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ABSTRACT 

 

There do not exist widely accepted guidelines or standards for identification and 

removal of outlying data in empirical research. There are sometimes significant 

incentives for researchers to discover particular research results. Researchers have been 

observed to use flexibility in outlier omission to selectively omit data in search of 

statistically significant findings. The degree to which this practice can affect the 

credibility of research findings is unknown. This study uses Monte Carlo simulation to 

estimate the propensity of certain types of selective outlier omission to inflate type I 

error rates in regression models. 

Simulations are designed to analyze posttest only control group design with no 

underlying intervention effect, such that any statistically significant findings represent 

type I errors. Omission of observations is simulated in an exploratory manner, such that 

observations are omitted and regressions are run iteratively until either a type I error is 

made or until a maximum trimming threshold is reached, whichever occurs first. 

Omission of observations based on z-score thresholds, a common research practice in 

some disciplines, is simulated. Additionally, omission from only of one tail of data—

simulating the removal of only “disconfirming” observations—is analyzed.  Simulations 

are performed using a variety of sample sizes and with samples drawn from several 

underlying population distributions. In all simulations, type I error rates are inflated; 

type I error rates are found to range from 7.86% to 100%, compared to the expected 5% 

in the absence of data omission. 
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1. INTRODUCTION 

 In their analysis of the economics literature, Ioannidis and Doucouliagos (2013) 

concluded that “the credibility of the economics literature is likely to be modest or even 

low.” This finding was based on a variety of factors, including a lack of standardization 

in and resultant flexibility of research design which contributes to the creation of false 

research claims (Ioannidis and Doucouliagos 2013). Leamer (1983) famously 

demonstrated that simple changes to empirical economic model specifications could 

very easily be used to reverse the sign and alter the magnitude of the observed 

relationship between two variables. If a researcher has an incentive to produce specific 

research results and design flexibility that allows for results to be modified, he or she 

might be expected to use the flexibility to get the desired results, regardless of the 

accuracy of the resultant research conclusions (Ioannidis 2005). 

 The types of retrospective observational analyses that allow for the flexibility 

that Leamer (1983) examined compose a smaller portion of the economics literature than 

they did when he authored the critique: Hamermesh (2013) found that, in three top 

journals, the proportion of experimental studies increased tenfold between 1983 and 

2011, from .8% to 8.2%, and the prevalence of quasi-experimental studies has also 

increased (Angrist and Pishke 2010). This is nearly certain to increase the credibility of 

economics research: Angrist and Pishke (2010) refer to a “credibility revolution” in the 

field of economics spurred by this greater use of experimental and quasi-experimental 

research design.  But even with studies designed as “gold standard” randomized 

controlled trials, a large degree of flexibility in research design still exists, and this 
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flexibility could be exploited by researchers who are willing to change their design 

specifications in search of particular results (Simmons et al. 2011). Simmons et al. 

(2011) demonstrated that, under certain assumptions of flexibility of research design 

(which the authors suggest might be conservative), a researcher conducting an 

experiment could erroneously discover a non-existent relationship between two variables 

in over half of simulations. 

 Researchers often have a variety of incentives that drive them toward a 

preference for a particular research outcome: financial conflicts of interest, pre-

conceived hopes for or expectations of outcomes, or a belief that a certain result may be 

more likely to be published than another are all factors that can influence a researcher to 

do what he or she can to find a particular result (Krimsky and Rothberg 1998; Stanley et 

al. 2008; Statzner and Resh 2010). Several methods exist to exploit flexibility in research 

design and reporting in order to achieve the outcome that a researcher might desire; 

collectively, these methods are sometimes referred to as “questionable research 

practices,” or QRPs (Simmons et al. 2011). 

 The objective of this study is to analyze, in depth, the consequences of exploiting 

one of these flexible research design components. Researchers are often not constrained 

in determining when and how to omit apparently outlying data observations, which 

could be used selectively to influence research findings (Bakker and Wicherts 2014b). A 

review of statistics textbooks performed by Bakker and Wicherts (2014b) found that, in 

the majority of texts, exclusion of any outliers was only recommended in cases where 

data recording errors were made. They additionally found that a number of texts 
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described seemingly outlying but non-erroneous observations as important elements 

from the population being studied that should not be excluded (for example, Freedman et 

al. 2007, as cited in Bakker and Wicherts 2014b). Outlier omission, however, is often not 

performed only when errors are present in the data: researchers often simply use 

exclusion rules that eliminate all observations beyond a threshold percentile, value, or z-

score (Bakker and Wicherts 2014b; Simmons et al. 2011). The effect of these sorts of 

exclusion rules were examined in simulations run by Bakker and Wicherts (2014b), who 

found that they can dramatically increase type I error rates. 

This study uses Monte Carlo simulations to examine a model that assumes that a 

researcher is attempting to discover a specific result through selective data omission, 

estimating the impact that such omission will have on type I error rates under a variety 

of assumptions. An underlying assumption is not just that data will be omitted, but that 

omission will take place only when it helps to cross a p = .05 significance threshold; data 

will systematically be excluded at different thresholds until a maximum threshold value 

is met or a statistically significant coefficient is observed, whichever happens first. This 

is designed to simulate the potential impacts of the flexibility that researcher have in 

deciding how to exclude outliers when this flexibility is exploited. The simulations run 

are described in detail in section 3. 

This thesis additionally analyzes the context in which selective data omission 

might take place: first, the incentives that researchers have to commit QRPs are 

explored. Whether and to what degree researchers face disincentives to publishing false 

findings is additionally examined. Next, the existing evidence for the degree to which 



 

4 

 

 

researchers have flexibility to influence their research findings is analyzed. The 

empirical evidence for the prevalence of QRPs is then investigated. A review of the 

consequences of QRP use follows. The design of and results from the simulation 

performed for this study are then described, followed by a discussion of the results and 

the methods that have been proposed to limit the prevalence and impact of QRPs, 

including selective outlier omission. Finally, the limitations of the study and its place in 

the broader QRP-related literature are discussed.  
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2. LITERATURE REVIEW 

2.1 Incentives faced by researchers 

 Researchers often have strong incentives to arrive at particular research 

conclusions: direct financial incentives of researchers or their funders can cause them to 

actively seek to achieve a certain result (Krimsky and Rothenberg 1998). Financial 

conflicts of interest have been found to be common and underreported in a variety of 

disciplines, including economics (Papanikolaou et al. 2001; Carrick-Hagenbarth and 

Epstein 2012). 

Researchers often also have pre-conceived expectations that cause them to prefer 

particular research findings; the socio-economic characteristics of researchers have been 

found to explain a large portion of the variation in research findings in empirical 

economics (Stanley et al. 2008). This “confirmation bias” could cause researchers to 

selectively ignore interpretations of the data that run counter to their ideological or other 

interests (Rosenthal 1966, as cited in Camfield, et al. 2014; Nickerson 1998). 

 Even in the absence of direct financial or personal reasons to prefer a particular 

result, there exist strong reputational incentives to achieve results that will be published 

and widely cited (Statzner and Resh 2010). In the field of economics, the St. Louis 

Federal Reserve’s Research Papers in Economics (RePEc) rankings of researchers and 

their output are perhaps the most widely used. These rankings largely depend on the 

number of papers published and the number of citations that they receive (Zimmerman 

2012). Additionally, the number of publications is a common criterion for hiring and 

promotion decisions (Statzner and Resh 2010). The salary of academic economists has 
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been found in two separate studies to correlate significantly with their number of 

publications in top journals (O’Keefe and Wang 2014) and with the quantity of 

published papers in all journals (Hamermesh and Pfann 2012). These strong incentives 

to publish, particularly in top journals, are likely to influence how economists conduct 

research: some results are nearly certainly more likely to be published and widely cited 

than others, giving researchers an incentive to produce those preferred results. 

There also exists pressure to create only results that are found to be statistically 

significant using null hypothesis statistical testing (NHST; Bakker et al. 2012). 

Publication is often so dependent on achieving statistically significant positive results 

that Bakker et al. (2012) described science as being treated by researchers as a “game,” 

with the goal of producing statistically significant results. Among a large assortment of 

disciplines, NHST has become the dominant way for researchers to assess and 

communicate their findings (Gigerenzer 2004). Multiple analyses have shown that the 

predominance of NHST has increased over time and among several disciplines, 

including economics (Ziliak and McCloskey 2004; Fiddler et al. 2006). It has been 

demonstrated repeatedly that positive results are more likely to be published than 

negative results, and that negative results which are accepted by journals take 

significantly longer to be published (Stern and Simes 1997). Furthermore, the proportion 

of studies with positive results has been increasing over time, with the frequency of 

positive results growing by 22% between 1990 and 2007 (Fanelli 2011). The growth in 

proportion of positive results was observed across a variety of disciplines, including 

economics (Fanelli 2011). These findings point to the existence of strong incentives for 
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researchers to produce statistically significant findings using NHST, perhaps regardless 

of the accuracy of the research claims being made (Head et al. 2015). 

The preceding paragraphs describe evidence about the incentives that researchers 

have to produce particular findings. Also important are the disincentives to producing 

inaccurate or misleading research claims. Certainly, outright research fraud that is 

discovered can carry large consequences (Lacetera and Zirulia 2011). But false results 

made through honest mistakes or through certain dishonest research practices are 

difficult to detect in economics. McCullough et al. (2008) examined publishing 

requirements in economics and determined that “most economics journals provide no 

mechanism whereby false results can be discovered”. The authors discovered 

additionally that, even in journals that require submitters to publish the data on which 

their research conclusions are based, those who failed to meet the requirements did not 

suffer any penalties (McCullough et al. 2008). When data are available, they are very 

rarely requested; Hamermesh (2007) examined patterns of data requests for papers 

published in two journals, Industrial and Labor Relations Review and Journal of Human 

Resources, finding that data requests were never made for over 60% of papers. Even 

cases where mistakes are discovered to have been made and an author’s work is 

retracted can carry relatively light consequences: on average, a researcher who suffers 

the retraction of one of his or her articles will receive 12.5% fewer citations on his or her 

subsequent work, and citations on the retracted work itself are still likely to be made 

even five years post-retraction (Lu et al. 2013). 
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The desire to achieve particular research findings would be of little importance if 

researchers did not have the ability to influence these findings. However, there exists a 

large variety of QRPs that allow researchers the flexibility to change their models and 

data in ways that can assist them to achieve their desired results (Simmons et al. 2011). 

