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ABSTRACT 

 

Delay test is an essential structural manufacturing test used to determine the 

maximal frequency at which a chip can run without incurring any functional failures. 

The central unsolved challenge is achieving high delay correlation with the functional 

test, which is dominated by power supply noise (PSN). Differences in PSN between 

functional and structural tests can lead to differences in chip operating frequencies of 30% 

or more. Pseudo functional test (PFT), based on a multiple-cycle clocking scheme, has 

better PSN correlation with functional test compared with traditional two-cycle at-speed 

test. However, PFT is vulnerable to under-testing when applied to delay test. This work 

aims to generate high quality PFT patterns, achieving high PSN correlation with 

functional test.  

First, a simulation-based don’t-care filling algorithm, Bit-Flip, is proposed to 

improve the PSN for PFT. It relies on randomly flipping a group of bits in the test 

pattern to explore the search space and find patterns that stress the circuits with the 

worst-case, but close to functional PSN. Experimental results on un-compacted patterns 

show Bit-Flip is able to improve PSN as much as 38.7% compared with the best random 

fill.  

Second, techniques are developed to improve the efficiency of Bit-Flip. A set of 

partial patterns, which sensitize transitions on critical cells, are pre-computed and later 

used to guide the selection of bits to flip. Combining random and deterministic flipping, 

we achieve similar PSN control as Bit-Flip but with much less simulation time.  
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Third, we address the problem of automatic test pattern generation for extracting 

circuit timing sensitivity to power supply noise during post-silicon validation. A layout-

aware path selection algorithm selects long paths to fully span the power delivery 

network. The selected patterns are intelligently filled to bring the PSN to a desired level. 

These patterns can be used to understand timing sensitivity in post-silicon validation by 

repeatedly applying the path delay test while sweeping the PSN experienced by the path 

from low to high.  

Finally, the impacts of compression on power supply noise control are studied. 

Illinois Scan and embedded deterministic test (EDT) patterns are generated. Then Bit-

Flip is extended to incorporate the compression constraints and applied to compressible 

patterns. The experimental results show that EDT lowers the maximal PSN by 24.15% 

and Illinois Scan lowers it by 2.77% on un-compacted patterns.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Scan-Based Test 

The difficulty of testing very large scale integrated (VLSI) circuit is the limited 

controllability and observability after chips are fabricated [1]. This is worsening with the 

increasing size of modern designs, typically millions of transistors. Various design-for-

test (DFT) techniques, such as ad-hoc test point insertion, scan design, and logic build-in 

self-test, have to be deployed in order to achieve high test quality and low defect level.  

Mux-D full scan is one of the most popular techniques and features for its simple 

structure and small hardware area overhead. Fig. 1 shows the structure of a Mux-D scan 

cell (SC), which consists of a multiplexer and a D Flip-Flop (DFF). The data input of the 

DFF has two sources: functional input (D) and scan input (SI). These two signals are 

selected by the scan enable (SE) signal: when SE is 1, the data presented at SI is selected 

to DFF at the effective clock edge (CK); when SE is 0, the functional input D is selected. 

In full scan design, all the DFFs are replaced by SCs and SCs are connected into scan 

chains, i.e. the output Q is connected to the SI input of next SC.  

In the test mode (SE=1), a test pattern can be applied at the SI port of the first SC 

in each scan chain and then is shifted into the SCs cycle by cycle. After all SCs are 

initialized, the circuit under test (CUT) switches to functional mode and the response is 

captured into SCs through DI ports. The contents of the SCs can be shifted out for 

observation. While the captured data is shifted out, the next test pattern can be shifted 
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into the SCs. The response is compared against the expected values. If they mismatch, 

the CUT fails the test. Otherwise, it passes. With SC, the internal chip signals can be 

controlled and observed. A sequential circuit is transformed into a combinational circuit 

and the testability is highly improved. Test patterns to test sequential circuits can be 

developed based on this model. Test patterns generated based on the scan model are 

structural tests as functionality is not considered during pattern generation. 

 

Fig. 1 Flip-Flop and scan cell 

As the number of possible test patterns is exponential to the number of scan cells 

and primary inputs (PI), it is impossible to numerate all the patterns and also not 

necessary. In practice, physical defects induced by the imperfection of the manufacturing 

process are modeled as logic faults based on their functional behavior, such as stuck-at-

0/stuck-at-1 (SA0/SA1), or bridging faults. So test patterns can be developed based on 

these faults models. This makes the test generation easier, as the test generation tool 

does not consider the mechanism behind the behavior, which is complex and infeasible 

to cover all the possible mechanisms. For example, there are various scenarios that a 

signal line cannot be changed but is stuck at logic 0 (SA0). But for test generation, the 
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pattern generation tool only needs to cover the logic fault. Therefore, the complexity of 

test generation is highly reduced. The quality of the test set is evaluated by fault 

coverage, which is calculated as the number of faults tested over the total number of 

faults.  

Automatic test pattern generation (ATPG) consists of two steps: sensitizing a 

fault and propagating the faulty value for observation [2]. For instance, to test a SA0 

fault, the test must control the signal line to logic 1, and observe the faulty value 0 at the 

primary output or a scan cell. Several classic ATPG algorithms, such as D-algorithm, 

PODEM, and FAN [2], have been developed. They are optimized to reduce the search 

space and test generation time cost. Test points, including control point and observation 

point, are usually used to improve the fault coverage. With a good DFT design, stuck-at 

fault coverage can be as high as 100%.  

Test pattern compaction and compression are two popular techniques developed 

to reduce the test data volume for modern large designs, such as System-on-Chip (SoC), 

and thus reduce the test application time. Test compaction highly reduces the number of 

patterns by testing as many faults as possible in one single test pattern. It can be done 

either during the ATPG stage, i.e. dynamic compaction [3], or post ATPG stage, i.e. 

static compaction [4]. Dynamic compaction usually achieves a better compaction ratio 

but with higher CPU time cost. Test compression, such as Illinois Scan [5] and 

embedded deterministic test (EDT) [6], reduces the length of each test pattern and 

restores all the test bits using an on-chip decompressor.  
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1.2 Delay Test 

Delay test is one of the essential structural tests and verifies the speed of the 

chips against the design specification. There are two main delay faults models: transition 

delay fault model (TDF) and path delay fault model (PDF) [7]. TDF targets individual 

signal lines and assumes gross delay defects, which is sufficient to cause a signal slow to 

rise or slow to fall. The benefit of TDF is that the fault set size is linear in the circuit 

size. Moreover, a stuck-at fault ATPG engine can be reused for TDF as the test of TDF 

can be viewed as a test of two stuck-at faults. Therefore, existing industry approaches to 

delay test are built on the TDF model. The drawback of TDF is that it tends to propagate 

transitions along short paths [8], as the ATPG chooses paths with high observability. As 

a result, the generated patterns are not effective in covering small delay defects (SDD), 

which have become increasingly critical with technology scaling to 45nm and below. 

SDD introduces only a small amount of extra delay to the chip and a single SDD may 

not be enough to cause failures but only degrade the performance. ATPG engines 

considering timing information are proposed to propagate transitions along long paths [9] 

[10]. However, the size of the test set increases and CPU time cost for such ATPG is 

usually very high [11].   

PDF has the advantage of better coverage for SDD as it targets the accumulated 

delay along a path. False paths [12] and multiple-cycle paths must be excluded from the 

paths tested as these path might cause false rejection. One of the challenges for PDF is 

the number of paths increases exponentially with the size of the circuit. Another 

challenge is that the timing is sensitive to process variation [13] and 
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power/voltage/temperature conditions.  So it is proposed to select a subset of paths for 

test or timing validation [14] [15]. To select the real speed-limiting paths, a well-

established timing model, which should be simple but relatively accurate [16] [17], 

should be used. One potential solution is to target the K longest paths through each gate 

(KLPG) [18]. In this way, the number of paths is linearly in the size of the circuit.   

A delay test pattern consists of two vectors. The first vector initializes the CUT, 

and the second vector generates a transition and propagates the transition to the 

observation point. Delay test patterns are applied based on two clocking schemes as 

shown in Fig. 2 and Fig. 3: launch-on-shift (LOS) [19] and launch-on-capture (LOC) 

[20]. In LOS, the second vector is one-bit shifted from the first vector. LOS has better 

fault coverage and pattern generation is usually easier. But it requires the SE signal to 

switch at functional speed. In LOC test, the second vector is derived from the first vector. 

It is a two cycle sequential test so ATPG is more complex. The fault coverage is also 

typically lower.  

 

Fig. 2 Launch on shift scheme 

 

CK 

SE 

Launch Capture 



 

 6  

  

 

Fig. 3 Launch on capture scheme 

1.3 Power Supply Noise 

The central unsolved challenge in structural delay test is achieving high delay 

correlation with the functional test, which is the de-facto standard in determining the 

chip maximal operating frequency (FMAX). The correlation problem is dominated by 

power supply noise since it significantly impacts the delay of the selected paths [21] [22] 

[23] [24]. Differences in PSN between functional and structural tests can lead to 

differences in chip operating frequencies of 30% or more. Worse, it is becoming very 

difficult for the test engineer to know the supply noise environment on the chip, due to 

the use of SoC designs and 3D packaging. 

There are two main reasons causing PSN discrepancy between the structural and 

functional mode. First, scan-based delay test uses slow shift and fast capture clock 

cycles. In LOC test, the hold cycle between the last shift-in cycle and the first functional 

cycle must be long enough to allow the scan enable signal to switch. In the meantime, 

the off-chip inductances settle down to their quiescent currents. When the test is applied, 

on-chip switching currents must be supplied from on-chip capacitances, causing the 

supply voltage to drop (dI/dt noise). Second, scan patterns are structurally generated for 

CK 

SE 

Launch Capture 
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low cost, randomly filled for fortuitous fault detection and highly compacted for small 

data volume. Illegal states, which are never visited in functional mode, reside in the test 

pattern [25] [26]. The combination of these effects results in higher simultaneous 

switching activities in the test mode. Considering the power grid is not optimized for 

delivering such a large amount of switching current, excessive supply voltage drop (IR-

drop) will occur in test mode.  

As shown in Fig. 4, the PSN mismatch between structural and functional mode 

leads to either over-testing or under-testing. For simplicity, let us assume the delay of a 

path consists of two parts. One is PSN-induced delay and the other is the normal delay, 

which counts for manufacturing process variation. In order to pass the delay test, the 

total delay should be smaller than the test cycle time (CLK). In case (a), the PSN-

induced delay is larger in test mode than that in worst-case functional mode. As a result, 

the total delay exceeds the cycle time and the chip fails the delay test. This is called 

over-testing. In case (b), the PSN-induced delay is smaller in test mode and the test does 

not test the worst-case delay of the circuit. So the measured FMAX is too optimistic. 

This is called under-testing. Over-testing causes yield loss while under-testing may later 

test to fail (higher test cost) or cause field failure after shipping to the customer. Both of 

the cases should be avoided in manufacturing test.   
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Fig. 4 Over-testing and under-testing 

1.4 Power Supply Noise Control  

The philosophy of handling PSN in test mode can be divided into three 

categories: (1) minimize PSN; (2) maximize PSN and (3) maximize the realistic PSN.  

The first approach spares no effort to minimize power or PSN to avoid over-

testing. Plenty of techniques have been developed, such as scan chain reordering [27], 

low-power test generation [28] [29] [30], low-power X-filling [31] [32] [33] [34] [35], 

and power-aware compaction [4] [36]. Here “X” stands for don’t-care bits in the test 

pattern. The main disadvantage of these methods is that they do not change the fact that 

illegal states may still reside in the test pattern. The illegal states mean circuit states that 

are never reached in the functional mode. Pseudo functional test [25] [26] is another 

technique falling into this category but explicitly places logic constraints on ATPG to 

PSN-induced  
Delay  

CLK 

Functional Mode 

Structural Mode 

Functional Mode 

Structural Mode 

(a) Over-Testing   
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avoid illegal states. However, it is hard to enumerate all possible illegal states and also 

potentially causes under-testing.  

The second approach attempts to maximize PSN in order to achieve high SDD 

coverage and avoid under-testing [37] [38] [39]. In reference [37], an iterative procedure 

based on genetic algorithm (GA) is reported. In each iteration, waveform simulations 

and fitness calculation are performed to guide selection, crossover and mutation to find 

patterns that induce larger PSN. The problems in this method are the dependency on 

initial population and the high simulation cost. In reference [38], PSN maximization is 

modeled as a MIN-ONE problem and a SAT solver is used to maximize the transition 

count. A SAT-based method can find a near-optimal solution. However, CPU time cost 

is usually high. The work in [39] utilizes a commercial ATPG engine to sensitize as 

many neighboring signal lines as possible by virtual test point insertion. This approach 

features good compatibility with commercial tools, but the optimality highly depends on 

the implementation of the industrial tool.  

The third approach argues that chips should be tested under the maximal 

functional PSN and attempts to strike a balance between over-testing and under-testing 

by considering functional constraints and PSN at the same time. These approaches 

usually consist of two steps - pseudo functional test generation and PSN maximization, 

such as MAX-fill [40] and backward justification based approach [41]. Max-Fill 

computes functional reachable states that induce maximal switching activities using both 

logic simulation and backward justification. Later partially specified patterns are filled 

with these computed states. The approach proposed in reference [41] extracts logic 
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constraints, which constraint ATPG to avoid illegal states, and then justify transitions on 

neighboring signals.  

1.5 Pseudo Functional Path Delay Test Generation 

The focus of previous work is the on-chip IR-drop noise. However, silicon 

measured data reveals the necessity of considering both on-chip IR-drop and off-chip 

dI/dt noise in order to improve the delay correlation of structural and functional test [22] 

[42]. Pseudo functional KLPG (PKLPG) [18] [43] test is proposed to generate delay 

tests that test the K longest paths through each line in the circuit while having PSN 

similar to that seen during normal functional operation. Rather than scanning in a test 

pattern, applying it with a few functional test clocks and scanning out the results, 

PKLPG is applied by scanning in a test pattern, running multiple functional clocks, and 

then scanning out the result, as shown in Fig. 5.  

