

HIGH QUALITY TEST GENERATION TARGETING POWER SUPPLY NOISE

A Dissertation

by

TENGTENG ZHANG

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Duncan M. Walker

Committee Members, Weiping Shi

 Jyh-Charn Liu

 Rabi Mahapatra

Head of Department, Dilma Da Silva

December 2015

Major Subject: Computer Engineering

Copyright 2015 Tengteng Zhang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79652005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

ABSTRACT

Delay test is an essential structural manufacturing test used to determine the

maximal frequency at which a chip can run without incurring any functional failures.

The central unsolved challenge is achieving high delay correlation with the functional

test, which is dominated by power supply noise (PSN). Differences in PSN between

functional and structural tests can lead to differences in chip operating frequencies of 30%

or more. Pseudo functional test (PFT), based on a multiple-cycle clocking scheme, has

better PSN correlation with functional test compared with traditional two-cycle at-speed

test. However, PFT is vulnerable to under-testing when applied to delay test. This work

aims to generate high quality PFT patterns, achieving high PSN correlation with

functional test.

First, a simulation-based don’t-care filling algorithm, Bit-Flip, is proposed to

improve the PSN for PFT. It relies on randomly flipping a group of bits in the test

pattern to explore the search space and find patterns that stress the circuits with the

worst-case, but close to functional PSN. Experimental results on un-compacted patterns

show Bit-Flip is able to improve PSN as much as 38.7% compared with the best random

fill.

Second, techniques are developed to improve the efficiency of Bit-Flip. A set of

partial patterns, which sensitize transitions on critical cells, are pre-computed and later

used to guide the selection of bits to flip. Combining random and deterministic flipping,

we achieve similar PSN control as Bit-Flip but with much less simulation time.

 iii

Third, we address the problem of automatic test pattern generation for extracting

circuit timing sensitivity to power supply noise during post-silicon validation. A layout-

aware path selection algorithm selects long paths to fully span the power delivery

network. The selected patterns are intelligently filled to bring the PSN to a desired level.

These patterns can be used to understand timing sensitivity in post-silicon validation by

repeatedly applying the path delay test while sweeping the PSN experienced by the path

from low to high.

Finally, the impacts of compression on power supply noise control are studied.

Illinois Scan and embedded deterministic test (EDT) patterns are generated. Then Bit-

Flip is extended to incorporate the compression constraints and applied to compressible

patterns. The experimental results show that EDT lowers the maximal PSN by 24.15%

and Illinois Scan lowers it by 2.77% on un-compacted patterns.

 iv

DEDICATION

To my parents:

Without their support, this would not have been possible.

 v

ACKNOWLEDGEMENTS

I would like to thank my advisor and committee chair, Dr. Duncan M. (Hank)

Walker, for his advice and support throughout my Ph.D. studies at Texas A&M

University. His insights in this particular research area, his technical guidance and

spiritual support were invaluable to this work. This dissertation would never have been

completed without his advice and encouragement. I owe him lots of gratitude for making

my research life enjoyable and rewarding. What I learned from him will benefit my

whole life.

I am also grateful to my committee members, Dr. Steve Liu, Dr. Rabinarayan

Mahapatra and Dr. Weiping Shi, for their valuable suggestions and personal

encouragement.

My gratitude also goes to my lab mates and friends: Punj Pokharel, Yukun Gao,

Kun Bian, and Swati Chakraborty.

Also, I want to acknowledge the Semiconductor Research Corporation (SRC)

and National Science Foundation (NSF) for their financial support of this research.

Finally, I would like to thank my parents and my girlfriend, Cong Feng, for

giving me company during my study. Their love enriched my life. Without their constant

support, this would not have been a wonderful journey.

 vi

TABLE OF CONTENTS

Page

ABSTRACT ...ii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... ix

LIST OF TABLES ...xii

CHAPTER I INTRODUCTION AND LITERATURE REVIEW 1

1.1 Scan-Based Test ... 1
1.2 Delay Test .. 4

1.3 Power Supply Noise ... 6

1.4 Power Supply Noise Control .. 8

1.5 Pseudo Functional Path Delay Test Generation ... 10
1.6 Organization of the Dissertation .. 12

CHAPTER II POWER SUPPLY NOISE CONTROL ... 14

2.1 Introduction .. 14

2.2 Pseudo-Functional PSN.. 15
2.3 Overview of Proposed Framework .. 18

2.3.1 Critical Cell Identification .. 21
2.3.2 Task Granularity ... 21
2.3.3 Critical Bit Fill and Bit Relaxation... 23

2.3.4 Compacted Pattern Consideration .. 23
2.4 Experimental Results.. 24

2.5 Summary .. 31

CHAPTER III IMPROVED POWER SUPPLY NOISE CONTROL 32

3.1 Introduction .. 32

 vii

3.2 Background and Motivation ... 32
3.3 Background Pattern .. 36

3.3.1 Background Pattern Generation ... 36
3.3.2 Background Pattern Pool .. 38

3.3.3 Evaluation of Background Patterns .. 39
3.4 Improved Power Supply Noise Control ... 41

3.4.1 Two-pass Bit-Flip w/ Single-bit Group .. 41
3.4.2 BPs-Based Flip ... 42
3.4.3 Rank of BPs .. 42

3.4.4 Handling of Conflicts ... 43
3.4.5 Dynamic Bit Weighting .. 44

3.4.6 Compression Consideration ... 45
3.5 Experiment Results .. 45
3.6 Summary .. 52

CHAPTER IV PATTERN GENERATION FOR POST-SILICON TIMING

VALIDATION ... 53

4.1 Introduction .. 53

4.2 Pseudo Functional Test Generation.. 55
4.3 Layout-Aware Path Selection... 56
4.4 Post-ATPG Processing for PSN ... 58

4.5 PSN Estimation .. 60

4.6 Experimental Results.. 66
4.7 Summary .. 73

CHAPTER V IMPACT OF TEST COMPRESSION ON PSN CONTROL 74

5.1 Introduction .. 74
5.2 Background .. 77

5.2.1 Pseudo Functional Test with Dynamic Compaction 77
5.2.2 PSN Control for PFT .. 78

5.2.3 Test Compression ... 79
5.3 Pattern Generation with PSN Control .. 81

5.3.1 Compressible Pattern Generation ... 81
5.3.2 Compression Aware Supply Noise Control ... 82

5.4 Experimental Results.. 86
5.4.1 Results of EDT ... 89
5.4.2 Results of Illinois Scan ... 92

5.4.3 Results on Other Circuits ... 93
5.5 Summary .. 95

 viii

CHAPTER VI SUMMARY AND FUTURE WORK .. 96

REFERENCES ... 100

 ix

LIST OF FIGURES

Page

Fig. 1 Flip-Flop and scan cell ... 2

Fig. 2 Launch on shift scheme ... 5

Fig. 3 Launch on capture scheme ... 6

Fig. 4 Over-testing and under-testing ... 8

Fig. 5 Clocking scheme for pseudo functional test .. 10

Fig. 6 Average WSA falls with multiple cycles ... 17

Fig. 7 b19 WSA correlation of different cycles ... 18

Fig. 8 Bit-Flip flow ... 19

Fig. 9 Effective region .. 21

Fig. 10 b19: Average ∆EWSA vs. group size .. 25

Fig. 11 Average ∆EWSA with 95% C.I. .. 27

Fig. 12 P0 EWSA distribution vs. fill method ... 28

Fig. 13 Average ∆EWSA vs. fill rate ... 30

Fig. 14 Original Bit-Flip flow .. 33

Fig. 15 Bit-Flip PSN control scenarios .. 33

Fig. 16 Critical cell sharing .. 34

Fig. 17 Background pattern generation algorithm ... 37

 x

Fig. 18 Background pattern pool .. 38

Fig. 19 iBF flow ... 40

Fig. 20 Classification of conflicts .. 43

Fig. 21 iBF background patterns .. 44

Fig. 22 Normalized EWSA at each stage (un-compacted) ... 50

Fig. 23 Normalized EWSA at each stage (compacted) .. 51

Fig. 24 Pattern generation and post-silicon validation ... 55

Fig. 25 An example of 3x3 layout regions ... 57

Fig. 26 Path selection algorithm ... 58

Fig. 27 Post-ATPG processing flow .. 59

Fig. 28 Circuit to study IR-drop ... 61

Fig. 29 Voltage at Cell9 and Cell10 with different transition time 63

Fig. 30 Minimum voltage seen at Cell10 ... 64

Fig. 31 Alignment of transitions on critical cell and on-path gate 65

Fig. 32 Critical cell identification .. 66

Fig. 33 Number of paths covering each region in s35932 (top 30%) 68

Fig. 34 Number of paths covering each region in s38417 (top 30%) 68

Fig. 35 Number of paths covering each region in s38417 (top 60%) 69

Fig. 36 s35932: Test pattern with different PSN level ... 69

 xi

Fig. 37 PSN level of each on-path gate .. 70

Fig. 38 Average number of critical cells per on-path gate ... 73

Fig. 39 Pattern compaction example [3] .. 78

Fig. 40 EDT scheme ... 80

Fig. 41 Illinois Scan: parallel mode and serial mode ... 80

Fig. 42 PSN control with Illinois Scan constraints .. 83

Fig. 43 EDT PSN control ... 85

Fig. 44 Avg. number of bits flipped un-compacted EDT_CR ... 91

Fig. 45 PSN control without EDT constraints .. 91

Fig. 46 PSN control with EDT constraints ... 92

 xii

LIST OF TABLES

 Page

Table 1 PSN control result of un-compacted patterns .. 26

Table 2 No. critical cells with transition output ... 29

Table 3 PSN control result of compacted patterns ... 30

Table 4 Critical cell sharing summary ... 35

Table 5 Profiles for each circuit and BPs ... 46

Table 6 BP profiles ... 46

Table 7 Bit-Flip on un-compacted patterns .. 48

Table 8 iBF on un-compacted patterns .. 48

Table 9 Bit-Flip on compacted patterns ... 49

Table 10 iBF on compacted patterns .. 49

Table 11 Regions and critical cells per path... 67

Table 12 PSN post processing results w/ filtering ... 71

Table 13 PSN post processing results w/o filtering ... 73

Table 14 Pattern statistics ... 88

Table 15 WSA and WSA improvement ... 90

Table 16 EWSA result of Illinois Scan .. 93

Table 17 Statistics for ISCAS circuits .. 94

 xiii

Table 18 Results of ISCAS circuits (EDT) .. 94

Table 19 Results of ISCAS circuits (Illinois Scan) .. 94

 1

CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Scan-Based Test

The difficulty of testing very large scale integrated (VLSI) circuit is the limited

controllability and observability after chips are fabricated [1]. This is worsening with the

increasing size of modern designs, typically millions of transistors. Various design-for-

test (DFT) techniques, such as ad-hoc test point insertion, scan design, and logic build-in

self-test, have to be deployed in order to achieve high test quality and low defect level.

Mux-D full scan is one of the most popular techniques and features for its simple

structure and small hardware area overhead. Fig. 1 shows the structure of a Mux-D scan

cell (SC), which consists of a multiplexer and a D Flip-Flop (DFF). The data input of the

DFF has two sources: functional input (D) and scan input (SI). These two signals are

selected by the scan enable (SE) signal: when SE is 1, the data presented at SI is selected

to DFF at the effective clock edge (CK); when SE is 0, the functional input D is selected.

In full scan design, all the DFFs are replaced by SCs and SCs are connected into scan

chains, i.e. the output Q is connected to the SI input of next SC.

In the test mode (SE=1), a test pattern can be applied at the SI port of the first SC

in each scan chain and then is shifted into the SCs cycle by cycle. After all SCs are

initialized, the circuit under test (CUT) switches to functional mode and the response is

captured into SCs through DI ports. The contents of the SCs can be shifted out for

observation. While the captured data is shifted out, the next test pattern can be shifted

 2

into the SCs. The response is compared against the expected values. If they mismatch,

the CUT fails the test. Otherwise, it passes. With SC, the internal chip signals can be

controlled and observed. A sequential circuit is transformed into a combinational circuit

and the testability is highly improved. Test patterns to test sequential circuits can be

developed based on this model. Test patterns generated based on the scan model are

structural tests as functionality is not considered during pattern generation.

Fig. 1 Flip-Flop and scan cell

As the number of possible test patterns is exponential to the number of scan cells

and primary inputs (PI), it is impossible to numerate all the patterns and also not

necessary. In practice, physical defects induced by the imperfection of the manufacturing

process are modeled as logic faults based on their functional behavior, such as stuck-at-

0/stuck-at-1 (SA0/SA1), or bridging faults. So test patterns can be developed based on

these faults models. This makes the test generation easier, as the test generation tool

does not consider the mechanism behind the behavior, which is complex and infeasible

to cover all the possible mechanisms. For example, there are various scenarios that a

signal line cannot be changed but is stuck at logic 0 (SA0). But for test generation, the

D D

CK

D

SE

D

SI

0

1

Q Q

 3

pattern generation tool only needs to cover the logic fault. Therefore, the complexity of

test generation is highly reduced. The quality of the test set is evaluated by fault

coverage, which is calculated as the number of faults tested over the total number of

faults.

Automatic test pattern generation (ATPG) consists of two steps: sensitizing a

fault and propagating the faulty value for observation [2]. For instance, to test a SA0

fault, the test must control the signal line to logic 1, and observe the faulty value 0 at the

primary output or a scan cell. Several classic ATPG algorithms, such as D-algorithm,

PODEM, and FAN [2], have been developed. They are optimized to reduce the search

space and test generation time cost. Test points, including control point and observation

point, are usually used to improve the fault coverage. With a good DFT design, stuck-at

fault coverage can be as high as 100%.

Test pattern compaction and compression are two popular techniques developed

to reduce the test data volume for modern large designs, such as System-on-Chip (SoC),

and thus reduce the test application time. Test compaction highly reduces the number of

patterns by testing as many faults as possible in one single test pattern. It can be done

either during the ATPG stage, i.e. dynamic compaction [3], or post ATPG stage, i.e.

static compaction [4]. Dynamic compaction usually achieves a better compaction ratio

but with higher CPU time cost. Test compression, such as Illinois Scan [5] and

embedded deterministic test (EDT) [6], reduces the length of each test pattern and

restores all the test bits using an on-chip decompressor.

 4

1.2 Delay Test

Delay test is one of the essential structural tests and verifies the speed of the

chips against the design specification. There are two main delay faults models: transition

delay fault model (TDF) and path delay fault model (PDF) [7]. TDF targets individual

signal lines and assumes gross delay defects, which is sufficient to cause a signal slow to

rise or slow to fall. The benefit of TDF is that the fault set size is linear in the circuit

size. Moreover, a stuck-at fault ATPG engine can be reused for TDF as the test of TDF

can be viewed as a test of two stuck-at faults. Therefore, existing industry approaches to

delay test are built on the TDF model. The drawback of TDF is that it tends to propagate

transitions along short paths [8], as the ATPG chooses paths with high observability. As

a result, the generated patterns are not effective in covering small delay defects (SDD),

which have become increasingly critical with technology scaling to 45nm and below.

SDD introduces only a small amount of extra delay to the chip and a single SDD may

not be enough to cause failures but only degrade the performance. ATPG engines

considering timing information are proposed to propagate transitions along long paths [9]

[10]. However, the size of the test set increases and CPU time cost for such ATPG is

usually very high [11].

PDF has the advantage of better coverage for SDD as it targets the accumulated

delay along a path. False paths [12] and multiple-cycle paths must be excluded from the

paths tested as these path might cause false rejection. One of the challenges for PDF is

the number of paths increases exponentially with the size of the circuit. Another

challenge is that the timing is sensitive to process variation [13] and

 5

power/voltage/temperature conditions. So it is proposed to select a subset of paths for

test or timing validation [14] [15]. To select the real speed-limiting paths, a well-

established timing model, which should be simple but relatively accurate [16] [17],

should be used. One potential solution is to target the K longest paths through each gate

(KLPG) [18]. In this way, the number of paths is linearly in the size of the circuit.

A delay test pattern consists of two vectors. The first vector initializes the CUT,

and the second vector generates a transition and propagates the transition to the

observation point. Delay test patterns are applied based on two clocking schemes as

shown in Fig. 2 and Fig. 3: launch-on-shift (LOS) [19] and launch-on-capture (LOC)

[20]. In LOS, the second vector is one-bit shifted from the first vector. LOS has better

fault coverage and pattern generation is usually easier. But it requires the SE signal to

switch at functional speed. In LOC test, the second vector is derived from the first vector.

It is a two cycle sequential test so ATPG is more complex. The fault coverage is also

typically lower.

