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ABSTRACT

In recent years, the general area of remanufacturing has received significant at-
tention both in academia and practice. While there is a growing body of literature
in production planning models for remanufacturing, there is still a need for ana-
lytical decision-making tools considering general cost/revenue structures, stochastic
demands, stochastic returns, and multiple agents/decision makers. Of particular in-
terest in this dissertation are inventory control models with batch processing, seed
stock planning, and coordination considerations for efficient inventory control prac-
tices.

More specifically we investigate three distinct, yet related, inventory control prob-
lems: (1) a fundamental inventory and production planning problem arising in a
batch processing environment for a third party remanufacturer, which is character-
ized by a stochastic used-item return process along with a stochastic remanufactured-
item demand process; (2) a seed stock planning problem in a batch processing en-
vironment with two agents including an original equipment manufacturer (OEM)
and a remanufacturing supplier (RS), for which three game-theoretic scenarios and
two types of controls are investigated; (3) a channel coordination problem in the
reverse supply chain, which generalizes the above two problems in the sense that
the stochastic nature of returns is modeled in a batch processing environment for
channel coordination purposes.

Our analytical decision-making models contribute to the existing literature in
the following ways: (1) we investigate the impact of more general cost structures
(including both fixed operational costs and inventory-related costs) and disposal

options in a batch processing environment with stochastic demand and return; (2) we
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systematically study seed stock planning issues in a batch processing environment for
remanufacturing using the game-theoretic framework; and (3) we build an analytical
framework for channel coordination mechanism design for the reverse supply chain

in a stochastic environment.
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1. INTRODUCTION

In a recent paper, Pishchulov et al. (2014) argue that "collection of used products
and their reuse has become in recent years the subject of increasing attention from
both industrial practice and academic research due to important economic consid-
erations". Thierry et al. (1995) identify five recovery options (repair, refurbishing,
remanufacturing, cannibalization and recycling), and they define remanufacturing as
the process to "bring used products up to quality standards that are as rigorous as
those for new products". As noted by Thierry et al. (1995), the main advantage
of remanufacturing over other recovery options is that it recovers the value of used
products more efficiently. However, as pointed by Guide (2000), remanufacturing is
more complex and difficult to manage than traditional manufacturing due to uncer-
tainties about time, amount and quality in return flows. Guide (2000) outlines and
discusses the complicated characteristics of production planning and control activi-
ties in remanufacturing. Much progress has been made in this area, especially in the
last two decades. There is now a growing body of literature in production planning
models in remanufacturing.

For a comprehensive review of the existing literature in this area, the reader is
referred to Akcali and Cetinkaya (2011) who discuss the following limitations and /or

gaps in the literature:

e "Rather simplistic (i.e. linear) approximations of cost and/or revenue struc-
tures are used in the current literature." For example, see Cohen et al. (1980);
Fleischmann and Kuik (2003); Heyman (1977); Whisler (1967); Yuan and Che-
ung (1998).

e Existing literature considering stochastic demand and stochastic return ignores



disposal options.

— For continuous models, see Fleischmann et al. (2002); Heyman (1977);

Toktay et al. (2000); Van der Laan (2003); Yuan and Cheung (1998);

— For periodic models, see Buchanan and Abad (1998); Cohen et al. (1980);
Fleischmann and Kuik (2003); Kelle and Silver (1989); Mostard and Te-
unter (2006); Whisler (1967).

e Very little research in remanufacturing addresses seed stock considerations.
Seed stock is defined as "the quantity of new products that are released" (Akcalh

and Morse (2004)). The existing literature with seed stock considerations either
— describes a specific case study (Linton and Johnston (2000)),
— or focuses on the simulation approach (Akcali and Morse (2004)).

e No game theory model (multi-agent model) has been used for analyzing seed

stock considerations.
e Existing remanufacturing literature considering channel coordination issues

— either focuses on the integration between forward and reverse flows (Ket-

zenberg et al. (2003) and Nativi and Lee (2012));

— or on the coordination strategies that actually focus on operational or
pricing decisions for the forward flows rather than for the reverse flows
(Bhattacharya et al. (2006); Vorasayan and Ryan (2006); Liu et al. (2009);
Dobos et al. (2013); Pishchulov et al. (2014)).

In the above, the key words that identify the limitations and/or gaps of the

existing literature are highlighted in italics, and they are related to the current



dissertation. More specifically, three distinct, yet related, inventory control problems

are of interest in the current dissertation while addressing these limitations and gaps:

e Alternative Batching Policies for Remanufacturing under Stochastic
Demand and Return: The first problem focuses on an analytical inves-
tigation of alternative batching policies for remanufacturing under stochastic
demand and stochastic return, along with disposal options and fixed operational

cost considerations.

e Seed Stock Planning Strategies with Multiple Agents: The second
problem focuses on seed stock planning with multi-agents for which game theory

approach is used.

e Channel Coordination Strategies in the Reverse Supply Chain: The
third problem deals with channel coordination in the reverse supply chain in a

stochastic setting.

The first problem is investigated in Section 2, and it deals with a fundamental
inventory and production planning setting characterized by a stochastic used-item
return process along with a stochastic remanufactured-item demand process faced by
a remanufacturer. We investigate five batching policies inspired by the previous liter-
ature in shipment consolidation (Cetinkaya (2005)) (three periodic policies and two
threshold policies) in the make-to-order environment. Under each policy, we explic-
itly take into account all relevant costs, including the fized operational costs (asso-
ciated with remanufacturing of used-items and dispatching of remanufactured-item
orders in batches) and inventory-related costs (associated with remanufactured-item
order waiting costs and used-item inventory holding costs). We develop analytical

models with the objective of minimizing the long-run average expected total cost of



the remanufacturer for computing the policy parameters of interest. Since the ex-
act optimal policy parameters are not analytically tractable, we propose analytically
tractable approximations on the cost functions for the policies. Through numerical
investigation, we demonstrate that the approximate policy parameters work impres-
sively well for all practical purposes in terms of the actual cost performance. Then,
we extend the five policies by considering disposal options when needed. For this
extension, an effective parameter-based approximation is developed for estimating
the policy parameters. Numerical experiments demonstrate the effectiveness of the
proposed approximation approach.

The second problem is investigated in Section 3, and it deals with a basic game-
theoretic setting for seed stock planning in remanufacturing. The problem can be
characterized as a finite horizon inventory control problem with multiple agents in-
cluding an OEM, a new part supplier (NPS), and a RS. The OEM provides a partic-
ular type of replacement part for a product it sells. The demand of the replacement
parts throughout the whole planning horizon 7' can be satisfied by using new-items
procured from the NPS at the beginning of 7', as well as remanufactured-items pro-
vided by the RS until the end of T". The initial inventory, i.e., seed stock, is treated
as an operational decision variable along with other decisions. Since only a frac-
tion of used-items can be remanufactured, seed stock is crucial to guarantee enough
supply of returns for remanufacturing as well as to satisfy the demand during the
initial phase of the planning horizon. The objective is to maximize the total profit by
optimizing the seed stock level of new-items, initial lot size and exchange lot size of
used-items. Seed stock optimization may or may not be controlled by the OEM due
to the interactions between multiple agents. We investigate three scenarios and two
types of controls, leading to several different system settings. We are interested in

the interactions between the agents, and the impacts of the interactions on strategy



performance. We aim to identify the system setting that performs best through our
analytical models and numerical experiments.

The third problem is investigated in Section 4, and it deals with coordination
strategies for the OEM and a collection center (CC). This problem may be referred
as a reverse channel coordination problem due to its relationship with the traditional
channel coordination problem (Toptal and Cetinkaya (2008)). Used-items arrive to
the CC according to a stochastic process which is referred as the return process. The
CC consolidates used-items using a threshold policy, and then sends them to the
OEM in a large lot. Since the OEM and the CC have different cost considerations
and make decisions individually, coordination mechanisms are useful such that the
system-wide total profit is maximized. First, the return process is modeled as a
general renewal process, and we prove that an all-unit-premium mechanism is able
to coordinate the system. We develop analytical expressions for deriving the pa-
rameters representing the coordination mechanism. We find conditions under which
these analytical expressions lead to closed-form solutions. Then we apply our results
considering several special cases including the cases of deterministic return process,
renewal return process with unit load, and renewal return process with exponentially
distributed loads. For these special cases, we also extend out results to the situation
that the return rate depends on the collection price. When the return rate depends
on the collection price, we prove that all-unit-premium mechanism cannot guarantee
the centralized optimal profit, i.e., channel coordination. However, by employing
all-unit-premium and franchise fee mechanisms together, the channel coordination
objective can be achieved. Analytical and numerical examples are provided to illus-
trate the profit improvement due to coordination.

As we have discussed above, although there is a large body of literature on in-

ventory and production planning problems in remanufacturing, there is a need for



analytical models with batch processing, seed stock planning, and channel coordina-
tion considerations. Of particular interest in this dissertation is the explicit modeling
of fixed operation costs, stochastic nature of demands, stochastic nature of returns,
disposal options, seed stock quantities, and channel coordination issues. Hence, our

contributions include:

e building analytical remanufacturing models with stochastic demand and stochas-
tic return while considering more general cost structures as well as disposal

options;

e analyzing the interactions between different agents for seed stock planning using

game theory;

e applying channel coordination strategies for the collection channel specifically

in a stochastic environment.

The remainder of the dissertation is organized as follows. In Sections 2, 3 and 4,
we investigate the three problems of interest as described above. In each section, we
present a detailed discussion of relevant literature for the specific problem of interest.
Also, each section is concluded with a discussion of our findings and potential future

research directions.



2. ALTERNATIVE BATCHING POLICIES FOR REMANUFACTURING
UNDER STOCHASTIC DEMAND AND RETURN

2.1 Overview of Section 2

This section deals with a fundamental inventory and production planning set-
ting characterized by a stochastic used-item return process along with a stochastic
remanufactured-item demand process faced by a remanufacturer. We investigate
five batching policies inspired by the previous literature in shipment consolidation
(Qetinkaya (2005)) (two periodic policies and three threshold policies) in the make-
to-order environment. Under each policy, we explicitly take into account for all rele-
vant costs, including the fixed operational costs (associated with remanufacturing of
used-items and dispatching of remanufactured-item orders in batches) and inventory-
related costs (associated with remanufactured-item order waiting costs and used-item
inventory holding costs). We develop analytical models with the objective of mini-
mizing the long-run average expected total cost of the remanufacturer for computing
the policy parameters of interest. Since the exact optimal policy parameters are not
analytically tractable, we propose analytically tractable approximations on the cost
functions for the policies. Through numerical investigation, we demonstrate that the
approximate policy parameters work impressively well for all practical purposes in
terms of the actual cost performance. Then, we extend the five policies by consider-
ing disposal options when needed. For this extension, an effective parameter-based
approximation is developed for estimating the policy parameters. Numerical exper-

iments demonstrate the effectiveness of the proposed approximation approach.



2.2 Problem Motivations and Related Literature

As noted above, we consider a fundamental inventory and production planning
problem characterized by a stochastic used-item return process along with a stochas-
tic remanufactured-item demand process. The problem of interest arises in the con-
text of valuable discrete parts remanufacturing, such as engines or transmissions in
the automotive industry and cellular phones in the consumer electronics industry.
That is, the used-items are valuable and remanufacturable and are returned to a
third-party remanufacturer according to a Poisson arrival stream representing the
stochastic return process. Likewise, the remanufactured items are valuable and in
short supply and are ordered from the remanufacturer according to a Poisson arrival
stream representing the stochastic demand process.

For example, the return process is generated by a large base of used-item suppliers
(i.e., insurance companies and automotive repair shops in the automotive industry;
and cellular network providers and retailers in the consumer electronics industry) and
the demand process is driven by a different market consisting remanufactured-item
buyers (i.e., automotive part sellers and automotive repair shops in the automotive
industry; and secondary market sellers in consumer electronics industry). Due to the
nature of the applications of interest and the involvement of a remanufacturer, the
stochastic return and demand processes are treated as independent (as in Buchanan
and Abad (1998); Fleischmann and Kuik (2003); Heyman (1977); Muckstadt and
I[saac (1981); Whisler (1967)).

For the applications of interest here, due to the labor-intensive nature of re-
manufacturing activity and the valuable nature of remanufactured items, both fixed
operational costs and inventory-related costs are significant. Hence, the reman-

ufacturer operates in a batch processing mode by first observing and then satisfying



realized demands in a make-to-order fashion, i.e., the remanufacturer does not carry
any remanufactured items but accumulates used-items as dictated by the return pro-
cess. This, in turn, implies that the remanufactured-item buyers are willing to place
orders in ahead of time, while the remanufacturer has to bear order waiting costs
and used-item holding costs. The order waiting cost is due to the make-to-order
environment (i.e., the intentional avoidance of expensive remanufactured-item inven-
tories). That is, the only inventory holding cost is due to used-item inventories held
in stock.

For each batch processing run, the fundamental difficulty is due to the mismatch
of the so-called supply and demand, e.g., the used-item inventories may or may not be
sufficient to satisfy the remanufactured-item orders to be delivered once the batch is
processed. As we have noted earlier, used-item returns are in short supply relative to
remanufactured-item orders, i.e., arrival rate of the return process is typically smaller
than arrival rate of the demand process in most practical applications. Hence, an
agent that has access to returns and the technological know-how on how to reman-
ufacture the returns is in a lucrative opportunity to capture the financial benefits
associated with matching the supply and demand. When the returns fall short of the
demands, the opportunity to satisfy the entire demand via remanufacturing is lost
and the cost of obtaining an alternative source to satisfy the excess demand needs
to be accommodated. When the returns exceed the demands, it is crucial to make
the best of excess returns to hedge against future demand uncertainty and to avoid
excess remanufactured-item inventories. Hence, it is worthwhile to have a closer ex-
amination of the efficiency of clearing policies that rely on the clearance of used-item
inventories, remanufactured-item orders or perhaps clearance on a periodic basis.

To this end, we propose alternative operating policies tackling inventory and

production planning problem of the remanufacturer. These policies are inspired by



stochastic clearing models applicable in the context of outbound shipment consolida-
tion practices and vendor-managed inventory systems (Cetinkaya (2005); Cetinkaya
and Bookbinder (2003); Cetinkaya and Lee (2000); Cetinkaya et al. (2008)). Of par-
ticular interest are two classes of policies referred as periodic policies and threshold
policies. The former class includes (i) the fixed period policy, (ii) the demand-driven
periodic policy and (iii) the return-driven periodic policy. The latter class includes
(i) the demand-driven threshold policy and (ii) the return-driven threshold policy.
Then, the remanufacturer either executes a batch run (1) at regular intervals
or (2) when the remanufactured-item orders waiting to be released dictated by the
demand process or (3) when the used-item inventories dictated by the return process
reaches a particular threshold value. The duration between two consecutive batch

runs is then referred as a remanufacturing cycle. More specifically,

e When a fized period policy is in effect, a batch processing run is executed on
a periodic basis, i.e., every Tr time units, leading to a fixed remanufacturing
cycle length of Tr. Hence, it is referred as the Tr-policy. On the contrary, for

the remaining policies, the remanufacturing cycle length is a random variable.

e Under a demand-driven periodic policy, a batch processing run is executed after
a particular duration of time, denoted by T, of time elapses beyond the arrival

of the first demand. Hence, it is referred as the Th-policy.

e Under a return-driven periodic policy, a batch processing run is executed after
a particular duration of time, denoted by Ty, elapses beyond the arrival of the

first return. Hence, it is referred as the Tr-policy.

e Under a demand-driven threshold policy, a batch processing run is executed

after the remanufactured-item orders accumulated during the cycle (accumu-
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lated demand) reaches a particular level, denoted by @p. Hence, it is referred

as the QQp-policy.

e Under a return-driven threshold policy, a batch processing run is executed once
the used-item inventories (available returns) reach a particular level, denoted

by Qr. Hence, it is referred as the Q) g-policy.

Under each policy, we explicitly take into account for all relevant costs, includ-
ing the fixed operational costs (associated with remanufacturing of used-items and
dispatching of remanufactured-item orders in batches) and inventory-related costs
(associated with remanufactured-item order waiting costs and used-item inventory
holding costs). Our goal is to develop an analytical model with the objective of
minimizing the long-run average expected total cost of the remanufacturer for com-
puting the policy parameter of interest. Despite the seemingly simple nature of these
policies, we demonstrate that the resulting used-item inventory profile of the reman-
ufacturer is more complicated than in the case of many of the traditional stochastic
inventory problems, deeming the analytical derivation of inventory-related costs dif-
ficult, if not impossible. As a result, the operational cost minimization problem faced
by the remanufacturer represents a practical and technical challenge that deserves
further academic attention.

Pertinent details of the sequence of events for each remanufacturing cycle is char-

acterized as follows:

e At the time when a batch run is to be executed, i.e., at the end of a remanufac-
turing cycle, if the existing used-item inventories exceed remanufactured-item
orders accumulated during the cycle then (i) a sufficient number of used-items
are processed as a batch; (ii) the entire demand is satisfied; and (iii) the excess

quantity of used-items can be kept in inventory until the next batch run. This
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case is referred as the case of supply overage.

e At the time when a batch run is to be executed, if the used-item invento-
ries fall short of the remanufactured-item orders accumulated during the cycle
then (i) the remanufacturer procures additional used-items from a spot market
(i.e., vehicle salvage yards in the automotive industry and cellular phone bro-
kers in the consumer electronics industry); (ii) all of the available used-items
(dictated by the return process and procured from the spot market) are pro-
cessed as a batch; and (iii) the entire demand is satisfied, i.e., all outstanding
remanufactured-item orders waiting to be released are cleared. This case is

referred as the case of supply underage.

e Both the spot market procurement lead time as well as the batch processing

lead time are negligible relative to the length of a remanufacturing cycle.

While the assumption regarding the availability of a spot market with ample sup-
ply simplifies the underlying stochastic return-item inventory and remanufactured-
item order profiles, it is also well justified as argued in the previous literature (Atasu
et al. (2013); Savaskan et al. (1999, 2004)) and exemplified in several contempo-
rary applications. Of the practical applications considered here, in the automotive
industry, for example, a typical remanufacturer works with a network of insurance
companies whose decisions dictate the stochastic return process modeled in this sec-
tion. However, the remanufacturer is also connected to a network of vehicle salvage
yards with virtually ample supply of returns.

Although closed-form expressions of the long-run average expected total cost
functions under the policies of interest are very hard to derive, we demonstrate that
the used-item inventory position can be treated as a G/G/1 queue regardless of the

policy under consideration. With this observation, we derive analytically tractable
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approximations on the cost functions for the policies. The approximations are then
utilized to compute the cost-effective policy parameters considering the long-run
average expected total costs for the remanufacturer. Despite the fact that the exact
optimal policy parameters are not analytically tractable and can only be obtained via
computationally intensive simulation approaches, the approximations lead to superb
near-optimal operating parameters in closed-form for all of the policies.

A diligent numerical investigation demonstrates that despite the deviation be-
tween the proposed approximations and the exact cost functions, the resulting policy
parameters would work impressively well for all practical purposes in terms of the
actual cost performance. Hence, our contribution lies in providing a systematic and
comprehensive analysis of cost performance of periodic and threshold policies for the
remanufacturer and determining analytically-tractable and practically-effective op-
erating parameters. That is, the exact cost penalty of using the approximate policy
parameters is negligible in most cases as demonstrated by a careful numerical study
with 48 instances for each of the five policies of interest leading to 48 x 5 = 240 prob-
lem settings. More specifically, our numerical results reveal that the cost penalty
associated with using the approximate policy parameters is 0.02% on average and
is less than 1% in the worst case. Remarkably, the ideal performance with 0% cost
penalty is achievable in many cases.

The operational cost minimization problem introduced and examined here is
closely related to two streams of previous research. The first stream of research
deals with inventory and production planning models for remanufacturing, while
the second stream deals with stochastic clearing applications related to shipment
consolidation.

For a comprehensive review of the existing literature in the first stream of closely

related research, we refer the readers to Akcali and Cetinkaya (2011). According
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to the classification framework in Akcali and Cetinkaya (2011), the problem setting
analyzed in this section is a single stock-point system with stochastic return and de-
mand processes. Both continuous (Heyman (1977); Yuan and Cheung (1998)) and
periodic (Buchanan and Abad (1998); Cohen et al. (1980); Fleischmann and Kuik
(2003); Kelle and Silver (1989); Muckstadt and Isaac (1981); Whisler (1967)) review
inventory and production planning models have been investigated previously while
making strong assumptions leading to a need for analytical models with explicit con-
sideration of fixed operational costs and make-to-order environments with explicit
order waiting costs. We examine both types of review; Tr-policy is concerned with
a periodic-review scheme whereas Tp-policy, Tg-policy, (Qp-policy, and ) g-policy
follow a continuous-review scheme. The general contribution of this section is then
two-fold. The modeling contribution is in the explicit consideration of a make-to-
order environment with both stochastic return and stochastic demand processes.The
technical contribution is in the development of simple closed-form expressions for
computing cost-effective near-optimal policy parameters with superior performance
when benchmarked against the computationally demanding exact optimal policy pa-
rameters. While the specific technical contribution relies on standard approaches in
stochastic clearing and queuing theory and the idea of developing cost minimization
models draws from stochastic inventory theory, the simple closed-form expressions
derived here remedy the computational burden associated with an exact optimization
approach in a remarkable fashion.

As noted earlier, the alternative operating policies tackling the operational cost
minimization problem faced by the remanufacturer are inspired by stochastic clearing
models applicable in the context of outbound shipment consolidation practices and
vendor-managed inventory systems (Cetinkaya (2005); Cetinkaya and Bookbinder
(2003); Cetinkaya and Lee (2000); Cetinkaya et al. (2008)). Temporal shipment
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consolidation refers to active intervention by management to combine several small
orders arriving over time into a single shipment achieving high truck utilization and
realizing scale economies associated with transportation. Hence, temporal shipment
consolidation problems have been treated by considering time-based and quantity-
based policies that operate in a fashion similar to the alternative policies of inter-
est introduced in this section. As in the case of the operational cost minimization
problem faced by the remanufacturer here, a deliberate temporal shipment consoli-
dation policy also leads to order waiting costs. However, the existing body of work
in this area is largely motivated by inbound or outbound distribution applications
(Cetinkaya and Bookbinder (2003)) arising in the context of traditional forward sup-
ply chains where return and reuse opportunities do not exist. Explicit consideration
of the stochastic nature of both return and demand processes, however, complicate
the implied inventory and order profiles. Hence, it is worthwhile to have a closer
examination of the efficiency of similar policies in the context of remanufacturing
and reverse supply chains.

In the traditional shipment consolidation literature, typically a single process that
models the demand is taken into account so that quantitative approaches that rely
on Renewal Theory (Cetinkaya (2005); Cetinkaya and Bookbinder (2003); Cetinkaya
and Lee (2000); Cetinkaya et al. (2008)), Markov decision processes (Higginson and
Bookbinder (1995)), and matrix-geometric methods (Bookbinder et al. (2011)) have
been useful. In our work however, two processes that model the returns and demands
need to be considered. Consequently, while existing temporal shipment models deal
with time- or quantity-based decision parameters for handling the demand process,
the operational remanufacturing decisions can be based on time- or quantity-based
batching of the return process or the demand process in our setting. Due to the

potential valuable nature of returns, a remanufacturing cycle is not a simple inventory

15



clearing cycle, regenerative process as in many of the traditional stochastic inventory
problems, deeming the analytical derivation of inventory-related costs difficult, if not
impossible as we have noted earlier. As a result, the operational cost minimization
problem faced by the remanufacturer is new. To address this new problem, we
utilize existing approaches in stochastic clearing and queuing theory (Stidham Jr
(1974, 1977); Kingman (1962)) along with some of the properties of Poisson processes
(Ross (1996), Page 59) as they relate to the stochastic return and demand processes
and properties of Normal distribution (Barlow (1989), Page 40) as they related to
the accumulated returns and demands in each remanufacturing cycle.

The remainder of the section is organized as follows. In the next section, we dis-
cuss our modeling assumptions, introduce our notation, and our demand and return
process modeling approach. Section 2.3 describes the basic model and the under-
lying processes. Section 2.4 derives the total cost functions for each of the policies
and derives the approximate minimizers of those cost functions. Section 2.5 summa-
rizes and compares the properties of the cost functions and the optimal results. In
Section 2.6, we present some results from a numerical experimentation to investigate
the quality of our approximations and illustrate their practical relevance. Section 2.7
considered the situation that the return rate is greater than or equal to the demand
rate, and extend the policies to include disposal options. Approximation approaches
are proposed and numerical tests are used to check their performances. Section 2.8

summarizes the results of the section and provides future research directions.
2.3 Modeling Basics

The problem setting as described in Section 2.2 is illustrated in Figure 2.1, where
some of modeling parameters are also introduced. See Table 2.1 for a summary

of notation introduced so far along with additional essential notation used in the
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remainder of the section. This section is aimed at a closer examination of the fun-
damental stochastic/random components of the inventory and production planning
system under consideration that are essential for the development of an operational
cost minimization approach. Hence, we proceed with a detailed discussion of the
stochastic demand and return processes (Subsection 2.3.1) along with the random
natures of remanufacturing cycles under alternative policies (Subsection 2.3.2), un-
derlying used-item inventory profiles (Subsection 2.3.3.1), and spot market procure-
ments (Subsection 2.3.3.2). This section concludes with the illustration of a realiza-
tion of the used-item inventory profile and outstanding remanufactured-item order

profiles for all of the policies (Subsection 2.3.4).

Core
Spot Market

(cp)

Return
Process

Demand

Remanufacturing Process

(F.c,) (F)

Figure 2.1: An illustration of the remanufacturing system for the batch processing
problem.

2.8.1 Stochastic Demand and Return Processes

As we have noted earlier the used-items are valuable and remanufacturable and
are returned to a third-party remanufacturer according to a Poisson stream {W (t),t >

0} over time t with an arrival rate of r, and the remanufactured items are valuable
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Table 2.1: Notation for batch processing problem.

Tr Time-based operating parameter under fixed period policy

Tp Time-based operating parameter under demand-driven periodic policy

Tr Time-based operating parameter under return-driven periodic policy

@p Quantity-based operating parameter under demand-driven threshold policy

Qr Quantity-based operating parameter under return-driven threshold policy

U Threshold operating parameter incorporating the disposal option

W(t) Number of returns by time ¢

T Return rate (units/unit time)

N(t)  Number of demands by time ¢

a Demand rate (units/unit time)

R, Number of returns generated specifically in remanufacturing cycle n

D, Number of demands received in remanufacturing cycle n

B, Number of used-items procured from the spot market in remanufacturing
cycle n

I, Number of used-items in inventory at the end of remanufacturing cycle n

CL(-) Remanufacturing cycle length as a function of the policy parameter
of interest (i.e., Tr, Tp, Tr, @p, or QR)

X4 the time of arrival for the first unit of demand in a remanufacturing cycle

Y; the time of arrival for the first unit of return in a remanufacturing cycle

So,  the time that N(t) reaches Qp

Zg,  the time that W (t) reaches Qg

h Used-item inventory holding cost ($/unit/unit time)

w Order waiting cost ($/unit/unit time)

c Variable cost of remanufacturing ($/unit)

ct Unit disposal cost ($/unit)

P Variable spot market procurement cost ($/unit)

K Fixed operational cost associated with remanufacturing of used-items and
dispatching of remanufactured-items ($/cycle)

TC(-) Long-run average expected total cost per unit time as a function of the

policy parameter of interest (i.e., Tr, Tp, Tr, @p, or Qr)
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and are in short supply and are ordered from the remanufacturer according to a
Poisson stream {N(t),t > 0} over time ¢ with an arrival rate a.

We denote the inter-arrival times of returns by Y;, ¢« = 1,2,..., so that Y;’s are
exponentially distributed with rate r, i.e., Y; ~ exp(r). Let Zy = 0 and Z; = 22:1 Y;

so that Z; ~ Gamma (4, 7) is the arrival time of the i*" return. Hence,
W(t) =sup{i: Z; <t}

is the number of returns by time ¢ and, by definition, W (¢) ~ Poisson(rt).
We denote the inter-arrival times of demands by X;, ¢ = 1,2,..., so that X;’s
are exponentially distributed with rate a, i.e., X; ~ exp(a). Let Sp = 0 and S; =

Z;Zl X, so that S; ~ Gamma (i, a) is the arrival time of the i*® demand. Hence,
N(t) =sup{i: S; <t}

is the number of demands by time ¢ and, by definition, N(¢) ~ Poisson(at).

Initially, we assume that the return rate r is smaller than the demand rate a, i.e.,
r < a. Also, as we have already justified in the spirit of previous literature and in the
context of practical motivations of interest, we consider the case where return and
demand processes are independent of each other (as in Buchanan and Abad (1998);
Fleischmann and Kuik (2003); Heyman (1977); Muckstadt and Isaac (1981); Whisler
(1967)).

2.3.2  Remanufacturing Cycles under Alternative Policies

We let C'L,(-) denote the length of remanufacturing cycle n as a function of the
policy parameter of interest, i.e., Tr, Tp, Tg, @p, or Qr, and, we take the liberty

of dropping the index n for obvious reasons and use C'L(+) in the remainder of the
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section. Recall that by definition of the policies, we have

CL(Ty) = Tr

while CL(Tp), CL(Tr), CL(Qp), and CL(Qg) are random variables whose charac-
teristics are presented momentarily in Properties 1 through 5.

Now, for all policies, let R, and D, denote the returns generated and demands
received, respectively, during the course of the n'® remanufacturing cycle. Hence, by
definition, random variables D,, n = 1,2,..., are independent and identically dis-
tributed (i.i.d.) as well as random variables R,,, n = 1,2, .... Clearly, the underlying
distributions of these random variables depend on the policy type as demonstrated
momentarily in Properties 1 through 5.

Recalling that N(t) ~ Poisson(at) and W (t) ~ Poisson(rt), utilizing the prop-
erties of random variables X; and S, (note that X; and Sp, are stopping times*
for {N(t),t > 0}), and the properties of random variables Y; and Zg,, (note that Y;
and Zg, are stopping times for {WW(¢),t > 0}), and considering the definitions of

the policies, we have the following results.

Property 1 Under Tg-policy, CL(Tr) = T while D, = N(Tr) and R, =
W(Tg). It then follows that E[D,] = Var(D,) = aTr and E[R,] = Var(R,) =
TTF.

Property 2 Under Tp-policy, CL(Tp) = X1 + Tp while D,, = 1+ N(Tp) by
the Strong Markov Property’ and, given X, = x, R, ~ Poisson(r(z + Tp)). It then

follows that

*A random variable, e.g., X1, is a stopping time with respect to the process {N(t),t > 0} if for
every t > 0, the event [X; < ¢] is determined by the process up to time ¢ (Resnick (2013), Page
504).

TGiven that X; is a stopping time with respect to the process {N(t),t > 0}, for every t > 0
and given N(X;), N(X; + 1) is independent of the events up to X; (Resnick (2013), Page 162).
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E[CL(Tp)] = é +Tp, Var(CL(Tp)) = %;
E[D,] =1+aTp, Var(D,)=dlp,
E[R,] = E[E[R,|X\]] = E[r(Xi + Tp)] = ~(1+aTp), and

Var(R,) = E[Var(R,|X1)] + Var(E[R,|X1]) = E[r(X1 + Tp)] + Var(r(X, + Tp))
== 2 + TTD + Z—Z

Notation | indicates a conditioning argument.

Property 3 Under Tg-policy, CL(Tg) =Y, + Tr while R, =1+ W (TR) by the
Strong Markov Property and, given Y, =y, D,, ~ Poisson(a(y+Tr)). It then follows

that

E[CL(TR)] = + +Tr, Var (CL(Ty)) = .
E[R,| =1+1Tg, Var(R,)=r1rTg,
E[D,)] = E[E[D,|Vi]] = Ela(Y; + Tr)] = 2(1 +1Tg), and

Var(D,) = E[Var(D,|Y)] + Var(E[D,|Yi]) = Ela(Y; + Tr)] + Var(a(Y; + Tx))
== g + CLTR + i—z

Property 4 Under Qp-policy, CL(Qp) = Sg, while D, = Qp and, given

So, = s, R, ~ Poisson(rs). It then follows that
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BICL@p)) = 2, Var(CLQp) = 2.

BIR,) = BIER|Sq,]] = FlrSa,] = 22, and

Var(Rn) = E[Var<Rn|SQD)] + Var(E[Rn|SQD]) = E[TSQD] + Var(TSQD)
_ rQp X TQQD.

Property 5 Under Qg-policy, CL(Qr) = Zg, while R, = Qg and, given Zg,, =

z, D,, ~ Poisson(az). It then follows that

Qr

ElOL@Qw) = 2 Var(CL@w) = 4,

EID,] = EIEIDa|Zq,)) = ElaZa,) = “2%,  and

.
Var(D,) = E[Var(D,|Zq,)] + Var(E[D,|Zq,]) = ElaZq,] + Var(aZg,)
Q| O
oy r2 -’

2.3.8 Matching Supply with Demand over Remanufacturing Cycles

Now that we have complete results characterizing the stochastic nature of reman-
ufacturing cycles under alternative policies let us recall the details of the sequence
of events associated with matching supply and demand over remanufacturing cy-
cles. First, we consider the case where p < 1, i.e., 7 < a. As noted earlier, we
have two possibilities referred to as the cases of supply overage and supply underage.
The first case leads to the discussion in Section 2.3.3.1 and the second case leads to
the discussion in Section 2.3.3.2. Before we proceed to the detailed discussions of
the supply overage and supply underage, we summarize the sequence of events for

remanufacturing cycle n:
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e the remanufacturer measures the initial inventory of used-items, which is the
inventory of used-items at the end of the n — 1% remanufacturing cycle, i.e.,

In—l;

e the remanufacturer consolidates returns during cycle n, and the return amount

is denoted by R,;

e the remanufacturer observes the demand in cycle n, and the demand received

is denoted by D,;

e a batch processing run is triggered according to the policy of interest, and all

the demands D,, are cleared:

— if the used-item inventory before batch processing, i.e., I,, 1+ R,, is larger
than or equal to D, then after the batch run, I, + R, — D,, units of

used-items are left and retained to the next cycle;

— otherwise, the remanufacturer purchases D, — (I,_1 + R,,) units of used-
items from the spot market, and clears all the demand with the used-items

on hand as well as the used-items purchased from the spot market.

