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ABSTRACT

Recent advancements in high data rate networks have led to a growing interest in

improving performance of wireless relay networks through the use of Physical Layer

Network Coding (PLNC) technique. In the PLNC technique, the relay node exploits

the network coding operation that occurs naturally when the two electromagnetic

(EM) waves are superimposed on one another to directly decode the modulo-2 sum

of the transmitted symbols.

In this thesis, we will present an optimal power control algorithm for performance

improvement in wireless relay nodes implementing physical layer network coding.

We shall also present a sub-optimal power control algorithm and compare its per-

formance with the optimal power control algorithm. Our approach will first derive

the probability of error for the amplitude-controlled system using Maximum Likeli-

hood detection and then minimize the probability of error using amplitude control

functions as variables to derive the optimal power control functions. We shall start

by considering the thresholds of the system to be the maximum of the independent

received amplitudes to derive the probability of error equations and then extend it

to a variable threshold system, where the threshold is a function of independent re-

ceived amplitudes. We then derive an optimal power control algorithm for a single

channel Rayleigh system and implement this power control algorithm independently

on the terminals to achieve a sub-optimal power control algorithm.

Our results show that the proposed optimal power control algorithm boosts the

performance of the PLNC system significantly compared to the no power control sys-

tem. We also show that there are no significant differences between the performances

of optimal power control and the sub-optimal power control algorithms. We further
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show that the performance of the system is not degraded much when the amplitudes

of the terminals deviate from the optimal amplitudes.
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1. INTRODUCTION

As the demand for high data rate systems increases, there is a surge in the deploy-

ment of wireless relay networks for data communications. A relay network is a broad

class of network topology commonly used in wireless networks, where the source and

destination cannot directly communicate with each other, because either their dis-

tance of separation does not match the individual range due to high data rates or,

due to obstacles in the path of communication. As the data rate increases the receiver

sensitivity decreases with an increase in range. So to attain better performance while

transmitting high data rates, wireless relay network topology is being used for such

communications. Throughput and performance are the major factors to be consid-

ered for any communication system. In order to improve the throughput efficiency

of relay networks, a few techniques were introduced in [15],[18],[5],[4]. Among the

various throughput improvement techniques, Physical Layer Network Coding stands

out. In this section, we provide a brief overview of PLNC and how it is better com-

pared to other techniques. We also present the scenarios and assumptions considered

in this thesis.

1.1 Physical Layer Network Coding

Let us consider a simple relay network as shown in Figure 1.1. This simple relay

network, which comprises of two transmitters communicating with each other via a

relay node, can be extended to a multi-hop network. Similarly, the performance and

throughput improvement achieved on each individual hop can improve overall system

performance and throughput. The standard way of transmission in this simple relay

node takes a total of four time slots for complete two way communication as shown

in Figure 1.2. Communication between the nodes happens in different time slots to
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Figure 1.1: Basic wireless relay node

prevent interference of the signals. The relay receiver will be of minimum complexity

for this standard transmission.

Figure 1.2: Standard transmission in wireless relay nodes

Relay networks that employ network coding concepts achieve better performance

compared to the standard techniques. Network coding refers to a scheme where a

node is allowed to generate output data by mixing (i.e., computing certain functions

of) its received data. Digital Network Coding (DNC) and Physical Layer Network

Coding (PLNC) are the two main techniques in network coding. In the DNC tech-

nique, as shown in Figure 1.3, the two terminals transmit data to the relay node in

two different time slots. The relay decodes the received symbols independently, then

2



computes the modulo-2 sum of them in a symbol by symbol manner. The modulo-2

sum/ Xored symbol sequence is then broadcast back to the terminals in the third

time slot. Now, the terminals can decode the symbols transmitted by the other

terminal by performing a modulo-2 sum of the received broadcast sequence from

the relay and their own buffered transmitted symbol sequence. Thus, DNC requires

three time slots to complete a round of data exchange between terminals.

Figure 1.3: DNC technique

In the PLNC technique, as shown in Figure 1.4, the two terminals transmit data

simultaneously to the relay node. The relay node then exploits the network coding

operation that occurs naturally when electromagnetic (EM) waves are superimposed

on one another, to directly decode the modulo-2 sum of the transmitted symbols from

the two terminals. In the next time slot, the relay node broadcasts back the decoded

modulo-2 sum back to the terminals, which perform a similar process as in DNC to

recover data transmitted by the other terminal. Thus, the PLNC technique requires

only two time slots to complete a round of data exchange between the terminals,

achieving a throughput improvement over the DNC technique. This throughput

improvement over DNC comes at the cost of additional receiver complexity.

3



Figure 1.4: PLNC technique

1.2 Assumptions and Scenarios

In this work, we assume the relay network to divide the time into fixed time slots

and data is transmitted in packets that will fit into a given time slot. Each data

packet consists of a preamble followed by the information carrying data bits. The

preamble is set of bits known to the both transmitter and the receiver whereas the

data bits are known to the transmitter but not to the receiver. These bits in the

preamble facilitate coherent detection of the signal by assisting in continuous estima-

tion of channel parameters as proposed in [3]. These estimated channel parameters

are communicated to the transmitters as overhead over in the packets broadcast from

the relay node. Assuming a slow varying channel, the transmitters will have the es-

timates of the present channel parameters. The major contribution of this thesis

is to take advantage of this complex continuous tracking and estimation of channel

parameters and design power control techniques over PLNC to achieve performance

improvement in relay networks.