Fig. 2 Launch on shift scheme

CK

SE

Launch Capture

 6

Fig. 3 Launch on capture scheme

1.3 Power Supply Noise

The central unsolved challenge in structural delay test is achieving high delay

correlation with the functional test, which is the de-facto standard in determining the

chip maximal operating frequency (FMAX). The correlation problem is dominated by

power supply noise since it significantly impacts the delay of the selected paths [21] [22]

[23] [24]. Differences in PSN between functional and structural tests can lead to

differences in chip operating frequencies of 30% or more. Worse, it is becoming very

difficult for the test engineer to know the supply noise environment on the chip, due to

the use of SoC designs and 3D packaging.

There are two main reasons causing PSN discrepancy between the structural and

functional mode. First, scan-based delay test uses slow shift and fast capture clock

cycles. In LOC test, the hold cycle between the last shift-in cycle and the first functional

cycle must be long enough to allow the scan enable signal to switch. In the meantime,

the off-chip inductances settle down to their quiescent currents. When the test is applied,

on-chip switching currents must be supplied from on-chip capacitances, causing the

supply voltage to drop (dI/dt noise). Second, scan patterns are structurally generated for

CK

SE

Launch Capture

 7

low cost, randomly filled for fortuitous fault detection and highly compacted for small

data volume. Illegal states, which are never visited in functional mode, reside in the test

pattern [25] [26]. The combination of these effects results in higher simultaneous

switching activities in the test mode. Considering the power grid is not optimized for

delivering such a large amount of switching current, excessive supply voltage drop (IR-

drop) will occur in test mode.

As shown in Fig. 4, the PSN mismatch between structural and functional mode

leads to either over-testing or under-testing. For simplicity, let us assume the delay of a

path consists of two parts. One is PSN-induced delay and the other is the normal delay,

which counts for manufacturing process variation. In order to pass the delay test, the

total delay should be smaller than the test cycle time (CLK). In case (a), the PSN-

induced delay is larger in test mode than that in worst-case functional mode. As a result,

the total delay exceeds the cycle time and the chip fails the delay test. This is called

over-testing. In case (b), the PSN-induced delay is smaller in test mode and the test does

not test the worst-case delay of the circuit. So the measured FMAX is too optimistic.

This is called under-testing. Over-testing causes yield loss while under-testing may later

test to fail (higher test cost) or cause field failure after shipping to the customer. Both of

the cases should be avoided in manufacturing test.

 8

Fig. 4 Over-testing and under-testing

1.4 Power Supply Noise Control

The philosophy of handling PSN in test mode can be divided into three

categories: (1) minimize PSN; (2) maximize PSN and (3) maximize the realistic PSN.

The first approach spares no effort to minimize power or PSN to avoid over-

testing. Plenty of techniques have been developed, such as scan chain reordering [27],

low-power test generation [28] [29] [30], low-power X-filling [31] [32] [33] [34] [35],

and power-aware compaction [4] [36]. Here “X” stands for don’t-care bits in the test

pattern. The main disadvantage of these methods is that they do not change the fact that

illegal states may still reside in the test pattern. The illegal states mean circuit states that

are never reached in the functional mode. Pseudo functional test [25] [26] is another

technique falling into this category but explicitly places logic constraints on ATPG to

PSN-induced
Delay

CLK

Functional Mode

Structural Mode

Functional Mode

Structural Mode

(a) Over-Testing

(b) Under-Testing

 9

avoid illegal states. However, it is hard to enumerate all possible illegal states and also

potentially causes under-testing.

The second approach attempts to maximize PSN in order to achieve high SDD

coverage and avoid under-testing [37] [38] [39]. In reference [37], an iterative procedure

based on genetic algorithm (GA) is reported. In each iteration, waveform simulations

and fitness calculation are performed to guide selection, crossover and mutation to find

patterns that induce larger PSN. The problems in this method are the dependency on

initial population and the high simulation cost. In reference [38], PSN maximization is

modeled as a MIN-ONE problem and a SAT solver is used to maximize the transition

count. A SAT-based method can find a near-optimal solution. However, CPU time cost

is usually high. The work in [39] utilizes a commercial ATPG engine to sensitize as

many neighboring signal lines as possible by virtual test point insertion. This approach

features good compatibility with commercial tools, but the optimality highly depends on

the implementation of the industrial tool.

The third approach argues that chips should be tested under the maximal

functional PSN and attempts to strike a balance between over-testing and under-testing

by considering functional constraints and PSN at the same time. These approaches

usually consist of two steps - pseudo functional test generation and PSN maximization,

such as MAX-fill [40] and backward justification based approach [41]. Max-Fill

computes functional reachable states that induce maximal switching activities using both

logic simulation and backward justification. Later partially specified patterns are filled

with these computed states. The approach proposed in reference [41] extracts logic

 10

constraints, which constraint ATPG to avoid illegal states, and then justify transitions on

neighboring signals.

1.5 Pseudo Functional Path Delay Test Generation

The focus of previous work is the on-chip IR-drop noise. However, silicon

measured data reveals the necessity of considering both on-chip IR-drop and off-chip

dI/dt noise in order to improve the delay correlation of structural and functional test [22]

[42]. Pseudo functional KLPG (PKLPG) [18] [43] test is proposed to generate delay

tests that test the K longest paths through each line in the circuit while having PSN

similar to that seen during normal functional operation. Rather than scanning in a test

pattern, applying it with a few functional test clocks and scanning out the results,

PKLPG is applied by scanning in a test pattern, running multiple functional clocks, and

then scanning out the result, as shown in Fig. 5.

Fig. 5 Clocking scheme for pseudo functional test

Minimize

Shift Power
Ramp up L·dI/dt

droop

Functional IR

droop

Minimize

Shift Power

Shift-in Cycle Preamble Cycle Pseudo-Function Cycle Shift-Out Cycle

CK

SE

 11

The initial functional clocks, termed the preamble, run at lower speed to ramp up

the off-chip power supply currents and minimize the noise due to the chip and package

inductance (dI/dt). The preamble cycle time must be much less than the off-chip inductor

time constant, but should be as large as possible to minimize the number of preamble

cycles needed to stabilize off-chip inductor currents.

PKLPG can be viewed as a short burst of functional tests. The primary advantage

is that it applies tests in a more functional manner, so power supply noise, signal

coupling and power dissipation are more similar to functional operation. As for shift

mode (both in and out), accumulative shift power dissipation can be minimized by DFT

techniques, such as scan-chain partitioning [27], or test pattern manipulation, such as

MT-filling [31]. Our in-house KLPG test generator, CodGen [18], was modified to

support PKLPG pattern generation by introducing additional cycles prior to the launch-

capture cycles. Currently, CodGen supports up to 32 preamble cycles followed by at-

speed launch and capture.

As discussed above, PKLPG is effective in reducing the impact of dI/dt noise and

produces an on-chip IR-drop environment similar to functional test. Now the major

concern is whether the test pattern fully exercises the circuit and induces the maximal

possible simultaneous switching activities, which in turn produce the worst-case delay

on the path. Moreover, it is interesting to explore the functional PSN range between

the max and min to verify timing robustness during post-silicon validation. Our PSN

profiling results (detailed in Chapter II) indicates that functional PSN during the capture

cycle is much lower and hence probably causes under-testing. Therefore, the goal of this

 12

work is to generate high quality test patterns and achieve high correlation with

functional test.

1.6 Organization of the Dissertation

The dissertation is organized as described below.

In Chapter II, a simulation-based PSN control algorithm, Bit-Flip, is proposed to

maximize the power supply noise during PKLPG test [44]. Given a set of partially-

specified scan patterns, random filling is done and then an iterative procedure is invoked

to flip some of the filled bits, to increase the effective weighted switching activity

(EWSA). The experimental results on the b19 benchmark circuit show that the algorithm

improved EWSA as much as 38% compared with best random fill. Also the results on

both compacted and un-compacted test patterns demonstrate that Bit-Flip can

significantly increase effective WSA while limiting the fill rate.

Chapter III proposes several techniques to improve the efficiency of Bit-Flip

(iBF) [45]. iBF combines random flipping with deterministic modification to efficiently

fill the don’t-care bits. Background patterns, which sensitize transitions on critical cells,

are pre-computed and later used to select the bits to flip. Dynamic bit weighting permits

intelligent selection of background patterns. Experimental results on benchmark circuits

shows iBF achieves worst-case realistic PSN in significantly less CPU time than Bit-

Flip.

In Chapter IV, we address the problem of automatic test pattern generation for

understanding circuit timing sensitivity to power supply noise during post-silicon timing

validation [46]. Long paths are selected from a PKLPG path set to span the power

 13

delivery network. To determine the sensitivity of timing to on-chip noise, the patterns

are intelligently filled to achieve different PSN levels. The PSN control algorithm, Bit-

Flip, is enhanced to consider both spatial and temporal information for better correlation

with functional PSN. These patterns can be used to understand timing sensitivity in post-

silicon validation by repeatedly applying the path delay test while sweeping the PSN

experienced by the path from low to high.

Chapter V studies how compression affects PSN control. We first generate

pseudo functional Illinois Scan and EDT patterns that target the longest paths through

each gate. Then a compression-aware PSN control scheme is implemented to maximize

the PSN while obeying the compression constraints. For each path, four different

patterns are used for the experiment: un-compacted Illinois Scan, compacted Illinois

Scan, un-compacted EDT, and compacted EDT. With these 4 patterns, we are able to

study the PSN impact of both compaction and compression. The experimental results

show that our PSN algorithm achieves significantly higher PSN compared to random or

best random fill on both un-compacted and compacted patterns. Our constrained random

(CR) algorithm for EDT compression reduces CPU time, while achieving slightly better

results than best random fill.

Chapter VI summarizes the dissertation and discusses future work.

 14

CHAPTER II

POWER SUPPLY NOISE CONTROL

2.1 Introduction

In recent years, considerable research effort has been dedicated to at-speed test

using the path delay fault model since it has the advantage of capturing the accumulative

effects of small delay defects. However, the maximum operating frequency during at-

speed scan test may not correlate well to functional and system tests due to the mismatch

of power supply noise. While PKLPG produces a functionally similar PSN environment

for at-speed test, it potentially causes under-testing without PSN control. Moreover, it is

interesting to explore the range of functional PSN during launch and capture. This can be

used to verify timing robustness during post-silicon validation and to set the PSN margin.

The central challenge of applying prior work to PKLPG is that PKLPG is a multiple-

cycle sequential test. Computational cost increases dramatically with the number of

preamble cycles, making it difficult to apply GA, SAT or justification-based methods.

The objective of this chapter is to develop a PSN control scheme for PKLPG.

In this chapter, we first investigate the PSN scenario for PKLPG using random

pattern simulation, which shows that PKLPG is more vulnerable to under-testing rather

than over-testing. Then a simulation-based PSN control algorithm called Bit-Flip is

proposed to maximize PSN during launch and capture cycles for partially-specified

PKLPG patterns. Experimental results on un-compacted longest path patterns of ITC99

benchmark circuit b19 demonstrate our scheme is able to improve the effective WSA as

 15

much as 38.7% compared with the best random fill. Results on compacted patterns show

that Bit-Flip can perform effectively even if the care bit density (fraction of test pattern

bits that are 0/1) is as high as 20%. The trade-off between CPU time and noise

maximization is also discussed.

Bit-Flip is similar to the hill-climbing procedure reported in reference [35], but

with a few differences. We explore Bit-Flip to maximize effective WSA for PKLPG test

rather than minimize Hamming distance of scan cell states for traditional two-cycle

delay test. We flip a group of bits per iteration rather than one at a time.

2.2 Pseudo-Functional PSN

This section presents the PSN profiling results for PKLPG using random pattern

simulation and analyzes the impact of random filling on weighted switching activities

during the capture cycle. Primary inputs are kept constant during simulation considering

low-cost automatic test equipment has few high-speed pins. For each circuit, 30,000

random patterns are applied with a burst of 16 functional mode cycles. WSA is used as a

simple metric to evaluate the PSN during each cycle. WSA at cycle k can be calculated

using formula (1) - (3).

 (1)

 (2)

 (3)

Where #FO is the number of fan-out of gate i; is the logic value of gate i at cycle k.

 16

Fig. 6 and Fig. 7 depict the detailed results of PSN profiling. Chip1 and Chip2

are two industrial designs, while b19 and s38417 are two large circuits from the ITC99

and ISCAS89 benchmarks respectively. Fig. 6 shows the average WSA over the 16

cycles for the selected circuits. For convenience, WSA is normalized to the first capture

cycle. As expected, for all the circuits the WSA falls rapidly during the first several

cycles, and then stabilizes at 20-30% of the cycle 2 level after roughly cycle 6. The

reason is that the high WSA in the first two cycles is probably introduced by illegal

states. After applying preamble cycles, the illegal states die out gradually and the circuit

approaches a near-functional state. Therefore, applying at least six preamble cycles

(PKLPG) will produce a PSN environment closer to functional. Traditional two-cycle at-

speed test is applied at cycle 2 and sees a higher WSA, while PKLPG sees a much lower

WSA. Therefore, PKLPG is more vulnerable to under-testing rather than over-testing.

Fig. 7 illustrates the correlation between the WSA at cycle 2 and cycle 16 for b19.

Similar results are observed for the other circuits. The WSA of the 30,000 random

patterns at cycle 2 are sorted in increasing order. The corresponding WSA at cycle 16 is

also plotted. The minimum and maximum WSA observed at cycle 16 is denoted as the

“Pseudo Functional PSN Range”. We can see that the WSA at cycle 16 (last capture

cycle) is independent of that at cycle 2 (first capture cycle). This indicates that

probability calculation based methods [32] [34] cannot guide filling in the presence of

many preamble cycles. The large pseudo functional PSN range at cycle 16 indicates the

importance of don’t-care filling. Given a partial specified pattern, the X bits should be

 17

assigned wisely to sensitize the worst functional PSN condition. In the following section,

we will describe a simulation-based X-filling method to control PSN.

Fig. 6 Average WSA falls with multiple cycles

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W
S

A

Clock Cycle

Chip2 Chip1

s38417 b19

 18

Fig. 7 b19 WSA correlation of different cycles

2.3 Overview of Proposed Framework

In this section, a simulation-based PSN maximization scheme, Bit-Flip, is

described. For a given partially-specified test pattern, it attempts to incrementally

improve the effective WSA by flipping a group of randomly-selected X-bits. The Bit-

Flip procedure is detailed in Fig. 8. It consists of a preprocessing step, an iterative step

and a bit-relaxation step. Circuit netlist, layout, critical path list and test pattern set are

the inputs to the algorithm.

Pseudo Functional

PSN range

 19

Fig. 8 Bit-Flip flow

In the preprocessing step, a pattern is fetched from the pattern file as well as the

corresponding path(s). First the cells near on-path gates are identified by physical

Iterative PSN Control

Y

Change

Group Size?

N

Decrement Size N

Y

Fetch a Pattern P

Path, Layout Critical Cell Identification

Pattern File

Bits Selection and Flip

Incremental Simulation

Calculate EWSA

Restore or Retain the Flip

Bit Relaxation

More Iteration?

Calculate Initial EWSAmax of Randomly

Filled Pattern

 20

position matching and are stored in a list. We term these cells as critical cells. It has

been demonstrated that critical cells have considerable impact on the PSN of on-path

gates [39]. Meanwhile, scan cells located in the fan-in cone of the critical cells are also

marked and stored in another list. These scan cells are termed as critical bits. Next, all

critical bits are randomly filled and an event-driven logic simulator, CodSim [47],

simulates the filled pattern. Then EWSA is measured as the initial EWSAmax. EWSA is

defined as the sum of transitioning critical cells’ WSA.

In the second step, the number of rounds and initial group size (initial value of G)

are chosen based on the CPU time budget. At the beginning of a round, the scan cells

that have constant logic values at the last launch/capture cycles are collected as potential

scan cells. The union, U, of the critical bits and the potential scan cells serves as the final

bit set for PSN control. Then Bit-Flip enters the iterative PSN control process. In each

iteration, it randomly selects up to G scan cells from the set U and flips their logic value.

Then CodSim simulates the modification incrementally, and a new EWSA is measured.

If EWSA is increased, the flipped bits are retained and EWSAmax is updated; otherwise,

the flipped bits are restored. At the end of each round, the group size is reduced by a

constant. The flipping process is terminated when the maximum number of rounds or

enough failures in a row is reached. After the iterative procedure concludes, bit-wise

relaxation is performed to maximize the number of X-bits, for the benefit of MT-filling

[31] or test compaction [3] [4].