Among other practices, these can include changing the statistical specifications being 

used, flexibly deciding when it is appropriate to stop data collection, deciding whether to 

attempt to get a result published, and considering whether and which data should be 

excluded, all based on whether the results of any of these manipulations would help the 

reported results to conform to the researcher’s desired outcomes.  

As mentioned, Leamer (1983) demonstrated that changes in model specifications 

could be used to dramatically influence research findings, to the point of reversing 

research conclusions. Simmons et al. (2011) simulated a case where a researcher could 

choose between two different correlated dependent variables, finding that simply 

choosing the specification that results in the highest p-value resulted in type I errors 

9.5% of the time at the 5% significance level. This simulation is likely to represent a 

conservative estimate of the type I error chance that would result were this method 

employed in a real-world setting: a researcher might commonly have more than two 

dependent variables and a host of independent variables to select from (Simmons et al. 

2011; Leamer 1983). 

2.2 Opportunities for researchers to influence research conclusions 
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al. 2011). Similarly, if a researcher collects data and a statistically significant result is 

not observed, he or she would sometimes have the flexibility to simply add more 

observations (Simmons et al. 2011). A researcher could add one more observation at a 

time and, by adding an additional observation a sufficient number of times, never fail to 

be successful in observing a statistically significant result whether or not there exists an 

actual relationship in the population being studied (Wagenmakers 2007). 

Deciding whether and how to omit outliers after data collection could also be 

used selectively to influence research findings (Simmons et al. 2011). There are no clear 

guidelines for identifying outlying data that it is appropriate to exclude, and a researcher 

could choose among and justify any number of outlier exclusion rules (Simmons et al. 

2011; Bakker and Wicherts 2014b). This flexibility could allow a researcher to exclude 

observations in the way that makes the data most likely to appear to provide evidence for 

his or her preferred research conclusions (Simmons et al. 2011). 

2.3 Evidence for the prevalence of QRPs 

Empirically, it has been observed that the intersection of strong incentives to 

achieve positive, statistically significant findings and the considerable researcher degrees 

of freedom that could be exploited leads to a large portion of researchers engaging in 

QRPs in pursuit of positive results (John et al. 2012). Much of the evidence that suggests 

the prevalence of QRPs broadly does not provide an indication of which QRPs are 

causing the results. Because of this, the degree to which observed evidence for QRPs is 

influenced by selective outlier omission often cannot be determined. This section 

 Flexible stopping rules for data collection are another potentially exploited QRP: 

researchers have the ability to run statistical tests while a study is ongoing and, if a 

significant result is observed, to cease data collection and report the result (Simmons et 
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therefore discusses the evidence for the degree that all QRPs take place, but focuses on 

evidence for the prevalence of selective outlier omission when it is available.  

Direct surveys of researchers are a source of considerable evidence for the 

propensity of researchers to engage in questionable research practices. John et al. (2012) 

conducted a survey of psychology researchers, finding that more than half reported using 

at least one questionable research practice. Large proportions of respondents admitted to 

making a decision on when to stop data collection based on whether their results were 

significant, selectively reporting studies and results with positive findings (John et al. 

2012). 38% admitted to having decided whether to exclude outliers based on the effects 

of doing so (John et al. 2012). LeBel et al. (2013) asked the authors of psychology 

publications to disclose otherwise undisclosed methods that were used in their reported 

research: of the 46.4% of contacted researchers who elected to reply non-anonymously, 

almost all admitted to failing to disclose some relevant research practices and 11.2% 

failed to report excluded observations. Bailey et al. (2001) surveyed accounting 

researchers and estimated from respondents that almost 4% of the top publications in the 

field were “seriously tainted” by “intentional violations that would affect the truthfulness 

of research reports.” The survey respondents also reported the suspected prevalence of 

violations by others in the field, believing on average that upwards of 20% of the 

research was affected by intentional and serious QRPs (Bailey et al. 2001). 

Fanelli (2009) conducted a meta-analysis of surveys of academics and found that, 

across disciplines, an average of approximately 2% of researchers admitted to having 

fabricated or manipulated their data at least once, “a serious form of misconduct by any 
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standard.” Survey respondents suspected that about 14% of their colleagues had 

performed these data manipulations (Fanelli 2009). Up to 72% of researchers admitted to 

these and other QRPs (Fanelli 2009). 

Replicability of studies is often used as an imperfect proxy for researcher 

honesty: while failing to replicate a study is not proof of deliberate questionable research 

practices (honest mistakes, statistical flukes, and lack of external validity of internally 

valid findings are possible explanations), consistent ability to replicate studies would 

certainly provide evidence that research practices are generally honest (Hamermesh 

2007). Replication falls into three primary categories: pure replication uses the same 

data and analysis that were used in the study being replicated; statistical replication uses 

the same model, population, and specifications of a study but a different sample; 

scientific replication uses a non-identical model to analyze the same idea expressed in a 

paper, but using different populations or research specifications (Hamermesh 2007). 

By the metric of replicability, a large portion of the economics literature that has 

been analyzed has fared poorly: Dewald et al. (1986) famously attempted to perform 

pure replication attempts on a number of studies published in the Journal of Money, 

Credit, and Banking. They found that nearly two thirds of authors contacted would not 

or could not provide the data that they had used to reach their research conclusions, in 

spite of a publication requirement to make their data available upon request (Dewald et 

al. 1986). The authors were able to access the data that were used in some of the studies, 

and a majority of these were not able to be replicated, although most failures to replicate 

were due to coding errors rather than deliberate QRPs (Dewald et al. 1986). After this 
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and similar controversies, the Journal of Money, Credit, and Banking and many other 

economics journals eventually instituted mandatory data and code submission 

(McCullough, 2007). Even with this more stringent data sharing requirement and two 

decades after the replication attempt by Dewald et al. (1986), the vast majority of 

authors submitting empirical papers to the journal still did not submit the required data 

and code, making pure replication of the majority of papers submitted impossible to 

attempt (McCullough 2007). A similar analysis of studies published in the Federal 

Reserve Bank of St. Louis Review found that fewer than 10% of studies analyzed were 

able to be replicated (McCullough et al. 2008). Replication failures extend far beyond 

the field of economics: in their famous review of large-scale replication attempts of 

cancer drug research findings, Begley and Ellis (2012) found that replication succeeded 

in only 11% of analyzed studies. 

Several meta-analyses have been conducted in search of results that would 

suggest the exploitation of QRPs in a variety of ways. As mentioned, Stanley (2008) 

conducted a meta-analysis of research in economics found that research outcomes 

depend partly on socio-economic characteristics of the researchers, a result that is 

inconsistent with perfectly objective research. Rosenthal (1978) found that, during data 

collection, roughly two thirds of observation errors that are made are made in a way that 

favors the hypothesis of the person making the error. There is evidence that outliers are 

excluded from analysis more often when doing so helps to confirm a researcher’s theory 

(Rosenthal 1994). Bakker and Wicherts (2014a) analyzed studies where data was 

available and outlier exclusion was reported and found no evidence that those studies 
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involved selective outlier omission, but discovered a large number of studies where data 

exclusion took place but was not reported. Of psychological papers that use NHST, 96% 

report positive findings, while reviews of the literature demonstrate that the studies do 

not have sufficient statistical power to so often achieve positive results, although this 

could be consistent with publication bias rather than with other QRPs (Bakker et al. 

2012). Hróbjartsson et al. (2012) compared blinded to non-blinded trials and found that 

both statistical significance and effect sizes were inflated for the non-blinded trials; this 

suggests that researchers have a propensity to influence the results of their experiments 

when they have the ability to do so, whether intentionally or unintentionally. Chan et al. 

(2004) analyzed medical studies and found that over half of those that were examined 

had failed to report all of their findings, and that the results that were not reported 

usually were those that would have made the benefits of the intervention being studied 

appear to be smaller or the negative effects of the intervention appear to be larger than 

the reported results would suggest. There is similar evidence that economists with 

financial conflicts of interest are more likely to reach research conclusions that would 

assist them financially (Carrick-Hagenbarth and Epstein 2012). 

Evidence for “p-hacking,” or selectively carrying out statistical analyses until a 

statistically significant regression coefficient is discovered, can be assessed by analyzing 

the distribution of p-values occurring in the literature: if a substantial amount of p-

hacking occurs, then it is expected that a large number of p-values very near the p = .05 

significance threshold will be observed (Head et al. 2015). Head et al. (2015) performed 

a systematic review analyzing p-curves that represent literature from a variety of 
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disciplines and found significant evidence that p-hacking occurs based on a discontinuity 

in the p-curves: there was a much higher concentration of p-values just below .05 than 

anywhere else, which would not be expected to occur in the absence of p-hacking. 

Determining whether to drop outliers based on the effect on coefficients is a form of p-

hacking, although it is unknown to what degree the results of Head et al. (2015) depend 

on outlier exclusion rather than other QRPs.  

Perhaps the strongest evidence for the existence of QRPs is provided by the cases 

in which individual scientists have been discovered to have performed fraudulent 

research. Lacetera and Zirulia (2011) examined scientific fraud in several very high-

profile cases, concluding that “examples abound of scientists who falsified, fabricated, 

or plagiarized findings and were still able to publish and get recognition from them.” 

The rate of outright detection of fraud, however, is quite low: in the social sciences, it 

was found to be only .002% of papers, many of which were retracted due to errors, often 

detected by the original authors themselves, rather than fraud (Lu et al. 2013). The true 

prevalence of fraudulent research is certain to be higher than is suggested only by the 

number of cases that are detected (Lu et al. 2013), but detection of fraud certainly 

provides evidence that researchers respond to the incentives that exist to exploit 

questionable research methods (Lacatera and Zirulia 2011). 

Strong evidence exists that the use of QRPs is widespread: admissions of QRP 

usage by surveyed researchers, a high rate of replication failures, statistical evidence that 

comes from systemic reviews, and discovered cases of researcher fraud all provide 

evidence that QRPs are not uncommon among several disciplines. A few of these pieces 
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of evidence, such as some surveys of researchers, provide evidence specific to selective 

outlier omission (Fanelli 2009), but many do not: when a replication failure occurs, for 

example, the reasons for the failure are often not forthcoming (McCullough et al. 2008). 