2.3.3.1 Supply Overage: Ercess Used-item Inventories
Let I,, denote the number of used-items in inventory at the end of the remanu-
facturing cycle n, and recall that the batch processing lead time is negligible. It then
follows that the used-item inventory levels in successive remanufacturing cycles can
be characterized by a material flow equation of the form

Infl + Rn - Dna Dn S Infl + Rna
I, = (2.1)

0, Dn > In—l + Rn
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As we have noted earlier, despite the seemingly simple nature of the inventory and
production planning problem at hand, we now demonstrate that the resulting used-
item inventory profile is more complicated than in the case of traditional stochastic
inventory problems arising in the context of forward supply chains, deeming the
analytical derivation of F [I,] challenging. To this end, an analogy to a queueing

system is useful:

e Let us interpret [,,_; in (2.1) as the waiting time of the n'® customer, in front

of whom there are n — 1 customers, in an arbitrary single-server queue.

e Then, interpreting R, as the service time of the n'" customer and interpreting
D,, as the inter-arrival time between the n** customer and the n+ 1% customer,

we have the waiting time I,, of the next customer.

e Clearly, I, = 0 if the n+1°* customer arrives after the previous customer leaves,

ie., if Dy > I, + Ry

e Considering the various distributions of R,, and D,, in Properties 1 through 5 ,
we then conclude that the used-item inventory profile is dictated by a G/G/1

queue.

While there does not exist an exact method to compute the steady-state distri-
bution of a G/G/1 queue and, hence, E[I,], we rely on a fundamental result by
Kingman (1962):

E[D,](C7 + p*C7)
2(1=p)

E[lL,] < (2.2)
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where

o Var(D,) 2 _ Var(R,) n _
“=Eoyr T ER)E P

(2.3)

As we demonstrate momentarily in Section 2.4, this result is directly applicable for
our goal of developing an analytical model with the objective of minimizing the
long-run average expected total cost of the remanufacturer for computing the policy
parameter of interest.

There are many ways to approximate the average waiting time in queueing theory
as summarized by Table 2.2 in Myskja (1990), on Page 290. The bound by Kingman
(1962) and is given by (2.2) is applicable for any stable G/G/1 queue with p < 1, as
proved in Medhi (2002), Page 360. Our methodology here is applicable using other
approximations summarized by Table 2.2 (Myskja (1990)). Here we focus on the

approximation by (2.2).

Table 2.2: A collection of approximation formulas for the GI/GI/1 queue

Kingman
L vetvs  _ plea/p’+cl)

(upper '11m1t) = 20T T 2u(1p) s o
KObayaShl ~ M(lp_/;)7 p = eXp{_2(1 - p)/(p(ca + Cs/p ))}
Heyman

Va 2 Vs -1 Cg Cg 2

(heavy load) W=£. /\:_fr_ufl = p(m?l_;p’; ) o

~ )‘(1+Cs) Va1tVs __ (1+Cs) Ca+ Cs
Marchal N TR Sy = W) | 1
Gelenbe W = %
o u(1—p)

ramer
/Langenbach-Bely W = 2+ [ exp{=2(1 = p)(1 - cz)*/3p(ca + c2)}

8 T e exp{—(1 - p)(c; —1)/(c; +4c)}
Kimura W a —2lGte)

i1—0)(3 1)
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2.3.3.2  Supply Underage: Spot Market Procurement
Now, let us consider the case of supply underage leading to a spot market procure-
ment in a remanufacturing cycle. In this case, under the assumption that additional
used-items can be obtained with negligible delivery lead time, let

O, Dn S ]n—l + an
B, = max{0, D, — (I,_1 + R} = (2.4)

]n—l + Rn - D'm Dn > In—l + Rn
That is, B,, is the spot market procurement quantity associated with remanufacturing
cycle n. Clearly, B,, depends on I,, complicating the analytical derivation of F [B,].
In order to overcome this difficulty, let B(t) denote the total number of used-items

procured from the spot market during [0, ¢] so that

Then, the long-run average expected spot market procurements per unit time is

given by

Recalling that N(t) ~ Poisson(at) and W (t) ~ Poisson(rt) and considering
that a Poisson distribution with a large arrival rate can be effectively approxi-
mated by a Normal distribution (Barlow (1989), Page 40), we can approximate
N(t) ~ Normal(at,v/at) and W(t) ~ Normal(rt,+/rt). Then N(t) — W(t) ~
Normal((a —r)t, \/(a + r)t) (Ross (2010), Page 280). Relying on that, we can prove

the following property.
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Property 6 The long-run average expected spot market procurements per unit

time is given by

lim BIBO) = lim =a-—r. (2.5)

t—00 t t—o00 t

Proof. Since N(t) — W (t) ~ Normal((a — r)t, v/(a + 7)t), then we have

_(z=(a=1)t)?

©_ z (a+r)t dz
B(t E[(N(t) - W(t)* b Gjmme
Letting v = % and rewriting (2.6), we have
Bt E(N(t) — )T (¢
i 5 [20] —  EL5O= W)
t—o0 t t—o00 t
\/ T U2
ffza_m/z —(HT\);;(CL )te‘?dv
= lim et
t—o0 t
2
Via+r)t [Tanv \/0276_%03”
= lim Vet
t—o00 t
2
(a =)t [Tlacnve \/%6_7611)
+ lim ot
t—o0 t
Vi(a+r) f:’?a\#ﬁ \/%re—%dv
= lim ot
t—o0 \/¥
o 1 2
+ lim (a — T)/ ——e zdv
t—o00 _(a—7)VE 27T
Vatr
0 < w v2d >~ 1 U2d
— . e z2dv+(a—r e 2au
/_oo V2T ( )/_oo V2T
= a—r.
J

Observe that (2.5) is directly applicable for our goal of developing an analytical
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model with the objective of minimizing the long-run average expected total cost of

the remanufacturer for computing the policy parameter of interest.
2.3.4 A Realization: An Illustration of Alternative Policies

For illustrative purposes, realizations of W (t) and N(¢) along with the correspond-
ing realizations of the used-item inventory profile and outstanding remanufactured-
item order profiles are depicted in Figures 2.2 through 2.6 for all of the policies. As
noted earlier, in the description of pertinent details of the sequence of events for
each remanufacturing cycle (see Section 2.2), we have two possible cases as implied
by (2.1): The case when the available returns fall short of the accumulated demands
is illustrated in the first remanufacturing cycle, while the case when available returns

exceed the accumulated demands is illustrated in following cycle.

___hAn
Dn T Kept in
R inventory
1 (In)
E Procured from !
I w spot market i Dn
E | (Bn) n
E ‘ [ [— 7:
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L r ‘ e
- L | 1 Time
(n-1\T X1 Xz X3 Xon nT (n+1)T

Figure 2.2: A realization under Tr-policy for two successive cycles, i.e. cycle n — 1
and cycle n.
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We have now set the stage to derive the long-run average expected total cost func-
tions under policies of interest. To this end, we consider the case where the remanu-
facturer has already operated for a sufficiently long time. Consequently, (used-item)
inventory and (remanufactured-item) order profiles associated with the stochastic re-
turn and demand processes are in steady-state so that we can work with steady-state

distributions.
2.4 Long-run Average Expected Total Cost Functions

Let TC(-) denote the long-run average expected total cost per unit time as a
function of the policy parameter, e.g., as a function of T, Tp, Tk, Qp or Qr. Each
of these functions consists of five main components representing the relevant terms
associated with the cost parameters, h, w, K along with ¢ and p introduced in Table

2.1:

e the used-item inventory holding cost is accrued at rate h ($/unit/unit time);

the remanufactured-item order waiting cost is accrued at rate w ($/unit/unit

time);

the fixed operational cost K ($/cycle) is incurred in each remanufacturing cycle;

the variable cost ¢ is incurred for each remanufactured-item; and

the variable cost p is incurred for each used-item procured from the spot market.
[t then follows that T'C'(+) is given by computing the individual terms
1. long-run average expected used-item inventory carrying cost per unit time,

2. long-run average expected remanufactured-item order waiting cost per unit

time,
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3. long-run average expected fixed operational cost per unit time,
4. long-run average expected variable remanufacturing cost per unit time, and
5. long-run average expected variable spot market procurement cost per unit time.

While terms 2, 3, and 4 can be evaluated by a straightforward application of the
Renewal Reward Theorem (Ross (1996), Page 133), i.e.,

E [Cycle cost]

Long-run average expected cost per unit time = ,
& 8¢ CXP P E [Cycle length]

exact expressions for terms 1 and 5 are difficult to obtain as we have already

demonstrated in the previous section so that

TO() = h (E L]+ E [Cumulative returns received in C’L()])

E[CL(")]
wE [Cumulative demands waiting in C'L(-)]
E[CL(")]
F [Fixed operational cost in C'L(-)]
E[CL()]
N cE [Remanufacturing quantity in C'L(-)]
E[CL()]

B(t
eoim 70

Recalling (2.2) and (2.5), under each policy* the following quantities can be evaluated

using Properties 1 through 5 along with (2.3):

tObserve that FE [Fixed operational cost in CL(:)] = K for all policies except for
the Tp-policy. That is, under this policy, if an empty batch is not allowed then
E [Fixed operational cost in CL(-)] = K (1 —e~*T*). One can argue that the treatment provided
in this section, however, allows empty dispatches so that F [Fixed operational cost in CL(-)] = K.
Equivalently, one can argue that the demand rate a is large enough so that a7 is also sufficiently
large. Hence, the probability that no demand arrives in a cycle is nearly zero. This, in turn, implies
that K (1 — e*aTF) ~ K.
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ElL) < E[D,](C3 + p*C7)
Y 2(1-p)

E / o W(t)dt] | (2.7)

E / o N(t)dt] | (2.8)

E [Fixed operational cost in CL(-)] = K,

FE [Cumulative returns received in C'L(-)]

E [Cumulative demands waiting in C'L(-)]

FE [Remanufacturing quantity in CL(-)] = E'[D,], and

It then follows that

hE UOCL W(t)d ] WE UOCL(J N(t)dt] K
e 71(570 R 1 o/70) o T 1)
cE[D,]
18] +pla—r), (2.9)

and one can approximate TC(-) in (2.9) using

B4 pcy) E|LOw@d] w7 N
TeO="="=0"y YT ECLO] | ECL()
K cE[D,]

T [CL(-)] T E [CL()] +pla—r). (2.10)
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2.4.1 Cost Function under Tr-policy

Under Tr-policy, let us recall Property 1 and then use (2.3) in conjunction with

(2.2) so that we have

a+r
ElI, 2.11
1)< 5 (2.11)
Also, evaluating (2.7) and (2.8) we have
T T Ty T 2
E { W(t)dt} - / E[W(t)dt = / rtdt = - -~ and
0 0 0
Tr Tr Ty T2
E[ N(t)dt} :/ E[N(t)]dt:/ atdt = L8
0 0 0 2
Using (2.10), it is then easy to verify that
— ha+r) hrTp walr K
TC(Tr) = — — 2.12
C( F) 2(&-T)+ 9 + 2 +TF+Ca+p(a T) ( )

which is an economic order frequency type convex function of T whose unique

. [ 2K
Ty = ——— . 2.13
F wa + hr ( )

Substituting (2.13) in (2.12), we have

minimizer is given by

TC(Ty) = ;L(G—_I_T; + v/ 2(wa + hr)K + ca+ pla — ).

(a—r

While the ideal performance of the Tr-policy is difficult to benchmark and estimate in

terms of problem parameters, the above result regarding W(TF) provides an easily
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computable proxy in closed-form for the total cost which would otherwise require a
computationally intensive simulation approach.

After a closer examination of the impact of utilizing (2.11) in the right hand side
of (2.12) under Tp-policy, it is easy to verify that T is independent of the first term
of (2.12). Hence, if one can identify the conditions under which E[I,,| ~ 0 then it
can easily be argued that Tris a superb near-optimal policy parameter under those

conditions. Observations 1 and 2 examine such conditions.
Observation 1 If r < a/3 then E[[,] < 1.

Proof. Substituting r/a < 1/3 in the right hand side of (2.11), we obtain

1+ 1+3
E[L,] < “ 2
20=3) 2(1—3)

|
By Observation 1, if r is less than one third of a, i.e., the return rate is truly less
than the demand rate, then the expected number of used-items in inventory at the

end of each remanufacturing cycle is less than 1.

2
Observation 2 If r <a <1 — V%) then P(R, > D,,) ~ 0.

Proof.  Considering that a Poisson distribution with a large arrival rate can
be effectively approximated by a Normal distribution (Barlow (1989), Page 40),
let us approximate the distributions of D,, and R, under Tg-policy so that D, ~
Normal(aTr, v/aTr) andR, ~ Normal(rTr, /rTr), respectively.

Now, recalling the well-known property of a Normal random variable which im-
plies that about 99.7% of its possible values lie within three standard deviations of

the mean, we argue that P(R, > D,,) =~ 0 when the difference between E[D,] and
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E[R,] is more than three times the sum of y/Var(D,,) and /Var(R,), as illustrated
in Figure 2.7. That is, if

CLTF—TTF23<\/(ITF+ T’TF)

then P(R, > D,) ~ 0. Rearranging the terms of the above inequality completes the

proof. O

valp

number of returns generated exceed the number of demands received in each reman-

2
By Observation 2, if r is less than a (1 — i) , then the probability that the

ufacturing cycle is approximately equal to zero.

Cumulative
demand
Cumulative
return
-
/ \\
I/
K \
’
’
4
I
e
7
- ”
-
HR
L
T T
3oR 3op
Wp Mean of cumulative demand 6p Standard deviation of cumulative demand
Ur  Mean of cumulative return O0p  Standard deviation of cumulative return

Figure 2.7: Normal distribution approximations for cumulative return and cumula-
tive demand.

Finally, observe that under the potentially practical conditions of Observations
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1 or 2, not only the unique minimizer T of the approximate cost function TC(Tr)
in (2.12) provides an effective parameter for the Tp-policy but also the cost proxy

obtained by

V2(wa + hr)K + ca+ p(a —r)

is a superb estimate of the ideal performance. This result can be easily verified by
utilizing the fact that E[I,] is negligible under the conditions of Observations 1 and
2 along with (2.9), (2.10), (2.12), and (2.13).

Now that we have established formal analytical conditions demonstrating the
performance of the approximation approach proposed here, we conclude with re-
ferring the reader to the impressive numerical results in Section 2.6 examining the

performance when these conditions are violated.
2.4.2  Cost Function under Tp-policy

Under Tr-policy, it is possible to observe no demand arrivals in a remanufacturing
cycle. In order to avoid this situation, we consider Tp-policy. Under Tp-policy, let

us recall Property 2 and then use (2.3) in conjunction with (2.2) so that we have

(a+7) (L +alb)
Blh] < 2(a—71) (1+aTp)’

(2.14)
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Also, evaluating (2.7) and (2.8) we have

E [/OXI% W(t)dt} _E B W(t)dt} +E [/OTD W(t)dt}

X1 T 2
—E|E { W(t)dt‘Xlﬂ 4l >
0
r rXi T 2
—E / E[W(t)]dt‘Xl} L S
0

_ 5| /0 a Odt} + /0 " BN @)t

Tp 2
— / atdt — Y0
; 2

Using (2.10), it is then easy to verify that

— h(a+r) (5 + aT h 1 Tp® ’Tp? K

TC(Tp) = (a+r) (a a D) 4 ar -, 1o wa“lp n a
20a—r)1+alp) 1+4aTp \a? 2 2(14+aTp) 1+alp
+ ca+ pla —r). (2.15)

It can be proved that (2.15) is a convex function of Tp, and its minimizer is given by

. 2 oK — wth
TD:\/ 4+ o - (2.16)

a? wa + hr a

Subsequently, the corresponding remanufacturing cycle length is

. 1 2 2K — wth
Tp + :\/—+—a (2.17)

a a? wa + hr '’
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and substituting (2.16) in (2.15), one can compute TC(Tp) as an easily computable
proxy for the total cost which would otherwise require a computationally intensive
simulation approach, although in this case a convenient closed-form proxy does not

exist.
2.4.3 Cost Function under Tgr-policy

To ensure that at least one unit of used-item return is present in each remanu-
facturing cycle, we consider Tk policy. Under Tg-policy, let us recall Property 3 and

then use (2.3) in conjunction with (2.2) so that we have

(a+7r) (% +1rTg)

Elh] < 2(a—r) (1+rTg)

(2.18)

Also, evaluating (2.7) and (2.8) we have

E UOYMR W(t)dt] - F { 0Y1 W(t)dt] +E UOTR W(t)dt] - H;RQ, and

E UOMTR N(t)dt] _F [ 0Y1 N(t)dt] +E [/OTR N(t)dt] —a (712 + TTR2) |

Using (2.10), it is then easy to verify that

— h(a+r) (& 47T, hr?Tg? 1 Tg K

TC(TR) _ (a’ T') (r r R) + 1R 4 wra S R " r
20a@—r)1+7rTg) 2(1+71Tg) 1+47rTkr \r? 2 1+ 7Tg
+ca+pla —1). (2.19)

It can be proved that (2.19) is a convex function of Tk, and its minimizer is given by

a2 wth
TR:\/2 +2K+(’“) 1 (2.20)

r2 wa + hr r
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Subsequently, the corresponding remanufacturing cycle length is

1 2 2K 4 (%)2uth
\/ Rl (2.21)

Tr+-=1/=
B 72 wa + hr

and substituting (2.20) in (2.19), one can compute TC(Tx) as an easily computable
proxy for the total cost which would otherwise require a computationally intensive

simulation approach, although in this case a convenient closed-form proxy does not

exist.
2.4.4  Cost Function under QQp-policy

When @p-policy is in effect, the cumulative demand in each remanufacturing
cycle is a constant with value (Qp but the remanufacturing cycle length is a random
variable denoted by Sg,,.

Under Qp-policy, let us recall Property 4 and then use (2.3) in conjunction with

(2.2) so that we have
(2.22)

Also, evaluating (2.7) and (2.8) we have

2a2 ’
Qp ] Qp Qp .

E [ wer W(t)dt] E [/SQD Ttdt] — CE [SC?QD} _ rQp(Qp + 1) and
0 0 2

S X | =Y B =Y L= @@ D)

, a 2a
=1

gl [ N = B
s

i=1 =1

Using (2.10), it is then easy to verify that

hr(a+r) n hr(Qp +1) n w(@p —1) + ak +ca+pla—r). (2.23)

TC(@Qp) = 2a(a — 1) 2a 2 Qp
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It can be shown that (2.23) is convex with respect to Qp, and its minimizer is given

by
20k (2.24)

w+ ht

O
S|
I

Substituting (2.24) in (2.23), we have
hr —wa
+ca+pla—r).

rlatr) + v/ 2(wa + hr)K + g
a

TC(Q) = 2a(a — 1)

Then, TC(Qp) provides an easily computable proxy in closed-form for the total

cost function which would otherwise require a computationally intensive simulation

approach.
After a closer examination of the impact of utilizing (2.22) in the right hand side

of (2.23) under Q) p-policy, it is easy to verify that Qp is independent of the first term
of (2.23). Hence, if one can identify the conditions under which E[I,,] ~ 0 then it

can easily be argued that QD is a superb near-optimal policy parameter under those

conditions. Observations 3 and 4 examine such conditions.

Observation 3 If r < a (v/17 — 3) /2 then E[[,] < 1.

The proof is straightforward and similar to the proof of Observation 1, and, hence,

it is omitted.
By Observation 3, when the return rate is less than (\/17 — 3) /2 times the de-

mand rate, the expected number of used-items in inventory at the end of each re-

manufacturing cycle is less than 1.

a—

Observation 4 If Qp > % then P(R, > Qp) =~ 0.
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Proof. Similar to the Proof of Observation 2, if the difference between (Qp and

E[R,] is more than three times the sum of their standard deviations, i.e.,

2
Qp—"90 3\/<TQD + 1 %D) (2.25)
a a a
then P(R, > Qp) ~ 0. Note that (2.25) is equivalent to Qp > %. O

By Observation 4, if the threshold value QQp in Q) p-policy is larger than g(z(f:r)’;),

then the probability that the number of returns generated, i.e., R,, exceed the num-
ber of demands received, i.e., p, in each remanufacturing cycle is approximately
Zero.

Finally, observe that under the potentially practical conditions of Observations 3
or 4, not only the unique minimizer Qp of the approximate cost function TC(Qp)
in (2.23) provides an effective parameter for the Q) p-policy but also the cost proxy

obtained by

hr —
V2(wa + hr) K + oo +ca+pla—r)

2

is a superb estimate of the ideal performance. This result can be easily verified by
utilizing the fact that E[I,] is negligible under the conditions of Observations 3 and
4 along with (2.9), (2.10), (2.23), and (2.24).

Now that we have established formal analytical conditions demonstrating the per-
formance of the approximation approach proposed here, we conclude with referring
the reader to the impressive numerical results in Section 2.6 where we examine the

performance when these conditions are violated.
2.4.5 Cost Function under QQgr-policy

When @) g-policy is in effect, the cumulative return in each remanufacturing cycle

is a constant with value (g but the remanufacturing cycle length is a random variable
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denoted by Zg,.
Under Qg-policy, let us recall Property 5 and then use (2.3) in conjunction with

(2.2) so that we have

Ell,] < E[Dni((fa_j;)p c?) _ 2((62—1-_7;)) g‘ (2.26)

Also, evaluating (2.7) and (2.8) we have

Z R i
E[ ¢ W(t)dt} = Qr(@r—1) and
0 2r
“en _aB[Z3,]  aQr(Qr+1)
E{ i N(t)dt} = 5 = 52 .
Using (2.10), it is then easy to verify that
__ h h —1 1 K
TC(Qr) = Q;L((Zj:)) + (QRQ ) 4 wa(%’:ﬁ U, Zg—R +ea+pla—r). (2.27)

It can be shown that (2.27) is convex with respect to Qg, and its minimizer is given

by

(2.28)

Substituting (2.28) in (2.27), we have

TC(Qr) = %—jg + v/ 2(wa + hr)K + %;h'r +ca+pla—r).

Then, W(Q r) provides an easily computable proxy for the total cost function which
would otherwise require a computationally intensive simulation approach.

After a closer examination of the impact of utilizing (2.26) in the right hand side
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of (2.27) under Qg-policy, it is easy to verify that Qp is independent of the first term
of (2.27). Hence, if one can identify the conditions under which E[I,] ~ 0 then it
can easily be argued that Q r is a superb near-optimal policy parameter under those

conditions. Observation 5 examines such conditions.
Observation 5 If Qr > % then P(Qr > D,) ~ 0.

The proof is straightforward and similar to the proof of Observation 4, and, hence,

it is omitted.

9a(a+r)
(a—r)2 *

By Observation 5, if the threshold value Q) in Qg-policy is larger than
then the probability that the number of returns generated, i.e., Qr, exceed the
number of demands received, i.e., D,,, in each remanufacturing cycle is approximately
equal to zero.

Finally, observe that under the potentially practical condition of Observation 5,
not only the unique minimizer Qx of the approximate cost function TC(Qg) in (2.27)
provides an effective parameter for the ()g-policy but also the cost proxy obtained
by

V2(wa + hr)K + wa = hr +ca+pla—r)

2r

is a superb estimate of the ideal performance. This result can be easily verified by
utilizing the fact that E[I,] is negligible under the condition of Observation 5 along
with (2.9), (2.10), (2.27), and (2.28).

Now that we have established formal analytical conditions demonstrating the
performance of the approximation approach proposed here, we conclude with re-
ferring the reader to the impressive numerical results in Section 2.6 examining the

performance when these conditions are violated.
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2.5 Comparisons and Insights

In this section, we provide an overview of our results for a comparative analysis.
To this end, Table 2.3 summarizes the results in Property 1 though Property 5.

Next, we summarize the exact and approximate cost functions for our five policies
in Table 2.4. The minimizers of the approximate cost functions in Table 2.4 are
summarized in Table 2.5. By comparing the results under our five policies, we have

some additional observations.

Observation 6 The expected optimal remanufacturing cycle length under Tg-
policy is longer than the expected optimal remanufacturing cycle length under Tp-

policy. That is, we have
« J 1
TR + - > TD + —.
r a
Observation 7 When w > h(1 — i—’”), the expected optimal remanufacturing
cycle length under Tr-policy is the shortest one among all the three periodic policies.
That is, we have
~ 1 ~ 1 ~
Tr+—->Tp+ - >Tk.
r a
Observation 8 The optimal threshold value Q r under Q) g-policy is smaller than
the approximate optimal threshold value Q p under @)p-policy, and they have the
following relationship:
~ r oA
&r=-Wp.
a
Observation 9 The expected optimal remanufacturing cycle length when @ p-
policy or ) g-policy is in effect is same as the expected optimal remanufacturing cycle

length under Tw-policy, i.e.,
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Table 2.5: Near-optimal policy parameter and expected cycle length.

Policy Policy Parameter Cycle Length

Tr — policy Tp = \/wf—fhr \/waQ—fhr
o | =2+ P2 M
Qp-policy | Qp = \/;iig wa2—4[—(hr
Qr-policy | Qr = \/;Tfh waz—fhr

Observations 6 to 9 can be obtained directly by checking the policy parameters
summarized in Table 2.5. By Observations 6 to 9, in general, the expected optimal
remanufacturing cycle lengthes under Tr-policy and threshold policies are the same.
Under Tp-policy, the expected optimal remanufacturing cycle length is longer, com-
pared with Tg-policy. The expected optimal remanufacturing cycle under Tg-policy
is even longer, compared with Tp-policy. That is because the remanufacturer needs
to wait at least one unit of demand arrives under Tp-policy, or to wait at least one
unit of return arrives under Txr-policy, which is not required in Tr-policy; and the
mean arrival time of the first return is longer than the mean arrival time of the first
demand, since the return rate is less than the demand rate.

The above four observations compared the expected optimal cycle lengthes under
different policies. The following observations investigate the dependence of policy

parameters in Table 2.5 on the model parameters.

Observation 10 All the policy parameters in Table 2.5, i.e., T, T, Tr, Qp

and (g, are increasing in K, whereas they are decreasing in w.
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Proof.  We only provide the proof for that Tg is decreasing in w, since the
other part of the observation is obvious by checking the expressions of the policy

parameters in Table 2.5.

- o4 (2)7 wth .
Since Tr = @/T% +A-— %, where A = ——=2—2—_that to prove Ty is decreasing

wa+hr

in w is equivalent to prove A is decreasing in w. This can be done by checking the

first derivative of A with respect to w:

0A  S(wa+hr)— 2K+ %(w+h))a —2Ka—2h(%-1)
w0 ] = " <0.
ow (wa + hr)? (wa + hr)?

Hence, A is decreasing in w, which indicates that Tr is decreasing in w. O

Observation 10 indicates that the remanufacturer needs to do remanufacturing
and then satisfies the cumulative demands less frequently as the fixed cost K in-
creases, whereas it needs to remanufacture and then satisfies the demands more
frequently as the waiting cost w increases. This is intuitive: when the fixed cost is
high, the remanufacturer needs to prolong the remanufacturing cycle, i.e., to keep
low processing frequency, in order to avoid high fixed cost; when the waiting cost is
high, the remanufacturer needs to shorten the remanufacturing cycle, i.e., to keep

high processing frequency, in order to reduce the total waiting time of the demands.

Observation 11 TF, TD, QD and QR are decreasing in h; Tr is decreasing in h

if 2K > 4 (2 — 1) w.

Proof. By checking the expressions of ’fp, TD, QD and QR in Table 2.5, it is
obvious that these policy parameters are decreasing in h. Thus we only need to check
the monotonicity of Tr in h, which is equivalent to check the monotonicity of A in

2 ()7 wth . . .
—wazm——- This can be done by checking the first derivative of A

h, where A =

49



with respective to h:

0A  H(wa+hr)— 2K+ &S(w+h))r  —2Kr+%w (2 -1)

h (wa + hr)? B (wa + hr)?

)

which is less than 0 if 2K > 5 (79 — 1) w. O

Observation 11 indicates that, in general, the remanufacturer needs to do reman-
ufacturing and then satisfies the cumulative demands more frequently as the holding
h increases. That means when the holding cost is high, the remanufacturer needs to
shorten the remanufacturing cycle, i.e., to keep high processing frequency, in order
to reduce the total inventory of used-items in each cycle, and thus to reduce the total

inventory holding cost.
Observation 12 For Tr-policy, Tp is decreasing in a and r.

This observation is obvious by checking the expression of Ty in Table 2.5, and hence,
the proof is omitted.

By Observations 9 and 12, the expected optimal cycle lengths under Q) p-policy
and Qgr-policy are also decreasing in a and r. This indicates that, under Tr-policy,
@ p-policy and Q) g-policy, the remanufacturer needs to do remanufacturing and then
satisfies the cumulative demands more frequently as the demand rate and/or the
return rate increase. This is because when the demand rate is high, the waiting cost
of the demands in each cycle is significant, and shorter cycle length helps to reduce
the total waiting time of the demands in each cycle, and hence, helps to reduce the
waiting cost. Similarly, when the return rate is high, the inventory cost of used-
items in each cycle is significant, and shorter cycle length helps to reduce the total

inventory of used-items, and hence, helps to reduce the inventory holding cost.

Observation 13 Under Tp-policy, T} is decreasing in 7.
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This observation is obvious by checking the expression of Tp in Table 2.5, and hence,
the proof is omitted.

Observations 13 indicates that the remanufacturer needs to shorten the remanu-
facturing cycle as the return rate increases. This is because when the return rate is
high, the inventory cost of used-items in each cycle is significant, and shorter cycle
length helps to reduce the total inventory of used-items, and hence, helps to reduce

the inventory holding cost.
Observation 14 Under Tg-policy, Tr is decreasing in a if 2K > % (1 + %)

Proof. 'That to check the monotonicity of Tk in a is equivalent to check the

2K+(%)2ﬁ

monotonicity of A in a, where A = —_5——_ This can be done by checking the

first derivative of A with respective to a:

0A wrh (wa + hr) — (2K + L (w+ h)) w _ —2Kuw + (wth)h

72 r

da (wa + hr)? ~ (wa+ hr)?

)

which is less than 0 if 2K > % (1 + %) O

Observations 14 indicates that, in general, the remanufacturer needs to shorten
the remanufacturing cycle as the demand rate increases. This is because when the
demand rate is high, the waiting cost of the demands in each cycle is significant, and
shorter cycle length helps to reduce the total waiting time of the demands in each

cycle, and hence, helps to reduce the waiting cost.

Observation 15 Under (Qp-policy, )p is decreasing in r, whereas it is increasing

in a.

Proof. By checking the expression of QD in Table 2.5, it is obvious that QD is

decreasing in r. To prove that QD is increasing in a, we only need to prove that
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wzjiffz is increasing in a. Let us denote w{‘:ﬁ by B, then we have
OB  4Ka(wa+ hr) —2Kwa*  2Kwa® + 4K har
oa (wa + hr)?  (wa+ hr)?
Hence, B is increasing in a, which indicates that Q p is increasing in a. O

Observations 15 indicates that the remanufacturer needs to decrease the threshold
value (Qp as the return rate increases. That means the remanufacturer will shorten
the remanufacturing cycle in order to reduce the inventory cost which is significant
when the return rate is high. Meanwhile, large demand rate means a large amount
of demand can be accumulated in a short time, and thus, the threshold value @p

can be large.

Observation 16 Under ()g-policy, Q r is decreasing in a, whereas it is increasing

in r.

The proof is similar with the proof of Observation 16, and hence, is omitted.
Observations 16 indicates that the remanufacturer needs to decrease the threshold
value Qi as the demand rate increases. That means the remanufacturer will shorten
the remanufacturing cycle in order to reduce the waiting cost which is significant
when the demand rate is high. Meanwhile, large return rate means a large amount
of returns can be accumulated in a short time, and thus, the threshold value Qg can

be large.
2.6 Numerical Experiments

A diligent numerical investigation demonstrates that although the difference be-
tween our approximate and exact cost functions can be substantial in some cases,
the use of the approximate policy parameters we propose would work well in prac-

tice. Hence, our contribution to the literature lies in providing a systematic and
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comprehensive analysis of cost performance of periodic and threshold policies for
the remanufacturer and determining analytically tractable and practically effective

approximate operating parameters.
2.6.1 Objective of Experimentation

Recall that the exact total cost function and the approximation on the total cost
function are denoted by TC(-) and TC(-), respectively, for policies characterized by
parameters Tr, Tp, T, Qp, and Qr. Also, we let T}, T}, T, Qp, and @} denote
the optimal values of these parameters, and recall that TF, TD, TR, QD, and QR
denote the near-optimal values of these parameters.

The goal of our numerical experimentation is two-fold. First, we want to assess the
quality of our approximations. To this end, we examine the performance implication
of using the approximation (the minimizer of which can be evaluated analytically)
rather than the exact function itself (the minimizer of which can only be evaluated
numerically) to specify the operating parameter of the system. For this purpose, we
use the following metric:

TC() —TC(™)
rees)

Second, we want to test the effectiveness of our approximation. To this end, we
examine the performance implication of using the minimizer of the approximation
(which can be evaluated analytically) as an approzimate minimizer for the exact cost
function. For this purpose, we use the following metric:

TC() -TC()
GO

It is possible to make a distinction between problem settings where our approxi-
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mation approaches would perform well or poorly. Specifically, we would expect our
approaches to perform well, when the contribution of the used-item inventory holding
costs to the total cost is negligible. For this to happen, one or more of the following
factors should be in effect: (i) the policy parameter (cycle length or threshold value)
is sufficiently large and a small change in the policy parameter does not lead to a
substantial change in the value of the total cost; (ii) the return rate is sufficiently low
in comparison to the demand rate and the initial inventory of returned used-items
is nearly zero in each remanufacturing cycle; (iii) the unit used-item inventory hold-
ing cost is sufficiently low and the used-item inventory holding cost accounts for a
small fraction of the total cost. In settings, where the contribution of the used-item
inventory holding cost to the total cost is much more substantial, we expect our ap-
proaches to perform poorly. Therefore, in choosing parameter sets for our numerical
experiments, we include a broad set of parameter values that would lead to settings

where our approximations would perform well or poorly.
2.6.2 Parameter Settings

In our experiments, we consider three levels for the demand rate a (50, 12, and
3), two levels for the fixed cost K (125 and 25), and two levels for the unit used-item
procurement cost p (10 and 80). To set the value of unit used-item inventory holding
cost, we use h = 0.10p. A careful examination of our analytical results show that
the optimal policy parameters depend on the ratios K/w and h/w. Hence, we fix
the unit customer waiting cost at w = 10. We also use a fixed value for the unit
reprocessing cost at ¢ = 20. For a given level of the demand rate, we specify the
return rate such that r = aa. For our numerical experiments, we consider four levels
of a (0.1, 0.2, 0.4, 0.8). As a result, we consider a total of 48 problem instances and

analyze each instance under each of the five policies.
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2.6.3 FEzxperimentation

Given a problem instance and a particular policy, we first obtain the optimal pol-
icy parameter using simulation as follows. We generate return and demand amounts
independently for 10,000 consecutive remanufacturing cycles and determine the used-
item purchase quantities for each of the remanufacturing cycles. Since our analysis
is based on the assumption that the system reaches steady state, we discard the
data that correspond to the first 50,000 remanufacturing cycles as warm-up and use
the data from the remaining 50,000 remanufacturing cycles to evaluate the long-run
average expected total cost. We begin by verifying the convexity of the cost function
using a plot over the search region. Using the plot, we reduce the length of the search
region and step size until we determine the optimal value of the minimizer for the
exact cost function for the policy. We then determine optimal value of the minimizer

of the approximation for the policy and evaluate the performance metrics.
2.6.4 Quality of the Bounds

In Tables 2.6 and 2.7, we report the average-case and worst-case performance for
the quality of our bounds. In particular, the value reported in each cell of Table 2.6
(Table 2.7) is the average (maximum) value for the performance metric that we use to
assess the quality of the bounds over 12 instances considered for the corresponding
level of @ when a particular policy is in effect. The cells in the last row of these
Tables report the average (maximum) values for the performance metric over all of
the problem instances considered.