 21

2.3.1 Critical Cell Identification

In this work, we utilize the effective region to identify critical cells, as shown in

Fig. 9. This approach is motivated by the model used in reference [39]. Vertically, gates

in the same and neighboring rows are critical cell candidates since they share either

power or ground lines with the on-path gates. Horizontally, each row is divided into

segments by power/ground strips. Based on power grid analysis, an effective region can

be set around on-path gates in order to capture the localized nature of PSN. All gates

within the effective region are critical cell candidates.

 We perform a 3-value (logic 1, 0, X) simulation on the partially specified pattern.

All candidates that have undetermined values (XX, 1/0X, X1/0) at launch/capture cycles

are denoted as critical cells. After critical cells are identified, Bit-Flip attempts to

maximize the sum of the WSA of critical cells (EWSA).

Fig. 9 Effective region

2.3.2 Task Granularity

Bit-Flip flips a group of bits each time. To select an appropriate group size, we

need to consider the potential EWSA improvement as well as the simulation time cost.

 22

Assuming there is no overlap among the fan-out cones of the flipped bits,

simulation time increases linearly with the group size and the total iterations. This is

usually true if the group size is much smaller than the number of test pattern bits. The

flipped bits spread sparsely along the scan chains.

The total number of bits that are covered by Bit-Flip is:

where I is the total iterations of each round, G is the initial group size, and d is the

decrement of the group size. The time cost of Bit-Flip can formulated as:

where C is the simulation time cost of flipping one bit. In order to reach the maximal

PSN, two conditions much be satisfied: 1) B≫S, where S is the number of scan bits. This

guarantees that each bit is flipped enough times; 2) I is large enough to adequately

explore the exponential search space.

In practice, the time budget T is fixed. Therefore, the total number of bits B that

can be flipped is fixed. Here we assume that condition 1) is satisfied. With a fixed B, in

order to make I large enough, we need to make G as small as possible. However, too

small a group size causes the transitions (flipped bits) to die out over the preamble cycles,

and so not improve EWSA.

Therefore, in Bit-Flip we first try a large group size to search across the

exponential space and approach some local optima PSN. By decreasing the group size

round by round, we gradually achieve the optimal result as well as limiting the execution

time.

 23

2.3.3 Critical Bit Fill and Bit Relaxation

In order to narrow down the search space, structural information can be used to

identify critical bits that are highly correlated to the logic value of the critical cells. Bits

in the fan-in cone of critical cells are most likely critical. After critical cells are

identified, a multi-cycle back-trace procedure is called to collect critical bits. However,

multi-cycle back-trace may cause too many bits to become critical, which will increase

the fill rate and degrade pattern compaction performance.

To limit the number of critical bits, we need to identify the bits which are

insignificant to EWSA maximization and exclude them from the critical bits set. That is,

if we relax an insignificant bit to X, EWSA will not be reduced. Therefore, we apply a

bitwise bit-relaxation procedure to turn insignificant bits into X bits. The procedure

relaxes each bit to X, simulates the circuit, and keeps the relaxation if EWSA is not

decreased. Otherwise the bit is restored. An efficient relaxation method can be found in

reference [48], although their focus is fault coverage, not PSN.

If the fill rate of the test patterns is limited, such as to enable high test

compression ratio, a trade-off must be made between EWSA maximization and X-bit

utilization. This is done by adding a significance ranking to X-bits during the relaxation

process. We use the change in EWSA to rank the bits. This can then be used to select

which bits are relaxed.

2.3.4 Compacted Pattern Consideration

Test compaction is used to reduce pattern count and minimize the test application

time. Compacted patterns typically have higher care-bit density, which reduces the

 24

search space for PSN control. Bit-Flip can be applied to compacted patterns with slight

modification.

First, the paths tested by a given pattern can be searched in a breath-first manner.

If the pattern tests a critical path, we term this a critical pattern and Bit-Flip is applied to

it. Critical paths can be obtained from static timing analysis (STA) tools or by setting a

threshold on path length. In practice, it can be selected based on path length distribution

and CPU time budget. If the compaction algorithm attempts to pack critical paths

together, the number of critical patterns may be small. In our future work, we will

enhance the compaction algorithm to compact long paths together, so the critical pattern

count is reduced.

Second, critical cells are identified for each critical path tested by the critical

patterns, and its EWSA weighted based on the path length. Since a longer path is more

sensitive to PSN induced delay, a larger weight is assigned to its critical cells. The

weight is the ratio of path length to the longest path length (or clock cycle time). If there

is an overlap of critical cells on different paths, the WSA is weighted by the longest path.

Bit-Flip attempts to maximize the weighted EWSA of all critical cells.

2.4 Experimental Results

We implemented Bit-Flip in C++ running on a 3.16 GHz processor with 4 GB of

memory. Robust paths and patterns are generated using the in-house PKLPG tool,

CodGen, with K=1 (one longest rising and falling path per line) and 6 preamble cycles.

Physical layouts were generated using commercial tools. In the following, Bit-Flip with

 25

N iterations will be termed BF-N. The 10 longest paths from b19 that do not share gates

were selected for experiments. These paths/patterns are termed P0 to P9.

First, we investigate how group size affects Bit-Flip performance for a fixed CPU

time budget. We ran Bit-Flip on path P0 while limiting CPU time to 10s. This is a

generous amount of CPU time for one path. For each group size, we filled the pattern

1000 times and the average EWSA is compared with the best of 10,000 randomly-filled

patterns (∆EWSA). As shown in Fig. 10, the average ∆EWSA peaks for an initial group

size of 30, which is about 0.5% of the total bits. Similar results are observed on

ISCAS89 circuits S38417, S38584, and S35932, which peak at group size 5. A larger

group size can discover the logic correlation among bits. However, too large a group

cannot maximize the average ∆EWSA within the time budget.

Fig. 10 b19: Average ∆EWSA vs. group size

Second, we investigated how the number of iterations affects performance. We

ran Bit-Flip on P0 to P9 for 1000, 4000 and 10,000 iterations (BF-1000, BF-4000, and

8

9

10

11

12

13

14

15

0 10 20 30 40 50

A
v
g
.

∆
E

W
S

A
 (

%
)

 26

BF-10000) with an initial group size of 30. To validate Bit-Flip effectiveness, each

pattern is filled 100 times for each configuration and the results are compared with the

best random patterns as shown in Table 1.

Table 1 PSN control result of un-compacted patterns

Path

No.

Path

Length

(gates)

Initial

Care

Bits

Bit-Flip (30-bit initial group) Compared With Best Random Fill

BF-1000 BF-4000 BF-10000

Avg.

EWSA

(%)

Final

Care

Bits

CPU

Time

(s)

Avg.

EWSA

(%)

Final

Care

Bits

CPU

Time

(s)

Avg.

EWSA

(%)

Final

Care

Bits

CPU

Time

(s)

P0 59 160 14.45 475 11 22.03 472 41 24.00 466 100

P1 43 205 17.83 492 11 21.63 500 41 21.86 506 97

P2 55 178 1.28 376 11 3.35 388 38 4.88 389 93

P3 49 160 6.29 412 11 14.70 425 39 16.00 425 98

P4 36 189 22.35 393 10 37.46 404 35 38.70 404 89

P5 32 185 17.12 385 10 24.64 392 36 26.16 392 89

P6 32 142 4.65 320 10 5.70 319 35 8.54 334 90

P7 40 220 7.73 471 11 10.02 476 36 11.74 484 95

P8 48 158 -0.76 336 10 2.33 337 36 2.55 342 90

P9 39 210 12.19 449 10 14.92 449 41 16.48 460 94

Avg. 181 10.31 410 11 15.71 416 38 17.09 420 94

In Table 1, the initial and final care-bit count, average ∆EWSA and CPU time are

shown for each path. The average ∆EWSA of BF-1000, BF-4000, and BF-10000 are

10.31%, 15.71% and 17.09% respectively. The best performance is observed on P4

using BF-10000, which has a ∆EWSA of 38.7%. Most paths have a 10%-25%

 27

improvement using BF-4000. The rate of EWSA improvement levels off with more

iterations. For most paths, BF-4000 provides the best trade-off between PSN

maximization and CPU time.

The 95% confidence interval for average ∆EWSA is shown in Fig. 11. There is a

relatively large range of pseudo functional EWSA for a given path. Quiet and noisy

patterns can be binned and used to characterize the noise sensitivity of the paths. For

example, Fig. 12 illustrates the EWSA distribution for P0 of 1000 randomly filled

patterns and 1000 patterns filled using BF-1000 and BF-10000. By applying patterns

from left (quiet) to right (noisy) and computing FMAX for each bin, the sensitivity of

delay to PSN can be understood.

Fig. 11 Average ∆EWSA with 95% C.I.

-5

0

5

10

15

20

25

30

35

40

45

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

A
v
g
.

∆
E

W
S

A
 (

%
)

BF-1000

BF-4000

BF-10000

 28

Fig. 12 P0 EWSA distribution vs. fill method

Bit-Flip provides the least improvement on paths P2, P6 and P8 compared to the

best random pattern. To understand these three cases, the total number of critical cells

(T.C.), transitioning critical cells count (T.O.) and transition rate (T.R.) are shown in

Table 2. It can be seen that the transition rate of these three paths is relatively higher

than other paths. The noise on these three paths is relatively high and there is not much

room for improvement.

The number of X bits used for PSN control is about 40% more than the original

care bits. In aggregate less than 10% of the pattern bits are specified. Since logic

simulation time dominates the algorithm, the CPU time is nearly linear in the number of

iterations. BF-4000 takes about 40s on b19 while simulating 10,000 random patterns

takes more than 2 hours.

We compare the Bit-Flip approach to the ATPG-based PSN maximization

approach in [39]. Based on their published data, we can only compare the average

 29

transition rates (T.R.) (total aggressor transitions divided by total aggressors). The

average T.R. in [39] is 14.08% with virtual test point insertion, with a CPU time of 40s

for the ATPG step. As shown in Table 1and Table 2, BF-4000 averages 17.24% T.R. at

38s CPU time. So the two methods have similar performance.

Table 2 No. critical cells with transition output

Path

No.
T.C.

BF-1000 BF-4000 BF-10000

T.O. T.R. (%) T.O. T.R. (%) T.O. T.R. (%)

P0 5818 494 8.49 521 8.96 525 9.02

P1 5544 335 6.04 343 6.19 344 6.21

P2 5181 1282 24.74 1301 25.11 1313 25.33

P3 6827 695 10.18 753 11.03 756 11.07

P4 2148 285 13.27 318 14.80 320 14.92

P5 2206 296 13.42 316 14.31 320 14.49

P6 2492 536 21.51 544 21.84 560 22.46

P7 5501 714 12.98 735 13.35 747 13.58

P8 3737 1147 30.69 1179 31.55 1181 31.60

P9 3645 902 24.75 921 25.28 935 25.65

Avg. 4309 668 16.61 693 17.24 700 17.43

We investigated how fill rate constraints limits the performance of Bit-Flip. We

run BF-4000 with group size 30 and the fill rate is varied from 3% to 10%, compared to

the original fill rate of 2.4%. For each case, we run BF-4000 100 times on P0. After BF-

4000 completed, the remaining X bits in the filled pattern were randomly filled for a fair

comparison. The average ∆EWSA from random fill (Average ∆EWSA-R) and from best

 30

random (Average ∆EWSA-BR) are shown in Fig. 13. BF-4000 always performs better

than random fill and always performs better than best random once the fill rate is more

than 5%. The improvement for P0 levels off when the fill rate is above 7%.

Table 3 PSN control result of compacted patterns

Circuit T.P. C.P.

Avg.

EWSA

(%)

T.R. (%)
Avg. Care Bits CPU

Time

(s) Original Post-fill

b19 283 37 263 11 5% 9% 1003

s35932 235 100 53 67 21% 56% 174

s38417 519 98 59 29 24% 38% 100

s38584 198 63 74 28 19% 34% 67

Fig. 13 Average ∆EWSA vs. fill rate

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
A

v
g
.

∆
E

W
S

A
-R

A
v
g
.

∆
E

W
S

A
-B

R

Fill Rate

AVG. ∆EWSA-BR AVG. ∆EWSA-R

 31

Finally, we evaluate the ∆EWSA achieved on compacted patterns of benchmark

circuits and the results are listed in Table 3. The patterns were dynamically compacted.

Paths longer than 70% of the longest path are considered critical, and any patterns

containing them are subject to the Bit-Flip procedure. We chose 70% as the threshold

since STA errors of 30% have been reported in the literature. The total number of

patterns (T.P.), the number of critical pattern (C.P.) and transition rate (T.R.), are also

shown. On average 24% of patterns are critical and require PSN control. b19 is less

compacted than the other three circuits and a large ∆EWSA is obtained. Although the

other three circuits have about a 20% care bit density, Bit-Flip still performs

significantly better than random fill.

2.5 Summary

The noise scenario for pseudo functional test using KLPG patterns is quite

different from traditional two-cycle launch-on-capture delay test and it is vulnerable to

under-testing. We proposed a simulation-based algorithm, Bit-Flip, to control PSN for

PKLPG test. Experimental results on both un-compacted and compacted test patterns

demonstrated the effectiveness of the method.

 32

CHAPTER III

IMPROVED POWER SUPPLY NOISE CONTROL

3.1 Introduction

In this chapter, the improved Bit-Flip (iBF) is presented. It combines random

flipping with background patterns based (BGs-based) modification for higher PSN

control efficiency. Initially, Bit-Flip is applied to sensitize transitions on the outputs of

high-controllability critical cells. As this approach saturates, iBF switches to a BGs-

based approach to identify additional transitions. This is similar to a standard ATPG

process. Dynamic bit weighting permits intelligent selection of background patterns for

PSN improvement. Experimental results on benchmark circuits show that iBF achieves

results similar to Bit-Flip in much less CPU time.

3.2 Background and Motivation

The original flow of Bit-Flip is shown in Fig. 14. Bit-Flip starts by fetching a test

pattern and the corresponding path(s). Critical cells, which are neighboring-row gates

located within a certain distance (critical range) of on-path gates, are identified by layout

analysis. Don’t-care bits are initially randomly filled and the EWSA is computed as the

initial EWSAmax. EWSA is the sum of the WSA of transitioning critical cells. Then Bit-

Flip enters the iterative PSN control step and randomly flips a group of bits to maximize

the EWSA. In each iteration, up to G don’t-care bits are randomly selected and their

values are flipped. Incremental logic simulation is used to simulate the change in test

 33

pattern. The flip is retained if EWSA does not decrease. To reduce CPU time and direct

the search, Bit-Flip shrinks the group size G during the iterations.

Fig. 14 Original Bit-Flip flow

Fig. 15 Bit-Flip PSN control scenarios

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 250 500 750 1000 1250 1500

E
W

S
A

CPU Time (s)

Path 1

Path 2

Load a Vector

Critical Cell Identification Path, Layout

Pattern

Calculate Initial EWSA

Start

End

Iterative PSN Control

Random Fill and Simulation

 34

Bit-Flip devotes the same effort to each critical pattern (a pattern containing

critical paths) regardless of the potential EWSA improvement. For some patterns,

EWSA is maximized after a few iterations and the remaining flips provide little benefit.

Some patterns require many iterations. In Fig. 15, Path1 quickly reaches its maximal

EWSA while Path2 requires a lot more iteration to find each EWSA “jump”. Therefore,

a flexible iteration control will reduce CPU time while maximizing EWSA. Another

drawback is that Bit-Flip strongly relies on the random selection of bit groups to

discover the logic dependency among bits. Many iterations are required for random-

pattern-resistant (RPR) critical cells. Logic dependence refers to situations where two or

more bits should be flipped simultaneously to increase EWSA.

Fig. 16 Critical cell sharing

The basic principle of iBF is to take advantage of both random flipping and

deterministic modification. Random flipping works well, except for RPR critical cells.

While deterministic justification is adequate in covering RPR critical cells, the cost is

P0: X X X X 0 1 X X, Transition on G1

P1: 0 X X 1 X X X 1 0 X X 1 0 1 X 1

P2: X 0 1 0 X X 0 1 X 0 1 0 0 1 0 1

Path 1

Path 2

G1

 35

usually high due to multi-cycle backtracking across the preamble cycles in PKLPG tests.

Similar to ATPG [1], random flipping can be applied first to generate transitions on the

critical cells that are not RPR. When the EWSA levels off, the algorithm switches to the

deterministic method for further EWSA improvement.