 

Fig. 5 Clocking scheme for pseudo functional test 
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droop  
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The initial functional clocks, termed the preamble, run at lower speed to ramp up 

the off-chip power supply currents and minimize the noise due to the chip and package 

inductance (dI/dt). The preamble cycle time must be much less than the off-chip inductor 

time constant, but should be as large as possible to minimize the number of preamble 

cycles needed to stabilize off-chip inductor currents.  

PKLPG can be viewed as a short burst of functional tests. The primary advantage 

is that it applies tests in a more functional manner, so power supply noise, signal 

coupling and power dissipation are more similar to functional operation. As for shift 

mode (both in and out), accumulative shift power dissipation can be minimized by DFT 

techniques, such as scan-chain partitioning [27], or test pattern manipulation, such as 

MT-filling [31]. Our in-house KLPG test generator, CodGen [18], was modified to 

support PKLPG pattern generation by introducing additional cycles prior to the launch-

capture cycles. Currently, CodGen supports up to 32 preamble cycles followed by at-

speed launch and capture. 

As discussed above, PKLPG is effective in reducing the impact of dI/dt noise and 

produces an on-chip IR-drop environment similar to functional test. Now the major 

concern is whether the test pattern fully exercises the circuit and induces the maximal 

possible simultaneous switching activities, which in turn produce the worst-case delay 

on the path. Moreover, it is interesting to explore the functional PSN range between 

the max and min to verify timing robustness during post-silicon validation. Our PSN 

profiling results (detailed in Chapter II) indicates that functional PSN during the capture 

cycle is much lower and hence probably causes under-testing. Therefore, the goal of this 
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work is to generate high quality test patterns and achieve high correlation with 

functional test. 

1.6 Organization of the Dissertation  

The dissertation is organized as described below.  

In Chapter II, a simulation-based PSN control algorithm, Bit-Flip, is proposed to 

maximize the power supply noise during PKLPG test [44]. Given a set of partially-

specified scan patterns, random filling is done and then an iterative procedure is invoked 

to flip some of the filled bits, to increase the effective weighted switching activity 

(EWSA). The experimental results on the b19 benchmark circuit show that the algorithm 

improved EWSA as much as 38% compared with best random fill. Also the results on 

both compacted and un-compacted test patterns demonstrate that Bit-Flip can 

significantly increase effective WSA while limiting the fill rate. 

Chapter III proposes several techniques to improve the efficiency of Bit-Flip 

(iBF) [45]. iBF combines random flipping with deterministic modification to efficiently 

fill the don’t-care bits. Background patterns, which sensitize transitions on critical cells, 

are pre-computed and later used to select the bits to flip. Dynamic bit weighting permits 

intelligent selection of background patterns. Experimental results on benchmark circuits 

shows iBF achieves worst-case realistic PSN in significantly less CPU time than Bit-

Flip. 

In Chapter IV, we address the problem of automatic test pattern generation for 

understanding circuit timing sensitivity to power supply noise during post-silicon timing 

validation [46]. Long paths are selected from a PKLPG path set to span the power 
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delivery network. To determine the sensitivity of timing to on-chip noise, the patterns 

are intelligently filled to achieve different PSN levels. The PSN control algorithm, Bit-

Flip, is enhanced to consider both spatial and temporal information for better correlation 

with functional PSN. These patterns can be used to understand timing sensitivity in post-

silicon validation by repeatedly applying the path delay test while sweeping the PSN 

experienced by the path from low to high. 

Chapter V studies how compression affects PSN control. We first generate 

pseudo functional Illinois Scan and EDT patterns that target the longest paths through 

each gate. Then a compression-aware PSN control scheme is implemented to maximize 

the PSN while obeying the compression constraints. For each path, four different 

patterns are used for the experiment: un-compacted Illinois Scan, compacted Illinois 

Scan, un-compacted EDT, and compacted EDT. With these 4 patterns, we are able to 

study the PSN impact of both compaction and compression. The experimental results 

show that our PSN algorithm achieves significantly higher PSN compared to random or 

best random fill on both un-compacted and compacted patterns. Our constrained random 

(CR) algorithm for EDT compression reduces CPU time, while achieving slightly better 

results than best random fill.   

Chapter VI summarizes the dissertation and discusses future work.  
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CHAPTER II  

POWER SUPPLY NOISE CONTROL 

 

2.1 Introduction 

In recent years, considerable research effort has been dedicated to at-speed test 

using the path delay fault model since it has the advantage of capturing the accumulative 

effects of small delay defects. However, the maximum operating frequency during at-

speed scan test may not correlate well to functional and system tests due to the mismatch 

of power supply noise. While PKLPG produces a functionally similar PSN environment 

for at-speed test, it potentially causes under-testing without PSN control. Moreover, it is 

interesting to explore the range of functional PSN during launch and capture. This can be 

used to verify timing robustness during post-silicon validation and to set the PSN margin. 

The central challenge of applying prior work to PKLPG is that PKLPG is a multiple-

cycle sequential test. Computational cost increases dramatically with the number of 

preamble cycles, making it difficult to apply GA, SAT or justification-based methods. 

The objective of this chapter is to develop a PSN control scheme for PKLPG. 

In this chapter, we first investigate the PSN scenario for PKLPG using random 

pattern simulation, which shows that PKLPG is more vulnerable to under-testing rather 

than over-testing. Then a simulation-based PSN control algorithm called Bit-Flip is 

proposed to maximize PSN during launch and capture cycles for partially-specified 

PKLPG patterns. Experimental results on un-compacted longest path patterns of ITC99 

benchmark circuit b19 demonstrate our scheme is able to improve the effective WSA as 
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much as 38.7% compared with the best random fill. Results on compacted patterns show 

that Bit-Flip can perform effectively even if the care bit density (fraction of test pattern 

bits that are 0/1) is as high as 20%. The trade-off between CPU time and noise 

maximization is also discussed.  

Bit-Flip is similar to the hill-climbing procedure reported in reference [35], but 

with a few differences. We explore Bit-Flip to maximize effective WSA for PKLPG test 

rather than minimize Hamming distance of scan cell states for traditional two-cycle 

delay test. We flip a group of bits per iteration rather than one at a time. 

2.2 Pseudo-Functional PSN  

This section presents the PSN profiling results for PKLPG using random pattern 

simulation and analyzes the impact of random filling on weighted switching activities 

during the capture cycle. Primary inputs are kept constant during simulation considering 

low-cost automatic test equipment has few high-speed pins. For each circuit, 30,000 

random patterns are applied with a burst of 16 functional mode cycles. WSA is used as a 

simple metric to evaluate the PSN during each cycle. WSA at cycle k can be calculated 

using formula (1) - (3).  

 

                                                            (1) 

       
                                    
                              

                     (2) 

                                                            (3) 

Where #FO is the number of fan-out of gate i;        is the logic value of gate i at cycle k. 
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Fig. 6 and Fig. 7 depict the detailed results of PSN profiling. Chip1 and Chip2 

are two industrial designs, while b19 and s38417 are two large circuits from the ITC99 

and ISCAS89 benchmarks respectively. Fig. 6 shows the average WSA over the 16 

cycles for the selected circuits. For convenience, WSA is normalized to the first capture 

cycle. As expected, for all the circuits the WSA falls rapidly during the first several 

cycles, and then stabilizes at 20-30% of the cycle 2 level after roughly cycle 6. The 

reason is that the high WSA in the first two cycles is probably introduced by illegal 

states. After applying preamble cycles, the illegal states die out gradually and the circuit 

approaches a near-functional state. Therefore, applying at least six preamble cycles 

(PKLPG) will produce a PSN environment closer to functional. Traditional two-cycle at-

speed test is applied at cycle 2 and sees a higher WSA, while PKLPG sees a much lower 

WSA. Therefore, PKLPG is more vulnerable to under-testing rather than over-testing.  

Fig. 7 illustrates the correlation between the WSA at cycle 2 and cycle 16 for b19. 

Similar results are observed for the other circuits. The WSA of the 30,000 random 

patterns at cycle 2 are sorted in increasing order. The corresponding WSA at cycle 16 is 

also plotted. The minimum and maximum WSA observed at cycle 16 is denoted as the 

“Pseudo Functional PSN Range”. We can see that the WSA at cycle 16 (last capture 

cycle) is independent of that at cycle 2 (first capture cycle). This indicates that 

probability calculation based methods [32] [34] cannot guide filling in the presence of 

many preamble cycles. The large pseudo functional PSN range at cycle 16 indicates the 

importance of don’t-care filling. Given a partial specified pattern, the X bits should be 
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assigned wisely to sensitize the worst functional PSN condition. In the following section, 

we will describe a simulation-based X-filling method to control PSN.  

 

Fig. 6 Average WSA falls with multiple cycles 
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Fig. 7 b19 WSA correlation of different cycles 

2.3 Overview of Proposed Framework  

In this section, a simulation-based PSN maximization scheme, Bit-Flip, is 

described. For a given partially-specified test pattern, it attempts to incrementally 

improve the effective WSA by flipping a group of randomly-selected X-bits. The Bit-

Flip procedure is detailed in Fig. 8. It consists of a preprocessing step, an iterative step 

and a bit-relaxation step. Circuit netlist, layout, critical path list and test pattern set are 

the inputs to the algorithm. 

 

 

Pseudo Functional 

PSN range 
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Fig. 8 Bit-Flip flow 
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position matching and are stored in a list. We term these cells as critical cells. It has 

been demonstrated that critical cells have considerable impact on the PSN of on-path 

gates [39]. Meanwhile, scan cells located in the fan-in cone of the critical cells are also 

marked and stored in another list. These scan cells are termed as critical bits. Next, all 

critical bits are randomly filled and an event-driven logic simulator, CodSim [47], 

simulates the filled pattern. Then EWSA is measured as the initial EWSAmax. EWSA is 

defined as the sum of transitioning critical cells’ WSA. 

In the second step, the number of rounds and initial group size (initial value of G) 

are chosen based on the CPU time budget. At the beginning of a round, the scan cells 

that have constant logic values at the last launch/capture cycles are collected as potential 

scan cells. The union, U, of the critical bits and the potential scan cells serves as the final 

bit set for PSN control. Then Bit-Flip enters the iterative PSN control process. In each 

iteration, it randomly selects up to G scan cells from the set U and flips their logic value. 

Then CodSim simulates the modification incrementally, and a new EWSA is measured. 

If EWSA is increased, the flipped bits are retained and EWSAmax is updated; otherwise, 

the flipped bits are restored. At the end of each round, the group size is reduced by a 

constant. The flipping process is terminated when the maximum number of rounds or 

enough failures in a row is reached. After the iterative procedure concludes, bit-wise 

relaxation is performed to maximize the number of X-bits, for the benefit of MT-filling 

[31] or test compaction [3] [4]. 
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2.3.1 Critical Cell Identification 

In this work, we utilize the effective region to identify critical cells, as shown in 

Fig. 9. This approach is motivated by the model used in reference [39]. Vertically, gates 

in the same and neighboring rows are critical cell candidates since they share either 

power or ground lines with the on-path gates. Horizontally, each row is divided into 

segments by power/ground strips. Based on power grid analysis, an effective region can 

be set around on-path gates in order to capture the localized nature of PSN. All gates 

within the effective region are critical cell candidates.  

 We perform a 3-value (logic 1, 0, X) simulation on the partially specified pattern. 

All candidates that have undetermined values (XX, 1/0X, X1/0) at launch/capture cycles 

are denoted as critical cells. After critical cells are identified, Bit-Flip attempts to 

maximize the sum of the WSA of critical cells (EWSA).  

  

Fig. 9 Effective region 

2.3.2 Task Granularity 

Bit-Flip flips a group of bits each time. To select an appropriate group size, we 

need to consider the potential EWSA improvement as well as the simulation time cost.  
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Assuming there is no overlap among the fan-out cones of the flipped bits, 

simulation time increases linearly with the group size and the total iterations. This is 

usually true if the group size is much smaller than the number of test pattern bits. The 

flipped bits spread sparsely along the scan chains.  

The total number of bits that are covered by Bit-Flip is: 

             
 
 

 
   

   
  

where I is the total iterations of each round, G is the initial group size, and d is the 

decrement of the group size. The time cost of Bit-Flip can formulated as:  

      

where C is the simulation time cost of flipping one bit. In order to reach the maximal 

PSN, two conditions much be satisfied: 1) B≫S, where S is the number of scan bits. This 

guarantees that each bit is flipped enough times; 2) I is large enough to adequately 

explore the exponential search space.  

In practice, the time budget T is fixed. Therefore, the total number of bits B that 

can be flipped is fixed. Here we assume that condition 1) is satisfied. With a fixed B, in 

order to make I large enough, we need to make G as small as possible. However, too 

small a group size causes the transitions (flipped bits) to die out over the preamble cycles, 

and so not improve EWSA. 

Therefore, in Bit-Flip we first try a large group size to search across the 

exponential space and approach some local optima PSN. By decreasing the group size 

round by round, we gradually achieve the optimal result as well as limiting the execution 

time.  
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2.3.3 Critical Bit Fill and Bit Relaxation 

In order to narrow down the search space, structural information can be used to 

identify critical bits that are highly correlated to the logic value of the critical cells. Bits 

in the fan-in cone of critical cells are most likely critical. After critical cells are 

identified, a multi-cycle back-trace procedure is called to collect critical bits. However, 

multi-cycle back-trace may cause too many bits to become critical, which will increase 

the fill rate and degrade pattern compaction performance.  

To limit the number of critical bits, we need to identify the bits which are 

insignificant to EWSA maximization and exclude them from the critical bits set. That is, 

if we relax an insignificant bit to X, EWSA will not be reduced. Therefore, we apply a 

bitwise bit-relaxation procedure to turn insignificant bits into X bits. The procedure 

relaxes each bit to X, simulates the circuit, and keeps the relaxation if EWSA is not 

decreased. Otherwise the bit is restored. An efficient relaxation method can be found in 

reference [48], although their focus is fault coverage, not PSN. 