Even if the prevalence of any particular QRP cannot be estimated, the evidence suggests 

a willingness among researchers to commit QRPs, including selective outlier omission. 

2.4 Scientific consequences of QRPs 

Engaging in QRPs increases the odds that research conclusions will be reached in 

error (Ioannidis 2005). Additionally, in cases where there exist statistically significant 

relationships between variables that are being tested, QRPs can inflate the observed 

effect sizes, resulting in an overstatement of the analytical significance of results 

(Bakker et al. 2012). Ioannidis (2005) conducted simulations to evaluate the 

consequences of contemporary research practices, finding that “for most study designs 

and settings, it is more likely for a research claim to be false than true.” While a number 

of factors that were unrelated to QRPs were mentioned as contributors to this result, 

flexibility in research design that allows researchers to engage in QRPs was identified as 

one of the reasons for the preponderance of false research claims (Ioannidis 2005). 

The costs involved in generating false research claims are large: every false 

research claim involves researchers spending time and money to create erroneous 

results. Chalmers and Glasziou (2009) examined research in biomedical sciences and 

estimated that 85% of research effort is wasted (as cited by Ioannidis 2014). 

Dissemination of false information potentially leads others to accept false research 

claims, which can result in poor policy outcomes, medical choices, or other decisions: in 
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the case of medicine, decisions made based on false research conclusions can cause 

significant negative health impacts, including death (Goldacre 2014). Similarly, research 

claims that are made in error in economics can lead to undesirable policy prescriptions 

with potentially large-scale financial consequences (Carrick-Hagenbarth and Epstein 

2012). False research claims can persist for decades before they are corrected, being 

used to inform decision makers and other researchers for the duration (Pashler and 

Harris 2012). Even papers that were discovered to have reached their conclusions in 

error and were retracted have been found to continue being cited, with “half or more of 

the future citations [continuing] to accept the original claims.” (Lu et al. 2013). 

When a variety of evidence is available, systematic meta-analysis is often used as 

a tool to combine and analyze the available data (Stanley 2001). Statistical flukes and 

errors that are made randomly can be corrected for by using meta-analysis, but meta-

analysis can fail to produce accurate results when the results of the literature are 

systematically biased (Goldacre 2014). This is a commonly criticized consequence of 

publication bias in particular (Kotiaho and Tomkins 2002), but meta-analyses can be 

made inaccurate by other QRPs if they cause distortions that systematically skew results 

in one direction (Goldacre 2014). 

QRPs, then, have the potential to frequently result in erroneous research 

conclusions which can persist for decades, and the consequences of decisions based on 

false research claims can be large. Researchers are required to spend time and effort 

sorting out which research claims are made in error, and failure to do so can result in 

future research being derivative of the outcomes of erroneous past research. It is also 
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possible that meta-analysis, a powerful tool to analyze data even in the presence of 

random errors, can be rendered inaccurate by systematic QRPs.  
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3. THEORY & METHODOLOGY 

 This study examines in depth the propensity for one QRP—selectively omitting 

what is deemed to be outlying data when it will help to achieve a researcher’s “desired” 

outcomes—to inflate type I error rates. Simulations have been performed by Bakker and 

Wicherts (2014b), who simulated the effect of selective outlier omission on type I error 

rates using normally distributed data and data from actual psychological datasets, 

identifying outlying data based on z-score thresholds. This study further analyzes the 

effects of selectively omitting outliers from samples drawn from chi-squared and logistic 

distributions with various parameters. Additionally, this study analyzes selective 

omission of the extreme data that a researcher would wish to omit: that is, rather than 

only analyzing z-score trimming, this study examines trimming only the extreme values 

in one tail of the collected data. Given the observed variability in outlier omission rules 

(Simmons et al. 2011) and the significant evidence that data is excluded without 

disclosure (Bakker and Wicherts 2014a; LeBel et al. 2013), this form of one-sided 

omission could be occurring. Additionally, larger sample sizes than those used in Bakker 

and Wicherts (2014b) are analyzed: while they used sample sizes of up to 500 

observations, this study additionally examines sample sizes of 1,000 and 5,000, which 

might be on the order of those used in large-scale studies in economics and finance. 

The simulation attempts to model the following behavior: a researcher is 

performing an experiment using posttest-only analysis. Two groups are randomly drawn 

from the same population and an intervention is performed on one group, while another 

group serves as a control. The intervention is ineffective, such that the outcome variable 



 

19 

 

 

for either group is the same in expectation; any statistically significant intervention 

effects that are observed will represent a type I error. The researcher is attempting to find 

evidence that the intervention significantly affects the outcome variable. Exploratory 

analysis is used, such that data are identified as outliers and excluded only when doing 

so will result in the observation of a statistically significant intervention effect. Different 

amounts of data exclusion are analyzed until a statistically significant intervention effect 

is observed or the researcher determines that a maximum allowable amount of exclusion 

has occurred. 

The statistical test used is an ordinary least squares regression with the following 

model: 

𝑦𝑖 =  𝛽0 + 𝛽1 ∙ 𝑥𝑖 + 𝜀𝑖 

where: 

𝑥𝑖 =  {
1 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

0 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
 

and 𝑦𝑖 is drawn at random from the distribution selected to be used in the simulation. 

�̂�1is the estimated sample coefficient in any given trial. The magnitude and statistical 

significance of  �̂�1 is the variable of interest: it represents the observed “treatment effect” 

of the intervention. Because the samples are drawn from the same distribution, the true 

population value of β1 is zero, and any rejection of the null hypothesis, that β1 = 0, is a 

type I error. 

In expectation, without implementing any QRPs, a statistically significant 

treatment coefficient  �̂�1 occurs at the p = .05 level in 5% of cases by common 
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convention. The regression is performed. If  �̂�1 is not found to be significant at the p = 

.05 level, then one percent of the most extreme values from one tail of the intervention 

group in the sample are omitted and the regression is repeated on the trimmed sample. 

Data will continue to be trimmed and the regression will continue to be run with the 

modified data until either a statistically significant  �̂�1 coefficient is observed or a 

maximum trimming threshold of 5% is reached, whichever occurs first. This process is 

repeated with trimming rules that are based on z-score thresholds rather than percentile 

thresholds, excluding results that exceed the z = 3, z = 2.5, and z = 2 thresholds, again 

proceeding to exclude progressively more until a statistically significant result has been 

observed or until all three z-score thresholds have been tested. 

This is simulated in Stata (the code used to generate the results is available in 

appendices A and B) by generating a “treatment” sample with n observations with a 

value of 1 assigned to the treatment dummy variable and a “control” sample with n 

observations with a value of 0 assigned to the treatment dummy variable. The outcome 

variable for each group is generated from the same random population distribution, using 

a variety of different population distributions and sample sizes to analyze the effects of 

selective trimming under different assumptions: the standard normal distribution is used 

to analyze the effects of performing the omission procedure on a symmetric distribution. 

The logistic distribution with mean = 0 and scale = 1 is used because the distribution has 

greater kurtosis than the standard normal distribution; simulating both a logistic 

distribution and a standard normal distribution allows for comparing the effects of 

selective trimming on samples taken from populations with symmetric distributions with 
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different tail thickness. Underlying population data in real datasets is often skewed, so 

asymmetric chi-squared distributions of various skewness are analyzed. The effects of 

selective trimming on samples taken from chi-squared distributions with 4, 10, and 50 

degrees of freedom is assessed to evaluate the importance of varying levels of skewness 

on resultant type I error rates. Sample sizes of 100, 500, 1000, and 5000 are used 

because they are in the range of sample sizes for datasets analyzed in economics. 

For the simulations testing one-tailed exclusion, 𝑥𝑖 is regressed on 𝑦𝑖; if a 

statistically significant coefficient on 𝑥𝑖 is observed, then no further analysis is 

performed. If it is not, then the regression is re-run with a new dataset that excludes 

observations in the treatment group with the smallest 1% of observed outcomes 𝑦𝑖 if left-

tailed exclusion is being analyzed, or the largest 1% of observed outcomes 𝑦𝑖 if right-

tailed exclusion is being analyzed. If the resulting coefficient on 𝑥𝑖 is statistically 

significant, then it is recorded; if not, the regression is re-run with a new dataset that 

excludes 2% rather than 1% of the most extreme values, again omitting from only the 

chosen tail. This process is repeated either until either 5% of the tail has been trimmed or 

until the coefficient  �̂�1 is observed to be statistically significant, whichever occurs first. 

The simulations testing trimming rules based on z-scores are broadly similar: 𝑥𝑖 

is regressed on 𝑦𝑖, and if a statistically significant coefficient  �̂�1 is observed then no 

other analyses will be performed. Otherwise, a new dataset containing all observations in 

the control group and only those observations in the treatment group that have z-scores 

less than 3 is created. The regression is re-run on the truncated data. This is repeated, 

creating datasets that exclude observations with z-scores greater than 2.5 and 2, until 
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either a statistically significant coefficient  �̂�1 has been observed or all three z-score 

exclusion rules have been implemented, whichever occurs first. 

 Each of these two types of simulation is performed on each possible combination 

of distribution choice and sample size, for a total of 40 simulations (5 distributions, 4 

sample sizes, and 2 simulated exclusion rules). In each simulation, 20,000 iterations of 

the described process are performed. Each time a type I error is observed to occur, the 

trimming threshold that was used to generate the type I error is recorded. Additionally, if 

a type I error is not observed prior to data exclusion but is observed after data exclusion, 

the difference in coefficient size resulting from the data exclusion is recorded.  
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4. RESULTS 

 All of the results that follow are shown in detail in Tables 1 through 6 in 

Appendix D and summarized in Figures 1 through 12 in Appendix C. 

4.1 Normal distribution 

None of the results sampling from normally distributed data are sensitive to the 

mean or standard deviation of the distribution. Because of this, all reported results for 

data drawn from normal distributions are taken from the standard normal distribution. 

 For normally distributed data and using only one-tailed trimming, the probability 

of type I error was observed to be highly dependent on sample size. As expected, 

trimming from the upper tail results in a negative coefficient �̂�1 and trimming from the 

lower tail results in positive coefficient �̂�1, but the probability of type I error does not 

depend on which tail is trimmed. The probability of type I error was observed to range 

from 15.18% for n = 100 to 100% for n = 5000. 