The observation that critical cells are shared by multiple paths permits further

CPU time reduction. As shown in Fig. 16, Path1 and Path2 are two critical paths and G1

is located within the critical ranges of the two paths, which is the overlap of the two

dashed rectangles. Therefore, G1 is a shared critical cell. Considering these two paths

independently requires separately justifying a transition on G1 for both paths. Using the

approach in Fig. 16, one pass is sufficient. Assume pattern P0 sensitizes a transition on

G1, and P1 and P2 test the two paths. Since P0 is compactable with P1 and P2, we can

simply merge P0 into P1 and P2 to generate the desired transitions. Therefore, the CPU

cost is halved.

Table 4 Critical cell sharing summary

Circuit s35932 s38417 s38584 b19

#Path 3488 2660 1484 1030

#Path/CC 250 201 83 75

In Table 4, we listed the critical cell sharing in several benchmark circuits. The

second row showed the number of PKLPG paths in the top 30% in length. The third row

listed the average number of paths that share each critical cell. Critical cell sharing is a

common phenomenon. For example, in s38417 each critical cell is shared by an average

 36

of 201 paths, which potentially offers as much as 200x speedup compared with

justifying the critical cells for each path separately. Based on the above discussion, we

can pre-compute the patterns sensitizing the critical cells and use these patterns to

modify the path test patterns.

3.3 Background Pattern

Background pattern (BP) refers to a pre-computed partially specified pattern,

which generates transitions on the outputs of critical cells. Background pattern

generation, the structure of the background pattern pool and the weighting of

background patterns will be discussed in this section.

3.3.1 Background Pattern Generation

The following three requirements should be taken into account when generating

the background patterns. First, the number of BPs should be minimized to reduce CPU

time. iBF iterates over the BPs and modifies the test pattern based on BPs. Fewer BPs

means less logic simulation. Second, each BP should have as few bits specified as

possible. Only the bits necessary for the targeted critical cell transitions are specified.

Unnecessary specified bit values increase the possibility of bit assignment conflicts,

resulting in higher CPU time. Third, it is necessary to include diverse BPs for each

critical cell. Although a critical cell can be shared by multiple paths, different test

patterns may have different care bits and thus require different BPs for the critical cell. If

possible, we should include every BP input assignment that generates the desired critical

cell transitions.

 37

The three requirements for BPs are in conflict. Dynamic compaction [3] is

effective in reducing pattern count but violates the second requirement. Critical cell

dropping, similar to fault-dropping in fault simulation, can be used to reduce pattern

count by removing a critical cell once it is covered by a generated BP. However, this

conflicts with the third requirement. To strike a balance between the first and the second

requirements, compaction with a care-bit density constraint can be used to reduce BP

count. A compromise can be reached between the second and third constraints by

allowing multiple sensitizations for each critical cell. If the size of the critical cell list is

too large and the justification time is unacceptable, we may only target critical cells on

which transitions are hard to generate. Controllability [1] can be used to select such

critical cells.

Fig. 17 Background pattern generation algorithm

Fig. 17 shows the BP generation process. Critical cells are identified for all

critical paths before BP generation and are stored in the critical cell list (CC_list). For

each critical cell, background patterns that produce rising and falling output transitions

Algorithm: BP_Generation (CC_list)

For each critical cell CCi

 If (more_rising (CCi))

 If (justification(rising, CCi);)

 Record pattern and update coverage;

 If (more_falling(CCi))

 If (justification(falling, CCi))

 Record pattern and update coverage;

Endfor

 38

are generated using a PODEM-like justification algorithm [2]. The other critical cells are

checked to see if the new BP causes an output transition on them. Once a critical cell is

sensitized for C rising and C falling transitions, it is dropped from the critical cell list. C

is set in accordance to the number of critical paths that share the critical cell. A critical

cell shared by more critical paths typically requires more BPs to mitigate the conflicts

among the critical patterns. Critical cells are considered in reverse rank order, since this

increases the fortuitous drop rate for critical cells. If a BP for one critical cell matches an

existing BP, the BPs are merged.

3.3.2 Background Pattern Pool

The background pattern pool (BPP) is a bipartite graph that stores BPs and the

critical cells covered by each BP. BPP can be built easily by logic simulation. For each

BP, the set of transitioning critical cells are associated with the BP by adding edges

between them. Each critical cell maintains a list of BPs that causes transitions on the cell.

Each edge is weighted using the WSA of the critical cell.

Fig. 18 Background pattern pool

G1(4) G2(3) G3(2) G4(1) G5(2) G6(2) G7(4) G8(3)

BP1 BP2 BP3 BP4

4

3

3

2

2
2

1
2

2
4 3

 39

Consider a BPP example in Fig. 18. It consists of 4 BPs (BP1 to BP4) and 8

critical cells (G1 to G8) with WSA labeled in parentheses. Edges are added between BPs

and critical cells to indicate the coverage relationship. For example, since G1 is covered

by BP1, an edge is added and the weight of the edge equals the WSA of G1, i.e. 4. The

weights of other edges are assigned similarly.

3.3.3 Evaluation of Background Patterns

Potential EWSA (PEWSA) is a static measurement for evaluating the potential of

a BP to increase EWSA. PEWSA is the sum of the weights of edges connecting the BP

to critical cells. For a given critical path, a set of critical cells are labeled and the

PEWSA is calculated by traversing the BP list of each critical cell.

As illustrated in Fig. 18, G1, G4, and G6 are three critical cells. From the graph,

we know that BP1 appears in G1’s BP list, thus PEWSA(BP1) = WSA(G1) = 4; BP3

covers both G4 and G6, thus PEWSA(BP3) = WSA(G4) + WSA(G6) = 3; BP4 has a

connection with G6, thus PEWSA(BP4) = WSA(G6) = 2.

 40

Fig. 19 iBF flow

N

Y

Collect and Rank BPs

Fetch a BP w/ Max. PEWSA

Check Conflicts and Update PEWSA

PEWSAupdate > THLD?

Modify Test Pattern Based on BP

Simulation and Calculate EWSA

EWSA < EWSAmax?

Update EWSAmax Restore

BP == NULL?

Two-Pass Bit-Flip w/ 1-bit

Y

Y N

N

Update Bit Weight

Post-Fill Process

 41

3.4 Improved Power Supply Noise Control

The details of iBF are discussed in this section. As with the Bit-Flip algorithm,

the goal of iBF is to maximize EWSA on the long paths in each test pattern. iBF has the

same preprocessing phase as Bit-Flip, as discussed in Chapter II. We will focus on the

PSN control as shown in Fig. 19. The iBF core consists of two parts. Initially, a two-pass

Bit-Flip with single-bit group size is applied. This stage will cover most of the easily

controlled critical cells and bring the EWSA to the level-off point. Then the BPs-based

approach is applied to cover the remaining critical cells by modifying the test pattern

using the background patterns. Since BPs provide a directed basis to modify the test

pattern, the BPs-based approach reduces CPU time while maintaining the same test

quality as the original Bit-Flip algorithm.

3.4.1 Two-pass Bit-Flip w/ Single-bit Group

Two-pass Bit-Flip with single-bit group size is applied to the randomly filled

pattern. The first pass Bit-Flip flips each bit in the same order as it occurs in the scan

chain (referred to as BF.1-Bit), and the second pass in the reverse order (referred to as

BF.1-Bit-R). After two-pass Bit-Flip, most of the critical cells will have transitions on

them. The remaining critical cells are relatively hard to control and require the

knowledge of bit correlation, i.e. flip some combination of bits to launch the transition.

We assume the EWSA after two-pass single-bit flip has leveled off. If this is not the case,

additional random Bit-Flip iterations can be applied, using the critical cell toggling rate

to identify the leveling-off point. In this work, we use the two-pass Bit-Flip.

 42

3.4.2 BPs-Based Flip

iBF considers BPs in decreasing order of PEWSA. The BP is fetched, and its

PEWSA updated, to account for the fact that some critical cells already have transitions,

and conflicts between the BP and the test pattern filled by the two-pass Bit-Flip. These

conflicts are likely to cause some potential PEWSA loss. A BP will not be used unless

its updated PEWSA is larger than a threshold THLD.

iBF modifies the test pattern based on the fetched BP, incrementally simulates

the modification, and computes the EWSA. Any modification that reduces the EWSA

will be restored. Handling of conflicts and dynamic bit weighting will be detailed in the

following sections. This process is repeated until there is no untried BP.

3.4.3 Rank of BPs

The PEWSA of each BP was originally computed without any constraints, so that

BP generation could be done once for the entire circuit. When considering a BP, the

PEWSA is updated using dynamic bit weighting and potential weight updating using the

following formula:

where NWj is the negative weight of conflicting bit j and WSAi is the WSA of critical cell

i that is sensitized by the BP, but already has a transition. The NW is the reduction in

PEWSA that results when flipping a bit. The WSA of the already transitioning critical

cells must be subtracted, to avoid double credit for them. The updated PEWSA is viewed

as the maximal EWSA the BP may achieve.

 43

3.4.4 Handling of Conflicts

There may be conflicts between the intermediate test pattern (ITP) and the BP.

The ITP is the original test pattern (OTP) with any subsequent assignments to the don’t-

care bits. A conflict is classified as either a hard conflict or soft conflict. A hard conflict

occurs when the BP has some care bits that differ from the OTP care bits. A soft conflict

is a conflict between the BP and the current assignment of the ITP don’t care bits.

An example of hard and soft conflicts is shown in Fig. 20. The first bit is 0 in the

BP and 1 in the OTP. This is a hard conflict. We must keep the value in the OTP to

preserve the path test. Therefore, Rule1 is applied for hard conflicts. The fourth and the

eighth bits are soft conflicts since they are don’t care bits in the OTP, but have current

assignments that conflict with the BP. Rule2 is applied for soft conflicts. Bit positive

weight will be discussed in the next section.

 Rule1: Any flip to hard conflict bit is rejected.

 Rule2: Flips to soft conflicts are accepted if the PEWSAupdate is the positive
weight of the bit

Fig. 20 Classification of conflicts

OTP: 1 X X X 1 1 0 X

ITP: 1 0 1 1 1 1 0 0

BP: 0 X 1 0 X 1 X 1

Hard Conflict Soft Conflict

 44

3.4.5 Dynamic Bit Weighting

Conflicts with the ITP may require flipping a care bit in the BP, reducing its

PEWSA. For each bit in the ITP, positive weight and negative weight are maintained.

Positive weight tracks how much a bit contributes to the current EWSA. It is used to

determine if iBF flips an ITP bit due to a soft conflict. Negative weight is the possible

loss in EWSA from flipping the ITP bit.

Fig. 21 illustrates the dynamic bit weighting mechanism. Set U contains all

possible critical cell transitions for the test pattern. S1 contains all transitioning critical

cells in the ITP before adding a BP, while S2 contains all transitioning critical cells after

the modification. Set S3 is the critical cells covered by BP. The goal is to include the

most critical cell transitions in S2.

Fig. 21 iBF background patterns

Critical cell transitions present in S1 but not in S2 are caused by ITP flipped bits.

The WSA of all such flips is termed soft loss, since they result from soft conflicts.

S1: Pre-modification S2: Post-modification

U: Critical Cell Transitions

S3: BP Covered

 45

Transitions in S3 but not S2 are caused by hard or soft conflicts that prevent a flip, and

are termed hard loss. Both soft and hard loss is negative weight. After each ITP update

and EWSA calculation, negative weights of the conflicting bits are updated with the

maximum of the old and new negative weight. Transitions included in S2 but not in S1

result from ITP bit flips by the BP. The WSA of this region is positive weight. The

positive weight of each ITP bit is updated with the maximum of the old and new positive

weight, if the ∆EWSA of the ITP update was non-negative.

3.4.6 Compression Consideration

The proposed method is compatible with test compression, such as linear-

decompression-based schemes [6]. One approach is to apply Bit-relaxation and minimize

the post-fill care-bit density. The impact on compression can be minimized if post-fill

care-bit density is low enough. Another approach handles compression during pattern

filling. The compressed pattern can be computed first which will determine the values of

a certain fraction of variables. The remaining variables can be used for PSN control.

Randomly fill the remaining variables and randomly flip a group of variables as in Bit-

Flip. BGs-based modification can also be used, where BGs are in the form of variables.

Since we flip the variables, rather than the original test pattern bits, the resulting patterns

are still compressible. This will be investigated in Chapter V.

3.5 Experiment Results

The proposed BPs-based PSN control, iBF, is validated on several representative

benchmarks circuits: s35932, s38417, s38584 and b19. Robust paths and patterns are

generated using an in-house PKLPG tool, CodGen, with K=1 (one longest rising and

 46

falling path per line) and 6 preamble cycles. Physical layouts are generated using a

commercial placement tool. The paths that are in the top 30% in length are selected as

critical paths and any test pattern that tests a critical path is considered a critical pattern.

iBF is implemented in C++ and runs on a 3.16 GHz Dell Optiplex 960 with 4 GB of

memory.

Table 5 Profiles for each circuit and BPs

Circuit
Un-compacted Compacted

#P #CP CD (%) CC/P #P #CP CD (%) CC/P

s35932 9442 3488 0.64 1102 261 242 8.76 3863

s38417 8555 2660 4.12 1670 477 322 22.47 3646

s38584 5016 1484 2.16 1022 198 194 12.11 4066

b19 2607 1030 2.35 4096 283 232 4.48 11625

Table 6 BP profiles

Circuit

BPs

CC #BP Avg. C
Coverage

(%)
Time (s)

s35932 15381 5915 5 99.79 98

s38417 22140 3521 3 74.88 306

s38584 18218 4800 3 81.68 451

b19 56198 7191 3 63.55 4464

The profiles of both un-compacted and compacted pattern sets are summarized in

Table 5, including the total number of patterns (#P), number of critical patterns (#CP),

average care-bit density of critical patterns (CD (%)), and the number of critical cells per

 47

pattern (CC/P). In Table 6, the total number of critical cells (#CC), the number of BPs

(#BP), average C (Avg. C), percentage of critical cells that the BPs cause to have a rising

or falling transition (Coverage (%)), and the CPU time for BP generation (Time (s)) are

presented for each circuit. THLD=0 in these experiments and C is 2, 4, 8 or 16 according

to the number of paths sharing the critical cell (C=2 for cells sharing up to 25% of the

maximum level of sharing in the circuit, 4 for up to 50%, 8 for up to 75% and 16 for up

to 100%). THLD is a PEWSA threshold to select background patterns. It is notable that

the BG count is significantly smaller than the critical cell count. In order to make each

BG as specific as possible, compaction is disabled during BG generation. The impact of

BP compaction will be investigated in future work. Here we concentrate on comparing

the performance of Bit-Flip and iBF.

For comparison, Bit-Flip and iBF with and without BG-pruning (dynamic bit

weighting) was performed for each circuit. The configuration parameters for Bit-Flip are

initial group size G, decrementing constant D, iterations per round I and rounds count R.

For the three small circuits, the parameters are set as G=5, D=1, I=1200, and R=5. A

total of 18K bits are flipped. The configuration for b19 is G=30, D=6, I=1200, and R=5.

In total 108K bits are flipped.

Table 7 and Table 8 show the results on un-compacted patterns. The tables list

average improvement in EWSA over random fill (∆EWSA), transition rate (TR),

average number of flips per bit (Flips/Bit) and CPU time per pattern (Time (s)). The

CPU time excludes the BP generation time in Table 6. The transition rate is the average

fraction of critical cells that are transitioning after filling.

 48

Table 7 Bit-Flip on un-compacted patterns

Circuit
Bit-Flip

∆EWSA (%) TR (%) Flips/Bit Time (s)

s35932 70.17 72.5 10 2.16

s38417 129.78 34.35 11 1.56

s38584 166.90 28.19 12 1.24

b19 200.88 25.84 16 31.69

Table 8 iBF on un-compacted patterns

Circuit

iBF w/o BP Pruning iBF w/ BP Pruning

∆EWSA

(%)

TR

(%)
Flips/Bit

Time

(s)

∆EWSA

(%)

TR

(%)
Flips/Bit

Time

(s)

s35932 70.64 72.54 5 0.68 70.43 72.46 4 0.61

s38417 125.24 33.71 7 1.4 121.30 33.06 4 0.76

s38584 198.19 30.34 7 0.73 195.68 30.05 4 0.53

b19 229.43 28.07 4 10.38 226.26 27.69 3 7.34

For s35932, iBF achieves similar ∆EWSA as Bit-Flip in less CPU time.

