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ABSTRACT

In recent years, the general area of remanufacturing has received signi�cant at-

tention both in academia and practice. While there is a growing body of literature

in production planning models for remanufacturing, there is still a need for ana-

lytical decision-making tools considering general cost/revenue structures, stochastic

demands, stochastic returns, and multiple agents/decision makers. Of particular in-

terest in this dissertation are inventory control models with batch processing, seed

stock planning, and coordination considerations for e�cient inventory control prac-

tices.

More speci�cally we investigate three distinct, yet related, inventory control prob-

lems: (1) a fundamental inventory and production planning problem arising in a

batch processing environment for a third party remanufacturer, which is character-

ized by a stochastic used-item return process along with a stochastic remanufactured-

item demand process; (2) a seed stock planning problem in a batch processing en-

vironment with two agents including an original equipment manufacturer (OEM)

and a remanufacturing supplier (RS), for which three game-theoretic scenarios and

two types of controls are investigated; (3) a channel coordination problem in the

reverse supply chain, which generalizes the above two problems in the sense that

the stochastic nature of returns is modeled in a batch processing environment for

channel coordination purposes.

Our analytical decision-making models contribute to the existing literature in

the following ways: (1) we investigate the impact of more general cost structures

(including both �xed operational costs and inventory-related costs) and disposal

options in a batch processing environment with stochastic demand and return; (2) we

ii



systematically study seed stock planning issues in a batch processing environment for

remanufacturing using the game-theoretic framework; and (3) we build an analytical

framework for channel coordination mechanism design for the reverse supply chain

in a stochastic environment.
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1. INTRODUCTION

In a recent paper, Pishchulov et al. (2014) argue that "collection of used products

and their reuse has become in recent years the subject of increasing attention from

both industrial practice and academic research due to important economic consid-

erations". Thierry et al. (1995) identify �ve recovery options (repair, refurbishing,

remanufacturing, cannibalization and recycling), and they de�ne remanufacturing as

the process to "bring used products up to quality standards that are as rigorous as

those for new products". As noted by Thierry et al. (1995), the main advantage

of remanufacturing over other recovery options is that it recovers the value of used

products more e�ciently. However, as pointed by Guide (2000), remanufacturing is

more complex and di�cult to manage than traditional manufacturing due to uncer-

tainties about time, amount and quality in return �ows. Guide (2000) outlines and

discusses the complicated characteristics of production planning and control activi-

ties in remanufacturing. Much progress has been made in this area, especially in the

last two decades. There is now a growing body of literature in production planning

models in remanufacturing.

For a comprehensive review of the existing literature in this area, the reader is

referred to Akçal� and Çetinkaya (2011) who discuss the following limitations and/or

gaps in the literature:

• "Rather simplistic (i.e. linear) approximations of cost and/or revenue struc-

tures are used in the current literature." For example, see Cohen et al. (1980);

Fleischmann and Kuik (2003); Heyman (1977); Whisler (1967); Yuan and Che-

ung (1998).

• Existing literature considering stochastic demand and stochastic return ignores
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disposal options.

� For continuous models, see Fleischmann et al. (2002); Heyman (1977);

Toktay et al. (2000); Van der Laan (2003); Yuan and Cheung (1998);

� For periodic models, see Buchanan and Abad (1998); Cohen et al. (1980);

Fleischmann and Kuik (2003); Kelle and Silver (1989); Mostard and Te-

unter (2006); Whisler (1967).

• Very little research in remanufacturing addresses seed stock considerations.

Seed stock is de�ned as "the quantity of new products that are released" (Akçal�

and Morse (2004)). The existing literature with seed stock considerations either

� describes a speci�c case study (Linton and Johnston (2000)),

� or focuses on the simulation approach (Akçal� and Morse (2004)).

• No game theory model (multi-agent model) has been used for analyzing seed

stock considerations.

• Existing remanufacturing literature considering channel coordination issues

� either focuses on the integration between forward and reverse �ows (Ket-

zenberg et al. (2003) and Nativi and Lee (2012));

� or on the coordination strategies that actually focus on operational or

pricing decisions for the forward �ows rather than for the reverse �ows

(Bhattacharya et al. (2006); Vorasayan and Ryan (2006); Liu et al. (2009);

Dobos et al. (2013); Pishchulov et al. (2014)).

In the above, the key words that identify the limitations and/or gaps of the

existing literature are highlighted in italics, and they are related to the current

2



dissertation. More speci�cally, three distinct, yet related, inventory control problems

are of interest in the current dissertation while addressing these limitations and gaps:

• Alternative Batching Policies for Remanufacturing under Stochastic

Demand and Return: The �rst problem focuses on an analytical inves-

tigation of alternative batching policies for remanufacturing under stochastic

demand and stochastic return, along with disposal options and �xed operational

cost considerations.

• Seed Stock Planning Strategies with Multiple Agents: The second

problem focuses on seed stock planning withmulti-agents for which game theory

approach is used.