In order to support the assumptions made in this work, consider a scenario in

which the terminals, T1 and T2 are communicating through a relay node, R using

QPSK modulation. Continuous tracking and estimation of channel parameters helps
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in coherent detection of these modulations at the receiver. The phase synchronized

signal constellations for QPSK modulation, achieved through channel parameter es-

timation can be considered as two independent BPSK modulations over I and Q

channels. So, in this thesis work, we assume a simple relay network using the PLNC

technique which communicates with an underlying BPSK modulation format. The

power control algorithms derived for the optimal performance of BPSK modulation

can be extended to QPSK, leveraging the above discussed fact.

1.3 Outline of Thesis

This thesis contains three more sections. In section 2, we briefly provide the

background necessary to understand this thesis. We also provide a discussion of

related work. In section 3, we propose our power control algorithms to achieve the

optimal performance on the wireless relay networks along with the simulation results.

We also compare the proposed algorithms with each other. Conclusions and future

work possibilities are discussed in section 4.
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2. BACKGROUND AND RELATED WORK

2.1 Background

Before delving into the thesis, let us review some background and related work

which will prove essential for better understanding of thesis.

2.1.1 Communication on Wireless Channels

Figure 2.1: Multipath propagation

Communications over wireless channels follow the multipath propagation model

as shown in Figure 2.1. Apart from the direct line of sight propagation, the signals

from the transmitter bounce off various objects before reaching the receiver. The

signals emanating from the transmitter does not propagate in the direction of the

receiver alone. Even when the directional antenna is used, the signal propagates over

a range of angles. As a result, the transmitted signals spread from the point of origin

and will reach other objects like hills, buildings, trees and gets reflected off from the

surfaces before reaching the receiver. Thus the signals bounces off from different

surfaces and reach the receiving antenna via paths other than the direct line of sight.
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All the multipath signals from the transmitter sums to the overall received signal

at the receiver. Sometimes the multipath signals will be in phase or out of phase with

the main signal. The in phase signal components will be added to the main signal

increasing the signal strength and some times these components will interfere with

each other, resulting in the overall signal strength reduction. The relative movements

between the transmitter and the receiver can result in changes in the relative path

lengths of the different multipath signals. This phenomenon is called fading and

is present on many signals received on wireless channels. The fading is mainly of

two types, flat fading and frequency selective fading. In flat fading all frequencies

have equal attenuation across a given channel and frequency selective fading , which

means different frequencies experience different fading levels.

2.1.2 Synchronization and Its Importance in PLNC

As we have seen in the previous section, the attention given to PLNC based

relay-aided communications is due to its ability to improve throughput of the sys-

tem. Synchronization of the received signals at the relay is a roadblock issue for

the practical implementation of PLNC. There are three levels of synchronization as-

sumed in PLNC in [18], namely symbol-level time synchronization, carrier-frequency

synchronization and carrier-phase synchronization. The imperfect synchronization

at the relay can have detrimental effects on the performance of PLNC as discussed

in [19].

Let us consider the PLNC model system as shown in Figure 1.4, where two

terminals exchange data via a relay node using BPSK modulation. As proposed in

[19], the two received signals can be written as:

s1(t) = a1cos(2πft)
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s2(t) = a2cos(2πft+ θ)

where a1 and a2 are the information bits, θ (−π
2
≤ θ < π

2
) is the phase offset between

the two received signals (this was assumed to be known at the receiver) and f is the

carrier frequency. The power penalty for the phase error was given as

∆γ(θ) = cos2(
θ

2
).

From the above equation, the worst case penalty for imperfect carrier-phase synchro-

nization can be 3dB for a BPSK modulation and 6 dB for QPSK modulation. With

the carrier frequency synchronization errors, we get a power penalty of 0.6dB. Simi-

larly with the symbol time synchronization errors we get a penalty of almost 1.57dB.

Overall it was concluded in [19] that imperfect synchronization at the relay results

in performance degradation of 1 to 3 dB for systems using BPSK modulation. This

penalty can be at higher levels for higher modulation formats. The symbol-level time

synchronization to an extent is also important to prevent substantial performance

loss in PLNC as proposed in [9]

Most of the research regarding PLNC focused on the two main aspects: asyn-

chronous PLNC [6],[8], [17] and synchronous PLNC [11], [16], [13], [14], [10]. The

basic idea in asynchronous PLNC is to map the superposed signal with arbitrary

phase differences to encoded symbols. The channel state information is necessary to

estimate these instantaneous phases of the signals superposing at the relay. In the

synchronous case, it is assumed that the channel state information is known at the

relay and the signals arrive in phase at the relay.

Overall, both the synchronous and asynchronous methods need to estimate and

track the instantaneous channel parameters continuously to facilitate the practical

8



implementation of PLNC.

2.1.3 Channel Parameter Estimation and Tracking

Estimating the channel parameters and tracking them continuously is a complex

process. This can be implemented either by blind estimation at the relay [20], [1] or

by using the known preamble as overhead over packets [3]. The estimated channel

parameters are made available to the terminals as overhead over the broadcast pack-

ets from the relay node. These complex parameters are quantized at the relay before

being broadcast to the terminals. The quality of the recovered channel information

at the terminals depends on the number of quantization bits. In the literature some

of the works such as [12] assume that the forward channel link, between the terminal

and the relay, is similar to the reverse channel link, between the relay and termi-

nal, so that both the links have same channel parameters. If this is the case there

is no requirement to transmit the channel parameters back to the terminals. We

can leverage this complex estimation of channel information to further improve the

performance at the relay by using the estimated channel parameters to control the

power of the transmitted symbols to achieve optimal performance at the relay by

minimizing the instantaneous BER. There has been a lot of research done in single

channel power control, especially for CDMA where the near-far effects of users are to

be minimized by adjusting their transmit powers so that the signals at the receiver

are at equal amplitudes or power. The major work in this thesis is to derive the op-

timal power control algorithms in PLNC and show how the well settled phenomenon

of equal received amplitudes at the relay from terminals does not apply in the PLNC

case for optimal performance.
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2.2 Previous Work

The application of power control techniques over two way relay channels using

PLNC has seen many techniques providing substantial improvement in performance

at the relay node.