Based on the results summarized in Tables 2.6 and 2.7, we can make a number
of observations on the quality of our approximations . First and foremost, it can be
observed that our approximations perform well on average under all of the policies.

For each of the policies, the performance deteriorates as the ratio of the return rate to
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Table 2.6: Quality of the approximations (2.12) for Tg-policy, (2.15) for Tp-policy,
(2.19) for Tgr-policy, (2.23) for Qp-policy, and (2.27) for Qg-policy: Average-case

performance.
« Tr-policy | Tp-policy | Tr-policy || Qp-policy | Qr-policy
0.1 0.42 0.37 2.17 0.03 2.86
0.2 0.53 0.49 1.52 0.11 2.08
0.4 0.83 0.87 1.50 0.30 1.79
0.8 2.01 4.00 4.52 1.32 2.60
Overall 0.95 1.43 2.43 0.46 2.33

Table 2.7: Quality of the approximations (2.12) for Tg-policy, (2.15) for Tp-policy,
(2.19) for Tr-policy, (2.23) for Qp-policy, and (2.27) for Qg-policy: Worst-case per-

formance.
« Tr-policy | Tp-policy | Tr-policy || Qp-policy | Qg-policy
0.1 1.50 1.24 8.12 0.12 11.22
0.2 1.89 1.66 6.23 0.35 8.07
0.4 2.87 3.08 6.39 1.09 6.53
0.8 6.34 15.42 18.29 4.26 8.10
Overall 6.34 15.42 18.29 4.26 8.10

the demand rate increases. This is not surprising. A higher return rate increases the
probability of having initial used-item inventory, which, in turn, might have a notable
impact on the expected inventory carrying cost. Consequently, the deviation between
the approximation and the exact cost function increases, reducing the quality of our
approximations . Furthermore, among the periodic policies, the approximation for
Tr-policy exhibits the best average- and worst-case performance. Between the two
threshold policies, the approximation for () p-policy performs better than the one for
@ r-policy both in terms of average- and worst-case performance. Last but not least,

the best threshold policy, i.e., () p-policy, is better than the best periodic policy, i.e.,

Tr-policy, in terms of both the average- and worst-case performance.
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We also observe that return-based policies perform worse than their demand-
based counterparts both for periodic and threshold policies. This, in fact, is not
surprising as it is a result of our approximation approach: The approximations of the
initial used-item inventory for demand-driven policies is influenced by the ratio r/a,
whereas for return-driven polices, the approximations are influenced by a/r. Since

r < a, the demand-driven policies lend themselves into tighter approximations.
2.6.5 Effectiveness of the Bounds

Our numerical results summarized in Tables 2.8 and provide some convincing
evidence on the practical relevance of our approximations . As before, the value
reported in each cell of Table 2.8 (Table 2.9) is the average (maximum) value for the
performance metric that we use to assess the effectiveness of the approximations over
12 instances considered for the corresponding level of o when a particular policy is

in effect.

Table 2.8: Effectiveness of the approximations (2.12) for Tr-policy, (2.15) for Tp-
policy, (2.19) for Tr-policy, (2.23) for Qp-policy, and (2.27) for Qg-policy: Average-
case performance.

« Tr-policy | Tp-policy | Tr-policy || Qp-policy | Qg-policy
0.1 0.00 0.00 0.05 0.00 0.00
0.2 0.00 0.00 0.03 0.00 0.01
0.4 0.01 0.00 0.01 0.00 0.00
0.8 0.13 0.06 0.05 0.01 0.08
Overall 0.04 0.02 0.04 0.00 0.02

Recall that this performance metric quantifies the benefit of using the approx-
imation as an approximate minimizer for the exact cost function itself. By Tables

2.8 and , it can be observed that both the average- and worst-case results are within
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Table 2.9: Effectiveness of the approximations (2.12) for Tr-policy, (2.15) for Tp-
policy, (2.19) for Tg-policy, (2.23) for @ p-policy, and (2.27) for Q g-policy: Worst-case
performance.

« Tr-policy | Tp-policy | Tr-policy || Qp-policy | Qr-policy
0.1 0.00 0.01 0.38 0.00 0.00
0.2 0.02 0.01 0.23 0.00 0.17
0.4 0.05 0.02 0.09 0.01 0.00
0.8 0.97 0.43 0.30 0.06 0.90
Overall 0.97 0.43 0.38 0.06 0.90

1%, i.e., if the minimizer of the approximations were to be used as the approximate
policy parameter, the deviation in the exact total cost function would not be larger
than 1% in the worst case across all test parameters and under any of the policies we
consider. Consequently, the minimizers of the approximations that can be obtained
numerically can be used as high-quality approximate minimizers of the exact total

cost functions for each of the corresponding policies.
2.7 The Case Where r > a

In previous sections, by using Kingman’s approximation in (2.2), we analyze the
case where r < a. Now, let us turn our attention to the case where » > a. Obviously,
we need to avoid excessive amount of used-items by considering the disposal option
explicitly. For this reason, we need to extend the definitions of the five policies. To
this end, we introduce a new parameter U for incorporating the disposal option, and

our five new policies are:
e Tr (fixed period) with disposal option: decision is (Tr, Urr);
e Tp (demand-driven periodic) with disposal option: decision is (T, Urp);

e Ty (return-driven periodic) with disposal option: decision is (T, Urg);
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e ()p (demand-driven threshold) with disposal option: decision is (Qp, Ugp);
e (Qr (return-driven threshold) with disposal option: decision is (Qr, Ugr)-

We denote I! as the used-item inventory level at the end of the ny, remanufac-
turing cycle after disposal, to differentiate it with 7,. B! denotes the spot market
procurement quantity associated with remanufacturing cycle n, to be differentiated
with B,,.

The sequence of events for remanufacturing cycle n is as follows:

e the remanufacturer measures the initial inventory of used-items, which is the
inventory of used-items at the end of the n — 1st remanufacturing cycle after

disposal, which is denoted by I]_;

e the remanufacturer consolidates returns during cycle n, and the return amount

is denoted by R,;

e the remanufacturer observes the demand in cycle n, and the demand received

is denoted by D,,;

e a batch processing is triggered according to the policy of interest, and all the

demand D,, are cleared:

— if the used-item inventory before batch processing, i.e., I/,

_1+R,, is larger
than or equal to D, then after the batch run, I],_, + R, — D,, units of

used-items are left:
x if I _,+ R, — D, is above U, then the remanufacturer disposes I],_, +
R, — D,,— U units, and keeps U units of used-items to the next cycle,

% otherwise, the remanufacturer keeps I/ | + R,, — D,, units of used-

items to the next cycle;

59



— if I!_,+ R, is less than D,,, the remanufacturer purchases D,,—(I! ;+R,,)
units of used-items from the spot market, and clears all the demand with
the used-items on hand as well as the used-items purchased from the spot

market.

Thus, the used-item inventory at the end of remanufacturing cycle n after dis-

posal, i.e., I' is given by:

min{U, I, + R, — D,}, D, <I, |+ R,,
I = (2.29)
0, D, >1 |+ R,.
and the procurement from spot market in remanufacturing cycle n, denoted by B!,
is given by:
0, D, <1, ,+ Ry,

B, =max{0,D, — (I,_, + R,)} = (2.30)
I' \+R,—D,, D,>1I |, +R,.

From (2.29) and (2.30), we know that the exact analytical closed-form expressions
of E[I] and E[B] are hard to obtain, if not impossible, because of the underliniing
G/G/1 queue being controlled by two policy parameters under the new five policies.
The exact analytical closed-form expression for the expected disposal amount in
remanufacturing cycle n, which is given by E[(I! _; + R, — D,, — U)¥], is also hard
to derive.

All the cost components are the same as stated in Section 2.4, except the disposal
cost incurred under the new policies. By using E[I] and E[B]], and considering the

disposal cost, the long-run average expected total cost function under our new policies
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are given by:

| WE [fOCL(~) W(t)dt] wk UOCL(.) N(t)dt} K

TC(-) = hE[L]+ E[CL()] + E[CL(")] - E[CL(")]
ELD.) | pE[B,] | B+ B =Du=U)] o)
E[CL()] | EICL() BICL() -

where I and B/, are given by (2.29) and (2.30), respectively. Note that, in (2.31),
except the first item and the last two items, all the other items are same as in (2.9).
Let us recall Property 1 to Property 5, and then use the results for (2.7) and (2.8)
in Section 2.4, so that we can obtain the cost functions under the five new policies

which are respectively given by
e T'r-policy with disposal option:

hrlTr  walyr K

TC(TF, UTF) = hE[Ir/L] + + + — +ca
2 2 Tr
pE[B;] CdE[(‘['r/L—l + R, — D, — U)ﬂ
X 2.32
e T . (232)
e T'p-policy with disposal option:
TO(Tp. Urp) = hE[] + hra 1 Tp? N waTH? N aK
Py Erb " 1 aTp \a2 2 2(1+aTp)  1+alp
apE[B!]  ac’E[(I,_,+ R, — D, —U)"]
;o (2.33
+ca+1+aTD+ 1T aTy ; (2.33)
e Tr-policy with disposal option:
TC(Th.Ure) = hE[I'] + hr?Tg? wra 1 +TR2 N rK
B B TR) 20+ rTR) 14 0rTg \r? 2 1+ rTr
E[B! AE[(I R,—D,—-U)"

147rTg 1+7Tg
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e (Qp-policy with disposal option:

w(QD — 1) i h?“(QD + 1) akK

T = hE[I —_—
C(Qp, UQD) '] + 2 % + Op + ca
E[B’ BT R,— D, -U)"
Op @p
e (Qr-policy with disposal option:
1 h —1 K
TC(QnUon) = hE[r]+ 2@t  hQe=b) rK
2r 2 Qr
! IR R,—D,—-U)"
Qr Qr

We let (T3, Usp), (T, Usp), (T Usp), (@b, Upp) and (Q, Upp) denote the
minimizers of the above five cost functions, respectively. Since the analytical closed-
form expressions of E[I]], E[B]] and the expected disposal amount are hard to
obtain, equations (2.32) to (2.36) cannot be minimized analytically. Thus, we find
approximations for the cost functions, and use the minimizers of those approximate
cost functions as approximations for optimal policy parameters. For this purpose, we
propose three approximation approaches: (1) myopic approximation; (2) simulation-
based approach and (3) parameter-based approximation. We will explain these three
approaches in details in the following. Also we will check the performance of each

approximation approach numerically.
2.7.1 Muyopic Approximation

The myopic approximation is intuitive and easy to implement. We let U = 0,
which means that all the extra used-items are disposed. It is intuitive because that
when r > a, there is a high chance that the return amount is larger than the demand

amount in each cycle. By (2.29) and (2.30), it is easy to verify that I/ _, = I/ =0,
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B =(D,—R,)",and (I, +R,—D,—U)" = (R, — D,)", given U = 0. Since
r > a, we roughly assume that E[B]]| ~ 0 and E[(R, — D,)*] = (r — a)E[CL(-)].
Then we can obtain the approximate function for (2.31), denoted by ﬁ(m)(-), which

are given by:

hE [ JieHO W(t)dt} wE [ [EH0 N(t)dt]

0

(m)
™) = + (2.37)
E[CL(")] E[CL(")]
+ K + cED] +c(r —a)
EICL()]  E[CL()] '
Then, (2.32) to (2.36) can be approximated by the following equations:
=~ (m hrT, T K
TC" (Tp, Urp) = L4258 L 2 4 it dl(r —a), (2.38)
2 2 Tr
——(m) hra 1 Tp? waTp? ak
TC"™(T - —
¢ (To, Urp) 1+ alp (a2 L 21 +aTy)  1+dlp
+ca + c*(r — a), (2.39)
——(m) hr?Tg? wra 1 T rkK
T T = —
CTlmr) = gy T T 2 T2 ) T T
tca+ (r — a), (2.40)
A (m) w@p—1)  h(@+1) aK
TC U = —
(@b, Ugp) st Yo,
tca+ c(r—a), and (2.41)
() wa(@r+1)  h(Qr—-1) 1K
TC U = —
(@r, Ugr) o + 5 + Or
+ca + c(r — a), (2.42)

respectively.
Compare equations (2.38) to (2.42) with equations in the last column in Table 2.4,
respectively, we observe that the difference is just constant. Due to the similarity,

the minimizers of (2.38) to (2.42) are given by Tr, Tp, Tr, Qp and Qp, respectively,
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which are the minimizers of the approximate cost functions in previous situation
and are summarized in Table 2.5. Thus, using myopic approximation approach, the
approximations for optimal policy parameters under the five new policies are given
by (TF,O), (TD,O), (TR,O), (QD, 0) and (QR,O), respectively, where T, Tp, Tr, Qp
and QR are as in Table 2.5. The myopic approximations for the optimal policy

parameters under the five new policies are summarized in Table 2.10.

Table 2.10: Myopic approximations for optimal policy parameters.

Policy Policy Parameters

PO 2K
Tr-policy with disposal option | (T, Urg) = ( _—, 0),

o : S~ op 2 2K —uth
Tp-policy with disposal option | (Tp, Urp) = -+ —"= =0

2
o ) 2K + ()7 wth 1
Tr-policy with disposal option | (T, Urg) = (\/— + (T) e — -0

Qr-policy with disposal option | (Qgr,Ugr) =

Q p-policy with disposal option (QD, UQD) = (

The myopic approximation actually implies that the remanufacturer disposes all
extra used-items at the end of each remanufacturing cycle, i.e., U = 0. Meanwhile,
T ja TD, TR, QD and QR are used as approximations for the optimal values of T,
Tp, Tr, Qp and Qpg, respectively. Next, we will check numerically whether this
approximation approach works well, i.e., whether (fp,()), (TD,O), (TR,O), (QD,O)

and (Qg,0) can be used as approximations for (T, Usy), (T%,Usp), (T, Usp),
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(Q@p,Ujp) and (Qg, , Upg), respectively. For this purpose, we consider six levels of
a (1.0, 1.2, 1.4, 1.6, 1.8, 2.0) and use the same parameter settings in Section 2.6.
Currently, we let ¢? = 0, and check the following metric for each instance

TC(H0)=TC(-*, )

This performance metric quantifies the benefit of using the minimizers of those
approximate cost functions as approximations for optimal policy parameters. By
Table 2.11, it can be observed that the average-case results are within 5%. By Table
2.12, the worst-case results are within 30%. Based on the results in Tables 2.11
and 2.12, we can conclude that the performance getting better as the ratio of the
return rate to the demand rate increases, when the disposal cost is zero. This is not
surprising. A higher return rate decreases the probability of needing procurement

from the spot market. Thus, there is no need to keep left-over used-items.

Table 2.11: Effectiveness of the myopic approximation: Average-case performance.

« Tr with dis. | Tp with dis. | Tk with dis. || Qp with dis. | Qg with dis.
1 9.43% 9.62% 9.2% 9.18% 8.36%
1.2 6.35% 6.491% 5.93% 6.25% 4.55%
1.4 3.6% 3.74% 3.36% 4.241% 2.03%
1.6 2.09% 2.34% 1.91% 2.48% 0.65%
1.8 1.27% 1.37% 1.10% 1.85% 0.34%
2 0.81% 1.01 0.56% 1.27% 0.22%
Overall 3.92% 4.09% 3.68% 4.26% 2.69%

A careful examination of the data sets reveals that the worst case for each «
value happens when the shortage cost, i.e., unit purchase cost of used-item, has

major impacts on the total cost. That is in the case that the fixed cost K is low, and
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Table 2.12: Effectiveness of the myopic approximation: Worst-case performance.

« Tr with dis. | Tp with dis. | T with dis. || Qp with dis. | Qg with dis.
1 29.43% 29.85% 29.36% 28.51% 28.86%
1.2 21.88% 21.47% 19.88% 21.22% 17.01%
1.4 13.83% 14.9% 13.54% 14.95% 9.47%
1.6 8.98% 10.46% 8.42% 9.92% 3.63%
1.8 7.29% 7.07% 5.52% 9.64% 1.89%
2 4.5 % 6.78% 3.02% 7.05% 1.69%
Overall 29.43 % 29.85% 29.36% 28.51% 28.86%

the purchase price p of use-item is high. Then, setting U = 0 implies high chance of
stocking out, especially for the case that a is not large. Thus, under the situation
that the shortage cost has major impacts, the dispose-all policy might result high

cost for small «.

2.7.2  Simulation-based Approach

The above section proposed a myopic approximation that assuming U = 0. The
numerical results show that this approximation approach does not work well in gen-
eral, especially in the situation that the ratio of the return rate to the demand rate is
not large enough. Next we will provide an accurate approximation approach which
is based on computationally intensive simulations.

We will take advantage of the results obtained previously. To be more specific,
we will still use TF, TD, TR, QD and QR in Table 2.5, as approximations for 1%, T},
T}, Qp and QF, respectively. Then, we search for the minimizer of the approximate
cost function, which can be used as the approximation for the optimal U, numeri-
cally. Thus, using simulation-based approach, the approximations for optimal policy
parameters under the five new policies are given by (Tw, U*(Tr)), (Tp,U*(Tp)),

(Tr, U*(TR)), (Qp,U*(Qp)) and (Qr, U*(Qr)), respectively, where Tr, Tp, Tr, Qb
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and Qp are as in Table 2.5, and U*(%) can be obtained numerically. U*(%) is the
approximation for the optimal U for the given fF, TD, TR, QD or QR value. We
will check the following metric to evaluate the effectiveness of this approximation
approach:

TCCU () =TC(, )
TC(+, ) |

The numerical results are summarized in Table 2.13 and Table 2.14 (we use the same
parameter settings as in Myopic approximation approach). By Table 2.13, it can
be observed that the average-case results are within 0.5%. By Table 2.14, it can
be observed that the worst-case results are within 3%. The numerical investigation
demonstrates that this approximation approach works well in general for our new

policies when the disposal cost is zero.

Table 2.13: Effectiveness of the simulation-based approximation: Average-case per-

formance.

«Q Tr with dis. | Tp with dis. | T with dis. || @p with dis. | Qr with dis.
1 0.27% 0.12% 0.17% 0.02% 0%
1.2 0.16% 0.22% 0.16% 0% 0.04%
1.4 0.22% 0.2% 0.26% 0.04% 0.05%
1.6 0.25% 0.3% 0.24% 0.04% 0.04%
1.8 0.22% 0.3% 0.23% 0.01% 0.12%
2 0.27% 0.37 0.22% 0.02% 0.23%

Overall 0.23% 0.25% 0.21% 0.02% 0.08%

2.7.83 Parameter-based Approzimation

The above two sections proposed two approximation approaches for estimating

the total cost functions under our five new policies. The myopic approximation is
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Table 2.14: Effectiveness of the simulation-based approximation: Worst-case perfor-

mance.
« Tr with dis. | Tp with dis. | T with dis. || Qp with dis. | Qr with dis.
1 1.01% 0.59% 0.62% 0.3% 0%
1.2 0.6% 0.99% 0.74% 0% 0.19%
14 0.99% 0.73% 1.11% 0.18% 0.25%
1.6 0.9% 1.16% 0.78% 0.22% 0.21%
1.8 0.91% 1.55% 1.14% 0.05% 0.76%
2 1.6 % 2.37% 0.91% 0.15% 1.83%
Overall 1.6 % 2.37% 1.14% 0.3% 1.83%

easy to implement, but is not accurate in general. The simulation approach can
guarantee the accuracy, but is computationally intensive. In this section we will
propose a parameter-based approximation approach which can provide easy ways to
compute the approximations for the optimal policy parameters while guarantee the
accuracy in general.

If we assume I/ = U, and solve B! from (2.30), then we have B/, = max{0, D,, —
R, — U}. The disposal amount in remanufacturing cycle n is given by (U + R,, —
D, —U)" = (R, — D,)". Recalling Properties 1 to 5, if we use Normal distributions
to approximate the Poisson distributions for D,, and R,,, then D, — R,, is also normal

distributed. For each policy we can approximate D, — R,, as follows:

e Tr-policy with disposal option:
D, — R, ~ Norm ((a —1)Tp,\/(a+ T)TF) : (2.43)

e T'p-policy with disposal option:

2
D,, — R, ~ Norm <(a—7“)TD+1—f,\/(a+7‘)TD+f+r—2>; (2.44)
a a a
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e Tr-policy with disposal option:

2
D, — R, ~ Norm ((a—T)TR—l—I—E,\/(a+T)TR+E+a—2>; (2.45)
r roor

e (Qp-policy with disposal option:

Dn—Ranorm<<1——>QD,\/(a+¥

e (p-policy with disposal option:

2
Dy — R, ~ Norm ((g - 1) Ox, \/G + :f—Q) QR> . (2.47)

We denote the CDFs of (D, — R,,) by Frr(-), Frp(), Frr(:), Fop(), and For(+),

| =
<

Do

N——
O
»l

~_—
o
N
=

respectively for the five policies. The corresponding pdfs are denoted by frg(-),

fro(-), fre(-), fop(:), and for(-), respectively. Then we have

E[Bl] = /Uoo(x—U)fi(x)dx, i € {TF,TD,TR,QD,QR}, and  (2.48)
0

E[(R, — D)) = / —2fix)dz, i€ {TF,TD,TR,QD,QR}.  (2.49)

—0o0

Substituting I/, = U, (2.48), and (2.49) in cost functions (2.32) to (2.36), we obtain

the following approximations for (2.32) to (2.36) respectively:

— hrT T, K
TC(p)(TF,UTF) = w4+ TR 2
2 2 TF
“(x — c? —x )dx
+pr (z = U)frr(z f frr(x (2.50)
TF TF
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— h 1 Tp? 272
TP (Tp, Upp) — hU + —C (@+ 2 )+2“’“ D (2.51)

14+ aTp 2 (1+aTp)
K s (x—=U d
L_a Ceas ap [;; (x ) fro(z)ds
1 + CLTD 1 + CLTD
acdf —JIfTD dac
1 + CLTD 7
——(p) hT’2TRQ wra 1 TR2
T T = h — 4+ — 2.52
¢ (Tr, Urr) U+2(1+TTR)+1+7’TR 2 (2:52)
K s (x—=U d
N r + ot Tpr (z ) frr(r)dr
14+ 7Tk 1+ 7Tk
TCdf _IfTR d
1 + T‘TR ’
_ -1 h +1 K
To(p)(QD7 UQD) = hU + w(Q[; ) + T(QQJZL ) + ZQ_D + ca (2-53)
Xy — acd — x
+ap fU (.CL' )fQD f fQD ) ’ and
QD QD
__ 1 h —1 K
TC(Qr,Ugr) = hU + w“(%i )y (QF; ), 22—3 +ca (2.54)
P Ji (@ =U) for(x)dx "’Cdf —zfor(x
QR QR

By (2.50) to (2.54), it can be easily proved that: for any given T, ﬁ(p)(Tp, Urr)
is convex in U; for any given Tp, ﬁ(p)(TD, Urp) is convex in U; for any given Tk,
T_C’(p)(TR, Urr) is convex in U; for any given Qp, ﬁ(p)(QD, Ugp) is convex in U;
and for any given Qg, W(p)(QR, Ugr) is convex in U. Therefore, we use Tr, Tp, Th,
QD and Qp in Table 2.5, as approximations for Ty, T, T, Qp and QF, respectively,
and approximate the optimal U value by setting the first derivative of the above five
cost functions with respect to U equal to zero. Then we obtain the approximation

for the optimal U as follows:
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Tr-policy with disposal option:

Urp = Frz (1 — T) ; (2.55)

Tp-policy with disposal option:

~ _ h(l + CLTD>
Ump=F1-—"]; 2.56
TD TD ( aP ) ( )
e T'p-policy with disposal option:
. ~ h(1+rTg)
Up=Frp|1-——; 2.57
TR T < rP ) ( )
e ()p-policy with disposal option:
. _ hQp
Uop = Fyp (1 - F) ; (2.58)
e (g-policy with disposal option:
. - hQr
Uor=Fop[1- : 2.59
QR QR < rP ) ( )

By (2.55) to (2.59), together with (2.43) to (2.47), we can obtain U values which
can be used as approximations for the real optimal U values, i.e., U*. Thus, using
parameter-based approach, the approximations for optimal policy parameters under
the five new policies are given by (TF, UTF), (TD,UTD), (TR, UTR), (QD, UQD) and
(QR,UQR), respectively, where Tr, Tp, Tr, Qp and Qg are as in Table 2.5, and

UTF, UTD, UTR, UQD and UQR are given by (2.55) to (2.59), respectively. The
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parameter-based approximations for the optimal policy parameters under the five

new policies are summarized in Table 2.15. Next we will check the effectiveness of

Table 2.15: Parameter-based approximations for optimal policy parameters.

Policy Policy Parameters

L [ 2K T,
Tg-policy with disposal option | (Tg,Urr) = ( P Frt (1 — PF>>
wa + hr

o 2 2K -—uthg h(1 + aT;
Tp-policy with disposal option | (Tp,Urp) = (\/2 +—a — —F} <1 _ h(1 +alb)

a wa + hr a aP
2 ~
. 2 2K + (%) et g h(1 4T,
Tr-policy with disposal option | (T, Urg) = (\/2 + % — = Fpl1- #
r wa r r T

Qr-policy with disposal option | (Qr,Ugr) =

- 20K hQ
Qp-policy with disposal option | ((p,Ugp) = (\/w i hr’ Fé}) (1 - ;QPD)>

2rKk hQr
\/T+lz’FQR <1_ rP ))

this approximation using the following metric

TC’(?7 T) _ TC'(.*7 *)
TC(+, =) :

The results are summarized in Tables 2.16 and 2.17 (we use the same parameter
settings as in Myopic approximation approach). By Table 2.16, it can be observed
that the average-case results are within 1%. By Table 2.17, it can be observed
that the worst cases are around 5% over all policies. Thus, we can conclude that
the parameter-based approximation works well in general when the disposal cost
is zero. Recall that Tp, T}g, TR, QD and QR are as in Table 3, and Ui, where
i € {TF, TD,TR,QQD,QR}, can be obtained by using (2.55) to (2.59). Thus, this
approximation approach is easy to implement and well-performed in the sense of

providing accurate policy parameters.
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Table 2.16: Effectiveness of parameter-based approximation :

Average-case perfor-

mance.
« Tr with dis. | Tp with dis. | T with dis. || Qp with dis. | Qr with dis.

1 1.11% 0.99% 0.99% 0.9% 0.78%

1.2 0.31% 0.36% 0.27% 0.06% 0.22%

1.4 0.27% 0.23% 0.29% 0.11% 0.13%

1.6 0.27% 0.45% 0.28% 0.26% 0.12%

1.8 0.22% 0.53% 0.27% 0.45% 0.12%

2 0.33% 0.48% 0.38% 0.58% 0.26%

Overall 0.42% 0.5 % 0.41% 0.39% 0.27%

Table 2.17: Effectiveness of parameter-based approximation:

Worst-case perfor-

mance.
« Tr with dis. | Tp with dis. | T with dis. || Qp with dis. | Qr with dis.

1 4.45% 4.89% 5.27% 4.72% 4.47%

1.2 1.08% 0.99% 0.83% 0.37% 1.12%

1.4 0.99% 0.73% 1.14% 0.45% 0.71%

1.6 0.9% 2.14% 0.78% 0.77% 0.86%

1.8 0.91% 3.85% 1.41% 1.19% 0.76%

2 1.97 % 2.89% 2.42% 2.21% 2.19%

Overall 4.45 % 4.89% 5.27% 4.72% 4.47%
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All the above numerical results are assuming zero disposal cost, and in this sit-
uation we showed that parameter-based approximation is easy to implement and
works well in general. Next we will verify the effectiveness of the parameter-based
approach considering positive disposal cost explicitly. We consider two levels of the
unit disposal cost for a given level of used-item inventory holding cost: ¢4 = 1.5h and
c¢q = 3h. The numerical results with positive disposal cost are summarized in Ta-
bles 2.18 and 2.19. It can be observed that the average-case results are within 1.7%
and the worst cases are around 7.6% over all policies. Thus, the parameter-based

approximation still works well with positive disposal cost.

Table 2.18: Effectiveness of parameter-based approximation considering positive dis-
posal cost: Average-case performance.

« Tr with dis. | Tp with dis. | Tk with dis. || Qp with dis. | Qg with dis.
1 1.6% 1.63% 1.57% 1.44% 1.36%
1.2 0.49% 0.51% 0.44% 0.15% 0.32%
1.4 0.28% 0.2% 0.23% 0.04% 0.14%
1.6 0.28% 0.33% 0.22% 0.1% 0.07%
1.8 0.2% 0.38% 0.18% 0.2% 0.12%
2 0.22% 0.35% 0.24% 0.3% 0.17%
Overall 0.51% 0.57 % 0.48% 0.37% 0.36%

2.8 Conclusions

In this section, considering a fundamental inventory and production planning
problem characterized by a batch processing environment with stochastic demands
and stochastic returns along with fixed operational costs and disposal opportunities,
we propose a comprehensive set of periodic and threshold batching policies.

We aim to derive analytical expressions for the long-run average expected total

cost functions under the proposed policies to determine the optimal policy parame-
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Table 2.19: Effectiveness of parameter-based approximation considering positive dis-
posal cost: Worst-case performance.

« Tr with dis. | Tp with dis. | Tk with dis. || Qp with dis. | Qg with dis.

1 7.47% 7.19% 7.63% 7.03% 7.16%

1.2 2.31% 1.99% 1.98% 1.12% 2.13%

1.4 1% 0.89% 0.75% 0.21% 0.52%

1.6 1.13% 1.5% 0.93% 0.45% 0.4%

1.8 0.77% 2.55% 0.74% 0.7% 0.68%

2 1.31 % 2.05% 1.53% 1.31% 1.62%
Overall 747 % 7.19% 7.63% 7.03% 7.16%

ters. We demonstrate that the mismatch of the return and the demand leads to the
fundamental difficulty in obtaining exact closed-form expressions of the cost func-
tions. Therefore, we develop analytically tractable approximations, and we report
numerical results demonstrating the quality and effectiveness of these approxima-
tions. Last by not least, we observe that the demand-driven threshold policy per-
forms the best on the average in term of the resulting expected cost for the case
when the return rate is less than the demand rate.

For the case when the return rate exceeds the demand rate so that we execute the
disposal option, the relative cost performances of the alternative batching policies
considered depend on the approximation approach associated with the disposal de-
cision. More specifically, when we use the myopic approach for the disposal decision,
the return-driven threshold policy is superior on the average in terms of the resulting
expected cost; when we use the simulation-based approach for the disposal decision,
the demand-driven threshold policy is superior; and when we use the parameter-based
approach for the disposal decision, the return-driven threshold policy is superior.

An important extension of our work should explore the potential benefit of build-

ing a reprocessed device buffer in the system to reduce the impact of customer waiting
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costs for settings where this cost can be substantial. Clearly, this extension requires a
thorough investigation of a two stock-point system, where both returned used-items
and remanufactured-items can be kept in inventory. Another important extension is
to investigate the structure of the exact optimal batching policies using stochastic
dynamic programming or Markov decision processes. Other interesting extensions
include explicit modeling of multiple decentralized agents, e.g., remanufacturer, col-

lection center, and retailer and /or considering more general return process.
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3. SEED STOCK PLANNING STRATEGIES WITH MULTIPLE AGENTS

3.1 Overview of Section 3

We consider a basic game-theoretic setting for the seed stock planning problem
in remanufacturing. The problem can be characterized as a finite horizon inventory
control problem with multiple agents including an OEM, a NPS, and a RS. The
OEM provides a particular type of replacement part for a product it sells. The
demand of the replacement parts throughout the whole planning horizon T' can be
satisfied by using new-items procured from the NPS at the beginning of 7', as well as
remanufactured-items provided by the RS until the end of 7. The initial inventory,
i.e., seed stock, is treated as an operational decision variable along with other decision
variables. Since only a fraction of used-items can be remanufactured, seed stock is
crucial to guarantee enough supply of used-items for remanufacturing as well as to
satisfy the demand during the initial phase of the planning horizon. The objective is
to maximize the total profit by optimizing the seed stock level of new-items, initial
lot size and exchange lot size of used-items. Seed stock optimization may or may
not be controlled by the OEM due to the interactions between multiple agents. We
investigate three scenarios and two types of controls, leading to several different
system settings. We are interested in the interactions between the agents, and the
impacts of the interactions on strategy performance. We aim to identify the system

setting that performs best through our analytical models and numerical experiments.
3.2 Problem Motivations and Related Literature

As noted above, we consider a basic game-theoretic setting for seed stock plan-
ning problem in remanufacturing with multiple agents including an OEM, a NPS,

and a RS. In automotive industry and electronic industry, the OEM often establishes
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remanufacturing programs to recover used products. Kodak’s remanufacturing pro-
gram for single-use-cameras is successful, and Xerox recycles and remanufactures
photocopiers and print toner cartridges (Daniel et al. (2002)). Cell phone companies
often establish remanufacturing programs to recycle used phones and re-market the
remanufactured products. As noted by Akcali and Morse (2004), to initiate the re-
manufacturing, the OEM needs to collect a certain amount of used-items, and these
used-items are from the returns of previously sold new products. Akcali and Morse
(2004) define the amount of new products released as the seed stock.

Considering the practical importance of seed stock planning, we focus on a new
seeding problem, i.e., the problem of determining the optimal seed stock level for the
OEM with explicitly modeling the NPS and RS. The goal is to analyze multi-agent
model with seed stock planning by applying game theory. First we look at determin-
istic environment for the sake of characterizing the fundamental coordination issues
arising in the forward (new-items) and reverse (used-items) flows.

The problem studied in the current section is related to the previous research in
deterministic lot sizing models in remanufacturing (Schrady (1967); Teunter (2001);
Dobos and Richter (2004); Atasu and Cetinkaya (2006)). However, this line of re-
search does not address seed stock planning.