• Channel Coordination Strategies in the Reverse Supply Chain: The

third problem deals with channel coordination in the reverse supply chain in a

stochastic setting.

The �rst problem is investigated in Section 2, and it deals with a fundamental

inventory and production planning setting characterized by a stochastic used-item

return process along with a stochastic remanufactured-item demand process faced by

a remanufacturer. We investigate �ve batching policies inspired by the previous liter-

ature in shipment consolidation (Çetinkaya (2005)) (three periodic policies and two

threshold policies) in the make-to-order environment. Under each policy, we explic-

itly take into account all relevant costs, including the �xed operational costs (asso-

ciated with remanufacturing of used-items and dispatching of remanufactured-item

orders in batches) and inventory-related costs (associated with remanufactured-item

order waiting costs and used-item inventory holding costs). We develop analytical

models with the objective of minimizing the long-run average expected total cost of

3



the remanufacturer for computing the policy parameters of interest. Since the ex-

act optimal policy parameters are not analytically tractable, we propose analytically

tractable approximations on the cost functions for the policies. Through numerical

investigation, we demonstrate that the approximate policy parameters work impres-

sively well for all practical purposes in terms of the actual cost performance. Then,

we extend the �ve policies by considering disposal options when needed. For this

extension, an e�ective parameter-based approximation is developed for estimating

the policy parameters. Numerical experiments demonstrate the e�ectiveness of the

proposed approximation approach.

The second problem is investigated in Section 3, and it deals with a basic game-

theoretic setting for seed stock planning in remanufacturing. The problem can be

characterized as a �nite horizon inventory control problem with multiple agents in-

cluding an OEM, a new part supplier (NPS), and a RS. The OEM provides a partic-

ular type of replacement part for a product it sells. The demand of the replacement

parts throughout the whole planning horizon T can be satis�ed by using new-items

procured from the NPS at the beginning of T , as well as remanufactured-items pro-

vided by the RS until the end of T . The initial inventory, i.e., seed stock, is treated

as an operational decision variable along with other decisions. Since only a frac-

tion of used-items can be remanufactured, seed stock is crucial to guarantee enough

supply of returns for remanufacturing as well as to satisfy the demand during the

initial phase of the planning horizon. The objective is to maximize the total pro�t by

optimizing the seed stock level of new-items, initial lot size and exchange lot size of

used-items. Seed stock optimization may or may not be controlled by the OEM due

to the interactions between multiple agents. We investigate three scenarios and two

types of controls, leading to several di�erent system settings. We are interested in

the interactions between the agents, and the impacts of the interactions on strategy

4





analytical models with batch processing, seed stock planning, and channel coordina-

tion considerations. Of particular interest in this dissertation is the explicit modeling

of �xed operation costs, stochastic nature of demands, stochastic nature of returns,

disposal options, seed stock quantities, and channel coordination issues. Hence, our

contributions include:

• building analytical remanufacturing models with stochastic demand and stochas-

tic return while considering more general cost structures as well as disposal

options;

• analyzing the interactions between di�erent agents for seed stock planning using

game theory;

• applying channel coordination strategies for the collection channel speci�cally

in a stochastic environment.

The remainder of the dissertation is organized as follows. In Sections 2, 3 and 4,

we investigate the three problems of interest as described above. In each section, we

present a detailed discussion of relevant literature for the speci�c problem of interest.

Also, each section is concluded with a discussion of our �ndings and potential future

research directions.
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2. ALTERNATIVE BATCHING POLICIES FOR REMANUFACTURING

UNDER STOCHASTIC DEMAND AND RETURN

2.1 Overview of Section 2

This section deals with a fundamental inventory and production planning set-

ting characterized by a stochastic used-item return process along with a stochastic

remanufactured-item demand process faced by a remanufacturer. We investigate

�ve batching policies inspired by the previous literature in shipment consolidation

(Çetinkaya (2005)) (two periodic policies and three threshold policies) in the make-

to-order environment. Under each policy, we explicitly take into account for all rele-

vant costs, including the �xed operational costs (associated with remanufacturing of

used-items and dispatching of remanufactured-item orders in batches) and inventory-

related costs (associated with remanufactured-item order waiting costs and used-item

inventory holding costs). We develop analytical models with the objective of mini-

mizing the long-run average expected total cost of the remanufacturer for computing

the policy parameters of interest. Since the exact optimal policy parameters are not

analytically tractable, we propose analytically tractable approximations on the cost

functions for the policies. Through numerical investigation, we demonstrate that the

approximate policy parameters work impressively well for all practical purposes in

terms of the actual cost performance. Then, we extend the �ve policies by consider-

ing disposal options when needed. For this extension, an e�ective parameter-based

approximation is developed for estimating the policy parameters. Numerical exper-

iments demonstrate the e�ectiveness of the proposed approximation approach.
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2.2 Problem Motivations and Related Literature

As noted above, we consider a fundamental inventory and production planning

problem characterized by a stochastic used-item return process along with a stochas-

tic remanufactured-item demand process. The problem of interest arises in the con-

text of valuable discrete parts remanufacturing, such as engines or transmissions in

the automotive industry and cellular phones in the consumer electronics industry.

