551 1.392753623 1.324637681
o =0.25 1.4050895 1.348650815 1.346112744 1.282594176
c=20.5 1.341178552  1.303014216 1.308499971 1.233233056
oc=0.75 1.25832497 1.233053554  1.239211751 1.175348965
o=1 1.175679655 1.164360258 1.162299212 1.110642196
oc=125 1.10354928 1.098423305 1.099064052 1.076020046
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Table 8.3: P(S) Values for Figure 6.4

I' Size

Upper Bound

MS

RR

HG

10
20
30
40
20
60

1.414852411
1.395581659
1.396700396
1.392916599
1.40118997

1.395954718

1.313075998
1.346459321
1.360844699
1.36833687
1.38079048
1.379051375

1.338319754
1.346058867
1.373119226
1.37078505

1.384296643
1.381133831

1.282890343
1.29179737
1.28658161
1.29714379
1.306337654
1.290369747

Table 8.4: P(S) Values for Figure 6.5

DAG Vertex Size | Upper Bound MS RR HG

10 1.412874958  1.1809909 1.2157061 1.041793057
30 1.398634512  1.323422531 1.307234886 1.165180046
50 1.391372243  1.351616891 1.34341857  1.269308348
70 1.403874321  1.375147649 1.366406804 1.319253485
90 1.403318745  1.375747629 1.364697301 1.327534646
110 1.394437421  1.36966468  1.374119559 1.336764794

Table 8.5: P(S) Values for Figure 6.6

Ratio r | Upper Bound MS RR HG

0.1 1.406620324  1.358556769 1.356636875 1.179410791
0.2 1.414622642  1.375471698 1.355727763 1.25680593
0.3 1.401617782  1.345126924 1.34880968  1.275088781
0.4 1.389775317  1.339238033 1.345555194 1.279908824
0.5 1.398130597  1.356886071 1.349434604 1.291718413
0.6 1.404527754  1.367896508 1.36030625  1.300706224
0.7 1.394312169  1.35734127  1.348148148 1.3125

0.8 1.418434479  1.348885607 1.36929377  1.325523631
0.9 1.408239451 1.357442837 1.361842544 1.32064529
1 1.421320477  1.379603589 1.370429892 1.324829249
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Table 8.6: P(S) Values for Figure 6.7

Buffer Size

Upper Bound MS

RR

HG

200
400
600
800
1000
1200
1400
1600
1800
2000

1.415104482
1.403615655
1.408838671
1.425884582
1.391745298
1.400961412
1.391459537
1.394804005
1.401174685
1.403176502

1.408654169
1.389444408
1.372735174
1.382382789
1.354900828
1.332674832
1.340061003
1.327138276
1.31030159

1.318979266

1.408385406
1.381895239
1.384970248
1.388606995
1.342769112
1.337284341
1.324615484
1.313068516
1.300666535
1.29917597

1.322045287
1.290841666
1.295045798
1.270888303
1.268695038
1.27887528

1.248231553
1.241410902
1.235992873
1.242025518

Table 8.7: P(S) Values for Figure 6.8

Proportion r

Upper Bound

MS

RR

HG

0.2
0.3
0.4
0.5
0.6
0.7
0.8

1.234543208
1.418482293
1.618259188
1.920405599
2.380286455
3.031047865
4.456661817

1.215012648
1.369376054
1.527040619
1.791636755
2.1401827

2.589047003
3.356059031

1.204894406
1.358381113
1.547466151
1.78436827
2.1401827
2.616357625
3.463936811

1.164244956
1.283777403
1.400077369
1.54971285

1.771174016
2.078913325
2.425483268
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Table 8.8: P(S) Values for Figure 6.9 and 6.10

a | HP(max) 2A(max) HP(avg) 2A(avg)
2 | 7148 7385 7018 7294.8
4 | 7053 7523 6940.4 7296

6 | 7177 7562 7093 7448.4
8 | 7126 7461 7102.2 7362.2
10 | 7138 7303 6909.4 7208.8
12 | 7097 7473 6986.2 7335.6
14 | 7042 7209 6998.2 7151.4
16 | 7318 7509 6883.6 7282.4
18 | 7461 7294 6883 7241
20 | 7467 7455 6939.8 7319.4
22 | 7559 7567 6960 7366.6
24 | 7437 7424 6868.2 7299.8
26 | 7538 7373 6865.2 7305.4
28 | 7899 7480 6971.4 7457
30 | 7989 7482 6888 7322

Table 8.9: P(S) Values for Figure 6.11 and 6.12

n/m | HP(max) 2A(max) HP(total) 2A(total)
1 962 962 42263 42263
2 1648 1662 40103 41550
5 4303 3977 37242 39067
10 7397 7470 34492 36190
25 15033 15270 29520 32120
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