If the fill rate of the test patterns is limited, such as to enable high test 

compression ratio, a trade-off must be made between EWSA maximization and X-bit 

utilization. This is done by adding a significance ranking to X-bits during the relaxation 

process. We use the change in EWSA to rank the bits. This can then be used to select 

which bits are relaxed. 

2.3.4 Compacted Pattern Consideration   

Test compaction is used to reduce pattern count and minimize the test application 

time. Compacted patterns typically have higher care-bit density, which reduces the 
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search space for PSN control. Bit-Flip can be applied to compacted patterns with slight 

modification.  

First, the paths tested by a given pattern can be searched in a breath-first manner. 

If the pattern tests a critical path, we term this a critical pattern and Bit-Flip is applied to 

it. Critical paths can be obtained from static timing analysis (STA) tools or by setting a 

threshold on path length. In practice, it can be selected based on path length distribution 

and CPU time budget. If the compaction algorithm attempts to pack critical paths 

together, the number of critical patterns may be small. In our future work, we will 

enhance the compaction algorithm to compact long paths together, so the critical pattern 

count is reduced.  

Second, critical cells are identified for each critical path tested by the critical 

patterns, and its EWSA weighted based on the path length. Since a longer path is more 

sensitive to PSN induced delay, a larger weight is assigned to its critical cells. The 

weight is the ratio of path length to the longest path length (or clock cycle time). If there 

is an overlap of critical cells on different paths, the WSA is weighted by the longest path. 

Bit-Flip attempts to maximize the weighted EWSA of all critical cells.  

2.4 Experimental Results 

We implemented Bit-Flip in C++ running on a 3.16 GHz processor with 4 GB of 

memory. Robust paths and patterns are generated using the in-house PKLPG tool, 

CodGen, with K=1 (one longest rising and falling path per line) and 6 preamble cycles. 

Physical layouts were generated using commercial tools. In the following, Bit-Flip with 
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N iterations will be termed BF-N. The 10 longest paths from b19 that do not share gates 

were selected for experiments. These paths/patterns are termed P0 to P9. 

First, we investigate how group size affects Bit-Flip performance for a fixed CPU 

time budget. We ran Bit-Flip on path P0 while limiting CPU time to 10s. This is a 

generous amount of CPU time for one path. For each group size, we filled the pattern 

1000 times and the average EWSA is compared with the best of 10,000 randomly-filled 

patterns (∆EWSA). As shown in Fig. 10, the average ∆EWSA peaks for an initial group 

size of 30, which is about 0.5% of the total bits. Similar results are observed on 

ISCAS89 circuits S38417, S38584, and S35932, which peak at group size 5. A larger 

group size can discover the logic correlation among bits. However, too large a group 

cannot maximize the average ∆EWSA within the time budget. 

  

Fig. 10 b19: Average ∆EWSA vs. group size 
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BF-10000) with an initial group size of 30. To validate Bit-Flip effectiveness, each 

pattern is filled 100 times for each configuration and the results are compared with the 

best random patterns as shown in Table 1. 

Table 1 PSN control result of un-compacted patterns 

Path 

No. 

Path 

Length 

(gates) 

Initial 

Care 

Bits 

Bit-Flip (30-bit initial group) Compared With Best Random Fill 

BF-1000 BF-4000 BF-10000 

Avg. 

EWSA 

(%) 

Final 

Care 

Bits 

CPU 

Time 

(s) 

Avg. 

EWSA 

(%) 

Final 

Care 

Bits 

CPU 

Time 

(s) 

Avg. 

EWSA 

(%) 

Final 

Care 

Bits 

CPU 

Time 

(s) 

P0 59 160 14.45 475 11 22.03 472 41 24.00 466 100 

P1 43 205 17.83 492 11 21.63 500 41 21.86 506 97 

P2 55 178 1.28 376 11 3.35 388 38 4.88 389 93 

P3 49 160 6.29 412 11 14.70 425 39 16.00 425 98 

P4 36 189 22.35 393 10 37.46 404 35 38.70 404 89 

P5 32 185 17.12 385 10 24.64 392 36 26.16 392 89 

P6 32 142 4.65 320 10 5.70 319 35 8.54 334 90 

P7 40 220 7.73 471 11 10.02 476 36 11.74 484 95 

P8 48 158 -0.76 336 10 2.33 337 36 2.55 342 90 

P9 39 210 12.19 449 10 14.92 449 41 16.48 460 94 

Avg.  181 10.31 410 11 15.71 416 38 17.09 420 94 

In Table 1, the initial and final care-bit count, average ∆EWSA and CPU time are 

shown for each path. The average ∆EWSA of BF-1000, BF-4000, and BF-10000 are 

10.31%, 15.71% and 17.09% respectively. The best performance is observed on P4 

using BF-10000, which has a ∆EWSA of 38.7%. Most paths have a 10%-25% 
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improvement using BF-4000. The rate of EWSA improvement levels off with more 

iterations. For most paths, BF-4000 provides the best trade-off between PSN 

maximization and CPU time. 

The 95% confidence interval for average ∆EWSA is shown in Fig. 11. There is a 

relatively large range of pseudo functional EWSA for a given path. Quiet and noisy 

patterns can be binned and used to characterize the noise sensitivity of the paths. For 

example, Fig. 12 illustrates the EWSA distribution for P0 of 1000 randomly filled 

patterns and 1000 patterns filled using BF-1000 and BF-10000. By applying patterns 

from left (quiet) to right (noisy) and computing FMAX for each bin, the sensitivity of 

delay to PSN can be understood. 

 

Fig. 11 Average ∆EWSA with 95% C.I. 
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Fig. 12 P0 EWSA distribution vs. fill method  

Bit-Flip provides the least improvement on paths P2, P6 and P8 compared to the 

best random pattern. To understand these three cases, the total number of critical cells 

(T.C.), transitioning critical cells count (T.O.) and transition rate (T.R.) are shown in 

Table 2. It can be seen that the transition rate of these three paths is relatively higher 

than other paths. The noise on these three paths is relatively high and there is not much 

room for improvement. 

The number of X bits used for PSN control is about 40% more than the original 

care bits. In aggregate less than 10% of the pattern bits are specified. Since logic 

simulation time dominates the algorithm, the CPU time is nearly linear in the number of 

iterations. BF-4000 takes about 40s on b19 while simulating 10,000 random patterns 

takes more than 2 hours. 

We compare the Bit-Flip approach to the ATPG-based PSN maximization 

approach in [39]. Based on their published data, we can only compare the average 
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transition rates (T.R.) (total aggressor transitions divided by total aggressors). The 

average T.R. in [39] is 14.08% with virtual test point insertion, with a CPU time of 40s 

for the ATPG step. As shown in Table 1and Table 2, BF-4000 averages 17.24% T.R. at 

38s CPU time. So the two methods have similar performance.  

Table 2 No. critical cells with transition output 

Path 

No. 
T.C. 

BF-1000 BF-4000 BF-10000 

T.O. T.R. (%) T.O. T.R. (%) T.O. T.R. (%) 

P0 5818 494 8.49 521 8.96 525 9.02 

P1 5544 335 6.04 343 6.19 344 6.21 

P2 5181 1282 24.74 1301 25.11 1313 25.33 

P3 6827 695 10.18 753 11.03 756 11.07 

P4 2148 285 13.27 318 14.80 320 14.92 

P5 2206 296 13.42 316 14.31 320 14.49 

P6 2492 536 21.51 544 21.84 560 22.46 

P7 5501 714 12.98 735 13.35 747 13.58 

P8 3737 1147 30.69 1179 31.55 1181 31.60 

P9 3645 902 24.75 921 25.28 935 25.65 

Avg. 4309 668 16.61 693 17.24 700 17.43 

We investigated how fill rate constraints limits the performance of Bit-Flip. We 

run BF-4000 with group size 30 and the fill rate is varied from 3% to 10%, compared to 

the original fill rate of 2.4%. For each case, we run BF-4000 100 times on P0. After BF-

4000 completed, the remaining X bits in the filled pattern were randomly filled for a fair 

comparison. The average ∆EWSA from random fill (Average ∆EWSA-R) and from best 
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random (Average ∆EWSA-BR) are shown in Fig. 13. BF-4000 always performs better 

than random fill and always performs better than best random once the fill rate is more 

than 5%. The improvement for P0 levels off when the fill rate is above 7%. 

Table 3 PSN control result of compacted patterns 

Circuit T.P. C.P. 

Avg. 

EWSA 

(%) 

T.R. (%) 
Avg. Care Bits CPU 

Time 

(s) Original Post-fill 

b19 283 37 263 11 5% 9% 1003 

s35932 235 100 53 67 21% 56% 174 

s38417 519 98 59 29 24% 38% 100 

s38584 198 63 74 28 19% 34% 67 

 

Fig. 13 Average ∆EWSA vs. fill rate 
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Finally, we evaluate the ∆EWSA achieved on compacted patterns of benchmark 

circuits and the results are listed in Table 3. The patterns were dynamically compacted. 

Paths longer than 70% of the longest path are considered critical, and any patterns 

containing them are subject to the Bit-Flip procedure. We chose 70% as the threshold 

since STA errors of 30% have been reported in the literature. The total number of 

patterns (T.P.), the number of critical pattern (C.P.) and transition rate (T.R.), are also 

shown. On average 24% of patterns are critical and require PSN control. b19 is less 

compacted than the other three circuits and a large ∆EWSA is obtained. Although the 

other three circuits have about a 20% care bit density, Bit-Flip still performs 

significantly better than random fill.  

2.5 Summary  

The noise scenario for pseudo functional test using KLPG patterns is quite 

different from traditional two-cycle launch-on-capture delay test and it is vulnerable to 

under-testing.  We proposed a simulation-based algorithm, Bit-Flip, to control PSN for 

PKLPG test. Experimental results on both un-compacted and compacted test patterns 

demonstrated the effectiveness of the method.  
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CHAPTER III  

IMPROVED POWER SUPPLY NOISE CONTROL  

 

3.1 Introduction 

In this chapter, the improved Bit-Flip (iBF) is presented. It combines random 

flipping with background patterns based (BGs-based) modification for higher PSN 

control efficiency. Initially, Bit-Flip is applied to sensitize transitions on the outputs of 

high-controllability critical cells. As this approach saturates, iBF switches to a BGs-

based approach to identify additional transitions. This is similar to a standard ATPG 

process. Dynamic bit weighting permits intelligent selection of background patterns for 

PSN improvement. Experimental results on benchmark circuits show that iBF achieves 

results similar to Bit-Flip in much less CPU time. 

3.2 Background and Motivation  

The original flow of Bit-Flip is shown in Fig. 14. Bit-Flip starts by fetching a test 

pattern and the corresponding path(s). Critical cells, which are neighboring-row gates 

located within a certain distance (critical range) of on-path gates, are identified by layout 

analysis. Don’t-care bits are initially randomly filled and the EWSA is computed as the 

initial EWSAmax. EWSA is the sum of the WSA of transitioning critical cells. Then Bit-

Flip enters the iterative PSN control step and randomly flips a group of bits to maximize 

the EWSA. In each iteration, up to G don’t-care bits are randomly selected and their 

values are flipped. Incremental logic simulation is used to simulate the change in test 
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pattern. The flip is retained if EWSA does not decrease. To reduce CPU time and direct 

the search, Bit-Flip shrinks the group size G during the iterations. 

 

Fig. 14 Original Bit-Flip flow 

 

Fig. 15 Bit-Flip PSN control scenarios 
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Bit-Flip devotes the same effort to each critical pattern (a pattern containing 

critical paths) regardless of the potential EWSA improvement. For some patterns, 

EWSA is maximized after a few iterations and the remaining flips provide little benefit. 

Some patterns require many iterations. In Fig. 15, Path1 quickly reaches its maximal 

EWSA while Path2 requires a lot more iteration to find each EWSA “jump”. Therefore, 

a flexible iteration control will reduce CPU time while maximizing EWSA. Another 

drawback is that Bit-Flip strongly relies on the random selection of bit groups to 

discover the logic dependency among bits. Many iterations are required for random-

pattern-resistant (RPR) critical cells. Logic dependence refers to situations where two or 

more bits should be flipped simultaneously to increase EWSA. 

 

Fig. 16 Critical cell sharing 
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usually high due to multi-cycle backtracking across the preamble cycles in PKLPG tests. 

Similar to ATPG [1], random flipping can be applied first to generate transitions on the 

critical cells that are not RPR. When the EWSA levels off, the algorithm switches to the 

deterministic method for further EWSA improvement.  

The observation that critical cells are shared by multiple paths permits further 

CPU time reduction. As shown in Fig. 16, Path1 and Path2 are two critical paths and G1 

is located within the critical ranges of the two paths, which is the overlap of the two 

dashed rectangles. Therefore, G1 is a shared critical cell. Considering these two paths 

independently requires separately justifying a transition on G1 for both paths. Using the 

approach in Fig. 16, one pass is sufficient. Assume pattern P0 sensitizes a transition on 

G1, and P1 and P2 test the two paths. Since P0 is compactable with P1 and P2, we can 

simply merge P0 into P1 and P2 to generate the desired transitions. Therefore, the CPU 

cost is halved.  

Table 4 Critical cell sharing summary 

Circuit s35932 s38417 s38584 b19 

#Path 3488 2660 1484 1030 

#Path/CC 250 201 83 75 

In Table 4, we listed the critical cell sharing in several benchmark circuits. The 

second row showed the number of PKLPG paths in the top 30% in length. The third row 

listed the average number of paths that share each critical cell. Critical cell sharing is a 

common phenomenon. For example, in s38417 each critical cell is shared by an average 
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of 201 paths, which potentially offers as much as 200x speedup compared with 

justifying the critical cells for each path separately. Based on the above discussion, we 

can pre-compute the patterns sensitizing the critical cells and use these patterns to 

modify the path test patterns.  