Another line of closely related research focuses on the application of game theory
in modeling remanufacturing decisions. We refer the reader to Souza (2013) for a
critical review of recent work. One stream of research work within this line stud-
ies competition between new and remanufactured products when remanufacturing
cannibalizes the demand for manufacturing (Ferrer (1996); Majumder and Groen-
evelt (2001); Debo et al. (2005); Ferrer and Swaminathan (2006); Ferguson and Tok-
tay (2006); Ferrer and Swaminathan (2010); Oraiopoulos et al. (2012); Heese et al.

(2005); Atasu et al. (2008)). Another stream of research work in game-theoretic
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models deals with selection problems for reverse channel structures (Savaskan et al.
(2004); Savaskan and Van Wassenhove (2006); Atasu et al. (2013); Karakayali et al.
(2007); Choi et al. (2013); De Giovanni and Zaccour (2014)). A third stream of
research work addresses the operational and coordination aspects of remanufactur-
ing practices together (Bhattacharya et al. (2006); Vorasayan and Ryan (2006); Liu
et al. (2009); Dobos et al. (2013); Pishchulov et al. (2014)). None of these papers
in the application of game theory in modeling remanufacturing decisions considers
seed stock planning. They also do not focus on how the decision domain structure
impacts the performance. Here, we consider a basic seed stock planning problem in
remanufacturing, focusing on the interaction between OEM and RS. We are inter-
ested in evaluating different OEM-lead Stackelberg settings and compare them with
the centralized setting. Hence, our focus is on examining how the decision domain
structure impacts the total profit and identifying the most efficient one.

We analyze three different scenarios. For each scenario, we consider both central-
ized control and decentralized control. Under centralized control, we consider three

strategies:
e Centralized control strategy under which the system-wide total profit is maxi-
mized;

e OEM-centric control strategy under which only the OEM’s profit is maximized;

e RE-centric control strategy under which only the RS’s profit is maximized.

Under decentralized control, we consider the OEM-lead strategies under which the
OEM makes decisions on some variables, and then the RS makes decisions accord-
ingly on the remaining undecided variables.

Hence, we provide a systematic and thorough analysis of decentralized and cen-

tralized control strategies for seed stock planning. Our results offer managerial in-

79



sights for both the OEM and RS in making decisions on seed stock level, initial
batch size for remanufacturing, exchange lot size and remanufacturing frequency,
under different technological or operational conditions.

The remainder of this section is organized as follows. In the next section, we
introduce the system setting and notation, and we derive the profit functions for
the OEM, RS, and system. Section 3.4 describes different decision-making scenarios
and different strategies in each scenario and formulates the corresponding optimiza-
tion problems. Section 3.5 examines the structural properties of the profit functions.
Sections 3.6, 3.7 and 3.8 analyze the problems considering three different scenar-
ios, separately: Section 3.6 focuses on the scenario that the quantity of used-items
shipped from the OEM to the RS is exogenous, Section 3.7 focuses on the scenario
that the quantity of used-items shipped to the RS to initiate the remanufacturing
program is exogenous, and Section 3.8 focuses on the scenario in a Stackelberg setting
with three decision variables. In Section 3.9, we discuss numerical results. Section

3.10 summarizes the results of this section and provide future research directions.
3.3 System Setting and Profit Functions

We consider a setting with an OEM, a NPS, and a RS. The OEM sells a product
for which it has to provide a particular type of replacement part throughout the life
cycle of the product, i.e., until the end of the planning horizon denoted by 7. This
type of replacement parts is remanufacturable, and hence, can be sent to the RS for
remanufacturing. The problem setting is illustrated in Figure 3.1.

Throughout the planning horizon T, there is a known constant demand rate for
the replacement part, denoted by a. Since each unit demand of the replacement part
generates a unit of used-item, the return rate for the used-item is also a. In order

to satisfy the demand, the OEM can either use new-items procured from the NPS
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Figure 3.1: An illustration of the seed stock planning problem.

at the beginning of the planning horizon, or use remanufactured-items provided by
the RS. The unit price for the serviceable part is 7. Meanwhile, the OEM collects
used-items from customers and sends them in batches to the RS for remanufacturing.

The sequence of events are as follows: At the beginning of the planning horizon,
the OEM procures new-items at per-unit cost of ¢"? from the NPS and places them
in inventory as the seed stock. The seed stock with lot size @), is depleted by the
demand. We define the time period during which the inventory level of new-items
drops to 0 as the seed stock cycle and denote it by C'L,. At time CLg, the OEM begins
to collect used-items (which are removed from products that are brought in warranty
service) for the program initiation lot with size @);. Before C Ly, all the returned used-
items are disposed. The time period during which @); units of used-items are collected

is defined as the remanufacturing initiation cycle, denoted by C'L;. The initiation

81



lot sent to the RS allows the RS to have a buffer of used-items on hand to hedge
against potential remanufacturing yield loss. After the release of the initiation lot to
start the remanufacturing program, a lot-for-lot policy goes into effect until the last
but one shipment. That is, whenever the OEM sends a batch of used-items to the
RS, the RS is required to send a batch of the same size of remanufactured-items to
the OEM in exchange. The exchange batch size is denoted by @),. The time period
between two successive lot exchanges is defined as the collection cycle, denoted by
CL,. The OEM will pay the RS ¢'? for each unit remanufactured-item. The per-unit
remanufacturing cost for the RS is ¢. The remanufacturing program stops when the
RS sends the last batch of remanufactured-items to the OEM without getting any
used-items. Then, the RS disposes the remaining unremanufactured-items, and the
OEM disposes what is returned. We assume that unit disposal cost is same for both
OEM and RS, which is denoted by c.

Only a fraction of used-items can be remanufactured. This fraction is denoted
by 7. The remanufacturing rate, denoted by m, is known. Furthermore, m >
a. The RS inspects each coming batch of used-items with infinite rate. All the
unremanufacturable items are disposed immediately after the inspection.

A summary of notation is provided in Table 3.1. The inventory profiles for the
OEM and the RS are depicted in Figure 3.2. Since n = 0 implies that remanu-
facturing program is not executed, the inventory profiles in Figure 3.2 are actually

meaningful for n > 1. Observe that, when n > 1, we have the following:

(i) The entire demand throughout the planning horizon must be satisfied:

al’ = Qs + nQT7
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and hence, ()5 can be written as a function of n and (@),, which is given by
Qs = aT — nQ,. (3.1)

(ii) Seed stock quantity must be sufficient to initiate the remanufacturing program
and to satisfy the demand before obtaining the first batch of remanufactured-

items from the RS:
Qs 2 Qi+ Q. (3.2)
Substituting (3.1) in (3.2), we have
al’ > Q; + (n+ 1)@y, (3.3)

and, hence, the time CLy at which the OEM starts to collect used-items is

given by

al — Qi — (n+ 1)@,

a

CLy =

(3.4)

(iii) The total amount of used-items that are remanufacturable should be sufficient
to satisfy the entire remanufacturing requirement throughout the planning hori-

Zon.

Qi = (n— 1)1 —7)Qr + Q. (3.5)

In our analysis, we will treat ()5 as a dependent variable. That is, we will calculate

the optimal values of n and @,, and then, use (3.1) to obtain the optimal value of
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Q)s. Thus, we actually have two inventory conservation constraints:

e inventory conservation constraint for the OEM which is given by (3.3);

e inventory conservation constraint for the RS which is given by (3.5).

Hence, the OEM’s decisions are restricted by (3.3), while the RS’s decisions are

restricted by (3.5).

3.3.1 OEM’s Total Profit Function

First, we derive the OEM’s profit function which consists of seven components:

(0.4)

(0.ii)

(0.iii)

(O.iv)

(O.vi)

total revenue of selling serviceable parts to customers: maT’;

total procurement cost for new-items at the beginning of T: ¢"PaT if n = 0,

and ¢"?(aT — n(@),) otherwise;

total fixed shipment cost for exchanging used-items with remanufactured-

items throughout 7 0 if n = 0, and nK, otherwise;

total procurement cost for remanufactured-items throughout 7 0 if n = 0,

and nc(Q), otherwise;

cumulative inventory carrying cost for used-items throughout 7: 0 if n = 0,
and hYy,I; otherwise, where I; is the cumulative used-item inventory held by

the OEM throughout 7'

cumulative inventory carrying cost for new-items throughout 7" h”Mg if

n =0, and hf;As otherwise, where A3 is the cumulative new-item inventory

held by the OEM during the seed stock cycle;
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Table 3.1: Notation for the seed stock planning problem.

T Finite planning horizon

a Finite demand rate

~y Fraction of used-items that can be remanufactured

m Finite remanufacturing rate

Qs The quantity of new-items procured from the NPS (i.e., seed stock lot size)

Q- The quantity of used-items shipped from the OEM to the RS, which is also equal to the
quantity of remanufactured-items shipped from the RS to the OEM (i.e., exchange lot
size)

Q; The quantity of used-items shipped from the OEM to the RS to initiate the remanufac-
turing
program (i.e., initiation lot size)

n The number of consecutive remanufacturing replenishments throughout the planning hori-
zZon

CLyg The time at which the OEM starts collecting used-items

CL; The length of the remanufacturing initiation cycle, i.e., CL; = Q;/a

CL, The length of a used-item collection cycle, i.e., CL, = Q,/a

CL, The length of the seed stock cycle, i.e., CL; = Qs/a

CLir  The length of a remanufacturing run for processing a batch of remanufacturable items,
ie, CL,=Q./m

K, Fixed shipment cost from the OEM to the RS

K, Fixed remanufacturing setup cost incurred by the RS

T Unit price of serviceable part

c"? Unit new-item procurement cost

P Unit remanufactured-item procurement cost, ¢'? < ¢"P

c Unit remanufacturing cost, ¢ < ¢'?

c? Unit used-item disposal cost

Yy Unit inventory holding cost per new-item incurred by the OEM

Ry Unit inventory holding cost per remanufactured-item incurred by the OEM, h}, < hf;,

s Unit inventory holding cost per used-item incurred by the OEM, h}, < R,

Ny Unit inventory holding cost per remanufactured-item incurred by the RS

hY, Unit inventory holding cost per used-item incurred by the RS, h% < b}

Ay Cumulative used-item inventory held at the OEM during the remanufacturing initiation
cycle

As Cumulative used-item inventory held at the OEM during each collection cycle

As Cumulative new-item inventory held at the OEM during the seed stock cycle

L Cumulative used-item inventory held at the OEM throughout the planning horizon

I Cumulative remanufactured-item inventory held at the OEM throughout the planning
horizon

I3 Cumulative remanufacturable item inventory held at the RS throughout the planning
horizon

1y Cumulative remanufactured-item inventory held at the RS throughout the planning hori-
zon

IE Cumulative echelon inventory held at the RS throughout the planning horizon

I¢, Total quantity of units disposed by the OEM throughout the planning horizon

I¢ Total quantity of units disposed by the RS throughout the planning horizon

Moryn The OEM’s total profit throughout the planning horizon

IMgs The RS’s total profit throughout the planning horizon

IT The system-wide total profit throughout the planning horizon
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ORIGINAL EQUIPMENT MANUFACTURER (OEM): INVENTORY PROFILES

Used item (core)
inventory at the OEM

0CLo ' ' ' ' T
Oy
Serviceable (new or
remanufactured) item
inventory at the OEM
Az
Qr 7777777777777777 <‘ ‘ ‘ ‘ ‘ ‘
0 ' ' ' ' ' ' T

REMANUFACTURING SUPPLIER (RS): INVENTORY PROFILES

YOif~—~""""""~~-

Used item (core) Y
inventory at the RS

I3

Serviceable
(remanufactured) item
inventory at the RS

J NANNNNS/

0 T

Figure 3.2: A realization of inventory profiles for the seed stock planning problem.
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(O.vil) cumulative inventory carrying cost for remanufactured-items throughout 7"
0 if n = 0, and R}, I, otherwise, where [ is the cumulative remanufactured-

item inventory held by the OEM throughout T

(O.viii) total disposal cost throughout T: c?aT if n = 0, and c?I{, otherwise, where

I4, is the total units disposed throughout 7'.
The OEM’s total profit function is given by:
wal — [c”paT + h’j/gﬁ + cdaT] n=>0

Hopm = § mal — [¢(aT — nQ,) + (K, + PQ,.)n (3.6)

+hY Iy + Wy As + Wy + I n=1,2,...
Among the above components, (O.v)—(O.viii) depend on the values of I}, A3, I and
I4,, respectively, which can be derived as follows:

e Cumulative used-item inventory held during the remanufacturing initiation cy-

cle:

Q; 2
A = 20, = 21 .
1 20 i % (3.7)

e Cumulative used-item inventory held during each collection cycle:

2
dy=Per, =&

L, = 2-. (3.8)

e By (3.7) and (3.8), we can calculate the cumulative used-item inventory held

throughout the planning horizon which is given by:

Q7 + (n—1)Q;

]1:A1+(’I’L—1)AQ: %
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e Cumulative new-item inventory held during the seed stock cycle:

A= 200, =2 =12 X0 (3.10)

e By (3.8), we can calculate the cumulative remanufactured-item inventory held
throughout the planning horizon which is given by:
QQ
I, =nAy = n—". 3.11
2 = NAy n2a ( )
e Total quantity of used-items disposed by the OEM throughout the planning

horizon is given by:
14 = Qs — (Qi+ Q) +2Q, = aT — nQ, — (Q; + Q,) +2Q,.. (3.12)

Substituting I, Az, I and I¢;, given by (3.9), (3.10), (3.11) and (3.12), respectively,

in (3.6), the OEM’s total profit is given by

(
(m — " — c)aT — h?wg n=>0
mal — | (aT —nQ,) + (Ks + Q) n

HOEM<n7 QTJ Qz) =

Q37 Q2 Q?
‘I‘hqfw% (h}u + h}n\/[) %n — hzj/[%

| T T — Qi - (n=1)Q))| n=12,...

(3.13)

3.3.2 RS’s Total Profit Function

When n = 0, i.e., the remanufacturing program is not executed, the RS’s total

proft is zero. Otherwise, the RS’s total profit consists of a total of six components:
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(R.1) total revenue of selling remanufactured-items to the OEM throughout 7', i.e.,

nc'?Qy,
(R.ii) total fixed remanufacturing setup cost throughout 7, i.e., nK,,
(R.iii) total remanufacturing cost throughout T, i.e., ncQ,,

(R.iv) cumulative inventory carrying cost for (remanufacturable) used-items through-

out T', i.e., hi 13,

(R.v) cumulative inventory carrying cost for remanufactured-items throughout 7',

i.e., hiz14, and
(R.vi) total disposal cost of used-items throughout T, i.e., c*I%.

Thus, the RS’s total profit function is given by

0 n =70
gs = (3.14)
(P - )@, — K, )n — h%I3 — hiply — It n=1,2,...
Among the above components, (R.iv)—(R.vi) depend on the values of I3, I, and

I4, respectively, which can be derived as follows:

e Cumulative echelon inventory of remanufacturable items and remanufactured-
items held by the RS throughout 7' is depicted in Figure 3.3, and can be

calculated as follows:

n—1
15 = QunCL, — (1-7)Q.0L, Y j= 1199 nn =1y @

- a 2 a
Jj=1
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[ —‘/ﬁ—i—

Figure 3.3: Echelon inventory of remanufacturable items and remanufactured-items
at the RS.

e Cumulative used-items inventory held:

I =1E — 1, (3.16)

e Cumulative remanufactured-items inventory held:

_ e

I
4 2m

(3.17)

e Total quantity of used-items disposed by the RS throughout 7™

Ip=(1-7Qi+ (1 =7Q(n—1)+0Qi—Q —(n—1)1-7Q,)
=Qi— Qr (3.18)

Substituting 15, I3, I, and I¢, given by (3.15), (3.16), (3.17) and (3.18), respectively,

in (3.14), the RS’s total profit is given by
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¢

0 n =70
((Crp - C) Qr - KT) n
i (%20 — (1= En(n — 1)

2a

2
| — (W — hip) $on — ¢ (Qi — Qs) n=102,. ..

HRS(”; QT? Qz) =

3.3.83 System-wide Total Profit Function

Given the OEM’s proft function in (3.13) and the RS’s proft function in (3.19),
the total system-wide total profit during planning horizon 7', denoted by 11, is given
by

H(n, Qr> Qz) - HOEM(na QT7 Ql) + HRS(na QT) QZ) (320)

The decision variables of interest are n, @, and @Q;. Using (3.1) and (3.4), Q
and C'Lgy can be computed, respectively. The remainder of this section focuses on
the analysis of three different scenarios: (1) computing n and @; for an exogenous
@, (2) computing n and @, for an exogenous @); and (3) computing n, @, and Q;

in a Stackelberg setting. Next, we present the problem formulations.
3.4 Problem Formulation

As mentioned earlier, we consider three different decision-making scenarios: (1)
computing n and Q; for an exogenous @Q,, (2) computing n and @, for an exogenous
@; and (3) computing n, @, and @; in a Stackelberg setting where OEM is the leader
and RS is the follower. Furthermore, we consider both centralized and decentralized

settings. Although we are primarily interested in the analysis of system performance

91



under a decentralized control setting (where OEM is the leader and RS the follower),
we consider several centralized control settings to serve as benchmarks. Specifi-
cally, we consider three centralized and one decentralized setting. Under centralized
control, the optimal values of the decision variables of interest are determined to
maximize system-wide total profit. Under OEM-centric control, the optimal values
of the decision variables of interest are determined to maximize OEM’s total profit.
Under RS-centric control, the optimal values of the decision variables of interest
are determined to maximize RS’s total profit. Under OFM-lead control, given RS’s
decisions on variables that maximize RS’s total profit, OEM makes decisions on the
other decision variables so as to maximize OEM’s total profit. Consequently, for

Scenario 1, we consider three centralized and two decentralized strategies:

P1.1 The values of n and @; are identified so as to maximize system-wide total

profit.
P1.2 The values of n and @); are identified so as to maximize OEM’s total profit.
P1.3 The values of n and @); are identified so as to maximize RS’s total profit.

P1.4 Given RS’s decision on (); that maximizes RS’s total profit, OEM chooses the

value of n that maximizes OEM’s total profit.

P1.5 Given RS’s decision on n that maximizes RS’s total profit, OEM chooses the

value of (); that maximizes OEM’s total profit.
For Scenario 2, we again consider three centralized and two decentralized strategies:

P2.1 The values of n and (), are identified so as to maximize system-wide total

profit.

P2.2 The values of n and @), are identified so as to maximize OEM’s total profit.
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P2.3

P2.4

P25

The values of n and @), are identified so as to maximize RS’s total profit.

Given RS’s decision on (), that maximizes RS’s total profit, OEM chooses the

value of n that maximizes OEM’s total profit.

Given RS’s decision on n that maximizes RS’s total profit, OEM chooses the

value of @), that maximizes OEM’s total profit.

For Scenario 3, we consider one centralized and six decentralized strategies:

P3.1

P3.2

P3.3

P3.4

P3.5

P3.6

P3.7

The values of n, @, and Q; are identified so as to maximize system-wide total

profit.

Given RS’s decision on n and ; that maximize RS’s total profit, OEM chooses

the value of (), that maximizes OEM’s total profit.

Given RS’s decision on n and @), that maximize RS’s total profit, OEM chooses

the value of ); that maximizes OEM’s total profit.

Given RS’s decision on @), and @; that maximize RS’s total profit, OEM

chooses the value of n that maximizes OEM’s total profit.

Given RS’s decision on @); that maximizes RS’s total profit, OEM chooses the

value of n and @), that maximize OEM’s total profit.

Given RS’s decision on (), that maximizes RS’s total profit, OEM chooses the

value of n and @); that maximize OEM’s total profit.

Given RS’s decision on n that maximizes RS’s total profit, OEM chooses the

value of ), and @); that maximize OEM’s total profit.

Table 3.2 summarizes the control problems for each scenario.
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Table 3.2: Problem configurations.

Objective Decision Variables Problem
Scenario | Setting Function n ‘ Q; ‘ Q- (Reference)
1 1. Centralized Control II OEM-RS OEM-RS Given P1.1
(3.21)
2. OEM-centric Control Hopm OEM OEM Given P1.2
(3.22)
3. RS-centric Control IIgrs RS RS Given P1.3
(3.23)
4. OEM-lead Control rs,Tornm | OEM (lead) | RS (follow) Given P1.41,P1.4.2
(3.24), (3.25)
5. OEM-lead Control grs,Hornm | RS (follow) | OEM (lead) Given P1.5.1, P1.5.2
(3.26) (3.27)
2 1. Centralized Control II OEM-RS Given OEM-RS P2.1
(3.28)
2. OEM-centric Control Hoem OEM Given OEM P2.2
(3.29)
3. RS-centric Control Ilrs RS Given RS P23
(3.30)
4. OEM-lead Control gs,Hornm | OEM (lead) Given RS (follow) | P2.4.1, P2.4.2
(3.31), (3.32)
5.0EM-lead Control Irs,Toenm | RS (follow) Given OEM (lead) | P2.5.1, P2.5.2
(3.26) (3.33)
3 1. Centralized Control II OEM-RS OEM-RS OEM-RS P3.1
(3.34)
2. OEM-lead Control Irs,Tornm | RS (follow) | RS (follow) | OEM (lead) | P3.2.1, P3.2.2
(3.23), (3.35)
3. OEM-lead Control IIrs,Ooem | RS (follow) | OEM (lead) | RS (follow) | P3.3.1, P3.3.2
(3.30), (3.36)
4. OEM-lead Control s, Horpnm | OEM (lead) | RS (follow) | RS (follow) | P3.4.1, P3.4.2
(3.37), (3.38)
5. OEM-lead Control rs,Tornm | OEM (lead) | RS (follow) | OEM (lead) | P3.5.1, P3.5.2
(3.24), (3.39)
6. OEM-lead Control s, Hornm | OEM (lead) | OEM (lead) | RS (follow) | P3.6.1, P3.6.2
(3.31), (3.40)
7. OEM-lead Control grs,Hornm | RS (follow) | OEM (lead) | OEM (lead) | P3.7.1, P3.7.2

(3.26), (3.41)
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Thus, although the profit functions of the OEM, the RS, and the system are
functions of n, @),., and @);, some of these decision variables might be given, or
decided by the other agent, under some circumstances. We use II(- || *) (or Hogar(- ||
%) /T rs(- || *)) to denote the profit function as the function of - when x is given, i.e.,

when x is treated as fixed value rather than a variable.
3.4.1 Scenario 1: Computing n and Q; for an Fxrogenous @,

Under this scenario, @), is dictated by some technological or operational con-

straint. We are interested in the following problems:

1. Centralized Control: =~ When centralized control is in effect, the decision
variables n and @); are specified by maximizing the total system-wide total

profit. Thus, the centralized problem, P1.1; is

max_II(n,Q; || Q) (3.21)

neZ*,Q;>0

s.t. (3.3) and (3.5),

where II(n, Q; || @,) is as in (3.20).

2. OEM-centric Control: When OEM-centric control is in effect, the decision
variables n and @); are specified by maximizing the OEM’s total profit. Thus,

the OEM-centric problem, P1.2; is

nezm*,agzizo Hoem(n, Q; || Q) (3.22)
st (3.3),

where Hogn(n, Qi || Q) is as in (3.13).
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3. RS-centric Control: When RS-centric control is in effect, the decision vari-
ables n and (); are specified by maximizing the RS’s total profit. Thus, the

RS-centric problem, P1.3, is

ez 9,20 Mrs(n, Qi || @r) (3.23)
s.t. (3.5),

where Igs(n, Q; || Q) is as in (3.19).

4. OEM-lead Control: OEM decides n and RS decides ();: In this case,
for each n given by the OEM, the RS determines (); that maximizes its total
profit. With this information, the OEM then specifies n. In this case, the RS’s

problem, P1.4.1, is

max  Trs(Qs || (n, @r)) (3.24)
s.t. (3.5),

where IIgs(Q; || (n,Q,)) is as in (3.19). Given RS’s optimal decision for @;,
denoted by Q7 4(n,Q,), the OEM’s problem, P1.4.2, is

max  Iopw(n, Qi1.4(n, Q) | Qr) (3.25)

st (3.3),

where Hogn(n, Q; || Q) is as in (3.13).

5. OEM-lead Control: OEM decides (); and RS decides n: In this case,

for each @); given by the OEM, the RS determines n that maximizes its total
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profit. With this information, the OEM then specifies );. In this case, the

RS’s problem, P1.5.1, is

max  Igs(n || (@i, @r)) (3.26)

s.t. (3.5),

where Igs(n || (Qs,@,)) is as in (3.19). Given RS’s optimal decision for n,

denoted by n} ;(Q;, @,), the OEM’s problem, P1.5.2, is

gliégé Hopm(n] 5(Qi @), Qi) || @r) (3.27)
s.t. (3.3),

where Ilppy(n, Q; || @) is as in (3.13).

3.4.2  Scenario 2: Computing n and Q), for an Exogenous Q;

Under this scenario, ); is dictated by some technological or operational con-

straint. We are interested in the following problems:

1. Centralized Control: =~ When centralized control is in effect, the decision
variables n and @), are specified by maximizing the total system-wide total

profit. Thus, the centralized problem, P2.1; is

max II(n,Q, || @) (3.28)

nez*, Qr=0
s.t. (3.3) and (3.5),
where II(n, @, || Q;) is as in (3.20).

2. OEM-centric Control: When OEM-centric control is in effect, the decision
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variables n and @), are specified by maximizing the OEM’s total profit. Thus,

the OEM-centric problem, P2.2, is

nEZIP,aC}QiZO Hoem(n, Qr || Qi) (3.29)
st (3.3),

where [lppy(n, Q. || Q;) is as in (3.13).

. RS-centric Control: When RS-centric control is in effect, the decision vari-
ables n and @), are specified by maximizing the RS’s total profit. Thus, the

RS-centric problem, P2.3, is

Lodax Mrs(n, Q. || Qi) (3.30)
st (3.5),

where Igs(n, @, || Q) is as in (3.19).

. OEM-lead Control: OEM dectdes n and RS decides (),: In this case,
for each n given by the OEM, the RS determines @), that maximizes its total
profit. With this information, the OEM then specifies n. In this case, the RS’s

problem, P2.4.1, is

max  Ias(Qr || (n, Qi) (3.31)

s.t. (3.5),

where Irs(Q, || (n,Q;)) is as in (3.19). Given RS’s optimal decision for @,
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denoted by Q5 4(n,Q;), the OEM’s problem, P2.4.2, is

max  Hopn(n, Qraa(n, Qi) [| Qi) (3.32)
st (3.3),

where [logy(n, Q. || Q;) is as in (3.13).

. OEM-lead Control: OEM decides (), and RS decides n: In this case,
for each @, given by the OEM, the RS determines n that maximizes its total
profit. With this information, the OEM then specifies ). In this case, the

RS’s problem, P2.5.1, is as in (3.26), which is equivalent to P1.5.1.

Given RS’s optimal decision for n, denoted by nj 5(Q,, @;), the OEM’s problem,

P2.5.2, is

max Topy(n}5(Q,.2).Q)) 1| Q) (3.33)
st (3.3),

where [lpgy(n, Q. || @;) is as in (3.13).

3.4.3 Scenario 3: Computing n, Q), and Q; in a Stackelberg Setting

Under this scenario, n, (), and @); are determined under the OEM-lead Stackel-

berg settings. We are interested in the following problems:

1. Centralized Control: When centralized control is in effect, the variables n,

Q. and @); are specified to maximize the total system-wide total profit. Thus,
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the centralized problem, P3.1, is

max I(n, Q, Q;) (3.34)

n€Z*, Qr>0, Q;>0

stt. (3.3) and (3.5),

where II(n, Q,, @;) is as in (3.20).

. OEM-lead Control: OEM decides (), and RS decides n and ();: In
this case, for each @), given by the OEM, the RS determines n and (); that
maximize its total profit. With this information, the OEM then determines
Q.. In this case, the RS’s problem, P3.2.1, is as in (3.23), which is equivalent

to P1.3.

Given RS’s optimal decisions for n and @, denoted by nj 3(Q,) and Q;, 5(Q),

respectively, the OEM’s problem, P3.2.2, is

gg% Hopwm(ni3(Qr), Qr, Q?l&(QT)) (3.35)
s.t. (3.3),

where [lopy(n, Q,, Q;) is as in (3.13).

. OEM-lead Control: OEM decides (Q; and RS decides n and (Q),: In
this case, for each @); given by the OEM, the RS determines n and @), that
maximize its total profit. With this information, the OEM then determines
@;. In this case, the RS’s problem, P3.3.1, is as in (3.30), which is equivalent

to P2.3.

Given RS’s optimal decisions for n and Q,, denoted by n3 3(Q;) and Q75 5(Qs),
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respectively, the OEM’s problem, P3.3.2, is

o2 Hopm(ng.3(Qi), @r25(Qi), Qi) (3.36)
s.t. (3.3),

where Hogn(n, Qr, Q;) is as in (3.13).

. OEM-lead Control: OEM decides n and RS decides (), and ();: In
this case, for each n given by the OEM, the RS determines @, and (); that
maximize its total profit. With this information, the OEM then determines n.

In this case, the RS’s problem, P3.4.1, is

Qrzrg,aéizo Mrs(Qr, Qi || m) (3.37)
st (3.5),

where Is(Q,, Qi || n) is as in (3.19).

Given RS’s optimal decisions for @, and Q;, denoted by Q; 5 4(n) and Q; 3 ,(n),

respectively, the OEM’s problem, P.3.4.2, is

max  opn (1, Q75.4(1), Qjz.4(n)) (3.38)

st (3.3),

where [opy(n, Q,, Q;) is as in (3.13).

. OEM-lead Control: OEM decides n and ()., and RS decides ();: In
this case, for each (n,Q,) pair given by the OEM, the RS determines @); that

maximizes its total profit. With this information, the OEM then determines
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n and Q.. In the case, the RS’s problem, P3.5.1, is as in (3.24), which is

equivalent to P1.4.1.

Given RS’s optimal decision for @;, denoted by Q7, 4(n, Q,), the OEM’s prob-
lem, P3.5.2, is

nEZI*n,aC?QCTEO HOEM<n7 Q'ra Qi,1.4<n7 Q'r)) (339)
st (3.3),

where Hogn(n, Qr, Q) is as in (3.13).

. OEM-lead Control: OEM decides n and ();, and RS decides (),: In
this case, for each (n,Q;) pair given by the OEM, the RS determines @, that
maximizes its total profit. With this information, the OEM then determines
n and @;. In this case, the RS’s problem, P3.6.1, is as in (3.31), which is

equivalent to P2.4.1.

Given RS’s optimal decision for @,, denoted by Q; 5 4(n, Q;), the OEM’s prob-
lem, P3.6.2, is

nlen*vagz‘ZO HOE]W(”’ Qr,2.4(n7 Qz)u Qz) (340)
st (3.3),

where Hogn(n, Qr, Q;) is as in (3.13).

. OEM-lead Control: OEM decides (), and ();, and RS decides n: In
this case, for each (Q,, Q;) pair given by the OEM, the RS determines n that
maximizes its total profit. With this information, the OEM then determines

Q, and @;. In this case, the RS’s problem, P3.7.1, is as in (3.26), which is
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equivalent to P1.5.1 and P2.5.1.

Given RS’s optimal decision for n, denoted by nj ;(Q., @;), the OEM’s problem,
P.3.7.2, is

QTZIHQaSiZO Hopm(n] 5(Qr, Qi), Qr, Qi) (3.41)
s.t. (3.3),

where [lopy(n, Q,, Q;) is as in (3.13).

3.5 Structural Properties of Cost Functions

Before we proceed to calculate the optimal solutions of the problems formulated
in Section 3.4, we will examine some structural properties of Ilpgys, Ilgrs and II that

can be utilized to develop approaches to compute the optimal solutions.

Property 7 The following are structural properties of lopgn, llrs and 11 for
n = 0.

1. Whenn =0, Hopm(0,Q,, Q;) = (7T — " — cd) al — h%g = logum(n = 0).
2. When n =0, llgs(0,Q,,Q;) =0 =Ilgs(n = 0).
3. When n =0, I1(0,Q,,Q;) = (7 — ¢ — ¢%) aT — hf,lwg =II(n =0).

Property 8 The following relate to the structural properties of Uogn, lgrs and

IT for any given (n,Q,) pair, where n € Z* and Q, > 0.

1. For any given (n,Q,) pair, where n € Z+ and Q, > 0, Uopp(n, Q,, Q;) is

concave in @Q; with the unique maximizer given by

CLCd

Qiorm(n, Qr) = T (3.42)
M
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2. For any given (n,Q,) pair, where n € ZT and Q, > 0, Tgs(n,Q,,Q;) is a

linearly decreasing function of QQ; for any Q;.

3. For any given (n, Q,) pair, wheren € Z* and Q, > 0, Il(n, Q,, Q;) is a linearly

decreasing function of Q; for QQ; > 0.

Proof.

1. For any given (n,@,) pair, where n € Z* and @, > 0, it can be easily shown

that
Nlogm u Qi
90, = —hM;—l—cd, and
011 h
0Q; a

Hence, Hogn(n, @, Qi) is concave in Q; for any given (n,(Q,) pair with the

unique maximizer given by (3.42).

2. For any given (n,Q,) pair, where n € Z* and @, > 0, it can be easily shown

that

aHRS u ,}/an

Thus, Tgs(n, @, Q;) is linearly decreasing in @);, for any given (n,(,) pair,

where n € Z* and Q, > 0.

3. Tt can be shown that, for any given (n,Q,) pair, where n € Z* and @, > 0,

we have

81_[ 7 r
_ g 9 hﬂ% n

90, . < 0,
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for any @Q; > 0. Thus, II(n,Q,,Q;) is linearly decreasing in @; > 0, for any

given (n,Q,) pair, where n € ZT and Q, > 0.

Property 9 The following relate to the structural properties of Uogwy, llrs and

IT for any given (n,Q,) pair, where n € Z* and Q; > 0.

1. For any given (n,Q;) pair, where n € Zt and Q; > 0, Hopnm(n, Q,, Q) is

concave in @, with the unique maximizer given by

(¢ — ™+ Wy, T)n + (n—1)c?
him? + hiym + kb (n — 1)

Qroem(n, Qi) = (3.43)

2. For any given (n,Q;) pair, where n € Z* and Q; > 0, lgs(n,Q,, Q;) is not

concave in @, in general:
o For any qiven QQ; > 0, and n in the region 1 < n < % + 1,
R

Mgrs(n, Q., Q;) is concave in Q, with the unique mazximizer given by

P — c)na + ca — hyQin
QT,RS(nyQi) = (h(r “h%)a ) R . (344)
—en = hip(1—v)n(n — 1)

m

e For any given QQ; > 0, and n in the region n > %4—17 rs(n, Qr, Q)
R

is convez in Q, with the unique minimizer given by (3.44).