Although the average number of flips per bit in iBF is 36% less than Bit-Flip, the CPU

time cost doesn’t reduce accordingly to obtain similar ∆EWSA on s38417. This is due to

the fact that some BG conflicts have a large impact on PEWSA, and the high fan-out of

these bits increases the incremental simulation cost of updating the PEWSA. This

demonstrates the necessity for dynamic bit weighting and BG-pruning. With dynamic bit

weighting, the important bits will get a high negative weight, which reduces the

 49

possibility of using a BG that flips such bits. For the other two circuits, iBF achieves

significantly better ∆EWSA in much less CPU time.

The results in Table 8 demonstrate the effectiveness of dynamic bit weighting.

The technique reduced the CPU time while maintaining a higher ∆EWSA than Bit-Flip

on circuit s35932, s38584 and b19. The CPU time for circuit s38417 is reduced by 51%

with a 7% ∆EWSA loss, compared to Bit-Flip. The slight ∆EWSA loss is due to the

difference between potential and actual EWSA change with each BP application.

Table 9 Bit-Flip on compacted patterns

Circuit
Bit-Flip

∆EWSA (%) TR (%) Flips/Bit Time (s)

s35932 63.14 70.55 10 2.68

s38417 75.25 35.22 11 1.42

s38584 115.36 25.25 12 1.72

b19 233.45 23.09 16 40.81

Table 10 iBF on compacted patterns

Circuit

iBF w/o BP Pruning iBF w/ BP Pruning

∆EWSA

(%)

TR

(%)
Flips/Bit

Time

(s)

∆EWSA

(%)

TR

(%)
Flips/Bit

Time

(s)

s35932 63.57 70.39 7 1.22 63.51 70.36 5 0.91

s38417 74.76 35.12 5 0.84 73.71 34.95 3 0.58

s38584 126.37 25.95 8 1.14 123.48 25.67 5 0.79

b19 256.57 24.59 7 25.68 253.54 24.26 4 17.88

 50

Paths tested by a compacted pattern are identified using breadth-first search. The

goal of iBF is to have as many transitioning critical cells as possible for all the critical

paths in the pattern. Experimental results for compacted patterns are shown in Table 9

and Table 10. Compared with un-compacted patterns in terms of transition rate, three of

the four circuits, except s38417, have a smaller transition rate due to the higher care-bit

density, which places more constraints on PSN control. In most cases, iBF can

outperform Bit-Flip in less CPU time.

Fig. 22 Normalized EWSA at each stage (un-compacted)

0

0.5

1

1.5

2

2.5

3

3.5

s35932 s38417 s38584 b19

N
o

rm
al

iz
ed

 E
W

S
A

Circuit

BPs-Based BF.1-Bit-R

BF.1-Bit Random

 51

Fig. 23 Normalized EWSA at each stage (compacted)

In Fig. 22 and Fig. 23, the normalized EWSA for both un-compacted and

compacted patterns at each stage of the iBF algorithm are shown. The first pass of Bit-

Flip with single bit group size (BF.1-Bit) can dramatically improve the EWSA by

sensitizing most of the easily-controllable critical cells. The second pass (BF.1-Bit-R) is

not as effective and very limited EWSA improvements are observed. This indicates that

EWSA improvement for Bit-Flip has leveled off. Instead of applying a large number of

random flips, as in Bit-Flip, BP-based modification is utilized in iBF and effectively

sensitizes the remaining possible transitions for s38584 and b19. BPs does not provide

much improvement on the other two circuits. This is because most of the critical cells

are relatively easily controlled and covered by the two-pass Bit-Flip.

0

0.5

1

1.5

2

2.5

3

3.5

4

s35932 s38417 s38584 b19

N
o

rm
al

iz
ed

 E
W

S
A

Circuit

BPs-Based BF.1-Bit-R

BF.1-Bit Random

 52

The CPU times in Table 8 and Table 10 do not include the BP generation time in

Table 6. If the BP generation time is included in the analysis, then iBF in aggregate takes

61% less time than Bit-Flip on un-compacted patterns, and 8% less on compacted

patterns. Bit-Flip time mostly depends on the number of critical patterns, while iBF

depends on the number of critical cells, so test sets with many critical patterns, such as

s35932, will favor iBF.

3.6 Summary

We presented an improved Bit-Flip algorithm, iBF, to maximize functionally

realistic supply noise in path delay test. It combines random flipping with background

patterns to achieve cost-effective PSN control. Dynamic bit weighting permits intelligent

BP selection. Experimental results show that iBF achieves worst-case realistic PSN in

significantly less CPU time than previous techniques.

 53

CHAPTER IV

PATTERN GENERATION FOR POST-SILICON TIMING VALIDATION
*

4.1 Introduction

Power supply noise significantly impacts the timing performance of integrated

circuits, and it may cause maximum operating frequency FMAX mismatch between

structural at-speed test and functional test [49]. Much research has been done to generate

test patterns with minimized [31] [33] [34], maximized [38] [39]or worst-case realistic

PSN [40] [44]. These approaches can potentially improve delay test quality and achieve

high FMAX accuracy. However, they lack the ability to provide knowledge to the design

engineer for power supply noise prediction, such as the sensitivity of timing to PSN.

Commercial tools [50] can support dynamic IR-drop analysis and the voltage at each

node can be back-annotated for accurate circuit simulation. However, this is not an ideal

solution considering the long simulation time but shortened product development cycle.

Combining the pre-silicon delay model with post-silicon timing measurements

has the potential to improve the accuracy of timing analysis since the impact of real

silicon variations, such as process variation and power supply noise, is naturally

considered. Two typical measurement techniques are critical path monitors (CPM) [51]

*
Reprinted with kind permission from “Pattern Generation for Understanding Timing

Sensitivity to Power Supply Noise” by T. Zhang, Y. Gao and D. M. H. Walker,

2015. Journal of Electronic Testing: Theory and Applications, vol 31, P.P. 99-106,

Copyright [2014] by Springer Science and Business Media. The final publication is

available at Springer via http://dx.doi.org/10.1007/s10836-014-5502-4

http://dx.doi.org/10.1007/s10836-014-5502-4

 54

and ring oscillators (ROs) [52]. They are able to capture the post-silicon variations,

including process variation, temperature and voltage. These techniques can have high

area overhead, especially for large circuits where large numbers of CPMs and ROs are

needed. Another technique to capture the post-silicon process variation is gate-level

timing extraction [53]. A novel path selection algorithm is used to generate paths and

obtain an accurate variation distribution with no hardware overhead. However, power

supply noise is not considered.

 In this chapter, we address the problem of automatic test pattern generation for

extracting circuit timing sensitivity to power supply noise during post-silicon validation.

Test patterns targeting the K longest paths through each gate are first generated. Then a

layout-aware path selection algorithm is implemented to select long paths, which fully

span the power delivery network. Finally, the selected patterns are intelligently filled to

bring the PSN to a desired level. These patterns can be used to understand timing

sensitivity in post-silicon validation by repeatedly applying the path delay test while

sweeping the PSN experienced by the path from low to high. This work extends our Bit-

Flip algorithm by including layout-aware path selection and detailed PSN control

analysis at the on-path gate level.

The flow of pattern generation for post-silicon validation is shown in Fig. 24.

The validation consists of four parts: pseudo functional test generation, layout-ware path

selection, post-ATPG processing for PSN, and sensitivity measurement. In the following

sections, we will focus on the second and third parts.

 55

Fig. 24 Pattern generation and post-silicon validation

4.2 Pseudo Functional Test Generation

To understand timing sensitivity during functional operation, the structurally

generated test patterns should mimic the functional PSN environment. The optimal

solution is using functional patterns, but automatic generation of functional path delay

tests is currently infeasible. Here we use PKLPG pattern generation engine CodGen.

PKLPG is applied by scanning in a pattern, clocking the circuit with several

medium-speed functional cycles (termed preamble cycles), launching the at-speed test

and then scanning out the response. The preamble cycles ramp up off-chip inductor

currents and minimize dI/dt noise. They also filter out most non-functional state

Pseudo Functional Test Generation

Post-ATPG Processing for PSN

Apply and Measure Delay

Netlist SDF

Layout

Pattern Bins Sensitivity

Layout-aware Path Selection

 56

transitions, so the at-speed test can be viewed as functional or close-to-functional.

Correspondingly, the on-chip IR-drop is similar to functional operation.

4.3 Layout-Aware Path Selection

In order to obtain the sensitivity information, layout should be considered during

the path generation process. The goal is to select paths so that the power delivery

network can be characterized. Actually PKLPG can be viewed as a layout-aware path

generation engine since it regards each gate as a fault site, i.e. it targets every node

connected to the power delivery network.

However, it is not necessary to select every path of the circuit for sensitivity

analysis. If all paths through a gate have large timing slack, PSN-induced delay can

never cause these paths to fail. For that small region where the gate is located, we do not

need to extract the timing sensitivity information. In contrast, in regions where low-slack

(long) paths are clustered, enough paths must be generated to characterize the power

delivery network.

Therefore, we can divide the circuit into small regions and weight each region

using static delay information. For regions containing gates with less timing slack, we

assign large K to the gates. For other regions, we may have smaller K or do not target

those gates. Here, a region is a small area in the layout, inside which the sensitivity

information of each gate is identical. Gates inside a region will have the same K since

any one of the gates can be used to characterize the region. In this paper, we assume K =

1 (one rising and one falling path through the fault site) is good enough for PSN

characterization.

 57

After the paths are generated, a group of paths are selected for characterization.

There are two basic rules to select a path: (1) the length of the path is among the top 30%;

(2) the path covers regions not covered by previously chosen paths. Each region spans

only one row in the layout and it has a much smaller range compared to the critical range

in. The finer granularity guarantees the assumption that gates inside each region have

similar sensitivity characteristic. In Fig. 25, an example layout is given and divided into

3x3 grids. Each region is indexed with X and Y axis value. Y value is simply the row

number in the layout. X value stands for the index of the power/ground segment.

Fig. 25 An example of 3x3 layout regions

Theoretically, we only need one path to cover each region we care about. In the

experiments, each region is allowed to be covered up to 10 times to achieve higher

accuracy. The path selection algorithm is shown in Fig. 26.

The complexity of the path selection algorithm is linear in the size of the circuit.

Since we look at the K longest path through each gate, the number of paths in top 30% is

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Y

X

 58

linear in the circuit size. For each long path, the algorithm iterates on each on-path gates,

the number of which is usually a constant. Therefore, the complexity is O(K·L·N), where

L is the length of the longest testable path and N is the circuit size.

Fig. 26 Path selection algorithm

4.4 Post-ATPG Processing for PSN

Bit-Flip is a simulation-based PSN control algorithm [44]. It starts by fetching a

test pattern and the corresponding path. Critical cells, which are neighboring-row gates

located within a certain distance (critical range) of on-path gates, are identified by layout

analysis. X-bits are initially randomly filled and the effective weighted switching

activity computed as the initial EWSAmax. EWSA is the sum of the weighted switching

activity of transitioning critical cells. Then Bit-Flip enters an iterative PSN control step

and randomly flips a group of bits to improve the EWSA. In each iteration, up to G

Algorithm: Path-Selection

1) Read in circuit and layout
2) Divide layout to regions and assign region ID to gates
3) Read in all PKLPG paths and rank them by length
4) For each region (Xi, Yi)

a) Initialize number of paths covering it as Cover (Xi, Yi) = 0
5) For each path Pn among the top 30%

a) Cover_New_Region = 0
b) For each on-path gate Gi with region ID (Xi, Yi)

i. If Cover (Xi, Yi) < 10 and not covered by Pn

Label the region covered by Pn

Cover_New_Region ++;
c) If Cover_New_Region > 0

Add Pn to the selected path list

 59

don’t-care bits are randomly selected and their values flipped. Incremental logic

simulation is used to compute the change in EWSA. The flip is retained if EWSA does

not decrease. To reduce CPU time and direct the search, the algorithm starts with large

group size G and then gradually shrinks G during the iterations.

Fig. 27 Post-ATPG processing flow

N

Load a Pattern

Critical Cell Identification

Bits Selection and Flip

Incremental Simulation

Calculate EWSA

Restore/ Retain the Flip Meet Goal?

Random Fill & Simulation

Time Limit?

Test Pattern

N

Y

Y

Set Control Mode

Patterns

Path, Layout, SDF

Fail

Fail_Limit?

N

Y

 60

iBF [45] combines random flipping with deterministic modification to achieve

similar PSN level in less CPU time. It first uses random flipping to cover most easily

controlled critical cells. Then it uses background patterns as a guide to modify the test

pattern in order to cover random-resistant cells. The idea is similar to a typical ATPG

flow. Experimental results on benchmark circuits have demonstrated the effectiveness of

these two methods.

In this chapter, we incorporate Bit-Flip and iBF to support pattern generation for

post-silicon validation as shown in Fig. 27. The scheme can be used to increase or

reduce EWSA in order to meet a specified PSN goal. This permits generating a family of

patterns with different PSN levels. The control mode is set based on the current PSN

level vs. the goal. If smaller, MAX mode is used to increase PSN. Otherwise, MIN mode

reduces switching activity. The tool switches between Bit-Flip and iBF whenever 50

iterations in a row fail to increase PSN. If it fails to bring the PSN to the goal level

within 10,000 total iterations, it will restart with a new randomly-filled pattern. The

number of restarts is also limited. If the target PSN cannot be achieved after enough

attempts, a failure will be reported.

4.5 PSN Estimation

Dynamic IR-drop analysis is accurate but usually requires time-consuming

power-grid simulation, making it too expensive for integration into an ATPG flow.

Although EWSA lacks accuracy in PSN estimation, it is widely used to approximate

PSN due to its low computation complexity. Many approaches have been proposed to

 61

enhance the accuracy of WSA-based PSN estimation by incorporating either spatial or

temporal information or both [54].

Simulation results in [39] demonstrate that local transitions have a relatively

large impact on the voltage level of the on-path gate. They proposed to generate as many

transitions on neighboring signal lines as possible in order to maximize PSN for a given

path. Bit-Flip and iBF also used a similar model to select critical cells. Transition time

differences between the critical cells and on-path gate is another important factor that

should be considered. In the following, we will investigate the PSN impact of transition

timing difference (Td) and physical distance from the on-path gate to the critical cell.

Fig. 28 Circuit to study IR-drop

The circuit in Fig. 28 is used to study the impact of timing and location on power

supply noise. The power grid line is modeled as a RC tree (Rp and Cp are parasitic

resistance and capacitance respectively). In total, N independent inverters are placed in

the row (N=19). Each inverter has its own input voltage source (Vini) and output load (Cl).

 Rp

…

Rp

…

Rp

Rp

Rp

Rp

Rp

Rp

VDD VDD

GND

Cp

Cp

Cp

Cl

Cl

Cl

Vin1

Vin2

Vinn

Cp

Cp

Cp

GND

 62

In our experiment, ground line parasitic Rp and Cp are not used, since the focus is IR-

drop on the supply. The parameters are set as Cp = 0.06fF, Cl = 0.5fF, and Rp =4Ω, based

on the 45nm NanGate OpenCell Library. With this circuit, we can align the transition

time of different cells and study how Td can affect the voltage level. For simplicity, we

only consider how transitions on Cell1/Cell9 can affect the voltage at Cell10 which is

located in the middle of the row. Td = Ti – T10, where i = 1 or 9, and Ti is the transition

time.

In Fig. 29(a) and Fig. 29(b), we depicted the VDD level (upper half of each

figure) and the output transitions (lower half of each figure) of Cell9 and Cell10 when

the Cell9 transition arrives 16ps earlier (Td = -16ps) and 4ps earlier (Td = -4ps) than

Cell10. The difference of the minimum voltage at Cell10 is 0.4mV. In Fig. 29(a), the

transition of Cell9 causes a drop at Cell10 and reaches the first trough after several

picoseconds. Then the voltage starts to recover. When Cell10 begins to transition, the

voltage seen by Cell10 has already ramped up. Therefore, the impact resulting from

Cell9’s transition is reduced. With larger Td, the IR drop caused by the two transitions

will be separated from each other (non-overlap). In Fig. 29(b), Cell10 switches while the

drop caused by Cell1 has not recovered. So Cell10 will see a larger drop.

 63

Fig. 29 Voltage at Cell9 and Cell10 with different transition time

(a) IR-Drop seen at Cell9 and Cell10 when Td = -16ps

(b) IR-Drop seen at Cell9 and Cell 10 when Td = -4ps

 64

Fig. 30 Minimum voltage seen at Cell10

In Fig. 30, we swept Td from -40ps to 40ps and plot the minimal voltage at

Cell10. There are two groups of experiments: (1) Cell10 and Cell9; (2) Cell10 and Cell1.

