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ABSTRACT 

 

Cotton (Gossypium hirsutum L.) crops usually experience some type of 

environmental stress during the season. Soil moisture deficits along with high 

temperatures pose the biggest constraints for crop productivity. Although usually hard to 

distinguish between drought and high temperature stress effects, it is important to 

develop means to help mitigate the negative impacts of such stresses on crop 

productivity. The 1-methylcyclopropene (1-MCP) is an ethylene antagonist that acts by 

binding to ethylene receptors, thus delaying and/or diminishing its effects on plants. 

Recently 1-MCP became the focus of several studies due to its potential to mitigate 

negative impacts of abiotic stresses. The main objective of this research was to assess the 

impact of 1-MCP on field grown cotton. The secondary objective was to investigate the 

association of canopy temperature (CT), canopy temperature depression (CTD), stress 

degree day (SDD), thermal stress index (TSI), and crop water stress index (CWSI) with 

crop yield. Field studies were conducted at the Texas A&M University Field Laboratory 

in Burleson County, TX from 2012 to 2014. Plots were arranged in a randomized 

complete block design and replicated four times. Treatments consisted of 1-MCP 

application (25 g a.i. ha
-1

) triggered by canopy temperature (28 °C) and forecasted 

ambient temperatures (35 and 27.8 °C). For the secondary objective treatments were two 

irrigation levels, namely, dryland and irrigated. 

Results indicated that 1-MCP had little to no effect on the physiology and 

morphology of cotton at different stages of crop development. Daily plant canopy 
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temperature, net photosynthesis, transpiration, and photosystem II quantum yield were 

affected by 1-MCP treatment when plants were irrigated, but not under dryland 

conditions. Effects of 1-MCP applications during different seasons were inconsistent. 

Ultimately, 1-MCP treatment effects were not enough to increase final seedcotton yield 

under the conditions tested. Negative relationships between yield and CT (r
2
 = 0.66), 

yield and TSI (r
2
 = 0.70), and yield and CWSI (r

2
 = 0.58) were found. CTD and SDD 

showed great distinction between the humid (2012 and 2014) and dry (2013) years, and 

to a lesser extent, this was also apparent for CWSI. Evidence suggests that CTD, SDD, 

and CWSI models should be interpreted with caution, particularly in locations where 

great inter-annual weather variability occurs. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Cotton (Gossypium hirsutum L.) grown all over the U.S. Cotton Belt and other 

parts of the world usually experience some type of environmental stress. Because of 

constraints by unfavorable environmental factors, plants often have limitations 

expressing their full genetic potential for growth and yield (Boyer, 1982). With the ever-

growing world population, it seems inevitable that it comes accompanied by an increase 

in greenhouse gases emissions, ultimately leading to changes in global climate patterns, 

such as increases in temperatures and changes in rainfall patterns (Allan and Soden, 

2008; Karl and Trenberth, 2003).  

Several studies have indicated the possibility of greater intra- and inter-annual 

variability of rainfall patterns with fewer but more intense events with extended drier 

periods in between (Allan and Soden, 2008; Easterling et al., 2000; Groisman and 

Knight, 2008; Karl and Trenberth, 2003). Furthermore, there is mounting evidence that 

wet environments are likely to become wetter, while dry environments will become drier 

(Chou et al., 2007; Xuebin et al., 2007). For the United States specifically, models also 

predict an increase in temperature ranging from 3 to 5 °C on average, in the next 100 

years, assuming that the growth of world greenhouse gases emissions continues 

(MacCracken et al., 2003). Exact and detailed knowledge of how these changes in 

climate patterns will affect plants and ecosystems is lacking. How agriculture will adapt 

to such changes is also largely unknown. Among abiotic stresses, drought and high 
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temperature are perhaps the two most common in cotton, and both often occur 

concomitantly. High temperature is likely the most constant and difficult to manage, 

assuming of course, that irrigation water is available to supplement rainfall within a 

growing season. Since these two types of stresses are so intimately interrelated for 

warm-season crops, it is often difficult to separate between their different effects under 

natural conditions. According to Idso et al. (1977), moisture and temperature are the two 

primary factors determining crop productivity. Although researchers have studied the 

effects of temperature extremes (e.g. heat shock and chilling injury) in different plants, 

according to Burke et al. (1993) such extreme temperatures are not necessary for a plant 

to experience thermal stress.  

High temperature stress may be defined as any temperature outside of the upper 

bound of the thermal kinetic window (TKW). The TKW represents the temperature 

range in which the apparent Michaelis-Menten constant (Km) remains within 200% of 

the minimum value for optimum enzyme function. It appears that the term TKW was 

first coined by Mahan et al. (1987). Leonor Michaelis and Maud Leonora Menten 

developed the Michaelis-Menten (Km) constant a little over a century ago. Their original 

paper “Die Kinetik der Invertinwirkung” in German was published in 1913, and showed 

that the rate at which an enzyme-catalyzed reaction occurs is proportional to the 

concentration of the enzyme-substrate complex. More recently the original publication 

was translated to English by Johnson and Goody (2011).  

Major reductions in yield due to heat stress may occur in certain geographical 

areas if temperatures deviate as little as one or two degrees from the plant optimum 
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temperature (Carmo-Silva et al., 2012). The first study on cotton’s TKW during the late 

1900s reported an optimum temperature range between 23.5 and 32 °C (Burke et al., 

1988), and it was based on glyoxylate reductase for nicotinamide adenine dinucleotide 

(NADH). The most recent report on cotton shows that its ideal temperature is centered 

around 28 ± 3 °C (Burke and Wanjura, 2010), where important physiological, 

developmental, and biochemical processes are at peak performance. However, it is 

important to note that ambient temperatures above 31 °C during the season are not that 

uncommon in most cotton growing areas. Burke et al.’s (1988) study on cotton utilizing 

a 50° field-of-view infrared thermometer (IRT) showed that plants were within their 

TKW for less than 30% of the season. The results led researchers to conclude that 

around 70% of the growing season is still available for increasing crop production (i.e. 

changes in management practices and/or genetics). Temperatures such as 30/20 °C 

day/night have already been implicated in causing fruit shedding in cotton (Reddy et al., 

1991b). Some fruit shedding may be normally expected during the plant reproductive 

stage. However, loss of such structures may be increased with the onset of severe stress, 

ultimately leading to a negative impact on the final crop yield (Pettigrew, 2004).  

Most plants have the ability of leaf cooling through the loss of water to the 

atmosphere (transpiration). However, during the first half of the 20
th

 century there was 

still disagreement among plant physiologists as to the effectiveness and true importance 

of transpiration in the cooling of plant leaves. While some researchers believed that the 

cooling effect was generally small and had little impact in helping plants avoid excess 

heat (Clum, 1926; Curtis, 1926; Curtis, 1938), others thought the effects of transpiration 
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on cooling were significant (Clements, 1934; Shull, 1919; Wallace and Clum, 1938). In 

the present day there is a general agreement regarding the importance of transpiration in 

leaf cooling, and several researchers including Reicosky et al. (1985), Upchurch et al. 

(1988), Lu et al. (1994), and Burke et al. (1989) have shown that cotton possesses a 

substantial cooling ability. 

 Different hormones, such as cytokinins, abscisic acid, gibberellins, auxins, and 

ethylene, regulate growth in plants. Among the various known plant hormones, ethylene 

possesses the simplest molecular structure (C2H4). It was first identified as the active 

component of coal gas sometime during the nineteenth century, when it was observed 

that trees growing near street lamps showed greater defoliation when compared to other 

trees (Taiz and Zeiger, 2002). Later in 1934, ethylene was proved to be a naturally 

occurring product of plant metabolism (Gane, 1934), which led to its classification as a 

plant hormone.  

Today, ethylene is known to be produced by almost all plant parts, from roots to 

stems, to leaves and flowers, and to be biologically active even in trace amounts. It is 

involved in a number of developmental and physiological processes in plants, including 

seed germination (Gniazdowska et al., 2010; Linkies and Leubner-Metzger, 2012), 

seedcoat development (Mohapatra and Mohapatra, 2006), production of volatile 

compounds (Dexter et al., 2007; Underwood et al., 2005), growth (De Grauwe et al., 

2005; Foo et al., 2006; Malloch and Osborne, 1975), fruit ripening (Bapat et al., 2010; 

Goodenough, 1986), stress response (Fluhr and Mattoo, 1996; Pierik et al., 2007; Sharp 

and LeNoble, 2002), and abscission of vegetative and reproductive structures (Abeles 
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and Leather, 1971; Jones et al., 1995; Morgan et al., 1992; Orzaez et al., 1999; Reid and 

Wu, 1992; Steffens and Sauter, 2005). Ethylene effects are different depending upon the 

plant and tissue, however, it is known to affect plant growth at all developmental stages.  

Ethylene synthesis involves a multistep enzymatic pathway which converts 

methionine (ethylene biological precursor) to ethylene (Fluhr and Mattoo, 1996). It is 

produced from methionine via S-adenosylmethionine (SAM) and 1-aminocyclopropane-

1-carboxilic acid (ACC) (Sisler and Yang, 1984). SAM is converted to ACC by the 

enzyme ACC-synthase (ACCS), and ACC is then oxidized by ACC-oxidase (ACCO) to 

form ethylene. During the final step of the process, catalyzed by ACCO, carbon dioxide 

(CO2) and hydrogen cyanide (HCN) are also produced (Chaves and de Mello-Farias, 

2006). The rate-limiting enzyme in the ethylene biosynthesis cycle (also known as Yang 

cycle) is ACCS (Ecker, 1995). While tissues producing insignificant amounts of ethylene 

have been found to have a low ACCS activity (Chae et al., 2003), both ACCS and ACCO 

activities may be induced upon stress (Morgan and Drew, 1997).  

For ethylene to act, it is necessary that it binds to a receptor which has a high 

affinity and specificity for ethylene (Sisler and Yang, 1984).  These receptors are thought 

to contain a metal, and although Cu
+
 has been suggested as a possible candidate 

(Thompson et al., 1983), direct evidence is said to be lacking (Sisler and Yang, 1984). At 

the cellular level, these receptors are located in great amounts in the endoplasmatic 

reticulum, but in smaller amounts, they may also be found in the plasmalemma 

(Bleecker, 1999; Chen et al., 2002; Evans et al., 1982). 
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 In the past couple of decades, a lot of attention has been given to anti-stress 

compounds such as silver thiosulfate (STS), aminoethoxyvinylglycine (AVG), 

aminooxyacetic acid (AOA), and 1-methylcyclopropene (1-MCP), which either inhibit 

ethylene synthesis, or block its receptors in the plant. Fairly recently, 1-MCP has been 

the focus of several studies due to its potential benefits in helping alleviate negative 

impacts of stress-induced ethylene production. This compound is known to have 

approximately a 10-fold higher affinity for ethylene receptors in the plant when 

compared to ethylene itself. Although effects seem to be transient and variable 

depending upon the plant and plant part treated, by competing for these receptors 1-MCP 

prevents ethylene binding to treated tissues, thus delaying and/or diminishing its effects 

in plants (Sisler and Serek, 1997). Since its introduction 1-MCP has been widely used in 

the fruit, vegetable and ornamental flower markets in order to delay ripening and 

senescence during shipping and storage of various products, ultimately leading to an 

increase in their shelf life.  

The background work that led to the discovery of 1-MCP as an ethylene inhibitor 

came from the laboratories of Edward Sisler and Sylvia Blankenship at North Carolina 

State University and jointly Sisler and Blankenship hold the patent for use of 

cyclopropenes as ethylene inhibitors (Sisler and Blankenship, 1996). Cyclopropenes are 

a breakdown product of diazocyclopentadiene (DACP), another known ethylene 

inhibitor (Blankenship and Dole, 2003). The first 1-MCP product approved by the 

United States Environmental Protection Agency (EPA) for commercial use was sold 

under the trade name “EthylBloc” in 1999 for ornamental crops; however, it wasn’t until 
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2002 that the 1-MCP based product “SmartFresh” was cleared by the U.S. Government 

for use in edible crops (Blankenship, 2003). During the same year that 1-MCP was first 

approved by the EPA, Sisler et al. (1999) studied 3-Methylcyclopropene, an alternative 

to 1-MCP that was also proven effective in inhibiting ethylene responses. The same 

authors concluded, however, that 1-MCP required substantially lower concentrations, 

about 2.5 and 10 times were needed in banana and flowers, respectively, for the same 

level of protection.  The exact reason for this behavior is unclear. While the effectiveness 

of 1-MCP to counteract negative ethylene effects has been proven in some applications, 

much of its success in the fruit, vegetable, and ornamental flower markets has to do with 

the fact that these products are often stored and transported under tightly controlled 

environments (i.e. temperature, relative humidity, oxygen and carbon dioxide levels, 

among others).  

It seems clear that changes in global climate patterns are very likely to impact 

agriculture in several different geographic locations. To tackle the food security and crop 

productivity concerns, a better understanding of the negative impacts caused by climate 

change and the effects of compounds with the potential to help alleviate stress such as 1-

MCP are still needed. Technology has evolved very rapidly in the past few decades, 

enabling its deployment in agricultural settings in a relatively cost-effective fashion. 

With the improvements in data acquisition equipment and now widespread use of the 

Internet, farmers are able to monitor various parameters of their crops in real time, 

without the need of physically being in the field. Infrared thermometers (IRT’s) are used 

to monitor plant canopy temperature; sensors are relatively inexpensive and could 
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provide valuable information about the efficiency of different irrigation regimes while 

also providing a possible stress index value. Furthermore, compounds that have the 

potential to counteract the negative effects of stress-induced ethylene could prove very 

useful in agriculture. Although ethylene antagonists such as 1-MCP have been widely 

used in some markets and its efficiency proven under controlled environments, the utility 

of said compound in a field setting however, still requires a lot of attention from the 

scientific community.    

The main objective was to assess the effects of 1-MCP applications on yield of 

cotton grown in differing watering conditions under field conditions. The specific 

objectives were: i) identify a trigger (best time) for 1-MCP application in cotton based 

on forecasted ambient temperatures; and ii) characterize physiological and 

morphological effects of 1-MCP application in cotton plants. Secondary objectives were 

to calculate multiple canopy temperature-based stress indices, compare their association 

with the final yield of field-grown cotton and assess the correlation between two yield 

components (number of bolls plant
-1

 and fruit retention) with the stress indices. 
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CHAPTER II 

EFFECTS OF 1-METHYLCYCLOPROPENE (1-MCP) ON YIELD, 

PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERISTICS OF COTTON 

 

OVERVIEW 

 Cotton (Gossypium hirsutum L.) is the lead cash crop in Texas, and its 

productivity is usually challenged by stressful environmental conditions such as high 

temperatures and sub-optimal water supply. The objective of this investigation was to 

assess the impact of 1-methylcyclopropene (1-MCP) applications triggered by canopy 

temperature and forecasted ambient temperatures on field grown cotton plants. Yield, 

physiological and morphological responses to 1-MCP applications were investigated in 

field studies conducted during the summers of 2012-2014 at the Texas A&M University 

Field Laboratory in Burleson County, TX. During all three growing seasons, more than 

65% of the days reached temperatures above 28 °C, which indicated great potential for 

high temperature stress. Daily plant canopy temperature, net photosynthesis, 

transpiration, and photosystem II quantum yield were affected by 1-MCP treatment 

when plants were irrigated, but not under dryland conditions. Positive effects of 1-MCP 

were found for fruit retention in 2013 and 2014 for both irrigated and dryland studies 

while a negative impact was found in the 2012 irrigated study. At harvest, 1-MCP 

applications had no effect (positive or negative) on final seedcotton yield or fiber quality 

parameters. Applications of 1-MCP affected both physiological and morphological 

characteristics; however, it did not improve crop yield. 
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  INTRODUCTION 

 Plants living under natural conditions are often unable to express their full 

genetic potential due to unfavorable environmental conditions. According to Boyer 

(1982), atmospheric and/or soil moisture deficits along with high radiation and 

temperatures pose the biggest constraints for plant survival and crop productivity. Due to 

their intimate relationship, it is difficult to distinguish between drought and high 

temperature stress effects. It is important, however, to develop means to help mitigate 

the negative impacts of such stresses on crop productivity.  