That is, the used-items are valuable and remanufacturable and are returned to a

third-party remanufacturer according to a Poisson arrival stream representing the

stochastic return process. Likewise, the remanufactured items are valuable and in

short supply and are ordered from the remanufacturer according to a Poisson arrival

stream representing the stochastic demand process.

For example, the return process is generated by a large base of used-item suppliers

(i.e., insurance companies and automotive repair shops in the automotive industry;

and cellular network providers and retailers in the consumer electronics industry) and

the demand process is driven by a di�erent market consisting remanufactured-item

buyers (i.e., automotive part sellers and automotive repair shops in the automotive

industry; and secondary market sellers in consumer electronics industry). Due to the

nature of the applications of interest and the involvement of a remanufacturer, the

stochastic return and demand processes are treated as independent (as in Buchanan

and Abad (1998); Fleischmann and Kuik (2003); Heyman (1977); Muckstadt and

Isaac (1981); Whisler (1967)).

For the applications of interest here, due to the labor-intensive nature of re-

manufacturing activity and the valuable nature of remanufactured items, both �xed

operational costs and inventory-related costs are signi�cant. Hence, the reman-

ufacturer operates in a batch processing mode by �rst observing and then satisfying
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realized demands in a make-to-order fashion, i.e., the remanufacturer does not carry

any remanufactured items but accumulates used-items as dictated by the return pro-

cess. This, in turn, implies that the remanufactured-item buyers are willing to place

orders in ahead of time, while the remanufacturer has to bear order waiting costs

and used-item holding costs. The order waiting cost is due to the make-to-order

environment (i.e., the intentional avoidance of expensive remanufactured-item inven-

tories). That is, the only inventory holding cost is due to used-item inventories held

in stock.

For each batch processing run, the fundamental di�culty is due to the mismatch

of the so-called supply and demand, e.g., the used-item inventories may or may not be

su�cient to satisfy the remanufactured-item orders to be delivered once the batch is

processed. As we have noted earlier, used-item returns are in short supply relative to

remanufactured-item orders, i.e., arrival rate of the return process is typically smaller

than arrival rate of the demand process in most practical applications. Hence, an

agent that has access to returns and the technological know-how on how to reman-

ufacture the returns is in a lucrative opportunity to capture the �nancial bene�ts

associated with matching the supply and demand. When the returns fall short of the

demands, the opportunity to satisfy the entire demand via remanufacturing is lost

and the cost of obtaining an alternative source to satisfy the excess demand needs

to be accommodated. When the returns exceed the demands, it is crucial to make

the best of excess returns to hedge against future demand uncertainty and to avoid

excess remanufactured-item inventories. Hence, it is worthwhile to have a closer ex-

amination of the e�ciency of clearing policies that rely on the clearance of used-item

inventories, remanufactured-item orders or perhaps clearance on a periodic basis.

To this end, we propose alternative operating policies tackling inventory and

production planning problem of the remanufacturer. These policies are inspired by
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stochastic clearing models applicable in the context of outbound shipment consolida-

tion practices and vendor-managed inventory systems (Çetinkaya (2005); Çetinkaya

and Bookbinder (2003); Çetinkaya and Lee (2000); Çetinkaya et al. (2008)). Of par-

ticular interest are two classes of policies referred as periodic policies and threshold

policies. The former class includes (i) the �xed period policy, (ii) the demand-driven

periodic policy and (iii) the return-driven periodic policy. The latter class includes

(i) the demand-driven threshold policy and (ii) the return-driven threshold policy.

Then, the remanufacturer either executes a batch run (1) at regular intervals

or (2) when the remanufactured-item orders waiting to be released dictated by the

demand process or (3) when the used-item inventories dictated by the return process

reaches a particular threshold value. The duration between two consecutive batch

runs is then referred as a remanufacturing cycle. More speci�cally,

• When a �xed period policy is in e�ect, a batch processing run is executed on

a periodic basis, i.e., every TF time units, leading to a �xed remanufacturing

cycle length of TF . Hence, it is referred as the TF -policy. On the contrary, for

the remaining policies, the remanufacturing cycle length is a random variable.

• Under a demand-driven periodic policy, a batch processing run is executed after

a particular duration of time, denoted by TD, of time elapses beyond the arrival

of the �rst demand. Hence, it is referred as the TD-policy.

• Under a return-driven periodic policy, a batch processing run is executed after

a particular duration of time, denoted by TR, elapses beyond the arrival of the

�rst return. Hence, it is referred as the TR-policy.

• Under a demand-driven threshold policy, a batch processing run is executed

after the remanufactured-item orders accumulated during the cycle (accumu-
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lated demand) reaches a particular level, denoted by QD. Hence, it is referred

as the QD-policy.