It clearly shows that for small |Td| the voltage drop is high. The difference of the MAX

and MIN Td, at which the other gate can affect the voltage of the on-path gate, is called

the effective timing window (ETW). Gates located far away have a small ETW and

relatively smaller impact on the IR-drop amplitude with the same Td. In this experiment,

Cell9 caused 1mV higher IR-drop than Cell1. These observations demonstrate the

necessity of considering timing information in PSN control.

As in Bit-Flip, critical range is used to identify the small region around the on-

path gate. Gates located in this region are critical cell candidates. The next step is to

filter out the gates located outside the effective timing window. As shown in Fig. 31, we

0

0.5

1

1.5

2

2.5

3

-40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40

D
ro

p
 (

m
V

)

 Td (ps)

Cell10 & 9 Cell10 & 1

 65

only consider critical cell transitions arriving within the timing window as in (b). If a

transition of a cell arrives too early (a) or too late (c), it is not considered a critical cell.

Fig. 31 Alignment of transitions on critical cell and on-path gate

For cells with transitions that fall within the timing window, a weight based on

its distance to the on-path gate is assigned to quantize the significance of its impact on

the on-path gate. The weight is calculated using the formulas below, termed critical

WSA (CWSA). If a critical cell is critical to multiple on-path gates, the maximum

weight will be assigned.

where FO is the number of fan-outs, is the distance between critical

cells and on-path gate, and is the critical range.

(b) Overlap (a) Early Arrival (c) Late Arrival

 66

As discussed above, the critical cell identification and CWSA update can be done

in Fig. 32. In this algorithm, the R is a distance from the current on-path gate

horizontally (Critical range in Chapter II).

Fig. 32 Critical cell identification

4.6 Experimental Results

The proposed pattern generation scheme is validated on the three largest

ISCAS89 benchmark circuits (s35932, s38417 and s38584), running on a 3.18 GHz Dell

Optiplex 960 with 4 GB memory. The paths are generated using CodGen with K =1,

launch-on-capture, one path per pattern. The number of preamble cycles is 6, i.e. 8

cycles including the launch and capture cycles. The ETW is set to ±1 gate delay, based

on the results in the previous section.

First of all, in Table 11, the number of regions of each circuit, number of covered

regions and the average number of critical cells without/with timing filtering are listed.

Algorithm: Critical-Cell-Identification

1) For each on-path gate Gi located at (Xi, Yi) with delay di
a) For each Gate Gj located in row Yi

i. If Gj located within [Xi – R, Xi + R) and di fall within [di – ETW/2, di +
ETW/2)

Calculate the new CWSAi

If new CWSAi is larger than current

 Update to new CWSAi
b) If Yi – 1 >= 0

 Repeat step a) for row Yi – 1
c) If Yi + 1 <= MAX_ROW_INDEX

 Repeat step a) for row Yi + 1

 67

For s35932, 87.69% of the regions are covered by at least one critical path in the top

30%, while the other two only have around 25% regions covered. More than 75% of

critical cells are filter out for each circuit.

Table 11 Regions and critical cells per path

Circuit
Regions

(XxY)

Covered

Regions

Avg. # CC/Path

w/o

Filtering
w/ Filtering

Filtered

(%)

s35932 23x118 2380 2132 508 76.17

s38417 24x123 811 4509 910 79.82

s38584 24x122 735 2299 490 78.69

In Fig. 33 and Fig. 34, the number of paths in top 30% covering each region of

s35932 and s38417 are shown, respectively. For s38417, we can see some “hot” regions

which are covered by relatively large number of critical paths, while most of regions in

s35932 see similar number of critical path. These two circuits can represent two different

scenarios of path length distribution. In s38417, the long paths are clustered to some

regions while in s35932, long paths are distributed evenly. Thus s38417 does not have

enough long paths to cover each region. When the paths are selected from the top 60%,

the coverage for regions can be improved as shown in Fig. 35. However, as discussed in

previous section, for the regions which don’t have many critical paths going through it,

there is no need to characterizing the timing sensitivity since short path never fail due the

delay caused by PSN. Also notice that, although we allow each region to be covered by

up to 10 paths, there are regions with more than 10 paths. The reason is that paths that

 68

cover regions that is lower than 10 go through regions that already covered by 10 times

or more.

Fig. 33 Number of paths covering each region in s35932 (top 30%)

Fig. 34 Number of paths covering each region in s38417 (top 30%)

 69

Fig. 35 Number of paths covering each region in s38417 (top 60%)

Fig. 36 s35932: Test pattern with different PSN level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1

4
4

8
7

1
3

0

1
7

3

2
1

6

2
5

9

3
0

2

3
4

5

3
8

8

4
3

1

4
7

4

5
1

7

5
6

0

6
0

3

6
4

6

6
8

9

7
3

2

7
7

5

8
1

8

8
6

1

9
0

4

9
4

7

9
9

0

1
0

3
3

1
0

7
6

1
1

1
9

1
1

6
2

1
2

0
5

1
2

4
8

1
2

9
1

P
S

N
 L

ev
el

 (
%

)

Path Index

10% 20% 30% 40%

 70

Fig. 37 PSN level of each on-path gate

The PSN level seen by each path is computed as:

where i is a transitioning critical cell and j is a critical cell. In Fig. 36, we present the

PSN control results for s35932. The target PSN level is set to 10%, 20%, 30% and 40%.

For timing sensitivity analysis, we can apply these patterns from low to high noise level

and measure the FMAX. In Fig. 37, we give the average PSN level of each on-path gate,

indexed by its location on the path. The on-path gate PSN level is computed similar to

the critical path PSN level. For each on-path gate, we have a list of its critical cells.

Therefore, after the PSN control commits, the PSN level per gate can be computed as

CWSA sum of its transitioning critical cell over the CWSA sum of all of its critical cells.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
S

N
 l

ev
el

 (
%

)

Gate Index

10% 20% 30% 40%

 71

We can see that for this circuit, the PSN level of each on-path gate is higher than the

overall PSN level.

If the PSN achieved by the algorithm falls within ± 1.5% of the target level, we

will report success. Otherwise, a fail is reported. Some of the patterns are intrinsically

noisy, which means the pattern itself causes PSN higher than the upper bound. It is

impossible to bring down the PSN level. The intrinsic PSN can be calculated by

simulating the partially specified pattern. Such patterns are termed a noisy pattern (NP).

Table 12 PSN post processing results w/ filtering

Circuit #P PSN #NP
#InitFail

(#Res/#Fail)
#Suc Time (s)

s35932 1320

10% 9 62 (25/37) 1274 1037

20% 0 0 (0/0) 1320 143

30% 0 0 (0/0) 1320 152

40% 0 5(0/5) 1315 264

s38417 183

10% 178 2(0/0) 3 39

20% 46 19(4/15) 122 212

30% 1 12(1/11) 171 216

40% 0 100(7/93) 90 2011

s38584 245

10% 72 22(4/18) 155 282

20% 6 7(1/6) 233 123

30% 0 42(6/36) 209 617

40% 0 139(13/126) 119 2103

The detailed pattern generation results are listed in Table 12. In columns 1 and 2,

we list the circuit and number of paths selected (#P). Column 3 lists the target PSN.

 72

Column 4 lists the number of NP. In column 5, we list the number of initial failures

(after the first try), the number of patterns that succeeded after restart (#Res), and the

number of failed patterns (#Fail). Column 6 lists the number of successfully filled

patterns (#Suc). Column 7 lists the CPU time cost for post-silicon PSN control.

The number of paths selected for characterization at most 10 times of the number

of regions in the layout since we allow up to 10 covering of each regions. Here we can

see that the number of selected path is much smaller, even for s35932 where up to 87.69%

of its regions are covered. The possible reason is that each path will typically cover

multiple regions. In Table 13, we listed the experiment results of targeting 20% PSN

level without critical cells filtering. It clearly shows the benefit of critical cell filtering -

reducing the CPU time cost.

As discussed in the previous section, the timing information will filter out gates

that do not affect the delay of the path. To further understand how this affects the

number of critical cells per gate, we depicted the average number of critical cells per on-

path gate in Fig. 38. The on-path gates are indexed in the order they appear along the

path. The results clearly show that the first ~20 gates have a relatively large number of

critical cells. The possible reasons are that most of the transitions in the circuit happen

too early to affect the voltage level. Therefore, the algorithm is dominated by the first

~20 gates. Without the filtering, the number of critical cells per gate is dependent on the

critical range size. Since each gate has a similar number of critical gates, filtering

prevents simulation time from being spent on critical cells that do not affect timing.

 73

Table 13 PSN post processing results w/o filtering

Circuit PSN #NP
#InitFail

(#Res/#Fail)
#Suc Time (s)

s35932 20% 0 0 (0/0) 1320 364

s38417 20% 0 5(1/4) 179 190

s38584 20% 0 8(4/4) 241 316

Fig. 38 Average number of critical cells per on-path gate

4.7 Summary

In this work, we addressed the problem of automatic test pattern generation for

understanding the timing sensitivity to power supply noise during post-silicon validation.

Experimental results demonstrate that patterns with different PSN levels can be

generated.

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

#
 C

C

Gate Index

s35932 s38417 s38584

 74

CHAPTER V

IMPACT OF TEST COMPRESSION ON PSN CONTROL

5.1 Introduction

Reducing test data volume (TDV) is critical to reducing test time and test cost.

TDV is estimated as L·N, where L is the total length of scan chains and N is the number

of test patterns. Usually, a large number of test patterns are required to achieve

acceptable fault coverage so N is large. L is design size dependent. Two techniques, test

compaction and test compression, were invented to reduce TDV [1]. Test compaction

minimizes the pattern count, i.e. N. The key idea is to test as many faults in one pattern

as possible. Compaction can be done after automatic test pattern generation (ATPG),

such as static compaction [4], or during ATPG, such as dynamic compaction [3].

Compression minimizes the TDV transferred between automatic test equipment

(ATE) and the chip under test. Various compression techniques have been reported in

the literature, including test pattern encoding, Illinois Scan, and embedded deterministic

test (EDT) [1] [6]. These techniques generate the test bits on chip from many fewer bits

on the ATE.

These two techniques take advantage of the fact that many test pattern bits are

don’t-cares (DC) [6]. Instead of randomly filling the DC bits, compression assigns the

bits using compression constraints, and compaction techniques specify the bits to target

new faults. A tradeoff must be made between compression and compaction in order to

achieve the largest TDV reduction.

 75

Compaction and compression create undesirable side effects. Compacted patterns

usually generate much more switching activity than functional patterns, potentially

causing test overkill or chip damage due to excessive power dissipation [17] [21] [22]

[30] [36] [37]. Several techniques, such as low-power compaction [4] [36], have been

proposed to maintain the power supply noise at an acceptable level during compaction.

Pseudo functional test (PFT) [25] [41] [43] attempts to apply only tests that are

functionally-reachable, so that the tests mimic the functional PSN.

For at-speed PFT delay test, the PSN control scenario is different, as PSN great

affects the timing performance. In order to exercise the worst-case delay, maximization

of realistic PSN is crucial [39] [41] [44] [45]. This is especially true for frequency

binning and speed-limiting path debugging on high performance chips. So compaction

might help find the worst-case delay as it can generate more switching activity on the

chip. However, compaction also introduces constraints into the test pattern, as testing

more faults usually requires more care bits, and as a result, the freedom to maximize the

PSN is reduced. With PSN maximization, it is possible higher PSN can be achieved on

an un-compacted pattern than on a compacted pattern, while both test a long path in the

design. It is interesting to experimentally study this case. While the capture PSN is

maximized, the shift power can be reduced by varying the shift frequency [42].

Differing from compaction, compression potentially reduces the PSN as it places

constraints on filling the DC bits. For example, in Illinois Scan, multiple scan chains

share one ATE channel and these chains have the same logic value. Compared to

random fill, it likely lowers the PSN for the test pattern. Compression-aware PSN

 76

reduction [54] [55] has been proposed and experimentally validated using two-cycle

transition fault model. However, little work has been reported on maximizing PSN

considering compression

One type of PSN control is intelligently filling the DC bits to maximize or

minimize PSN, or generate patterns with different PSN levels for understanding the

timing sensitivity to PSN [32] [33] [34] [35] [40] [55]. There are several advantages to

using DC filling for PSN control. The first is its compatibility with industrial ATPG

tools. DC filling comes after ATPG, so incurs no fault coverage loss. Even if all bits are

specified by ATPG, bit-relaxation can be used to turn bits that are not related to

coverage into DC bits, which can be used for PSN control. Moreover, these approaches

do not require hardware overhead and are easy to implement with simplified low-cost

PSN estimation metrics. As test compaction, compression, and PSN control make use of

the fact that a large portion of test pattern bits are DC, a tradeoff usually has to be made

to balance TDV against PSN. However, to the best of our knowledge, no work has been

published on how compression and compaction affect PSN control. So far, we only have

some intuition on how they affect each other.

In this work, we run experiments to show to what level compaction/compression

can affect PSN control. We first generate pseudo functional EDT and Illinois Scan

patterns that target the longest paths. Then a compression-aware PSN control scheme is

implemented to maximize the PSN while obeying the compression constraints. For each

path, four different patterns are used for the experiment: un-compacted Illinois Scan,

compacted Illinois Scan, un-compacted EDT, and compacted EDT. With these 4 patterns,

 77

we are able to study the PSN impact of both compaction and compression. The

experimental results show that with our PSN control algorithm, EDT lowers the maximal

PSN by 24.15% and Illinois Scan lowers it by 2.77% on un-compacted patterns. The

maximal PSN is 22.32% and 6.94% lower on compacted patterns.

5.2 Background

In this section, we will briefly describe the related work and background.

5.2.1 Pseudo Functional Test with Dynamic Compaction

PFT [43] is a multi-cycle test to improve the PSN correlation between structural

and functional test. It works by scanning in a test pattern, executing several slow

functional cycles (preamble) and then applying the delay test in the last two cycles at full

functional speed. A PFT test can be viewed as a short burst of functional cycles and the

IR-drop that the at-speed test sees is close to functional mode. The preamble cycles also

minimize the off-chip dI/dt noise.

Dynamic compaction [3] is implemented during the pattern generation process.

The logic values necessary to sensitize the target path, termed necessary assignments

(NAs) are justified back to the primary inputs (PIs) or pseudo primary inputs (PPIs),

which are scan cell outputs, to ensure the path is a true path. Whenever a new path is

generated, we check whether it can be compacted together with another path by first

checking the compatibility of the NAs. In Fig. 39, Path 1 has NAs denoted by circles,

and Path 2 has NAs denoted by X’s. If these values do not conflict, we can attempt to

justify all of the NAs together, and if a test pattern can be found, these two paths can be

placed in the same test pattern. The approach in [3] achieves high levels of compaction.

 78

Fig. 39 Pattern compaction example [3]

5.2.2 PSN Control for PFT

While While PFT achieves PSN similar to functional mode, it is vulnerable to

under-testing as switching activity dies out during the first a few functional cycles [33]

[44]. PSN control algorithms, Bit-Flip [44] and improved Bit-Flip (iBF) [45] were

developed to maximize PSN by setting DC bits. We make the key assumption that this

maximized PSN is functionally realistic.

Bit-Flip is a simulation-based algorithm that iteratively flips DC bits. It starts by

fetching a test pattern and the corresponding paths. Critical cells, which are the

neighboring-row gates located within a certain distance of on-path gates, are identified

by layout analysis. Switching activities on these cells have relatively large impact on the

delay of the target paths. DC bits are randomly filled and the effective weighted

switching activity is computed as the initial EWSAmax. EWSA is the sum of the

weighted switching activity of the transitioning critical cells.

 79

Then Bit-Flip iteratively flips groups of DC bits to maximize the EWSA. In each

iteration, up to G DC bits are randomly selected and flipped. Incremental logic

simulation is used to compute the change in EWSA. The flip is retained if EWSA does

not decrease. To reduce CPU time and direct the search, after a certain number of

iterations, group size G is reduced. A set of iterations with a fixed group size is termed a

round. iBF combines random flipping with deterministic modification to achieve PSN

similar to the Bit-Flip algorithm, but in less CPU time. Since Bit-Flip achieves better

results than iBF (but at higher CPU cost), we extend it here to handle compression

constraints.

5.2.3 Test Compression

EDT is a widely-used compression scheme shown in Fig. 40. An on-chip LFSR-

style ring generator decompressor is used to decompress the test data from ATE into the

test pattern. On each scan clock test variables are fed into the decompressor and produce

one bit for each scan chain. A compressed vector is computed by solving a group of

linear equations. The decompressor is designed to minimize the impact on fault coverage.