3. For any given (n,Q;) pair, where n € Z* and Q; > 0, TI(n, Q,, Q;) is concave

in Q, with the unique mazximizer given by

(¢ +c —c+ W% T)a — hEyQ;
e (3.49)

Qrln, Q) = W+ Wy + By (1 — 1) — (1 — ) (n— 1) + ¢

m
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Proof.

1. For any given (n, Q;) pair, where n € Z™ and @Q; > 0, it is easy to show that

oIl
G(C?QETM = ("4 — P4 Ry T)n —
(hn 2 T u QT
— (Rym® 4+ hym + ki (n — 1)) 0 and
82HOEM . _h?VIHQ —+ h””Mn + h%(n — 1) <0
0Q> a '

Hence, Hogpnm(n, @, Q;) is concave in @, for any given (n,Q;) pair, where

n € ZT and @Q; > 0, with the unique maximizer given by (3.43).

2. For any given (n, Q);) pair, where n € Z* and Q; > 0, it is easy to show that

Ollgs . p d hl}%”)/@z’n
20, (c c)n +c "
. <<hR B hR)n . hR(]‘ B ’}/)n(’n — 1)) Qr, and
m a
Pllus (b= W= )n(n — 1)
0Q? m a '

Hence, either of the following two cases is true:

e If n is in the region 1 < n < % + 1 then 32%1;5 < 0, and hence,

Mgrs(n, Q,, Q;) is concave in @, with the unique maximizer given by (3.44)

e If n is in the region n > % + 1 then 828%’;‘5 > 0, and hence,
R s

Mgrs(n, Q,, Q;) is convex in @), with the unique minimizer given by (3.44).
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3. For any given (n, Q;) pair, where n € Z1, and Q); > 0, it is easy to show that

oIl h%yQ;
(" — et T — BT (h?an F RN R (n— 1)
0Q), a
(hj}ni B h?{)na’ Qr
—h%(1 — -1+ — ") = d
b1 = )n(n — 1) + R Sy
0?11 R n? + ki + by (n—1) — R (1 —y)n(n —1) (W — h%)n
- = — + .
Q7 a m
Since hiy, > h%, v < 1 and n > 1, it can be easily shown that 2221‘21 < 0, and
hence, II(n, @,, Q);) is concave in @, and % = 0 yields its unique maximizer
as in (3.45).
O

Property 10 Treating n as a positive continuous variable momentarily, for any

given (Q, Q;) pair, llgs(n, Q,, Q;) is conver in n.

Proof. For any given (Q,, Q);) pair, it is easy to show that

! heQ; hi (1 —7)Q?
0 RS _ Kr B (Crp . C)Qr + R’YQZQT + R( 'Y)Qr

on a 2a

r _ hu 2 u . 2
+ (hR hR)QT o hR(]' V)an ’ and
2m a

2 u _ 2

8n2 a -

Hence, Igs(n, @, Q;) is convex in n, for any given (Q,., Q);) pair. O

3.6 Scenario 1: Computing n and ); for an Exogenous Q).

We begin with analyzing the problems formulated in Section 3.4.1 where @), is
exogenous. We will develop formal approach for computing the optimal n value

and @; value for each of the following five problem settings: (1) centralized control;
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(2) OEM-centric control; (3) RS-centric control; (4) OEM-lead control where OEM
decides n and RS decides @Q;, and (5) OEM-lead control where OEM decides @Q; and
RS decides n.

3.6.1 Scenario 1: Centralized Control

In this section, we analyze P1.1 in (3.21) to determine the values of n and Q;
that maximize the system-wide total profit. Using (3.3) and (3.5), we can derive an

upper bound on the value of n.

Property 11 When Q, is exogenous, under centralized control, the feasible re-

gion for n is given by 0 < n < (“Q—T —2)y.

Proof. By definition, n is non-negative, i.e., n > 0. (3.3) and (3.5) together

imply

T — (4 1)Q > Qi >~ (= 11— 7@ + Q). (3.46)

)

and, hence, we have a7 —(n+1)Q, > > ((n — 1)(1 =)@, + Q,), which is equivalent
ton < (“Q—TT —2)7. O
Recall that II(n,Q; || Q) = l(n,Q,, Q;), and is as in (3.20). The following

property is helpful for computing the optimal solution of P1.1 in (3.21).

Property 12 When @, is exogenous, under centralized control, for any given

n > 1, the optimal value of Q; is given by

QZ1_1(”’ Qr) = <% —n+ 1) Qr~ (347)
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Proof. By (3.46), for any given (n,@,) pair, the smallest value of Q; is
1
; ((TL - 1)(1 - 7)@7“ + QT) )

which is equivalent to (% —n+ 1) Q.. By Property 8.3, II(n,Q; || @) is non-
increasing in @; for any given (n,@,) pair, where n > 1 and @, > 0. Hence, the
optimal value of @; is given by (3.47). O

By Property 12, we obtain the upper bound of II(n, @, || @;) for n > 1, which is
given by Il(n, Q7 ,(n,Q,) || Q). Remember that the profit function II(n, @, || Q;)
for n > 1 is different with the profit function II(n = 0), however, by substituting
n=0inI(n,Q;,(n,Q;) || @), we obtain

(0, Q;11(0,Q,) || Qr) = (7 — ™ — ¢")aT — hy—— =(n = 0),

by Property 7.3. Thus, II(n, Q;,,(n,Q,) || @) can be treated as the upper bound
of I(n, @, || @;) for n > 0, i.e., the whole feasible region of n. Then, for computing

the optimal value of n for P1.1 in (3.21), it suffices to find n},(Q,) such that

nTl(QT) = argmax {H(n7 Qj,l.l(n’QT) || QT)}7

ol _
0<n<(g,—2)v

where Q7 ;(n,Q,) is given by (3.47). The following property of II(n, Q7 ,(n, Q) ||

Q) is sufficient for computing nj ,(Q,).

Property 13 Treating n as a continuous variable momentarily, for any given
Qr >0, (n,Qf1,(n,Q,) || Q) is concave in n, and its unique mazimizer, denoted

by nY, is given by
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(e 4+t —c+ hy,T)aQ, — (K, + K,)a

_p=hg)aQz (Rt (B-)h+(1-1hE )@
0 2m 2

2
(1 (3= 1) g+ 1 =) ) @2

(3.48)

Proof. 'Treating n as a continuous variable momentarily, it can be easily shown

that
e (L 1) a4 bl 2
oM (n, Q1 (m Q) | Q) (M(r )+ hs i —7>) Q;
et —_ n+
on a
r _ hu 2
Ko+ K, — (" + ¢ —c+ W, T)Q, + (g — 1) Qr 2::%)@’" +
Rhy+ (2 —1) Ry + (1 —9)hy) Q?
( - <,y > ;\/l R) ) and
a
(hu (3- 1>2+hn + h(1 —7)) @
aQH(mQZl.l(na Q) Il Q) M\~ M r "
= - < 0.
on? a

Hence, TI(n, @}, 1(n,Q,) || Q,) is concave in n with a unique maximizer given by
(3.48). O

Using Properties 11 and 13, we can characterize the optimal solution of P1.1.

Corollary 1 The optimal solution under centralized control for Scenario 1, de-

noted by (n}.,(Q) Q11 (Q))), is given by
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(

0, n(l)l(Qr) <0,
arg maX{H(Ln?.l(QT)J7Q;1.1 (\_n(l).l(QT)JvQT) | Qr), 0< ”(1).1(Qr)

ny1(Qr) = ,
(1 (@)1, Qi (1784(Q0) Q) 11 @)Y< (& —2) 7,
(& -2)4]. n,(@) = (8 -2),
(3.49)
07 ) 1 Qr = 07
Qi (Q,) = if nia(Qr) (3.50)

Qi11(n11(Q@r),@r), otherwise,

where nY 1 (Q,) and Q;,,(n, Q,) are given by (3.48) and (3.47).

3.6.2 Scenario 1: OEM-centric Control

In this section, we analyze P1.2 in (3.22) to determine the values of n and Q;
that maximize OEM’s total profit. Using (3.3), we can derive an upper bound on

the value of n, and for any given n, we can derive an upper bound on the value of

Qi

Property 14 When Q, is exogenous, under OEM-centric control, the feasible
region for n s given by 0 < n < ZQ—TT — 1. For each n, the feasible region for Q; is

given by 0 < Q; < aT — (n+1)Q,.

Proof. By definition, n and @); are non-negative, i.e., n > 0 and Q; > 0. (3.3)
implies that 0 < @Q; < aT — (n+ 1)Q,. Consequently, we have 0 < aT — (n+ 1)Q,,
which is equivalent to n < % —1. O

Recall that Hogyn(n, Q; || Qr) = Hogpm(n,Qr, Q;), and is as in (3.13). The

following property is helpful for computing the optimal solution of P1.2 in (3.22).
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Property 15 When @), is exogenous, under OEM-centric control, for any given

n > 1, the optimal value of Q; is given by

d d
ge_ @ <al — (n+1)Q,,
Qi 12(n,Qr) = & h”; ( ) (3.51)
al’ — (n+1)Q,, % >al — (n+1)Q,.

Proof. By Property 14, for any given n, the feasible region of @); is given by
0<Q; <al — (n+1)Q,. By Property 8.1, for any given (n,Q,) pair, where n > 1
and @, > 0, llpgy(n, Q; || @) is concave in @); with a unique maximizer given by
(3.42). Hence, the optimal value of @; is given by (3.51). O

By Property 15, we obtain the upper bound of Ilpgy(n, Q; || @) for 1 < n <

“Q—j; — 1, which is given by o (n, QF 1 5(n, Qr) || @,), and can be written as follows

Fia )l @), 1<n< & (T—5) -1,

Hopn(n, @120, Qr) [| @r) = ) ) ., (3.52)
FYo(n | Qr), &(T—hﬁm)—lﬁnﬁé—r— 3
where, Fi'y(n || @) and F{y(n || Q,) are given by
a CLCd
Fiy(n || Q) = Ilopwm (n, hu Qr and (3.53)
M
Fry(n || Qr) = Topum(n,aT — (n+1)Q, || Q.), (3.54)

respectively.
For computing the optimal value of n for P1.2 in (3.22), it suffices to find n} ,(Q,)

such that

ny»(Q,) = argmax {Ilogum(n, Qi1 5(n, Q) || Qr), Hopnm(n = 0)},

aT
0<n<el—1
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where Q7 5(n, Q) is given by (3.51), llopnm(n, Qf 1 5(n, Q,) || Q) is given by (3.52),
and Ilpgp(n = 0) is as in Property 7.1. The following properties of Fi'y(n || @)

and F{',(n || Q,) are sufficient for computing n} (@, ).

Property 16 Treating n as a continuous variable momentarily, for any given

Qr >0, llopm(n, Q5 15(n, Q) || Q) in (8.52) is piecewise concave inn. To be more

specific, we have

o For any given Q, > 0, F{y(n || Q) in (3.53) is concave in n with a unique
mazimizer, denoted by n§,(Q,), which is given by
(¢ 4t — P + b, T)aQ, — Ka — w

nio(@Qr) = Q2 . (3.55)

e For any given Q, > 0, F{y(n || Q) in (3.53) is concave in n with a unique
mazimizer, denoted by n$,(Q,), which is given by
(™ — ' + b, T + kY, T)aQ, — Kya — Bhyy +h3,)Q7

nio5(Qr) = CRE: 2 (3.56)

Proof. Treating n as a continuous variable momentarily, it is easy to show that

aFlan(n || QT) — (cnp + Cd _ Crp + h%T>Q7‘ _ Ks _ (h}(/l + h?W)Qz _ h?\LJQz

n and
on 2a a
82Fa n 2
a(n |l @) _ _hMQr <0
on? a

Hence, F{y(n || @Q,) is concave in n with a unique maximizer given by (3.55).
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Fb
QR Q) (o _ v 1 p2 7 1 i, T)Q, — K,

on
u T 2 u n 2
_(BhM+hM)Qr . (hM+hM) QTTL, and
2a a
PRLIQ) ()@
on? - a =
Hence, F?,(n || Q,) is concave in n with a unique maximizer given by (3.56). O

Recalling (3.52), and by Property 16, we can derive the maximizer of

Mopn(n, Q5. Q) | Q) for 1 <m < 28— 1,

Corollary 2 The mazimizer of llopn(n, Q7 15(n, Qr) || Qr), where 1 < n <

ed

o (T - hT> — 1, denoted by n{%(Q,), is given by

1, ntll.Q(Qr) S 17
arg max{F{'5([n]2(@r)] [| @), 1 <ni5(Q) <
Foo(mSu@N 11 QY & (T—5) -1,

The mazimizer of llopn(n, QF15(n, Qr) || Qr), where &- (T - C—) —1<n<

“Q—TT — 1, denoted by nb*,(Q,), is given by
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(& (T-5)-1]. ma(Q) < & (T— ) -1,
arg max{ Fl,([ndo(Qn)] 11 @), & (T—5) —1<
Do ([nh 51 [ @)}, n},(Qr) < aQ_TT -1,

L LGQ_T; - J ) nll)Q(Qr) > QQ_Y; -1,

n?*Q (QT) =

(3.58)

where F2,(n || Q,) and nb ,(Q,) are given by (3.54) and (3.56), respectively.

Proof. The proof is straightforward by using (3.52) and Property 16, and hence,

is omitted. O
Recalling that Ilopa(n, Q1 4(n, @,) || @) in (3.52) is the upper bound of

Hoprm(n, Q. || Q;), where 1 < n < “Q—f — 1, and by Corollary 2, we can characterize

the optimal solution of P1.2.

Corollary 3 The optimal solution under OEM-centric control for Scenario 1,

denoted by (13 5(Q,), Q12(Qy)), s given by

n12(Qr) = argmax{Fy,(n15(Qr) [| @), FY2(n15(Qr) || Qr),
HOEM(n = O)}, (359)
0, if ni(Qr) =0,

QZLQ(QT) = (3.60)
T12(n12(Qr), Qr), otherwise.

Proof. The proof is straightforward by Corollary 2 and Property 15, and, hence,

it 1s omitted. O
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3.6.3 Scenario 1: RS-centric Control

In this section, we analyze P1.3 in (3.23) to determine the values of n and Q;
that maximize RS’s total profit. Using (3.5), we can derive a lower bound on the

value of @);, for any given n > 1.

Property 17 When Q, is exogenous, under RS-centric control, for any given

n > 1, the feasible region for Q; is given by Q; > (% —n+ 1) Q..

Proof. The proof is straightforward by rewriting (3.5). O
Recall that IIgg(n, Q; || @) = lgs(n, Q,, Q;), and is as in (3.19). The following

property is helpful for computing the optimal solution of P1.3 in (3.23).

Property 18 When Q, is exogenous, under RS-centric control, for any given

n > 1, the optimal value of Q; is given by

Qin3(n, Qr) = <% —n+ 1) Q. (3.61)

Proof. By Property 8.2, for any given (n,(@),) pair, where n > 1 and @, > 0,
rs(n,Q; || @) is linearly decreasing in @;. Thus, the optimal value of Q; is given
by the lower limit of the feasible region of @;, which is given by (3.61) as shown in
Property 17. O

By Property 18, we obtain the upper bound of Ilgs(n,Q; || @,) for n > 1,
which is given by Hgrs(n, Q7 3(n,Q;) || Q). Remember that the profit function
rs(n, Q; || Q) for n > 1 is different with the profit function IIzg(n = 0), however,

by substituting n = 0 in Ilgs(n, Q7 3(n, Q,) || @), we obtain

Mrs(0,Q715(0,Qr) || @r) = 0 = Ilrg(n = 0),

116



by Property 7.2. Thus, Ilgs(n, Q7 5(n, Q,) || @) can be treated as the upper bound
of TI(n, @, || Q;) for n > 0, i.e., the whole feasible region of n. Then, for computing

the optimal value of n for P1.3 in (3.23), it suffices to find nj ;(Q,) such that

n13(Qr) = arg max{llgs(n, Q5 3(n, @) || @r)}, (3.62)

nez*

where Q7 3(n, Q,) is given by (3.61). The following property of II(n, Q7 3(n, Q) ||

Q) is sufficient for computing nj 5(Q,).

Property 19 Treating n as a continuous variable momentarily, for any given
Qr >0, Igs(n, Q1 5(n,Qr) || Q) in (3.62) is concave with a unique mazimizer nf 5

which s given by

e (1_1)¢d e (M) | (hh=hE)a) o2
nfa(Qr) = il ¢ 1>C>GZ<1I_G;Q%(R2 B )Q’“.<3.63>

Proof. 'Treating n as a continuous variable momentarily, it is easy to show that

aHRS(TZ7 Q;légTETM QT) H QT) _ (Crp —c— (i _ 1) Cd> QT — KT

u r o hu u o 2
_ <hR(1 +7) i (hg hR)) Q2 — Mn, and
2a 2m a
PMrs(n, Qf11(n, Q) || Qr) R (1 —7)Q?
= " 7T <0.
on? a

Hence, Ilgs(n, Q1 3(n, Qr) || Qr) is concave in n with a unique maximizer given by (3.63).
|
Using Property 19, and recalling (3.62), we can characterize the optimal solution

of P1.3.

Corollary 4 The optimal solution under RS-centric control for Scenario 1, de-
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noted by (1} 5(Q.). Qi1 4(Q,)), is given by

p

O; n??)(@?”) S 07
ns(@r) = argmax{Ilgs(|nd5(Qr)], Qf1s ([n85(Qr)], Q) || Qv),
Mrs ([0 5(Qn)1, Qi s ([045(Q0) ], Q) |1 @)}, 1 5(Qr) > 0,

07 Zf TLTS(QT) = 07
L Q;I.B(nT.S(QT)a QT)7 Oth@TwiSG,

(

Q;I.S(QT) =

where nY 5(Qy) and QF | 5(n, Q,) are given by (3.63) and (3.61), respectively.

3.6.4 Scenario 1: OEM-lead Control: OEM Decides n and RS Decides Q;

In this section, we analyze P1.4.1 and P1.4.2 formulated by (3.24) and (3.25),
respectively. The OEM determines the value of n, and then the RS determines the
value of ();. To determine the value of n, the OEM will rely on the prediction of the
RS’s response for any given n value.

This prediction can be obtained by deriving the RS’s optimal value of (); that
maximizes the RS’s total profit for any given (n,@Q,) pair. We denote the RS’s
optimal response by Q;, 4(n,Q,), which is the solution of P1.4.1 in (3.24). Recalling
Property 18, for any given n > 1, and @), is exogenous, the optimal value of @); for
the RS is given by Q7 3(n, @Q,). Thus, QF, ,(n, Q,) = Q7 3(n, Q,) for any n > 1.

After predicting the RS’s response, the OEM’s decision is to determine the value
of n that maximizes the OEM’s total profit, i.e., the solution of P1.4.2 in (3.25).
Substituting Q7 4(n, @,) in (3.25), the OEM’s problem can be rewritten as

max Ilpgm (n7 (E —n+ 1) Q-
zZ* ol

ne

QT) (3.64)



The following property of llpgas <n, (% —n+ 1) H Qr> is sufficient for comput-

ing the optimal value of n for (3.64).

Property 20 Treating n as a continuous variable momentarily, for any given

Qr = 0, llopum <n, (% —n+ 1> Qr

mazimizer nY ,(Q,) given by

Qr> in (3.64) is concave in n with a unique

w (2 r 2
(Cnp — P4 % + h%T) a@, — Ksa — <hM<'Y 12)+hM)QT

Q) = - (3.69)

(hfﬂy + g (2 - 1>2> Q2

Proof. 'Treating n as a continuous variable momentarily, it can be easily shown

that

Moy (n, (2 =n+1) Q,
on

Q) y
= <c"p — P+ — +h§\‘/[T) Qr — K,

PUopm (T% <% —n+ 1) Qr Qr) o 0

on? a

Hence, Ipgy (n, (% —n+ 1) Q-

given by (3.65). O

QT> is concave in n with a unique maximizer

Using Property 20, we can characterize the optimal solutions of P1.4.1 in (3.24)
and P1.4.2 in (3.25).

Corollary 5 Under OEM-lead control where OEM decides n and RS decides Q);

119



for Scenario 1, the optimal value of n for the OEM, denoted by ni ,(Q,), is given by

0, n74(Qr) <0,
argmax {TMogas (|nd.4(@r)], (X421 — 00 ,(@0)] +1) @,
(@) = Hopar (@)1, (4220 — @)1 +1) @ || @) }.
0<nd4(@) < (& -2),

)

(& -2)] itz (8 -

(3.66)

where n ,(Q,) is given by (3.65).

The RS’s optimal response is given by

0, if ny 40, =0

Q;l.z;(QT’) = n* ,(Qr) .
(L —n},(Q,) + 1) Qr, otherwise.

3.6.5 Scenario 1: OEM-lead Control: OEM Decides Q; and RS Decides n

In this section, we analyze P1.5.1 and P1.5.2 formulated by (3.26) and (3.27),
respectively. The OEM determines the value of ();, and then the RS determines the
value of n. To determine the value of ();, the OEM will rely on the prediction of the
RS’s response for any given @); value.

This prediction can be obtained by deriving the RS’s optimal value of n that
maximizes the RS’s total profit for any given (Q;,@,) pair. We denote the RS’s
optimal response by nj - (Q;, @), which is the solution of P1.5.1 in (3.26). Recalling
Property 10, for any given (Q;, @,) pair, lIgs(n,Q,, @Q;) is convex in n. Thus, the
maximizer should be at one of the boundary constraints. Using (3.5), we can obtain

the feasible region for n.

Property 21 When Q, is exogenous, under OEM-lead control where the OEM
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decides Q); and the RS decides n, for any given Q;, the feasible region for n is given

'Y(Qi*Qr)
by 0 S n S 1-7)Qr -

Proof. By definition, n is non-negative, i.e., n > 0. The proof is straightforward
by rewriting (3.5), and, hence, it is omitted. O
Using Properties 10 and 21, we can specify the optimal value of n by checking

the properties of the boundary points.

Property 22 When Q, is exogenous, under OEM-lead control where the OEM
decides (Q; and the RS decides n, to determine the RS’s optimal response to any Q;

value, i.e., to calculate n} 5(Q;, Q), it suffices to consider the following cases:
1. When Q; < %, nis(Qi, Q) =0, i.e., no remanufacturing.

2. When Q; > %, either of the following is true:

2.1. If 81;55(1 | (Qi, @.)) > 0 then we have
nT.S(Qz} Q'I’) = argmax {HRS<n - 0)7 HRS (\‘%J H (Qza Qr)) } :

2.2. If 82 (1]| (Qi,Qy)) < 0 and

2.2.0. %us (| 42581 1] (Q1,Q))) <0 then

n15(Qi; @r) = arg max {Ilgs(n = 0), Has(1 || @i, @r)} -

2.2.2. %as (“1@1 Q)J H Ql,Qr)) > 0 then

n15(Qi, @r) =arg max {Ilgg(n = 0),Izs(1 || Qi @),

([ 5257 ] 10-9)

121



where llgg(n =0) =0, aggs is given by (3.46).

Proof. By Property 21, the feasible region of n is given by 0 < n < 7(@’ )g:) It

Q; < %, ie., 7((1 0. @) 1, then the only possible value of n is 0. Otherwise, i.e.,
% > 1, the feasible region of n contains positive value.
The proofs of parts 2.1 and 2.2 are straightforward by recalling Property 10, and,
hence, they are omitted. O
After predicting the RS’s response, the OEM’s decision is to determine the value
of @; that maximizes the OEM’s total profit, i.e., solution of P1.5.2 in (3.27). By
Property 22, in order to ensure that RS remanufactures, the lowest value of @);

should be QT Moreover (3.3) sets an upper bound on the value of @;. The following

property defines the search region for the optimal value of ); for P1.5.2.

Property 23 When Q, is exogenous, under OEM-lead control where the OEM
decides Q; and the RS decides n, the OEM’s optimal decision for the value of Q;,
denoted by Q7 | 5(Qr), should satisfy

Qz 1. 5 QT G {O} U |:_ HllIl{CLT - ’}/(CLT - Qr)? al — QQT} .

Proof. By Property 22, in order to ensure that RS remanufactures, the lowest

value of (); should be %, ie, Q; > % Then, the RS may set n equal to 1 or

(1- 7)

{ 2Qi=0r) J By (3.3), i.e., aT > Q; + (n] 5(Qs, Q,) + 1)@, either of the following is

true:
o If nj(Q;, Q) =1then aT > Q; +20Q,, ie., Q; < al —2Q),.

o 1 ni5(Qi Q) = [ 12532 then a7 = Qi+ (|H58 | +1) @ = Qi+

7((le Q)?T which is equivalent to Q; < aT — y(aT — Q,).
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Thus, either of the following is true:

e In the case RS remanufactures, % < Qi1 5(Qr) <min{aT —~y(aT - Q,),aT —

20, }.
e In the case RS does not remanufacture, Q7 5(Q,) = 0.

1
Using Property 23, we can derive the optimal solutions of P1.5.1 in (3.26) and
P1.5.2 in (3.27).

Corollary 6 Under OEM-lead control where OEM decides Q; and RS decides n

for Scenario 1, the optimal value of Q; for the OEM, denoted by Q7 5(Q,), is given

0, if HOEM(”T.5<Q?,1.5(QT-)7 QT)7 ?,1.5<Qr) || Qr)
Q;’K,lﬁ(QT) = < HOEM(TL = 0), (367)

g,1.5(Qr); otherwise,

where n} 5(Q:, Q) is as in Property 22, Uogy(n = 0) is as in Property 7, and

@)15(Qr) is given by

i15(Qr) = arg max {Hopm(n15(Qi, Qr), Qi || @r)} -

8r <Qi<min{aT—(aT—Q;),aT—2Q}
The RS’s optimal response is given by ny 5(Q; 1 5(Qr), Qr).

3.7 Scenario 2: Computing n and @), for an Exogenous @);

In this section, problems formulated in Section 3.4.2, where (); is exogenous,
are analyzed. We develop formal approach for computing the optimal n value and

@, value for each of the following five problem settings: (1) centralized control;
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(2) OEM-centric control; (3) RS-centric control; (4) OEM-lead control where OEM
decides n and RS decides @Q,., and (5) OEM-lead control where OEM decides @, and
RS decides n.

3.7.1 Scenario 2: Centralized Control

In this section, we analyze P2.1 in (3.28). The following property is helpful for

computing the optimal solution of P2.1 in (3.28).

Property 24 When Q; is exogenous, under centralized control, for any given

n > 1, the optimal value of Q.. is given by

07 Q’I‘(n7 QZ) S 07
@ra1(n. Qi) = 4 Qr(n, Qa), 0< Qr(n, Qi) < min { ;1% T=Quh, (3.68)

I-7)+y? ntl
. Qi T—Q; 4 ) 0. o,
o {n(lv_’y”_’yj an+1 }}Qr(n’ Ql) 2 min { YL(I’Y—’Y)'F"/’ CLn-‘rl };

where Q.(n,Q;) is given by (3.45).
Proof. (3.3), (3.5) and the non-negative constraint of (), imply that

CLT—Q,L

<
Q, < 1 and
0, < vQi
T ol =)+

Hence, for any given n > 1, the feasible region of (); is given by

(3.69)

OSQTSmin{aT_Qi vQi }

n+1l "n(l—9)+7y

Recalling Property 9.3 which states that, for any given n > 1, II(n,Q, || @;) is
concave in ), with a unique maximizer given by (3.45). The proof immediately

follows from Property 9.3 and (3.69), and, hence, it is omitted. O
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By Property 24, we obtain the upper bound of II(n, @, || @;) for n > 1, which is
given by II(n, Q75 ,(n, Qi) || Q). For computing the optimal value of n for P2.1 in
(3.28), it suffices to find n},(Q;) such that

ny1(Qi) = arg max{Il(n, Q75 (n, Qi) | @), 1(n = 0)}, (3.70)

nez*

where Q; ,,(n, Q;) is given by (3.68), and II(n = 0) is as in Property 7.3.

The following property defines an upper bound for the search region of n.

Property 25 When Q; is exogenous, under centralized control, the optimal value

of n, denoted by n} (Q;), satisfies

(¢ + chaT + h%“%

<nk ) <
O — nQ.I(QZ) — KS + Kr

(3.71)

Proof. Recalling Property 7.3, and using (3.70), it is easy to show that

[I(n = 0) < (n5;1(Q:), @ra1(n31(Q:), Qi) || Qi) < maT — (K + Ky )nj 1 (Qi)

(Cnp—i-cd)aT-‘rh" aT?

Hence, we have n},(Q;) < *ir 2, which together with n > 0 implies

(3.71). O
Property 25 helps to limit the search region for the value of n:

(e + ¢hyaT + b, L

=0,1,...
n ) ’ K3+Kr

Using Properties 24 and 25, we can derive the optimal solution of problem (3.28).

Corollary 7 The optimal solution under centralized control for Scenario 2, de-
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noted by (n31(Qi), Qr2.1(Q:)), is given by

n31(Qi) = argmax {Il(n, Q75 (n, Q) || Q:), (n = 0)},

’fL:O,l 7777 N2

Qin(Qz) = Q:21(n§1(Qz)a Qi) (3.72)
where Q; 5 1(n,Q;) is as in (3.68), Il(n = 0) is as in Property 7.3, and Na, is given
by

(" + ¢h)aT + hy, L
K, + K,

Nyp = (3.73)

3.7.2 Scenario 2: OEM-centric Control

In this section, we analyze P2.2 in (3.29) to determine the values of n and Q;
that maximize OEM’s total profit. The following property is helpful for computing

the optimal solution of P2.2 in (3.29).

Property 26 When Q; is exogenous, under OEM-centric control, for any given

n > 1, the mazimizer of llopy(n, Q. || Q;) is given by

Qroem(n, Qi), 0< Qropm(n, Q;) < ai;?iv

T-Q; T-Q;
%7 QT,OEM(”? Ql) > %7

Qro2(n, Qi) = (3.74)

where Qrorm(n, Qi) is given by (3.43).

Proof. (3.3) and the non-negative constraint for @, implies that, for any given
n > 1, the feasible region of @); is given by

CLT—Qi

0<Q, <
S@rs n—+1

(3.75)
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Recalling Property 9.1 which states that, for any given n > 1, Hogpyn(n, Q. || @:)
is concave in @, with a unique maximizer given by (3.43). The proof immediately
follows from Property 9.1 and (3.75), and, hence, it is omitted. O

By Property 26, we obtain the upper bound of lpgy(n, Q. || @;) for n > 1,
which is given by Ilogun(n, Qo5(n, Q;) || Q). For computing the optimal value of
n for P2.2 in (3.29), it suffices to find nj,(Q;) such that

n35(Q:) = arg max{llopn (n, Qr25(n, Qi) || Qi) opm(n = 0)}, (3.76)

nez*

where Q55 ,(n, Q;) is given by (3.74), and Ilpga(n = 0) is as in Property 7.1,

The following property defines an upper bound for the search region of n.

Property 27 When Q; is exogenous, under OEM-centric control, the optimal
value of n, denoted by n},(Q;), satisfies

(" + c)aT + h}}/[‘aﬂ

0<n’ ;) <
< n55(Qs) < K,

(3.77)

Proof. Recalling Property 7.1, and using (3.76), it can be easily shown that

Hopm(n =0) < Mopwm(ns4(Qi), Qraa(ns (@), Qi) || Qi) < maT — Knj o(Qs).

2
(c"p—l-cd)aT—&—hX] —“g

Hence, we have n},(Q;) < 7
: S

, which together with n > 0 implies
(3.77). O

Property 27 helps to limit the search region for the value of n:

(e + ¢hyaT + hj, L

=0,1,...
n ) - ) KS

Using Properties 26 and 27, we can derive the optimal solution of problem (3.29).
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Corollary 8 The optimal solution under OEM-centric control for Scenario 2,

denoted by (n35(Qi), Qr22(Q:)), is given by

ny5(Qi) = igglmfjivx {opnm(n, Qro4(n, Qi) [| Qi) Morm(n = 0)},
Q:22(Qz) = Q:22(n§2(Qz)sz)a (3.78)

where Q7 4(n, Q) is as in (3.74), Uopnm(n = 0) is as in Property 7.1, and Ny is

given by

(¢ + c)aT + h%%

N2.2 = Ks

(3.79)

3.7.8 Scenario 2: RS-centric Control

In this section, we analyze the P2.3 in (3.30) to determine the values of n and

(2; that maximize RS’s total profit. The following property is helpful for computing
the optimal solution of P2.3 in (3.30).

Property 28 When Q); is exogenous, under RS-centric control, for any given

n > 1, either of the following is true:

e For any given 1 <n < éﬁ%;ﬁ%ﬁ +1, the mazimizer of llgs(n, Q. || Q:) is given
R
by
07 QT,RS(n7 QZ) S 07
Q:,2.3(n7 QZ) = QT,RS(na Qz)a 0< Qr,RS(na Q’L) < n(lv_%)ﬂa
Qi Qi
n(lify)_i_,ya QT,RS(nv Qz) > n(117)+7-
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e For any given n > % + 1, the mazimizer of llgs(n, Q. || Q;) is given by
R

Q3as(n.Q:) = ssgmin {Tns (. Q0 = 011 Q) Mas (.0, = 25— | @) }.

where Q. rs(n, Q;) is given by (3.44).

Proof. (3.5) and the non-negativity constraint for @, imply that, for any given

n > 1, the feasible region of @), is given by

vQ;
0 L ——
=€ <n(1—7)+7

(3.80)
Recalling Property 9.2 which states that [Izs(n, @, || @Q;) is concave in @, for any

) ) (hzr—h%)
n in the region 1 < n < he (1)

% + 1. The proof immediately follows from Property 9.2 and (3.80), and,
R

:L + 1, while is convex in @), for any n in the region
n >
hence, it is omitted. O

By Property 28, we obtain the upper bound of IIgs(n, Q. || @;) for n > 1, which
is given by Ilgs(n, @ 53(n, Qs) || Qs). For computing the optimal value of n for P2.3

in (3.30), it suffices to find nk ;(Q;) such that

n33(Q:) = arg max{Ilpg (1, Q7 25(n, Qi) || Qi) Mrs(n = 0)}, (3.81)

nez*

where Q; ,3(n,Q;) is as in Property 28, and Ilgs(n = 0) is as in Property 7.2.

The following property defines an upper bound for the search region of n.

Property 29 When Q); is exogenous, under RS-centric control, the optimal value

of n, denoted by nk(Q;), satisfies

YQi(c? —¢) — 7K,
Kr(l - 'Y) .