The hormone ethylene is a naturally occurring product of plant development 

(Gane, 1934), and widely known for its involvement in multiple physiological and 

developmental processes (Bapat et al., 2010; De Grauwe et al., 2005; Foo et al., 2006; 

Gniazdowska et al., 2010; Linkies and Leubner-Metzger, 2012; Mohapatra and 

Mohapatra, 2006; Steffens and Sauter, 2005).  Although its effects may be different 

depending upon the plant and plant tissue, ethylene is known to affect plant growth at all 

developmental stages. More important for the scope of this project, however, is 

ethylene’s involvement in plant stress response (Fluhr and Mattoo, 1996; Pierik et al., 

2007; Sharp and LeNoble, 2002), especially those related to the abscission of vegetative 

and reproductive structures (Abeles and Leather, 1971; Jones et al., 1995; Morgan et al., 

1992; Reid and Wu, 1992), and the potential of some ethylene inhibitors to help protect 

stress-induced yield losses. The compound 1-methylcyclopropene (1-MCP) is an 

ethylene antagonist that works by binding to ethylene receptors in the plant, preventing 

and/or delaying the negative effects promoted by stress-induced ethylene (Sisler and 
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Serek, 1997). Under controlled environments, it has been widely and effectively used in 

the fruits, vegetables, and ornamental flowers market to delay senescence and fruit 

ripening, thus significantly extending the shelf-life of various products (Hofman et al., 

2001; Jiang et al., 2001; Ku and Wills, 1999; Wills and Ku, 2002).  

Theoretically, under field conditions 1-MCP has the potential to mitigate the 

negative impacts of stress and positively influence cotton yield. Results from limited 

literature available, however, are contradictory. Kawakami et al. (2010a) and de Brito et 

al. (2013) conducted field trials in Arkansas (USA) and Goiás (Brazil), respectively, and 

both concluded that 1-MCP increased cotton yield under field conditions. Kawakami et 

al. (2010a) attributed the increase in yield to decreased levels of stress (higher maximum 

quantum efficiency of Photosystem II + decreased glutathione reductase activity) and 

increased boll weight, while de Brito et al. (2013) provided no such explanation. On the 

other hand, in Texas, da Costa et al. (2011) utilized ethephon (synthetic ethylene) as a 

source of stress applied one day after 1-MCP treatment, and reported that although 1-

MCP improved growth and yield components (mainly in the upper canopy), no 

improvement in yield was found with either one of the rates tested (25 and 50 g a.i. ha
-1

). 

In another field study conducted in Texas, Chen et al.  (2014) reported that 1-MCP 

treatment delivered to plants at 10 g a.i. ha
-1

 decreased membrane damage, increased 

chlorophyll content and photosynthetic efficiency of subtending leaves (of tagged bolls), 

but that all these positive responses did not translate into higher yields. 

 The primary objective of the study was to assess the effects of 1-MCP 

applications triggered by different temperature thresholds, as a means to help alleviate 
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the negative impacts of high temperature stress on yield of field grown cotton plants. To 

achieve this, several physiological and morphological parameters were monitored and 

analyzed at three very distinct crop stages.  

 

MATERIALS AND METHODS 

Cultural practices 

  Two field trials (irrigated and dryland) were conducted at the Texas A&M 

AgriLife Field Laboratory in Burleson County (30°33'01.67" N, 96°26'07.07" W), 

approximately 8 miles west of College Station, TX, on a Weswood silt loam soil (fine-

silty, mixed, superactive, thermic, Udifluventic Haplustepts), during the summers of 

2012 - 2014. The study area was equipped with a sub-surface drip irrigation system 

installed at a depth of 45.7 cm, with emitters spaced 45.7 cm apart. Drip lines were 

spaced at 1.02 m apart and were located at the center of each row (i.e. directly under the 

cotton plants). For the irrigated studies, the water delivery was arbitrarily set at 80% 

evapotranspiration replacement (ETr). Amounts were adjusted based on crop stage 

following guidelines by Fisher and Udeigwe (2012).  

Management practices such as fertility, disease prevention, weed and insect 

control followed the guidelines provided by the Texas A&M AgriLife Extension service 

for the region. Cotton (G. hirsutum L. cv. Phytogen 499 WRF) seeds were sown on April 

10 in 2012 and April 09 in 2013 and 2014, at a rate of 108,000 seeds ha
-1

 in northwest to 

southeast oriented rows, spaced 1.02-m apart. Plant growth regulator applications 

consisted of a combination of cyclanilide (1-(2,4-dichlorophenylaminocarbonyl)-



 

13 

 

cyclopropane carboxylic acid; 0.003 kg a.i. ha
-1

) and mepiquat chloride (N,N-

dimethylpiperidinium chloride; 0.012 kg a.i. ha
-1

), which were applied as needed during 

the growing season. Harvest aids were applied when cotton plants exhibited 

approximately 60-70% open bolls, and consisted of a combination of thidiazuron (N-

phenyl-N-1,2,3-thidiazol-5-ylurea; 0.056 kg a.i. ha
-1

), ethephon (2-chloroethyl 

phosphonic acid; 1.106 kg a.i. ha
-1

), and cyclanilide (1-(2,4-

dichlorophenylaminocarbonyl)-cyclopropane carboxylic acid; 0.069 kg a.i. ha
-1

).  

 

Treatments and experimental design 

  The studies were arranged in a randomized complete block design. Plots were 

four rows wide, 9.73-m in length with a 3-m alley in between, and the four treatments 

(including an untreated control) were replicated four times. Treatments were sprayed 

using a four-row compressed air small-plot sprayer with hollow cone nozzle tips spaced 

at 51 cm delivering 102.9 L ha
-1

, and consisted of 1-methylcyclopropene (1-MCP) at a 

single rate of 25 g ha
-1

 of active ingredient with no adjuvants or surfactants used. The 1-

MCP formulation used was a soluble powder (3.8 % a.i.), which released 1-MCP gas 

when in contact with water. For each treatment, 1-MCP powder was mixed with water in 

the field immediately prior to application. All plots receiving 1-MCP were sprayed 

within 20 min. of mixing. Treatments were defined as: 

1   –   Control (C): No 1-MCP application 

2 – Smartcrop
TM

 (S): 1-MCP application triggered by a canopy stress 

temperature of 28°C, starting at pinhead square stage  
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3 – Ambient 35 ºC (A95): 1-MCP application triggered by forecasted maximum 

daily temperature of 35 ºC or higher for at least 3 consecutive days, starting at 

pinhead square stage 

4 – Ambient 37.8 ºC (A100): 1-MCP application triggered by forecasted 

maximum daily temperature of 37.8 ºC or higher for at least 3 consecutive days, 

starting at pinhead square stage 

As per the chemical (1-MCP) manufacturer instructions, there was a window of 

at least 14 days between applications, regardless of forecasted temperatures within that 

time frame. Treatments started based on each of the specified triggers at the pinhead 

square stage, and continued until plants reached maturity (open boll stage), after which 

point no more 1-MCP applications were made. 

 

Canopy temperature 

To monitor crop canopy temperatures (CT), one SmartCrop
TM

 (Smartfield Inc., 

Lubbock, TX) infrared thermometer (IRT) sensor was installed in the middle of the plot, 

on the third row, pointing southeast. These infrared sensors measure temperatures 

between -33 and 220 °C, with an accuracy of ± 0.6 °C between wavelengths of 5 and 14 

µm. Use of these IRTs required a fairly homogeneous plant canopy coverage in between 

plants to reduce the impact of radiant energy emitted by the soil on canopy temperature 

measurements. Sensors were deployed at 42, 59, and 64 days after planting (DAP) in 

2012, 2013, and 2014, respectively. The IRT installation occurred later in both 2013 and 

2014 due to unseasonably cold temperatures following planting, which delayed the 
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establishment and initial growth of the crop. Sensors were mounted on a bracket and 

attached to a 2-m perforated pole. The bracket maintained sensors at a fixed 45° angle 

from the soil surface and the perforated pole allowed changes in sensor height (Fig. 2.1). 

To account for crop growth, frequent adjustments in height were made during the 

growing season to maintain sensors around 20 to 30-cm above the crop canopy at all 

times, which resulted in an approximate 0.5 m
2
 field of view. Canopy temperature data 

were automatically collected every minute and a 15 min average was wirelessly 

transferred to a base station (SmartWeather
TM

), and then automatically uploaded to the 

CropInsight
TM

 (Smartfield, Inc., Lubbock, TX) website (http://www.cropinsight.com/).  

 

Weather 

Rainfall, ambient temperature, and wind speed data were collected by the 

SmartWeather
TM

 weather station (Smartfield, Inc., Lubbock, TX), that also serves as a 

base station to wirelessly gather data from the infrared thermometer sensors.  

 

Soil water potential 

Soil water potential was continuously measured using Watermark sensors model 

200SS (Irrometer Company, Inc., Riverside, CA) and the SmartProfile
TM

 system 

(Smartfield, Inc., Lubbock, TX). The SmartProfile
TM

 system logged data from the 

sensors and wirelessly transferred them to the SmartWeather
TM

 base station. Sensors 

were installed at depths of 15, 30, and 61 cm, approximately 10 cm from the center of 

http://www.cropinsight.com/
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the row at 80, 66, and 92 DAP in 2012, 2013, and 2014, respectively. One set of sensors 

(three depths) was installed per study (i.e. dryland and irrigated).  

 

 

 

 

 

Figure 2.1. Smartcrop
TM

 infrared sensors were installed on a 2 m perforated pole about half-way into each 

plot, on the third row, pointing southeast. Brackets mounted on the pole maintained sensors at a fixed 45° 

angle from the soil surface throughout the season. Constant adjustments in height were made to maintain 

sensors about 20-30 cm above the crop canopy, which resulted in an approximate 0.5 m
2
 field of view. 
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 Photosynthetic activity and transpiration 

Physiological parameters such as net photosynthesis (A), transpiration (E), and 

difference in vapor pressure between leaf and air (Δe) were measured with a portable 

photosynthesis system model Li-Cor 6400 XT (LI-COR, Inc., Lincoln, NE). Each 

measurement series began at 10:00 and concluded by 14:00 at three distinct crop stages; 

early bloom (EB), full bloom (FB), and open boll (OB). Three random plants and one 

leaf per plant per plot were used. Measurements were made on the third uppermost fully-

expanded leaf (Patterson et al., 1977). A photosynthetic photon flux density (PPFD) of 

2,000 μmol m
-2

 s
-1

 was generated by a Red/Blue Light Source 6400-02B (Li-COR Inc., 

Lincoln, NE) on the adaxial surface of the leaf being measured. The closed leaf chamber 

of the equipment had an area of 6 cm
2
 and a constant reference cell carbon dioxide 

(CO2) concentration of 400 μmol mol
-1

 was maintained throughout the measurements. 

Leaf adaptation to the conditions inside the closed chamber were monitored using the 

coefficient of variation (CV) on the instrument’s display and values were not recorded 

until measurements were stable, which usually took around 60 to 360 s.  

 

Chlorophyll fluorescence 

Chlorophyll fluorescence was measured using a portable chlorophyll fluorometer 

model PAM-2100 (Heinz Walz GmbH, Effeltrich, Germany) between the hours of 10:00 

and 14:00, and completed within 30 min of recording the first data point. Five random 

plants per plot were measured using the third uppermost fully-expanded leaf. 

Chlorophyll fluorescence measurement indicates the quantum efficiency of the 
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photosystem II by measuring the excess energy being re-emitted as light (Maxwell and 

Johnson, 2000). Quantum yield of photosystem II (ɸPSII) was measured using the 

saturation pulse method in light adapted leaves and calculated as Y = (Fm – Ft) / Fm, 

where Fm is maximum fluorescence and Ft is fluorescence at given time.  

 

Leaf water potential 

To examine the effect of 1-MCP on crop water status and assess the efficiency of 

the irrigation system in creating two distinct growing conditions, pre-dawn leaf water 

potential (ψwl) was measured with a pressure chamber (PMS Instrument Co., Corvallis, 

OR) between 4:30 and 6:30 using the method described by Scholander et al. (1965). 

Three plants per plot were sampled to collect data using the third uppermost fully-

expanded leaf, at three distinct crop stages (EB, FB, and OB). About a third of the leaf 

petiole was cut using a razor at an approximate 45° angle. Leaves were placed into the 

chamber usually within 3 min of their removal from the plant. The pressure chamber was 

then slowly pressurized at a rate of approximately 0.03 MPa s
-1

 as suggested by Turner 

(1988). 

 

Plant mapping 

Plant mapping was conducted to assess the effects of 1-MCP application on plant 

growth and development. Six consecutive plants per plot, with the exception of very 

small plants, from either one of the outside rows were removed from the field for plant 

mapping. Data collection and input were handled according to Landivar (1992). Fruit set 
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and fruit retention were determined according to the procedure described by Landivar et 

al. (1993) using an Excel version of the PMAP software (Plant Map Analysis Program 

for Cotton) obtained from Dr. Landivar (J. A. Landivar, personal communication, 2012).  

Since there is evidence that plant height and total number of mainstem nodes are 

affected by the “alley effect” (Holman and Bednarz, 2001), both the first and last one 

meter of row were avoided when sampling plants. Plant sampling for mapping was 

conducted at three distinct crop stages (early bloom, full bloom, and harvest). The plant 

mapping method was used because it provides detailed information regarding fruit set 

and final fruit retention values. 

 

Yield and fiber quality characteristics 

 The two center rows were mechanically harvested using a custom 2-row cotton 

spindle picker, John Deere model 9910 (Deere & Company, Moline, IL). This 

equipment was modified for small-plot research and allowed yield to be established on a 

per plot basis. A sub-sample was collected and ginned to determine lint yield (gin 

turnout). Lint samples were analyzed for an array of fiber quality characteristics at the 

Fiber and Biopolymer Research Institute (Texas Tech University, Lubbock, TX) 

utilizing the standard High Volume Instrument (HVI) method. 

 

Statistical analysis 

 Data were analyzed using JMP Pro, Version 11.0.0 (SAS Institute Inc., Cary, 

NC). Analysis was performed on a yearly basis since significant Year x Treatment 
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interaction was found. Means were separated using Fisher’s LSD at the 5% probability 

level. Means comparisons were made between treatments within each irrigation regime 

(e.g. dryland or irrigated) and data were combined over years whenever permissible. 

 

RESULTS AND DISCUSSION 

 In-season rainfall totals were 503, 325, and 635 mm, and represented roughly 48, 

32, and 50% of the total yearly rainfall for 2012, 2013, and 2014, respectively (Table 

2.1). In 2012, the majority of daily rainfall totals were in the 2 – 10 mm range, but very 

well distributed throughout the growing season. Frequent, smaller (< 25 mm) rainfall 

events, coupled with fewer but stronger (> 25 mm) events were able to maintain 

reasonable amounts of water in the soil profile during the period studied (Table 2.1). 

During the 2013 growing season (between planting and harvest) however, plants 

received only about 65% of the amount of rain that fell in 2012, for roughly the same 

time period. Also, significant rainfall events during periods of high water demand (e.g. 

flowering to boll filling) were not as frequent in 2013 as they were in 2012. In 2014 the 

trial received unusually high amounts of rainfall between planting and harvest dates and 

events were also very well distributed along the season. Table 2.2 shows a summary of 

1-MCP applications for all three years studied based on treatment triggers. 