With ring generator and phase shifter, the input variables are distributed to each state

variable quickly and the logical dependency is reduced. For a decompressor with m ATE

channels, and n output channels, the compression ratio can be estimated as n/m.

Illinois Scan, also termed broadcast scan, is another widely practiced technique

for compression. The key idea is sharing the tester channels among the scan chains, i.e.,

one ATE channel drives multiple chains. The TDV is reduced as a group of chains share

the same value. An example is shown in Fig. 41, in which the ATE data is only 1/3 of

 80

the original test data. The scan chain constraints might reduce fault coverage. This can

be avoided by connecting the chains in serial mode to target the remaining faults. Rather

than a fixed connection between ATE channel and scan chains, the connection can be

programmable using multiplexers, which provides potentially higher compression ratios.

EDT and Illinois Scan can be mixed, with one output channel of the decompressor drives

several short chains, to further increase compression.

Fig. 40 EDT scheme

Fig. 41 Illinois Scan: parallel mode and serial mode

MISR

MISR Decompressor

ATE

Short Chains

 81

5.3 Pattern Generation with PSN Control

5.3.1 Compressible Pattern Generation

Our Our in-house ATPG tool, CodGen [18], is used to generate path delay test

patterns and targets the K longest paths through each gate using PFT [43]. Dynamic

compaction is enabled during ATPG, which can effectively reduce pattern count by a

factor of 2 or more compared with static compaction. The ATPG also reports in which

compacted pattern a path is tested. So we can select both un-compacted and compacted

patterns for each path. If this information is unavailable, logic simulation and path

searching, such as breadth-first-search, can be used to find which compacted pattern

tests a path.

We enhanced CodGen to generate compressible patterns for Illinois Scan and

EDT. For Illinois Scan, we need to consider the compression constraints when

backward/forward implication and justification are performed. In our ATPG, we first

generate a structural path, and keep the NAs to sensitize the path. After a complete path

is generated, the NAs are justified recursively until all NAs can be derived from either

PIs or PPIs. Implication is used for conflict detection after each assignment. When an

assignment is made on a scan cell output (PPI), we need to check if the bits sharing the

ATE channel have the same value. If any of the bits has a different value, a conflict is

reported and we need to invert the assignment or try the next partial path. If all other bits

sharing the channel are DCs, they are assigned to the same value. During justification,

similar constraints are applied to the bits driven by the same channel in the same cycle to

make the pattern compressible.

 82

 For EDT, the compressibility check is done by solving a group of linear

equations after the path is justified. After passing justification, a partially-specified test

pattern is available to test the path. For each care bit, the corresponding row in the

compression matrix is used to form the linear equations. The checker performs Gaussian

Elimination on the equations and checks if the equations are solvable [1] [6]. A

compressibility check is also used during the compaction stage. When the NAs for a new

path are compatible with an existing pattern and pass justification, the resulting new

pattern is further checked for compressibility.

5.3.2 Compression Aware Supply Noise Control

Our Our previous PSN control scheme, Bit-Flip, is extended to consider Illinois

Scan and EDT constraints.

In Illinois Scan, vector bits that are shifted from the same ATE channel at the

same scan cycle are grouped together. These bits must always have the same logic value.

If any bit in the group is specified, all the remaining bits are also care bits. A bit is DC

only if all other bits sharing the ATE channel are DC. We call this a DC group. So in

Illinois Scan, Bit-Flip manipulates DC groups. To achieve high PSN, we could use

metrics to rank the DC groups and select the DC group with the highest potential to

increase PSN. We considered fan-out tracing and switching probability calculation, but

these approaches did not outperform random selection with the same simulation time

cost.

As detailed in Fig. 42, we load a pattern and randomly fill the DC groups. The

pattern here is already the compressed pattern. We run logic simulation on the filled test

 83

pattern and calculate the initial EWSA. During the PSN control procedure, a DC group

is randomly selected and flipped. Incremental simulation is performed to calculate an

updated EWSA. We will restore the flipped bits if the flip reduces PSN. Otherwise, the

flip is retained and maximal EWSA is updated. This process continues until the PSN

improvement levels off.

Fig. 42 PSN control with Illinois Scan constraints

PSN control with EDT constraints works differently than Illinois Scan, with the

flow detailed in Fig. 43. The EDT patterns are not in compressed form, but are

compressible. Therefore, we need to calculate the initial compressed vector and

Load a pattern

Randomly fill don’t-care groups

Simulation and compute initial

EWSA

Randomly select a don’t-care bit

group

Flip the logic value and run

incremental simulation

Compute new EWSA and restore the

flip if EWSA is reduced

Max_Iter? END

Y N

 84

randomly assign the variables that are not implied by others. From the compressed

vector, an initial test pattern can be calculated. We run logic simulation and calculate the

initial EWSA. Then the PSN control starts on this initial compressed vector. We first

store the current compressed vector as a background vector and then randomly select one

variable that is not implied by the others. We invert that variable’s logic value and a new

compressed vector is calculated. During the calculation, if one variable is not

constrained by the flipped variable, it is assigned with the same value as the background

vector. We calculate a new test pattern from the compressed vector and the difference

between the new and original pattern is simulated and PSN calculated. If the flip does

not reduce the PSN, the flip is retained. Otherwise, the flip is restored. If the flip is

retained, the background vector and EWSAmax is updated. The flipping process is

repeated until EWSAmax levels off. Depending on the selection of the decompressor, the

flipping of one variable in the compressed pattern is likely to cause other variables to flip,

and further causes hundreds of test pattern bits to flip, resulting in high simulation time.

As reported in [44], simulation time can be reduced by gradually reduced the

group size G with the solution becoming more optimal. In Illinois Scan, the number of

bits in each DC group is fixed and G represents the number of DC groups selected. G is

used to trade optimality with simulation time – a larger reduction in G per round saves

CPU time, but reduces the search space of the algorithm and the optimality of the result.

However, in EDT, it is difficult to control the number of bits to flip, as the test vector

bits are highly correlated. We have developed a constrained random (CR) approach to

attempt to control the number of bit flips, reducing CPU time, at the cost of optimality.

 85

We attempt to control the number of bit flips by tracing the history of each variable –

how many bits flip when flipping that variable. This is only an approximation as the

number of bits changes from pattern to pattern. This information is only used as a

reference when selecting the variable.

Fig. 43 EDT PSN control

Load a pattern

Compute initial compressed pattern

Randomly fill don’t care variables

Compute test pattern

Simulation and compute initial

EWSA

Random select a variable and flip

Compute compressed pattern w/

background solution

Compute test pattern

Compute flipped bits and run

simulation

Compute new EWSA and restore the

flip if EWSA is reduced

Max_Iter? END

N Y

 86

The total number of flips is divided into several rounds, and each round targets a

different group size G. The first round targets the largest group size while the last targets

the smallest group size. Before starting the PSN control algorithm, the range between

maximal and minimal number of bits flipped per variable from previous patterns is

divided with respect to the number of rounds. If we have 6 rounds with the largest group

size 100 and the smallest group size 40, we will target the group size for each round

starting with 100-90, then 90-80, until 50-40. A variable is first randomly selected and

its history checked to see if the number of bits to be flipped falls in the targeted range.

This helps control the optimization process and reduce simulation time. It is possible no

variable meets the requirement. In this case, random selection is used. For the first

pattern processed, we initialize all variables to a history of 0 bits flipped, i.e. we use

random selection for the first pattern.

5.4 Experimental Results

The largest ITC99 benchmark circuit, b19, is selected for experiments. Un-

compacted and compacted PFT test patterns are generated with 6 preamble cycles and 2

at-speed cycles. Both un-compacted and compacted patterns are selected for paths that

are in the top 30% in length. For Illinois Scan, the scan cells are formed into 68 chains,

and placed into 9 groups (9 ATE channels), for a compression ratio of about 7.6. For

EDT, 6 ATE channels and 68 scan chains are used, for a compression ratio of 11.3. The

machine used to run the experiments is a 3.16 GHz Dell Optiplex 960 with 4GB memory.

As we use a different PSN model and delay fault models than previous work [18] [19], it

is difficult to make a direct comparison here.

 87

We produce four sets of test patterns: T1 (no compaction + EDT); T2

(compaction + EDT); T3 (no compaction + Illinois Scan); T4 (compaction + Illinois

Scan). T1 and T2 test the same set of paths, and the only difference is whether

compaction is enabled. T3 and T4 test the same set of paths, but not necessarily the same

as those in T1 and T2, due to compression constraints. Our goal is to study how

compression can affect the PSN control. Since simulation time is not a focus, we run the

PSN control until EWSAmax levels off, approximating the maximum PSN achievable for

each pattern set. For each pattern set, two runs of PSN control are performed. In the first

run, we do not consider the compression constraints, while in the second run we consider

the compression constraints. These runs will be denoted as T1_1, T1_2, T2_1, T2_2,

T3_1, T3_2, T4_1, and T4_2. Moreover, the results of CR PSN control for EDT patterns

are also included here for comparison (denoted as T1_2_CR and T2_2_CR).

Table 14 summarizes the statistics of the paths for each pattern set. Columns 2

and 3 list the total number of paths (TP) and total number of compacted patterns (CP)

testing those paths. The number of tested paths is different as there two schemes place

different constraints on ATPG. The compaction ratios for EDT and Illinois Scan are 7.0

and 3.7 respectively. So this indicates the Illinois Scan constraint is not as flexible as

EDT in terms of compaction. For EDT, 507 paths longest paths are selected for PSN

while for Illinois Scan, 602 paths are selected (SP). The average length (Avg. L) in gates

of the paths is listed in column 4. The average length of Illinois Scan is longer than EDT.

This indicates some long paths are not testable due to the EDT constraints. The average

care bit density (Avg. CD) for each of the test sets is also listed for un-compacted (UNC)

 88

and compacted (COM) patterns. Note that for EDT patterns, the CD is for the patterns

before compression constraints are applied. The reason is that to get the care bits of

patterns after compression, all the variables must be specified. Therefore, all the test

pattern bits are specified correspondingly. The CD for Illinois Scan patterns are counted

after compression. We can see that the number of care bits for Illinois Scan is much

higher. It could be much lower before compression. We can see that compacted patterns

have higher CD.

Table 14 Pattern statistics

_ T.P./ C.P. #S.P. Avg. L.
Avg. C.D. (%)

UNC COM

EDT 6054/867 507 37 2.68 (T1) 5.23 (T2)

Illinois 5937/1611 602 48 13.17 (T3) 15.46 (T4)

For b19, the algorithm configuration for T1_1, T2_1, T3_1, and T4_1 are 6

rounds, with initial group size G of 30 and group decrement of 5. Each round performs

1000 flips. For T1_2 and T2_2, the total number of variables flipped is set to 350. For

T1_2_CR and T2_2_CR, the configuration is also 350 variables, which is further divided

evenly into 7 sub-groups. For T3_2 and T4_2, the algorithm flips one DC group each

time and the CPU time per path is set as 50s. These values are sufficient for EWSA to

level off.

 89

5.4.1 Results of EDT

This section presents the experimental results for EDT patterns as detailed in

Table 15.

We list the average EWSA of random fill (Avg. R), the average best random

(Avg. BR) and the average EWSA after PSN control (Avg. EWSA). The CPU time per

pattern is also listed in the last row. The best random PSN is the maximal of the four

random filled patterns in the two runs on T1 and T2. From random fill, we can see that

compacted patterns have higher PSN than un-compacted patterns, which is expected.

Also there is no large difference in the EWSA for random fill whether the EDT

compression constraints are considered or not, as seen by comparing T1_1 vs. T1_2 or

T2_1 vs. T2_2. However, a large difference exists in the optimized EWSA between

compression and no compression. When the CR algorithm is used, its results are only

slightly better than the best random fill (vs. BR). The noisiest pattern set is T2_1

(compaction without EDT). This has 31.7% higher noise than T2_2 (compaction and

EDT). For un-compacted patterns, the difference is 36.1%. Compared with random fill

(vs. R), the optimization algorithm with EDT can achieve a 20% higher PSN. However,

the CR algorithm achieves results similar to best random fill (vs. BR).

We compute the impact of compression using the following formula, in which

EWSAw/ and EWSAw/o are final EWSA with and without compression respectively.

The Impact of compression on un-compacted patterns is -26.81% and the Impact on

compacted patterns is -24.18%.

 90

As discussed in previous sections, in EDT each variable flip may cause hundreds

of bits to flip. In the CR approach, we use history to estimate the number of bits that

might be flipped for each variable and select the one that meets the desired bit flip count

for that round. The average number of bits flipped per variable (Avg. FB) during the

optimization process is shown in Fig. 44. We can see that the number of bits flipped

gradually falls, while inside each round the number of bits flipped is similar. The

number of bits flipped at a time (group size G) is still very large compared to the initial

30 used in our previous work. In future work, alternative decompressor designs will be

considered that enable smaller group sizes. By comparing the simulation time of T1_2 vs.

T1_2_CR or T2_2 vs. T2_2_CR in Table 15, we can see that the EDT CR group size

control reduces simulation time, but achieves lower EWSA.

Table 15 WSA and WSA improvement

- T1_1 T2_1 T1_2 T2_2 T1_2_CR T2_2_CR

Avg.R 1773 1927 1757 1921 1781 1900

Avg. BR 2078 2078 2078 2078 2078 2078

EWSA 3007 3032 2209 2302 2060 2249

vs R (%) 71.97 63.42 27.06 21.50 15.44 20.14

vs BR

(%)
47.78 49.52 6.86 11.33 -0.01 9.30

Avg.

Time (s)
49.79 49.77 152.42 174.00 123.36 134.35

 91

Fig. 44 Avg. number of bits flipped un-compacted EDT_CR

Fig. 45 PSN control without EDT constraints

0

100

200

300

400

500

600

700

800

900

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

A
v
g
.

#
 F

B

Index of Flips

0

500

1000

1500

2000

2500

3000

3500

R1 R2 R3 R4 R5 R6

E
W

S
A

T1_1

T2_1

 92

Fig. 46 PSN control with EDT constraints

Fig. 45 and Fig. 46 show the trend of EWSA increase without and with EDT

constraints. Both runs show that in later rounds or when more variables have been

flipped, EWSA saturates. Compaction has little impact on EWSA when EDT constraints

are not present, due to the low care bit density of un-compacted and compacted patterns.

With EDT constraints, compacted patterns consistently have higher EWSA, although the

gap shrinks with more simulation rounds.

5.4.2 Results of Illinois Scan

The results for Illinois Scan are detailed in Table 16. Similar to EDT patterns, for

T3_1 and T4_1, the PSN control does not consider compression constraints. In T3_2 and

T4_2, the compression constraints are considered. For un-compacted patterns,

uncompressed patterns have 3.8% more EWSA than compressed patterns. For

compacted patterns, the difference is 3.4%. Under compression, un-compacted patterns

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350

E
W

S
A

T1_2

T2_2

 93

have 0.9% more EWSA than compacted patterns. This demonstrates that compaction

introduces constraints that limit the PSN improvement. We did not see this in EDT

patterns due to the lower care bit density of EDT patterns. The Impact on un-compacted

patterns is -3.15% and the Impact on the compacted is -3.25%.

Table 16 EWSA result of Illinois Scan

- T3_1 T4_1 T3_2 T4_2

Avg. R 3278 3392 3266 3395

Avg. BR 3626 3626 3626 3626

Avg. EWSA 4960 4902 4780 4739

vs R(%) 52.46 46.07 48.05 41.00

vs BR (%) 37.86 35.86 33.44 31.36

Avg. Time 49.75 49.74 50.03 50.03

5.4.3 Results on Other Circuits

Experiments are also performed on the three largest ISCAS89 circuits. For EDT,

a 2-20-decompressor is used and for Illinois Scan, there are 2 ATE channels and 20 short

chains. Each ATE channel drives 10 chains. The patterns are generated in the same way

as b19 and so is the path selection. The path statistics are detailed in Table 17. The

algorithm configuration for T1_1, T2_1, T3_1, and T4_1 are 6 rounds, with initial group

size G of 6 and group decrement of 1. Each round performs 1000 flips. For T1_2 and

T2_2, the total number of variables flipped is set to 350. For T3_2 and T4_2, the

algorithm flips one DC group each time and the CPU time per path is set as 5s.