• Under a return-driven threshold policy, a batch processing run is executed once

the used-item inventories (available returns) reach a particular level, denoted

by QR. Hence, it is referred as the QR-policy.

Under each policy, we explicitly take into account for all relevant costs, includ-

ing the �xed operational costs (associated with remanufacturing of used-items and

dispatching of remanufactured-item orders in batches) and inventory-related costs

(associated with remanufactured-item order waiting costs and used-item inventory

holding costs). Our goal is to develop an analytical model with the objective of

minimizing the long-run average expected total cost of the remanufacturer for com-

puting the policy parameter of interest. Despite the seemingly simple nature of these

policies, we demonstrate that the resulting used-item inventory pro�le of the reman-

ufacturer is more complicated than in the case of many of the traditional stochastic

inventory problems, deeming the analytical derivation of inventory-related costs dif-

�cult, if not impossible. As a result, the operational cost minimization problem faced

by the remanufacturer represents a practical and technical challenge that deserves

further academic attention.

Pertinent details of the sequence of events for each remanufacturing cycle is char-

acterized as follows:

• At the time when a batch run is to be executed, i.e., at the end of a remanufac-

turing cycle, if the existing used-item inventories exceed remanufactured-item

orders accumulated during the cycle then (i) a su�cient number of used-items

are processed as a batch; (ii) the entire demand is satis�ed; and (iii) the excess

quantity of used-items can be kept in inventory until the next batch run. This
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case is referred as the case of supply overage.

• At the time when a batch run is to be executed, if the used-item invento-

ries fall short of the remanufactured-item orders accumulated during the cycle

then (i) the remanufacturer procures additional used-items from a spot market

(i.e., vehicle salvage yards in the automotive industry and cellular phone bro-

kers in the consumer electronics industry); (ii) all of the available used-items

(dictated by the return process and procured from the spot market) are pro-

cessed as a batch; and (iii) the entire demand is satis�ed, i.e., all outstanding

remanufactured-item orders waiting to be released are cleared. This case is

referred as the case of supply underage.

• Both the spot market procurement lead time as well as the batch processing

lead time are negligible relative to the length of a remanufacturing cycle.

While the assumption regarding the availability of a spot market with ample sup-

ply simpli�es the underlying stochastic return-item inventory and remanufactured-

item order pro�les, it is also well justi�ed as argued in the previous literature (Atasu

et al. (2013); Savaskan et al. (1999, 2004)) and exempli�ed in several contempo-

rary applications. Of the practical applications considered here, in the automotive

industry, for example, a typical remanufacturer works with a network of insurance

companies whose decisions dictate the stochastic return process modeled in this sec-

tion. However, the remanufacturer is also connected to a network of vehicle salvage

yards with virtually ample supply of returns.

Although closed-form expressions of the long-run average expected total cost

functions under the policies of interest are very hard to derive, we demonstrate that

the used-item inventory position can be treated as a G/G/1 queue regardless of the

policy under consideration. With this observation, we derive analytically tractable
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approximations on the cost functions for the policies. The approximations are then

utilized to compute the cost-e�ective policy parameters considering the long-run

average expected total costs for the remanufacturer. Despite the fact that the exact

optimal policy parameters are not analytically tractable and can only be obtained via

computationally intensive simulation approaches, the approximations lead to superb

near-optimal operating parameters in closed-form for all of the policies.

A diligent numerical investigation demonstrates that despite the deviation be-

tween the proposed approximations and the exact cost functions, the resulting policy

parameters would work impressively well for all practical purposes in terms of the

actual cost performance. Hence, our contribution lies in providing a systematic and

comprehensive analysis of cost performance of periodic and threshold policies for the

remanufacturer and determining analytically-tractable and practically-e�ective op-

erating parameters. That is, the exact cost penalty of using the approximate policy

parameters is negligible in most cases as demonstrated by a careful numerical study

with 48 instances for each of the �ve policies of interest leading to 48×5 = 240 prob-

lem settings. More speci�cally, our numerical results reveal that the cost penalty

associated with using the approximate policy parameters is 0.02% on average and

is less than 1% in the worst case. Remarkably, the ideal performance with 0% cost

penalty is achievable in many cases.

The operational cost minimization problem introduced and examined here is

closely related to two streams of previous research. The �rst stream of research

deals with inventory and production planning models for remanufacturing, while

the second stream deals with stochastic clearing applications related to shipment

consolidation.