During all three growing seasons, more than 65% of the days reached 

temperatures above the midway point of the thermal kinetic window (TKW) of 28 °C, 

which indicated great potential for high temperature stress. Additionally, the average 

maximum temperature during all three seasons was greater than the upper TKW 
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threshold of 31 °C. During the three years of the study, highest temperatures were 

consistently found between 12:00 and 17:00. Figure 2.2 shows graphic daily maximum 

temperatures relative to the lower (25 °C) and upper (31 °C) bounds of the TKW as well 

as rainfall events during the 2012 (Fig. 2.2 A), 2013 (Fig. 2.2 B), and 2014 (Fig. 2.2 C) 

seasons.  

 

 

 

 

 

Table 2.1. Average soil water potential measured at depths of 15, 30, and 61 cm for dryland (Dry) and 

irrigated (Irr.) studies. Total rainfall for each year of the study and their respective in-season 

accumulations are also shown. 

    Soil Moisture (Dry)   Soil Moisture (Irr.)   Rainfall 

    15 cm 30 cm 61 cm 
  

15 cm 30 cm 61 cm   Total Season 

Year   MPa  MPa  MPa  MPa  MPa  MPa    mm mm 

2012   0.47 0.19 0.27   0.18 0.11 0.04   1,046.5 502.9 

2013   1.18 0.41 0.32   0.35 0.26 0.10   998.2 325.1 

2014   0.44 0.19 0.14   0.12 0.07 0.03   744.2 635.0 
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Table 2.2. Table shows timing of 1-methylcyclopropene (1-MCP) application based on different 

temperature thresholds (treatments). All applications were made using a powder formulation of 1-MCP at 

a single rate of 25 g a.i. ha
-1

 with a small-plot sprayer and occurred for both dryland and irrigated studies 

on the same dates. 

  1-MCP Applications 

Treatment
¥
 2012 2013 2014 

S 5-Jul 27-Jun 2-Jul 

 

5-Aug 11-Jul 24-Jul 

  

25-Jul 8-Aug 

    A95 5-Jul 11-Jun 10-Jul 

 

5-Aug 27-Jun 24-Jul 

  

11-Jul 8-Aug 

  

25-Jul 

 

    A100 5-Aug 27-Jun 8-Aug 

  

11-Jul 

     25-Jul   
¥
Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100) 
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Figure 2.2. Daily maximum ambient temperature and rainfall during the season for 2012 (A), 2013 (B), 

and 2014 (C). Dashed horizontal lines represent the lower and upper bounds of the TKW (25 and 31 °C), 

and the dotted line represent the midway temperature of the TKW (28 °C). Notice the difference in rainfall 

scale for 2014 compared to 2012 and 2013. 
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Rainfall was both plentiful and well-distributed in 2012 and 2014, which 

maintained adequate amount of water in the soil profile even for the dryland study 

throughout most of the season (Table 2.1 and Figs. 2.2 A and 2.2 C). As a result of 

plentiful rainfall, differences in leaf water potential between the dryland and irrigated 

studies were only found at the OB stage for both 2012 and 2014 (Figs. 2.3 A and 2.3 C). 

During the 2013 season, however, reduced rainfall lowered soil available moisture 

(Table 2.1), such that differences in leaf water potential were found throughout the 

growing season, from EB through OB (Fig. 2.3 B). Across all three years, the irrigated 

study had lower leaf water potential at the OB stage (Fig. 2.3). Based on single 

measurements at midday, Kawakami et al. (2010b) reported an increase in stomatal 

resistance 5 days after 1-MCP treatment in water-stressed cotton plants, which led to 

lower leaf water potential when compared to the untreated control also under water 

stress. Conversely, during our studies no impact (positive or negative) of 1-MCP on pre-

dawn water potential measurements between treatments was found in any of the three 

growth stages or years tested (Table 2.3). Although leaf water potential and transpiration 

(with the exception of the 2013 irrigated study at FB) measurements  did not indicate 

any 1-MCP effect, there is evidence of temporary 1-MCP-induced decreases in 

respiration rates in fresh-cut broccoli (Brassica rapa L.) florets (Cefola et al., 2010), 

reduction in fresh weight loss in basil (Ocimum basilicum L.) leaves (Hassan and 

Mahfouz, 2010), and inhibition of respiration in bamboo (Phyllostachys praecox f. 

prevernalis) shoots (Luo et al., 2007). 
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Figure 2.3. Pre-dawn leaf water potential (ψwl) measurements are shown for cotton grown during the 

summers of 2012 (A), 2013 (B), and 2014 (C). Values are averages of all four treatments combined within 

each growth stage (n = 48): early bloom (EB), full bloom (FB), and open boll (OB). Error bars represent ± 

SE , and * represents statistical significance between studies at the 5% probability level within each 

growth stage.  
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Table 2.3. Effect of 1-methylcyclopropene (1-MCP) on leaf water potential at early bloom (EB), full 

bloom (FB), and open boll (OB) growth stages of field cotton grown during the summers of 2012, 2013, 

and 2014 under irrigated (IRR) and dryland (DRY) conditions. Values are averages of three samples and 

four replications per treatment (n = 12).  

  
EB 

 
FB 

 
OB 

Year Treatment
¥
 IRR DRY 

 
IRR DRY 

 
IRR DRY 

  
MPa 

2012 C 1.08 1.20 
 

0.51 0.49 
 

0.75 0.84 

 
S 1.09 1.30 

 
0.50 0.54 

 
0.75 0.88 

 
A95 1.13 1.23 

 
0.50 0.55 

 
0.81 0.92 

 
A100 1.01 1.19 

 
0.52 0.51 

 
0.72 0.83 

 
Sig.

 €
 n.s. n.s. 

 
n.s. n.s. 

 
n.s. n.s. 

          
2013 C 0.56 0.61 

 
0.60 0.76 

 
0.73 0.91 

 
S 0.56 0.61 

 
0.61 0.74 

 
0.75 0.88 

 
A95 0.57 0.58 

 
0.56 0.75 

 
0.73 0.87 

 
A100 0.53 0.62 

 
0.57 0.78 

 
0.75 0.92 

 
Sig. n.s. n.s. 

 
n.s. n.s. 

 
n.s. n.s. 

          
2014 C 0.15 0.14 

 
0.13 0.13 

 
0.45 0.53 

 
S 0.14 0.15 

 
0.18 0.15 

 
0.43 0.48 

 
A95 0.17 0.15 

 
0.16 0.13 

 
0.47 0.46 

 
A100 0.12 0.14 

 
0.16 0.16 

 
0.48 0.49 

 
Sig. n.s. n.s. 

 
n.s. n.s. 

 
n.s. n.s. 

¥ 
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100)  

€
 Significance (Sig.) of differences between treatments at the 5% probability level. Not significant (n.s.)  
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Water stressed plants exhibit higher canopy temperatures (CT) when compared 

to the ambient or non-stressed plants (Idso et al., 1977; Jackson et al., 1977). Across 

years and regardless of 1-MCP treatment, higher CTs occurred when air temperature was 

higher and rainfall was lower (2013). In contrast, lower CTs were found when air 

temperatures were lower and rainfall was higher (2014). Canopy temperatures for each 

treatment in the dryland plots were consistently higher than those in irrigated plots (Figs. 

2.4 A and 2.4 B). Those differences were more pronounced in the drier 2013 season than 

they were on the other two growing seasons (2012 and 2014).  

When daily plant canopy temperature was averaged within each season, no effect 

of 1-MCP treatment was found in any of the years when the plants were grown under 

dryland conditions (Fig. 2.4 A). P-values were 0.852, 0.293, and 0.287 for 2012, 2013, 

and 2014, respectively. Under irrigation, however, 1-MCP impacted canopy 

temperatures in all three years tested (Fig. 2.4 B). P-values for such analyses were 0.025, 

0.027, and < 0.0001, for 2012, 2013, and 2014, respectively. In 2012 the highest CTs 

were found for the S treatment, which were higher than both the C and A95. In 2013 all 

1-MCP treatments had significantly higher CTs when compared to the C. In 2014 the 

A100 treatment had higher CT than both the C and A95.  

The evidence of 1-MCP-induced increase in stomatal resistance (Kawakami et 

al., 2010b), reduction in stomatal conductance (da Costa and Cothren, 2011), and 

decrease in respiration rates (Cefola et al., 2010) may help explain the CT results shown 

on Figs. 2.4 A and 2.4 B. While grown under irrigation at least one 1-MCP treatment 

displayed significantly higher CT when compared to the untreated control. Although 
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research on the effects of 1-MCP in cotton shows that its effects are only temporary (da 

Costa and Cothren, 2011; Kawakami et al., 2010b; Su and Finlayson, 2012), it is 

possible that multiple 1-MCP applications during the season were capable of affecting 

the in-season average CT by temporarily reducing transpiration and thus the plants’ 

transpirational cooling, which may have led to higher CT. Furthermore, da Costa and 

Cothren (2011) found a decrease in stomatal conductance and transpiration coupled with 

increased leaf temperature in 1-MCP-treated cotton plants grown in a greenhouse. 

Interesting to note is the fact that such effects were only significant when the plants were 

grown in well-watered conditions. Plants grown under water deficit stress did not exhibit 

the same responses to 1-MCP application.    

Physiological parameters measured were not affected by 1-MCP application 

when cotton was grown under dryland conditions in any of the three crop stages and 

years studied (Tables 2.4, 2.6, and 2.8). In general, under dryland conditions net 

photosynthesis was higher early and during the peak reproductive phases (EB and FB), 

and substantially decreased by the time the crop reached the OB stage (late reproductive 

phase). These reductions in photosynthetic activity as the crop matures were not 

unexpected, and have also been reported elsewhere (Bauer et al., 2000; Peng and Krieg, 

1991; Pettigrew et al., 1993). Transpiration also followed the same trend, such that ~ 

50% decrease in transpiration was detected towards the latter part of the growing season 

when late season (OB) measurements were compared to early-season measurements (EB 

and FB).    
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Figure 2.4. Effect of 1-methylcyclopropene (1-MCP) on different treatments for cotton grown during the 

summers of 2012, 2013, and 2014 under dryland (A) and irrigated (B) conditions. Values are shown as the 

average of daily canopy temperature throughout the season. Bars represent ± SE when greater than the 

symbols. Different letters within years represent significance at the 5% level of probability between 

treatments. 
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 Vapor pressure differences between the leaf and the air (Δe) increased as the 

season progressed from EB to OB. Such Δe increases ranged from 2.19 - 2.38, 0.82 - 

1.23, and 1.21 - 1.35 kPa for dryland, and from 1.99 - 2.32, 0.01 - 0.36, and 0.0 - 0.07 

kPa for irrigated studies in 2012, 2013, and 2014, respectively (Tables 2.4 to 2.8).   

In the irrigated trials, differences among treatments were found for Δe at the EB 

stage in 2012 (Table 2.5), however, at this point such differences may not be attributed 

to 1-MCP since the first application occurred on 3 July, post EB measurements. During 

the 2013 season all three parameters measured showed differences among treatments at 

the FB stage (Table 2.7). Both net photosynthesis and transpiration for the S and A100 

treatments were higher than those of the control plots at FB. Δe was higher in C plots 

when compared to the higher temperature threshold treatment (A100). At the FB stage in 

2013, S and A100 treatments had received one 1-MCP application while the A95 

treatment had received two 1-MCP applications, on 27 June and 11 and 27 June, 

respectively (Table 2.2). In 2014 there were no differences between treatments in any of 

the three crop stages (Table 2.9). Results were not consistent within years and/or across 

growth stages, which may possibly be attributed to the transient effects of 1-MCP. 

Previous studies of 1-MCP effects on cotton plants and cotton plant parts showed that its 

effects usually lasted less than 72 h (da Costa and Cothren, 2011; Su and Finlayson, 

2012). Indeed, our measurements showed that although some differences among 

treatments were found in the FB growth stage in 2013, those differences were 

undetectable by the time the crop reached the latter phase of its reproductive stage (OB).    
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Table 2.4. Net photosynthesis (A), transpiration (E), and difference in vapor pressure between leaf and the 

air (Δe) measurements were collected at three crop stages for dryland cotton in 2012. The third uppermost 

fully-expanded leaf was used for the measurements. Values are averages of three random plants per plot 

and four replications per treatment per growth stage (n = 12). 

    2012 Dryland 

  

A E Δe 

Treatment
¥
 Growth Stage

€
 (µmol CO2 m

-2
 s

-1
) (mmol H2O m

-2
 s

-1
) (kPa) 

C EB 36.23 9.29 0.80 

S EB 35.71 9.07 0.82 

A95 EB 36.32 9.10 0.86 

A100 EB 37.72 9.42 0.73 

C FB 37.40 10.64 1.00 

S FB 35.43 10.22 1.08 

A95 FB 39.43 10.80 0.95 

A100 FB 36.80 10.66 1.00 

C OB 15.65 5.56 3.13 

S OB 15.53 5.44 3.06 

A95 OB 16.49 5.69 3.05 

A100 OB 15.52 5.56 3.11 

     ANOVA 

 

P > F 

 
EB 0.2519 0.4941 0.0872 

FB 0.2572 0.6792 0.3242 

OB 0.9556 0.9895 0.9802 
¥ 
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100)  

€ 
Early Bloom (EB), Full Bloom (FB), and Open Boll (OB) 
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Table 2.5. Net photosynthesis (A), transpiration (E), and difference in vapor pressure between leaf and the 

air (Δe) at three crop stages for irrigated cotton in 2012. The third uppermost fully-expanded leaf was used 

for the measurements. Values are averages of three random plants per plot and four replications per 

treatment per growth stage (n = 12). 

  

2012 Irrigated 

  

A E Δe 

Treatment
¥
 Growth Stage

€
 (µmol CO2 m

-2
 s

-1
) (mmol H2O m

-2
 s

-1
) (kPa) 

C EB 36.68 9.79 0.81 

S EB 35.82 9.33 0.84 

A95 EB 37.55 9.58 0.69 

A100 EB 37.41 9.52 0.74 

C FB 38.10 10.95 1.04 

S FB 37.69 11.13 1.03 

A95 FB 38.96 11.15 0.98 

A100 FB 39.00 11.20 0.93 

C OB 17.60 5.97 3.03 

S OB 18.87 6.39 2.85 

A95 OB 20.21 7.15 2.67 

A100 OB 16.87 6.35 3.06 

     
ANOVA 

 

P > F 

 
EB 0.6553 0.7271 0.0103 

FB 0.6249 0.6512 0.2204 

OB 0.6139 0.6672 0.3293 
¥ 
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100)  

€ 
Early Bloom (EB), Full Bloom (FB), and Open Boll (OB) 
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Table 2.6. Net photosynthesis (A), transpiration (E), and difference in vapor pressure between leaf and the 

air (Δe) at three crop stages for dryland cotton in 2013. The third uppermost fully-expanded leaf was used 

for the measurements. Values are averages of three random plants per plot and four replications per 

treatment per growth stage (n = 12). 

    2013 Dryland 

  

A E Δe 

Treatment
¥
 

Growth 

Stage
€
 

(µmol CO2 m
-2

 s
-1

) (mmol H2O m
-2

 s
-1

) (kPa) 

C EB 28.89 10.89 1.30 

S EB 27.35 10.73 1.26 

A95 EB 28.74 10.52 1.37 

A100 EB 29.59 10.57 1.38 

C FB 21.88 8.38 1.51 

S FB 23.62 8.08 1.59 

A95 FB 21.95 7.60 1.70 

A100 FB 23.16 8.49 1.56 

C OB 19.69 6.04 2.53 

S OB 20.98 6.86 2.33 

A95 OB 23.07 7.85 2.19 

A100 OB 21.91 6.76 2.44 

     ANOVA 

 

P > F 

 EB 0.6960 0.8808 0.4083 

FB 0.7364 0.5447 0.6800 

OB 0.2837 0.2095 0.3718 
¥ 
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100) 

 

€ 
Early Bloom (EB), Full Bloom (FB), and Open Boll (OB) 
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Table 2.7. Net photosynthesis (A), transpiration (E), and difference in vapor pressure between leaf and the 

air (Δe) at three crop stages for irrigated cotton in 2013. The third uppermost fully-expanded leaf was used 

for the measurements. Values are averages of three random plants per plot and four replications per 

treatment per growth stage (n = 12). 