0 <nys(Qi) < (3.82)
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Proof. Recalling Property 7.2, and using (3.81), it is easy to show that

0= HRs(n = O)

IA

IRrs(n35(Q:), Qim(”éa(@z)a Qi) || Qi)
(¢ — C)Q:,Q.B(n;.S(Qi)’ Qi) — K, )ns 3(Qi). (3.83)

IA

If n35(Qi) = 0 then Q;,3(n33(Qi),Qs) = 0. Otherwise, i.e., n;3(Q;) > 0, (3.83)

implies that

K+ (e = P)Qr55(n35(Qi), Qi) <0,

which is equivalent to

K
* 5 a(Q0), Qi) > T 3.84
Qr,2‘3(n2.3(Q ), Qi) > R ( )
Using (3.80) and (3.84), it can be easily shown that
Kr 7@1
< Qr23(ns3(Qi), Qi) < — : 3.85
P — ¢ ,2.3( 2.3( ) ) 7123(Ql)<1 o 7) +7 ( )
which implies that nj4(Q;) < Ik O

Property 29 helps to limit the search region for the value of n:

(TP —
n=0,1,..-,pQZ(c 9 WKTJ‘

Using Properties 28 and 29, we can derive the optimal solution of problem (3.30).

Corollary 9 The optimal solution under RS-centric control for Scenario 2, de-
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noted by (n}5(Q:), Qi 5(Q))). is given by

ny3(Qi) = arg m?VXF{HRs(n,Qi,Q,g(n, Qi) || Qi), llgs(n = 0)}
Qi,z.S(Qi) = Q:,z.s(”;:a(Qi),Qi)a (3.86)

where Q5 3(n,Q;) is as in Property 28, llgs(n = 0) is as in Property 7.2, and Ny

15 given by

3.7.4 Scenario 2: OEM-lead Control: OEM Decides n and RS Decides @),

In this section, we analyze P2.4.1 and P2.4.2 formulated by (3.31) and (3.32),
respectively. The OEM determines the value of n, and then the RS determines the
value of ).. To determine the value of n, the OEM will rely on the prediction of
RS’s response for any given n value.

This prediction can be obtained by deriving the RS’s optimal value of (), that
maximizes the RS’s total profit for any given (n,Q;) pair. We denote the RS’s
optimal response by @, ,(n,Q;), which is the solution of P2.4.1 in (3.31). Recalling
Property 28, for any n > 1, and @); is exogenous, the optimal value of @), for the RS
is given by Q75 3(n, Qi). Thus, @754(n, Qi) = Q7 55(n, Q;) for any n > 1.

After predicting the RS’s response, the OEM’s decision is to determine the value
of n that maximizes the OEM’s total profit, i.e., the solution of P2.4.2 in (3.32). The

following property defines an upper bound for optimal n value.

Property 30 When Q; is exogenous, under OEM-lead control where the OEM

decides n and the RS decides Q),, the optimal value of n for the OEM, denoted by
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. .
ns ,, satisfies

0 S TL;A S NQ_Q, (387)

where Noo is given by (3.79).

Proof. The proof is similar to the proof of Property 27, and, hence, it is omitted.

Property 30 helps to limits the searching region for the value of n: n =0,1,..., Noo.
Using Properties 28 and 30, we can derive the optimal solutions of P2.4.1 in (3.31)
and P2.4.2 in (3.32).

Corollary 10 When Q; is exogenous, under OFEM-lead control where OEM de-

cides n and RS decides Q),., the OEM’s optimal decision for the value of n, denoted

by n3 4(Qi), is given by

n34(Qi) = argmax {llopn (1, Qra5(n, Qi) [| @), Mrs(n = 0)}, (3.88)

'fLZO,l 7777 Na.2

where Q5 3(n,Q;) is as in Property 28, llgs(n = 0) is as in Property 7.2, and Ny
is given by (3.79).

The RS’s optimal response is given by Q4 3(n5 4(Q:), Qi)

3.7.5 Scenario 2: OEM-lead Control: OEM Decides QQ, and RS Decides n

In this section, we analyze P2.5.1 and P2.5.2 formulated by (3.26) and (3.33),
respectively. The OEM determines the value of ()., and then the RS determines the
vlaue of n. To determine the value of @),, the OEM will rely on the prediction of the

RS’s response for any given @), value.
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This prediction can be obtained by deriving the RS’s optimal value of n that
maximizes the RS’s total profit for any given (Q;, @,) pair. The RS’s optimal re-
sponse is given by n} -(Q;, @,) which is the solution of P2.5.1 in (3.26). Recalling
Property 22, when (Q;, Q) is given, the optimal value of n for the RS is given by
01 5(Qis Qr). Thus, n35(Qs, Q) = 17 5(Q, Q,) for any @, > 0.

After predicting the RS’s response, the OEM’s decision is to determine the value
of @, that maximizes the OEM’s total profit, i.e., the solution of P2.5.2 in (3.33).
Recalling Property 22, in order to ensure that the RS remanufactures, the largest
value of @), should be @Q);. The following property defines the search region for the

optimal value of @), > 0.

Property 31 When Q; is exogenous, under OEM-lead control where the OEM
decides @, and the RS decides n, the OEM’s optimal decision for the value of Q,,

denoted by Q7 ,5(Q;), satisfies 0 < Q, < min{aT — Q;, Qiv}-.

Proof. (3.3) and non-negativity constraints of @, and n imply that

OSQTSG’T_Qi)

which together with Property 22.1 imply that 0 < @, < min{aT — @Q;, Q;7}- O
Using Property 31, we can derive the optimal solutions of P2.5.1 in (3.26) and
P2.5.2 in (3.33).

Corollary 11 Under OEM-lead control where OEM decides Q. and RS decides
n for Scenario 2, the optimal value of Q, for the OEM, denoted by Qr,5(Q:), is
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given by

0, if  Topm (] 5(Q)25(Qi), Qi), Q025(Q:) || Qi)
Q:Q.S(Qi) = S HOE]V[(n = O), (389)

272_5(621-), otherwise,

where ny 5(Qi, Q) is as in Property 22, lopy(n = 0) is as in Property 7.1, and

@0 55(Q:) is given by

9,2.5(Qi) = arginax {Hopnm (] 5(Qs, @r), Qr || Qi)} -

0<Qr<min{aT—Q;,Qsv}
The RS’s optimal response is given by nj 5( ;2,5(622‘)7 Qi)

3.8 Scenario 3: Computing n, ), and (); in a Stackelberg Setting

In this section, problems formulated in Section 3.4.3 are analyzed. We develop
formal approach for computing the optimal values of n, @), and @; for each of the
following seven problem settings: (1) centralized control; (2) OEM-lead control where
OEM decides @, and RS decides n and Q;; (3) OEM-lead control where OEM decides
Q; and RS decides n and Q,; (4) OEM-lead control where OEM decides n and RS
decides @, and Q;; (5) OEM-lead control where OEM decides n and Q,, and RS
decides Q;; (6) OEM-lead control where OEM decides n and @Q;, and RS decides Q,;
(6) OEM-lead control where OEM decides @, and @;, and RS decides n.

3.8.1 Scenario 3: Centralized Control

In this section, we analyze P3.1 in (3.34). Recalling Property 8.3, for any given
(n,Q,) pair, where n € Z* and @, > 0, II(n,Q,, Q;) is a linearly non-increasing
function of @; in ; > 0. Thus, we can use the result in Property 12, and conclude

that for any given proper (n, Q),) pair the optimal @); value under centralized control
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for Scenario 3, denoted by Q;;,(n,Q,), is given by Q;5,(n,Q,) = Qi ,(n,Q,) =
<% —n—+ 1) Q.. Hence, II (n, Q., (% —n+ 1> QT> provides an upper bound of
II(n,Q,,Q;) for n > 1. We denote II (n,Qr, (% —n+ 1) Qr> by F31(n,Q,). Note
that, F3,(0,Q,) = II(n = 0) = (7 — " —c?) — h%,°2> by Property 7.3, which implies
that F31(n,@,) can be treated as the upper bound of II (n, Q,, Q;) for n > 0, i.e.,

the whole feasible region of n. Then, to determine the optimal value of n for P3.1 in

(3.34), it suffices to solve the following problem

nequ,lQnrzoF?"l(n’ Q) (3.90)
n n
st. al > <— —n—|—1> Q-+ (n+1)Q, = (—+2) Q.
v v

where Fy1(n, Q) = 11 (n.Qr, (2 =n+1) Q. ).
The following property of Fs1(n, @Q,) is helpful for calculating the optimal solution

of problem (3.90).

Property 32 For any given n > 0, F31(n,Q,) is a concave function of Q, with

a unique positive maximizer given by

(e 4+t —c+ hy,T)a

2
hiyn + By + Y, ((%—1) n+§—1)

(hp—h})a
m

2,3.1(”) =

(3.91)

R (L= y)n+7y+1) +

Proof. Recalling that F31(n,Q,) =11 (n, Q. (% —n+ 1> Q,,), it is easy to show

that
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OF31(n,Qr) p o d hym | Py Py (1 ? 2
T %)~ (e — e WY Ty — |“MT BM o I (2 |
a0, (P +c* —c+ hyT)n . + " + . S n—l—7

hu h’r’_hu
+-L2((@=-y)n+y+1)+ L R]nQr, and
a m
2 n r u 2
8F3'1(n’QT) - _ th_FhiMJ'_hiM l_l n+g_1
oQ? a a a \\Y g

R h™, — h¥
+f((1—7)n+7+1)+R7nR]ngo.

Hence, F3;1(n,Q,) is concave in @, for any given n > 0 with a unique maximizer
given by (3.91). Since ¢ > ¢, Qr3,(n) is positive. O
Recalling the constraint in (3.90), and by Property 32, we can easily prove the

following corollary.

Corollary 12 For any given n > 0, the mazimizer of F31(n,Q,) is given by

0, n =0,

Qrs1(n) = va1(n), Qrzi(n) < %a_—’jjz’ (3.92)
aTl’ 0 aT
@7 r,3.1<n) > Z12)

where QY 5 1(n) is given by (3.91).

Proof. When n = 0, i.e., no remanufacturing happens, we have ), = 0. The
following proof is straightforward by using Property 32 and the constraint in (3.90),
and hence, it is omitted. O

By Corollary 12, Fz;(n,Q;3,(n)) is the upper bound of F3;(n,Q,) for n > 0,

and hence, is the upper bound of II(n,@,,Q;) for n > 0. Thus, to calculate the
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optimal value of n for P3.1 in (3.34), it suffices to find n}, such that

ny, = argmax{Fs(n, Q7 3.(n))}, (3.93)

nez*

where Fyi(n, Qi1(n) = T (n,Qiay(n), (2= n+1) Qan(n)), and Qiyy(n) is
given by (3.92).

The following property defines an upper bound for the search region of n.

Property 33 The optimal value of n under centralized control for Scenario 3,

denoted by nj , satisfies
0<nz; <Ny, (3.94)

where Noq is given by (3.73).

Proof. By (3.93) and recalling that F31(n,Q,) =11 (n, Q. (% —n+ 1) Q,), it

is easy to show that

F34(0, Q:31(0)> < F3i(n3,, Q:u(”;l)) < mal — (Ks+ K, )n3 ;. (3.95)

2
H have ng, < CZFDTHE S L which together with n > 0 impli
ence, we have ns; < Rk = N, 1, which together with n > 0 implies
N S s

(3.94). O
Using Property 33 and Corollary 12, we can derive the optimal solution of P3.1
in (3.34).

Corollary 13 The optimal solution under centralized control for Scenario 3, de-

noted by (n} 4, Qi,&l?Q:':S.l)? is given by

137



ny,; = argmax {Fs.1(n, Q:31(”))}a Q:,3.1 = Qi,:s.l(”;.l),
n=0,1,...,Na 1

QZ3.1 = Q;:’).I(Q:,&l’ n31), (3.96)

where Noy is given by (3.73), F31(n,Q,) =11 <n, Qr, <% —n+ 1) QT>7 Qr31(n) is
given by (3.92), and Qi 5,(n, Q,) = (% —n+ 1) Q.

3.8.2  Scenario 3: OEM-lead Control: OEM Decides (), and RS Decides n and Q;

In this section, we analyze P3.2.1 and P3.2.2 formulated by (3.23) and (3.35),
respectively. The OEM and the RS make decisions in a Stackelberg setting that the
OEM decides the value of (), and then the RS decides the values of n and ;. To
determine the value of (), the OEM will reply on the prediction of RS’s response
for any given (), value.

This prediction is the solution of P1.3 in (3.23) which is given by (n] 5(Q»), @7, 5(Q:))
in Corollary 4. By observing the results in Corollary 4 and (3.63), the OEM can
derive the conditions under which the RS agrees to start remanufacturing, as the

following property shows.

Property 34 The RS will agree to start remanufacturing only if all of the fol-

lowing inequalities hold

1
P —c— (— - 1) >0, (3.97)
7
S — 1 2
2 (h}fz(l —7) + M) K, < (c’”p —c— (— - 1> cd) a, and  (3.98)
m Y
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(c”’—c— (%—1) cd>a
Jlom—e= (- 1) o)’ 2 (g =) + 82)

hp—h%)a

(1 =) + P

(7 (1-1) ).

—i—\/(c’"?’ —c— (% — 1) cd)2 a?—2 (h}%(l —v) + 7(h%—h7§)a) K,a

<Q, (3.99)

m

h%(l . ,.y) + (h;‘(’,fhzfz)a

m

Proof.  Recalling Corollary 4 and (3.63), it is easy to show that (3.97) is the
necessary condition for n? ;(@,) to be positive, and then the necessary condition for
nf (@) to be positive.

By Corollary 4, n};(Q,) can be positive only when n{ ;(Q,) > 0 which is equiv-

alent to

<h3%(1 +7) , (g — hlé)a) Q- <crp e (1 - 1) cd> aQ, + Kya < 0. (3.100)
2 2m Y

(3.98) is the necessary condition for existing real @, such that (3.100) holds. Then,
the real @, value that satisfies (3.100) is in the region determined by (3.99). O

After predicting the RS’s response, the OEM’s decision is to determine the value
of (), that maximizes the OEM’s total profit, i.e., the solution of P3.2.2 in (3.35).

This can be done by search algorithm over the region determined by (3.99).

Corollary 14 Under OEM-lead control where OEM decides Q. and RS decides

n and Q;, the optimal value of Q, for the OEM, denoted by Q; 5,5, is given by

0, if HOEM(”;?,(QB,m% Q;l.S(QE,Z&Q)? Q?,g.z) < Tlopm(n = 0),

0 .
r32, Otherwise,

Q:,B.Q -
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where (n} 5(Qr), Q1 5(Qr)) is as in Corollary 4, and Q) 4, is given by

Qg,&z = arginax {HOEM(”T.?)(QT% Q;‘K,1.3(Qr)a Qr)} .

Qr€(3.99)
The RS’s optimal response is given by (n’{_3(Q;3.2), Q:‘13(Qj32))

3.8.3 Scenario 3: OEM-lead Control: OEM Decides Q; and RS Decides n and @),

In this section, we analyze P3.3.1 and P3.3.2 formulated by (3.30) and (3.36),
respectively. The OEM and the RS make decisions in a Stackelberg setting that the
OEM decides the value of ); and then the RS decides the values of n and @,. To
determine the value of @);, the OEM will reply on the prediction of RS’s response for
any given (); value.

This prediction is the solution of P2.3 in (3.30) which is given by (n} 5(Q:), @7 »3(Q:))
in Corollary 9.

After predicting the RS’s response, the OEM’s decision is to determine the value
of @; that maximizes the OEM’s total profit, i.e., the solution of P3.3.2 in (3.36).

This can be done by search algorithm over the region c.

Corollary 15 Under OEM-lead control where OEM decides QQ; and RS decides

n and Q, the optimal value of Q; for the OEM, denoted by Q; 5 3, is given by

0, if HOEM(”Z.?;(Q?,&:«;)’ Q?,2.3(Q23.3)7 Q?,:a.z) < Hogm(n = 0),

QY5 5, otherwise,

where (15 3(Qs), Qra3(Qs)) is as in Corollary 9, and QY5 5 is given by

Q?,s.s = arg max {HOEM(n§.3(Qi)> Q:,QB(QZ')» Qz)} .

0<Q;<aT

140



The RS’s optimal response is given by (n§.3(Q;3.3), Q:‘23(Qj33))

3.8.4 Scenario 3: OEM-lead Control: OEM Decides n and RS Decides QQ, and Q;

In this section, we analyze P3.4.1 and P3.4.2 formulated by (3.37) and (3.38),
respectively. The OEM and the RS make decisions in a Stackelberg setting that the
OEM decides the value of n, and then the RS decides the values of @), and @Q;. To
determine the value of n, the OEM will rely on the prediction of RS’s response for
any given n value.

This prediction can be obtained by deriving the RS’s optimal values of (), and
(; that maximize the RS’s total profit for any given n value. We denote the RS’s
optimal response by (Q; 3 4(n), Qj34(n)), which is the solution of P3.4.1 in (3.37). If
n = 0, i.e., no remanufacturing, @), = ); = 0 by Property 7. Thus we will focus on
the case n > 1.

Recalling Property 8.2, when n > 1 is given, for any @, > 0, llzs(Q,,Q; || n)
is a linearly decreasing function of );. Thus, for any given proper (n,Q,) pair, the
optimal value of Q; is given by Q73 4(Q,,n) = (% —n+ 1) @, as proved in Property
18. Then, we obtain the upper bound of lIzs(Q,, @Q; || n) for n > 1, which is given
by Trs (@, (2 =n+1) Q.
(3.37), it suffices to obtain Q;M(n) such that

n) To compute the optimal solution for problem

Q:73'4(n) = argmax Il gg (Qr7 (% —n+ 1) Q|| n) . (3.101)

Qr20

The following property is sufficient for computing Q; 3 4(n) in (3.101).

Property 35 For any giwvenn > 0, llgg (QT, <% —n+ 1) Q-

n) 18 concave in
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Q, with a unique mazximizer give by

. c”’—chy—l)—c

Proof. For any n > 0, it can be easily shown that

Ollgs <Qr, (:/la—Qil + 1> Qr n) _ (crp _ (i _ 1) — c> n

U 1— 1 r o hu
B (hR(n( v) +y+ )+hR hR)TLQT, and
m

a

Ollgs <QT’ (% —nt 1) @ ") h (n(1=~) +y+1)  hp—hp
= - + n < 0.
Q7 a m

Hence, Ilzg <QT, (% —n+ 1) Q| n) is concave in (), with a unique maximizer
give by (3.102). O

Using Property 35, we can derive the RS’s optimal response for any given n > 1.

Corollary 16 For any given n > 1, the mazimizer of the RS’s profit function is

given by
0 if CTpSC—l—cd(l—l),
Qrsa(n) = Y nd
QVaa(n) if P >c+ ! (% — 1) 7
* n .
Q’i,3.4(n) = (; —n + 1) Qr73.4(n)’ (3103)

where Q) 5 4(n) is given by (3.102).

Proof. The proof is straightforward by using Property 35, Q, > 0 and Q; 3 4(Q,,n) =
(% —n+ 1) (., and, hence, it is omitted. O
After predicting the RS’s response, the OEM’s decision is to determine the value

of n, denoted by nj,, that maximizes the OEM’s total profit, i.e., the solution of
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P3.4.2 in (3.38). This can be done by searching over a finite region of n. The

following property defines this searching region.

Property 36 Under OEM-lead control where OEM decides n and the RS decides

Qr and Q;, the optimal value of n for the OEM, denoted by nj ,, should satisfy
0<n3, < Nao,

where Noo is given by (3.79).

Proof. The proof is similar with the proof for (3.77), and hence, it is omitted. O
Using Property 36 and Corollary 16, we can derive the optimal solutions of P3.4.1
in (3.37) and P3.4.2 in (3.38).

Corollary 17 Under OEM-lead control where OEM decides n and the RS decides

Qr and Q;, the optimal value of n for the OEM, denoted by n} 4, is given by

N3, = ag% m?vX {Tlogm (n, Q:,3.4(”)7 Q;‘73'4(n))}, (3.104)
n= glyeeey 2.2

where Ny is given by (3.79), QF34(n) and Q;34(n) are as in Corollary 16.

The RS’s optimal response, denoted by (Qy 34, Q;3.4), 18 given by

Q:f,g.z; = Q:73_4(n§.4), QZ3.4 = Q;3.4(n§_4). (3.105)

3.8.5 Scenario 3: OEM-lead Control: OEM Decides n and @), and RS Decides Q;

In this section, we analyze P3.5.1 and P3.5.2 formulated by (3.24) and (3.39),
respectively. The OEM and the RS make decisions in a Stackelberg setting that the

OEM decides the values of n and @,, and then the RS decides the value of ();. To
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determine the values of n and @),, the OEM will reply on the prediction of the RS’s
response for any given (n,@Q,) pair.

This prediction is the solution of P1.4.1 in (3.24) which is given by Q7 ,(n, Q,) =
(g o+ 1) 0,

After predicting the RS’s response, the OEM’s decision is to determine the values
of n and @, that maximize the OEM’s total profit, i.e., the solution of P3.5.2 in (3.39),

i.e., the OEM’s problem is given by

n

max HOE]\J (n, Qr, (; -—n—+ 1> QT) (3106)

nezZ*, Q>0

s.t. al > <E + 2) Q,.
8

The following property is helpful for calculating the optimal values of n and @,
for the OEM.

Property 37 For anyn > 1, llppy <n,Q,«, (% —n—+ 1) QT> s concave in Q,
with a unique maximizer given by

d

¢ — P T+ <

2
R, (n(%—l) +%—1)+h}"\/]+h?wn

U ss(n) = a. (3.107)

Proof. For any n > 1, it is easy to show that

ons (10,000 ()
= (P =P+ hyT+—|n
BQT M ~y
2
hqfu(ﬂ(i—l) +§—1>+h§w+h§¢4n )
a nQ@,, an
u 1 2 2 r n
0Q? - a n < 0.
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Hence, Iogy (n, Qr, <% —n+ 1) Qr> is concave in (), with a unique maximizer
given by (3.107). O

The constraint in problem (3.106) implies that, for any given n > 1, @, should
satisfy @, < %‘I—IQ Hence, for any given n > 0, we can characterize the optimal value

of @, for the OEM.

Corollary 18 Under OEM-lead control where OEM decides n and @), and RS

decides Q;, for any n > 0, the optimal value of Q, for OEM is given by

0, if n=0,
Qr35(n) = 2,3.5(”% if Q273_5(n) < ga_zz and n >1, (3.108)
%(1_127 iof Q?,3.5(”) > 7;_12 and n > 1.

Proof. The proof is straightforward by using (3.106) and Property 37, and hence,
it is omitted. |

By corollary 18, Ilpgu (n, Qr35(n), <% —n+ 1) Q;3_5(n)> is the upper bound

of

Hoem (n, Qr, <% —n+ 1) Qr)) for any (n,Q,) pair. To computing the optimal

value of n for the OEM, it suffices to obtain nj ; such that

n3 5 = argmax {HOEM (n Qr35(n), <% —n+ 1) Q:,%(n)) } . (3.109)

nez*
The following property defines an upper bound for the search region of n.

Property 38 Under OFEM-lead control where OEM decides n and (), and RS
decides Q);, the optimal value of n for the OEM should satisfy

0 S 7’L§5 S NQ_Q, (3110)
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where Noo is given by (3.79).

Proof. The proof is similar with the proof for (3.77), and hence, it is omitted. O

Property 38 helps to limit the search region of n value: n =0,1,..., Nos.

Using Property 38 and Corollary 18, we can derive the optimal solutions of P3.5.1
in (3.24) and P3.5.2 in (3.39).

Corollary 19 Under OEM-lead control where OEM decides n and @), and RS
decides Q;, the optimal values of n and Q, for the OEM, denoted by n3 5 and Q7 55,

respectively, are given by

N s = argmax {HOEM (n, Qr35(n), (% —n+ 1) Q:73'5(n)) } . (3.111)

n=0,1,...,N2. 2

where Nao is given by (3.79), Q 35(n) is as in Corollary 18.

The RS’s optimal response, denoted by Qj 55, is given by

*

* ns. * %
Qizs = (% — N3t 1) Q735 (3.112)

3.8.6  Scenario 3: OEM-lead Control: OEM Decides n and Q); and RS Decides Q).

In this section, we analyze P3.6.1 and P3.6.2 formulated by (3.31) and (3.40),
respectively. The OEM and the RS make decisions in a Stackelberg setting that the
OEM decides the values of n and @);, and then the RS decides the value of @),.. To
determine the values of n and @;, the OEM will reply on the RS’s response for any
given (n,Q);) pair.

This prediction can be obtained by deriving the RS’s optimal value of (), that
maximizes the RS’s total profit for any given (n, Q;) pair, i.e., the solution of P2.4.1

in (3.31), and the solution is given by Q;,3(n, @;) in Property 28.
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After predicting the RS’s response, the OEM’s decision is to determine the values
of n and ); that maximize the OEM’s total profit, i.e., the solution of P3.6.2 in (3.40),
which can be obtained by searching over the region 0 < @Q; < aT, n=0,1,..., Ny,

where Ny is given by (3.79).

Corollary 20 Under OEM-lead control where OEM decides n and Q); and RS
decides Q,, the optimal (n,Q;) pair for the OEM, denoted by (n3g, Qi s¢), i given
by

(36 QZ:«;.G) = argmax {Moem (7% Qi Qif,z.g(n, Qi))}, (3.113)

n=0,1,...,Na.2,0<Q; <aT

where Nao is given by (3.79), Qr.43(n, Q) is as in Property 28.

The RS’s optimal response, denoted by Q; 54, 15 given by

Qras = Qras(nse, Qise)- (3.114)

3.8.7 Scenario 3: OEM-lead Control: OEM Decides QQ, and QQ; and RS Decides n

In this section, we analyze P3.7.1 and P3.7.2 formulated by (3.26) and (3.41),
respectively. The OEM and the RS make decisions in a Stackelberg setting that the
OEM determines the values of @), and @);, and then the RS determines the value of
n. To determine the values of (), and @;, the OEM will reply on the RS’s response
for any given (Q,, Q);) pair.

This prediction can be obtained by deriving the RS’s optimal value of n that
maximizes the RS’s total profit for any given (Q,, ;) pair, i.e., the solution of P1.5.1
in (3.26), and the solution is given by n} ;(Q;, @,) in Property 22.

After predicting the RS’s response, the OEM’s decision is to determine the

(Qi, Q) pair that maximizes the OEM’s total profit, i.e., the solution of P3.7.2
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in (3.41). Property 31 defines the search region for the optimal value of @, for a

given @);. The searching region for Q; is from 0 to a7

Corollary 21 Under OEM-lead control where OEM decides Q, and Q); and RS
decides n, the optimal (Q,,Q;) pair for the OEM, denoted by (Q; 37, Q5 37), is given

by

(Q:,:s.?a Q;'k,3.7> = arg max{ arginax Hopn (n]5(Qs, Qr), Qi @)}, (3.115)

0<Q;<aT 0<Qr<min{aT—-Q;,Qiv}

where 1 5(Qi, Q) is as in Property 22.

The RS’s optimal response, denoted by nj -, is given by

N3, = ”T.E)(Qi,&% st.?) (3.116)

3.9 Numerical Experiments

In this section we provide numerical results for two types of remanufacturable au-
tomotive parts to demonstrate the performance of different system settings. These
two types of automotive parts are engines and transmissions. Engines are difficult
and expensive to remanufacture, whereas transmissions are easier and cheaper to
remanufacture. For engines, the life cycle is short, and the demand is low. The
difference between the unit cost for a new engine and the unit cost for a remanufac-
tured engine is low. For transmissions, the life cycle is longer, and the demand is
larger. The difference between the unit cost for a new transmission and the unit cost
for a remanufactured transmission is substantial. The remanufacturing yield rate for
engines is lower than that for transmissions. Thus the system benefit from remanu-
facturing transmissions is higher than that from remanufacturing engines. For both

of these two different types of remanufacturable parts, we will demonstrate the best
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settings in different scenarios.
3.9.1 Parameter Settings

Our parameters are from an OEM in the automotive industry. We masked the
numbers for confidential purpose. For the missing parameters, we use factorial design
to consider different levels. The parameter settings are summarized in Table 3.3. We
consider three levels for the fixed shipment cost from the OEM to the RS, i.e., K,
(25, 50 and 100), and two levels for the fixed remanufacturing setup cost incurred
by the RS, i.e., K, (100 and 200). For engines, we consider three levels of unit
remanufacturing cost ¢ (24, 26.25 and 28.125), and three levels of the remanufacturing
rate m (600, 900 and 1350). For transmissions, we consider three levels of unit
remanufacturing cost ¢ (16, 17.5 and 18.75), and three levels of the remanufacturing
rate m (1500, 2250 and 3375). As a result, we consider a total of 54 problem instances

for each type of automotive parts.

Table 3.3: Parameter settings.

T PP e Ry Ry R, Ny hg | T a 0

Engine 77.91 38 | 37.5 | 4125 | 012%™ | 0.12% P | 2.625 | 0.12% ¢ | 2.625 | 10 | 600 | 0.8

Trans. | 171.4125 | 58.5 | 25 | 3.125 | 0.12xc™ | 0.12* ¢ | 1.875 | 0.12xc | 1.875 | 15 | 1200 | 0.95

3.9.2 Ezxperimentation

Given a problem instance, we solve the optimization problems for a total of 17
system settings summarized in Table 3.2, which belong to 3 different scenarios. For
each scenario, we check the performance of each system setting by comparing its
optimal profit with the optimal profit under centralized control. Let us denote the

optimal profit of Setting j in Scenario ¢ by II¥., « = 1,2,3, j = 1,2,---,5 for

Z?],
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Scenarios 1 and 2, and 7 = 1,2,---,7 for Scenario 3. Then, we use the following
metric to denote the performance of each setting:

I,
where II7; is the optimal profit of the centralized control setting in Scenario i, i =
1,2,3. Thus, the smaller value the above formula has, the better performance its

corresponding setting has. To evaluate the impacts of different settings on the profits

of the OEM and the RS, we use the following metrics

* * * *
HOE]VLi,l - HOEM,i,j and RSi1 — YRS

)

* *
HOEM,i,l HRS,i,l

respectively, where I15 5., (Il;g, ;) is the OEM’s (RS’s) profit under centralized
control in Scenario 4, i = 1,2,3, and I gy, + (I, ;) is the OEM’s (RS’s) profit
of Setting j in Scenario 7, ¢ = 1,2,3, j = 1,2,---,5 for Scenarios 1 and 2, and
j=1,2,--- 7 for Scenario 3.

In Tables 3.4 and 3.5, we report the average performance of each setting for
engines and transmissions, respectively. Based on Tables 3.4 and 3.5, we observe

that the results for engines and transmissions are rather consistent:
e For Scenario 1 (Q, is exogenous), we observe that

— under Setting 2 (OEM-centric Control) and Setting 3 (RS- centric Con-
trol), at least one agent will not enter the market: the RS will not enter the
market under Setting 2 (OEM-centric Control), while the OEM will not
enter the market under Setting 3 (RS-centric Control). That is because
when one agent has all the power on decision variables, the decentralized

control will fail the market by neglecting the profit and requirement of
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the other agent who does not have any power.

— under Settings 4 (OEM-lead control where OEM determines n) and 5
(OEM-lead control where OEM determines @;), both of which are OEM-
lead controls where the power on decision variables is divided among the

agents, the system can achieve channel coordination.

From the above observations, we can conclude that, for the situation that the
exchange lot size (), is exogenous, channel coordination can be achieved under
OEM-lead control strategies as long as the RS can determine one decision

variable.
e For Scenario 2 (Q); is exogenous), we observe that

— under Setting 2 (OEM-centric Control), the RS will not enter the market.

The reason is same as in Scenario 1, Setting 2.

— under Setting 3 (RS-centric Control), the RS’s profit is higher than the
RS’s profit under centralized control, while the OEM’s profit is lower than
the OEM’s profit under centralized control. Although it is RS-centric
control, the RS cannot take all the market profit. The reason is that, by
the inventory conservation constraint for the RS in (3.5), @, restricts the

values of n and @),, and thus limits the RS’s power.

— under Settings 4 (OEM-lead control where OEM determines n) and 5
(OEM-lead control where OEM determines @), both of which are OEM-
lead controls where the power on decision variables is divided among the
agents, the OEM’s profit is higher than the OEM’s profit under centralized
control, while the RS’s profit is lower than the RS’s profit under centralized

control. That is because, under OEM-lead control strategies, the OEM
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can predict the RS’s decisions and then lead the game, i.e., the OEM
has more power on the decisions. However, The OEM cannot take all the

market profit since the RS has some power to restrict the OEM’s decisions.

— under Setting 5 (OEM-lead control where OEM determines @,.), the system-
wide total profit is close to the optimal system-wide total profit under
centralized control. The performance of Setting 5 is the best among all

the OEM-lead decentralized control strategies.
e For Scenario 3, we observe that

— Setting 3 (OEM lead control where OEM determines ); and then RS
determines n and (),) has the best performance among all the OEM-
lead decentralized control strategies in terms of resulting the system-wide
total profit which is close to the optimal system-wide total profit under

centralized control.

— Settings 5 (OEM lead control where OEM determines n and @, and then
RS determines @;), 6 (OEM lead control where OEM determines n and Q;
and then RS determines @) and 7 (OEM lead control where OEM deter-
mines @; and @, and then RS determines n) also have good performances

in terms of providing near centralized optimal solutions.

— Settings 2 (OEM lead control where OEM determines ), and then RS
determines n and @;) and 4 (OEM lead control where OEM determines
n and then RS determines @); and @,) do not have good performances:
Setting 4 is the worst, with 23.33% deterioration on average for engines
or 13.83% deterioration on average for transmissions. Setting 2 is the
second worst, with 10.93% deterioration on average for engines and 5.52%

deterioration on average for transmissions.
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From the above observations, it is better for the system to let the OEM deter-
mine ;. The explanation is as follows: Although the system-wide inventory
related costs, shipment related cost and fixed cost are different with that in-
curred by the OEM, the system’s main goal, i.e., to efficiently remanufacture
used-items to satisfy the demand, is consistent with the main goal of the OEM.
To achieve that goal, the initial lot size sent to the RS, i.e., );, is an essen-
tial policy parameter. Indeed, by the inventory conservation constraint for the
RS in (3.5), Q; actually restricts the total amount of remanufactured-items
sent back to the OEM by restricting the values of n and @),. The OEM has
the intention to send large (); to the RS to obtain enough remanufactured-
items as well as to get rid of used-items returned from customers. Once @);
is decided, the RS will always utilize the initial batch efficiently due to profit
consideration. Thus, all the settings in which the OEM can decide (); have
fine performance, and the most efficient setting is that the OEM determines
@; and then the RS determines n and (),.. Another well-performed setting, in
which the OEM cannot determine @);, is that the OEM can force the RS to
order large ();, as in Setting 5. In Setting 5, the OEM determines n and Q,,
and thus determines the total amount of remanufacture-items that the RS has
to provide. In this setting, the RS has to order large (); to satisfy the total

demand of remanufactured-items.