2.2.1 Power Control for PLNC in Fading Environments

In this section, we will discuss the power control strategies proposed in [12].

In this paper, the average BER at the terminals in Two Way Relay Network was

analyzed as the sum of the BER at the relay and the BER at the terminals. The

signal constellation mapping at the relay is as shown in Figure 2.2. It is assumed

for illustration purposes that the channel parameters are known at the relay and

|h1| > |h2|.

Figure 2.2: Signal constellation of received signal at the relay node

A and B are mapped signal constellation points at the relay, where

A = ||h1|
√
R1 + |h2|

√
R2|

B = ||h1|
√
R1 − |h2|

√
R2|

10



where R1 and R2 are the controlled symbol powers. The received signal at the relay

is given by

Rx = h1

√
R1S1(n) + h2

√
R2S2(n) + n(t) (2.1)

where S1(n) and S2(n) ∈ {±1} are the transmitted symbols from the terminals. At

higher SNRs where both A and B are greater than 3σ2
n, the value of the threshold

T will approach A+B
2

. Using T = A+B
2

as the decision boundary, the average BER

caused by PLNC mapping is

P (error|h1, h2) = Q(λmin) +
1

2
Q(2λmax − λmin)− 1

2
Q(2λmax + λmin) (2.2)

where

λmin = min(|h1|
√

2R1

N0

, |h2|
√

2R2

N0

)

λmax = max(|h1|
√

2R1

N0

, |h2|
√

2R2

N0

)

The probability of error mentioned in the previous equation was approximated with

only the dominant Q-function term because

Q(λmin) >
1

2
[Q(2λmax − λmin)−Q(2λmax + λmin)]

thereby

P (error|h1, h2) ∼= Q(λmin) (2.3)

The probability of error estimated was minimized to derive the power control

functions on terminals that can improve the performance of the system. The over-

all transmit energy from the terminals is constrained to some value, 2ε to prevent

11



consideration of infinite powers at the terminals,

min P (error|h1, h2),

subject to
R1 +R2

2
= 2ε.

Since the Q-function is a monotonically decreasing function, minimizing a Q func-

tion with respect to the constraints is equivalent to maximizing the argument. By

considering the above fact and with respect to constraints, the equation that should

be maximized is

min(|h1|
√

2R1

N0

, |h2|
√

2R2

N0

)

This maximization is assumed to occur when

|h1

√
R1| = |h2

√
R2|

Solving the above minimization problem, the equations for R1 and R2 were de-

rived to be

R1 =
2|h2|2ε

|h1|2 + |h2|2
, (2.4)

R2 =
2|h1|2ε

|h1|2 + |h2|2
. (2.5)

The probability of error curve for the system model and the performance improve-

ment by implementing the above mentioned power control algorithm at the terminals

is as shown in the Figure 2.3. The power control function graph with respect to the

co-channel gain of 0.5 at 3dB for the system is as shown in Figure 2.4.

12



Figure 2.3: Performance improvement for power control algorithm 2008

Figure 2.4: Power control function wrt H for 2008 power control algorithm

2.2.2 Power Control Using Channel Parameters Ratio

In this section we will discuss the limited feedback quantization power control

method proposed in [7]. The system model is similar to the two way relay network

13



PLNC model shown in Figure 1.4. The system is assumed to have channel state

information known at the relay node. The received signal at the relay is taken as,

Rx = h1

√
R1S1(n) + h2

√
R2S2(n) + n(t) (2.6)

where Rx is the received amplitude at the relay, h1 and h2 are the channel parameters

of terminal 1 and terminal 2 respectively, S1(n), S2(n) ∈ Ω, where Ω is the modulation

constellation alphabet and n(t) is the complex additive white Gaussian noise with

variance σ2.

The transmission power is constrained and is made to be below some value Rmax

on each of the terminals. Without any power control, the terminals will be trans-

mitting symbols at some Rmin, which is the minimum transmitting power required

to achieve the required data rate. The denoising function

(Ŝ1, Ŝ2) = arg min
(S1(n),S2(n))∈Ω×Ω

|Rx −
√
R1h1S1(n)−

√
R2h2S2(n)|2 (2.7)

is used for XOR mapping of the received signal at the relay to perform the PLNC.

The optimal power scheme is taken at the condition where

|h1|2R1 = |h2|2R2

subject to R1 ≤ Rmax, R2 ≤ Rmax

The quantity β, is defined as the modified ratio of |h1|2 to |h2|2,

β =


|h1|2
|h2|2 for |h1|2 > |h2|2,

|h2|2
|h1|2 for |h2|1 > |h1|2.

14



for β ∈ [1,+∞)

This β is transmitted back to the terminals where they modify their instantaneous

transmit power as a function of β. The terminal with a good channel compared to

the other will reduce its power as a function of the modified ratio β and the terminal

with the bad channel transmits the minimum required power to achieve the required

data rate.