Trimming based on z-score thresholds results in much smaller but still inflated 

type I error rates, from 7.8% to 8.1%. Type I error rates were observed to consistently 

increase very slightly as sample size increased. 

4.2 Logistic distribution 

The results for randomly generated data taken from the logistic distribution with 

mean = 0 and scale = 1 and with outliers selectively trimmed from one tail are similar to 

the results from the standard normal distribution: type I error rates depend significantly 

on sample size and do not depend on which tail was being excluded. The thicker tails 

associated with the logistic relative to the standard normal distribution causes data 
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exclusion to result in a somewhat larger probability of type I error; for n = 1,000, for 

example, the percentage of type I error rates for samples taken from the logistic 

distribution is approximately 78%, while that of the normal distribution with the same 

specifications is approximately 70%. Type I error rates for the logistic range from 

16.25% for n = 100 to 100% for n = 5,000. 

The results based on selective z-score exclusion are of similar magnitude for data 

drawn from the standard normal and logistic distributions. Type I error rates in 

simulations using samples drawn from logistic distributions were observed to be slightly 

larger than similar simulations using data sampled from standard normal distributions, 

ranging from 8.2% to 8.5%. There is no consistent relationship between sample size and 

probability of type I error. 

4.3 Chi-squared distributions 

Results for omissions performed on data sampled from chi-squared distributions, 

as expected, are highly dependent on which tail of the distribution is being trimmed. 

Because the distributions are skewed rightward, eliminating observations from the right 

tail excludes significantly more extreme values than eliminating observations from the 

left tail, resulting in much higher type I error rates. Type I error rates have a positive 

relationship with sample size for each of the three distributions analyzed. When the left 

side of the samples are omitted, type I error rates are lower for samples drawn from more 

skewed distributions. Similarly, when the right tail of the samples are excluded, type I 

error rates are greater for data sampled from more skewed distributions. The lowest 

observed type I error rate in any of these simulations involving one-sided data exclusion, 
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9.5%, was observed for data sampled from the chi-squared distribution with 4 degrees of 

freedom and n = 100. Type I error rates were still observed to be up to 100% for n = 

5000 and underlying distributions with 10 or 50 degrees of freedom, and 92.87% for 

data drawn from the distribution with 4 degrees of freedom. 

In the simulations wherein data is trimmed based on z-score thresholds, type I 

error rates are slightly smaller than in simulations where data is trimmed selectively 

from the right tail. Type I error rates were observed to be larger, in all cases, for skewed 

distributions than for symmetric distributions, ranging from 10.2% for samples drawn 

from a chi-squared distribution with 50 degrees of freedom and n = 100 to 100% for 

samples drawn from chi-squared distributions with 4 or 10 degrees of freedom and n = 

5000. 

4.4 Coefficient sizes 

 In all cases, the one-sided exclusion of outliers was observed to have the 

expected effects: eliminating data from the right tail of a sample was found to 

systematically reduce observed  �̂�1 coefficients, and eliminating data from the left tail of 

a sample was found to increase observed  �̂�1 coefficients. The change in  �̂�1 coefficient 

size from systematic trimming depends negatively on sample size: the largest changes 

were consistently observed for n = 100, while the smallest were observed for n = 5,000. 

As expected, excluding more extreme data results in larger changes in coefficient size: 

eliminating the right tail of data drawn from a chi-squared distribution was observed to 

cause the largest change in coefficient size, while eliminating the left tail of data from 

the same distribution was observed to cause the smallest change in coefficient size in all 
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cases. The largest average change in coefficient size is .1002 standard deviations, 

resulting from trimming the right tail of data taken from a chi-squared distribution with 4 

degrees of freedom and n = 100, while the smallest observed average change is .03313 

standard deviations for data taken from the same distribution and for n = 5,000. 

 When exclusion is performed based on z-score thresholds, changes in coefficient 

sizes are quite small for symmetric distributions and are negatively related to sample 

size. The largest observed change for symmetric distributions is a change of .056 

standard deviations, and the smallest is only .00064 standard deviations. For right-

skewed distributions, the changes are on the same order of magnitude of those observed 

when samples are trimmed from the right tail only: they range from .035 standard 

deviations at the smallest to .13 standard deviations at the largest.  
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5. DISCUSSION 

5.1 General discussion of results 

 For simulated one-sided trimming rules, shown in Tables 1 and 2, the probability 

of type I error ranges from 9.5% to 100%, depending on the simulation specification: 

with sufficient sample size and a sufficiently skewed distribution, a researcher could 

always discover a statistically significant relationship where one does not exist by 

systematically omitting 5% of treatment observations. In all cases, systematically 

trimming one side of any distribution results in dramatically larger type I error rates: a 

type I error rate of 9.5%, the smallest observed, is almost double the purportedly 

expected type I error rate of 5%. In the simulation with the smallest observed type I error 

rates, systematically eliminating just 1% of the data was observed to cause type I error 

rates to increase to 5.59%. 

 The probability of type I error resulting from systematic data exclusion from only 

one tail depends critically on whether and to what degree the population from which the 

data is drawn is skewed. Eliminating observations from the right tail of a sample taken 

from a heavily right-skewed distribution was observed to have the largest effect on both 

coefficient size and on type I error rates. Simmons et al. (2011) claim that it might be the 

case that researchers will be more likely to engage in QRPs when they could more easily 

be justified to themselves or to others; excluding the most extreme data from a sample 

that is heavily lopsided might seem to be justifiable. Eliminating observations from the 

left side of right-skewed distributions was observed to have the smallest effect on type I 

error rates, and might rarely take place: identifying observations on the left side of a 
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sample taken from a heavily right-skewed distribution as outliers would likely be 

difficult for a researcher to justify. This would restrict the ability for researchers to 

influence the sign of their findings: eliminating data from only the right side of right-

skewed data was always observed to result in negative treatment coefficients, so a 

researcher hoping to find positive treatment coefficients and acting in a way that seems 

somewhat justifiable would not be able to exploit this QRP. However, inasmuch as 

justification for or even disclosure of outlier omission often does not take place, it is 

possible that these manipulations could still occur. 

 Excluding data based on z-score exclusion rules was found by Bakker and 

Wicherts (2014b) to be a common and accepted practice that researchers justified in a 

number of studies. For symmetric distributions, this study found that performing this 

practice inflates type I error rates, but by a much smaller amount than single-tailed data 

exclusion: simulated type I error rates range from 7.8% to 8.6%. But for right-skewed 

distributions, the results with the highest z-scores will primarily be those in the right tail 

of the distribution. Because of this, excluding data based on commonly accepted z-score 

thresholds was observed to result in only a slightly smaller type I error chance than 

selectively excluding up to 5% of the right tail: for n = 100 and samples drawn from chi-

squared distributions with 4 degrees of freedom, for example, type I error rates were 

found to be 21.33% when z-score trimming rules were used and 22.67% when up to 5% 

of the largest of observations were omitted. With n = 5000 and using data from the same 

distribution, type I error rates occurred in 100% of simulations with either trimming rule. 
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Overall, this study suggests that the lack of defined standards for the treatment of 

outliers has significant potential to generate false research findings, consistent with the 

conclusions of Bakker and Wicherts (2014b). For the most conservative assumptions of 

trimming, based on z-score thresholds and with a sample size of n = 100, the smallest 

observed type I error chance was 7.8%, over half again as large as the expected 5% type 

I error chance in the absence of outlier exclusion. As mentioned, several simulations 

found that, under certain assumptions, false positives could be generated in 100% of 

simulations. This was found to occur even in some simulations where z-score trimming 

thresholds were used, as is commonly accepted practice (Bakker and Wicherts 2014b). 

5.2 Discussion of solutions 

Solutions to the issue of selective data omission, many of which extend to QRPs 

more generally, broadly fall into two categories: creating and enforcing rules that 

provide disincentives for researchers to engage in QRPs, and conducting follow-up 

research that limits the consequences of individual inaccurate or exaggerated research 

claims. In their review of replication attempts in the social science literature, Pashler and 

Harris (2012) determine that “there is every reason to believe that the great majority of 

errors that do enter the literature will persist uncorrected indefinitely, given current 

practices.” This suggests the importance both of ensuring that research claims are not 

made in error, as the errors will persist, and of modifying academic practices to make 

correction of errors a greater priority. 
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5.2.1 Limiting or disincentivizing QRP usage 

 In the simulations conducted for this study, type I errors in excess of 5% were 

only observed when data were selectively omitted: in the absence of outlier exclusion, 

type I error rates were, as predicted, found to be roughly 5%. Directly preventing or 

disincentivizing researchers from exploiting this QRP, then, is a potential solution. 

However, as mentioned by Bakker and Wicherts (2014b), there are circumstances when 

omitting outlying data is desirable—an ideal solution would permit data to be excluded 

in these cases, while preventing questionable data omission. A number of solutions exist 

that aim to provide disincentives for engaging in this and other QRPs while still allowing 

researchers to omit data when it is appropriate. 

 Simmons et al. (2011) proposed a requirement that any researcher who reports 

statistical results that are based on data with omitted observations must also report the 

same results with the full, non-trimmed data. This requirement, if observed, would make 

it clear when an author’s results—both in terms of magnitude and statistical 

significance—are the result of omitting observations, while still allowing researchers to 

exclude data when they can provide a justification for doing so (Simmons et al. 2011). 

This proposal, Simmons et al. (2011) warned, would not be likely to entirely prevent the 

practice: researchers might simply fail to disclose that data were omitted. If doing so 

were a violation of a publication requirement, however, researchers might be deterred 

from performing unreported data exclusion (Simmons et al. 2011). 

 An alternative solution addresses the issue of ex-post flexibility in determining 

data exclusion rules. As mentioned, there is no commonly accepted practice for deciding 
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which data are outliers worthy of exclusion: systematic reviews have found that 

researchers have employed a wide variety of exclusion rules, with some eliminating no 

outliers and others excluding up to 10% of observed data (Simmons et al. 2011; Bakker 

and Wicherts 2014b). Additionally, 38% of surveyed psychological researchers admitted 

to determining whether to exclude data after observing the impact of doing so (John et 

al. 2012). These facts, taken together, demonstrate enormous flexibility in data exclusion 

that is often exploited. Pre-registration of the studies that will take place and committing 

to research methods in advance has been proposed as a solution to issues of research 

flexibility: if researchers were compelled to commit to criteria for outlier identification 

and removal ex-ante, then this would reduce the problematic flexibility in determining 

how to exclude data ex-post (Bakker and Wicherts 2014b; Wagenmakers et al. 2012).  