In the settings with bad performance, the RS can decide (); as well as one of n
and @,. Then the RS can actually determine the total amount of remanufactured-
items that send to the OEM. Since the RS’s profit is from selling remanufactured-
items to the OEM, instead of satisfying the customer’s demand directly, the

RS will not take into consideration how to satisfy the demand efficiently by
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the system expects.

using remanufactured-items. Thus, the RS’s decision might be far from what

Table 3.4: Average performance of each setting for engine.

. . Hf,lfnj,j H*OEM,i,l_H*OEM,i,j H}k%s,z‘,l_n*Rs,i,j
Scenario | Setting I TR Mo

1 2 \ —5.66% \
3 \ \ —46.13%
4 0 0 0
5 0 0 0

2 2 \ —57.57% \
3 2.48% 3.59% —18.09%
4 2.28% —0.91% 63.56%
5 1.41% —0.85% 40.72%

3 2 10.93% 3.34% 66.29%
3 0.21% 0.47% —2.11%
4 23.33% 20.12% 46.07%
5 1.08% —0.41% 13.81%
6 1.07% —0.41% 13.73%
7 1.18% —0.4% 14.65%

3.10 Conclusions

In this section, we consider a basic game-theoretic setting for seed stock planning
in a batch remanufacturing environment with two agents including an OEM and a
RS. The seed stock, batching decision, and the initial batch size for remanufacturing
are characterized by variables (), @, and Q);, respectively, along with the number of
consecutive remanufacturing replenishments which is characterized by the variable
n.

We consider three different scenarios that indicate three different practical situa-

tions: the exchange lot size (), is exogenous due to some technological or operational
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Table 3.5: Average performance of each setting for transmission.

: : 7, 11 TS erin OB Mhs,ii—Trs,,
Scenario | Setting I —— Mooy

1 2 \ —1.8% \
3 \ \ —172.94%
4 0 0 0
5 0 0 0

2 2 \ —1.95% \
3 2.2% 2.85% —27.85%
4 1.05% —0.43% 72.56%
5 0.74% —0.39% 50.8%

3 2 5.52% 2.5% 88.7%
3 0.03% 0.02% 0.11%
4 13.83% 12.41% 52.32%
5 0.33% —-0.13% 14.08%
6 0.35% —0.13% 14.51%
7 0.36% —0.12% 14.86%

constraint; the initial lot size ); is exogenous due to some technological or opera-
tional constraint; and both (), and Q; are decision variables. For each of the above
scenarios, we investigate both centralized control strategies and OEM-lead decen-
tralized control strategies in the Stackelberg setting. We first evaluate the properties
of the profit functions, and then we propose efficient methods for obtaining optimal
solutions, i.e., optimal control strategies. We perform numerical experiments for two
different types of automotive parts: engines and transmissions. The numerical inves-
tigation reveals the settings with good performance as well as the settings with bad
performance. By analyzing our numerical results, we find that, in order to pursue
high system-wide total profit, it is better to have the OEM determine the initial lot
size @); directly or indirectly. Our work provides insights for how the decision domain
structure impacts the system performance and helps to identify the efficient one. The

results provide managerial insights for both the OEM and the RS in making deci-
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sions on seed stock level, initial batch size for remanufacturing, exchange lot size and
remanufacturing frequency, under different technological or operational conditions.
An important direction for future research is to investigate the seed stock planning
problem in a stochastic environment with stochastic return process and/or random
remanufacturing yield. Another important future research direction is to investigate
potential channel coordination strategies for the settings in which system-wide profit
maximization cannot be achieved in this section. Last but not least, it is worthwhile
to investigate different types of decentralized control strategies including RS-lead

decentralized control strategies or Nash setting.
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4. CHANNEL COORDINATION STRATEGIES IN THE REVERSE SUPPLY
CHAIN

4.1 Overview of Section 4

This section deals with coordination strategies for the OEM and CC. The problem
studied here may be referred as reverse channel coordination problem due to its re-
lationship with the traditional channel coordination problem (Toptal and Cetinkaya
(2008)). Used-items arrive to the CC according to a stochastic process which is
referred as the return process. The CC consolidates used-items using the return-
driven threshold policy, and then sends them to the OEM in a large load. Since
the OEM and CC have different cost considerations and make decisions individu-
ally, coordination mechanisms are useful such that the system-wide total profit is
maximized. First, the return process is modeled as a general renewal process, and
we prove that when the return flow is exogenous, an all-unit-premium mechanism
is able to coordinate the system. We derive analytical expressions for calculating
the parameters representing the coordination mechanism. We find conditions under
which these analytical expressions lead to closed-form solutions. Then, we apply
our results considering several special cases including the cases of deterministic re-
turn process, renewal return process with unit load, and renewal return process with
exponentially distributed loads. For these special cases, we also extend our results
to the situation that the return rate depends on the collection price. When the
return rate depends on the collection price, we prove that all-unit-premium mech-
anism cannot guarantee the centralized optimal profit, i.e., channel coordination.
However, by employing all-unit-premium and franchise fee mechanisms together, the

channel coordination objective can be achieved. Analytical and numerical examples
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are provided to illustrate the profit improvement due to coordination.
4.2 Problem Motivations and Related Literature

Inspired by our results in Section 3, we now consider a fundamental coordination
problem in the reverse supply chain. This problem is in fact a generalization of the
problems studied in Sections 2 and 3 in the sense that a stochastic batch processing
environment is modeled for channel coordination purposes. As defined by Toptal and
Cetinkaya (2006), channel coordination is the approach to identify the inefficiencies
in decentralized solutions for the purpose of aligning the individual incentives for
multiple parties with those of the centralized solutions. That is, the decentralized
solution may be improved such that: "(i) it results in the same values for the decision
variables as the centralized solution; and (ii) it suggests a mutually agreeable way of
sharing the resulting profits" (Toptal and Cetinkaya (2006); Toptal and Cetinkaya
(2008)).

As we mentioned in the previous sections, the OEM often establishes a reman-
ufacturing program to recover used-items. However, in general, the OEM does not
necessarily collect used-items directly. Consumers often prefer the convenience of
returning used-items to agents who are in close proximity (see Savaskan et al. (2004)
for a systematic analysis of used-item return practices). Thus, retailers or third par-
ties that are close to consumer markets usually act as CCs, where used-items are
gathered, sorted and then sent in batches to OEMs.

For example, supermarkets, such as Walmart, pay customers for empty bottles;
and mobile phone companies, like AT&T and TMobile, collect used iPhones or other
Apple-brand products with attractive prices. The CC obtains revenue by selling
remanufacturable used-items to the OEM. These used-items enter the production

line to be remanufactured. Since the cost of remanufacturing of used-items, which are
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actually semi-manufactured-goods, is usually lower than the cost of manufacturing
of raw materials, the OEM gains profits from remanufacturing.

Due to different cost considerations, the OEM and the CC prefer different batch-
ing strategies for sending used-items. Moreover, in many situations, the CC may
decide the collection price of used-items, and then may manipulate the return flow
in a way that might not be preferred by the OEM. Thus, effective coordination
strategies are useful to achieve system-wide profit maximization.

In this context, we consider a channel coordination problem between the OEM
and CC in a stochastic environment. The OEM is the leader who determines the
purchase price of the used-item. After observing the purchase price of used-item, the
CC decides the batching strategy and the collection price.

The coordination problem introduced and examined here is closely related to
two streams of previous research. The first stream of research deals with channel
coordination strategies in traditional (i.e., forward) supply chains, while the second
stream deals with channel coordination strategies in closed-loop supply chains.

For a comprehensive review of the existing literature in the first stream, we refer
the reader to several systematic literature reviews including Tsay et al. (1999), Ca-
chon (2003), Arshinder et al. (2011) and Li and Wang (2007). It is worth noting that
the coordination strategies investigated here are inspired by quantity discount pric-
ing strategies investigated by Monahan (1984); Banerjee (1986); Lee and Rosenblatt
(1986); Goyal (1987); Joglekar (1988); Monahan (1988); Weng and Wong (1993);
Weng (1995a); and Weng (1995b) while considering deterministic demand settings
in traditional supply chains. More recent research work on coordination strategies
focuses on the traditional newshoy setting with stochastic demand (Cachon and Lar-
iviere (2001, 2005); Gerchak and Wang (2004); Ozer (2006); Ozer et al. (2007, 2011);

Taylor (2002); Taylor and Xiao (2010)). Inspired by the work on coordination strate-
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gies in traditional supply chains, we investigate how the coordination ideas can be
applied in reverse supply chain with stochastic return flows.

For comprehensive reviews of the existing literature on channel coordination
strategies in closed-loop supply chains, the reader is referred to Corbett and Savaskan
(2002), Debo et al. (2004) and Govindan et al. (2013). Most of the current papers
in this area focus on the coordination and integration of forward and reverse flows
(Ketzenberg et al. (2003); Nativi and Lee (2012)); or on coordination strategies that
focus on forward flows (Bhattacharya et al. (2006); Vorasayan and Ryan (2006); Liu
et al. (2009); Dobos et al. (2013); Pishchulov et al. (2014)). That is, the proposed
pricing strategies are applied for the remanufactured products, but the focus is on
the resale channel, and the resulting price affects the demand instead of the return
flow. Savaskan et al. (2004) focus on the collection channel selection problem and
model a decentralized system considering three options: (1) the manufacturer col-
lects returns, (2) the retailer collects returns, and (3) the third party collects returns.
Option (2) is the most efficient one for which a two-part tariff mechanism is proposed
to achieve channel coordination. However, they do not include operating costs, e.g.,
inventory holding cost, transportation cost etc., and they assume deterministic re-
turn flows. Also, all the other papers considering channel coordination problems in
the reverse supply chain ignore inventory and transportation costs and only focus on
the OEM’s profit.

The coordination problem considered here focuses on the reverse channel con-
sisting of the OEM and CC observing a general renewal return processes. The CC
in charge of collection activity sends used-items to the OEM in batches and earns
revenue for each unit of used-item delivered. In deciding the batch size of used-items
sent to the OEM, the CC adopts the return-driven threshold policy introduced in

Section 2. Each coming batch of used-items from the CC enters the OEM’s produc-
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tion line immediately. Since the production rate is finite, each batch of used-items
generates inventory cost. Thus, the OEM prefers fast delivery with small batches.
However, every delivery is associated with a fixed cost for the CC, and, thus, the
CC’s optimal delivery batch size may be larger than what the OEM prefers. We also
consider the situation in which the CC can determine the collection price and, in
turn, can influence the return flow. From the perspective of the OEM, high return
rate, which usually requires high collection price, means high opportunity for sav-
ings from remanufacturing of used-items. However, the CC is not always willing to
increase the collection price. Hence, our goal is to design coordination mechanisms
for a win-win solution for both the OEM and CC while maximizing the system-wide
total profits.

The remainder of this section is organized as follows. In Section 4.3, we model the
profit maximization problem for general return flows. In Section 4.4, we propose an
effective coordination mechanism, and in Section 4.5, we investigate the coordination
mechanism for a specific class of renewal return processes, and then extends the
results to consider the case that the CC can determine the collection price. In
Section 4.6, we examine some special cases to show how the coordination mechanism
works. Section 4.7 investigates the cost saving due to coordination, and provides

several numerical examples. Section 4.8 summarizes the results of this section.
4.3 Model Basics

We consider a single-OEM-single-CC system in a stochastic environment. The
OEM produces single type product that can be produced from either remanufactur-
ing of used-items or manufacturing of new materials. The cost of remanufacturing
is lower than the cost of manufacturing. Thus, remanufacturing brings the OEM

savings. The OEM pays the CC the unit price for each unit of used-item. Used-
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items are collected, sorted and cleaned by the CC. The CC incurs holding cost of
used-items as well as fixed shipment cost for each delivery. Our model is similar to
the model studied by Ruiz-Benitez et al. (2003), in which the model is under the
control of a centralized processing center. We investigate the channel coordination
problem where the OEM is the leader who determines the purchase price of the used-
item. After observing the purchase price of used-item, the CC decides the batching

strategy and the collection price. The system setting is illustrated in Figure 4.1.

Production Remanufacturable Return

line OEM used-items cC Process

Figure 4.1: An illustration of the channel coordination problem.

The inter-arrival time between successive return loads is a random variable de-
noted by Y;, ¢ = 1,...,n, where Y;’s are independent and identically distributed
(i.i.d.) with E[Y;] = 1/A. We denote the arrival time of the i return load by S;,
t=1,...,n,and S; = 22:1 Y;, and hence, Wy(t) = sup{i : S; <t} is the number of
return loads by time ¢. Each return load contains a random number of used-items
L;,i=1,...,n, where L;’s are independent and identically distributed (i.i.d.) with
E[L;] = p. Thus, the arrival rate of used-items are given by r = Au. We denote
the cumulative amount of used-items immediately after the *” return load by R;,
i=1,...,n,and R; = 22:1 L;, and hence, Wh(y) = sup{i : R; < y} counts the
maximum number of return loads consolidated up to y units. Hence, the cumulative

amount of used-items up to time ¢ is a renewal process denoted by {W(¢),t > 0},
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and W (t) = Z}le(t) L;. The CC adopts the return-driven threshold policy that sends
all the accumulated used-items to the OEM whenever the on hand inventory level of
used-items exceeds a threshold value ). We consider threshold policy here because
it has been proved that threshold policy superior to its alternatives (Cetinkaya et al.

(2006)). The inventory profiles are depicted in Figure 4.2.

R
Q ,,,,,,,,,,,,,,,,,,,,
Used-item inventory Ryp==========="
profile at the CC 23 A ——
i
Ri| - |

1
S1 S2 S3 S4

Used-item inventory
profile at the OEM

Figure 4.2: A realization of inventory profiles for the channel coordination problem.

The time between two successive batch deliveries is defined as a cycle. We assume
that the demand rate of the products is much higher than the return rate of used-
items. This is intuitive since not every sold products will be returned, and not
all returned items are remanufacturable. Here, we do not consider the yield issue
and call remanufacturable items as used-items. However, it is easy to include yield

issue into our problem by timing the return rate by the yield rate. Our goal is to
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design effective coordination mechanisms in a stochastic environment. The notation
is summarized in Table 4.1.

The inventory profile for the CC is actually same as that of the retailer in ship-
ment consolidation problems (see Cetinkaya and Bookbinder (2003), Cetinkaya et al.
(2008)). The return flow here is equivalent to the demand flow in shipment consol-
idation problems, and the inventory cost here is equivalent to the waiting cost. As

shown in shipment consolidation literature, the expected cycle length is given by

Bl = 2D+ (1)

and the expected batch size sent to the OEM is given by

E[Rwy @)+ = pE[W2(Q) + 1. (4.2)

Next we derive the profit functions for the OEM and CC, respectively.
4.3.1 Profit Function of the CC
Let E[llcc(Q)] denote the CC’s long-run average expected total profit per unit
time, which is a function of the policy parameter (). By renewal reward theory (Ross
(1996), Page 133), we have

E[CC’s Cycle profit]
E[Cycle length]

Ellce(Q)] = (4.3)

For the CC, the expected cycle profit consists of three main components:

(i) expected revenue from selling used-items to the OEM, which is given by

E[(Poem — Poc — ) Rwy(@y+1] = (Poem — Pec — v)uE[W2(Q) + 1],
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Table 4.1: Notation for channel coordination problem.

Q Quantity-based operating parameter under return-driven threshold pol-
icy

Pogn Unit purchase price paid by the OEM to the CC for each unit of used-item

A All-unit premium policy parameter, i.e., the premium that the OEM pays
the CC

Poe Unit collection price

Y, Inter-arrival time between the i — 1% return load and the i** return load
with E[Y;] = 1/A, and Y} is the time of arrival for the fist return load in
a cycle

S; Arrival time of the " return load, S; = Z;Zl Y;

Wi(t) Number of return loads by time ¢, Wi (t) = sup{i : S; < t}

L; Number of used-items in the 4" return load with E[L;] = p and
Var(L;) = s

R; Cumulative amount of used-items immediately after the it" return load,
R; = Z;:l L;

Ws(y) Maximum number of return loads consolidated up to y units, Ws(y) =
sup{i: R; <y}

W(t)  Cumulative used-items up to time ¢, W (t) = Zivill(t) L;

r Return rate of used-items (unit/unit time), r = Au

m Production rate of the OEM (unit/unit time)

T Unit price of serviceable part ($/unit)

c Unit remanufacturing cost ($/unit)

K Fixed operational cost of each delivery incurred by the CC

v Variable transportation cost ($/unit)

n The CC’s minimum profit per unit time allowed ($/unit time)

h%, Used-item inventory holding cost incurred by the OEM ($/unit/unit
time)

“ Used-item inventory holding cost incurred by the CC ($/unit/unit time)

I[Morym  The OEM’s total profit per unit-time

Moo The CC’s total profit per unit-time

II The system-wide total profit per unit-time
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where the equation holds by (4.2);
(ii) fixed operational cost which is given by K;

(iii) expected holding cost which is given by

Wa(Q) [ 2@
WeE | Y RYi| =htE |E | Y RiYin|Wa(Q)
=1 i=1
1
= heE | SE |\ B+ Bo+ -+ Rusq) W2(Q)”
he
=5 Blut2p 4+ Wa(Q)]
_ hen g [Wz(@ (WQ(Q)H)]
A 2

u
=B (B (@) + 1] — BIWa(Q) +1]].

The method used here to calculate the expected holding cost per collection cycle
can also be used to calculate the expected waiting penalty cost per consolidation
cycle considered by Cetinkaya et al. (2008). If we interpret our R; as the cumulative
demand after the " order, the expected cumulative inventory held per collection
cycle in our problem is equivalent to the expected cumulative customer waiting per
consolidation cycle considered by Cetinkaya et al. (2008). While Cetinkaya et al.
(2008) rely on a renewal type equation to obtain the expression for expected waiting
penalty cost, our method relies on the first and second moments of W3(Q). As
we demonstrate momentarily, if the variance of W5(Q) is a linear function of the
expectation of W5(Q), then we have analytical expressions for profit functions, their
maximizers, and parameters for channel coordination mechanisms.

Recalling (4.1), and using (i), (ii), and (iii) in (4.3), the long-run average expected
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total profit per unit time for the CC is given by

Blllec @) =3t FPoru = Poe =) = ppiry

b (E[Wa(Q) + 1)
B (E[Wz(Q)H] ‘1)

Since E[(W2(Q)+1)*] = (E[W2(Q) +1])* + Var(W,(Q) + 1), the above equation can
be rewritten as follows

ch _ ek p

Ellec(Q)] = Au(Poem — Poc —v) + 2 E[W5(Q) + 1] 2

B huw Var(Wy(Q) + 1)
2 E[Wy(Q)+1]

[W2(Q) +1]

(4.4)

By (4.4), we observe that E[llc¢(Q)] only contains the first and second moments
of WQ(Q)

4.3.2  Profit Function of the OEM
Let E[llogn(Porn)] denote the OEM’s long-run average expected total profit
per unit time, which is a function of the policy parameter Pogy,. By renewal reward
theory (Ross (1996), Page 133), we have

E[OEM’s Cycle profit]

Ellop(Poru)) =
[ OEM( OEM)] E[Cycle length]

For the OEM, the expected cycle profit consists of two main components:

(i) expected revenue from remanufacturing, which is given by

E (7 — ¢ = Popum) Rwy 1] = (7 — ¢ = Popm)nE [Wa(Q) + 1],

where the equation holds by (4.2);
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(i) expected holding cost which is given by

R
wp |1 Wf)ﬂi _ By E [(Rwy@)+1 + DRy +1]
M m P m 2
hiyu

= 2L (B[R] + E[Rwa@a]) - (40

In the above equation, the expression for E[Rw,)+1] is given by (4.2), and

we can calculate F [RW (Q)—i—l] as follows:

Wa(@+1\ 2 Wa@+1  \ 2
E [Ry,011) = E Z Li| =FE|FE L; ‘W2(Q)
=1 =1

Wa(@Q)

Wa(Q)+

— E|E Z Z L;L;
i= i#j i g=1, Wa(Q)+1

= [( 2(Q) +1) (1 + 5%) + 2Ci )41

= E[(W2(Q) +1) (1¥ + %) + (W2(Q) + HWa(Q)1]

= B[(W(Q) +1)" 4 + (W2(Q) + 1) 7]

= B [(W2(Q) +1)°] + B [(W2(Q) +1)]. (4.7)

Substituting (4.2) and (4.7) in (4.6), the expected holding cost incurred by the

OEM per cycle is given by

hu

o (B [(W2(Q) + 1] + (5° + ) E[(W2(Q) + 1))

Recalling (4.1), and using (i) and (ii) in (4.5), the long-run average expected total

profit per unit time for the OEM is given by

2m

B, <1 . 32>) R A B[(Wa(Q) + 1)7)
I

EMopm(Popm)| = M <7T —c¢— Popm — 5 2m  EWL(Q)+1]
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Since E[(W2(Q)+1)%] = (E[W2(Q) +1])? + Var(Wo(Q) + 1), the above equation can

be rewritten as follows

hy, s hY A
E[HOEM(POEM)] = >\,u W—C—POE]V —2— 1+— - E[WQ(Q)+1]
m 1 2m

MR Var(Wa(@) + 1)
2m  E[W3(Q) + 1]

(4.8)

Observing the long-run average expected total profit per unit time for the CC
n (4.4) and for the OEM in (4.8), both E[llcc(Q)] and E[llopy(Pogpwy)| contain
only E[W5(Q) + 1] and Var(W3(Q) + 1). For notation simplification purpose, we
denote E[W3(Q) + 1] by f1(Q) and denote % by f2(Q), and then rewrite

Ellee(Q)] in (4.4) and E[llogn(Poram)] in (4.8) as follows

Elllee(@)] = N Porys — Poc =)+ 6% = 255 — 281, Q)
—hgﬁxQ% and (4.9)
Bllloeau(Porn)] = (n— e = Popas — gt (14 ) ) - MM 1)
T ) (4.10)

The long-run average expected system-wide total profit, denoted by E[II(Q)], is
the summation of E[lloc(Q)] and E[ogn (Poem)):

EQ) = (rme-reov= 5 (14 2)) - 0

- ( et + LT ) f1(Q)

2 2m

héu  hY M \u?
- (e M) (a.11)

In this section, we formulated the model and derived the profit functions for the
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CC and OEM, respectively. Based on the profit functions, we will investigate the
coordination mechanism in the next section. Similar to Section 3, we use II(- || *) (or
Hopnm (- || *)/Tec(- || *)) to denote the profit function as the function of the variable

- when x is given, i.e., when * is treated as fixed value rather than a variable.
4.4 Coordination Mechanism for General Renewal Return Process

We denote the decentralized solutions of @ for the CC and OEM by Q% and
Q% s> respectively, and denote the centralized solution of @ for the system by Q*.

Then for any given Ppgys, we have:

Ellloo(Q)] < Ellloc(Q¢c)],  and (4.12)

E[(Q¢c)] < E[I(Q)]. (4.13)

Property 39 For any given Pogyr, the OEM’s profit is non-decreasing if central-

ized solution is adopted, compared with decentralized solution, i.e., E[lopyn (Popm||Q*)]—

EMlopm(Porum||Q%¢)] = 0.

Proof.  Since E[II(Q)] = E[llopm(Porm||Q)] + E[lloc(Q)], then by (4.13) we

have

Elopm(Popm||Qec)] + Elloc(QLo)] < EMopm(Popm||QF)] + Ellcc(QY)),

which leads to

EMopm(Poeml||Q)] — EMopm(Porm||Qbe)] = Ellcc(Qe)] — E[llec(Q*)] > 0.
(4.14)

The second inequality holds because of (4.12). O
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4.4.1 Decentralized Solution

Under decentralized control, the OEM determines the value of Pogys, and then
the CC determines the vale of (). To determine the value of Pogys, the OEM will
rely on the prediction of the CC’s response for any given Ppgjs value.

This prediction can be obtained by deriving the CC’s optimal value of () that
maximizes the CC’s profit function for any given Ppgy. Recall the CC’s profit
function in (4.9). The CC’s decentralized optimal value of Q, denoted by Q%, is

the root of dE[Iloc(Q)]/dQ =0, i.e.,

h%ﬂ /
f1< >f1(Q) (1(Q) + f1(Q)).

Hence, Q% can be obtained by solving the following equation

2 5(Q¢ 2K\
@) (14 5i0r0)) = e @15

By (4.15) we can observe that Q% does not depend on Ppgys. Then, by (4.10), we
observe that, the OEM’s profit is decreasing in Pogy. However, if Pogys is below
the entry price for the CC, which is the price that guarantees a profit per unit time
at least above n for the CC, ie., E[lloc(Q%a||Porm)] = 1, then the CC will not

enter the market. Denote P5y,, as the entry price. The value of Popys has to satisfy

Popym > Phpy(Qbc)
h“ K

=P
oo Q)

h¢ h¢
+ 35 h (@) = 35 F(QEc) + 50 (416)

Thus, the OEM’s optimal value of Pogar, denoted by Pép,,, is given by P&, (Q%.)

n (4.16). Then, under the OEM-lead decentralized control, the CC can take its min-
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imum allowed profit 7, and the OEM can take all the rest profit in the system.

4.4.2  Coordination Mechanism

We let Iopn(Popm) = EMlopm(Poeum||Q%)] — EMopm(Posum||QEc)], then
Ioger (Pogar) is the profit increment for a given Pogy when centralized solution of
Q, i.e., Q*, is adopted. By Property 39, Iopn(Pogy) > 0 for any value of Pogy.
In order to induce the CC to adopt Q*, the OEM needs to adjust P3,,, i.e. pays
the CC some extra money, i.e., premium for each unit of used-item, denoted by A,

such that
E[HCC(Q*H(PgEM + A))] > E[HCC(QdCCHPgEM)]'

Recalling the CC’s profit function in (4.9), the above inequality is equivalent to
MA > EMlec(Q¢cl| Popw)] — EMec(Q*||Pog)].

We define the "break even premium", denoted by A(BE), as the minimum value
of A such that the the CC agrees to adopt centralized solution. Then A(BE) is

given by
1
A(BE) = oV (EMoc(QEcPopm)] — Ellec(Q|I1PSgm)]) - (4.17)
By (4.14 ) and (4.17), we have

EMopm(PopnllQY)] — EMopy (Popu||QEc)] = AA(BE).
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By (4.10), the above inequality is equivalent to

EMopm(Pggy + ABE)QY)] > EMopum (P pnllQéc))-

Thus, the OEM’s profit increases under this all-unit-premium coordination mech-
anism. Actually, A is a pivot that decides how the profit is divided between the OEM
and CC. A(BE) is the lower bound of A. The upper bound of A can be obtained

by solving the following inequality

EMopn(Pogy + AllQY)] > EMopn(PSpy||Qbe)),

which implies that the OEM will always set A at the value with which its profit
is, at least, non-decreasing. Substituting the OEM’s profit function in the above

inequality, we have

A<

sl

(E[HOEM(PgEMHQ*)] - E[HOEM(PgEMHQéC)])

Tonm(Pogar)- (4.18)

We conclude this section by the following all-unit-premium mechanism that can
coordinate the system:

All-unit-premium mechanism: the OEM pays the CC the premium of A for
each unit of used-item if the CC sends used-items in a batch whenever the inventory
of used-items exceeds Q*, where A € [A(BE),A]. A(BE) and A are given by (4.17)
and (4.18), respectively.

It is hard to obtain the closed-form expressions for Q% and Q*, if not impossible,
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due to the complicated profit expressions. Thus, it is also hard to obtain the closed-
form expression for the coordination parameter A. However, for a class of renewal
return processes, we can obtain the closed-form expressions for the optimal solutions.
We discuss that in the following section in which we also extend the model to consider

price-dependent return flows.
4.5 Sufficient Conditions for Channel Coordination Mechanisms in Closed-form

In this section we will focus on a class of renewal return processes and derive
closed-form optimal solutions. This class of renewal return processes satisfies the

following two conditions:
Assumption 1 Var(Wy(Q)+1) = aE[W2(Q)+1]+ 5, where a and [ are constants;
Assumption 2 f1(Q) = E[W,(Q) + 1] has inverse function. i.e., f; ' exists.

Note that fi(Q) is non-decreasing in (). By Assumptions 1 and 2, we have fy =
a+ B/ ,(Q).

The renewal return processes with unit return load and with exponentially dis-
tributed loads are all belonging to this class.

For this class of return processes, the profit functions (4.9), (4.10), and (4.11) can

be rewritten as follows:

Elllec(Q)] = M(Porv — Poc —v) + hg“(l —a)

2
héup 1 h&
- (K)\ T ) e @ (4.19)
u 2
Ellopym(Porum)] = A (7r —c¢— Popu — Z—% (1 + % + Ma)>
h¥ A\ B
- Jg—m (fl(@) + m) , and (4.20)
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EII(Q)] =Au (W_C_PCC_U_Z%<1+§+MQ)> +h%'u(1—a)

hép Ry M\ 1
_(K“( 2 " om )ﬁ) (@)
_ (hug“ n hggﬁ) £(Q). (4.21)

4.5.1 Closed-form Ezxpressions of the Parameters of Coordination Mechanism

Observing the profit functions in (4.19), (4.20), and (4.21), they are all functions
of % and f1(Q). The coefficients of fi1(Q) are negative in all the three profit
1

functions. By checking the coefficients of gy We have the following structural

properties.

Property 40 Consider the profit functions E[llcc| in (4.19), Ellogn] in (4.20),
and EI1] in (4.21) as functions of f1(Q), then the value of 5 determines the concavity

of the above profit functions in the following way:

1. If B < =22 then E[lloe], E[lopum], and E[IN] are all decreasing in f1(Q).

hép

2. If —i{g: < pB < —% then E[llogn] and E[I1] are all decreasing in

f1(Q), and E[llgc] is concave in fi(Q) with the unique mazimizer give by

2K\

i+ B. (4.22)

d
f1,cc =

3. If _h‘éuiﬁ% < B < 0 then Elllpgy] is decreasing in f1(Q), Ellcc] is
concave in f1(Q) with the unique mazximizer give by (4.22), and E[11] is concave

in f1(Q) with the unique mazimizer give by

ff:\/ 2Kdm___ g (4.23)

hipm + hi Ap?
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4. If B> 0 then E[lloc] and E[I1] are all concave functions of f1(Q) with unique
mazimizers given by (4.22) and (4.23), respectively. E[logn] is also concave

function of f1(Q) with unique mazximizers given by
flomw = VB (4.24)

Proof. By (4.19), (4.20), and (4.21), E[llcc], E[llogum|, and E[II] are functions

of f1(Q), respectively.
Take the first and second derivatives of E[llo¢] with respect to fi1(Q), and we

have

dE[lcc] (K)\+ %Mﬁ) L hép 4

T > )T 2
*Elcc] AN
- 2 — 92 K\ —.

if? < T ) 7

Recall that f1(Q) is positive and non-decreasing in Q. If g < —i{f;} then E[lloc] is
C

decreasing in f1(Q), otherwise E[ll¢¢] is concave in f;(Q) with the unique maximizer
given by (4.22). Similarly, take the first and second derivatives of E[Ilpgy] and E[1]

with respect to f1(Q), respectively, and we have

af,  2m 2
dQE[HOEM] . _h}b)\/LQ%
dft o 2m Y
dE[I] hip | b 1 (hEp Ry
S R () " —
df; ()\+<2+2mﬁf12 > "o )y M
d?E[1] hp — hi u? 1
=2 K\ —-3-
g (o (5 )0) 5
The following proof is similar as above, and hence, is omitted. O
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By Property 40, the optimal values of @ for E[llcc], E[llognm], and E[II] can be

obtained, respectively, as the following corollary shows.

Corollary 22 The values of @ that can mazimize the cost functions E[llcc] in

(4.19), Ellopa) in (4.20), and E[U] in (4.21), denoted by Q%o, Qpy, and QF,

respectively, are given by

1 Iff < —%C(—i then Qtc = Qbpy = Q" = 1.

_ 2K\
Qe =1 ( = +@> . (1.25)
cH

8. If —22m < 3<0 then Qbpy = 1, QL is given by (4.25), and

hé pm+hi A
2K m
= ft . 4.26

4. If B> 0 then QL and QL. are given by (4.25) and (4.26), respectively, and

Q?)EM = fl_l (\/E> . (4-27)

Proof. The proof is straight-forward using (4.22), (4.23), and (4.24) in Property
40 and Assumption 2, and hence, is omitted. O

Corollary 23 For any 3, Qb < Q" < Q..

Proof. Recalling that f;(Q) is non-decreasing in @, the proof is straight-forward

by comparing Q% ,,, @*, and Q% in Corollary 22. O
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By Corollary 23, the centralized optimal value of () is no greater than the CC’s
decentralized optimal value of (), and is no less than the OEM’s decentralized op-
timal value of (). Corollary 22 provides the closed-form expressions for the optimal
values of (). Using the results in Property 40 and Corollary 22, the all-unit-premium
mechanism proposed in Section 4.4.2 can be modified as follows:

All-unit premium mechanism modified: the OEM pays the CC the premium
of A for each unit of used-item if the CC lowers f{o(=/f1(Q&c)) by D factor, ie.,

H(Q) = foi,cc» where A € [A(BE),A]. A(BE) and A are given by

VEREX+ hguB) hign (1 — D)?
2\ D

A = Mop CEA+ hgpB) D — hgpfl - D
2m QKX+ hguB) hgp D

A(BE) =

and

respectively. The two equations above can be obtained by substituting fld,cc given
by (4.22) in (4.17) and (4.18), respectively.

Note: in order to lower f{. by D, the CC needs to lower Q% by D', where

) I (D 2K,\+ﬁ)

hép

D' = .
-1 K\
h ( ?"“éWLﬁ)

(4.28)

4.5.2  Price-dependent Return Flows

In some situations, the CC can determine the collection price of used-items.
The collection price usually can impact the return flow to some extend. Then the
parameters of the return flow are price-dependent: A = A(Pc¢), 1 = u(Pee), and
s = s(Pcc). We rewrite the profit functions in (4.19), (4.20), and (4.21) considering

price factor as follows:
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Ellcc(Q, Pec)] = MPoc)p(Poc)(Poem — Poc —v) + M(l —a)

2
B htu(Poc)f 1 _ hép
(K)\Jr 2 ) 1@l Pcc) 2 hi@liFec), (4.29)
u 82
Ellopm(Poem)) = MPeoc)u(Pec) (W —c— Pogm — ZTMn <1 + M((Iljscc)) + M(Pcc)a)>
Wy A(Poo)p’ (Pec) B .
WD (@l oc) + s )+ and (430)
u 82
ENQ, Pce)] = MPec)u(Pec) <7T —c—Pooc—v— ];7]\;[1 <1 + M(<1]j§§)) + M(PCC)Oé))
+ h%M(QPCC) (1 o (X)
héu(Pec) | WA (Poo)p?(Poc) 1
N (KA(PCC) " ( . 2 A 2m >B> f1(QllPcc)
- <h%u(2PCC) + hb)\(PCQC%MQ(PCC» [1(Ql|Pec). (4.31)

The following lemma shows that partial coordination is better than no coordination

in the price-dependent return flow case.