If |h2| > |h1| R1 = Rmin
1 < Rmax

1 , R2 =
Rmin

1

β
< Rmax

2

If |h1| > |h2| R1 =
Rmin

2

β
< Rmax

1 , R2 = Rmin
2 < Rmax

2 ,

The probability of error curve for the system model and the performance improve-

ment by implementing the above mentioned power control algorithm at the terminals

is as shown in the Figure 2.5. The power control function graph with respect to the

co-channel gain of 0.5 at 3dB for the system is as shown in Figure 2.6.

Figure 2.5: Performance improvement for power control algorithm 2013
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Figure 2.6: Power control function wrt H for power ratio algorithm

2.2.3 Adaptive Feedback Communications

In this section, we will discuss the adaptive feedback communication methods for

a single user system, proposed in [2]. The system envisions an adaptive receiver and

a feedback channel as shown in Figure 2.7. The feedback channel conveys informa-

tion to the transmitter on the forward channel state learned at the receiver. The

transmitter uses this information to modify the transmit power of the underlying

BPSK modulation symbols.

The adaptive power control scheme for coherent detection at the receiver dis-

cussed in this paper stands as a main motivation for our thesis work. Let us provide

a qualitative analysis of the approach followed in this paper to find the optimal power

control function for this single user case. This analysis helps in better understanding

our minimization technique which is extended to the two user PLNC case.

The probability of error for the system as shown in Figure 2.7, at the relay was
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Figure 2.7: Single user system

given as

P (error|h) = Q(|h|
√

2R(h)) (2.8)

where |h| is the channel gain known at the relay, R(h) is the BPSK symbol power

as a function of feedback channel information. The average Probability of error was

minimized with a constrained minimization function, where

∫
R2(h) ∗ f(h) ∗ dh = M

is the constraint over minimizing the probability of error. This minimization was car-

ried out using Lagrange minimization technique, where minimization was performed

on each instantaneous minimization function

Q(|h|
√

2R(h)) + µR(h)

with R(h) as a variable.

Thus we arrive at a closed form equation for R which is an optimal amplitude con-
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trol function at the transmitter to minimize the BER at relay based on the available

channel parameters.

The probability of error curve for the system model and the performance im-

provement by implementing the above mentioned power control algorithm at the

terminal for single channel case is as shown in the Figure 2.8. The power control

function graph with respect to the co-channel gain of 0.5 at 3dB for the system is as

shown in Figure 2.9.

Figure 2.8: Performance improvement for power control algorithm in single user case

2.3 Goals and Motivation

As discussed in the previous section most of the optimization techniques for

TWRN implementing PLNC assumed that the optimal power control occurs at

|h1|R1 = |h2|R2. In this thesis work,

• We propose optimal power control algorithms that proves the well settled as-

sumption of |h1|R1 = |h2|R2 at the relay is wrong in deriving optimal power
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Figure 2.9: Power control function wrt H at 3dB for single user case

control algorithms.

• We propose an optimal co-channel dependent power control algorithm, where

the instantaneous transmit symbol power at a terminal is a function of its

channel state information and the co-channel or the other terminals channel

state information. This algorithm achieves better performance at the relay

compared to the existing algorithms.

• We also propose an optimal co-channel independent algorithm that achieves

performance similar to the above mentioned co-channel dependent power con-

trol algorithm.

• From the co-channel independent algorithm’s performance we also propose that

the co-channel information is not necessary at the terminal to achieve the

optimal performance.
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3. OPTIMAL POWER CONTROL ALGORITHMS

We put forth the optimal power control algorithms in this section. In the first

section we describe our system model. A detailed study of algorithms is carried out

in the second section. Simulation results for each algorithm are also presented in this

section.

3.1 System Model

A wireless relay network with two terminals T1 and T2 exchanging information

via a relay node is our system model. The wireless channel between the terminals

and the relay is assumed to be a slow varying Rayleigh fading channel. The terminals

are assumed to have the knowledge of channel parameters for the transmitting frame

in the given time slot. Let us assume h1 as the channel gain between the Terminal

1 and the relay node, h2 as the channel gain between the Terminal 2 and the relay

node. Let us also assume A1(h1, h2) as the input symbol amplitude from Terminal

1 and A2(h1, h2) as the input symbol amplitude from Terminal 2. They are denoted

as A1 and A2 for simplicity.

With the absence of white noise at the relay the general signal constellation at

the relay for given inputs is as shown in the Table 3.1:

Table 3.1: Signal constellations at relay without white noise
Normal Input Data Antipodal form Constellation at Rx XOR mapped

(1,1) (+1,+1) h1A1 + h2A2 0
(1,0) (+1,-1) h1A1 − h2A2 1
(0,1) (-1,+1) −h1A1 + h2A2 1
(0,0) (-1,-1) −h1A1 − h2A2 0
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Graphical representation for the signal constellations as shown in Table 3.1, can

be depicted in 2 different ways as the threshold in between the constellation points

depends on the received symbol amplitudes whether h1A1 > h2A2 or h1A1 < h2A2.

Therefore the general representation of the signal constellation and the probability

of error is divided into two cases as shown in the Figures 3.1 and 3.2.

Figure 3.1: Case 1: h1A1 > h2A2

Figure 3.2: Case 2: h1A1 < h2A2

An error occurs at the relay if the decoded symbol does not match the actual

transmitted symbol as mentioned in Table 3.1. The channel distortions and the Ad-
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ditive White Gaussian Noise (AWGN) contributes to the errors at the relay receiver.