3.3 Background Pattern 

Background pattern (BP) refers to a pre-computed partially specified pattern, 

which generates transitions on the outputs of critical cells. Background pattern 

generation, the structure of the background pattern pool and the weighting of 

background patterns will be discussed in this section. 

3.3.1 Background Pattern Generation 

The following three requirements should be taken into account when generating 

the background patterns. First, the number of BPs should be minimized to reduce CPU 

time. iBF iterates over the BPs and modifies the test pattern based on BPs. Fewer BPs 

means less logic simulation. Second, each BP should have as few bits specified as 

possible. Only the bits necessary for the targeted critical cell transitions are specified. 

Unnecessary specified bit values increase the possibility of bit assignment conflicts, 

resulting in higher CPU time. Third, it is necessary to include diverse BPs for each 

critical cell. Although a critical cell can be shared by multiple paths, different test 

patterns may have different care bits and thus require different BPs for the critical cell. If 

possible, we should include every BP input assignment that generates the desired critical 

cell transitions.  
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The three requirements for BPs are in conflict. Dynamic compaction [3] is 

effective in reducing pattern count but violates the second requirement. Critical cell 

dropping, similar to fault-dropping in fault simulation, can be used to reduce pattern 

count by removing a critical cell once it is covered by a generated BP. However, this 

conflicts with the third requirement. To strike a balance between the first and the second 

requirements, compaction with a care-bit density constraint can be used to reduce BP 

count. A compromise can be reached between the second and third constraints by 

allowing multiple sensitizations for each critical cell. If the size of the critical cell list is 

too large and the justification time is unacceptable, we may only target critical cells on 

which transitions are hard to generate. Controllability [1] can be used to select such 

critical cells.  

 

Fig. 17 Background pattern generation algorithm 

Fig. 17 shows the BP generation process. Critical cells are identified for all 

critical paths before BP generation and are stored in the critical cell list (CC_list). For 

each critical cell, background patterns that produce rising and falling output transitions 

Algorithm: BP_Generation (CC_list) 

For each critical cell CCi 

     If (more_rising (CCi)) 

           If  (justification(rising, CCi);)  

                 Record pattern and update coverage;   

     If  (more_falling(CCi)) 

            If  (justification(falling, CCi))  

                 Record pattern and update coverage; 

Endfor   



 

 38  

  

are generated using a PODEM-like justification algorithm [2]. The other critical cells are 

checked to see if the new BP causes an output transition on them. Once a critical cell is 

sensitized for C rising and C falling transitions, it is dropped from the critical cell list. C 

is set in accordance to the number of critical paths that share the critical cell. A critical 

cell shared by more critical paths typically requires more BPs to mitigate the conflicts 

among the critical patterns. Critical cells are considered in reverse rank order, since this 

increases the fortuitous drop rate for critical cells. If a BP for one critical cell matches an 

existing BP, the BPs are merged.  

3.3.2 Background Pattern Pool 

The background pattern pool (BPP) is a bipartite graph that stores BPs and the 

critical cells covered by each BP. BPP can be built easily by logic simulation. For each 

BP, the set of transitioning critical cells are associated with the BP by adding edges 

between them. Each critical cell maintains a list of BPs that causes transitions on the cell. 

Each edge is weighted using the WSA of the critical cell.  

 

Fig. 18 Background pattern pool 
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Consider a BPP example in Fig. 18. It consists of 4 BPs (BP1 to BP4) and 8 

critical cells (G1 to G8) with WSA labeled in parentheses. Edges are added between BPs 

and critical cells to indicate the coverage relationship. For example, since G1 is covered 

by BP1, an edge is added and the weight of the edge equals the WSA of G1, i.e. 4. The 

weights of other edges are assigned similarly.  

3.3.3 Evaluation of Background Patterns 

Potential EWSA (PEWSA) is a static measurement for evaluating the potential of 

a BP to increase EWSA. PEWSA is the sum of the weights of edges connecting the BP 

to critical cells. For a given critical path, a set of critical cells are labeled and the 

PEWSA is calculated by traversing the BP list of each critical cell.  

As illustrated in Fig. 18, G1, G4, and G6 are three critical cells. From the graph, 

we know that BP1 appears in G1’s BP list, thus PEWSA(BP1) = WSA(G1) = 4; BP3 

covers both G4 and G6, thus PEWSA(BP3) = WSA(G4) + WSA(G6) = 3; BP4 has a 

connection with G6, thus PEWSA(BP4) = WSA(G6) = 2.  
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Fig. 19 iBF flow 
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3.4 Improved Power Supply Noise Control  

The details of iBF are discussed in this section. As with the Bit-Flip algorithm, 

the goal of iBF is to maximize EWSA on the long paths in each test pattern. iBF has the 

same preprocessing phase as Bit-Flip, as discussed in Chapter II. We will focus on the 

PSN control as shown in Fig. 19. The iBF core consists of two parts. Initially, a two-pass 

Bit-Flip with single-bit group size is applied. This stage will cover most of the easily 

controlled critical cells and bring the EWSA to the level-off point. Then the BPs-based 

approach is applied to cover the remaining critical cells by modifying the test pattern 

using the background patterns. Since BPs provide a directed basis to modify the test 

pattern, the BPs-based approach reduces CPU time while maintaining the same test 

quality as the original Bit-Flip algorithm. 

3.4.1 Two-pass Bit-Flip w/ Single-bit Group 

Two-pass Bit-Flip with single-bit group size is applied to the randomly filled 

pattern. The first pass Bit-Flip flips each bit in the same order as it occurs in the scan 

chain (referred to as BF.1-Bit), and the second pass in the reverse order (referred to as 

BF.1-Bit-R). After two-pass Bit-Flip, most of the critical cells will have transitions on 

them. The remaining critical cells are relatively hard to control and require the 

knowledge of bit correlation, i.e. flip some combination of bits to launch the transition. 

We assume the EWSA after two-pass single-bit flip has leveled off. If this is not the case, 

additional random Bit-Flip iterations can be applied, using the critical cell toggling rate 

to identify the leveling-off point. In this work, we use the two-pass Bit-Flip. 
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3.4.2 BPs-Based Flip 

iBF considers BPs in decreasing order of PEWSA. The BP is fetched, and its 

PEWSA updated, to account for the fact that some critical cells already have transitions, 

and conflicts between the BP and the test pattern filled by the two-pass Bit-Flip. These 

conflicts are likely to cause some potential PEWSA loss. A BP will not be used unless 

its updated PEWSA is larger than a threshold THLD.  

iBF modifies the test pattern based on the fetched BP, incrementally simulates 

the modification, and computes the EWSA. Any modification that reduces the EWSA 

will be restored. Handling of conflicts and dynamic bit weighting will be detailed in the 

following sections. This process is repeated until there is no untried BP.  

3.4.3 Rank of BPs 

The PEWSA of each BP was originally computed without any constraints, so that 

BP generation could be done once for the entire circuit. When considering a BP, the 

PEWSA is updated using dynamic bit weighting and potential weight updating using the 

following formula:  

                        

 

       

 

 

where NWj is the negative weight of conflicting bit j and WSAi is the WSA of critical cell 

i that is sensitized by the BP, but already has a transition. The NW is the reduction in 

PEWSA that results when flipping a bit. The WSA of the already transitioning critical 

cells must be subtracted, to avoid double credit for them. The updated PEWSA is viewed 

as the maximal EWSA the BP may achieve. 
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3.4.4 Handling of Conflicts 

There may be conflicts between the intermediate test pattern (ITP) and the BP. 

The ITP is the original test pattern (OTP) with any subsequent assignments to the don’t-

care bits. A conflict is classified as either a hard conflict or soft conflict. A hard conflict 

occurs when the BP has some care bits that differ from the OTP care bits. A soft conflict 

is a conflict between the BP and the current assignment of the ITP don’t care bits.  

An example of hard and soft conflicts is shown in Fig. 20. The first bit is 0 in the 

BP and 1 in the OTP. This is a hard conflict. We must keep the value in the OTP to 

preserve the path test. Therefore, Rule1 is applied for hard conflicts. The fourth and the 

eighth bits are soft conflicts since they are don’t care bits in the OTP, but have current 

assignments that conflict with the BP. Rule2 is applied for soft conflicts. Bit positive 

weight will be discussed in the next section.  

 Rule1: Any flip to hard conflict bit is rejected.  

 Rule2: Flips to soft conflicts are accepted if the PEWSAupdate is   the positive 
weight of the bit 

 

Fig. 20 Classification of conflicts 

OTP: 1 X X X 1 1 0 X 

ITP: 1 0 1 1 1 1 0 0 

BP: 0 X 1 0 X 1 X 1 

 
Hard Conflict Soft Conflict 
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3.4.5 Dynamic Bit Weighting 

Conflicts with the ITP may require flipping a care bit in the BP, reducing its 

PEWSA. For each bit in the ITP, positive weight and negative weight are maintained. 

Positive weight tracks how much a bit contributes to the current EWSA. It is used to 

determine if iBF flips an ITP bit due to a soft conflict. Negative weight is the possible 

loss in EWSA from flipping the ITP bit.  

Fig. 21 illustrates the dynamic bit weighting mechanism. Set U contains all 

possible critical cell transitions for the test pattern. S1 contains all transitioning critical 

cells in the ITP before adding a BP, while S2 contains all transitioning critical cells after 

the modification. Set S3 is the critical cells covered by BP.  The goal is to include the 

most critical cell transitions in S2.  

 

Fig. 21 iBF background patterns 

Critical cell transitions present in S1 but not in S2 are caused by ITP flipped bits. 

The WSA of all such flips is termed soft loss, since they result from soft conflicts. 
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Transitions in S3 but not S2 are caused by hard or soft conflicts that prevent a flip, and 

are termed hard loss. Both soft and hard loss is negative weight. After each ITP update 

and EWSA calculation, negative weights of the conflicting bits are updated with the 

maximum of the old and new negative weight. Transitions included in S2 but not in S1 

result from ITP bit flips by the BP. The WSA of this region is positive weight. The 

positive weight of each ITP bit is updated with the maximum of the old and new positive 

weight, if the ∆EWSA of the ITP update was non-negative. 

3.4.6 Compression Consideration 

The proposed method is compatible with test compression, such as linear-

decompression-based schemes [6]. One approach is to apply Bit-relaxation and minimize 

the post-fill care-bit density. The impact on compression can be minimized if post-fill 

care-bit density is low enough. Another approach handles compression during pattern 

filling. The compressed pattern can be computed first which will determine the values of 

a certain fraction of variables. The remaining variables can be used for PSN control. 

Randomly fill the remaining variables and randomly flip a group of variables as in Bit-

Flip. BGs-based modification can also be used, where BGs are in the form of variables. 

Since we flip the variables, rather than the original test pattern bits, the resulting patterns 

are still compressible. This will be investigated in Chapter V.  

3.5 Experiment Results 

The proposed BPs-based PSN control, iBF, is validated on several representative 

benchmarks circuits: s35932, s38417, s38584 and b19. Robust paths and patterns are 

generated using an in-house PKLPG tool, CodGen, with K=1 (one longest rising and 
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falling path per line) and 6 preamble cycles. Physical layouts are generated using a 

commercial placement tool. The paths that are in the top 30% in length are selected as 

critical paths and any test pattern that tests a critical path is considered a critical pattern. 

iBF is implemented in C++ and runs on a 3.16 GHz Dell Optiplex 960 with 4 GB of 

memory.  

Table 5 Profiles for each circuit and BPs 

Circuit 
Un-compacted Compacted 

#P #CP CD (%) CC/P #P #CP CD (%) CC/P 

s35932 9442 3488 0.64 1102 261 242 8.76 3863 

s38417 8555 2660 4.12 1670 477 322 22.47 3646 

s38584 5016 1484 2.16 1022 198 194 12.11 4066 

b19 2607 1030 2.35 4096 283 232 4.48 11625 

Table 6 BP profiles 

Circuit 

BPs 

# CC #BP Avg. C 
Coverage 

(%) 
Time (s) 

s35932 15381 5915 5 99.79 98 

s38417 22140 3521 3 74.88 306 

s38584 18218 4800 3 81.68 451 

b19 56198 7191 3 63.55 4464 

The profiles of both un-compacted and compacted pattern sets are summarized in 

Table 5, including the total number of patterns (#P), number of critical patterns (#CP), 

average care-bit density of critical patterns (CD (%)), and the number of critical cells per 
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pattern (CC/P). In Table 6, the total number of critical cells (#CC), the number of BPs 

(#BP), average C (Avg. C), percentage of critical cells that the BPs cause to have a rising 

or falling transition (Coverage (%)), and the CPU time for BP generation (Time (s)) are 

presented for each circuit. THLD=0 in these experiments and C is 2, 4, 8 or 16 according 

to the number of paths sharing the critical cell (C=2 for cells sharing up to 25% of the 

maximum level of sharing in the circuit, 4 for up to 50%, 8 for up to 75% and 16 for up 

to 100%). THLD is a PEWSA threshold to select background patterns. It is notable that 

the BG count is significantly smaller than the critical cell count. In order to make each 

BG as specific as possible, compaction is disabled during BG generation. The impact of 

BP compaction will be investigated in future work. Here we concentrate on comparing 

the performance of Bit-Flip and iBF.  

For comparison, Bit-Flip and iBF with and without BG-pruning (dynamic bit 

weighting) was performed for each circuit. The configuration parameters for Bit-Flip are 

initial group size G, decrementing constant D, iterations per round I and rounds count R. 

For the three small circuits, the parameters are set as G=5, D=1, I=1200, and R=5. A 

total of 18K bits are flipped. The configuration for b19 is G=30, D=6, I=1200, and R=5. 

In total 108K bits are flipped. 