For a comprehensive review of the existing literature in the �rst stream of closely

related research, we refer the readers to Akçal� and Çetinkaya (2011). According
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to the classi�cation framework in Akçal� and Çetinkaya (2011), the problem setting

analyzed in this section is a single stock-point system with stochastic return and de-

mand processes. Both continuous (Heyman (1977); Yuan and Cheung (1998)) and

periodic (Buchanan and Abad (1998); Cohen et al. (1980); Fleischmann and Kuik

(2003); Kelle and Silver (1989); Muckstadt and Isaac (1981); Whisler (1967)) review

inventory and production planning models have been investigated previously while

making strong assumptions leading to a need for analytical models with explicit con-

sideration of �xed operational costs and make-to-order environments with explicit

order waiting costs. We examine both types of review; TF -policy is concerned with

a periodic-review scheme whereas TD-policy, TR-policy, QD-policy, and QR-policy

follow a continuous-review scheme. The general contribution of this section is then

two-fold. The modeling contribution is in the explicit consideration of a make-to-

order environment with both stochastic return and stochastic demand processes.The

technical contribution is in the development of simple closed-form expressions for

computing cost-e�ective near-optimal policy parameters with superior performance

when benchmarked against the computationally demanding exact optimal policy pa-

rameters. While the speci�c technical contribution relies on standard approaches in

stochastic clearing and queuing theory and the idea of developing cost minimization

models draws from stochastic inventory theory, the simple closed-form expressions

derived here remedy the computational burden associated with an exact optimization

approach in a remarkable fashion.

As noted earlier, the alternative operating policies tackling the operational cost

minimization problem faced by the remanufacturer are inspired by stochastic clearing

models applicable in the context of outbound shipment consolidation practices and

vendor-managed inventory systems (Çetinkaya (2005); Çetinkaya and Bookbinder

(2003); Çetinkaya and Lee (2000); Çetinkaya et al. (2008)). Temporal shipment
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consolidation refers to active intervention by management to combine several small

orders arriving over time into a single shipment achieving high truck utilization and

realizing scale economies associated with transportation. Hence, temporal shipment

consolidation problems have been treated by considering time-based and quantity-

based policies that operate in a fashion similar to the alternative policies of inter-

est introduced in this section. As in the case of the operational cost minimization

problem faced by the remanufacturer here, a deliberate temporal shipment consoli-

dation policy also leads to order waiting costs. However, the existing body of work

in this area is largely motivated by inbound or outbound distribution applications

(Çetinkaya and Bookbinder (2003)) arising in the context of traditional forward sup-

ply chains where return and reuse opportunities do not exist. Explicit consideration

of the stochastic nature of both return and demand processes, however, complicate

the implied inventory and order pro�les. Hence, it is worthwhile to have a closer

examination of the e�ciency of similar policies in the context of remanufacturing

and reverse supply chains.

In the traditional shipment consolidation literature, typically a single process that

models the demand is taken into account so that quantitative approaches that rely

on Renewal Theory (Çetinkaya (2005); Çetinkaya and Bookbinder (2003); Çetinkaya

and Lee (2000); Çetinkaya et al. (2008)), Markov decision processes (Higginson and

Bookbinder (1995)), and matrix-geometric methods (Bookbinder et al. (2011)) have

been useful. In our work however, two processes that model the returns and demands

need to be considered. Consequently, while existing temporal shipment models deal

with time- or quantity-based decision parameters for handling the demand process,

the operational remanufacturing decisions can be based on time- or quantity-based

batching of the return process or the demand process in our setting. Due to the

potential valuable nature of returns, a remanufacturing cycle is not a simple inventory
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clearing cycle, regenerative process as in many of the traditional stochastic inventory

problems, deeming the analytical derivation of inventory-related costs di�cult, if not

impossible as we have noted earlier. As a result, the operational cost minimization

problem faced by the remanufacturer is new. To address this new problem, we

utilize existing approaches in stochastic clearing and queuing theory (Stidham Jr

(1974, 1977); Kingman (1962)) along with some of the properties of Poisson processes

(Ross (1996), Page 59) as they relate to the stochastic return and demand processes

and properties of Normal distribution (Barlow (1989), Page 40) as they related to

the accumulated returns and demands in each remanufacturing cycle.

The remainder of the section is organized as follows. In the next section, we dis-

cuss our modeling assumptions, introduce our notation, and our demand and return

process modeling approach. Section 2.3 describes the basic model and the under-

lying processes. Section 2.4 derives the total cost functions for each of the policies

and derives the approximate minimizers of those cost functions. Section 2.5 summa-

rizes and compares the properties of the cost functions and the optimal results. In

Section 2.6, we present some results from a numerical experimentation to investigate

the quality of our approximations and illustrate their practical relevance. Section 2.7

considered the situation that the return rate is greater than or equal to the demand

rate, and extend the policies to include disposal options. Approximation approaches

are proposed and numerical tests are used to check their performances. Section 2.8

summarizes the results of the section and provides future research directions.

2.3 Modeling Basics

The problem setting as described in Section 2.2 is illustrated in Figure 2.1, where

some of modeling parameters are also introduced. See Table 2.1 for a summary

of notation introduced so far along with additional essential notation used in the
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remainder of the section. This section is aimed at a closer examination of the fun-

damental stochastic/random components of the inventory and production planning

system under consideration that are essential for the development of an operational

cost minimization approach. Hence, we proceed with a detailed discussion of the

stochastic demand and return processes (Subsection 2.3.1) along with the random

natures of remanufacturing cycles under alternative policies (Subsection 2.3.2), un-

derlying used-item inventory pro�les (Subsection 2.3.3.1), and spot market procure-

ments (Subsection 2.3.3.2). This section concludes with the illustration of a realiza-

tion of the used-item inventory pro�le and outstanding remanufactured-item order

pro�les for all of the policies (Subsection 2.3.4).