 A review of economics and business journals conducted by Karabag and 

Berggren (2012) found that a large majority of economics and business journals do not 

have explicitly stated policies regarding academic dishonesty. Furthermore, the review 

found that, in cases where academic dishonesty had been discovered, the consequences 

for dishonest authors were inconsistent and were often not made public (Karabag and 

Berggren 2012). These findings suggest a lenient incentive structure for researchers who 

are deciding whether to engage in potentially dishonest behaviors, including systematic 

data exclusion: if there are neither explicit rules nor known consequences regarding the 

behavior, then the disincentives from engaging in it are weak. Journal policies or 

discipline-wide guidelines that explicitly restrict and provide consequences for 

unwarranted data exclusion would possibly disincentivize the behavior. 
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Using positive results under NHST as an important criterion for publication has 

been met with criticism: Ziliak and McCloskey (2004) argue that, even in the absence of 

QRPs, NHST is not always appropriate. They and other critics of NHST point to the 

trend of researchers often making no determination of analytical or “economic” 

significance of their results, with statistical significance being the dominant evaluative 

tool (Altman 2004; Ziliak and McCloskey 2004). While the focus of these authors is not 

on QRPs, the incentives to engage in QRPs with the intention of crossing statistical 

significance thresholds are certainly larger the more important that statistical 

significance is deemed to be. 

 Increasing the frequency with which replication attempts are made has also been 

suggested as a means for reducing the proportion of false research findings: replication is 

sometimes seen as “a threat that might keep potential cheaters honest” (Hamermesh 

2007). A higher probability of a replication attempt being made on a researcher’s work 

represents a higher probability of the discovery of false results: if a researcher knows 

that results that depend on inappropriate data omission might be discovered to be 

questionable through replication attempts, then he or she might be less likely to engage 

in the dubious behavior. 

5.2.2 Limiting the consequences of inaccurate research findings 

As mentioned, mandatory disclosure requirements that require researchers to 

report in detail whether statistical findings depend on data omission might prevent them 

from excluding data inappropriately (Simmons et al. 2011). Disclosure requirements of 

this sort have the additional benefit of providing more information to those who are 
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interpreting research findings (LeBel et al. 2013). A reader of an academic publication, 

for example, would better be able to judge the robustness of a research finding if any 

data omission were fully disclosed. The impact and dissemination of research findings 

are likely to depend on how robust the results are perceived to be: disclosure of any 

practice that might make results questionable, including data omission, would therefore 

be likely to reduce the negative potential of spurious results. 

In the previous section, replication was discussed as a means for disincentivizing 

researchers from engaging in questionable research practices. Replication is often 

additionally suggested as a method for reducing the impact of research conclusions that 

are made in error (Hamermesh 2007). All three discussed types of replication can be 

used to limit the impact of false research claims. 

Pure replication attempts can be used to discover and analyze any data exclusions 

that are being performed prior to data analysis: if a result depends on undisclosed data 

exclusion, then this would be revealed through a pure replication attempt on the original 

data. The ability for pure replication to take place depends on the data on which the 

author’s research claims depend being publicly available, which is often a publishing 

requirement (Hamermesh 2007). As mentioned, even in cases where it is a requirement 

to make the data and/or code from which research conclusions are drawn publicly 

available, the requirement is often shirked with no consequences for the violating 

researchers (Dewald et al. 1986; McCullough 2007). If mandatory data submission were 

a more common requirement and/or the requirement were more strictly enforced, then 

there would be improved ability to make pure replication attempts and to discover 
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otherwise undisclosed data exclusion, in addition to other QRPs. Even with pure 

replication attempts, however, it is possible that undisclosed data exclusion would be 

missed: if a researcher trims his or her data prior to making it available, then a successful 

replication attempt could be made without detecting that the undisclosed exclusion took 

place (Camfield and Palmer-Jones 2013). 

Statistical and scientific replication can be used to attempt to verify a study’s 

findings regardless of the availability of the data analyzed for the study (Hamermesh 

2007). If a study makes false research claims for any reason, including the potential 

reason of a result depending on inappropriate data exclusion, then these claims might be 

contradicted by statistical or scientific replication attempts (Schmidt 2009). Replication, 

in this way, “can provide a useful check on the spread of incorrect results” (Duvendack 

et al. 2015). 

As mentioned, Hamermesh (2007) found that pure replication attempts very 

rarely take place, with no data requests taking place for over 60% of papers with freely 

available data. Similarly, economists rarely have the incentives to make statistical or 

scientific replication attempts (Mirowski and Sklivas 1991). Replication has been 

described as having a “lack of popularity among economists” (Camfield and Palmer-

Jones 2013) for a variety of reasons, including small professional rewards and 

sometimes even negative consequences for replication attempts. Attempts by journals to 

increase the amount of replication that takes place have largely failed (Hamermesh 

2007), but increasing the number of replications that take place remains as a possible 

method for reducing the frequency and impact of QRPs.  
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Meta-analysis has been suggested as another potential method to mitigate the 

effects of QRPs (Head et al. 2015). Empirically, there is some evidence that the impact 

of QRPs on coefficient sizes has been small enough that the impact on meta-analytic 

reviews would not be dramatic (Head et al. 2015). The findings of this study are not 

entirely consistent with this finding: as mentioned in Section 4.4, in simulations where 

only one side of each sample is omitted, pre- and post-trimming differences in 

statistically significant results were observed to be as much as .100 standard deviations. 

In simulations where outlier identification is based on z-score thresholds, coefficient size 

differences were observed to be relatively small for large symmetric distributions, but 

potentially large in all other cases, ranging from .035 to .127 standard deviations. 

Additionally, meta-analytic review can depend on replications having taken place 

(Duvendack 2015). While they remain uncommon in economics, meta-analyses are 

sometimes conducted (Stanley 2001) and can conceivably be used to reduce the apparent 

effect of QRPs (Head et al. 2015), possibly including data exclusion. 

5.3 Limitations 

 The data exclusion rule analyzed in this study is one of a number that could be 

used: Simmons et al. (2011) found that, in studies that reported excluding outliers, a 

large number of outlier detection and exclusion rules were employed. Exclusion that 

takes place in practice, including unreported exclusion, could involve exclusion of a 

much larger or smaller percentage of observations than this study analyzed. 

Additionally, the simulations in this study were designed to represent “exploratory” data 

exclusion, where data is continuously omitted until either the 5% maximum trimming 
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threshold or a statistically significant result is achieved. It is unknown to what degree the 

results would generalize to selective data exclusion that takes place without following 

the exact algorithms employed in the simulations used in this study. 

 The simulations additionally are based on assumptions about the distributions of 

the outcome variable for the underlying population: they are drawn from the standard 

normal distribution, the logistic distribution with mean = 0 and scale = 1, and chi-

squared distributions with various degrees of freedom. It is likely that the results based 

on data drawn from these distributions would generalize to selective trimming that is 

undertaken on data drawn from similarly distributed populations. However, it is 

unknown how the results of this study would generalize if the same data exclusion rules 

were applied to populations which do not follow the distributional assumptions of the 

simulations. 

 Treatment effects in the study are always assumed to be zero. If there were an 

underlying treatment effect, then the effect of selective data omission would not be the 

same: in the cases where, for example, a positive treatment effect exists and data 

exclusion is done in a way that makes detection of a positive treatment effect more 

likely, then the exclusion would reduce the chance of a type II error. The increase in 

probability of type I error in the absence of an underlying treatment effect is the only 

possibility that was explored.  
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6. CONCLUSIONS 

 While replication and meta-analysis can be effectively used to reduce the impact 

of research conclusions that are made in error, in several cases they may not offer 

solutions to the empirical problems that economics presents. Economic experiments 

frequently involve expensive interventions which can and sometimes do make statistical 

or scientific replication attempts prohibitively expensive; while it might be normal in 

medicine for several studies to analyze the same intervention (Goldacre 2014), the same 

can rarely be said for economics. Empirically, as described, replication attempts are 

rarely made in economics (Hamermesh 2007). Also as described, it has been 

demonstrated across several fields that false research claims, even those that are 

retracted, are still cited and disseminated (Lu et al. 2013). These facts underscore the 

importance of reducing the type I error rate: if funding and incentives for replication are 

scarce and false results cause lasting harm, then preventing false positives from entering 

the literature as much as possible is likely to be the most effective strategy for limiting 

the dissemination of erroneous economic research claims. 

 Wagenmakers et al. (2011) point to “the relative ease with which an inventive 

researcher can produce statistically significant results even when the null hypothesis is 

true.” The results of this study are broadly consistent with this claim. The literature-wide 

consequences of any QRP are likely to depend on a combination of the flexibility in and 

consequences of its use. The literature demonstrates that whether and how a researcher is 

able to identify and omit outliers is extremely flexible (Simmons et al 2011; Bakker and 
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Wicherts 2014b). The results of this study provide evidence that selective outlier 

omission has significant potential to generate false positive results.  
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APPENDIX A 

CODE FOR SIMULATIONS USING ONE-TAILED OUTLIER OMISSION WITH 

PERCENTILE THRESHOLDS 

 
#delimit ; 

set more off; 

clear; 

set seed 3; 

 

// make variables 

 

generate treatment = 0; 

generate double baseline = .; 

generate double trimmed = .; 

local success = 0; 

local success_pos = 0; 

local success_neg = 0; 

local successtrim = 0; 

local successtrim_pos = 0; 

local successtrim_neg = 0; 

local total_pre_pos_size = 0; 

local total_pre_neg_size = 0; 

local total_post_pos_size = 0; 

local total_post_neg_size = 0; 

local post_effect_neg = 0; 

local post_effect_pos = 0; 

local pre_effect_pos = 0; 

local pre_effect_neg = 0; 

local percentile = 0; 

local percentile_cutoff = .05; 

local count = 0; 

local count_percent = 0; 

local success1 = 0; 

local success2 = 0; 

local success3 = 0; 

local success4 = 0; 

local success5 = 0; 

local unif = 0; 

local logi = 0; 

local iterations=20000; 

 

//This is the sample size. It is changed for different simulations. 