Table 7 and Table 8 show the results on un-compacted patterns. The tables list 

average improvement in EWSA over random fill (∆EWSA), transition rate (TR), 

average number of flips per bit (Flips/Bit) and CPU time per pattern (Time (s)). The 

CPU time excludes the BP generation time in Table 6. The transition rate is the average 

fraction of critical cells that are transitioning after filling. 
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Table 7 Bit-Flip on un-compacted patterns 

Circuit 
Bit-Flip 

∆EWSA (%) TR (%) Flips/Bit Time (s) 

s35932 70.17 72.5 10 2.16 

s38417 129.78 34.35 11 1.56 

s38584 166.90 28.19 12 1.24 

b19 200.88 25.84 16 31.69 

Table 8 iBF on un-compacted patterns 

Circuit 

iBF w/o BP Pruning iBF w/ BP Pruning 

∆EWSA 

(%) 

TR 

(%) 
Flips/Bit 

Time 

(s) 

∆EWSA 

(%) 

TR 

(%) 
Flips/Bit 

Time 

(s) 

s35932 70.64 72.54 5 0.68 70.43 72.46 4 0.61 

s38417 125.24 33.71 7 1.4 121.30 33.06 4 0.76 

s38584 198.19 30.34 7 0.73 195.68 30.05 4 0.53 

b19 229.43 28.07 4 10.38 226.26 27.69 3 7.34 

For s35932, iBF achieves similar ∆EWSA as Bit-Flip in less CPU time. 

Although the average number of flips per bit in iBF is 36% less than Bit-Flip, the CPU 

time cost doesn’t reduce accordingly to obtain similar ∆EWSA on s38417. This is due to 

the fact that some BG conflicts have a large impact on PEWSA, and the high fan-out of 

these bits increases the incremental simulation cost of updating the PEWSA. This 

demonstrates the necessity for dynamic bit weighting and BG-pruning. With dynamic bit 

weighting, the important bits will get a high negative weight, which reduces the 
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possibility of using a BG that flips such bits. For the other two circuits, iBF achieves 

significantly better ∆EWSA in much less CPU time.  

The results in Table 8 demonstrate the effectiveness of dynamic bit weighting. 

The technique reduced the CPU time while maintaining a higher ∆EWSA than Bit-Flip 

on circuit s35932, s38584 and b19. The CPU time for circuit s38417 is reduced by 51% 

with a 7% ∆EWSA loss, compared to Bit-Flip. The slight ∆EWSA loss is due to the 

difference between potential and actual EWSA change with each BP application. 

Table 9 Bit-Flip on compacted patterns 

Circuit 
Bit-Flip 

∆EWSA (%) TR (%) Flips/Bit Time (s) 

s35932 63.14 70.55 10 2.68 

s38417 75.25 35.22 11 1.42 

s38584 115.36 25.25 12 1.72 

b19 233.45 23.09 16 40.81 

Table 10 iBF on compacted patterns 

Circuit 

iBF w/o BP Pruning iBF w/ BP Pruning 

∆EWSA  

(%) 

TR  

(%) 
Flips/Bit 

Time  

(s) 

∆EWSA  

(%) 

TR  

(%) 
Flips/Bit 

Time  

(s) 

s35932 63.57 70.39 7 1.22 63.51 70.36 5 0.91 

s38417 74.76 35.12 5 0.84 73.71 34.95 3 0.58 

s38584 126.37 25.95 8 1.14 123.48 25.67 5 0.79 

b19 256.57 24.59 7 25.68 253.54 24.26 4 17.88 
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Paths tested by a compacted pattern are identified using breadth-first search. The 

goal of iBF is to have as many transitioning critical cells as possible for all the critical 

paths in the pattern. Experimental results for compacted patterns are shown in Table 9 

and Table 10. Compared with un-compacted patterns in terms of transition rate, three of 

the four circuits, except s38417, have a smaller transition rate due to the higher care-bit 

density, which places more constraints on PSN control. In most cases, iBF can 

outperform Bit-Flip in less CPU time. 

 

Fig. 22 Normalized EWSA at each stage (un-compacted) 
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Fig. 23 Normalized EWSA at each stage (compacted) 

In Fig. 22 and Fig. 23, the normalized EWSA for both un-compacted and 

compacted patterns at each stage of the iBF algorithm are shown. The first pass of Bit-

Flip with single bit group size (BF.1-Bit) can dramatically improve the EWSA by 

sensitizing most of the easily-controllable critical cells. The second pass (BF.1-Bit-R) is 

not as effective and very limited EWSA improvements are observed. This indicates that 

EWSA improvement for Bit-Flip has leveled off. Instead of applying a large number of 

random flips, as in Bit-Flip, BP-based modification is utilized in iBF and effectively 

sensitizes the remaining possible transitions for s38584 and b19. BPs does not provide 

much improvement on the other two circuits. This is because most of the critical cells 

are relatively easily controlled and covered by the two-pass Bit-Flip.  
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The CPU times in Table 8 and Table 10 do not include the BP generation time in 

Table 6. If the BP generation time is included in the analysis, then iBF in aggregate takes 

61% less time than Bit-Flip on un-compacted patterns, and 8% less on compacted 

patterns. Bit-Flip time mostly depends on the number of critical patterns, while iBF 

depends on the number of critical cells, so test sets with many critical patterns, such as 

s35932, will favor iBF. 

3.6 Summary  

We presented an improved Bit-Flip algorithm, iBF, to maximize functionally 

realistic supply noise in path delay test. It combines random flipping with background 

patterns to achieve cost-effective PSN control. Dynamic bit weighting permits intelligent 

BP selection. Experimental results show that iBF achieves worst-case realistic PSN in 

significantly less CPU time than previous techniques.  
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CHAPTER IV  

PATTERN GENERATION FOR POST-SILICON TIMING VALIDATION
*
  

 

4.1 Introduction 

Power supply noise significantly impacts the timing performance of integrated 

circuits, and it may cause maximum operating frequency FMAX mismatch between 

structural at-speed test and functional test [49]. Much research has been done to generate 

test patterns with minimized [31] [33] [34], maximized [38] [39]or worst-case realistic 

PSN [40] [44]. These approaches can potentially improve delay test quality and achieve 

high FMAX accuracy. However, they lack the ability to provide knowledge to the design 

engineer for power supply noise prediction, such as the sensitivity of timing to PSN. 

Commercial tools [50] can support dynamic IR-drop analysis and the voltage at each 

node can be back-annotated for accurate circuit simulation. However, this is not an ideal 

solution considering the long simulation time but shortened product development cycle.  

Combining the pre-silicon delay model with post-silicon timing measurements 

has the potential to improve the accuracy of timing analysis since the impact of real 

silicon variations, such as process variation and power supply noise, is naturally 

considered. Two typical measurement techniques are critical path monitors (CPM) [51] 

                                                 

*
Reprinted with kind permission from “Pattern Generation for Understanding Timing 

Sensitivity to Power Supply Noise” by T. Zhang, Y. Gao and D. M. H. Walker, 

2015. Journal of Electronic Testing: Theory and Applications, vol 31, P.P. 99-106, 

Copyright [2014] by Springer Science and Business Media. The final publication is 

available at Springer via http://dx.doi.org/10.1007/s10836-014-5502-4 

http://dx.doi.org/10.1007/s10836-014-5502-4
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and ring oscillators (ROs) [52]. They are able to capture the post-silicon variations, 

including process variation, temperature and voltage. These techniques can have high 

area overhead, especially for large circuits where large numbers of CPMs and ROs are 

needed. Another technique to capture the post-silicon process variation is gate-level 

timing extraction [53]. A novel path selection algorithm is used to generate paths and 

obtain an accurate variation distribution with no hardware overhead. However, power 

supply noise is not considered.  

 In this chapter, we address the problem of automatic test pattern generation for 

extracting circuit timing sensitivity to power supply noise during post-silicon validation. 

Test patterns targeting the K longest paths through each gate are first generated. Then a 

layout-aware path selection algorithm is implemented to select long paths, which fully 

span the power delivery network. Finally, the selected patterns are intelligently filled to 

bring the PSN to a desired level. These patterns can be used to understand timing 

sensitivity in post-silicon validation by repeatedly applying the path delay test while 

sweeping the PSN experienced by the path from low to high. This work extends our Bit-

Flip algorithm by including layout-aware path selection and detailed PSN control 

analysis at the on-path gate level.  

The flow of pattern generation for post-silicon validation is shown in Fig. 24. 

The validation consists of four parts: pseudo functional test generation, layout-ware path 

selection, post-ATPG processing for PSN, and sensitivity measurement. In the following 

sections, we will focus on the second and third parts.  
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Fig. 24 Pattern generation and post-silicon validation 

4.2 Pseudo Functional Test Generation   

To understand timing sensitivity during functional operation, the structurally 

generated test patterns should mimic the functional PSN environment. The optimal 

solution is using functional patterns, but automatic generation of functional path delay 

tests is currently infeasible. Here we use PKLPG pattern generation engine CodGen.  

PKLPG is applied by scanning in a pattern, clocking the circuit with several 

medium-speed functional cycles (termed preamble cycles), launching the at-speed test 
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transitions, so the at-speed test can be viewed as functional or close-to-functional. 

Correspondingly, the on-chip IR-drop is similar to functional operation.  

4.3 Layout-Aware Path Selection   

In order to obtain the sensitivity information, layout should be considered during 

the path generation process. The goal is to select paths so that the power delivery 

network can be characterized. Actually PKLPG can be viewed as a layout-aware path 

generation engine since it regards each gate as a fault site, i.e. it targets every node 

connected to the power delivery network. 

However, it is not necessary to select every path of the circuit for sensitivity 

analysis. If all paths through a gate have large timing slack, PSN-induced delay can 

never cause these paths to fail. For that small region where the gate is located, we do not 

need to extract the timing sensitivity information. In contrast, in regions where low-slack 

(long) paths are clustered, enough paths must be generated to characterize the power 

delivery network.  

Therefore, we can divide the circuit into small regions and weight each region 

using static delay information. For regions containing gates with less timing slack, we 

assign large K to the gates. For other regions, we may have smaller K or do not target 

those gates. Here, a region is a small area in the layout, inside which the sensitivity 

information of each gate is identical. Gates inside a region will have the same K since 

any one of the gates can be used to characterize the region. In this paper, we assume K = 

1 (one rising and one falling path through the fault site) is good enough for PSN 

characterization.  
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After the paths are generated, a group of paths are selected for characterization. 

There are two basic rules to select a path: (1) the length of the path is among the top 30%; 

(2) the path covers regions not covered by previously chosen paths. Each region spans 

only one row in the layout and it has a much smaller range compared to the critical range 

in. The finer granularity guarantees the assumption that gates inside each region have 

similar sensitivity characteristic. In Fig. 25, an example layout is given and divided into 

3x3 grids. Each region is indexed with X and Y axis value. Y value is simply the row 

number in the layout. X value stands for the index of the power/ground segment. 

 

Fig. 25 An example of 3x3 layout regions 

Theoretically, we only need one path to cover each region we care about. In the 

experiments, each region is allowed to be covered up to 10 times to achieve higher 

accuracy. The path selection algorithm is shown in Fig. 26.  
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linear in the circuit size. For each long path, the algorithm iterates on each on-path gates, 

the number of which is usually a constant. Therefore, the complexity is O(K·L·N), where 

L is the length of the longest testable path and N is the circuit size.  

 

Fig. 26 Path selection algorithm 

4.4 Post-ATPG Processing for PSN 

Bit-Flip is a simulation-based PSN control algorithm [44]. It starts by fetching a 

test pattern and the corresponding path. Critical cells, which are neighboring-row gates 

located within a certain distance (critical range) of on-path gates, are identified by layout 

analysis. X-bits are initially randomly filled and the effective weighted switching 

activity computed as the initial EWSAmax. EWSA is the sum of the weighted switching 

activity of transitioning critical cells. Then Bit-Flip enters an iterative PSN control step 

and randomly flips a group of bits to improve the EWSA. In each iteration, up to G 

Algorithm: Path-Selection 

1) Read in circuit and layout 
2) Divide layout to regions and assign region ID to gates  
3) Read in all PKLPG paths and rank them by length 
4) For each region (Xi, Yi) 

a) Initialize number of paths covering it as Cover (Xi, Yi) = 0 
5) For each path Pn among the top 30% 

a) Cover_New_Region = 0 
b) For each on-path gate Gi with region ID (Xi, Yi) 

i. If Cover (Xi, Yi) < 10 and not covered by Pn 

Label the region covered by Pn 

Cover_New_Region ++; 
c)  If  Cover_New_Region > 0  

Add Pn to the selected path list 
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don’t-care bits are randomly selected and their values flipped. Incremental logic 

simulation is used to compute the change in EWSA. The flip is retained if EWSA does 

not decrease. To reduce CPU time and direct the search, the algorithm starts with large 

group size G and then gradually shrinks G during the iterations. 

 

Fig. 27 Post-ATPG processing flow 
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iBF [45] combines random flipping with deterministic modification to achieve 

similar PSN level in less CPU time. It first uses random flipping to cover most easily 

controlled critical cells. Then it uses background patterns as a guide to modify the test 

pattern in order to cover random-resistant cells. The idea is similar to a typical ATPG 

flow. Experimental results on benchmark circuits have demonstrated the effectiveness of 

these two methods.  

In this chapter, we incorporate Bit-Flip and iBF to support pattern generation for 

post-silicon validation as shown in Fig. 27. The scheme can be used to increase or 

reduce EWSA in order to meet a specified PSN goal. This permits generating a family of 

patterns with different PSN levels. The control mode is set based on the current PSN 

level vs. the goal. If smaller, MAX mode is used to increase PSN. Otherwise, MIN mode 

reduces switching activity. The tool switches between Bit-Flip and iBF whenever 50 

iterations in a row fail to increase PSN. If it fails to bring the PSN to the goal level 

within 10,000 total iterations, it will restart with a new randomly-filled pattern. The 

number of restarts is also limited. If the target PSN cannot be achieved after enough 

attempts, a failure will be reported.  

4.5 PSN Estimation  

Dynamic IR-drop analysis is accurate but usually requires time-consuming 

power-grid simulation, making it too expensive for integration into an ATPG flow. 

Although EWSA lacks accuracy in PSN estimation, it is widely used to approximate 

PSN due to its low computation complexity. Many approaches have been proposed to 
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enhance the accuracy of WSA-based PSN estimation by incorporating either spatial or 

temporal information or both [54].  