  

2013 Irrigated 

  

A E Δe 

Treatment
¥
 

Growth 

Stage
€
 

(µmol CO2 m
-2

 s
-1

) (mmol H2O m
-2

 s
-1

) (kPa) 

C EB 33.19 11.47 1.13 

S EB 30.10 10.83 1.31 

A95 EB 29.08 11.03 1.44 

A100 EB 29.27 10.89 1.37 

C FB 22.17 9.13 1.25 

S FB 28.19 10.54 1.11 

A95 FB 24.78 9.86 1.12 

A100 FB 28.44 10.77 0.97 

C OB 31.53 11.32 1.49 

S OB 29.67 11.11 1.48 

A95 OB 32.36 11.20 1.44 

A100 OB 34.24 12.09 1.40 

     ANOVA 

 

P > F 

 EB 0.1859 0.7091 0.1118 

FB 0.0111 0.0014 0.0499 

OB 0.0745 0.2118 0.6308 
¥ 
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100)  

€ 
Early Bloom (EB), Full Bloom (FB), and Open Boll (OB) 
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Table 2.8. Net photosynthesis (A), transpiration (E), and difference in vapor pressure between leaf and the 

air (Δe) at three crop stages for dryland cotton in 2014. The third uppermost fully-expanded leaf was used 

for the measurements. Values are averages of three random plants per plot and four replications per 

treatment per growth stage (n = 12). 

    2014 Dryland 

  

A E Δe 

Treatment
¥
 

Growth 

Stage
€
 

(µmol CO2 m
-2

 s
-1

) (mmol H2O m
-2

 s
-1

) (kPa) 

C EB 41.26 13.93 1.20 

S EB 40.20 13.83 1.14 

A95 EB 41.18 13.79 1.08 

A100 EB 39.95 13.50 1.16 

C FB 33.15 13.02 1.09 

S FB 33.42 13.14 1.09 

A95 FB 31.75 12.96 1.10 

A100 FB 32.16 12.95 1.08 

C OB 21.59 6.20 2.43 

S OB 21.78 5.88 2.44 

A95 OB 22.56 6.49 2.29 

A100 OB 19.61 5.67 2.51 

     ANOVA 

 

P > F 

 EB 0.4473 0.4549 0.2590 

FB 0.5845 0.8575 0.9842 

OB 0.8170 0.8753 0.8806 
¥ 
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100)  

€ 
Early Bloom (EB), Full Bloom (FB), and Open Boll (OB) 
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Table 2.9. Net photosynthesis (A), transpiration (E), and difference in vapor pressure between leaf and the 

air (Δe) measurements were collected at three crop stages for irrigated cotton in 2014. The third uppermost 

fully-expanded leaf was used for the measurements. Values are averages of three random plants per plot 

and four replications per treatment per growth stage (n = 12). 

  

2014 Irrigated 

  

A E Δe 

Treatment
¥
 

Growth 

Stage
€
 

(µmol CO2 m
-2

 s
-1

) (mmol H2O m
-2

 s
-1

) (kPa) 

C EB 39.48 13.28 1.17 

S EB 40.76 13.73 1.18 

A95 EB 39.18 13.44 1.16 

A100 EB 40.33 13.14 1.22 

C FB 31.44 12.67 1.14 

S FB 31.13 12.71 1.10 

A95 FB 29.18 12.76 1.13 

A100 FB 31.05 12.65 1.20 

C OB 33.71 11.82 1.19 

S OB 33.79 11.98 1.11 

A95 OB 32.63 11.63 1.16 

A100 OB 33.28 11.49 1.24 

     ANOVA 

 

P > F 

 EB 0.7250 0.1953 0.7387 

FB 0.3593 0.9876 0.3022 

OB 0.6668 0.5161 0.4771 
¥ 
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100)  

€ 
Early Bloom (EB), Full Bloom (FB), and Open Boll (OB) 
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Photosystem II quantum yield (ɸPSII) measurements showed differences early in 

the season (EB) for irrigated plots in 2013 and 2014 (Table 2.10). In 2013 ɸPSII 

measurements were higher for the A95 when compared to the C plots, whereas in 2014, 

C plots showed higher ɸPSII when compared to the S treatment. However, at the time of 

EB measurements treatment A95 in 2013 was the only treatment that had received 1-

MCP application, which happened 2 weeks prior to measurements. No 1-MCP 

applications had been made prior to ɸPSII measurements in 2014 (see Table 2.2).  

In the 2013 irrigated study, 1-MCP increased ɸPSII at EB when compared to the 

C. Differences found early at the EB stage in the 2014 irrigated study may not be 

attributed to 1-MCP since the first application didn’t occur until July 2, post EB 

measurements. Throughout the rest of the growing season (FB and OB), no differences 

were found between treatments within each study and growth stage. In general, higher 

ɸPSII values were found early in the season at the EB stage, and declined as the season 

progressed, such that the lowest values were found at the OB stage. Furthermore, cotton 

plants in the irrigated study were able to maintain sligthly higher ɸPSII throughout the 

growing seasons than those in the dryland study. 
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Table 2.10. Effect of 1-methylcyclopropene (1-MCP) on the quantum yield of photosystem II (ɸPSII) for 

cotton grown during the summers of 2012, 2013, and 2014. Quantum yield of PSII was measured using 

the saturation pulse method in light adapted leaves and calculated as Y = (Fm – Ft) / Fm, where Fm = 

maximum fluorescence and Ft = fluorescence at given time. Data is presented for both irrigated (IRR) and 

dryland (DRY) studies as a mean of 5 plants per plot per treatment (n = 20). Data was collected at early 

bloom (EB), full bloom (FB), and open boll (OB). 

  

EB 

 

FB 

 

OB 

Year Treatment
¥
 IRR DRY 

 

IRR DRY 

 

IRR DRY 

2012 C 0.649 0.670 

 

0.426 0.419 

 

0.516 0.360 

 

S 0.659 0.646 

 

0.450 0.398 

 

0.529 0.409 

 

A95 0.641 0.667 

 

0.401 0.383 

 

0.586 0.375 

 

A100 0.663 0.664 

 

0.393 0.395 

 

0.572 0.363 

 

Sig. n.s. n.s. 

 

n.s. n.s. 

 

n.s. n.s. 

          2013 C 0.498b 0.560 

 

0.548 0.534 

 

0.513 0.596 

 

S 0.554ab 0.594 

 

0.580 0.512 

 

0.503 0.620 

 

A95 0.607a 0.558 

 

0.584 0.514 

 

0.515 0.614 

 

A100 0.545ab 0.546 

 

0.542 0.515 

 

0.535 0.594 

 

Sig. * n.s. 

 

n.s. n.s. 

 

n.s. n.s. 

          2014 C 0.508a 0.469 

 

0.448 0.481 

 

0.367 0.342 

 

S 0.453b 0.433 

 

0.456 0.469 

 

0.376 0.334 

 

A95 0.473ab 0.429 

 

0.463 0.433 

 

0.390 0.339 

 

A100 0.477ab 0.438 

 

0.436 0.437 

 

0.381 0.415 

  Sig. * n.s.   n.s. n.s.   n.s. n.s. 

Significance (Sig.): * significant at P ≤ 0.05, not significant (n.s.) 

  ¥
Control (C), Smartcrop

TM
 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100) 
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There were no differences in seed cotton yields (SCY) among treatments in any 

of the three years of the study post 1-MCP applications (Table 2.11).  Seedcotton 

production ranged from 2,464 to 5,083 Kg ha
-1

 and from 3,785 to 5,603 Kg ha
-1

 for the 

dryland and irrigated studies, respectively (Table 2.11). Within each of the three years 

studied the irrigated study always had higher SCY when compared to the dryland studies 

(Fig. 2.5). This difference was more pronounced during the drier 2013 season. The 3-

year SCY average was 3,922 and 4,777 Kg ha
-1

 for dryland and irrigated studies, 

respectively.  

 

 

 

Table 2.11. Effect of 1-methylcyclopropene (1-MCP) application on final seedcotton yield of cotton 

grown during the summers of 2012, 2013, and 2014. Values are average treatment seedcotton yield for 

four replications (Reps) (n = 4), and are shown for both dryland (DRY) and irrigated (IRR) studies. 

Statistical significance (Sig.) at the 5% level of probability is shown. Non-significant (n.s.). 

    2012 2013 2014 

Treatment
¥
 Reps IRR DRY IRR DRY IRR DRY 

  

 Kg ha
-1

 

C 4 5,137 4,408 3,785 2,464 5,331 4,854 

S 4 4,862 4,485 4,119 2,490 5,326 4,920 

A95 4 4,957 4,511 4,033 2,533 5,603 5,083 

A100 4 5,014 4,485 3,796 2,527 5,529 4,602 

Sig.   n.s. n.s. n.s. n.s. n.s. n.s. 
                  ¥ 

Control (C), Smartcrop
TM

 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100) 
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Figure 2.5. Average seed cotton yield across treatments for each of the three years studied. The 3-year 

average is included for reference and shown on the far right of each study. Bars represent ± 1 standard 

deviation. 
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 Since most cotton is an indeterminate plant, it has the ability to compensate for 

both biotic and abiotic stresses occurring throughout the growing season. Plant mapping 

analysis provides good insight into the crop’s responses to adverse conditions, which 

may negatively impact yield depending on the timing and duration of such occurrences. 

Number of bolls per unit area is the most important variable contributing to cotton yield 

(Boquet et al., 2004; Wu et al., 2005). This variable was indirectly assessed by analyzing 

fruit retention (FR) values. FR was calculated as the percentage of reproductive 

structures (squares, green bolls, and open bolls) retained in the plant at the time of 

measurement, to the total number of fruiting sites in both monopodial and sympodial 

branches (whole plant). Cotton growth responses to 1-MCP applications in 2012, 2013, 

and 2014 are detailed on tables 2.12, 2.13, and 2.14, respectively. Plant mapping data 

showed that 1-MCP applications did impact at least one growth characteristic in all three 

years studied. Those responses, however, did not necessarily translate into differences in 

final fruit retention (FR) among treatments within studies and years. 

 Height to node ratio (H:N) is the ratio between total plant height (measured from 

the cotyledons to the top terminal of the plant) and total number of nodes (including both 

monopodial and sympodial nodes). It provides an integrated measure of the crop’s stress 

level and source-sink balance (Kerby et al., 1998). Additionally, Silvertooth et al. (1996) 

reported that the average length of the top five internodes (ALT5) is a good indicator of 

main stem elongation (vigor of the plant). High ALT5 values (4.6 - 6.1 cm) indicate high 

plant vigor, while values lower than 3.6 cm were said to indicate low plant vigor. 

According to the same authors, while ALT5 may be considered essentially the same 
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measurement as H:N when the plants are small, as they grow ALT5 accounts only for 

the actual active zone of growth, rather than the plant as a whole. As such, the ALT5 

measurement may be used as a trigger for the use of plant growth regulators, as well as 

to monitor crop growth.  

 Across years and growth stages, our results showed that H:N ranged from 3.7 – 

4.7 cm and 4.0 – 4.7 cm for the dryland and irrigated studies, respectively (Tables 2.12, 

2.13, and 2.14).  1-MCP impacted H:N at harvest (HA) only for the irrigated studies in 

2012 and 2013. In the 2012 irrigated study the S and A95 treatments had lower H:N 

when compared to the C, while the A100 treatment although lower, was not significantly 

different than the C or any of the other two 1-MCP treatments (Table 2.12). In 2013 both 

S and A95 treatments had a H:N of 4.0 cm at harvest. These values were lower than both 

the A100 treatment (4.3 cm) and the C (4.2 cm), although differences were only 

significant against the A100 treatment (Table 2.13). In the last year of the study (2014), 

H:N was not affected by 1-MCP at harvest in neither the dryland nor the irrigated trial 

(Table 2.14).  
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Table 2.12. Effects of 1-methylcyclopropene (1-MCP) application on morphological characteristics of 

cotton grown in 2012. Plant height (PH), height to node ratio (H:N), number of vegetative nodes (VN), 

number of reproductive nodes (RN), number of mainstem nodes (MSN), total number of reproductive 

structures (TRS), and final fruit retention (FR) were collected for both irrigated (IRR) and dryland (DRY) 

studies at three distinct growth stages: Early bloom (EB), full bloom (FB), and harvest (HA). Values are 

average of 24 plants per treatment (TRT) (n = 24). Same letter in a column within a study and growth 

stage (GS) are not significantly different at the 5% level of probability. 

Year Study TRT GS PH H:N VN RN MSN TRS FR 

    
cm 

    
(%) 

2012 IRR C EB 83.7a 4.7a 4.8a 13.3a 18.1a 24.3a 98.7a 

  

S EB 83.0a 4.5a 5.2a 13.2a 18.4a 24.7a 98.9a 

  

A95 EB 78.8b 4.6a 4.5a 12.8a 17.3a 24.5a 97.9a 

  

A100 EB 83.8a 4.6a 5.3a 12.8a 18.2a 24.2a 98.8a 

  
  

 
 

    
 

2012 IRR C FB 89.4a 4.4a 5.6a 15.0a 20.5a 32.4a 62.2a 

  

S FB 88.7a 4.1a 6.2a 15.5a 21.6a 35.2a 53.9b 

  

A95 FB 87.5a 4.3a 5.7a 15.0a 20.6a 34.7a 64.1a 

  

A100 FB 85.9a 4.3a 5.5a 14.6a 20.2a 32.8a 60.1a 

  
  

      
 

2012 IRR C HA 96.4a 4.7a 5.5a 15.3a 20.8a 34.0a 44.0a 

  

S HA 92.1b 4.4b 5.7a 15.5a 21.3a 33.1a 44.2a 

  

A95 HA 89.9b 4.3b 6.1a 14.9a 21.0a 33.3a 43.8a 

  

A100 HA 93.6ab 4.5ab 6.3a 14.7a 21.0a 28.6a 44.1a 

  
         

2012 DRY C EB 82.8a 4.7a 5.7a 11.9a 17.6a 22.0a 96.4a 

  

S EB 82.9a 4.7a 4.9a 12.7a 17.6a 25.6a 96.9a 

  

A95 EB 81.7a 4.5a 5.3a 12.8a 18.2a 24.5a 99.0a 

  

A100 EB 80.7a 4.6a 5.4a 12.4a 17.7a 22.6a 97.5a 

  
         

2012 DRY C FB 88.0a 4.3ab 5.3a 15.2a 20.5a 31.7a 56.0a 

  

S FB 88.3a 4.4a 5.6a 14.5a 20.2a 31.4a 58.3a 

  

A95 FB 89.2a 4.2ab 5.9a 15.4a 21.3a 33.3a 59.4a 

  

A100 FB 83.9b 4.0b 5.8a 15.0a 20.8a 31.2a 58.3a 

  
  

      
 

2012 DRY C HA 88.5a 4.4a 5.8a 14.4a 20.2a 30.1a 44.9a 

  

S HA 85.5a 4.2a 5.8a 14.4a 20.3a 28.7a 44.1a 

  

A95 HA 87.9a 4.3a 6.2a 14.3a 20.5a 30.3a 42.6a 

  