 

local n = 5000; 

 

while `iterations' > 0{; 

  

 local count = 1; 

 local trims = 1; 

 local trimcount = 1; 

 

 local i = `n' * 2; 

 set obs `i'; 
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 /*This generates the dataset. It creates n "treatment" variables and  

 n "control" variables taken from the specified distribution. The  

 distribution that is being used is the only one that is not preceded 

by a line comment, "//". For logistic distributions, the third and forth 

lines represent a calculation of a random number sampled from a logistic 

distribution and the fifth line inserts that random number into the 

dataset. */ 

 

 while `i' > 0{; 

  replace baseline = rnormal(0, 1) in `i'; 

  //replace baseline = rchi2(4) in `i'; 

  //local unif = runiform(); 

  //local logi = -ln((1 - `unif')/`unif'); 

  //replace baseline = `logi' in `i'; 

  replace treatment = 1 in `i' if `i' <= `n'; 

  replace treatment = 0 in `i' if `i' > `n'; 

  local i = `i' - 1; 

 }; 

 

 

 regress baseline treatment; 

 

 local p = 2*ttail(e(df_r),abs(_b[treatment]/_se[treatment])); 

 

 //if p is statistically significant, then stop there. Otherwise,  

 //try the trimming routine; 

 

 if (`p' <= .05){; 

   

  //log whether the observed coefficient is positive or negative 

   

  if (_b[treatment] > 0){; 

   local success_pos = `success_pos' + 1; 

  }; 

  else{; 

   local success_neg = `success_neg' + 1; 

  }; 

  local success = `success' + 1; 

 }; 

  

 else{; 

 

  /*log the insignificant effect size. This can be compared to  

  the significant one if the significance threshold is obtained */ 

   

  if (_b[treatment] > 0){; 

   local pre_effect_pos = _b[treatment]; 

  }; 

  else{; 

   local pre_effect_neg = _b[treatment]; 

  }; 

  replace trimmed = baseline if treatment == 1; 

  replace trimmed = . if treatment == 0; 

  sort trimmed; 

  replace trimmed = baseline if treatment == 0; 

  while (`percentile' < `percentile_cutoff'){; 

   local percentile = `percentile' + .01; 

   di "Percentile: " `percentile'; 

   local count_percent = `count' / `n'; 
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   di "count_percent = " `count_percent'; 

 

   /*This loop performs the data trimming. "trimmed" is a  

   variable containing all of the control observations  

   and only the treatment observations that are included  

   after trimming. The first line within the loop is  

   commented out when right-tailed trimming is considered,  

   and the third line commented out when left-tailed  

   trimming is considered. */ 

 

   while (`count_percent' <= `percentile'){; 

    //replace trimmed = . in `count'; 

    local uppertrim = `n' - `count' + 1; 

    replace trimmed = . in `uppertrim'; 

    local count = `count' + 1; 

    local count_percent = `count' / `n'; 

   }; 

   regress trimmed treatment; 

   local p = 2*ttail(e(df_r), 

   abs(_b[treatment]/_se[treatment])); 

    

   if (`p' <= .05){; 

     

    //if trimming works, then log the new effect  

    //size. A comparison between statistical and  

    //analytical significance can be drawn 

 

    if (`percentile' == .01){; 

     local success1 = `success1' + 1; 

    }; 

    if (`percentile' == .02){; 

     local success2 = `success2' + 1; 

    }; 

    if (`percentile' == .03){; 

     local success3 = `success3' + 1; 

    }; 

    if (`percentile' == .04){; 

     local success4 = `success4' + 1; 

    }; 

    if (`percentile' == .05){; 

     local success5 = `success5' + 1; 

    }; 

 

    local successtrim = `successtrim' + 1; 

    local trimcount = `trims' + 1; 

     

    if (_b[treatment] > 0){; 

     local post_effect_pos = _b[treatment]; 

 

     local total_post_pos_size =  

     `total_post_pos_size' + 0 +  

     `post_effect_pos'; 

 

     local total_pre_pos_size = 

     `total_pre_pos_size' + 0 +  

     `pre_effect_pos'; 

 

     local successtrim_pos =  

     `successtrim_pos' + 1; 
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    }; 

    else{; 

     

     local post_effect_neg = _b[treatment]; 

 

     local total_post_neg_size =  

     `total_post_neg_size' + 0 +  

     `post_effect_neg'; 

 

     local total_pre_neg_size = 

     `total_pre_neg_size' + 0 +  

     `pre_effect_neg'; 

 

     local successtrim_neg =  

     `successtrim_neg' + 1; 

    }; 

 

    //break the loops 

    local count_percent = `n' + 1; 

    local percentile = .05; 

   }; 

   if (`count_percent' < `n'){; 

    local count_percent = `count' / `n'; 

   }; 

   di "count_percent = " `count_percent'; 

   local trimcount = `trimcount' + 1; 

    

  }; 

  local percentile = 0; 

 }; 

 local iterations = `iterations' - 1; 

 di "iteration " `iterations'; 

}; 

if (`successtrim_pos' > 0){; 

 local total_pre_pos_size = `total_pre_pos_size' / `successtrim_pos'; 

 local total_post_pos_size = `total_post_pos_size' / `successtrim_pos'; 

}; 

if (`successtrim_neg' > 0){; 

 local total_pre_neg_size = `total_pre_neg_size' / `successtrim_neg'; 

 local total_post_neg_size = `total_post_neg_size' / `successtrim_neg'; 

}; 

di "observations with p < .05 total without trimming: " `success'; 

 

di "observations with p < .05, effect negative without trimming: "  

`success_neg'; 

 

di "observations with p < .05, effect positive without trimming: "  

`success_pos'; 

 

di "observations with p < .05 total with trimming " `successtrim'; 

 

di "observations with p < .05, effect negative with trimming: "  

`successtrim_neg'; 

 

di "observations with p < .05, effect positive with trimming: "  

`successtrim_pos'; 

 

/* The average coefficient size is expected to be zero. This only shows  

the average coefficient size for the trials for which statistically  
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significant results were not observed pre-trimming but were observed  

post-trimming. This is done so that the difference in coefficient size  

for the coefficients that are altered can be calculated. */ 

 

di "pre-trimming average positive effect size: " `total_pre_pos_size'; 

di "post-trimming average positive effect size: " `total_post_pos_size'; 

di "pre-trimming average negative effect size: " `total_pre_neg_size'; 

di "post-trimming average negative effect size: " `total_post_neg_size'; 

 

di "success on trim 1: " `success1'; 

di "success on trim 2: " `success2'; 

di "success on trim 3: " `success3'; 

di "success on trim 4: " `success4'; 

di "success on trim 5: " `success5'; 

 
break; 
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APPENDIX B 

 CODE FOR SIMULATIONS USING OUTLIER OMISSION WITH Z-SCORE 

THRESHOLDS 

 
#delimit ; 

set more off; 

clear; 

set seed 3; 

 

// make variables 

 

generate treatment = 0; 

generate double baseline = .; 

generate double trimmed = .; 

generate double z_score = .; 

local success = 0; 

local success_pos = 0; 

local success_neg = 0; 

local successtrim = 0; 

local successtrim_pos = 0; 

local successtrim_neg = 0; 

local total_pre_pos_size = 0; 

local total_pre_neg_size = 0; 

local total_post_pos_size = 0; 

local total_post_neg_size = 0; 

local post_effect_neg = 0; 

local post_effect_pos = 0; 

local pre_effect_pos = 0; 

local pre_effect_neg = 0; 

local percentile = 0; 

local percentile_cutoff = .05; 

local count = 0; 

local count_percent = 0; 

local treatment_mean = 0; 

local treatment_sd = 0; 

local success2 = 0; 

local success25 = 0; 

local success3 = 0; 

local iterations= 20000; 

 

//This is the sample size. It is changed for different simulations. 

 

local n = 100; 

 

while `iterations' > 0{; 

  

 local count = 1; 

 local trims = 1; 

 local trimcount = 1; 

 

 local i = `n' * 2; 

 set obs `i'; 

 

 /*This generates the dataset. It creates n "treatment" variables and  
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 n "control" variables taken from the specified distribution. The  

 distribution that is being used is the only one that is not preceded 

by a line comment, "//". For logistic distributions, the third and forth 

lines represent a calculation of a random number sampled from a logistic 

distribution and the fifth line inserts that random number into the 

dataset. */ 

 

 while `i' > 0{; 

  replace baseline = rnormal(0, 1) in `i'; 

  //replace baseline = rchi2(4) in `i'; 

  //local unif = runiform(); 

  //local logi = -ln((1 - `unif')/`unif'); 

  //replace baseline = `logi' in `i'; 

  replace treatment = 1 in `i' if `i' <= `n'; 

  replace treatment = 0 in `i' if `i' > `n'; 

  local i = `i' - 1; 

 }; 

 

 local i = `n'; 

 

 while `i' > 0{; 

  replace trimmed = baseline in `i'; 

  local i = `i' - 1; 

 }; 

  

 

 local i = `n' * 2; 

 summarize trimmed; 

  

 while `i' > 0{; 

  local treatment_mean = baseline in `i'; 

 

  replace z_score = (`treatment_mean' - r(mean))/r(sd)  

  in `i' if `i' <= `n'; 

 

  local i = `i' - 1; 

 }; 

 

 regress baseline treatment; 

 

 local p = 2*ttail(e(df_r),abs(_b[treatment]/_se[treatment])); 

 

 //if p is statistically significant, then stop there. Otherwise,  

 //try the trimming routine 

 

 if (`p' <= .05){; 

   

  //log whether the observed coefficient is positive or negative 

   

  if (_b[treatment] > 0){; 

   local success_pos = `success_pos' + 1; 

  }; 

  else{; 

   local success_neg = `success_neg' + 1; 

  }; 

  local success = `success' + 1; 

 }; 

  

 if (`p' > .05){; 
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  /*log the insignificant effect size. This can be compared to  

  the significant one if the significance threshold is obtained */ 

 

  if (_b[treatment] > 0){; 

   local pre_effect_pos = _b[treatment]; 

  }; 

  else{; 

   local pre_effect_neg = _b[treatment]; 