Remanufacturing

Core 
Inventory

Core 
Spot Market

Demand
Process

Return
Process

(F1,cr) (F2)

(cp)

(h)

Customer
Wait

(w)

Figure 2.1: An illustration of the remanufacturing system for the batch processing
problem.

2.3.1 Stochastic Demand and Return Processes

As we have noted earlier the used-items are valuable and remanufacturable and

are returned to a third-party remanufacturer according to a Poisson stream {W (t), t >

0} over time t with an arrival rate of r, and the remanufactured items are valuable
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Table 2.1: Notation for batch processing problem.

TF Time-based operating parameter under �xed period policy
TD Time-based operating parameter under demand-driven periodic policy
TR Time-based operating parameter under return-driven periodic policy
QD Quantity-based operating parameter under demand-driven threshold policy
QR Quantity-based operating parameter under return-driven threshold policy
U Threshold operating parameter incorporating the disposal option
W (t) Number of returns by time t
r Return rate (units/unit time)
N(t) Number of demands by time t
a Demand rate (units/unit time)
Rn Number of returns generated speci�cally in remanufacturing cycle n
Dn Number of demands received in remanufacturing cycle n
Bn Number of used-items procured from the spot market in remanufacturing

cycle n
In Number of used-items in inventory at the end of remanufacturing cycle n
CL(·) Remanufacturing cycle length as a function of the policy parameter

of interest (i.e., TF , TD, TR, QD, or QR)
X1 the time of arrival for the �rst unit of demand in a remanufacturing cycle
Y1 the time of arrival for the �rst unit of return in a remanufacturing cycle
SQD the time that N(t) reaches QD

ZQR the time that W (t) reaches QR

h Used-item inventory holding cost ($/unit/unit time)
w Order waiting cost ($/unit/unit time)
c Variable cost of remanufacturing ($/unit)
cd Unit disposal cost ($/unit)
p Variable spot market procurement cost ($/unit)
K Fixed operational cost associated with remanufacturing of used-items and

dispatching of remanufactured-items ($/cycle)
TC(·) Long-run average expected total cost per unit time as a function of the

policy parameter of interest (i.e., TF , TD, TR, QD, or QR)
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and are in short supply and are ordered from the remanufacturer according to a

Poisson stream {N(t), t > 0} over time t with an arrival rate a.

We denote the inter-arrival times of returns by Yi, i = 1, 2, . . ., so that Yi's are

exponentially distributed with rate r, i.e., Yi ∼ exp(r). Let Z0 = 0 and Zi =
∑i

j=1 Yj

so that Zi ∼ Gamma (i, r) is the arrival time of the ith return. Hence,

W (t) = sup{i : Zi ≤ t}

is the number of returns by time t and, by de�nition, W (t) ∼ Poisson(rt).

We denote the inter-arrival times of demands by Xi, i = 1, 2, . . ., so that Xi's

are exponentially distributed with rate a, i.e., Xi ∼ exp(a). Let S0 = 0 and Si =∑i
j=1Xj so that Si ∼ Gamma (i, a) is the arrival time of the ith demand. Hence,

N(t) = sup{i : Si ≤ t}

is the number of demands by time t and, by de�nition, N(t) ∼ Poisson(at).

Initially, we assume that the return rate r is smaller than the demand rate a, i.e.,

r < a. Also, as we have already justi�ed in the spirit of previous literature and in the

context of practical motivations of interest, we consider the case where return and

demand processes are independent of each other (as in Buchanan and Abad (1998);

Fleischmann and Kuik (2003); Heyman (1977); Muckstadt and Isaac (1981); Whisler

(1967)).

2.3.2 Remanufacturing Cycles under Alternative Policies

We let CLn(·) denote the length of remanufacturing cycle n as a function of the

policy parameter of interest, i.e., TF , TD, TR, QD, or QR, and, we take the liberty

of dropping the index n for obvious reasons and use CL(·) in the remainder of the
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section. Recall that by de�nition of the policies, we have

CL(TF ) = TF

while CL(TD), CL(TR), CL(QD), and CL(QR) are random variables whose charac-

teristics are presented momentarily in Properties 1 through 5.

Now, for all policies, let Rn and Dn denote the returns generated and demands

received, respectively, during the course of the nth remanufacturing cycle. Hence, by

de�nition, random variables Dn, n = 1, 2, . . ., are independent and identically dis-

tributed (i.i.d.) as well as random variables Rn, n = 1, 2, . . .. Clearly, the underlying

distributions of these random variables depend on the policy type as demonstrated

momentarily in Properties 1 through 5.