Let Rx be the received amplitude at the relay, which is a combination of individ-

ual amplitudes multiplied with their respective channel gains and AWGN. As the

probability of error depends on the thresholds that separate the symbols in a signal

constellation, the probability of error for the system is divided into two different

cases.

3.2 Probability of Error

The probability of error for our system at the relay in general is given as

P (error|h1, h2) = P (error|h1, h2, 1sent)∗P (1sent)+P (error|h1, h2, 0sent)∗P (0sent)

(3.1)

where the ’1’ and ’0’ sent are the xor combination of the transmitted symbols from

the terminals. Since the probability of sending a ’1’ or ’0’ from the terminals is

equally likely, we can consider

P (error|1sent) = P (error|0sent) =
1

2

So the probability of error for the given case becomes

P (error|(h1, h2)) =
1

2
[P (error|(h1, h2, 1sent))

+ P (error|(h1, h2, 0sent))]

(3.2)

where ”1 sent” and ”0 sent” are the superimposed XOR symbols resulted from the

simultaneous transmission of data symbols from the terminals 1 and 2.
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3.2.1 Probability of Error with Fixed Threshold

Let us first consider Case 1 where h1A1 > h2A2. As Rx is the received amplitude

at the relay, from Figure 3.1, equation 3.2 can be written as follows

P (error|h1, h2) =
1

2
∗ [P (Rx < −h1A1 ∪Rx > h1A1)|1sent)+

P (Rx > −h1A1 ∩Rx < h1A1)|0sent)] (3.3)

Solving each of the terms in equation 3.3 independently, the first term:

P (error|1sent) = Q(
2h1A1 − h2A2

σN
) +Q(

h2A2

σN
) (3.4)

Now considering the second term of the equation 3.3 i.e

P (error|0sent) = Q(
h2A2

σN
)−Q(

2h1A1 + h2A2

σN
) (3.5)

Substituting equations 3.4 and 3.5 in the equation 3.3 gives us

P (error|h1, h2) = Q(
h2A2

σN
) +

1

2
[Q(

2h1A1 − h2A2

σN
)−Q(

2h1A1 + h2A2

σN
)] (3.6)

[h1A1 > h2A2]

Now let us consider Case 2, where h1A1 < h2A2. So, the threshold for the system

is h2A2 as shown in Figure 3.2 and the probability of error can be derived just by

switching the h1A1 with h2A2. Therefore the probability of error for the system is

P (error|h1, h2) = Q(
h1A1

σN
) +

1

2
[Q(

2h2A2 − h1A1

σN
)−Q(

2h2A2 + h1A1

σN
)] (3.7)
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[h2A2 > h1A1]

3.2.2 Probability of Error with Variable Threshold

In the previous section, we confined the thresholds to be the maximum of the

individual received amplitudes at the relay. This results in the significant changes in

transmit amplitudes at the terminals with epsilon changes in the channel parameters

in the co-channel dependent power control algorithm which will be explained in detail

in further sections of this section. Now, let us consider the threshold to be a varying

threshold as shown in Figure 3.3 and solve for the probability of error.

Figure 3.3: Variable threshold model

The general probability of error mentioned in the equation 3.2 prevails even for

this case. Let us solve the individual terms of the equation. With a variable threshold

T, the first term will be

P (error|1sent) = Q(
T + h1A1 − h2A2

σN
) +Q(

T − h1A1 + h2A2

σN
) (3.8)
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then, the second term will be

P (error|0sent) = 1−Q(
T + h1A1 + h2A2

σN
) +Q(

T − h1A1 − h2A2

σN
) (3.9)

Substituting the above two equations in the equation 3.2, we arrive at the probability

of error equation for the variable threshold system model.

P (error|h1, h2) =
1

2
[1 +Q(

T + h1A1 − h2A2

σN
) +Q(

T − h1A1 + h2A2

σN
)

−Q(
T + h1A1 + h2A2

σN
)−Q(

T − h1A1 − h2A2

σN
)]

(3.10)

3.3 Optimal Power Control Functions

In this section, we will derive the Co-Channel Dependent (CCD) optimal power

control functions using the probability of error equations derived in the previous

section. Usually the channel inversion power control at the terminal can negate

the channel influence on the transmitted symbol at the relay, but this can result

in nonlinear input power variations at the terminal that can reach up to infinity,

which is practically improbable and drains the transmit source energy rapidly to an

extreme extent. So, to overcome such implications we provide caps on the average

transmitted power from the terminals. Let us suppose if the terminals are being

operated at X dB, then whatever power control made on the terminals should give

us the average transmitted power as X dB.