A100 HA 86.3a 4.3a 5.5a 14.5a 20.0a 29.7a 45.5a 
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Table 2.13. Effects of 1-methylcyclopropene (1-MCP) application on morphological characteristics of 

cotton grown in 2013. Plant height (PH), height to node ratio (H:N), number of vegetative nodes (VN), 

number of reproductive nodes (RN), number of mainstem nodes (MSN), total number of reproductive 

structures (TRS), and final fruit retention (FR) were collected for both irrigated (IRR) and dryland (DRY) 

studies at three distinct growth stages: Early bloom (EB), full bloom (FB), and harvest (HA). Values are 

average of 24 plants per treatment (TRT) (n = 24). Same letter in a column within a study and growth 

stage (GS) are not significantly different at the 5% level of probability. 
Year Study TRT GS PH H:N VN RN MSN TRS FR 

    
cm 

    
(%) 

2013 IRR C EB 65.7a 4.5a 6.3a 8.3a 14.5a 14.3a 81.7bc 

  

S EB 65.1a 4.3a 6.4a 8.8a 15.2a 16.4a 86.3ab 

  

A95 EB 65.8a 4.5a 6.2a 8.7a 14.8a 16.4a 92.4a 

  

A100 EB 68.8a 4.5a 6.2a 9.3a 15.5a 17.8a 79.2c 

  
  

       2013 IRR C FB 84.3a 4.5a 6.8a 12.2a 18.9a 24.3a 51.6a 

  

S FB 86.9a 4.5a 6.4a 13.0a 19.4a 28.0a 49.3a 

  

A95 FB 84.7a 4.4a 6.7a 12.8a 19.5a 28.5a 52.7a 

  

A100 FB 87.4a 4.5a 6.8a 12.9a 19.6a 26.6a 54.0a 

 
 

  
       2013 IRR C HA 86.5a 4.2ab 6.7a 13.8b 20.5b 25.6a 45.7a 

  

S HA 88.3a 4.0b 6.5a 15.3a 22.2a 31.0a 42.1a 

  

A95 HA 89.1a 4.0b 7.1a 15.1a 22.2a 32.1a 42.0a 

  

A100 HA 91.8a 4.3a 6.8a 14.5ab 21.3ab 28.8a 46.2a 

  
        

 2013 DRY C EB 67.4ab 4.4a 6.6a 8.7a 15.3a 15.8a 78.0b 

  

S EB 70.5a 4.6a 6.5a 9.0a 15.5a 14.7a 77.5b 

  

A95 EB 65.5b 4.3a 6.6a 8.6a 15.2a 15.7a 90.4a 

  

A100 EB 70.8a 4.5a 6.5a 9.3a 15.7a 18.3a 84.5ab 

  
        

 2013 DRY C FB 75.9a 4.3a 6.3a 11.5a 17.8a 23.6a 41.7a 

  

S FB 74.3a 4.3a 6.6a 10.9a 17.5a 20.2a 36.8a 

  

A95 FB 78.8a 4.3a 6.8a 11.3a 18.1a 21.9a 40.2a 

  

A100 FB 73.8a 4.2a 6.7a 11.0a 17.7a 20.5a 40.4a 

  
  

       2013 DRY C HA 77.0a 3.9a 7.0a 12.9a 19.9a 25.0a 33.8a 

  

S HA 77.8a 3.8a 6.6a 14.0a 20.6a 27.9a 31.0a 

  

A95 HA 77.3a 3.7a 6.7a 14.2a 20.8a 26.0a 31.4a 

  

A100 HA 76.3a 3.7a 7.1a 13.3a 20.4a 25.9a 37.0a 
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Table 2.14. Effects of 1-methylcyclopropene (1-MCP) application on morphological characteristics of 

cotton grown in 2014. Plant height (PH), height to node ratio (H:N), number of vegetative nodes (VN), 

number of reproductive nodes (RN), number of mainstem nodes (MSN), total number of reproductive 

structures (TRS), and final fruit retention (FR) were collected for both irrigated (IRR) and dryland (DRY) 

studies at three distinct growth stages: Early bloom (EB), full bloom (FB), and harvest (HA). Values are 

average of 24 plants per treatment (TRT) (n = 24). Same letter in a column within a study and growth 

stage (GS) are not significantly different at the 5% level of probability. 

Year Study TRT GS PH H:N VN RN MSN TRS FR 

    
cm 

    
(%) 

2014 IRR C EB 60.0b 4.0a 6.6a 8.4a 15.0b 14.0a 79.5a 

  
S EB 66.0a 4.1a 6.8a 9.3a 16.1a 16.4a 83.4a 

  
A95 EB 67.7a 4.2a 7.1a 9.0a 16.1a 15.9a 87.0a 

  
A100 EB 65.5a 4.1a 6.8a 9.4a 16.3a 16.0a 87.3a 

           
2014 IRR C FB 91.0a 4.6a 7.2a 12.8a 20.0a 29.3a 85.4b 

  
S FB 89.2a 4.7a 7.4a 11.8a 19.1a 26.1a 82.0b 

  
A95 FB 89.6a 4.6a 7.4a 12.2a 19.5a 29.8a 91.7a 

  
A100 FB 90.0a 4.7a 6.8a 12.4a 19.2a 28.7a 85.5b 

           
2014 IRR C HA 105.8a 4.7a 7.8a 14.8a 22.6a 33.4a 43.4b 

  
S HA 105.8a 4.6a 7.8a 15.2a 23.0a 33.3a 47.5ab 

  
A95 HA 103.4a 4.6a 7.1b 15.4a 22.5a 34.3a 46.8b 

  
A100 HA 107.3a 4.7a 7.2b 15.5a 22.6a 36.8a 52.3a 

           
2014 DRY C EB 62.8a 3.9b 7.2a 9.0a 16.2ab 16.4a 85.4a 

  
S EB 67.2a 4.2b 7.0a 9.2a 16.1ab 16.4a 86.2a 

  
A95 EB 67.9a 4.5a 7.3a 7.9b 15.3b 13.8a 84.2a 

  
A100 EB 68.0a 4.0b 7.3a 9.6a 16.8a 17.8a 85.4a 

           
2014 DRY C FB 78.4c 4.2a 7.3a 11.4a 18.7a 24.0a 80.6b 

  
S FB 83.4ab 4.3a 7.1a 12.2a 19.3a 28.9a 88.8a 

  
A95 FB 87.4a 4.5a 7.3a 12.3a 19.6a 28.0a 83.6ab 

  
A100 FB 81.0bc 4.3a 7.6a 11.3a 18.9a 24.5a 85.1ab 

           
2014 DRY C HA 90.4b 4.3a 7.7a 13.7a 21.3bc 28.5b 51.6a 

  
S HA 97.8a 4.3a 7.3a 15.3a 22.6a 29.3b 47.9a 

  
A95 HA 98.4a 4.5a 7.4a 14.8a 22.2ab 36.7a 48.7a 

  
A100 HA 87.3b 4.2a 7.1a 14.0a 21.1c 28.1b 49.0a 
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 By combining plant mapping and yield data over studies and years, preliminary 

analysis demonstrated a  high positive correlation between H:N and seed cotton yield at 

harvest, such that the highest yields were found for plots with a H:N greater than 4.5 cm 

(Fig. 2.6). Final fruit retention was generally higher at EB and decreased as the crop 

matured. Lowest FR values were found at harvest (HA), and ranged across years from 

42-52% and 31-51% for the irrigated and dryland studies, respectively, regardless of 1-

MCP treatment. Not surprisingly, FR was highly correlated with final seedcotton yield at 

harvest (Fig. 2.7). A negative effect of 1-MCP application was detected at the FB stage 

in the 2012 irrigated study for the S treatment, which showed an 8% reduction in fruit 

retention when compared to the untreated control, at the same growth stage (Table 2.12). 

Interestingly, da Costa et al. (2011) also found negative impacts of 1-MCP application 

on fruit retention. The authors reported that both 1-MCP rates (25 and 50 g a.i. ha
-1

) 

tested without surfactants produced the lowest boll retention values 50 d after treatment. 

Additionally, Chen et al. (2014) also indicated lower FR in plants treated with 1-MCP at 

10 g a.i. ha
-1

 when compared to untreated controls.  In 2013 the A95 treatment was first 

sprayed with 1-MCP on June 11
th

 (Table 2.2). Two weeks later when plots were sampled 

for the EB plant mapping there was a beneficial effect of 1-MCP on FR. When 

compared to their respective control plots, the A95 treatment had 10 and 12% higher FR 

at EB for the irrigated and dryland studies, respectively (Table 2.13). During the 2014 

season, 1-MCP treatment benefited FR on the irrigated study for A95 and A100 at FB 

and HA, respectively, while under dryland conditions 1-MCP improved FR of the S 

treatment by 8% at FB when compared to the control (Table 2.14).  
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Figure 2.6. Relationship between height to node ratio and seedcotton yield at harvest, for cotton grown 

during the summers of 2012, 2013, and 2014. Data shown are a combination of both, irrigated and dryland 

studies across three years studied.  
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Figure 2.7. Relationship between fruit retention and final seedcotton yield at harvest, for cotton grown 

during the summers of 2012, 2013, and 2014. Data shown are a combination of both, irrigated and dryland 

studies across three years studied. 
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All fiber parameters measured were similar to the average for the southwest 

cotton production areas of the United States, which includes Texas, Oklahoma, and 

Kansas (Table 2.15). Analysis of fiber quality characteristics as measured by the High 

Volume Instrument (HVI) method showed no effect of 1-MCP application on most fiber 

quality parameters such as micronaire, length, strength, elongation, and leaf grade (Table 

2.16). Although significant differences in reflectance (Rd) and/or yellowness (+b) were 

found in both 2012 and 2013 irrigated trials, and dryland trial in 2014, such differences 

are not likely to cause any positive or negative effects on fiber value in the current 

market. Since effects of 1-MCP were minimal and unlikely to cause any impact on the 

market value for the fiber, these effects may be considered negligible under the 

conditions tested. 
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Table 2.15. Average values for micronaire (MIC), length (LGH), uniformity (UNIF), and strength (STG) 

for the southwest cotton-producing region of the United States (SW Region), which includes Texas, 

Oklahoma, and Kansas. Same parameters for both our irrigated (IRR) and dryland (DRY) studies are 

included for reference. 

Year Sample Source MIC LGH UNIF STG 

    

(in.) (%) (g/tex) 

2013-2014
¥
 4,247,152 SW Region 4.0 1.1 80.2 30.2 

2012 32 IRR 4.7 1.1 84.1 31.8 

2012 32 DRY 4.7 1.1 84.2 31.3 

2013 32 IRR 5.1 1.1 83.2 31.7 

2013 32 DRY 4.8 1.1 82.0 30.2 

2014 32 IRR 4.7 1.1 82.5 32.8 

2014 32 DRY 4.8 1.1 82.9 32.8 
¥
Source: Cotton Incorporated: http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Properties-of-the-

Growing-Regions/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Properties-of-the-Growing-Regions/
http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Properties-of-the-Growing-Regions/
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Table 2.16. Effects of 1-methylcyclopropene (1-MCP) treatment on fiber quality characteristics of cotton 

plants grown during the summers of 2012, 2013, and 2014 under irrigated (IRR) and dryland (DRY) 

conditions. Means are average of 4 replications per treatment. Fiber characteristics were assessed using the 

high volume instrument (HVI) method. 

Year Study Treatment MIC LGH UNIF STG ELON Rd +b LEAF 

    (in.) (%) (g/tex) (%) (%)   

2012 IRR C 4.7 1.1 82.9 31.5 8.2 66.9 8.2 7.3 

  

S 4.9 1.1 84.1 31.1 8.2 67.1 8.2 7.0 

  

A95 4.7 1.2 85.0 32.4 8.4 66.6 7.8 7.8 

  

A100 4.7 1.1 84.2 32.4 8.3 69.4 8.4 6.8 

  

Sig. n.s. n.s. n.s. n.s. n.s. * ** n.s. 

2012 DRY C 4.6 1.1 84.2 31.0 8.5 65.6 7.9 8.0 

  

S 4.7 1.1 84.6 31.7 8.0 65.6 8.0 8.0 

  

A95 4.6 1.1 84.1 30.9 8.4 66.2 8.0 7.5 

  

A100 4.7 1.1 83.9 31.6 8.4 66.5 7.9 7.5 

  

Sig. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

2013 IRR C 5.2 1.1 83.1 31.2 7.7 61.6 8.3 7.5 

  

S 5.1 1.1 83.2 32.1 7.6 61.5 8.2 7.0 

  

A95 5.0 1.1 83.0 31.4 7.6 61.2 8.2 6.5 

  

A100 5.1 1.1 83.6 32.1 7.4 63.1 8.7 6.5 

  

Sig. n.s. n.s. n.s. n.s. n.s. n.s. * n.s. 

2013 DRY C 4.7 1.0 81.7 30.2 7.9 60.7 8.6 6.5 

  

S 4.8 1.1 81.9 30.2 7.7 61.3 8.7 7.3 

  

A95 4.9 1.1 82.8 31.0 7.9 62.3 8.4 6.5 

  

A100 4.8 1.0 81.6 29.3 7.9 61.2 8.7 7.5 

  

Sig. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

2014 IRR C 4.7 1.1 82.5 32.4 6.8 55.9 8.0 7.5 

  

S 4.5 1.1 82.4 32.9 7.2 58.1 8.1 7.8 

  

A95 4.8 1.1 82.2 32.9 6.9 56.7 8.3 7.5 

  

A100 4.8 1.1 83.1 32.9 7.0 57.4 8.4 7.5 

  

Sig. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

2014 DRY C 4.8 1.2 83.4 33.2 7.0 58.1 7.8 8.0 

  

S 4.7 1.1 83.2 33.1 7.0 56.9 7.8 8.0 

  

A95 4.8 1.1 82.6 32.8 6.9 58.2 8.1 8.0 

  

A100 4.7 1.1 82.3 32.2 6.7 57.8 8.3 7.3 

  

Sig. n.s. n.s. n.s. n.s. n.s. n.s. * n.s. 

Significance (Sig.): * significant at P ≤ 0.05, ** significant at P ≤ 0.01, not significant (n.s.) 

Control (C), Smartcrop
TM

 (S), Ambient 35 °C (A95), and Ambient 37.8 °C (A100) 

Micronaire (MIC), Length 100’s (LGH), Uniformity (UNIF), Strength (STG), Elongation 

(ELON), Reflectance (Rd), Yellowness (+b), Leaf grade (LEAF) 
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CONCLUSIONS 

 Results of this study indicated that 1-MCP had little to no significant effect on 

physiological and morphological parameters of field grown cotton at different stages of 

crop development. 1-MCP treatment had no impact on pre-dawn leaf water potential. 

Average daily plant canopy temperature, net photosynthesis, transpiration, and 

photosystem II quantum yield were affected by 1-MCP treatment when plants were 

grown under irrigation, but not under dryland conditions. 

Both positive and negative effects of 1-MCP on fruit retention found during early 

and peak reproductive phases were mostly undetectable by harvest. Further, 1-MCP-

treated plots showed no significant increase in seed cotton yield when compared to the 

untreated control, in any of the three years studied and regardless of which temperature 

threshold was used to trigger applications. The differences found in fiber quality 

characteristics due to 1-MCP treatment were minimal and also unlikely to cause any 

positive or negative impact on fiber value.  