  }; 

  replace trimmed = baseline; 

  replace trimmed = . if abs(z_score) > 3 & z_score != .; 

  regress trimmed treatment; 

  local p = 2*ttail(e(df_r),abs(_b[treatment]/_se[treatment])); 

  if (`p' <= .05){; 

   local success3 = `success3' + 1; 

   if (_b[treatment] > 0){; 

     local post_effect_pos = _b[treatment]; 

 

     local total_post_pos_size =  

     `total_post_pos_size' + 0 +  

     `post_effect_pos'; 

 

     local total_pre_pos_size =  

     `total_pre_pos_size' + 0 +  

     `pre_effect_pos'; 

 

     local successtrim_pos =  

     `successtrim_pos' + 1; 

 

    }; 

    else{; 

      

     local post_effect_neg = _b[treatment]; 

 

     local total_post_neg_size =  

     `total_post_neg_size' + 0 +  

     `post_effect_neg'; 

 

     local total_pre_neg_size =  

     `total_pre_neg_size' + 0 +  

     `pre_effect_neg'; 

 

     local successtrim_neg =  

     `successtrim_neg' + 1; 

 

    }; 

 

  }; 

  if (`p' > .05){; 

   replace trimmed = baseline; 

 

   replace trimmed = . if abs(z_score) > 2.5 &  

   z_score != .; 

 

   regress trimmed treatment; 

 

   local p = 2*ttail(e(df_r), 

   abs(_b[treatment]/_se[treatment])); 
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   if (`p' <= .05){; 

    local success25 = `success25' + 1; 

    if (_b[treatment] > 0){; 

     local post_effect_pos = _b[treatment]; 

 

     local total_post_pos_size =  

     `total_post_pos_size' + 0 +  

     `post_effect_pos'; 

 

     local total_pre_pos_size =  

     `total_pre_pos_size' + 0 +  

     `pre_effect_pos'; 

 

     local successtrim_pos =  

     `successtrim_pos' + 1; 

 

    }; 

    else{; 

     

     local post_effect_neg = _b[treatment]; 

 

     local total_post_neg_size =  

     `total_post_neg_size' + 0 +  

     `post_effect_neg'; 

 

     local total_pre_neg_size =  

     `total_pre_neg_size' + 0 +  

     `pre_effect_neg'; 

 

     local successtrim_neg =  

     `successtrim_neg' + 1; 

    }; 

   }; 

  

   if (`p' > .05){; 

    replace trimmed = baseline; 

 

    replace trimmed = . if abs(z_score) > 2  

    & z_score != .; 

 

    regress trimmed treatment; 

 

    local p = 2*ttail(e(df_r), 

    abs(_b[treatment]/_se[treatment])); 

 

    if (`p' <= .05){; 

     local success2 = `success2' + 1; 

     if (_b[treatment] > 0){; 

 

      local post_effect_pos =  

      _b[treatment]; 

 

      local total_post_pos_size =  

      `total_post_pos_size' + 0 +  

      `post_effect_pos'; 

 

      local total_pre_pos_size =  

      `total_pre_pos_size' + 0 +  
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      `pre_effect_pos'; 

 

      local successtrim_pos =  

      `successtrim_pos' + 1; 

 

     }; 

     else{; 

     

      local post_effect_neg =  

      _b[treatment]; 

 

      local total_post_neg_size =  

      `total_post_neg_size' + 0 + 

       `post_effect_neg'; 

 

      local total_pre_neg_size =  

      `total_pre_neg_size' + 0 +  

      `pre_effect_neg'; 

 

      local successtrim_neg =  

      `successtrim_neg' + 1; 

 

     }; 

    }; 

   }; 

  }; 

 

 }; 

 local iterations = `iterations' - 1; 

 di "iteration " `iterations'; 

}; 

if (`successtrim_pos' > 0){; 

 local total_pre_pos_size = `total_pre_pos_size' / `successtrim_pos'; 

 local total_post_pos_size = `total_post_pos_size' / `successtrim_pos'; 

}; 

if (`successtrim_neg' > 0){; 

 local total_pre_neg_size = `total_pre_neg_size' / `successtrim_neg'; 

 local total_post_neg_size = `total_post_neg_size' / `successtrim_neg'; 

}; 

 

di "observations with p < .05 total without trimming: " `success'; 

 

di "observations with p < .05, effect negative without trimming: "  

`success_neg'; 

 

di "observations with p < .05, effect positive without trimming: "  

`success_pos'; 

 

di "observations with p < .05 total with trimming " `successtrim'; 

 

di "observations with p < .05, effect negative with trimming: "  

`successtrim_neg'; 

 

di "observations with p < .05, effect positive with trimming: "  

`successtrim_pos'; 

 

/*The average coefficient size is expected to be zero. This only shows the 

average coefficient size for the trials for which statistically significant 

results were not observed pre-trimming but were observed post-trimming. This is 
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done so that the difference in coefficient size for the coefficients that are 

altered can be calculated. 

*/ 

 

di "pre-trimming average positive effect size: " `total_pre_pos_size'; 

di "post-trimming average positive effect size: " `total_post_pos_size'; 

di "pre-trimming average negative effect size: " `total_pre_neg_size'; 

di "post-trimming average negative effect size: " `total_post_neg_size'; 

 

di "success when trimming rule is z > 3: " `success3'; 

di "success wen trmming rule is z > 2.5: " `success25'; 

di "success when trimming rule is z > 2: " `success2'; 

 

break; 
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 APPENDIX C 

FIGURES 

Figures 1 through 8 show the dependency of type I error rates on the maximum one-

tailed trimming threshold used, following the iterative data exclusion process described 

in Section 3, for various sample sizes. Figures 1 through 4 show the results for 

simulations wherein data is only excluded from the left tail of analyzed samples. Figures 

5 through 8 show results from simulations wherein data is excluded from the right tail of 

analyzed samples. 

 

Figures 8 through 12 show the dependency of type I error rates on the z-score trimming 

threshold used, following the iterative process described in Section 3, for various sample 

sizes.  
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Figure 1: Cumulative probability of type 1 error, n = 100, left tail trimming  
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Figure 2: Cumulative probability of type 1 error, n = 500, left tail trimming  
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Figure 3: Cumulative probability of type 1 error, n = 1,000, left tail trimming  
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Figure 4: Cumulative probability of type 1 error, n = 5,000, left tail trimming  

0.05105

0.3071

0.7364

0.9704
1 1

0.0499

0.12495

0.29595

0.53965

0.77195

0.9287

0.05015

0.1673

0.43435

0.73805

0.9306

1

0.0488

0.2319

0.6013

0.89645

0.9998 1

0.832

0.04

0.14

0.24

0.34

0.44

0.54

0.64

0.74

0.84

0.94

0 0.01 0.02 0.03 0.04 0.05

P
ro

b
ab

ili
ty

 o
f 

Ty
p

e 
I e

rr
o

r

Maximum trimming threshold

Standard normal Chi Squared, df = 4 Chi Squared, df = 10 Chi Squared, df = 50 Logistic, μ = 0, s = 1



 

63 

 

 

 

Figure 5: Cumulative probability of type 1 error, n = 100, right tail trimming  
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Figure 6: Cumulative probability of type 1 error, n = 500, right tail trimming  
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Figure 7: Cumulative probability of type 1 error, n = 1,000, right tail trimming  
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Figure 8: Cumulative probability of type 1 error, n = 5,000, right tail trimming
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Figure 9: Cumulative probability of type 1 error, n = 100, z-score threshold trimming  
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Figure 10: Cumulative probability of type 1 error, n = 500, z-score threshold trimming  
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Figure 11: Cumulative probability of type 1 error, n = 1000, z-score threshold trimming  
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Figure 12: Cumulative probability of type 1 error, n = 5000, z-score threshold trimming 
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APPENDIX D 

 

TABLES 

 

TABLE 1: Type I error rates for z-score threshold trimming 

 

n Population 

Distribution 

Z-score Trimming Threshold 

  3 2.5 2 

100 Standard 

Normal 

0.05545 0.06345 0.07825 

100 χ2, df = 4 0.08425 0.1244 0.2133 

100 χ2, df = 10 0.0705 0.09655 0.1631 

100 χ2, df = 50 0.06105 0.07505 0.10205 

100 Logistic,  

μ = 0, s = 1 

0.0617 0.07045 0.08365 

500 Standard 

Normal 

0.05535 0.06475 0.07965 

500 χ2, df = 4 0.16855 0.341 0.6858 

500 χ2, df = 10 0.1077 0.20865 0.50285 

500 χ2, df = 50 0.0705 0.1123 0.1961 

500 Logistic,  

μ = 0, s = 1 

0.06235 0.0696 0.08375 

1000 Standard 

Normal 

0.05515 0.06445 0.0809 

1000 χ2, df = 4 0.27875 0.57705 0.9436 

1000 χ2, df = 10 0.15365 0.3475 0.7929 

1000 χ2, df = 50 0.0788 0.1496 0.3145 

1000 Logistic,  

μ = 0, s = 1 

0.06245 0.0714 0.0822 

5000 Standard 

Normal 

0.05785 0.0671 0.08145 

5000 χ2, df = 4 0.83265 0.99995 1 

5000 χ2, df = 10 0.443 0.93595 1 

5000 χ2, df = 50 0.1444 0.4562 0.88675 

5000 Logistic,  

μ = 0, s = 1 

0.0651 0.0734 0.08535 

Table 1: type I error rates at 5% significance threshold resulting from selective 

trimming based on Z-scores exclusion as described in section 3. 
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TABLE 2: Type I error rates for left-tailed trimming 

 

n Population 

Distribution 

Percentile Trimming Threshold 

  1% 2% 3% 4% 5% 

100 Standard 

Normal 

0.0644 0.0811 0.1009 0.12545 0.15245 

100 χ2, df = 4 0.0559 0.0635 0.0719 0.08305 0.095 

100 χ2, df = 10 0.06025 0.07055 0.0829 0.0978 0.11615 

100 χ2, df = 50 0.066 0.079 0.09585 0.1142 0.13555 

100 Logistic,  

μ = 0, s = 1 

0.069 0.088 0.109 0.135 0.1625 

500 Standard 

Normal 

0.08835 0.14975 0.23365 0.34005 0.4523 

500 χ2, df = 4 0.06275 0.0866 0.12005 0.1584 0.20735 

500 χ2, df = 10 0.0749 0.1089 0.15555 0.21195 0.28325 

500 χ2, df = 50 0.08295 0.13375 0.19885 0.28015 0.37945 

500 Logistic,  

μ = 0, s = 1 

0.1001 0.1709 0.267 0.38015 0.50205 

1000 Standard 

Normal 

0.10735 0.2215 0.3781 0.5502 0.7139 

1000 χ2, df = 4 0.07785 0.1161 0.1709 0.25115 0.34375 

1000 χ2, df = 10 0.0857 0.1453 0.23565 0.34785 0.4731 

1000 χ2, df = 50 0.09865 0.18905 0.31175 0.4588 0.6119 

1000 Logistic,  

μ = 0, s = 1 

0.1347 0.2741 0.4558 0.6288 0.78335 

5000 Standard 

Normal 

0.3071 0.7364 0.9704 1 1 

5000 χ2, df = 4 0.12495 0.29595 0.53965 0.77195 0.9287 

5000 χ2, df = 10 0.1673 0.43435 0.73805 0.9306 1 

5000 χ2, df = 50 0.2319 0.6013 0.89645 0.9998 1 

5000 Logistic,  

μ = 0, s = 1 

0.3859 0.832 0.9975 1 1 

Table 2: type I error rates at 5% significance threshold resulting from selective 

trimming, excluding only the left tail of the sample as described in section 3. 