For the rest of the work, we consider the case, where the power control at each

terminal is averaged to 1. Then, the probability of error equations derived in the

previous section are incorporated with
√

2Eb

N0
, which is the operating power level. We

also assume

r1 =
A1

σN
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r2 =
A2

σN

∴ P (error|h1, h2) = Q((h2R2)

√
2Eb2
N0

)

+
1

2
[Q((2h1R1

√
2Eb1
N0

− h2R2

√
2Eb2
N0

))

−Q((2h1R1

√
2Eb1
N0

+ h2R2

√
2Eb2
N0

)]

(3.11)

[h1A1 > h2A2]

P (error|h1, h2) = Q((h1R1)

√
2Eb1
N0

)

+
1

2
[Q((2h2R2

√
2Eb2
N0

− h1R1

√
2Eb1
N0

))

−Q((2h2R2

√
2Eb2
N0

+ h1R1

√
2Eb1
N0

)]

(3.12)

[h2A2 > h1A1]

For the variable threshold T, the probability of error equation can be

P (error|h1, h2) =
1

2
[1 +Q(T + h1R1

√
2Eb1
N0

− h2R2

√
2Eb2
N0

)

+Q(T − h1R1

√
2Eb1
N0

+ h2R2

√
2Eb2
N0

)

−Q(T + h1R1

√
2Eb1
N0

+ h2R2

√
2Eb2
N0

)

−Q(T − h1R1

√
2Eb1
N0

− h2R2

√
2Eb2
N0

)]

(3.13)

where r1 = R1 ×
√

2Eb1

N0
and r2 = R2 ×

√
2Eb2

N0
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3.3.1 CCD Power Control for Fixed Threshold

Let us assume that the terminals operate at equal dB levels. So, the terms in the

probability of error equations

√
2Eb1
N0

=

√
2Eb2
N0

=

√
2Eb
N0

Let us also assume the received amplitudes from terminals 1 and 2 at the relay are

”a” and ”b” respectively. ∴ h1R1 = a and h2R2 = b. So, the probability of error in

equations 3.13 and 3.14 are modified to

∴ P (error|h1, h2) = Q((b)

√
2Eb
N0

) +
1

2
[Q((2a− b)

√
2Eb
N0

)

−Q((2a+ b)

√
2Eb
N0

]

(3.14)

[a > b]

P (error|h1, h2) = Q((a)

√
2Eb
N0

) +
1

2
[Q((2b− a)

√
2Eb
N0

)

−Q((2b+ a)

√
2Eb
N0

)]

(3.15)

[b > a]

The main motto here is to minimize the probability of error equation for this fixed

threshold i.e maximum of either of the received amplitudes, system with constraints

on the total average controlled power of each individual terminal to be equal to 1.

The total average probability of error for the system is given as:

P (error) =

∫∫
P (error|h1, h2)f(h1, h2)dh1dh2 (3.16)
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So the minimization function will be

Minimize

∫∫
P (error|h1, h2)f(h1, h2)dh1dh2 (3.17)

Subject to

∫∫
R2

1f(h1, h2)dh1dh2 = 1∫∫
R2

2f(h1, h2)dh1dh2 = 1

Using Lagrangian minimization techniques, we arrive at the following minimization

function:

∫∫
[P (error|h1, h2) + µ1R

2
1 + µ2R

2
2 − µ1 − µ2]f(h1, h2)dh1dh2 (3.18)

To minimize the above double integral expression we can minimize it at each and

every instant of h1 and h2. So our minimization function with R1 and R2 as variables

is as follows

L = P (error|h1, h2) + µ1R
2
1 + µ2R

2
2 (3.19)

Writing the above minimization function in terms of ”a” and ”b”, we have

L = P (error|a, b) + w1a
2 + w2b

2 (3.20)

where w1 =
µ1

h2
1

and w2 =
µ2

h2
2

From the above equation find a,b for each (w1,w2) pair that minimizes L. These

optimal a and b values for each pair of (w1,w2) are used to find the Lagrangian

multipliers µ1 and µ2 which are constant for particular operating dB level of the
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terminals. The equation

∫∫
R2
i f(h1, h2)dh1dh2 = 1 (3.21)

where i = [1, 2], is used to evaluate the Lagrange multipliers, since Ri is a function of

these Lagrange multipliers µ1 and µ2. f(h1, h2) can be written as f(h1)f(h2) as both

the channel gains are mutually independent Rayleigh random variables. Using the

density functions of the Rayleigh random variables in the equation 3.21, we arrive at

the following equations which are used to solve for the µ1 and µ2 where the optimal

a and b are calculated for each h1 and h2.

4

∫∫
a2h2

h1

e−(h21+h22)dh1dh2 = 1 (3.22)

4

∫∫
b2h1

h2

e−(h21+h22)dh1dh2 = 1 (3.23)

The Lagrange multiplier µ1 and µ2 values at particular dB level for this fixed thresh-

old system are as shown in the Table 3.2.

Using these Lagrangian values we can calculate the transmit amplitudes R1 and

R2 from the terminals as a function of h1 and h2 as shown in the Figures 3.4 and

3.5.

From the Figures 3.4 and 3.5, we can observe that at some particular combinations

of h1 and h2, there is a substantial change in the transmit amplitudes with epsilon

change in the channel parameters. This is due to the confinement of thresholds to

the maximum of the received independent amplitudes at the relay. This can be

controlled by using a variable threshold between the symbols in signal constellation,

which is a function of the received independent amplitudes a and b. In the next

subsection, we will see the behaviour of the variable threshold system along with
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Table 3.2: Lagrange multiplier values for fixed threshold case
SNR in dB µ1 µ2

0 0.059 0.059
1 0.0585 0.0585
2 0.0572 0.0572
3 0.054 0.054
4 0.05 0.05
5 0.045 0.045
6 0.039 0.039
7 0.0325 0.0325
8 0.026 0.026
9 0.02 0.02
10 0.0145 0.0145
11 0.0105 0.0105
12 0.0063 0.0063
13 0.0037 0.0037
14 0.0018 0.0018
15 0.00075 0.00075

Figure 3.4: R1 as a function of h1 and h2 at 3dB for fixed threshold
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Figure 3.5: R2 as a function of h1 and h2 at 3dB for fixed threshold

the transmit amplitude functions. The probability error curve at the relay with the