Recalling that N(t) ∼ Poisson(at) and W (t) ∼ Poisson(rt), utilizing the prop-

erties of random variables X1 and SQD (note that X1 and SQD are stopping times∗

for {N(t), t > 0}), and the properties of random variables Y1 and ZQR (note that Y1

and ZQD are stopping times for {W (t), t > 0}), and considering the de�nitions of

the policies, we have the following results.

Property 1 Under TF -policy, CL(TF ) = TF while Dn = N(TF ) and Rn =

W (TF ). It then follows that E[Dn] = Var(Dn) = aTF and E[Rn] = Var(Rn) =

rTF .

Property 2 Under TD-policy, CL(TD) = X1 + TD while Dn = 1 + N(TD) by

the Strong Markov Property† and, given X1 = x, Rn ∼ Poisson(r(x + TD)). It then

follows that

∗A random variable, e.g., X1, is a stopping time with respect to the process {N(t), t > 0} if for
every t ≥ 0, the event [X1 ≤ t] is determined by the process up to time t (Resnick (2013), Page
504).

†Given that X1 is a stopping time with respect to the process {N(t), t > 0}, for every t ≥ 0
and given N(X1), N(X1 + t) is independent of the events up to X1 (Resnick (2013), Page 162).
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E [CL(TD)] =
1

a
+ TD, Var (CL(TD)) =

1

a2
,

E[Dn] = 1 + aTD, Var(Dn) = aTD,

E[Rn] = E[E[Rn|X1]] = E[r(X1 + TD)] =
r

a
(1 + aTD), and

Var(Rn) = E[Var(Rn|X1)] + Var(E[Rn|X1]) = E[r(X1 + TD)] + Var(r(X1 + TD))

=
r

a
+ rTD +

r2

a2
.

Notation | indicates a conditioning argument.

Property 3 Under TR-policy, CL(TR) = Y1 + TR while Rn = 1 +W (TR) by the

Strong Markov Property and, given Y1 = y, Dn ∼ Poisson(a(y+TR)). It then follows

that

E [CL(TR)] =
1

r
+ TR, Var (CL(TR)) =

1

r2
,

E[Rn] = 1 + rTR, Var(Rn) = rTR,

E[Dn] = E[E[Dn|Y1]] = E[a(Y1 + TR)] =
a

r
(1 + rTR), and

Var(Dn) = E[Var(Dn|Y1)] + Var(E[Dn|Y1]) = E[a(Y1 + TR)] + Var(a(Y1 + TR))

=
a

r
+ aTR +

a2

r2
.

Property 4 Under QD-policy, CL(QD) = SQD while Dn = QD and, given

SQD = s, Rn ∼ Poisson(rs). It then follows that
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E [CL(QD)] =
QD

a
, Var (CL(QD)) =

QD

a2
,

E[Rn] = E[E[Rn|SQD ]] = E[rSQD ] =
rQD

a
, and

Var(Rn) = E[Var(Rn|SQD)] + Var(E[Rn|SQD ]) = E[rSQD ] + Var(rSQD)

=
rQD

a
+
r2QD

a2
.

Property 5 Under QR-policy, CL(QR) = ZQR while Rn = QR and, given ZQR =

z, Dn ∼ Poisson(az). It then follows that

E [CL(QR)] =
QR

r
, Var (CL(QR)) =

QR

r2
,

E[Dn] = E[E[Dn|ZQR ]] = E[aZQR ] =
aQR

r
, and

Var(Dn) = E[Var(Dn|ZQR)] + Var(E[Dn|ZQR ]) = E[aZQR ] + Var(aZQR)

=
aQR

r
+
a2QR

r2
.

2.3.3 Matching Supply with Demand over Remanufacturing Cycles

Now that we have complete results characterizing the stochastic nature of reman-

ufacturing cycles under alternative policies let us recall the details of the sequence

of events associated with matching supply and demand over remanufacturing cy-

cles. First, we consider the case where ρ < 1, i.e., r < a. As noted earlier, we

have two possibilities referred to as the cases of supply overage and supply underage.

The �rst case leads to the discussion in Section 2.3.3.1 and the second case leads to

the discussion in Section 2.3.3.2. Before we proceed to the detailed discussions of

the supply overage and supply underage, we summarize the sequence of events for

remanufacturing cycle n:
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• the remanufacturer measures the initial inventory of used-items, which is the

inventory of used-items at the end of the n − 1st remanufacturing cycle, i.e.,

In−1;

• the remanufacturer consolidates returns during cycle n, and the return amount

is denoted by Rn;

• the remanufacturer observes the demand in cycle n, and the demand received

is denoted by Dn;

• a batch processing run is triggered according to the policy of interest, and all

the demands Dn are cleared:

� if the used-item inventory before batch processing, i.e., In−1 +Rn, is larger

than or equal to Dn, then after the batch run, In−1 + Rn − Dn units of

used-items are left and retained to the next cycle;

� otherwise, the remanufacturer purchases Dn − (In−1 +Rn) units of used-

items from the spot market, and clears all the demand with the used-items

on hand as well as the used-items purchased from the spot market.