In conclusion, the effects of 1-MCP applications during the different seasons 

were variable and somewhat inconsistent. Ultimately, 1-MCP treatment effects were not 

enough to cause a significant increase in seedcotton yield under the conditions tested. 
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CHAPTER III 

ASSOCIATION BETWEEN CANOPY TEMPERATURE-BASED STRESS INDICES 

AND YIELD OF COTTON 

 

OVERVIEW 

 Researchers have established numerous useful associations between crop canopy 

temperature and important physiological and agronomic characteristics. Due to their 

direct contribution to plant performance and ultimately yield, multiple canopy 

temperature-based stress indices have been developed. The objective of this study was to 

investigate the association of canopy temperature (CT), canopy temperature depression 

(CTD), stress degree day (SDD), thermal stress index (TSI), and crop water stress index 

(CWSI) with final cotton (Gossypium hirsutum L.) yield. Studies were conducted at the 

Texas A&M University Field Laboratory in Burleson County, TX during the summers of 

2012 – 2014. Initial analysis showed that all stress indices performed similarly during 

individual years. Over the combined years CT (r
2
 = 0.66), TSI (r

2
 = 0.70), and CWSI (r

2
 

= 0.58) were significantly correlated to final seedcotton yield while CTD and SDD were 

not. Removal of the drier 2013 season from the regression analysis substantially 

improved fit for CTD (r
2
 from 0.16 to 0.64) and SDD (r

2
 from 0.16 to 0.64). Ultimately, 

TSI had the best fit and was a better predictor of yield under the conditions tested. 

Neither the number of bolls per plant nor fruit retention were significantly correlated 

with any of the indices studied.  
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INTRODUCTION 

The impact of changes in weather patterns on crop yields are of great concern. 

Empirical data show evidence of greater intra- and inter-annual rainfall variability, with 

events becoming fewer but more intense (Allan and Soden, 2008; Heisler-White et al., 

2009). This has significantly increased the duration of prolonged dry episodes in several 

regions of the United States (Groisman and Knight, 2008). Along with changes in 

rainfall patterns, temperatures in the U.S. are expected to increase as much as 3 to 5 °C 

on average in the next 100 years, if greenhouse gas emissions continue to grow 

(MacCracken et al., 2003). While increases in the duration of dry periods may be 

damaging to crop yields in their own right, Lobell and Asner (2003) have indicated that 

temperature changes have had a substantial impact on crop yield trends, and that yields 

may decrease as much as 17% for every °C increase during the growing season.  

Among environmental variables, ambient temperature is a major factor 

determining plant distribution in different geographical locations (Lambers et al., 2008). 

Depending upon a combination of several morphological and physiological 

characteristics, plants are adapted to live and survive in a wide range of environments. In 

terms of crop production, however, survival does not translate into higher yields under 

high temperatures since different plants usually have a relatively narrow species-specific 

range of temperature optimum. This optimum temperature range may be represented by 

the thermal kinetic window (TKW), a term first coined by Mahan et al. (1987) and 

defined as the temperature range in which the apparent Michaelis constant (Km) remains 

within 200% of the minimum for optimum enzyme function. The first TKW studies on 
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cotton (G. hirsutum L.) reported optimum temperatures ranging from 23.5 to 32 °C, and 

were based on the activity of glutathione and glyoxylate reductase for nicotinamide 

adenine dinucleotide (Burke et al., 1988; Mahan et al., 1987). More recently, Burke and 

Wanjura (2010) indicated that the optimum temperature for enzyme function, 

germination, flowering, lint production, and root/shoot development of cotton is centered 

around 28 ± 3 °C.  

Cotton often faces ambient temperatures well above the upper threshold of the 

TKW (31 °C) throughout the season in most growing regions, which is especially true 

during mid to late season. In cotton, high temperatures have been implicated in 

decreased flower survival and fruit set (Reddy et al., 1991a), reduced biomass 

production and abortion of reproductive structures (Reddy et al., 1991b), decreased 

pollen germination (Kakani et al., 2005), and reduced boll retention (Zhao et al., 2005), 

all of which are likely to negatively impact final crop yield. Burke et al. (1988) measured 

canopy temperatures of cotton and wheat (Triticum aestivum L.) throughout most of the 

1984 season and found that both species were within their respective TKW for less than 

30% of the season and that biomass production was related to the time in which the crop 

canopies remained within the bounds of the TKW. This information led the researchers 

to suggest that approximately 70% of the season is still available to increase crop 

production either through improvements in crop management practices or genetics. 

Furthermore, according to Carmo-Silva et al. (2012) significant decreases in yield and 

plant productivity may occur if temperatures during the season deviate as little as one or 

two degrees from the plant’s optimum.  
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Since the mid 1900’s researchers have worked to establish useful associations 

between crop canopy temperature and soil water depletion (Aston and Vanbavel, 1972; 

Ehrler, 1973), plant water status (Ehrler et al., 1978; Tanner, 1963), selection in plant 

breeding (Chaudhuri et al., 1986; Gardner et al., 1986; Mckinney et al., 1989; Mtui et al., 

1981), photosynthesis (Choudhury, 1986), irrigation scheduling (Jones, 1999; Wanjura 

and Upchurch, 1997), and yield (Blum et al., 1989; Diaz et al., 1983; Harris et al., 1984; 

Walker and Hatfield, 1979). Due to its great potential as an important variable 

contributing to plant performance and ultimately yield, multiple canopy temperature-

based stress indices have been developed. The simplest index is known as the canopy 

temperature depression (CTD), which only accounts for the difference in temperature 

between the crop canopy and its surrounding air. It is based on the idea that a freely 

transpiring plant canopy should maintain its temperature below that of the ambient 

through evaporative cooling. Although water use by plants is a passive process, the large 

amount of energy required to change water from liquid to gas phase (~ 44 kJ mol
-1

) 

allows plants to cool themselves.  

Following the idea of CTD, Idso et al. (1977) and Jackson et al. (1977) 

developed the stress degree day (SDD) concept, where they hypothesized not only that 

crop yield was linearly related to the accumulation of SDD’s over a certain critical 

period during the crop development, but also that the concept could be useful to schedule 

irrigation and to determine the amount of water needed. The same authors also 

demonstrated that wheat (Triticum durum Desf. var. Produra) yields decreased with 

increased SDDs (Idso et al., 1977). Later, Idso et al. (1981) and Jackson et al. (1981) 
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further improved the SDD index to account for environmental variability. Based on 

experiments by Ehrler (1973) that showed great dependency of the canopy-air 

temperature differential on the atmospheric vapor pressure deficit (VPD) Idso, Jackson, 

and colleagues created the crop water stress index (CWSI), which is sometimes referred 

to as the empirical form of CWSI. A year later Jackson derived what is known today as 

the analytical form of the CWSI based on the energy balance of a surface (Jackson, 

1982). This variation of the CWSI accounts for most of the environmental variables 

affecting foliage temperature, although according to Gardner et al. (1992) its routine 

usage is hampered by the difficulty to obtain all the values needed for its calculation. 

The thermal stress index (TSI) was developed by Burke et al. (1990) and was 

based on enzyme kinetics and the concept of a biochemically-derived range of species-

specific temperature for optimum enzyme function (TKW). The usefulness of TSI was 

attributed to the fact that it was positively correlated to CWSI with an r
2
 of 0.92, and for 

the simplicity in its calculation (only the canopy temperature is needed) (Burke et al., 

1990). 

The objective this study was to calculate multiple canopy temperature-based 

stress indices and compare their association with the final yield of field-grown cotton. 

Additionally, the correlation of two yield components (number of bolls plant
-1

 and fruit 

retention) and the stress indices was assessed.  
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MATERIALS AND METHODS 

Cultural practices 

 Field trials were conducted at the Texas A&M AgriLife Field Laboratory in 

Burleson County (30°33'01.67" N, 96°26'07.07" W), approximately 8 miles west of 

College Station, TX, on a Weswood silt loam soil (fine-silty, mixed, superactive, 

thermic, Udifluventic Haplustepts), during the summers of 2012 - 2014. The study area 

was equipped with a sub-surface drip irrigation system installed at a depth of 45.7 cm, 

with emitters spaced 45.7 cm apart. Drip lines were spaced at 1.02 m apart and located at 

the center of each row (i.e. directly under the cotton plants). 

Management practices such as fertility, disease prevention, weed and insect 

control followed the guidelines provided by the Texas A&M AgriLife Extension service 

for the region. Cotton (G. hirsutum L. cv. Phytogen 499 WRF) seeds were sown on April 

10 in 2012 and April 09 in 2013 and 2014, at a rate of 108,000 seeds ha
-1

 in northwest to 

southeast oriented rows, spaced 1.02-m apart. Plant growth regulator applications 

consisted of a combination of cyclanilide (1-(2,4-dichlorophenylaminocarbonyl)-

cyclopropane carboxylic acid; 0.003 kg a.i. ha
-1

) and mepiquat chloride (N,N-

dimethylpiperidinium chloride; 0.012 kg a.i. ha
-1

), which were applied as needed during 

the growing season. Harvest aids were applied when cotton plants exhibited 

approximately 60-70% open bolls, and consisted of a combination of thidiazuron (N-

phenyl-N-1,2,3-thidiazol-5-ylurea; 0.056 kg a.i. ha
-1

), ethephon (2-chloroethyl 

phosphonic acid; 1.106 kg a.i. ha
-1

), and cyclanilide (1-(2,4-

dichlorophenylaminocarbonyl)-cyclopropane carboxylic acid; 0.069 kg a.i. ha
-1

).  
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Experimental design and treatments 

The study was arranged as a randomized complete block design. Plots were four 

rows wide, 9.73-m in length with a 3-m alley in between, and the 2 treatments (dryland 

and irrigated) were replicated four times. Treatments consisted of two irrigation regimes, 

namely, dryland (DRY) and irrigated (IRR). Irrigation was arbitrarily set at 80% crop 

evapotranspiration (ETc) replacement. Amounts were adjusted based on crop stage 

following guidelines by Fisher and Udeigwe (2012). All plots were fully irrigated until 

crop establishment approximately 30 days after planting (DAP). Irrigation treatment was 

then initiated and maintained throughout the season until the crop reached maturity. 

Irrigated and dryland will be referred to as water regimes throughout the manuscript. 

 

Canopy temperature 

To monitor crop canopy temperatures, one SmartCrop
TM

 (Smartfield Inc., 

Lubbock, TX) infrared thermometer sensor was installed per plot, approximately half-

way into the plots, on the third row, pointing southeast. These infrared sensors are able 

to measure temperatures between -33 – 220 °C, with an accuracy of ±0.6 °C between 

wave lengths of 5 – 14 µm. Installation occurred at 42, 59, and 64 days after planting 

(DAP) in 2012, 2013, and 2014, respectively. Sensors were mounted on a bracket and 

attached to a 2-m perforated pole. The bracket maintained sensors at a fixed 45° angle 

from the soil surface and the perforated pole allowed changes in sensor height. To 

account for crop growth, frequent adjustments in height were made during the growing 

season to maintain sensors approximately 30 to 40-cm above the crop canopy, which 
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resulted in an approximate 0.5 m
2
 field of view. Canopy temperature data were 

automatically collected every minute and a 15 min average was wirelessly transferred to 

a base station (SmartWeather
TM

), and then automatically uploaded to the CropInsight
TM

 

(Smartfield, Inc., Lubbock, TX) website (http://www.cropinsight.com/).  

 

Weather 

Rainfall, ambient temperature, and wind speed data were collected by the 

SmartWeather
TM

 weather station (Smartfield, Inc., Lubbock, TX), that also serves as a 

base station to wirelessly gather data from the infrared thermometer sensors. Sensors on 

the base station were at a fixed 2 m height above the soil surface. 

 

Plant mapping 

Six consecutive plants per plot, with the exception of very small plants, from 

either one of the outside rows were removed from the field for plant mapping. Data 

collection and input were handled according to Landivar (1992). Fruit retention was 

determined according to the procedure described by Landivar et al. (1993) using an 

Excel version of the PMAP software (Plant Map Analysis Program for Cotton) obtained 

from Dr. Landivar (J.A. Landivar, personal communication, 2012). Number of bolls per 

plant and fruit retention values is presented as the average of six plants for each 

replication. 

 

 

http://www.cropinsight.com/
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Yield  

  The two center rows were mechanically harvested using a custom 2-row cotton 

spindle picker, John Deere model 9910 (Deere & Company, Moline, IL). This 

equipment was modified for small-plot research and allowed yield to be established on a 

per plot basis. Final crop yield is presented as seedcotton in kilograms per hectare (kg 

ha
-1

). Yield and seedcotton yield will be used interchangeably throughout the 

manuscript.  

 

Stress indices 

 All canopy temperature and weather data used to calculate stress indices were 

hourly averages collected every 15 min during the crop’s reproductive phase, from 15 

June through 15 August at 14:00. These dates represent days of the year (DOY) 167 – 

228 and 166 – 227, for 2012 (leap year), and 2013 and 2014 (regular years), 

respectively. Stress indices are presented as the average value during data collection; 

except for stress degree day (SDD) which is presented as the sum of the difference 

between canopy and air temperatures over the same period. Stress indices were 

calculated as follows: 

Canopy temperature (CT) 

𝐶𝑇 = (𝑇𝑐1 +  𝑇𝑐2 + ⋯ +  𝑇𝑐𝑛)/𝑛 

Where, Tc = canopy temperature in °C, n = number of days or samples, Range: some 

realistic positive range (e.g. 25 to 45 °C) 
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Canopy temperature depression (CTD) 

𝐶𝑇𝐷 = 𝑇𝑐 − 𝑇𝑎 

Where, Tc = canopy temperature in °C, Ta = air temperature in °C, Range: some positive 

to some negative number (usually within ± 10 °C) 

 

 

Stress degree days (SDD) (Idso et al., 1977; Jackson et al., 1977) 

𝑆𝐷𝐷 =  ∑(𝑇𝑐 − 𝑇𝑎)𝑛

𝑁

𝑛=𝑖

 

Where, Tc = canopy temperature in °C, Ta = air temperature in °C, summed over N days 

beginning at day i, Range: same as CTD, although because it is a sum over a certain 

period values tend to be a lot larger (positive) or smaller (negative) 

Crop water stress index (CWSI) (Idso et al., 1981) 

𝐶𝑊𝑆𝐼 =
(𝐶𝑇𝐷) − 𝑇𝑛𝑤𝑠

𝑇𝑤𝑠 − 𝑇𝑛𝑤𝑠
 

Where, CTD = canopy temperature (Tc) in °C - air temperature (Ta) in °C, Tnws = non-

water stressed baseline (function of CDT and atmospheric vapor pressure deficit (VPD)), 

Tws = water-stressed baseline (equal to the maximum difference between Tc and Ta in 

°C), Range: from 0 (non-stressed) to 1 (severely stressed) 

 Idso (1982) developed non-water stressed baselines for several well-watered 

crops, including cotton, from data collected at the University of Arizona’s Cotton 

Research Center in Phoenix, AZ. However, preliminary analysis showed that his 

baselines generated CWSI values well below the lower index threshold of 0 for cotton 
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grown in this study. According to Burke et al. (1990), this usually happens in areas with 

high humidity and VPD < 1.0 kPa due to limitations of CWSI in resolving Tc and Ta 

differences. Since environmental conditions between Phoenix, AZ and College Station, 

TX may differ greatly, individual non-stressed baselines (Tnws) were computed from the 

irrigated plots for each year based on single day measurements during sunlit hours from 

7:00 to 19:00 (Table 3.1). When CWSI values were recalculated with individual Tnws 

very few values exceeded the index thresholds (Fig. 3.2 A, B, and C). Upon inspection 

of the daily average CWSI values for the dryland plots over the period studied it was 

observed that values calculated using the Tnws provided by Idso (1982) underestimated 

stress levels, especially at relatively low stress levels (CWSI < ~ 0.2). This trend was 

accentuated in both humid years (i.e. 2012 and 2014) (Fig. 3.2 A, and C), but was also 

apparent in the drier 2013 season (Fig. 3.2 B). It is worth noting, however, that while 

under some stress (i.e. CWSI > ~ 0.2) the Tnws published by Idso (1982) also yielded 

CWSI values that were remarkably similar to those generated by the individual Tnws 

computed for this study, despite being developed for a different region. This was most 

evident during good portions of 2012 and 2013 (Fig. 3.2 A and B) and the latter part of 

2014 (Fig. 3.2 C).  