CCD-Fixed threshold algorithm implemented at the terminals for different average

SNR levels is as shown in the Figure 3.6

Figure 3.6: Performance comparison using probability of error curves for AWGN,
with power control and without power control for CCD-fixed threshold system
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3.3.2 CCD Power Control for Variable Threshold

The system model for a variable threshold is as shown in Figure 2.2. With the

threshold T as a function of the received amplitudes, assuming h1R1 = a, h2R2 = b

and the terminals to be operating at equal SNR levels, the probability of error

equation given for the system in the equation 3.15 can be written as

P (error|h1, h2) =
1

2
[1 +Q((T + h1R1 − h2R2)

√
2Eb
N0

)

+Q((T − h1R1 + h2R2)

√
2Eb
N0

)

−Q((T + h1R1 + h2R2)

√
2Eb
N0

)

−Q((T − h1R1 − h2R2)

√
2Eb
N0

)]

(3.24)

The total average probability of error for the system is given as:

P (error) =

∫∫
P (error|h1, h2)f(h1, h2)dh1dh2 (3.25)

So the minimization function will be

Minimize

∫∫
P (error|h1, h2)f(h1, h2)dh1dh2 (3.26)

Subject to

∫∫
R2

1f(h1, h2)dh1dh2 = 1∫∫
R2

2f(h1, h2)dh1dh2 = 1
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Using the Lagrangian minimization techniques, we arrive at the following minimiza-

tion function:

∫∫
[P (error|h1, h2) + µ1R

2
1 + µ2R

2
2 − µ1 − µ2]f(h1, h2)dh1dh2 (3.27)

To minimize the above double integral expression we can minimize it at each and

every instant of h1 and h2. So our minimization function with R1 and R2 as variables

is as follows

L = P (error|h1, h2) + µ1R
2
1 + µ2R

2
2 (3.28)

Writing the above minimization function in terms of ”a” and ”b”, we have

L = P (error|a, b) + w1a
2 + w2b

2 (3.29)

where w1 =
µ1

h2
1

and w2 =
µ2

h2
2

Using the Newton Raphson method to find the optimal threshold value as a func-

tion of the a and b, it takes just 3-5 iterations to converge. This optimal threshold is

used to estimate the optimal values of a and b for each (w1,w2) pair that minimizes

L. These optimal a and b values for each pair of (w1,w2) are used to find the La-

grangian multipliers µ1 and µ2 which are constant for particular operating dB level

of the terminals. The equation

∫∫
R2
i f(h1, h2)dh1dh2 = 1 (3.30)

where i = [1, 2], is used to evaluate the Lagrange multipliers, since Ri is a function

of these Lagrange multipliers µ1 and µ2. f(h1, h2) can be written as f(h1)f(h2) as

both the channel gains are mutually independent Rayleigh random variables. Using
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the distribution functions of the Rayleigh random variables in the equation 3.23, the

following equations are used to solve for the µ1 and µ2 using Riemann sum method

where the optimal a and b are calculated for each h1 and h2.

4

∫∫
a2h2

h1

e−(h21+h22)dh1dh2 = 1 (3.31)

4

∫∫
b2h1

h2

e−(h21+h22)dh1dh2 = 1 (3.32)

The Lagrange multiplier µ1 and µ2 values at particular dB level for this fixed thresh-

old system are as shown in the Table 3.3. Using these Lagrangian values we can

Table 3.3: Lagrange multiplier values for variable threshold case
SNR in dB µ1 µ2

0 0.058 0.058
1 0.0575 0.0575
2 0.0562 0.0562
3 0.053 0.053
4 0.049 0.049
5 0.044 0.044
6 0.038 0.038
7 0.032 0.032
8 0.0255 0.0255
9 0.0195 0.0195
10 0.0144 0.0144
11 0.01 0.01
12 0.0063 0.0063
13 0.00365 0.00365
14 0.0018 0.0018
15 0.00075 0.00075

calculate the transmit amplitudes R1 and R2 from the terminals along with the op-

timal threshold as a function of h1 and h2 as shown in the Figures 3.7, 3.8 and 3.9.
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Figure 3.7: R1 as a function of h1 and h2 at 3dB for variable threshold

Figure 3.8: R2 as a function of h1 and h2 at 3 dB for variable threshold

The probability error curve at the relay with the CCD-Variable threshold algorithm

implemented at the terminals for different average SNR levels is as shown in the

Figure 3.10

35



Figure 3.9: Optimal threshold as a function of h1 and h2 at 3 dB for variable threshold

Figure 3.10: Performance comparison using probability of error curves for AWGN,
with power control and without power control for CCD-variable threshold system

3.3.3 Sub-optimal Co-Channel Independent (CCI) Power Control

Function

In this section, we will derive the closed form optimal power control function for

the single channel user system as shown in Figure 2.3 operating with an underlying
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BPSK modulation. We then extend this single channel power control to our system

model by applying the power control independently on each of the terminals and

measure the performance of the system.