 

 

 

 

 

 

 

 



 

73 

 

 

TABLE 3: Type I error rates for right-tailed trimming 

 

n Population 

Distribution 

Percentile Trimming Threshold 

  1% 2% 3% 4% 5% 

100 Standard 

Normal 

0.0645 0.08135 0.1015 0.1249 0.15175 

100 χ2, df = 4 0.07275 0.1016 0.13795 0.1782 0.22665 

100 χ2, df = 10 0.0705 0.09605 0.12665 0.1588 0.1974 

100 χ2, df = 50 0.071 0.08905 0.1124 0.14125 0.17275 

100 Logistic,  

μ = 0, s = 1 

0.06735 0.08545 0.10765 0.13485 0.16535 

500 Standard 

Normal 

0.08895 0.151 0.23485 0.33625 0.44945 

500 χ2, df = 4 0.1242 0.2479 0.40805 0.5749 0.72515 

500 χ2, df = 10 0.1108 0.21255 0.342 0.48785 0.632 

500 χ2, df = 50 0.1015 0.17815 0.2793 0.39975 0.5331 

500 Logistic,  

μ = 0, s = 1 

0.1011 0.1727 0.26805 0.381 0.50235 

1000 Standard 

Normal 

0.1151 0.23445 0.3498 0.5239 0.6822 

1000 χ2, df = 4 0.19035 0.4277 0.67515 0.86385 0.9636 

1000 χ2, df = 10 0.1629 0.35135 0.5801 0.7722 0.90675 

1000 χ2, df = 50 0.1323 0.2818 0.47385 0.66525 0.81685 

1000 Logistic,  

μ = 0, s = 1 

0.13375 0.2747 0.4545 0.62855 0.782 

5000 Standard 

Normal 

0.30145 0.73015 0.96835 1 1 

5000 χ2, df = 4 0.5912 0.98835 1 1 1 

5000 χ2, df = 10 0.4858 0.93775 1 1 1 

5000 χ2, df = 50 0.38495 0.8456 0.99995 1 1 

5000 Logistic,  

μ = 0, s = 1 

0.3788 0.82985 0.9974 1 1 

Table 3: type I error rates at 5% significance threshold resulting from selective 

trimming, excluding only the right tail of the sample as described in section 3. 
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TABLE 4: Coefficient size differences for z-score threshold trimming 

 

n Population 

Distribution 

Difference in coefficient 

size when coefficient is 

positive 

Difference in coefficient 

size when coefficient is 

negative 

  Coefficient 

Difference 

Difference 

in standard 

deviations 

Coefficient 

Difference 

Difference 

in standard 

deviations 

100 Standard 

Normal 

0.0491497 0.0491497 -0.05400332 -0.05400332 

100 χ2, df = 4   -0.35873345 -0.12683142 

100 χ2, df = 10   -0.4814947 -0.10766548 

100 χ2, df = 50 0.2523274 0.02523274 -0.7600572 -0.07600572 

100 Logistic,  

μ = 0, s = 1 

0.09110917 0.050231118 -0.092821 -0.05117489 

500 Standard 

Normal 

0.02198541 0.02198541 -0.01898185 -0.01898185 

500 χ2, df = 4   -0.26623059 -0.09412672 

500 χ2, df = 10   -0.4054659 -0.09066493 

500 χ2, df = 50 0.0388016 0.00388016 -0.54777162 -0.05477716 

500 Logistic,  

μ = 0, s = 1 

0.04289969 0.023651839 -0.03851046 -0.02123192 

1000 Standard 

Normal 

0.01472989 0.01472989 -0.01379454 -0.01379454 

1000 χ2, df = 4   -0.20922835 -0.07397339 

1000 χ2, df = 10   -0.35669386 -0.07975917 

1000 χ2, df = 50 0.02659144 0.002659144 -0.5170907 -0.05170907 

1000 Logistic,  

μ = 0, s = 1 

0.02817934 0.015536084 -0.02716737 -0.01497815 

5000 Standard 

Normal 

0.00635428 0.00635428 -0.00672346 -0.00672346 

5000 χ2, df = 4   -0.12980737 -0.04589383 

5000 χ2, df = 10   -0.18213386 -0.04072636 

5000 χ2, df = 50   -0.3495587 -0.03495587 

5000 Logistic,  

μ = 0, s = 1 

0.01201063 0.006621807 -0.0122375 -0.00674688 

Table 4: Differences in coefficient size, pre- and post-trimming for samples trimmed 

based on z-score thresholds. Any time that excluding data changed an insignificant 

result to a significant one at the 5% significance threshold, the difference in coefficient 

size before trimming and after trimming was logged. This reports the averages of these 

differences. Blank cells indicate cases where trimming never resulted in a positive 

coefficient. 
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TABLE 5: Coefficient size differences for left-tailed trimming 

 

n Population 

Distribution 

Difference in coefficient 

size when coefficient is 

positive 

Difference in coefficient 

size when coefficient is 

negative 

  Coefficient 

Difference 

Difference 

in standard 

deviations 

Coefficient 

Difference 

Difference 

in standard 

deviations 

100 Standard 

Normal 

0.07523123 0.07523123   

100 χ2, df = 4 0.13344476 0.047179847   

100 χ2, df = 10 0.2588158 0.057872972   

100 χ2, df = 50 0.6626796 0.06626796   

100 Logistic,  

μ = 0, s = 1 

0.14183847 
 

   

500 Standard 

Normal 

0.0785607 0.0785607   

500 χ2, df = 4 0.13484771 0.047675865   

500 χ2, df = 10 0.26150791 0.058474946   

500 χ2, df = 50 0.69996186 0.069996186   

500 Logistic,  

μ = 0, s = 1 

0.1489591 
 

0.082125456 
 

  

1000 Standard 

Normal 

0.06281515 0.06281515   

1000 χ2, df = 4 0.13688872 0.048397471   

1000 χ2, df = 10 0.26453965 0.059152864   

1000 χ2, df = 50 0.63108952 0.063108952   

1000 Logistic,  

μ = 0, s = 1 

0.11399361 
 

0.062847971 
 

  

5000 Standard 

Normal 

0.03543871 0.03543871   

5000 χ2, df = 4 0.08844666 0.031270617   

5000 χ2, df = 10 0.14816295 0.033130243   

5000 χ2, df = 50 0.34285365 0.034285365   

5000 Logistic,  

μ = 0, s = 1 

0.06567853 
 

0.036210471 
 

  

Table 5: Differences in coefficient size, pre- and post-trimming for samples with trimmed 

left tails based on percentile thresholds. Any time that excluding data changed an 

insignificant result to a significant one at the 5% significance threshold, the difference in 

coefficient size before trimming and after trimming was logged. This reports the 

averages of these differences. Blank cells indicate cases where trimming never resulted 

in a negative coefficient. 
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TABLE 6: Coefficient size differences for right-tailed trimming 

 

n Population 

Distribution 

Difference in coefficient 

size when coefficient is 

positive 

Difference in coefficient 

size when coefficient is 

negative 

  Coefficient 

Difference 

Difference 

in standard 

deviations 

Coefficient 

Difference 

Difference 

in standard 

deviations 

100 Standard 

Normal 

  -0.07534788 -0.07534788 

100 χ2, df = 4   -0.2835173 -0.10023850 

100 χ2, df = 10   -0.4092423 -0.09150936 

100 χ2, df = 50   -0.8240382 -0.08240382 

100 Logistic,  

μ = 0, s = 1 

  -0.14517944 
 

-0.08004162 
 

500 Standard 

Normal 

  -0.07845424 -0.07845424 

500 χ2, df = 4   -0.236644 -0.08366628 

500 χ2, df = 10   -0.37876655 -0.08469477 

500 χ2, df = 50   -0.84304128 -0.08430412 

500 Logistic,  

μ = 0, s = 1 

  -0.14844211 
 

-0.08184042 

1000 Standard 

Normal 

  -0.0631318 -0.0631318 

1000 χ2, df = 4   -0.18155345 -0.06418883 

1000 χ2, df = 10   -0.28373422 -0.0634449 

1000 χ2, df = 50   -0.63694708 -0.06369470 

1000 Logistic,  

μ = 0, s = 1 

  -0.11456275 
 

-0.06316175 
 

5000 Standard 

Normal 

  -0.03552508 -0.03552508 

5000 χ2, df = 4   -0.1136682 -0.04018777 

5000 χ2, df = 10   -0.17217563 -0.03849964 

5000 χ2, df = 50   -0.36642148 -0.03664214 

5000 Logistic,  

μ = 0, s = 1 

  -0.06601046 
 

-0.03639347 

Table 6: Differences in coefficient size, pre- and post-trimming for samples with trimmed 

right tails based on percentile thresholds. Any time that excluding data changed an 

insignificant result to a significant one at the 5% significance threshold, the difference in 

coefficient size before trimming and after trimming was logged. This reports the 

averages of these differences. Blank cells indicate cases where trimming never resulted 

in a positive coefficient. 
 