Water-stressed baselines (Tws) were determined for each year based on the 

average maximum difference between Tc of four replications and Ta (from 15 June to 15 

August at 14:00). Tws was set as 3.0, 2.25, and 3.3 °C for 2012, 2013, and 2014, 

respectively.  
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Table 3.17. Non-water stressed baseline equations used to calculate the crop water stress index (CWSI) 

for each year. For reference, the range of solar radiation (SR) and atmospheric vapor pressure deficit 

(VPD) are shown for each date when data was collected. Data collected from 7:00 to 19:00 at specified 

dates. 

Year Date 
SR   VPD   

Slope Intercept r
2
 

W m
-2

   kPa   

2012 2-Jul 82 - 776 

 

0.09 - 3.31 

 

-1.3657 -1.0885 0.92 

2013 9-Jul 80 - 876 

 

0.06 - 4.27 

 

-1.6213 -0.2519 0.98 

2014 5-Jul 32 - 933   0.09 - 2.66   -1.6442 -0.9331 0.90 
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Figure 3.8. Dryland crop water stress index (CWSI) comparisons of average (4 replications) daily values 

at 14:00 for different days of the year (DOY). CWSI were computed for 2012 (A), 2013 (B), and 2014 (C) 

using the non-water stressed baseline (Tnws) provided by Idso (1982) and compared to those calculated 

using Tnws developed for each year individually based on data collected at the experimental site.  The 

water-stressed baseline (Tws) used was the same for both Tnws but based on maximum canopy-air 

temperature differential for each individual year. Dashed horizontal lines represent the CWSI thresholds 

(from 0 to 1). 
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Thermal stress index (TSI) (Burke et al., 1990) 

𝑇𝑆𝐼 =
(𝑇𝑐 > 𝑇𝑏) − 𝑇𝑏

𝑇𝑏
 

Where, Tc = canopy temperature in °C, Tb = biochemically determined baseline 

temperature for optimum enzyme function (defined for the purpose of this study as the 

midway point of the TKW for cotton (28 °C)), Range: from 0 (non-stressed) to some 

positive value (greater number indicating increasing stress). Upper limit is restricted to a 

thermal stress resulting from the inability of plants to cool due to limiting soil-available 

water or physical environmental conditions (Burke et al., 1990). 

 

Statistical analysis 

 Data were analyzed using JMP Pro, Version 11.0.0 (SAS Institute Inc., Cary, 

NC). Analysis was performed on combined data over the three different growing 

seasons. Correlation coefficients were considered significant at the 5% probability level.  

 

RESULTS AND DISCUSSION 

Yearly rainfall totals of 1,270, 998, and 1,045 mm were recorded for 2012, 2013, 

and 2014, respectively. Within the planting and harvest dates (growing season), rainfall 

totals were 635, 325, and 502 mm for 2012, 2013, and 2014, respectively. Figure 3.2 

shows a graphic representation of the historical rainfall totals as well as within season 

(April – September) accumulation for the region, from 2000 through 2014. Data for 

2012-2014 was collected on site, while data for 2000-2011 was obtained from the 

National Oceanic and Atmospheric Administration (NOAA) website, which collects data 
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at the Easterwood Airport in College Station, TX, approximately 8 km northeast of the 

experimental site.  

 

 

 

 

 

Figure 3.9. Figure shows yearly and within season (April through September) rainfall totals for the region. 

Data for 2012, 2013, and 2014 were collected by a weather station at the experimental site. Historical data 

for other years (2000-2011) were obtained from the National Oceanic and Atmospheric Administration 

(NOAA) website (http://www.srh.noaa.gov/hgx/?n=climate_cll_normals_summary), from which the 

average (AVG) was calculated. Historic data was collected by NOAA at Easterwood airport in College 

Station, TX, approximately 8 km northeast of the experimental site. 
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During all three growing seasons there was great potential for high temperature 

stress. Daily average temperatures were higher than the midway point of the TKW (28 

°C) for 83, 76, and 69% of the time in 2012, 2013, and 2014, respectively, whilst the 

average maximum temperatures were always higher than the upper TKW threshold (31 

°C) for cotton during the crop’s reproductive phase (Table 3.2).  Average atmospheric 

vapor pressure deficit (VPD) within the same period ranged from 2.2 to 3.5 kPa for 2014 

and 2013, respectively, and wind speed averages ranged from 3.4 to 5.3 m s
-1

 for 2012 

and 2013, respectively (Table 3.2). Weather-wise 2012 and 2014 could be grouped as 

having similar humid environmental conditions, while 2013 was a very distinct hot and 

dry year. 

Table 3.3 shows a summary of yield and yield components collected at harvest. 

Reduced rainfall (also high temperatures and high atmospheric vapor pressure deficit) 

negatively impacted both seedcotton yield and the number of bolls per plant in 2013 

when compared to 2012 and 2014. Fruit retention for dryland plots in 2013 was also 

affected by environmental conditions and averaged 34 % retention while irrigated plots 

maintained on average 46 % of the bolls produced (Table 3.3). Average seedcotton yield 

was higher for irrigated plots than they were for dryland plots in all three years studied. 

Across the different growing seasons, irrigated cotton had a similar number of bolls per 

plant, although it was slightly lower during 2013 (approximately 3 fewer bolls per plant). 

Fruit retention was comparable under irrigation for all three years (Table 3.3). A visual 

overview of the canopy and ambient temperature data sets used in this study are 

provided on Figure 3.3.  
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Table 3.18. Summary of weather conditions for 2012 - 2014. Temperature, relative humidity (RH), solar 

radiation (SR), wind speed (WS), and atmospheric vapor pressure deficit (VPD) are presented as averages 

from 15 June to 15 August at 14:00. Average daily temperature greater than 28 °C (> TKW) and rainfall 

are shown from planting to harvest.    

  Temperature
¥
   RH   SR   WS   VPD   > TKW   Rainfall 

  Avg.  Max. Min.   
% 

  
W m

-2
 

  
m s

-1
 

  
kPa 

  
% 

  
mm 

Year °C °C °C             

2012 35.7 40.8 26.9   55   756   3.4   2.79   83   502.9 

2013 36.9 40.9 25.9   45   700   5.3   3.54   76   325.1 

2014 34.0 38.9 25.1   61   758   4.2   2.18   69   635.0 
¥
 Average (Avg.), maximum (Max.) and minimum (Min.) temperatures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

70 

 

Table 3.19. Seedcotton yield (SDCT), number of open bolls per plant, and fruit retention for cotton grown 

under dryland and irrigated conditions in 2012, 2013, and 2014. Values are shown for each of the four 

replications (Rep). Average yearly values (Avg.) per irrigation regime are included for reference. 

    Dryland   Irrigated 

  SDCT  Bolls  Fruit 

retention 
 SDCT  Bolls  Fruit 

retention Year Rep      
kg ha

-1
   plant

-1
   %   kg ha

-1
   plant

-1
   % 

2012 1 4505.2 
 

13.0 
 

40.7 
 

5397.1 
 

15.7 
 

44.0 

 
2 4333.7 

 
13.0 

 
44.5 

 
4665.3 

 
13.2 

 
39.1 

 
3 4093.6 

 
13.3 

 
47.2 

 
4939.7 

 
16.7 

 
43.5 

 
4 4699.6 

 
14.2 

 
47.4 

 
5545.7 

 
14.5 

 
49.6 

 
Avg. 4408.0 

 
13.4 

 
45.0 

 
5136.9 

 
15.0 

 
44.1 

             2013 1 2298.3 
 

7.5 
 

36.7 
 

3453.2 
 

12.5 
 

47.3 

 
2 2275.5 

 
7.5 

 
27.6 

 
3704.8 

 
13.2 

 
42.6 

 
3 2938.7 

 
8.5 

 
40.4 

 
3716.2 

 
11.2 

 
49.3 

 
4 2344.1 

 
8.3 

 
30.6 

 
4265.1 

 
9.7 

 
43.5 

 
Avg. 2464.1 

 
8.0 

 
33.8 

 
3784.8 

 
11.6 

 
45.7 

             2014 1 4836.8 
 

17.3 
 

56.5 
 

5625.8 
 

14.7 
 

48.4 

 
2 5088.4 

 
11.2 

 
49.9 

 
4974.0 

 
11.5 

 
47.1 

 
3 5305.6 

 
17.3 

 
51.7 

 
5088.4 

 
12.3 

 
33.6 

 
4 4185.0 

 
13.3 

 
48.4 

 
5637.2 

 
19.8 

 
47.4 

  Avg. 4853.9   14.8   51.6   5331.3   14.6   44.1 
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Figure 3.10. Visual overview of canopy and ambient temperature data used for the study collected from 

dryland (A) and irrigated (B) cotton. Data were collected during the crop’s reproductive phase (from 15 

June through 15 August at 14:00). 
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All indices performed reasonably well in distinguishing stress levels between 

dryland (DRY) and irrigated (IRR) plots. There were two instances where stress levels 

between the irrigation regimes were clearly different (first occurring between DOY 185 

and 195 and second after DOY 208), which happened consistently during the different 

seasons (Figs. 3.4, 3.5, and 3.6).  

In 2012, canopy temperatures of both DRY and IRR plots fluctuated between 25 

and 35 °C until DOY 210, after which point CT slowly increased over the next two 

weeks reaching temperatures as high as 39 and 43 °C for IRR and DRY, respectively by 

DOY 227 (Fig. 3.4 A). During 2013 the IRR cotton stayed within a relatively narrow 

range of CT (30 – 35 °C) for most of the time while the dryland crop CT was noticeably 

warmer (usually between 30 – 40 °C). Differences in CTs were apparent starting at DOY 

179 (Fig. 3.5 A).  

Across different years, 2014 was the most humid. Within the period studied there 

was a rainfall acumulation of 263 mm, compared to 190 and 89 for 2012 and 2013, 

respectively. Further, rainfall events were both significant (i.e. usually > 25 mm) and 

well distributed in 2014, which helped maintain CTs within 25 – 35 °C for most of the 

time  (Fig. 3.6 A).  
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Figure 3.11. Comparison of stress levels between dryland and irrigated cotton grown in 2012 as measured 

by canopy temperature (CT; A), canopy temperature depression (CTD; B), stress degree days (SDD; C), 

thermal stress index (TSI; D), and crop water stress index (CWSI; E). Values are presented as the average 

of four replications (at 14:00) between days of the year (DOY) 167 and 228. In days where canopy 

temperature was lower than 28 °C TSI values were changed to zero for graphing purposes. Down-pointing 

arrows indicate a rainfall event. From left to right arrows represent DOY 171-172, 182-183, 190-193, 195-

200, and 218-223 with rainfall totals of 35.5, 3.6, 57.9, 81, and 11.7 mm, respectively. For clarity rainfall 

events are shown on figure (A) but omitted on others (B, C, D, and E). Legend shown on figure (A) is the 

same for others (B, C, D, and E). 

20

25

30

35

40

45

165 175 185 195 205 215 225

C
T

 (
°C

)
Irrigated

Dryland

A 

-10

-5

0

5

165 175 185 195 205 215 225

C
T

D
 (
°C

)

DOY 

B 



74 

Figure 3.11. Continued. 
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Figure 3.12. Comparison of stress levels between dryland and irrigated cotton grown in 2013 as measured 

by canopy temperature (CT; A), canopy temperature depression (CTD; B), stress degree days (SDD; C), 

thermal stress index (TSI; D), and crop water stress index (CWSI; E). Values are presented as the average 

of four replications (at 14:00) between days of the year (DOY) 166 and 227. In days where canopy 

temperature was lower than 28 °C TSI values were changed to zero for graphing purposes. Down-pointing 

arrows indicate a rainfall event. From left to right arrows represent DOY 189, 196-197, 200-201, and 223-

227 with rainfall totals of 2.8, 37.1, 25.9, and 22.9 mm, respectively. For clarity rainfall events are shown 

on figure (A) but omitted on others (B, C, D, and E). Legend shown on figure (A) is the same for others 

(B, C, D, and E). 
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Figure 3.12. Continued. 
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Figure 3.13. Comparison of stress levels between dryland and irrigated cotton grown in 2014 as measured 

by canopy temperature (CT; A), canopy temperature depression (CTD; B), stress degree days (SDD; C), 

thermal stress index (TSI; D), and crop water stress index (CWSI; E). Values are presented as the average 

of four replications (at 14:00) between days of the year (DOY) 166 and 227. In days where canopy 

temperature was lower than 28 °C TSI values were changed to zero for graphing purposes. Down-pointing 

arrows indicate a rainfall event. From left to right arrows represent DOY 170, 174-179, 184-187, 196-199, 

210-216, and 223 with rainfall totals of 17.8, 52.1, 29.5, 111.2, 39.9, and 12.7 mm, respectively. For

clarity rainfall events are shown on figure (A) but omitted on others (B, C, D, and E). Legend shown on

figure (A) is the same for others (B, C, D, and E).
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Figure 3.13. Continued. 
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Temperatures of dryland plots were consistently higher than the ambient 

temperatures only towards the latter part of the season. During the period studied canopy 

temperature depression showed that both DRY and IRR cotton CTs stayed well below 

air temperature longer than they did otherwise (i.e. warmer than the air) (Figs. 3.4 B, 3.5 

B, and 3.6 B). As a result, the acumulated stress degree day (SDD) over the whole 

period was negative during the three different seasons. Irrigated plots always had a lower 

accumulated SDD (more negative) when compared to DRY plots. At the last day of 

measurements the differences were 59, 178, and 66 SDD for 2012, 2013, and 2014, 

respectively (Figs. 3.4 C, 3.5 C, and 3.6 C).  

The biochemically-based TSI indicated that both IRR and DRY CTs were below 

the midway point of the TKW (28 °C) in five occasions (DOY 171, 182, 183, 195, and 

199) during 2012 (Fig. 3.4 D). In 2013 there were eight days (DOY 169, 182, 195, 196,

198, 201, 209, and 209) when CT of IRR plots were below 28 °C compared to four days 

for the DRY crop (DOY 169, 182, 196, and 209) (Fig. 3.5 D). During 2014 both IRR 

and DRY plots stayed at TSI values below 0.3 throughout the days measured. Canopy 

temperatures of IRR and DRY plots were below 28 °C in five (DOY 176, 199, 200, 210, 

and 214) and four (DOY 176, 199, 210, and 214) days, respectively (Fig. 3.6 D).  

Crop water stress index values suggested that both DRY and IRR plots in 2012 

experienced moderate to low levels of stress (CWSI < 0.5) prior to DOY 210. Post DOY 

210 CWSI values steadily increased reaching a maximum of 0.99 and 0.69 for DRY and 

IRR, respectively, on the last few days of measurements (Fig. 3.4 E). In 2013, rainfall 

and irrigation maintained the IRR cotton at CWSI < 0.4 throughout the period studied 
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while the DRY cotton experienced consistent CWSI higher than 0.4 as early as DOY 

180. Similar to what happened in 2012 there was also a trend of increasing CWSI values

towards the latter part of 2013, particularly evident on DRY plots (Fig. 3.5 E). The 

pattern in 2014 was similar to that of 2012. The IRR cotton stayed below CWSI values 

of 0.5 throughout the whole period whereas the DRY plots experienced CWSI values 

greater than 0.5 in five different days (DOY 220 and from 224 to 227) during the last 

week of measurements (Fig. 3.6 E). 

The relationships between final seedcotton yield and canopy temperature (CT), 

canopy temperature depression (CTD), stress degree day (SDD), thermal stress index 

(TSI), and crop water stress index (CWSI) are shown in Fig. 3.7, with their regressions 

and respective coefficients detailed in Table 3.4. Within individual years all indices 

performed similarly since no big differences in r
2
 values were found between them

(Table 3.4). Significant positive correlations among all indices tested were found (Table 

3.5).  