 94

Table 17 Statistics for ISCAS circuits

Circuit #FF Scheme TP/CP SP Avg. L

s35932 1728
EDT (20x90) 9253/635 3520 23

Illinois Scan 9442/143 3520 22

s38417 1636
EDT (20x85) 4604/486 275 30

Illinois Scan 7807/1075 1868 29

s38584 1426
EDT (20x75) 5013/319 41 33

Illinois Scan 4758/244 80 26

Table 18 Results of ISCAS circuits (EDT)

Circuit
Avg. CD (%) vs. BR (%) Impact(%)

UNC COM T1_1 T2_1 T1_2 T2_2 UNC COM

s35932 0.63 6.61 47.72 44.87 12.48 7.37 -25.76 -23.78

s38417 3.14 9.38 35.21 32.39 8.65 5.77 -19.65 -19.11

s38584 2.19 10.23 37.89 31.43 15.69 -1.08 -24.39 -22.2

Table 19 Results of ISCAS circuits (Illinois Scan)

Circuit
Avg. CD (%) vs. BR (%) Impact(%)

UNC COM T3_1 T4_1 T3_2 T4_2 UNC COM

s35932 4.40 87.67 45.65 4.27 32.75 1.86 -2.02 -8.72

s38417 31.26 71.21 31.63 14.14 18.9 8.64 -4.3 -9

s38584 10.32 63.45 56.88 10.59 45.24 8.76 -1.6 -6.8

Results are shown in Table 18 and Table 19. The un-compacted patterns have a

slightly higher EWSA than compacted patterns, as expected. Including b19, the average

 95

Impact of EDT on un-compacted patterns is -24.15% and that on compacted patterns is -

22.32%. The average Impact of Illinois Scan is -2.77% and -6.94%.

5.5 Summary

In this work, we ran experiments to show how compaction and compression can

affect PSN control. We generated pseudo functional path delay test patterns and

implemented a compression-aware PSN control scheme to maximize the PSN, while

obeying EDT and Illinois Scan compression constraints.

Our experimental results show that our PSN control algorithm achieves

significantly better results than random fill or best random fill for both Illinois Scan and

EDT compression. EDT lowers maximal PSN by 24.15% and Illinois Scan lowers it by

2.77% on un-compacted patterns. The achieved maximal PSN on compacted patterns is

22.32% and 6.94% lower.

 96

CHAPTER VI

SUMMARY AND FUTURE WORK

Testing integrated circuits to verify their operating frequency, known as delay

testing, is essential to achieve high product quality. In order to limit test development

costs, industry relies heavily on automatically-generated structural tests, applied by low-

cost testers taking advantage of design-for-test circuits on the chip, such as scan chains,

on-chip test pattern compression/decompression, built-in self-test and test access

mechanisms. The central unsolved challenge in structural delay test is achieving high

delay correlation with functional test. The correlation problem is dominated by power

supply noise. Differences in power supply noise between functional and structural tests

can lead to differences in chip operating frequencies of 30% or more. Worse, it is

becoming very difficult for the test engineer to know the supply noise environment on

the chip, due to the use of system-on-chip designs and 3-D packaging.

The focus of this dissertation is achieving high correlation between structural

and functional delay tests on high-performance chips. Pseudo-functional KLPG tests

create supply noise similar to functional operation by introducing preamble cycles

(medium speed functional cycles before applying delay test). The preamble cycles ramp

up the off-chip dI/dt noise and exclude illegal states in the test pattern. However, PSN

profiling results from our experiments have shown that PKLPG is vulnerable to under-

testing rather than over-testing. Therefore, it is critical to develop PSN control

algorithms to maximize functional power supply noise for PKLPG and generate test

 97

patterns for understanding delay sensitivity to power supply noise. To achieve these

goals, we proposed several test pattern generation algorithms as below.

 A simulation based PSN control scheme, Bit-Flip, is developed. It is proposed to

maximize the power supply noise during PKLPG test. Given a set of partially-

specified scan patterns, random filling is done and then an iterative procedure is

invoked to flip some of the filled bits, to increase the effective weighted switching

activity. Experimental results on both compacted and un-compacted test patterns

demonstrate that our method can significantly increase effective WSA while

limiting the fill rate.

 Based on the observation of critical cell sharing, a scheme combining random

flipping with deterministic modification to fill the don’t-care bits is proposed.

Deterministic modification is guided by pre-computed background patterns, which

sensitize transitions on critical cells. Dynamic bit weighting permits intelligent

selection of background patterns. Experimental results on benchmark circuits

validate the effectiveness of the techniques as worst-case realistic PSN is achieved

in significantly less CPU time.

 The problem of automatic test pattern generation for understanding circuit

timing sensitivity to power supply noise during post-silicon validation is

addressed. . Long paths are selected from a pseudo functional test set to span the

power delivery network. To determine the sensitivity of timing to on-chip noise,

the patterns are intelligently filled to achieve the desired PSN level. PSN control

algorithms are enhanced to consider both spatial and temporal information for

 98

better correlation with functional PSN. These patterns can be used to understand

timing sensitivity in post-silicon validation by repeatedly applying the path delay

test while sweeping the PSN experienced by the path from low to high.

 The impact of compaction/compression on PSN control is studied. We ran

experiments to show to what level compaction/compression can affect PSN control.

Pseudo functional Illinois Scan and EDT patterns that target the longest paths are

generated. Then a compression-aware PSN control scheme was implemented to

maximize the PSN while obeying the compression constraints. For each path, four

different patterns were used for the experiment: un-compacted Illinois Scan,

compacted Illinois Scan, un-compacted EDT, and compacted EDT. With these 4

patterns, we were able to study the PSN impact of both compaction and

compression. The experimental results showed that our PSN algorithm achieved

significantly higher PSN compared to random or best random fill on both un-

compacted and compacted patterns. Our constrained random (CR) algorithm for

EDT compression reduced CPU time, while achieving slightly better results than

best random fill.

In future work, there are several interesting topics to explore. First, the algorithm

considering compression is not CPU time cost optimized. We could further optimize the

algorithm by considering the correlations between variables, so that we control group

size as well as maintain the PSN level. This requires carefully selection of variables.

Another efficiency improvement is by utilizing parallel pattern logic simulation. This

should reduce the CPU time by more than an order of magnitude. Third, we will

 99

incorporate additional power grid hierarchy and validate the correlation between CWSA

and measured IR drop. We also plan to apply the generated patterns to real chips and

measure the delay of the paths. Then we can extract sensitivity information.

 100

 REFERENCES

[1] L. T. Wang, C. W. Wu, and X. Wen, VLSI Test Principles and Architectures:

Design for Testability.: Morgan Kaufmann Pub, 2006.

[2] T. Kirkland and M.R. Mercer, "Algorithms for automatic test pattern generation," in

IEEE Design and Test of Computers, 1988, pp. 43-55.

[3] Z. Wang and D. M. H. Walker, "Dynamic compaction for high quality delay test,"

in IEEE VLSI Test Symp., 2008, pp. 243-248.

[4] J. Wang et al., "Static compaction of delay tests considering power supply noise," in

IEEE VLSI Test Symp., 2005, pp. 235-240.

[5] I. Hamzaoglu and J. H. Patel, "Reducing Test Application Time for Full Scan

Embedded Cores," in Int'l Symp. Fault-Tolerant Computing, 1999, pp. 260-267.

[6] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, "Embedded deterministic test,"

IEEE Trans. on CAD, vol. 23, no. 5, pp. 776-792, 2004.

[7] K. Angela and K.-T. Cheng, Delay Fault Testing for VLSI Circuits.: Springer

Science & Business Media, 1998.

[8] M. Amodeo and B. Cory, "Defining faster-than-at-speed delay test," Nanometer

Test Article, 2005.

[9] X. Lin et al., "Timing-Aware ATPG for High Quality At-speed Testing of Small

Delay Defects," in Asian Test Symp., 2006, pp. 139-146.

[10] R. Kapur, J. Zejda, and T. W. Williams, "Fundamentals of timing information for

test: How simple can we get?," in Int'l Test Conf., 2007, pp. 1-7.

[11] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, "Test-Pattern Grading and Pattern

Selection for Small-Delay Defects," in IEEE VLSI Test Symp., 2008, pp. 233-239.

[12] T. J. Chakraborty and V. D. Agrawal, "Effective Path Selection for Delay Fault

Testing of Sequential Circuits," in Int'l Test Conf., 1997, pp. 998-1003.

[13] H. Chang and S. S. Sapatnekar, "Statistical Timing Analysis Considering Spatial

Correlations using a Single Pert-Like Traversal," in Int'l Conf.on CAD, 2003.

[14] J. J. Liou , L.-C. Wang, and K.-T. Cheng, "On theoretical and practical

 101

considerations of path selection for delay fault testing," in Int'l Conf.on CAD, 2002,

pp. 94-100.

[15] J. J. Liou, L-C Wang, A. Krstic, and K.-T. Cheng, "Experience in critical path

selection for deep sub-micron delay test and timing validation," in Asia and South

Pacific Design Auto. Conf., 2003, pp. 751-756.

[16] G. Bai, S. Bobba, and I. N. Hajj, "Static timing analysis including power supply

noise effect on propagation delay in VLSI circuits," in Design Auto. Conf., 2001,

pp. 295-300.

[17] J. Wang et al., "Modeling Power Supply Noise in Delay Testing," IEEE Design &

Test of Computers, vol. 24, no. 3, pp. 226-234, 2007.

[18] W. Qiu et al., "K Longest Paths Per Gate (KLPG) Test Generation for Scan-Based

Sequential Circuits," in IEEE Int'l Test Conf., 2004, pp. 223-231.

[19] J. Savir and S. Patil, "Scan-based transition test," IEEE. Trans. on CAD, vol. 12, no.

8, pp. 1232-1241, 1993.

[20] J. Savir and S. Patil, "Broad-side delay test," IEEE Trans. on CAD, vol. 13, no. 8,

pp. 1057-1064, 1994.

[21] J. Saxena et al., "A case study of IR-drop in structured at-speed testing," in IEEE

Int'l Test Conf., 2003, pp. 1098-1104.

[22] P. Pant and J. Zelman, "Understanding power supply droop during at-speed scan

testing," in IEEE VLSI Test Symp., 2009, pp. 227-232.

[23] P. Pant and E. Skeels, "Hardware hooks for transition scan characterization," in

IEEE Int'l Test Conf., 2011, pp. 1-8.

[24] M. Chen and A. Orailoglu, "Examining Timing Path Robustness Under Wide-

Bandwidth Power Supply Noise Through Multi-Functional-Cycle Delay Test,"

IEEE Trans. on VLSI, vol. 22, no. 4, pp. 734-746, 2014.

[25] Y. C. Lin, F. Lu, and K. T. Cheng, "Pseudo functional testing," IEEE Trans. on

CAD, vol. 25, pp. 1535-1546., 2006.

[26] F. Yuan and Q. Xu, "On systematic illegal state identification for pseudo-functional

testing," in Design Auto. Conf., 2009, pp. 702-707.

 102

[27] L. Whetsel, "Adapting scan architectures for low power operation," in IEEE Int'l

Test Conf., 2000, pp. 863-872.

[28] X. Wen et al., "Low-capture-power test generation for scan-based at-speed testing,"

in IEEE Int'l Test Conf., 2005, pp. 1019-1028.

[29] I. Pomeranz , "On the Switching Activity and Static Test Compaction of Multicycle

Scan-Based Tests," IEEE Trans. on Computer , vol. 61, no. 8, pp. 1179-1188, 2012.

[30] H. Liu, H. Li, Y. Hu, and X. Li, "A scan-based delay test method for reduction of

overtesting," in Int'l Symp. on Electronic Design, Test and Applications, 2008, pp.

521-526.

[31] N. Badereddine et al., "Minimizing peak power consumption during scan testing:

Test pattern modification with X filling heuristics," in Int'l Conf. Design and Test of

Integrated Systems in Nano. Technology, 2006, pp. 359-364.

[32] S. Remersaro et al., "Preferred fill: A scalable method to reduce capture power for

scan based designs," in IEEE Int'l Test Conf., 2006, pp. 1-10.

[33] E. K. Moghaddam, J.S. Rajski, M. Reddy, and M. Kassab, "At-speed scan test with

low switching activity," in IEEE VLSI Test Symp., 2010, pp. 177-182.

[34] J. Li, Q. Xu, Y. Hu, and X. Li, "iFill: An impact-oriented X-filling method for shift-

and capture-power reduction in at-speed scan-based testing," in Design Auto. and

Test in Europe, 2008, pp. 1184-1189.

[35] R. Sankaralingam and N. A. Touba, "Controlling peak power during scan testing,"

in IEEE VLSI Test Symp., 2002, pp. 153-159.

[36] Z. Jiang, Z. Wang, and D. M. H. Walker, "Levelized low cost delay test compaction

considering IR-drop induced power supply noise," in VLSI Test Symp., 2011, pp.

52-57.

[37] A. Krstic, Y. M. Jiang, and K. T. Cheng, "Pattern generation for delay testing and

dynamic timing analysis considering power-supply noise effects," IEEE Trans. on

CAD, vol. 20, pp. 416-425, 2001.

[38] L. Fang and M. S. Hsiao, "A fast approximation algorithm for MIN-ONE SAT," in

Design Auto. and Test in Europe, 2008, pp. 1087-1090.

[39] J. Ma and M. Tehranipoor, "Layout-Aware Critical Path Delay Test Under

Maximum Power Supply Noise Effects," IEEE Trans. on CAD, vol. 30, no. 12, pp.

 103

1923-1934, 2011.

[40] X. Fan, S. Reddy, and I. Pomeranz, "Max-fill: A method to generate high quality

delay tests," in Int'l Symp. Design and Diagnosis of Electronic Circuits and

Systems, 2011, pp. 375-380.

[41] F. Yuan, X. Liu, and Q. Xu, "Pseudo-functional testing for small delay defects

considering power supply noise effects," in IEEE Int'l Conf. on CAD, 2010.

[42] J. Schulze and R. Tally, "Mitigating Voltage Droop during Scan with Variable Shift

Frequency," in IEEE Int'l Test Conf., 2014, pp. 1-8.

[43] K. Bian, D. M. H. Walker, S. Khatri, and S. Lahiri, "Mixed structural-functional

path delay test generation and compaction," in IEEE Int'l Symp. Defect and Fault

Tolerance in VLSI and Nano. Systems, 2013.

[44] T. Zhang and D. M. H. Walker, "Power supply noise control in pseudo functional

test," in IEEE VLSI Test Symp., 2013, pp. 1-6.

[45] T. Zhang and D. M. H. Walker, "Improved power supply noise control for pseudo

functional test," in IEEE VLSI Test Symp., 2014, pp. 1-6.

[46] T. Zhang, Y. Gao, and D. M. H. Walker, "Pattern Generation for Understanding

Timing Sensitivity to Power Supply Noise," Journal of Electronic Testing, vol. 31,

no. 1, pp. 99-106, Feb 2015.

[47] W. Qiu, X. Lu, Z. Li, and D. M. H. Walker, "CodSim -- A Combined Delay Fault

Simulator," in IEEE Int'l Symp. on Defect and Fault-Tolerance in VLSI Systems,

2003.

[48] A. El-Maleh and K. Al-Utaibi, "An efficient test relaxation technique for

synchronous sequential circuits," IEEE. Trans.on CAD, vol. 23, pp. 933-940, 2004.

[49] S. Sde-Paz and E. Salomon , "Frequency and power correlation between at-speed

scan and functional tests," in Int'l Test Conf., 2008, pp. 1-9.

[50] Cadence Design Systems, "Voltage Storm Power Verification Datasheet," 2014.

[51] S. Pei, H. Li, and X. Li, "A high-precision on-chip path delay measurement

architecture," IEEE Trans. on VLSI, vol. 20, no. 9, pp. 1565-1577, 2012.

[52] X. Li, R. R. Rutenbar , and R. D. Blanton , "Virtual probe: a statistically optimal

 104

framework for minimum-cost silicon characterization of nanoscale integrated

circuits," in Int'l Conf.on CAD, 2009, pp. 433-440.

[53] X. Zhang, J. Ye, Y. Hu, and X. Li, "Capturing post-silicon variation by layout-

aware path-delay testing," in Design Auto. and Test in Europe, 2013, pp. 288-291.

[54] M. F. Wu et al., "Improved weight assignment for logic switching activity during

at-speed test pattern generation," in Asia and South Pacific Design Auto. Conf.,

2010.

[55] J. L. Huang, X. Wen, K. Miyase M. F. Wu, "Reducing Power Supply Noise in

Linear-Decompressor-Based Test Data Compression," in Int'l Test Conf., 2008, pp.

1-10.

[56] X. Liu and Q. Xu, "On X-Variable Filling and Flipping for Capture Power

Reduction in Linear decompressor based compression environment," IEEE Trans.

on CAD, vol. 31, no. 11, pp. 1743-1753, 2012.