Let us consider h as a channel parameter between the terminal and the receiver

and A be the amplitude control function at the terminal. Then the probability of

error for the system is given by

P (error|h) = Q(
h1A1

σN
) (3.33)

The average probability error of the system is given by

P (error) =

∫
P (error|h)f(h)dh (3.34)

Let us assume r = A
σN

and as shown in the previous section , we can write r =

R ×
√

2Eb

N0
, where R is an amplitude control function of channel parameter . The

amplitude control function R when averaged over the probability density function of

channel parameters, will be equal to 1. With the above assumptions the probability

of error equation that should be minimized to achieve the optimal performance is

given below

P (error) =

∫
Q(hR

√
2Eb
N0

)f(h)dh (3.35)

subject to

∫
R2f(h)dh = 1

Using Lagrange minimization technique the expression that needs to be minimized

is ∫
[Q(hR

√
2Eb
N0

) + µR2 − µ]f(h)dh (3.36)

As we know that the above expression can be minimum when it is minimum at each
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and every instant of h with R as a variable. So, now the equation we end up for

minimizing is

L = Q(hR

√
2Eb
N0

) + µR2 (3.37)

Taking the partial derivative with respect to R we have

∂L

∂R
=
−h√

2π

√
2Eb
N0

e
−h2R2 Eb

N0 + 2µR (3.38)

Equating the above equation to zero, we arrive at an equation for R given as

R =
0.707107

√
W (

0.159155(
Eb
N0

)2h4

µ2
)

h
√

Eb

N0

(3.39)

where W is the Lambert W function. The Lagrange multiplier µ can be evaluated by

using the constraint mentioned in the minimization equation. Substituting the pdf

function of Rayleigh random variable in the constraint function, the equation used

to solve for the µ is given by

2

∫
R2he−h

2

dh = 1 (3.40)

Using Riemann sum method and making the average to be equal to 1 for the above

equation, the Lagrange multiplier values at each SNR level are given in the Table 3.4

The probability of error curve at the relay for a single channel user system with the

optimal power control algorithm implemented at the terminals for different average

SNR levels is as shown in the Figure 3.11. The amplitude control function at the

terminal as a function of the channel parameter h is as shown in the Figure 3.12.
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Table 3.4: Lagrange multiplier values for single user system
SNR in dB µ1

0 0.0914
1 0.08775
2 0.08259
3 0.076
4 0.0682
5 0.0596
6 0.0505
7 0.0412
8 0.0324
9 0.0243
10 0.01735
11 0.01175
12 0.00743
13 0.00425
14 0.0021
15 0.000855

Figure 3.11: Performance comparison using probability of error curves for AWGN,
with power control and without power control for single user system
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Figure 3.12: Amplitude function as a function of channel parameter H

Figure 3.13: Probability of error curve for CCI model

Now, we extend this single channel optimal power control to our two way relay

system model by implementing the optimal power control algorithm on the terminals

independently. We call this model of implementation as CCI optimal power control

algorithm as the power control on the terminals is independent of the other terminals
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channel parameters. The performance at the relay node with CCI power control

algorithm is as shown in the Figure 3.13 and the amplitude function at the each

terminal is similar to the one shown in Figure 3.12.
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4. COMPARISONS, CONCLUSIONS AND FUTURE WORK

In this section we will compare the results of the proposed optimal power control

algorithms and derive the conclusions for this thesis work. We then identify possible

future work as an extension to the conclusions.

4.1 Comparisons and Conclusions

In this section, first we will compare the performances of optimal CCD power

control algorithm and sub-optimal CCI power control algorithm derived in the section

3 and then we will compare these results with the previous power control algorithms

or techniques mentioned in section2.

Figure 4.1: Performance comparison at the relay for different power control algo-
rithms in our thesis

From the Figure 4.1, we can see that performance of the CCD optimal power

control algorithm with fixed threshold is similar to the performance of CCD optimal
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power control algorithm with variable threshold system model. The only difference

with these algorithms is that variable threshold model eliminates the irregularities in

the amplitude function that arose due to confining of the thresholds to the maximum

of the received amplitudes. We can also observe that the performance of CCI sub-

optimal power control algorithm system model is almost similar to the CCD power

control performance with only subtle degradation in performance. From this, we can

draw a strong conclusion that the co-channel state information is not mandatory at

the terminals to achieve better performance as we can neglect the subtle degradation

in performance of the system at the relay. This reduces the complexity of the system

implementation.

Figure 4.2: Power control function comparison for CCD and CCI algorithms

By observing the power control functions of CCD and CCI systems as shown in

the Figure 4.2, we can conclude that the perfect estimation of channel parameters

and amplitude calculation is not mandatory to achieve near optimal performance at
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the relay. From the Figure 4.3, we can see that the optimal CCD and the sub-optimal

CCI power control algorithms achieve a huge performance improvement as compared

to the power control algorithms described in section 2.

Figure 4.3: Performance comparison for CCD and CCI algorithms with power control
algorithm in 2008 paper

By observing the set of Figures in 4.4 which shows the instantaneous received

amplitudes at the relay from terminals 1 and 2 for CCD Fixed Threshold, CCD

Variable Threshold and CCI algorithms, we can conclude and postulate that the

common paradigm of equal received amplitudes at the relay for optimal performance

in TWRN implementing PLNC is wrong. We can say the assumption of equal re-

ceived amplitudes at the relay as in CDMA power control to alienate the near far

effect is not appropriate in PLNC systems.
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Figure 4.4: Instantaneous received amplitudes at the relay for 3dB and 12dB with
CCD and CCI algorithms at the terminals

4.2 Future Work

From the conclusions we have arrived at in this thesis, we can extend this work

to

• A higher modulation format such as QAM and test the performance of the

system for the proposed CCD and CCI power control algorithms.

• Feedback implementation, where quantized channel state information is feed-

back to the terminal and performance of the system is evaluated with the

variable quantization bits.
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