There appears to be no relationship between CTD and yield (r
2
 = 0.16) or SDD

and yield (r
2
 = 0.16) when data were combined, despite fairly good linear relationships

for individual years (Figs. 3.7 B and C, Table 3.4). Correlations between CT and CTD 

with yield were also non-significant (Table 3.5). The 2013 data did not follow the same 

linear pattern as 2012 and 2014 (Fig. 3.7 B, C). Interesting to note that slopes for all 

three regressions were similar among years, but intercepts were different (Table 3.4).  
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Figure 3.14. Relationship between seedcotton yield (Yield) and canopy temperature (CT; A), canopy 

temperature depression (CTD; B), stress degree day (SDD; C), thermal stress index (TSI; D), and crop 

water stress index (CWSI; E) for cotton grown under dryland and irrigated conditions.  
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Table 3.20. Regression coefficients relating seedcotton yield and canopy temperature (CT), canopy 

temperature depression (CTD), stress degree day (SDD), thermal stress index (TSI), and crop water stress 

index (CWSI) for cotton grown under dryland and irrigated conditions. Slope, intercept, and r
2
 values are 

shown for each year individually (2012-2014), 2012 and 2014 combined (2012 + 2014), as well as all 

three years combined. 

2012 2013 

Slope Intercept r
2
 Slope Intercept r

2
 

Yield 

CT -444.5 19438.0 0.56 -451.7 18362.0 0.82 

CTD -444.5 3571.3 0.56 -451.7 1690.0 0.82 

SDD -7.2 3568.8 0.57 -7.3 1690.3 0.82 

TSI -12333.0 7145.0 0.58 -12956.0 6042.8 0.80 

CWSI -3788.6 5719.0 0.56 -3823.6 4354.8 0.81 

2014 2012 + 2014 

Slope Intercept r
2
 Slope Intercept r

2
 

Yield 

CT -582.2 23115.0 0.72 -270.4 13581 0.49 

CTD -452.9 3625.4 0.63 -464.1 3553.6 0.64 

SDD -7.3 3624.8 0.63 -7.5 3552.3 0.64 

TSI -17404.0 7268.2 0.65 -8029.9 6206.8 0.49 

CWSI -3775.6 5699.8 0.66 -3747.7 5702 0.65 

Combined 

Slope Intercept r
2
 

Yield 

CT -537.9 21846.0 0.66 

CTD -382.0 3168.9 0.16 

SDD -6.2 3169.8 0.16 

TSI -15712.0 7171.8 0.70 

CWSI -5583.0 5692.9 0.58 
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Table 3.21. Correlation coefficient for seedcotton yield (SDCT), number of bolls per plant (BOLLS), and 

fruit retention (FR) with different stress indices. Canopy temperature (CT), canopy temperature depression 

(CTD), stress degree day (SDD), thermal stress index (TSI), and crop water stress index (CWSI). 

Correlation coefficients were calculated based on combined data over the three years studied (2012 – 

2014). * represents significance at the 5% probability level. 

CT CTD SDD TSI CWSI 

SDCT -0.814* -0.400 -0.400 -0.836* -0.764*

BOLLS 0.252 -0.123 -0.123 0.285 0.094

FR 0.178 -0.268 -0.269 0.188 -0.044

CT 0.689* 0.689* 0.996* 0.915* 

CTD 1* 0.657* 0.878* 

SDD 0.657* 0.878* 

TSI 0.903* 
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Although higher yields were generally found with increased CTD and SDD 

(more negative) and lower yields with less negative values, the drier environmental 

conditions in 2013 and the irrigation regime created two distinct clusters of data clearly 

separated from 2012 and 2014, with no data points lying in between (Figs. 3.7 B and 3.7 

C). This also led to high r
2
 (0.82) for the relationships between yield and CTD and yield

and SDD when the 2013 data were analyzed individually. In fact, high r
2
 values were

also found for CT (0.82), TSI (0.80), and CWSI (0.81) in 2013 and may also be 

attributed to the dry conditions and irrigation regime effect on the data distribution (Figs. 

3.7 A, D, and E, Table 3.4).  

Based on the distribution and analysis of the 2012 and 2014 data separately, one 

might assume that data points from gradual changes in irrigation levels during a dry year 

could possibly fall between the two clusters (i.e. same line) created by the dryland and 

irrigated regimes in 2013. However, it is important that any assumptions and/or 

interpretations based on the 2013 data alone be made with extreme caution. It is 

impossible to predict based on the data presented here, whether additional data pairs 

(e.g. yield and CTD or yield and SDD) from multiple years with contrasting 

environmental conditions would all fall within the same combined line (with a larger 

scatter) or if data points would fall within the 2013 line, creating different relationships 

between yield and CTD and yield and SDD for a dry environment compared to a humid 

one.  

Canopy temperature (CT) and TSI do not directly account for year-to-year 

environmental variability (i.e. no environmental variables are used in their calculations). 
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Both had negative relationships with yield and good fit, r
2
 0.66 and 0.77 for CT and TSI,

respectively (Fig. 3.7 A and E, Table 3.4). Correlations between the two (CT and TSI) 

with yield were significant (Table 3.5). CWSI was also significantly correlated with 

yield (Table 3.5), although regression showed the fit was lower (r
2
 = 0.58) when

compared to those of CT and TSI (Table 3.4). The difference between indices 

accounting for environmental variation across growing seasons (CTD, SDD, and CWSI) 

and those not accounting for such variability (CT and TSI) was clear. CTD and SDD in 

particular showed substantial differences between the humid (2012 and 2014) and dry 

(2013) years (Fig. 3.7 B, C). To a lesser extent, this pattern was also apparent for CWSI 

(Fig. 3.7 E). CT and TSI, on the other hand, showed almost no distinction between inter-

annual weather variability and data points from both humid and dry years fell roughly 

within the same line (Fig. 3.7 A, D).  

By removing the distinct (weather-wise) 2013 season from the regression 

analysis, there was an apparent improvement in fit for CTD (r
2
 from 0.16 to 0.64), SDD

(r
2
 from 0.16 to 0.64), and CWSI (r

2
 from 0.58 to 0.65) (Table 3.4), all of which directly

account for some year-to-year differences in environmental conditions on their 

calculations (e.g. air temperature for CTD and SDD, air temperature and atmospheric 

vapor pressure deficit for CWSI). This suggests that if those indices (CTD, SDD, and 

CWSI) are used to associate yield losses to stress levels, one should interpret results with 

caution, particularly in locations where great inter-annual weather variability may occur. 

Conversely, removal of the 2013 data from the regression analysis decreased by ~ 17 

and 21 %, respectively, the amount of variability accounted for by the CT and TSI 
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models (Table 3.4), suggesting that these relationships are stronger across growing 

seasons with weather differences. 

It has been demonstrated that the number of bolls (per unit area) is the major 

variable contributing to cotton yield (Gerik et al., 1996; Pettigrew, 2004). This variable 

was indirectly assessed through plant mapping by using the number of bolls plant
-1

 and 

final fruit retention values collected just prior to the mechanical harvest of experimental 

plots. In a study conducted at Maricopa, AZ in 1992, Radin et al. (1994) mapped plants 

of an F3 Pima cotton (Gossypium barbadense L.) population selected solely for stomatal 

conductance and reported a negative relationship between leaf temperature and the 

number of fruits set during the hottest part of the summer (mid-June to mid-August). 

Correlation analysis of data collected for this study showed that neither number of bolls 

plant
-1

 nor final fruit retention were significantly correlated to any of the indices studied 

(Table 3.5).  It is important to note here significant differences between the two studies 

(e.g. location, environment, boll set during hottest part of the summer vs. boll set during 

the whole season). Moreover, the inherent differences between G. hirsutum and G. 

barbasense, in particular those regarding heat adaptation (Ehleringer and Hammond, 

1987; Lu et al., 1997), physiology (Lu et al., 1997; Wise et al., 2000), leaf morphology 

(Wise et al., 2000),  and yield (Lu et al., 1997; Unruh and Silvertooth, 1996) hinder a 

direct comparison between the contrasting results.  
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CONCLUSIONS 

Data showed that the non-water stressed regression (Tnws) developed in Arizona 

to calculate CWSI was inappropriate for use in central Texas since it tended to 

underestimate stress levels. Correlation and regression analyses showed significant 

negative relationships between yield and CT (r
2
 = 0.66), yield and TSI (r

2
 = 0.70), and

yield and CWSI (r
2
 = 0.58). CTD and SDD were not significantly correlated with yield

and the fit for the regression analysis was poor (r
2
 = 0.16 for both). In 2013 the dry

environment and irrigation regimes created two distinct clusters of data, leading to high 

r
2
 values (> 0.80) for all indices tested. Removal of the 2013 season from the regression

analysis substantially improved fit for CTD (r
2
 from 0.16 to 0.64), and SDD (r

2
 from

0.16 to 0.64), while only a marginal improvement for CWSI was observed (r
2
 from 0.58

to 0.65). Conversely, CT and TSI models decreased by ~ 17 and 21 %, respectively, the 

amount of variability accounted for by removing the 2013 data. Ultimately, TSI 

performed better under the conditions tested and had the best fit. Also, TSI is very 

simple and only requires measurements of canopy temperatures. 

When associating potential yield losses to stress levels, evidence suggests that 

interpretation of yield and CTD, SDD, and CWSI models should be made with caution 

when prominent year-to-year environmental variability is likely to occur (or have 

occurred). Further, despite significant relationships of yield with CT, TSI, and CWSI, 

yield components (number of bolls plant
-1

 and fruit retention) were not significantly

correlated to any of the stress indices studied.  
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CHAPTER IV 

CONCLUSIONS 

Conclusions of this study are: 

1. Effects of 1-MCP on the physiology and morphology of field grown cotton are

inconsistent within and between different growing seasons. 

2. Plant canopy temperature, net photosynthesis, transpiration, and photosystem II

quantum yield are only affected by 1-MCP treatment when the crop is irrigated. Under 

dryland conditions 1-MCP had no effect on any of the physiological parameters 

measured.  

3. Changes in plant morphology due to 1-MCP treatment occurring during mid and

peak reproductive stages are mostly undetectable by harvest. This is applicable to both 

positive and negative effects and indicates a rather transient effect of 1-MCP. 

5. Pre-dawn leaf water potential is not affected by 1-MCP applications (neither

positively, nor negatively) despite evidence on the literature of 1-MCP-induced 

decreases in stomatal conductance and midday leaf water potential.  

6. 1-MCP causes only minor changes on fiber quality parameters. No impact on

fiber value is expected. 

7. 1-MCP treatment does not cause an increase in final seedcotton yield under the

conditions tested, regardless of the temperature used to trigger applications. 
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8.  The non-water stressed regression (Tnws) developed in Arizona by Idso (1982) to 

calculate crop water stress index is inappropriate for use in central Texas because it 

tends to underestimate stress levels for this location. 

9. Canopy temperature (CT), canopy temperature depression (CTD), stress degree 

day (SDD), crop water stress index (CWSI), and thermal stress index (TSI) perform 

similarly in predicting crop yield within individual years.  

10. CT, TSI and CWSI have a negative relationship with final seedcotton yield 

despite year-to-year environmental variability. 

11. The interpretation of CTD, SDD, and CWSI should be made with caution in 

locations where great inter-annual weather variability may occur. The evidence suggests 

that these models are particularly sensitive to environmental conditions. 

12. Due to its simplicity and better overall performance TSI is the superior index to 

predict cotton yield at this location.  
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APENDIX 1 

JULIAN DAY CALENDAR FOR LEAP YEARS (2012) 

 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 1 32 61 92 122 153 183 214 245 275 306 336 

2 2 33 62 93 123 154 184 215 246 276 307 337 

3 3 34 63 94 124 155 185 216 247 277 308 338 

4 4 35 64 95 125 156 186 217 248 278 309 339 

5 5 36 65 96 126 157 187 218 249 279 310 340 

6 6 37 66 97 127 158 188 219 250 280 311 341 

7 7 38 67 98 128 159 189 220 251 281 312 342 

8 8 39 68 99 129 160 190 221 252 282 313 343 

9 9 40 69 100 130 161 191 222 253 283 314 344 

10 10 41 70 101 131 162 192 223 254 284 315 345 

11 11 42 71 102 132 163 193 224 255 285 316 346 

12 12 43 72 103 133 164 194 225 256 286 317 347 

13 13 44 73 104 134 165 195 226 257 287 318 348 

14 14 45 74 105 135 166 196 227 258 288 319 349 

15 15 46 75 106 136 167 197 228 259 289 320 350 

16 16 47 76 107 137 168 198 229 260 290 321 351 

17 17 48 77 108 138 169 199 230 261 291 322 352 

18 18 49 78 109 139 170 200 231 262 292 323 353 

19 19 50 79 110 140 171 201 232 263 293 324 354 

20 20 51 80 111 141 172 202 233 264 294 325 355 

21 21 52 81 112 142 173 203 234 265 295 326 356 

22 22 53 82 113 143 174 204 235 266 296 327 357 

23 23 54 83 114 144 175 205 236 267 297 328 358 

24 24 55 84 115 145 176 206 237 268 298 329 359 

25 25 56 85 116 146 177 207 238 269 299 330 360 

26 26 57 86 117 147 178 208 239 270 300 331 361 

27 27 58 87 118 148 179 209 240 271 301 332 362 

28 28 59 88 119 149 180 210 241 272 302 333 363 

29 29 60 89 120 150 181 211 242 273 303 334 364 

30 30   90 121 151 182 212 243 274 304 335 365 

31 31   91   152   213 244   305   366 
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APPENDIX 2 

JULIAN DAY CALENDAR FOR REGULAR YEARS (2013 AND 2014) 

 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 1 32 60 91 121 152 182 213 244 274 305 335 

2 2 33 61 92 122 153 183 214 245 275 306 336 

3 3 34 62 93 123 154 184 215 246 276 307 337 

4 4 35 63 94 124 155 185 216 247 277 308 338 

5 5 36 64 95 125 156 186 217 248 278 309 339 

6 6 37 65 96 126 157 187 218 249 279 310 340 

7 7 38 66 97 127 158 188 219 250 280 311 341 

8 8 39 67 98 128 159 189 220 251 281 312 342 

9 9 40 68 99 129 160 190 221 252 282 313 343 

10 10 41 69 100 130 161 191 222 253 283 314 344 

11 11 42 70 101 131 162 192 223 254 284 315 345 

12 12 43 71 102 132 163 193 224 255 285 316 346 

13 13 44 72 103 133 164 194 225 256 286 317 347 

14 14 45 73 104 134 165 195 226 257 287 318 348 

15 15 46 74 105 135 166 196 227 258 288 319 349 

16 16 47 75 106 136 167 197 228 259 289 320 350 

17 17 48 76 107 137 168 198 229 260 290 321 351 

18 18 49 77 108 138 169 199 230 261 291 322 352 

19 19 50 78 109 139 170 200 231 262 292 323 353 

20 20 51 79 110 140 171 201 232 263 293 324 354 

21 21 52 80 111 141 172 202 233 264 294 325 355 

22 22 53 81 112 142 173 203 234 265 295 326 356 

23 23 54 82 113 143 174 204 235 266 296 327 357 

24 24 55 83 114 144 175 205 236 267 297 328 358 

25 25 56 84 115 145 176 206 237 268 298 329 359 

26 26 57 85 116 146 177 207 238 269 299 330 360 

27 27 58 86 117 147 178 208 239 270 300 331 361 

28 28 59 87 118 148 179 209 240 271 301 332 362 

29 29   88 119 149 180 210 241 272 302 333 363 

30 30   89 120 150 181 211 242 273 303 334 364 

31 31   90   151   212 243   304   365 

 