Simulation results in [39] demonstrate that local transitions have a relatively 

large impact on the voltage level of the on-path gate. They proposed to generate as many 

transitions on neighboring signal lines as possible in order to maximize PSN for a given 

path. Bit-Flip and iBF also used a similar model to select critical cells. Transition time 

differences between the critical cells and on-path gate is another important factor that 

should be considered. In the following, we will investigate the PSN impact of transition 

timing difference (Td) and physical distance from the on-path gate to the critical cell.  

 

Fig. 28 Circuit to study IR-drop 

The circuit in Fig. 28 is used to study the impact of timing and location on power 

supply noise. The power grid line is modeled as a RC tree (Rp and Cp are parasitic 

resistance and capacitance respectively). In total, N independent inverters are placed in 

the row (N=19). Each inverter has its own input voltage source (Vini) and output load (Cl). 
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In our experiment, ground line parasitic Rp and Cp are not used, since the focus is IR-

drop on the supply. The parameters are set as Cp = 0.06fF, Cl = 0.5fF, and Rp =4Ω, based 

on the 45nm NanGate OpenCell Library. With this circuit, we can align the transition 

time of different cells and study how Td can affect the voltage level. For simplicity, we 

only consider how transitions on Cell1/Cell9 can affect the voltage at Cell10 which is 

located in the middle of the row. Td = Ti – T10, where i = 1 or 9, and Ti is the transition 

time.  

In Fig. 29(a) and Fig. 29(b), we depicted the VDD level (upper half of each 

figure) and the output transitions (lower half of each figure) of Cell9 and Cell10 when 

the Cell9 transition arrives 16ps earlier (Td = -16ps) and 4ps earlier (Td = -4ps) than 

Cell10. The difference of the minimum voltage at Cell10 is 0.4mV. In Fig. 29(a), the 

transition of Cell9 causes a drop at Cell10 and reaches the first trough after several 

picoseconds. Then the voltage starts to recover. When Cell10 begins to transition, the 

voltage seen by Cell10 has already ramped up. Therefore, the impact resulting from 

Cell9’s transition is reduced. With larger Td, the IR drop caused by the two transitions 

will be separated from each other (non-overlap). In Fig. 29(b), Cell10 switches while the 

drop caused by Cell1 has not recovered. So Cell10 will see a larger drop.  
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Fig. 29 Voltage at Cell9 and Cell10 with different transition time  

 

(a) IR-Drop seen at Cell9 and Cell10 when Td = -16ps 

 

(b) IR-Drop seen at Cell9 and Cell 10 when Td = -4ps 
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Fig. 30 Minimum voltage seen at Cell10 

In Fig. 30, we swept Td from -40ps to 40ps and plot the minimal voltage at 

Cell10. There are two groups of experiments: (1) Cell10 and Cell9; (2) Cell10 and Cell1. 

It clearly shows that for small |Td| the voltage drop is high. The difference of the MAX 

and MIN Td, at which the other gate can affect the voltage of the on-path gate, is called 

the effective timing window (ETW). Gates located far away have a small ETW and 

relatively smaller impact on the IR-drop amplitude with the same Td. In this experiment, 

Cell9 caused 1mV higher IR-drop than Cell1. These observations demonstrate the 

necessity of considering timing information in PSN control.  

As in Bit-Flip, critical range is used to identify the small region around the on-

path gate. Gates located in this region are critical cell candidates. The next step is to 

filter out the gates located outside the effective timing window. As shown in Fig. 31, we 
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only consider critical cell transitions arriving within the timing window as in (b). If a 

transition of a cell arrives too early (a) or too late (c), it is not considered a critical cell.  

 

Fig. 31 Alignment of transitions on critical cell and on-path gate 

For cells with transitions that fall within the timing window, a weight based on 

its distance to the on-path gate is assigned to quantize the significance of its impact on 

the on-path gate. The weight is calculated using the formulas below, termed critical 

WSA (CWSA). If a critical cell is critical to multiple on-path gates, the maximum 

weight will be assigned. 

 

       
         

               
  

    
 

      
 

                

where FO is the number of fan-outs,    is the distance between critical 

cells and on-path gate, and   is the critical range.  

 

(b) Overlap  (a) Early Arrival (c) Late Arrival  
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As discussed above, the critical cell identification and CWSA update can be done 

in Fig. 32. In this algorithm, the R is a distance from the current on-path gate 

horizontally (Critical range in Chapter II).  

 

Fig. 32 Critical cell identification 

4.6 Experimental Results  

The proposed pattern generation scheme is validated on the three largest 

ISCAS89 benchmark circuits (s35932, s38417 and s38584), running on a 3.18 GHz Dell 

Optiplex 960 with 4 GB memory. The paths are generated using CodGen with K =1, 

launch-on-capture, one path per pattern. The number of preamble cycles is 6, i.e. 8 

cycles including the launch and capture cycles. The ETW is set to ±1 gate delay, based 

on the results in the previous section.  

First of all, in Table 11, the number of regions of each circuit, number of covered 

regions and the average number of critical cells without/with timing filtering are listed. 

Algorithm: Critical-Cell-Identification 

1) For each on-path gate Gi located at (Xi, Yi) with delay di 
a) For each Gate Gj located in row Yi 

i. If Gj located within [Xi – R, Xi + R) and di fall within [di – ETW/2, di + 
ETW/2)  

Calculate the new CWSAi 

If new CWSAi is larger than current 

     Update to new CWSAi  
b) If Yi – 1 >= 0 

     Repeat step a) for row Yi – 1   
c) If Yi + 1 <= MAX_ROW_INDEX 

     Repeat step a) for row Yi + 1 
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For s35932, 87.69% of the regions are covered by at least one critical path in the top 

30%, while the other two only have around 25% regions covered. More than 75% of 

critical cells are filter out for each circuit.  

Table 11 Regions and critical cells per path 

Circuit 
Regions 

(XxY) 

# Covered 

Regions 

Avg. # CC/Path 

w/o 

Filtering 
w/ Filtering 

Filtered 

(%) 

s35932 23x118 2380 2132 508 76.17 

s38417 24x123 811 4509 910 79.82 

s38584 24x122 735 2299 490 78.69 

In Fig. 33 and Fig. 34, the number of paths in top 30% covering each region of 

s35932 and s38417 are shown, respectively. For s38417, we can see some “hot” regions 

which are covered by relatively large number of critical paths, while most of regions in 

s35932 see similar number of critical path. These two circuits can represent two different 

scenarios of path length distribution. In s38417, the long paths are clustered to some 

regions while in s35932, long paths are distributed evenly. Thus s38417 does not have 

enough long paths to cover each region. When the paths are selected from the top 60%, 

the coverage for regions can be improved as shown in Fig. 35. However, as discussed in 

previous section, for the regions which don’t have many critical paths going through it, 

there is no need to characterizing the timing sensitivity since short path never fail due the 

delay caused by PSN. Also notice that, although we allow each region to be covered by 

up to 10 paths, there are regions with more than 10 paths. The reason is that paths that 
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cover regions that is lower than 10 go through regions that already covered by 10 times 

or more.  

 

Fig. 33 Number of paths covering each region in s35932 (top 30%) 

 

Fig. 34 Number of paths covering each region in s38417 (top 30%) 
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Fig. 35 Number of paths covering each region in s38417 (top 60%) 

 

Fig. 36 s35932: Test pattern with different PSN level 
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Fig. 37 PSN level of each on-path gate 

The PSN level seen by each path is computed as: 

        

 

      

 

   

where i is a transitioning critical cell and j is a critical cell. In Fig. 36, we present the 

PSN control results for s35932. The target PSN level is set to 10%, 20%, 30% and 40%. 

For timing sensitivity analysis, we can apply these patterns from low to high noise level 

and measure the FMAX. In Fig. 37, we give the average PSN level of each on-path gate, 

indexed by its location on the path. The on-path gate PSN level is computed similar to 

the critical path PSN level. For each on-path gate, we have a list of its critical cells. 

Therefore, after the PSN control commits, the PSN level per gate can be computed as 

CWSA sum of its transitioning critical cell over the CWSA sum of all of its critical cells. 

0 

10 

20 

30 

40 

50 

60 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

P
S

N
 l

ev
el

 (
%

) 

Gate Index 

10% 20% 30% 40% 



 

 71  

  

We can see that for this circuit, the PSN level of each on-path gate is higher than the 

overall PSN level.  

If the PSN achieved by the algorithm falls within ± 1.5% of the target level, we 

will report success. Otherwise, a fail is reported. Some of the patterns are intrinsically 

noisy, which means the pattern itself causes PSN higher than the upper bound. It is 

impossible to bring down the PSN level. The intrinsic PSN can be calculated by 

simulating the partially specified pattern. Such patterns are termed a noisy pattern (NP).  

Table 12 PSN post processing results w/ filtering 

Circuit #P PSN #NP 
#InitFail 

(#Res/#Fail) 
#Suc Time (s) 

s35932 1320 

10% 9 62 (25/37) 1274 1037 

20% 0 0 (0/0) 1320 143 

30% 0 0 (0/0) 1320 152 

40% 0 5(0/5) 1315 264 

s38417 183 

10% 178 2(0/0) 3 39 

20% 46 19(4/15) 122 212 

30% 1 12(1/11) 171 216 

40% 0 100(7/93) 90 2011 

s38584 245 

10% 72 22(4/18) 155 282 

20% 6 7(1/6) 233 123 

30% 0 42(6/36) 209 617 

40% 0 139(13/126) 119 2103 

The detailed pattern generation results are listed in Table 12. In columns 1 and 2, 

we list the circuit and number of paths selected (#P). Column 3 lists the target PSN. 



 

 72  

  

Column 4 lists the number of NP. In column 5, we list the number of initial failures 

(after the first try), the number of patterns that succeeded after restart (#Res), and the 

number of failed patterns (#Fail). Column 6 lists the number of successfully filled 

patterns (#Suc). Column 7 lists the CPU time cost for post-silicon PSN control. 

The number of paths selected for characterization at most 10 times of the number 

of regions in the layout since we allow up to 10 covering of each regions. Here we can 

see that the number of selected path is much smaller, even for s35932 where up to 87.69% 

of its regions are covered. The possible reason is that each path will typically cover 

multiple regions. In Table 13, we listed the experiment results of targeting 20% PSN 

level without critical cells filtering. It clearly shows the benefit of critical cell filtering - 

reducing the CPU time cost. 

As discussed in the previous section, the timing information will filter out gates 

that do not affect the delay of the path. To further understand how this affects the 

number of critical cells per gate, we depicted the average number of critical cells per on-

path gate in Fig. 38. The on-path gates are indexed in the order they appear along the 

path. The results clearly show that the first ~20 gates have a relatively large number of 

critical cells. The possible reasons are that most of the transitions in the circuit happen 

too early to affect the voltage level. Therefore, the algorithm is dominated by the first 

~20 gates. Without the filtering, the number of critical cells per gate is dependent on the 

critical range size. Since each gate has a similar number of critical gates, filtering 

prevents simulation time from being spent on critical cells that do not affect timing. 
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Table 13 PSN post processing results w/o filtering 

Circuit PSN #NP 
#InitFail 

(#Res/#Fail) 
#Suc Time (s) 

s35932 20% 0 0 (0/0) 1320 364 

s38417 20% 0 5(1/4) 179 190 

s38584 20% 0 8(4/4) 241 316 

 

Fig. 38 Average number of critical cells per on-path gate 

4.7 Summary 

In this work, we addressed the problem of automatic test pattern generation for 

understanding the timing sensitivity to power supply noise during post-silicon validation. 

Experimental results demonstrate that patterns with different PSN levels can be 

generated.  
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CHAPTER V  

IMPACT OF TEST COMPRESSION ON PSN CONTROL  

 

5.1 Introduction  

Reducing test data volume (TDV) is critical to reducing test time and test cost. 

TDV is estimated as L·N, where L is the total length of scan chains and N is the number 

of test patterns. Usually, a large number of test patterns are required to achieve 

acceptable fault coverage so N is large. L is design size dependent. Two techniques, test 

compaction and test compression, were invented to reduce TDV [1]. Test compaction 

minimizes the pattern count, i.e. N. The key idea is to test as many faults in one pattern 

as possible. Compaction can be done after automatic test pattern generation (ATPG), 

such as static compaction [4], or during ATPG, such as dynamic compaction [3].  

Compression minimizes the TDV transferred between automatic test equipment 

(ATE) and the chip under test. Various compression techniques have been reported in 

the literature, including test pattern encoding, Illinois Scan, and embedded deterministic 

test (EDT) [1] [6]. These techniques generate the test bits on chip from many fewer bits 

on the ATE.  

These two techniques take advantage of the fact that many test pattern bits are 

don’t-cares (DC) [6]. Instead of randomly filling the DC bits, compression assigns the 

bits using compression constraints, and compaction techniques specify the bits to target 

new faults. A tradeoff must be made between compression and compaction in order to 

achieve the largest TDV reduction.  
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Compaction and compression create undesirable side effects. Compacted patterns 

usually generate much more switching activity than functional patterns, potentially 

causing test overkill or chip damage due to excessive power dissipation [17] [21] [22] 

[30] [36] [37]. Several techniques, such as low-power compaction [4] [36], have been 

proposed to maintain the power supply noise at an acceptable level during compaction. 

Pseudo functional test (PFT) [25] [41] [43] attempts to apply only tests that are 

functionally-reachable, so that the tests mimic the functional PSN.  

For at-speed PFT delay test, the PSN control scenario is different, as PSN great 

affects the timing performance. In order to exercise the worst-case delay, maximization 

of realistic PSN is crucial [39] [41] [44] [45]. This is especially true for frequency 

binning and speed-limiting path debugging on high performance chips. So compaction 

might help find the worst-case delay as it can generate more switching activity on the 

chip. However, compaction also introduces constraints into the test pattern, as testing 

more faults usually requires more care bits, and as a result, the freedom to maximize the 

PSN is reduced. With PSN maximization, it is possible higher PSN can be achieved on 

an un-compacted pattern than on a compacted pattern, while both test a long path in the 

design. It is interesting to experimentally study this case. While the capture PSN is 

maximized, the shift power can be reduced by varying the shift frequency [42].   