Lemma 1 Ifthe OEM and CC adopt their decentralized optimal prices P&y, and
Pgc, respectively. Denote Q*(P&.) as the jointly optimal threshold value. Then, the
system-wide profit per unit time with Q*(P2.), which is given by TI(Q*(Ps), Péc),
is higher than . + & 5y, where 1o = Meo(QLo(Plo), Peo,) and N5, =
Hopnm (P ey ||(QLa(Pen), Peo)), ie., Uy and TIS 1., are the profit functions under

decentralized control.

Proof. By Corollary 22, when the collection price is Pl., we have

Qto(Pée) = fi! <\/—2K)\(ch) + ﬁ) , and

hgﬂ(ch)

nd e 2KA(Pég)m
Q(Fec) = fi (\/ WPy + A (P (Fee) " ) '
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Then, by (4.29), (4.30), and (4.31), we have

I(Q*(Péo), Péeo) — (M + Thppy)

(11¢
=I(Q*(Péc), Péc) — (HCC (QLc(Pea), Pée) + Mopm (P pm|(QEc (Péa), Pcc)))

En(Pée) | MiMPc)n*(Péc) hg(Pé)
<KA(PCC) < 2 om )B) 2K\(PLo) + Bhiu(PE )
. <h’éu(ch) N ngW(PgC)) 2KN(PA) + Bhisn(Plc)

2 2m ’

h%N(ch)

(KAPAG) + (HEnPhe) | WNPAAPL)) )

2m
% <h%#(ch) h}h}‘(ch)#Q(Pg‘c)>
2

+

2m

>0.

The last inequality holds since

q e p(Péo) hM(PécW(ch)) > hen(Pec)
{(K)\(PCC)Jr( 5t om b 2KN(PEo) + Bhipu(PE)

2
n <h%M(Pg“C) n hz](/[)‘(PgC)MQ(Pg“C)> 2KN(Péc) + Bhiu(Péc) }

2 2
m th(Pg*(j)

—4 <K)\(ch) n <h%#(2p ¢o) hhA(ng;%uQ(ch)) ﬁ)

% <hqéN(ch) 4 hﬂ)‘(ch)Nz(ch)>

2 2m

_ g hep(Péo) hhA(Péc)NQ(Péc)) ) hen(Fec)
{<K)\(PCC)+< 5 + om b 2K\(PE.) + Bhipu(PLy)

2
 (HePle) | MNP Phe) ) 2NPEg) 1Pl } L
2 2 u '
" heu(Péc)
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Actually, for any given Pge, in order to guarantee the agreement between the

OEM and CC in adopting Q*(Pc¢), the following two equations need to be satisfied:

Elopm(Poem||(Q*(Pec), Pee))] = Elllhg,,], and (4.32)

Ellcc(Q*(Poc), Poc)] = E[lIge], (4.33)

where E[I14,,,] and E[l1¢] are decentralized optimal profits for the OEM and CC,
respectively.

By (4.32) we have

_ i s*(Pec) ET% 5]
POEM,max(PC’C) =m—C— % (1 + PJ(PCC) + M(Pcc)a) - /\<PC’C’)PJ(PCC)
B th,U(PCC) 2K)\(Pcc)m +B
2m h&(Poc)m + b N Poe) p?(Poc)
N p . (4.34)

KN Poc)m
\/hEM(Pcc)m'*‘th/\(Pcc)Hz(Pcc) +8
By (4.33) we have

u

h
Poemmin(Poc) =Peoc +v — T]gcc)(l — )

+( K hes > |
w(Pec)  2M(Pec) \/ 2K (Poc)m e

h&u(Poc)m+-hy A Poc)u?(Poo
L he \/ 2K \(Poc)m
2XN(Pec) \| hpu(Poc)m + hiyAM(Poo)p?(Pec)
B
MPeoc)(Pec)

+ 8

(4.35)
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Let f(Poc) = Pormmas(Poc) — Poeymin(Poc), then

1
M Poc)u(Pec)

f(Pcc) = (E[I(Q*(Pcc), Poc)] — (EMb gy] + EMEL])) - (4.36)

Equation (4.36) can be rewritten as

E[(Q*(Pcc), Poc)] = f(Poc)M(Pec)i(Pec) + EMg gy ) + E[IE).

Hence, f(Pgc) represents the profit increase per unit used-item due to adopting
the jointly optimal threshold value Q*(Pgc) instead of the CC’s decentralized op-
timal threshold value Q%.(Pcc). The expression f(Pho )N Pho)u(Phe) represents
the profit increase per unit time by adopting the centralized control mechanism
(Q*(Pzc), Poo).

Recall the profit functions of the OEM in (4.29) and the CC in (4.30), the OEM’s
unit purchase price Pogys is a pivot that decides how the profit is divided between
the two agents. According to Weng (1995b), a simple mechanism, which divides the
profit increase between the two agents, is that let € percentage of the profit increase
goes into the OEM’s pocket and 1 — e percentage of the profit increase goes into the
CC’s pocket, where € is determined by negotiation. This mechanism is also applicable
in our model. The OEM’s profit will be increased by ef(P%q)A(Pf) per unit time,
while the CC’s profit will be increased by (1—e¢) f(Pho) AN Pf¢)) per unit item. Then,

the jointly optimal unit purchase price is given by

Popy = €Popmmin(Péo) + (1 — €) Poemmae(Poc)- (4.37)

Next, we will check whether the all-unit-premium mechanism proposed in Section

4.4.2 can still coordinate the system in the case with price-dependent return flows.
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Recall the mechanism that the OEM pays the CC Pjy,, for per unit used-item and
requires the CC deliver a batch when the on hand inventory of used-items exceeds
@*. The profit function of the CC is given by:

" ) . hé(Poc
EMec(Pocll(Ppar. @) =MPechn(Pec) By — Pec —v) + ")

h%M(PCC)) 1
2 [1(Q*|| Pec)

(1—-a)

- (KA(PCC) +

- Wfl(Q*HPCC)'

The maximizer of the above equation might not be the centralized optimal collection

ENNQ* (Pec).Pec)l _ 0.

price P, which can be obtained by solving & e

In order to induce the CC set the collection price at P, the OEM has to set

the unit purchase price at PSg,, such that

dE[Moc(Proll(PSpy, Q)]
ac

= 0. (4.38)

We can solve PS5y, from the above equation. Meanwhile, in order to compensate
the OEM for adopting PSy,, rather than Ppp,,, the CC needs to pay the OEM a
fixed payment (PSgy — Popu) N Phc)i(Phe) per unit time as the franchise fee.
The coordination mechanism is denoted by
{PSen, Q% (PSen — Pohea) M Pic)i(Pho)}: the OEM pays the unit purchase price
P§pyy if the CC can deliver the used-items in a batch whenever the inventory ex-
ceeds Q*. At the same time, the OEM charges the CC the franchise fee (PSp,, —
PS o) MNPio)p(Pre) per unit time, where PSp,, can be obtained by solving (4.38).
In this section, we focused on a class of stochastic process and investigated the
coordination mechanisms. Closed-form expressions for coordination parameters were

derived. Then the results were extended to the price-dependent return case where
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the CC determines the collection price. It showed that the all-unit-premium and
franchise fee mechanism together can coordinate the system. In the following section,
we will provide several examples to illustrate how our coordination mechanism is

applied.
4.6 Special Cases

In this section, we provide some special cases to show how the coordination mech-
anism works. These special cases include deterministic return flow case, renewal
return process with unit return load case, and renewal return process with exponen-
tially distributed return loads case. Among these cases, renewal return process with
unit return load includes the Poisson return process, and the renewal return process
with exponentially distributed return loads includes the marked Poisson return pro-
cess with exponentially distributed return loads. For these cases, the coordination
mechanisms under return-driven threshold policy are provided for two situations: the

collection price is exogenous, and the collection price is determined by the CC.
4.6.1 Deterministic Return Flow

We first evaluate the most basic case that the return flow is deterministic with rate
M Pec), and pu(Pee) = 1 and s(Poe) = 0. Then, we have f1(Q) = E [Wy(Q) + 1] =
Q and f»,(Q) = % = 0 by the definition of W5(Q). Recalling Assumption

1, we have o« = 8 = 0. In this situation, the profit functions for the CC in (4.29),

the OEM in (4.30), and the system in (4.31) can be rewritten as follows:

he,  KMFoc) he@

Heo(Q, Poc) = MPeoc)(Porm — Poo —v) + > 0 5 (4.39)
e\ RGP

opm(Q, Foc) = M Fec) (7? —c¢—FPopm — 2M> — M, and  (4.40)
m 2m
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hy hu
(Q, Poc) =A\(Pec) <7r e Pop—v— #) 1
_ KXMPoc)  h¢gm+ h“MA(PCC)Q' )
Q 2m

We first examine the situation that the collection price is exogenous. Recall the

results in Section 4.5.1 (Corollary 22.3, Corollary 23). For any given Pgc, we have

2K\ (Pec)
hy

Q" (Poc) = \/ 2K A(Poc)m and

Qto(Pec) =

hqém —+ h%/[)\(PCC)’

Q*(Pec) < Qto(Poc).

The all-unit premium mechanism for deterministic return flow case is stated as
follows:
The OEM pays the CC the premium of A for each unit of used-item if the CC

lowers Q% by D factor, where

u _ 2 u
Khe (1-D) _ABE)<A<A = hiyMPec) | KA(Pec)

1-D).

In order to lower Q% to Q*, the factor D is given by

B Q* B h¢m

D* = = )
o \/h?ﬁm + hiy M FPec)

Recall that Q*(Pc¢) is the jointly optimal threshold value for a given Poo. When
Poe is determined by the CC, in order to guarantee that both agents agree on

Q*(Pce), the following two inequalities need to be satisfied:
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HOEM(POEM”(Q*(PCC)a PCC)) > HdOEM7 and

Moo(Q*(Poc), Poc) > T,

as in (4.32) and (4.33), respectively. Substituting & = 8 = 0, u(Pec) = 1, and
s(Poe) = 0 in equations (4.34) and (4.35), we have

h hY K\ (Pee) ¢
OEM,maa?( CC) ™ c m m 9 (h%m + hl](JA(PCC)) )\(PCC)’ an
ommin(Foc) =Fee+v =555+ \/ INEoo)m
h_qé K)\(Pcc)m Hdcc
A\ 2(hgm + RN Pec))  MPee)
Take the difference and we obtain that
f(Pec) = Poemmaz(Poc) — Poemmin(Poc)
1 .
= (I(Q*(Pcc), Poc) — (Mo par + 1))
)\(Pcc)
—t—¢—P—pp— My C 9K c oM
Tocmfeom v 2\(Pec) \/ (A(Poo) T )
 Mopy +1ec (4.42)

)\(Pcc)

We know that f(Pcc) represents the profit increase per unit used-item due to
adopting the jointly optimal threshold value instead of the CC’s decentralized optimal
threshold value, for any given Poc. For deterministic return flow, f(Pc¢) has the

following property:

Property 41 If N'(Pce) > 0 and N'(Poc) < 0, then f(Poc) is a concave func-
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tion of Poc. Moreover, If A(0) = 0 then f(Pec) has two positive roots.

Proof. The second order condition of f(Pgc) is given by

f"(Pee) = ~(N(Poe))? VKR (H%EMJercc+x/§<1 L h ))

A3 (P Ry h 4 pu AMPec) u
(Pec) /M 4 e hiy = + e

N (Pec) VKR,

+
N (Poc) h, h
\/2 (e + x)

+ T gy + e

It is obvious that m < 1. Hence, if N"(Pcc¢) < 0 then f"(Peoe) < 0, ie.,
f(Pce) is concave in Poc.

To prove that f(Poc) has two positive roots, i.e., 3PS, > P5, > 0 such that
f(PEo) = f(PY.) = 0, it is sufficient to prove 3 P2, > 0 such that f(P2-) > 0 and
f(0) = f(o0) < 0. From Lemma 1, we know that II(Q*(P&.), Péc) > ko + 1% 5y,
thus f(P4.) > 0. Recalling f(Pgcc) in (4.42), we have f(0) = f(o0) = —o0. O

By Property 41, we know that the jointly optimal collection price FPf . lies in
(Pk., PE). Then, the jointly optimal purchase price is given by (4.37).

As shown in Section 4.5.2, when the CC determines the collection price, the
all-unit-premium mechanism might fail in inducing the CC to choose the jointly
optimal collection price P .. To be more specific, by only adopting all-unit-premium
mechanism, i.e., the OEM pays the CC P}, as in (4.37) for per unit used-item and
requires the CC adopt the jointly optimal threshold value QQ*, the profit function of

the CC is given by

* * * hu
Heo(Pocl(Popw, Q) = MPec)(Popy — Poc —v) + 70

_KMFPee)  he@

o > (4.43)
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The maximizer of equation (4.43) might not be the centralized optimal collection
price Pf. Observe that the expression of oo (Pecl||(Pogwm, @F)) depends on Pogpy.

The first order and second order conditions for lloc(Poc||(Popw, @F)) are given by

dllcc(Pocl|(Porwm, Q"))
dC

K
= —A(Pce) + N (Peoo) (POEM — Poc —v — Q*> , and

(4.44)

dQHcc(PCC| ’(POE'Mv Q*))
dC?

K
= —2)\/(Pcc) + )\//(Pcc) (POEM — Poc—v— Q*) . (4.45)

Since N'(Poe) > 0 and X'(Poe) < 0, CHeelPecl(Porn.@7) . Thus,

oo (Pocl|(Popw, Q%)) is concave in Poe, and its maximizer is the root of the equa-

dllcc(Pocll(Poem,Q%)
acC

tion ) = 0. In order to induce the CC to set the collection price at
P}, the OEM has to set the unit purchase price at the value given by the following

equation

K MNPio)
PSey = Poc+v+ — + =<0 4.46
In order to compensate the OEM for choosing P§y,, rather than Pgp,,, the CC
needs to pay the OEM a fixed payment (PSpy — Porar) N Phe) per unit time as
the franchise fee. Thus, we obtained all the optimal parameters for the coordination

mechanism { P5pas, Q% (PSpar— Porpur) N Phe)} in the deterministic return flow case.
4.6.2  Unit Return Load

In previous section, we evaluated the coordination mechanisms for deterministic
case. Next, we focus on stochastic return flow. First we consider the case that the
used-item is returned one by one, i.e., the return flow follows a renewal process. In
this situation, we have u(Poc) = 1 and s*(Poc) = 0, and thus, f1(Q) = E[Ws(Q)] +
1 =@Q and Var(W5(Q)) = 0. The profit functions (4.29) to (4.31) can be specifically
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written as

hé  KMFPeo) W@

Ellcc(Q, Pec)] = MPec)(Poem — Poc —v) + 5 g 5 (4.47)
E[HOEM<POEM)] = )\(Pcc) <7T — C— POEM — Z%) — W, and (448)
E[H(Q, Pcc)] = )\(Pcc) (7’(’ —C— PCC — U — ;Li;\;[l) =+ h?%

 KA(Poe)  hgm+ hQMA(PCC)Q (4.49)

Q 2m

respectively. Comparing (4.47) to (4.49) with (4.39) to (4.41), we can see that the
profit functions with renewal return process are the same as the profit functions in
the deterministic case. Thus, all the results in Section 4.6.1 can be carried over to

the renewal return process directly.
4.6.3  Ezponentially Distributed Return Loads

In this section, we consider the case that the return loads arrive according to a
renewal process and each return load contains an exponentially distributed amount
of used-items. In this situation, s*(Poc) = p(Poc), f1(Q) = E[WL(Q) + 1] =
Q/u(Pec) + 1, and Var(Wa(Q)) = Q/u(Poc) = E[W2(Q) + 1] — 1, which leads to
f2(Q) =1—-1/f1(Q), i.e., « = 1,8 = —1. The profit functions (4.29) to (4.31) can

be specifically written as

Ellec(Q, Poc)l =M Pec)i(Pec)(Poeym — Poc — v)

hé.p(Poc) L
— <K>\(Pcc) - 9 = > Q/u(Pec) +1
_ w (Q/n(Pec) + 1), (450
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u

Elllomr(Por)] = MPec)u(Pec) (w o= Popy — Mg N(Pcc))>

2m
hiA(Peo) i’ (Peo) 1
_ om (Q/M(Pcc) +1— ST 1) ., and
(4.51)
hiyy
EI(Q, Pce)] = MPec)i(Pec) (W —c—Poc—v— om (2 + M(Pcc)))
N ( A(Poc) — h%u(QPcc) - hqj\‘4>\(Pc2c7zlu (PCC)> Q/M(Plc -

_ (h?l’ﬂ(PCC) n Wi A(Poo) i* (Poc)

2 o ) (Q/u(Poc) +1), (4.52)

respectively.
Recalling Corollary 22 and g = —1, for any given Pgc, the maximizers of the

cost functions E[lloc] in (4.19), E[llpgn] in (4.20), and E[I1] in (4.21) are given by

L 1f furesy < 1 then Qc(Pec) = Qbpy(Pec) = Q*(Poc) = 1.

2K \(Poc)m 2K\(Poc) d e _
2. M oo M e Poe) = L < hmapoo) then Qopn(Poc) = Q" (Pec) = 1,

and

Q& (Poe) = max ((\/% —1- 1) u(Pec), 1) : (4.53)

2K\ (Poc)m -
3.If1 < h%u(Pcc)m+h(KI§\?;cc)#2(Pcc) then Q% py = 1, Q4 is given by (4.53), and

Q*(PCC) = max <<\/h%m +2}f§4/\)\<(];§;2))722(PCC) — 1= 1) M(PCC>7 1) .

(4.54)

The all-unit premium mechanism that can coordinate the system when Pg¢ is

exogenous is stated as follows: The OEM pays the CC the premium of A for each
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unit of used-item if the CC lowers Q% to Q*, A € [A(BE),A], and

and

(2KN(Poc) — htp(Poc)) hiu(Pec) (1 — D)?

A= ¢ et D
hyn(Poc) — 2KX(Peo) + hgp(Pec)1—D)  1-D

2m  \/(2F\(Pcc) — hdpu(Pec)) hip(Pec) D

A:

Y

where,

_ @ (Peo)
Qtc(Poc)

When Pg¢ is determined by the CC, the coordination mechanism
{PSen, Q% (PSen — Pop) MPic)in(Phe)} can be determined as in Section 4.5.2:
P} can be obtained by solving

dEI(Q*(Pcc), Poc)]
dC

:07

and Q* = Q*(P%.). Then PSy,, is determined by solving

dEMec(Pioll(PSpa, @))]
acC

=0.

Substituting 8 = —1 in Pognmaes(Pie) given by (4.34) and in Pognsmin(Phe) given
by (4.35), Py can be determined by using (4.37).

In this section, we applied the coordination mechanisms proposed in Section 4.5
into three special cases: deterministic return flow, renewal return flow with unit
return load, and renewal return flow with exponentially distributed return loads.
The renewal type return flows with unit or exponentially distributed return loads

are more general than the Poisson type return flows with unit or exponentially dis-
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tributed return loads. For each case, we illustrated how to calculate the coordination
parameters in two situations: (1) the collection price is exogenous; (2) the CC can

determine the collection price.
4.7 Cost Saving Analysis

In Section 4.4, we investigated the coordination mechanism for the reverse supply
chain in a stochastic environment. It has been proved that when the collection price is
exogenous, the all-unit-premium mechanism can achieve channel coordination. Then,
we provided the method to calculate coordination mechanism parameters for a special
class of renewal return processes in Section 4.5. Section 4.6 applied the method to
several specific examples. Next, focusing on the situation that the collection price is
exogenous, we investigate the cost saving due to coordination.

We will provide some examples to show the circumstance where the cost saving is
significant, as well as the circumstance where the cost saving is not obvious. Besides,
we will illustrate the situations in which the deterministic results can and cannot be
used as approximations for stochastic models.

We define the rate of improvement due to coordination by I R:

Q) — (Q¢e)

IR = ;
Q)

where Q* is the centralized solution due to coordination, Q% is the decentralized

solution. Then for deterministic return flow, we can measure the I R analytically.

Property 42 For deterministic return flow, the rate of improvement due to co-

ordination is given by:
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Note that, Property 42 is also applicable for renewal type return flow with unit return

load.

By Property 42, we have the following observations:

(O. 1) when hY, =0, IR = 0;
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hi A

(0. 2) IR increases if any of the following values increase: 2=
C

,K, and PCC—I—’U.

Thus, coordination will bring significant cost savings in the following situations:
(1) the inventory holding cost is significant for the OEM; (2) the fixed cost is signif-
icant for the CC. Next, we will use an numerical example to illustrate this.

Example 1: The parameter set is given by: m = 80, @ — ¢ = 20, Poc = 16,

r(= Au) = 20, K = 200, v = 4, hY, = 4, h{xz = 0.5. Note that, for this data set

hY A
h¢m

= 2. Then, we have the following results:

e For Deterministic case: (u =1, s =0, A = 20)

IR = 22.72%, Q* = 73, Q% = 126.

e For renewal return process with unit return load: (u =1, s =0, A = 20)

IR =22.72%, Q* = 73, Q% = 126.
e For renewal return process with exponentially distributed return loads:

— (p=s5*=1,A=20): IR =23.19%, Q* = 72, Q% = 125;
- (u=s>=2,A=10): IR =23.38%, Q* = 71, Q% = 124;

— (u=3s>=4, A\=50): IR =23.73%, Q* = 69, Q% = 122.
e For renewal return process with uniform return load:

- Y, ~U[0,2], (n=1, s* =3, A =20): IR = 23.29%, Q" = 72, Q¢ = 126;

- Y, ~U[0,4], (n=2,5 =35, A=10): IR =23.16%, Q* = 72, Q& = 125;
— Y, ~U[0,8], (n=4, s* =, A=5): [R=23.44%, Q* =170, Q& = 124.

In Example 1, where the two conditions for bringing large cost savings are sat-

isfied, the rates of improvement I R’s are high (around 23%) in all the listed cases.
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The optimal values of () in stochastic cases are close to that in deterministic case.
If the two conditions are not satisfied, the profit improvement due to coordination
might be trivial. Actually, when hf}, = 0, there will be no profit improvement at all,
by Property 42. Next, We provide an example in which A, is same as in Example 1
and the profit improvement is trivial.

Example 2: In this data set, the values of m, m — ¢, Poc, 7, v, and A}, are as in
Example 1. The fixed cost K = 50, and the CC’s unit inventory cost per unit time

¢ = 4. In this situation, the impact of fixed cost is less than that in Example 1.

Note that, for this data set % = i. Then, we have the following results:
C

e For Deterministic case: (u =1, s =0, A\ = 20)
IR = 0.45%, Q* = 20, Q% = 22.
e For renewal return process with unit return load: (u =1, s =0, A = 20)
IR = 0.45%, Q* = 20, Q% = 22.
e For renewal return process with exponentially distributed return loads:
—(u=3s>=1,A=20): IR=0.45%, Q* =19, Q% = 21,
— (p=5*=2,A=10): IR =0.52%, Q* = 18, Q< = 20;
— (p=s2=4, A=50): IR =0.58%, Q* = 16, Q%. = 18.
e For renewal return process with uniform return load:
- Y, ~U[0,2], (n=1,s* =3, A=20): IR=0.77%, Q* =19, Q¢ = 22;
— Y, ~U[0,4], (n=2, s =13, A=10): IR =0.56%, Q* =19, Q¢ = 21;

- Y, ~U[0,8], (n=4, =3, A=5): IR=0.77%, Q* =17, Q¢ = 20.
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In Example 2, the rates of improvement are less than 1% in all listed situations.
It illustrates that when fixed cost is not the major cost for the CC, the coordination
mechanism will not bring obvious cost saving.

In the above two examples, we observe that the optimal values of () are large, and
the results in stochastic cases are close to the results in deterministic case. Then,
the solution for deterministic model can be used as the approximation for stochastic
models. This might not be true in general. In the above examples, we also note that,
the difference between the results in stochastic cases and the results in deterministic
cases becomes more obvious when the value of y increases. Actually, even with the
same return rate r, the approximation might fail in some situations, especially when
w1 is large. Moreover, when @* is small, a slightly change of ) might cause large
results difference.

We define the error of using results in deterministic case as approximations for
stochastic situations by EFR, and then

EI"] — EINQctcrministic)]
B[]

ER = -100%,

where E[II*] is the optimal profit in stochastic case, and E[II(Q%. crministic)) 1S the
expected profit using the solution of deterministic model. Next, we provide an ex-
ample in which the values of F'R might be large, i.e., the solution of deterministic
model cannot be treated as an approximation for stochastic models.

Example 3: When the parameter set is given by: m = 10, 7 —c¢ = 30, Poc = 16,

r(=Au) =4, K =25 v=4, hY, =4, h{x = 0.5, we have the following results:

e For Deterministic case: Q* = 2}52’\ = 10.
C

e For renewal return process with unit return load: (u =1, s =0, A = 20)

196



Q*=10and ER = 0.
e For renewal return process with exponentially distributed return loads:

—(u=s*=1,A=4): Q* =9 and ER = 0.73%;
—(u=s>=2,A=2): Q* =8 and ER = 3.08%;
—(u=s*=4,A=1): Q* =5 and FR = 11.79%.

e For renewal return process with uniform return load:

- Y, ~U[0,2], (n=1,5 =73, A

4): @* =9 and ER = 0.45%;

— Y, ~U0,4], (n=2,s=12 )\

39

2): Q* =8 and ER = 1.27%;

— Y, ~U0,8], (1 =4, 52 =1 A =1): Q* =8 and ER = 4.54%.

From the above example, we observe that the value of FR increases in u. In
the situation that the variance of return load is large, e.g., exponentially distributed
return loads, the ER is large. When u = 4, the variance s*> = 4 in exponentially
distributed return loads case, and the error is up to 11.79%. This example shows
that the solution of deterministic model cannot always be used as the approximation
for stochastic models in general. Thus, investigation of the coordination mechanism

for general stochastic model is necessary.
4.8 Conclusions

This section extends the fundamental ideas of channel coordination in traditional
supply chains to consider the collection channels in closed-loop supply chains. We
consider an OEM-CC pair facing stochastic return flows. We derive analytical ex-
pressions for calculating the parameters representing the coordination mechanism.

We find conditions under which these analytical expressions lead to closed-form so-
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lutions. Two situations are considered: the situation where the collection price is
exogenous, and the situation where the CC can determine the collection price.
For the situation where the CC has no power on the collection price and the

return flow is exogenous, we show that:

e For any given purchase price that the OEM pays the CC, the centralized control

results in a higher profit for the OEM while lowering the CC’s profit.

e The OEM can take all profits of the system by setting the purchase price as

the entry price for the CC.
e By an all-unit-premium policy, the system can achieve coordination.

For the situation where the CC has power on the collection price and can influence

the return flow, we show that:

e For any given collection price, the jointly optimal threshold value, i.e., collection

quantity, is smaller than the CC’s decentralized threshold value.

e Partial coordination is better than no coordination, i.e., even in the situation
that the OEM adopts the decentralized purchase price and the CC adopts the
decentralized collection price, the jointly optimal threshold value outperforms

the decentralized threshold value.

e The all-unit-premium policy fails to induce the CC to choose the jointly optimal
collection price. However, the all-unit-premium and franchise fee mechanisms

together can coordinate the system.

Next, we consider several special cases including the cases of deterministic return
flows, renewal type return flows with unit return load and exponentially distributed

return loads. Then, we investigate the cost savings due to coordination in these
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special cases. Numerical examples are provided to illustrate the setting where co-
ordination can or cannot improve profit significantly. We also provide examples to
show that the solution of the deterministic model should not be used as an approx-
imation. Thus, it is important to study the coordination mechanisms for stochastic
model in reverse supply chains.

The contribution of this section is that we propose a basic framework for channel
coordination mechanisms in reverse supply chains in a stochastic environment, build-
ing on which more complex systems and coordination mechanisms can be studied
in the future. Some immediate extensions include: (1) considering yield issues of
used-items so that the fraction of remanufacturable items is uncertain; (2) model-
ing competition, e.g., considering models with multiple OEMs and /or multiple CCs
among which competition exists; and (3) integrating the reverse and forward channels

via effective closed-loop channel coordination mechanisms.
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5. CONCLUSIONS

This dissertation concentrates on inventory control models in remanufacturing
with batch processing, seed stock planning, and coordination considerations. We
investigate three distinct, yet related, inventory control problems in remanufacturing

that aim at filling the gaps existing in current literature. Our contributions include

e Building analytical remanufacturing model with stochastic demand and stochas-

tic return with disposal and fixed operational cost considerations;

e Analyzing seed stock models with multiple agents using game theory; and

e Applying channel coordination strategies for reverse supply chains under stochas-

tic environment.

In Section 2, we consider a fundamental inventory and production planning prob-
lem characterized by stochastic demand and return along with fixed operational costs
and disposal opportunities. By applying queueing theory and normal approximation,
we develop effective and efficient approximations for optimal policy parameters under
each proposed policy with or without disposal. We show that when the return rate
is higher than the demand rate, a disposal option is a necessary decision variable to
achieve cost minimization.

In Section 3, we consider a basic game-theoretic setting for seed stock planning
problem in remanufacturing with two agents including an OEM and an RS. We inves-
tigate how decision domain structure impacts the system performance and provide
managerial insights for both OEM and RS in making decisions.

In Section 4, we extend the fundamental ideas of channel coordination in tradi-

tional supply chains to consider the collection channels in closed-loop supply chains
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in a stochastic environment. A basic framework is proposed for channel coordina-
tion mechanisms in reverse supply chains and closed-form solutions are derived for
models under mild conditions. We illustrate the situation when coordination can or
cannot bring significant profit improvement, and demonstrate that the solution of a
deterministic model cannot be used as the approximation in general.

Several extensions related to the presented work are proposed in each section.
Besides, some other interesting extensions should explore more general and realistic

models such as

e Considering more general stochastic process instead of Poisson process in Sec-
tion 2, deterministic return process in Section 3, and renewal return process in

Section 4;

e Integrating coordination mechanisms in reverse channels with forward channels

under stochastic return and stochastic demand; and

e Considering finite horizon inventory control problems with multiple agents
in the stochastic environment, and designing coordination mechanisms with

batching and seed stock planning considerations.
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APPENDIX A

ALTERNATIVE APPROXIMATION FOR THE COST FUNCTION UNDER TF%
POLICY IN SECTION 2

By taking advantage of the property of the Normal distribution, we can obtain

another approximation for the cost function under Tr policy, i.e., TC(TF).

2
Property 43 Ifr <a (1 — ﬁ) then P(3_" R > > ", D;) = 0.

Proof. By the summation property of Poisson distribution, > " D; is also a
Poisson distributed random variable with mean maTpr and variance ma7l. Simi-
larly, > R; ~ Poisson(mrTp). Using Normal distributions to approximate the

distributions of D,, and R,,, we have that (3" R; — > ", D;) ~ Normal(mrTp —

maTp,v/mrTp +maTr). Recalling the property of a Normal random variable that

about 99.7% of its possible values lie within three standard deviations of the mean,

we argue that P(3"" R, > > D;) = 0 if maTr —mrTp > 3(vmaTr + /mrTp),

which is equivalent to

3 2
< 1— .
rea ( \/maTF)

[

By Lemma 43, there is no more than m consecutive cycles hold ending inventories if

we begin observing the system with no initial used-item inventory. Let us consider

the case when m = 2 and the condition in Lemma 43 holds. Then we can conclude
that if I, ; = 0 then I,, = (R, — D,)™, otherwise I,, = 0.

Recalling that I,,_; can be interpreted as the waiting time of the n'* customer,

as stated in section 2.3.3.1, P(I,_; = 0) is the probability that the system is idle,
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ie., P(I,-1 =0) = (1—Z). Then, the expectation of I, can be obtained as follows:

o . 3 (e
B[l = (1——) / e *\VaTerTE ) gy (A.1)
a’ Jo \/2rm(aTr +rTF)

z—(r—a)Tr

Letting y = T=—=7=, we can rewrite equation (A1) as

|z oo
Ell,) = —= (x/ (@+ ) Try + (r — a)TF> e 3 dy, (A.2)
Vom J
a T F

The integrand of (A.2) is positive. Hence, we have

(W (a+7)Try + (r — a)TF)e_%dey
V(i

- \/% /OOO(\/ (a+7)Twy + (r — a)Tp)e 2 dy

(a+7r)Tr (a—7)TF
+ .
2m 2

1 o0
V2T /(Ta)TF

Consequently, we have

a 27 2

E[l,] < (1 — C) ( (atr)Tr | (a= T)TF> . (A.3)

using E[I,) ~ (1 — %) ( (GJ;;?TF + (a_g)TF>, we can obtain another approxima-

tion for T'C'(Tr) which is given by

a 2T 2 2 Tk
+ca + pla —r). (A.4)

T(1) — h(1-7) ( at )t (“"”)TF> | (wath)e | F
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WI(TF) is not a convex function, however it can be proved that it has the unique

local minimizer which is also the global minimizer.
Proposition 1 ﬁ/(Tp) has a unique global minimizer.

Proof. By (A4), if Ty — oo then TC' (Ty) — oc; if T — 0 then TC' (Ty) — c.
Thus, WI(TF) is a coercive continuous function and there is at least one global
minimizer.

The first order condition for (A.4) is given by

+ hr 4+ h(1 — %) F h(1-1% 1
wa r ( a)a__2+ ( o) Ja+r ‘ (A5)
2 T2 > Vo UT

The second order condition for (A.4) is given by

<2F_h(1—§) at+r 1 )i (A6)

T2 4 21 /Tp ) Tr'
(A.5) has an unique root T} which satisfies

wa+hr+h(1—§)2a+h(1—£) at+r 1 F

2 2 or /Ty (TF)F

(A7)

Substituting (A.7) into (A.6), we can obtain the following inequality

0.

3h(1 -1 1 1
wa—I—hr—i—h(l—i)za—i— U=y fatr — >
a 4 2w ,/T;:/ 15

/. . o . .
Thus, T} is the unique local minimizer.

Moreover, from (A.6) it is obvious that when Tp < 4,%#%, TC'(T) is

. o o . . « . .
convex, otherwise, it is concave. Then, T}, is also the unique global minimizer. O
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