Differing from compaction, compression potentially reduces the PSN as it places 

constraints on filling the DC bits. For example, in Illinois Scan, multiple scan chains 

share one ATE channel and these chains have the same logic value. Compared to 

random fill, it likely lowers the PSN for the test pattern. Compression-aware PSN 
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reduction [54] [55] has been proposed and experimentally validated using two-cycle 

transition fault model. However, little work has been reported on maximizing PSN 

considering compression  

One type of PSN control is intelligently filling the DC bits to maximize or 

minimize PSN, or generate patterns with different PSN levels for understanding the 

timing sensitivity to PSN  [32] [33]  [34]  [35] [40]  [55]. There are several advantages to 

using DC filling for PSN control. The first is its compatibility with industrial ATPG 

tools. DC filling comes after ATPG, so incurs no fault coverage loss. Even if all bits are 

specified by ATPG, bit-relaxation can be used to turn bits that are not related to 

coverage into DC bits, which can be used for PSN control. Moreover, these approaches 

do not require hardware overhead and are easy to implement with simplified low-cost 

PSN estimation metrics. As test compaction, compression, and PSN control make use of 

the fact that a large portion of test pattern bits are DC, a tradeoff usually has to be made 

to balance TDV against PSN. However, to the best of our knowledge, no work has been 

published on how compression and compaction affect PSN control. So far, we only have 

some intuition on how they affect each other. 

In this work, we run experiments to show to what level compaction/compression 

can affect PSN control. We first generate pseudo functional EDT and Illinois Scan 

patterns that target the longest paths. Then a compression-aware PSN control scheme is 

implemented to maximize the PSN while obeying the compression constraints. For each 

path, four different patterns are used for the experiment: un-compacted Illinois Scan, 

compacted Illinois Scan, un-compacted EDT, and compacted EDT. With these 4 patterns, 
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we are able to study the PSN impact of both compaction and compression. The 

experimental results show that with our PSN control algorithm, EDT lowers the maximal 

PSN by 24.15% and Illinois Scan lowers it by 2.77% on un-compacted patterns. The 

maximal PSN is 22.32% and 6.94% lower on compacted patterns. 

5.2 Background  

In this section, we will briefly describe the related work and background.  

5.2.1 Pseudo Functional Test with Dynamic Compaction  

PFT [43] is a multi-cycle test to improve the PSN correlation between structural 

and functional test. It works by scanning in a test pattern, executing several slow 

functional cycles (preamble) and then applying the delay test in the last two cycles at full 

functional speed. A PFT test can be viewed as a short burst of functional cycles and the 

IR-drop that the at-speed test sees is close to functional mode. The preamble cycles also 

minimize the off-chip dI/dt noise. 

Dynamic compaction [3] is implemented during the pattern generation process. 

The logic values necessary to sensitize the target path, termed necessary assignments 

(NAs) are justified back to the primary inputs (PIs) or pseudo primary inputs (PPIs), 

which are scan cell outputs, to ensure the path is a true path. Whenever a new path is 

generated, we check whether it can be compacted together with another path by first 

checking the compatibility of the NAs. In Fig. 39, Path 1 has NAs denoted by circles, 

and Path 2 has NAs denoted by X’s. If these values do not conflict, we can attempt to 

justify all of the NAs together, and if a test pattern can be found, these two paths can be 

placed in the same test pattern. The approach in [3] achieves high levels of compaction. 
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Fig. 39 Pattern compaction example [3] 

5.2.2 PSN Control for PFT  

While While PFT achieves PSN similar to functional mode, it is vulnerable to 

under-testing as switching activity dies out during the first a few functional cycles  [33] 

[44]. PSN control algorithms, Bit-Flip [44] and improved Bit-Flip (iBF) [45] were 

developed to maximize PSN by setting DC bits. We make the key assumption that this 

maximized PSN is functionally realistic.  

Bit-Flip is a simulation-based algorithm that iteratively flips DC bits. It starts by 

fetching a test pattern and the corresponding paths. Critical cells, which are the 

neighboring-row gates located within a certain distance of on-path gates, are identified 

by layout analysis. Switching activities on these cells have relatively large impact on the 

delay of the target paths. DC bits are randomly filled and the effective weighted 

switching activity is computed as the initial EWSAmax. EWSA is the sum of the 

weighted switching activity of the transitioning critical cells.  
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Then Bit-Flip iteratively flips groups of DC bits to maximize the EWSA. In each 

iteration, up to G DC bits are randomly selected and flipped. Incremental logic 

simulation is used to compute the change in EWSA. The flip is retained if EWSA does 

not decrease. To reduce CPU time and direct the search, after a certain number of 

iterations, group size G is reduced. A set of iterations with a fixed group size is termed a 

round. iBF combines random flipping with deterministic modification to achieve PSN 

similar to the Bit-Flip algorithm, but in less CPU time. Since Bit-Flip achieves better 

results than iBF (but at higher CPU cost), we extend it here to handle compression 

constraints. 

5.2.3 Test Compression 

EDT is a widely-used compression scheme shown in Fig. 40. An on-chip LFSR-

style ring generator decompressor is used to decompress the test data from ATE into the 

test pattern. On each scan clock test variables are fed into the decompressor and produce 

one bit for each scan chain. A compressed vector is computed by solving a group of 

linear equations. The decompressor is designed to minimize the impact on fault coverage. 

With ring generator and phase shifter, the input variables are distributed to each state 

variable quickly and the logical dependency is reduced. For a decompressor with m ATE 

channels, and n output channels, the compression ratio can be estimated as n/m. 

Illinois Scan, also termed broadcast scan, is another widely practiced technique 

for compression. The key idea is sharing the tester channels among the scan chains, i.e., 

one ATE channel drives multiple chains. The TDV is reduced as a group of chains share 

the same value. An example is shown in Fig. 41, in which the ATE data is only 1/3 of 
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the original test data. The scan chain constraints might reduce fault coverage. This can 

be avoided by connecting the chains in serial mode to target the remaining faults. Rather 

than a fixed connection between ATE channel and scan chains, the connection can be 

programmable using multiplexers, which provides potentially higher compression ratios. 

EDT and Illinois Scan can be mixed, with one output channel of the decompressor drives 

several short chains, to further increase compression. 

 

Fig. 40 EDT scheme 

 

Fig. 41 Illinois Scan: parallel mode and serial mode 
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5.3 Pattern Generation with PSN Control 

5.3.1 Compressible Pattern Generation 

Our Our in-house ATPG tool, CodGen [18], is used to generate path delay test 

patterns and targets the K longest paths through each gate using PFT [43]. Dynamic 

compaction is enabled during ATPG, which can effectively reduce pattern count by a 

factor of 2 or more compared with static compaction. The ATPG also reports in which 

compacted pattern a path is tested. So we can select both un-compacted and compacted 

patterns for each path. If this information is unavailable, logic simulation and path 

searching, such as breadth-first-search, can be used to find which compacted pattern 

tests a path.  

We enhanced CodGen to generate compressible patterns for Illinois Scan and 

EDT. For Illinois Scan, we need to consider the compression constraints when 

backward/forward implication and justification are performed. In our ATPG, we first 

generate a structural path, and keep the NAs to sensitize the path. After a complete path 

is generated, the NAs are justified recursively until all NAs can be derived from either 

PIs or PPIs. Implication is used for conflict detection after each assignment. When an 

assignment is made on a scan cell output (PPI), we need to check if the bits sharing the 

ATE channel have the same value. If any of the bits has a different value, a conflict is 

reported and we need to invert the assignment or try the next partial path. If all other bits 

sharing the channel are DCs, they are assigned to the same value. During justification, 

similar constraints are applied to the bits driven by the same channel in the same cycle to 

make the pattern compressible.  
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 For EDT, the compressibility check is done by solving a group of linear 

equations after the path is justified. After passing justification, a partially-specified test 

pattern is available to test the path. For each care bit, the corresponding row in the 

compression matrix is used to form the linear equations. The checker performs Gaussian 

Elimination on the equations and checks if the equations are solvable [1] [6]. A 

compressibility check is also used during the compaction stage. When the NAs for a new 

path are compatible with an existing pattern and pass justification, the resulting new 

pattern is further checked for compressibility. 

5.3.2 Compression Aware Supply Noise Control   

Our Our previous PSN control scheme, Bit-Flip, is extended to consider Illinois 

Scan and EDT constraints.  

In Illinois Scan, vector bits that are shifted from the same ATE channel at the 

same scan cycle are grouped together. These bits must always have the same logic value. 

If any bit in the group is specified, all the remaining bits are also care bits. A bit is DC 

only if all other bits sharing the ATE channel are DC. We call this a DC group. So in 

Illinois Scan, Bit-Flip manipulates DC groups. To achieve high PSN, we could use 

metrics to rank the DC groups and select the DC group with the highest potential to 

increase PSN. We considered fan-out tracing and switching probability calculation, but 

these approaches did not outperform random selection with the same simulation time 

cost. 

As detailed in Fig. 42, we load a pattern and randomly fill the DC groups. The 

pattern here is already the compressed pattern. We run logic simulation on the filled test 
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pattern and calculate the initial EWSA. During the PSN control procedure, a DC group 

is randomly selected and flipped. Incremental simulation is performed to calculate an 

updated EWSA. We will restore the flipped bits if the flip reduces PSN. Otherwise, the 

flip is retained and maximal EWSA is updated. This process continues until the PSN 

improvement levels off.  

 

Fig. 42 PSN control with Illinois Scan constraints 

PSN control with EDT constraints works differently than Illinois Scan, with the 

flow detailed in Fig. 43. The EDT patterns are not in compressed form, but are 
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randomly assign the variables that are not implied by others. From the compressed 

vector, an initial test pattern can be calculated. We run logic simulation and calculate the 

initial EWSA. Then the PSN control starts on this initial compressed vector. We first 

store the current compressed vector as a background vector and then randomly select one 

variable that is not implied by the others. We invert that variable’s logic value and a new 

compressed vector is calculated. During the calculation, if one variable is not 

constrained by the flipped variable, it is assigned with the same value as the background 

vector. We calculate a new test pattern from the compressed vector and the difference 

between the new and original pattern is simulated and PSN calculated. If the flip does 

not reduce the PSN, the flip is retained. Otherwise, the flip is restored. If the flip is 

retained, the background vector and EWSAmax is updated. The flipping process is 

repeated until EWSAmax levels off. Depending on the selection of the decompressor, the 

flipping of one variable in the compressed pattern is likely to cause other variables to flip, 

and further causes hundreds of test pattern bits to flip, resulting in high simulation time.  

As reported in [44], simulation time can be reduced by gradually reduced the 

group size G with the solution becoming more optimal. In Illinois Scan, the number of 

bits in each DC group is fixed and G represents the number of DC groups selected. G is 

used to trade optimality with simulation time – a larger reduction in G per round saves 

CPU time, but reduces the search space of the algorithm and the optimality of the result. 

However, in EDT, it is difficult to control the number of bits to flip, as the test vector 

bits are highly correlated. We have developed a constrained random (CR) approach to 

attempt to control the number of bit flips, reducing CPU time, at the cost of optimality. 
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We attempt to control the number of bit flips by tracing the history of each variable – 

how many bits flip when flipping that variable. This is only an approximation as the 

number of bits changes from pattern to pattern. This information is only used as a 

reference when selecting the variable.  

 

Fig. 43 EDT PSN control 
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The total number of flips is divided into several rounds, and each round targets a 

different group size G. The first round targets the largest group size while the last targets 

the smallest group size. Before starting the PSN control algorithm, the range between 

maximal and minimal number of bits flipped per variable from previous patterns is 

divided with respect to the number of rounds. If we have 6 rounds with the largest group 

size 100 and the smallest group size 40, we will target the group size for each round 

starting with 100-90, then 90-80, until 50-40. A variable is first randomly selected and 

its history checked to see if the number of bits to be flipped falls in the targeted range. 

This helps control the optimization process and reduce simulation time. It is possible no 

variable meets the requirement. In this case, random selection is used. For the first 

pattern processed, we initialize all variables to a history of 0 bits flipped, i.e. we use 

random selection for the first pattern.  

5.4 Experimental Results 

The largest ITC99 benchmark circuit, b19, is selected for experiments. Un-

compacted and compacted PFT test patterns are generated with 6 preamble cycles and 2 

at-speed cycles. Both un-compacted and compacted patterns are selected for paths that 

are in the top 30% in length. For Illinois Scan, the scan cells are formed into 68 chains, 

and placed into 9 groups (9 ATE channels), for a compression ratio of about 7.6. For 

EDT, 6 ATE channels and 68 scan chains are used, for a compression ratio of 11.3. The 

machine used to run the experiments is a 3.16 GHz Dell Optiplex 960 with 4GB memory. 

As we use a different PSN model and delay fault models than previous work [18] [19], it 

is difficult to make a direct comparison here. 
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We produce four sets of test patterns: T1 (no compaction + EDT); T2 

(compaction + EDT); T3 (no compaction + Illinois Scan); T4 (compaction + Illinois 

Scan). T1 and T2 test the same set of paths, and the only difference is whether 

compaction is enabled. T3 and T4 test the same set of paths, but not necessarily the same 

as those in T1 and T2, due to compression constraints. Our goal is to study how 

compression can affect the PSN control. Since simulation time is not a focus, we run the 

PSN control until EWSAmax levels off, approximating the maximum PSN achievable for 

each pattern set. For each pattern set, two runs of PSN control are performed. In the first 

run, we do not consider the compression constraints, while in the second run we consider 

the compression constraints. These runs will be denoted as T1_1, T1_2, T2_1, T2_2, 

T3_1, T3_2, T4_1, and T4_2. Moreover, the results of CR PSN control for EDT patterns 

are also included here for comparison (denoted as T1_2_CR and T2_2_CR).  

Table 14 summarizes the statistics of the paths for each pattern set. Columns 2 

and 3 list the total number of paths (TP) and total number of compacted patterns (CP) 

testing those paths. The number of tested paths is different as there two schemes place 

different constraints on ATPG. The compaction ratios for EDT and Illinois Scan are 7.0 

and 3.7 respectively. So this indicates the Illinois Scan constraint is not as flexible as 

EDT in terms of compaction. For EDT, 507 paths longest paths are selected for PSN 

while for Illinois Scan, 602 paths are selected (SP). The average length (Avg. L) in gates 

of the paths is listed in column 4. The average length of Illinois Scan is longer than EDT. 

This indicates some long paths are not testable due to the EDT constraints. The average 

care bit density (Avg. CD) for each of the test sets is also listed for un-compacted (UNC) 
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and compacted (COM) patterns. Note that for EDT patterns, the CD is for the patterns 

before compression constraints are applied. The reason is that to get the care bits of 

patterns after compression, all the variables must be specified. Therefore, all the test 

pattern bits are specified correspondingly. The CD for Illinois Scan patterns are counted 

after compression. We can see that the number of care bits for Illinois Scan is much 

higher. It could be much lower before compression. We can see that compacted patterns 

have higher CD.  

Table 14 Pattern statistics 

_ T.P./ C.P. #S.P. Avg. L. 
Avg. C.D. (%) 

UNC COM 

EDT 6054/867 507 37 2.68 (T1) 5.23 (T2) 

Illinois 5937/1611 602 48 13.17 (T3) 15.46 (T4) 

For b19, the algorithm configuration for T1_1, T2_1, T3_1, and T4_1 are 6 

rounds, with initial group size G of 30 and group decrement of 5. Each round performs 

1000 flips. For T1_2 and T2_2, the total number of variables flipped is set to 350. For 

T1_2_CR and T2_2_CR, the configuration is also 350 variables, which is further divided 

evenly into 7 sub-groups. For T3_2 and T4_2, the algorithm flips one DC group each 

time and the CPU time per path is set as 50s. These values are sufficient for EWSA to 

level off.  
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5.4.1 Results of EDT  

This section presents the experimental results for EDT patterns as detailed in 

Table 15.  

We list the average EWSA of random fill (Avg. R), the average best random 

(Avg. BR) and the average EWSA after PSN control (Avg. EWSA). The CPU time per 

pattern is also listed in the last row. The best random PSN is the maximal of the four 

random filled patterns in the two runs on T1 and T2. From random fill, we can see that 

compacted patterns have higher PSN than un-compacted patterns, which is expected. 

Also there is no large difference in the EWSA for random fill whether the EDT 

compression constraints are considered or not, as seen by comparing T1_1 vs. T1_2 or 

T2_1 vs. T2_2. However, a large difference exists in the optimized EWSA between 

compression and no compression. When the CR algorithm is used, its results are only 

slightly better than the best random fill (vs. BR). The noisiest pattern set is T2_1 

(compaction without EDT). This has 31.7% higher noise than T2_2 (compaction and 

EDT). For un-compacted patterns, the difference is 36.1%. Compared with random fill 

(vs. R), the optimization algorithm with EDT can achieve a 20% higher PSN. However, 

the CR algorithm achieves results similar to best random fill (vs. BR). 

We compute the impact of compression using the following formula, in which 

EWSAw/ and EWSAw/o are final EWSA with and without compression respectively. 

The Impact of compression on un-compacted patterns is -26.81% and the Impact on 

compacted patterns is -24.18%.  
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As discussed in previous sections, in EDT each variable flip may cause hundreds 

of bits to flip. In the CR approach, we use history to estimate the number of bits that 

might be flipped for each variable and select the one that meets the desired bit flip count 

for that round. The average number of bits flipped per variable (Avg. FB) during the 

optimization process is shown in Fig. 44. We can see that the number of bits flipped 

gradually falls, while inside each round the number of bits flipped is similar. The 

number of bits flipped at a time (group size G) is still very large compared to the initial 

30 used in our previous work. In future work, alternative decompressor designs will be 

considered that enable smaller group sizes. By comparing the simulation time of T1_2 vs. 

T1_2_CR or T2_2 vs. T2_2_CR in Table 15, we can see that the EDT CR group size 

control reduces simulation time, but achieves lower EWSA. 

Table 15 WSA and WSA improvement 

- T1_1 T2_1 T1_2 T2_2 T1_2_CR T2_2_CR 

Avg.R 1773 1927 1757 1921 1781 1900 

Avg. BR 2078 2078 2078 2078 2078 2078 

EWSA 3007 3032 2209 2302 2060 2249 

vs R (%) 71.97 63.42 27.06 21.50 15.44 20.14 

vs BR 

(%) 
47.78 49.52 6.86 11.33 -0.01 9.30 

Avg. 

Time (s) 
49.79 49.77 152.42 174.00 123.36 134.35 
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Fig. 44 Avg. number of bits flipped un-compacted EDT_CR 

 

Fig. 45 PSN control without EDT constraints 
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Fig. 46 PSN control with EDT constraints 

Fig. 45 and Fig. 46 show the trend of EWSA increase without and with EDT 

constraints. Both runs show that in later rounds or when more variables have been 

flipped, EWSA saturates. Compaction has little impact on EWSA when EDT constraints 

are not present, due to the low care bit density of un-compacted and compacted patterns. 

With EDT constraints, compacted patterns consistently have higher EWSA, although the 

gap shrinks with more simulation rounds. 

5.4.2 Results of Illinois Scan 

The results for Illinois Scan are detailed in Table 16. Similar to EDT patterns, for 

T3_1 and T4_1, the PSN control does not consider compression constraints. In T3_2 and 

T4_2, the compression constraints are considered. For un-compacted patterns, 

uncompressed patterns have 3.8% more EWSA than compressed patterns. For 

compacted patterns, the difference is 3.4%.  Under compression, un-compacted patterns 

0 

500 

1000 

1500 

2000 

2500 

0 50 100 150 200 250 300 350 

E
W

S
A

 

T1_2 

T2_2 



 

 93  

  

have 0.9% more EWSA than compacted patterns. This demonstrates that compaction 

introduces constraints that limit the PSN improvement. We did not see this in EDT 

patterns due to the lower care bit density of EDT patterns. The Impact on un-compacted 

patterns is -3.15% and the Impact on the compacted is -3.25%. 

Table 16 EWSA result of Illinois Scan 

- T3_1 T4_1 T3_2 T4_2 

Avg. R 3278 3392 3266 3395 

Avg. BR 3626 3626 3626 3626 

Avg. EWSA 4960 4902 4780 4739 

vs R(%) 52.46 46.07 48.05 41.00 

vs BR (%) 37.86 35.86 33.44 31.36 

Avg. Time 49.75 49.74 50.03 50.03 

 

5.4.3 Results on Other Circuits 

Experiments are also performed on the three largest ISCAS89 circuits. For EDT, 

a 2-20-decompressor is used and for Illinois Scan, there are 2 ATE channels and 20 short 

chains. Each ATE channel drives 10 chains. The patterns are generated in the same way 

as b19 and so is the path selection. The path statistics are detailed in Table 17. The 

algorithm configuration for T1_1, T2_1, T3_1, and T4_1 are 6 rounds, with initial group 

size G of 6 and group decrement of 1. Each round performs 1000 flips. For T1_2 and 

T2_2, the total number of variables flipped is set to 350. For T3_2 and T4_2, the 

algorithm flips one DC group each time and the CPU time per path is set as 5s. 
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Table 17 Statistics for ISCAS circuits 

Circuit #FF Scheme TP/CP SP Avg. L 

s35932 1728 
EDT (20x90) 9253/635 3520 23 

Illinois Scan 9442/143 3520 22 

s38417 1636 
EDT (20x85) 4604/486 275 30 

Illinois Scan 7807/1075 1868 29 

s38584 1426 
EDT (20x75) 5013/319 41 33 

Illinois Scan 4758/244 80 26 

Table 18 Results of ISCAS circuits (EDT) 

Circuit 
Avg. CD (%) vs. BR (%) Impact(%) 

UNC COM T1_1 T2_1 T1_2 T2_2 UNC COM 

s35932 0.63 6.61 47.72 44.87 12.48 7.37 -25.76 -23.78 

s38417 3.14 9.38 35.21 32.39 8.65 5.77 -19.65 -19.11 

s38584 2.19 10.23 37.89 31.43 15.69 -1.08 -24.39 -22.2 

Table 19 Results of ISCAS circuits (Illinois Scan) 

Circuit 
Avg. CD (%) vs. BR (%) Impact(%) 

UNC COM T3_1 T4_1 T3_2 T4_2 UNC COM 

s35932 4.40 87.67 45.65 4.27 32.75 1.86 -2.02 -8.72 

s38417 31.26 71.21 31.63 14.14 18.9 8.64 -4.3 -9 

s38584 10.32 63.45 56.88 10.59 45.24 8.76 -1.6 -6.8 

Results are shown in Table 18 and Table 19. The un-compacted patterns have a 

slightly higher EWSA than compacted patterns, as expected. Including b19, the average 
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Impact of EDT on un-compacted patterns is -24.15% and that on compacted patterns is -

22.32%. The average Impact of Illinois Scan is -2.77% and -6.94%.  

5.5 Summary 

In this work, we ran experiments to show how compaction and compression can 

affect PSN control. We generated pseudo functional path delay test patterns and 

implemented a compression-aware PSN control scheme to maximize the PSN, while 

obeying EDT and Illinois Scan compression constraints.  

Our experimental results show that our PSN control algorithm achieves 

significantly better results than random fill or best random fill for both Illinois Scan and 

EDT compression. EDT lowers maximal PSN by 24.15% and Illinois Scan lowers it by 

2.77% on un-compacted patterns. The achieved maximal PSN on compacted patterns is 

22.32% and 6.94% lower. 
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CHAPTER VI  

SUMMARY AND FUTURE WORK  

 

Testing integrated circuits to verify their operating frequency, known as delay 

testing, is essential to achieve high product quality. In order to limit test development 

costs, industry relies heavily on automatically-generated structural tests, applied by low-

cost testers taking advantage of design-for-test circuits on the chip, such as scan chains, 

on-chip test pattern compression/decompression, built-in self-test and test access 

mechanisms. The central unsolved challenge in structural delay test is achieving high 

delay correlation with functional test. The correlation problem is dominated by power 

supply noise. Differences in power supply noise between functional and structural tests 

can lead to differences in chip operating frequencies of 30% or more. Worse, it is 

becoming very difficult for the test engineer to know the supply noise environment on 

the chip, due to the use of system-on-chip designs and 3-D packaging.  

The focus of this dissertation is achieving high correlation between structural 

and functional delay tests on high-performance chips. Pseudo-functional KLPG tests 

create supply noise similar to functional operation by introducing preamble cycles 

(medium speed functional cycles before applying delay test). The preamble cycles ramp 

up the off-chip dI/dt noise and exclude illegal states in the test pattern. However, PSN 

profiling results from our experiments have shown that PKLPG is vulnerable to under-

testing rather than over-testing. Therefore, it is critical to develop PSN control 

algorithms to maximize functional power supply noise for PKLPG and generate test 
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patterns for understanding delay sensitivity to power supply noise. To achieve these 

goals, we proposed several test pattern generation algorithms as below.  

 A simulation based PSN control scheme, Bit-Flip, is developed. It is proposed to 

maximize the power supply noise during PKLPG test. Given a set of partially-

specified scan patterns, random filling is done and then an iterative procedure is 

invoked to flip some of the filled bits, to increase the effective weighted switching 

activity. Experimental results on both compacted and un-compacted test patterns 

demonstrate that our method can significantly increase effective WSA while 

limiting the fill rate.  

 Based on the observation of critical cell sharing, a scheme combining random 

flipping with deterministic modification to fill the don’t-care bits is proposed. 

Deterministic modification is guided by pre-computed background patterns, which 

sensitize transitions on critical cells. Dynamic bit weighting permits intelligent 

selection of background patterns. Experimental results on benchmark circuits 

validate the effectiveness of the techniques as worst-case realistic PSN is achieved 

in significantly less CPU time. 

 The problem of automatic test pattern generation for understanding circuit 

timing sensitivity to power supply noise during post-silicon validation is 

addressed. . Long paths are selected from a pseudo functional test set to span the 

power delivery network. To determine the sensitivity of timing to on-chip noise, 

the patterns are intelligently filled to achieve the desired PSN level. PSN control 

algorithms are enhanced to consider both spatial and temporal information for 
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better correlation with functional PSN. These patterns can be used to understand 

timing sensitivity in post-silicon validation by repeatedly applying the path delay 

test while sweeping the PSN experienced by the path from low to high. 

 The impact of compaction/compression on PSN control is studied. We ran 

experiments to show to what level compaction/compression can affect PSN control. 

Pseudo functional Illinois Scan and EDT patterns that target the longest paths are 

generated. Then a compression-aware PSN control scheme was implemented to 

maximize the PSN while obeying the compression constraints. For each path, four 

different patterns were used for the experiment: un-compacted Illinois Scan, 

compacted Illinois Scan, un-compacted EDT, and compacted EDT. With these 4 

patterns, we were able to study the PSN impact of both compaction and 

compression. The experimental results showed that our PSN algorithm achieved 

significantly higher PSN compared to random or best random fill on both un-

compacted and compacted patterns. Our constrained random (CR) algorithm for 

EDT compression reduced CPU time, while achieving slightly better results than 

best random fill. 

In future work, there are several interesting topics to explore. First, the algorithm 

considering compression is not CPU time cost optimized. We could further optimize the 

algorithm by considering the correlations between variables, so that we control group 

size as well as maintain the PSN level. This requires carefully selection of variables. 

Another efficiency improvement is by utilizing parallel pattern logic simulation. This 

should reduce the CPU time by more than an order of magnitude. Third, we will 
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incorporate additional power grid hierarchy and validate the correlation between CWSA 

and measured IR drop. We also plan to apply the generated patterns to real chips and 

measure the delay of the paths. Then we can extract sensitivity information.  
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