2.3.3.1 Supply Overage: Excess Used-item Inventories

Let In denote the number of used-items in inventory at the end of the remanu-

facturing cycle n, and recall that the batch processing lead time is negligible. It then

follows that the used-item inventory levels in successive remanufacturing cycles can

be characterized by a material �ow equation of the form

In =

 In−1 +Rn −Dn, Dn ≤ In−1 +Rn,

0, Dn > In−1 +Rn.
(2.1)

23



As we have noted earlier, despite the seemingly simple nature of the inventory and

production planning problem at hand, we now demonstrate that the resulting used-

item inventory pro�le is more complicated than in the case of traditional stochastic

inventory problems arising in the context of forward supply chains, deeming the

analytical derivation of E [In] challenging. To this end, an analogy to a queueing

system is useful:

• Let us interpret In−1 in (2.1) as the waiting time of the nth customer, in front

of whom there are n− 1 customers, in an arbitrary single-server queue.

• Then, interpreting Rn as the service time of the nth customer and interpreting

Dn as the inter-arrival time between the nth customer and the n+1st customer,

we have the waiting time In of the next customer.

• Clearly, In = 0 if the n+1st customer arrives after the previous customer leaves,

i.e., if Dn ≥ In−1 +Rn.

• Considering the various distributions of Rn and Dn in Properties 1 through 5 ,

we then conclude that the used-item inventory pro�le is dictated by a G/G/1

queue.

While there does not exist an exact method to compute the steady-state distri-

bution of a G/G/1 queue and, hence, E [In], we rely on a fundamental result by

Kingman (1962):

E[In] ≤ E[Dn](C2
a + ρ2C2

r )

2(1− ρ)
(2.2)
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where

C2
a =

Var(Dn)

(E[Dn])2
, C2

r =
Var(Rn)

(E[Rn])2
, and ρ =

E[Dn]

E[Rn]
. (2.3)

As we demonstrate momentarily in Section 2.4, this result is directly applicable for

our goal of developing an analytical model with the objective of minimizing the

long-run average expected total cost of the remanufacturer for computing the policy

parameter of interest.

There are many ways to approximate the average waiting time in queueing theory

as summarized by Table 2.2 in Myskja (1990), on Page 290. The bound by Kingman

(1962) and is given by (2.2) is applicable for any stable G/G/1 queue with ρ < 1, as

proved in Medhi (2002), Page 360. Our methodology here is applicable using other

approximations summarized by Table 2.2 (Myskja (1990)). Here we focus on the

approximation by (2.2).

Table 2.2: A collection of approximation formulas for the GI/GI/1 queue

Kingman

(upper limit) W ≥ va+vs
2(λ−1−µ−1)

= ρ(c2a/ρ
2+c2s)

2µ(1−ρ)

Kobayashi W ≈ ρ̂
µ(1−ρ̂)

, ρ̂ = exp{−2(1− ρ)/(ρ(c2
a + c2

s/ρ
2))}

Heyman

(heavy load) W ≈ µ
2
· vaρ2+vsρ−1

λ−1−µ−1 = ρ(c2a+c2s/ρ
2)

2µ(1−ρ)

Marchal W ≈ λ(1+c2s)
1/ρ2+c2s

· va+vs
2(1−ρ)

= ρ(1+c2s)
2µ(1−ρ)

· c
2
a+ρ2c2s
1+ρ2c2s

Gelenbe W ≈ ρ(c2a+c2s)
2µ(1−ρ)

Krämer

/Langenbach-Belz W ≈ ρ(c2a+c2s)
2µ(1−ρ)

·
{

exp{−2(1− ρ)(1− c2
a)

2/3ρ(c2
a + c2

s)}
exp{−(1− ρ)(c2

a − 1)/(c2
a + 4c2

s)}
Kimura W ≈ σ(c2a+c2s)

µ(1−σ)(c2a+1)
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2.3.3.2 Supply Underage: Spot Market Procurement

Now, let us consider the case of supply underage leading to a spot market procure-

ment in a remanufacturing cycle. In this case, under the assumption that additional

used-items can be obtained with negligible delivery lead time, let

Bn = max{0, Dn − (In−1 +Rn)} =

 0, Dn ≤ In−1 +Rn,

In−1 +Rn −Dn, Dn > In−1 +Rn.
(2.4)

That is, Bn is the spot market procurement quantity associated with remanufacturing

cycle n. Clearly, Bn depends on In complicating the analytical derivation of E [Bn].

In order to overcome this di�culty, let B(t) denote the total number of used-items

procured from the spot market during [0, t] so that

B(t) = (N(t)−W (t))+ .

Then, the long-run average expected spot market procurements per unit time is

given by

lim
t→∞

E [B(t)]

t
= lim

t→∞

E
[
(N(t)−W (t))+]

t
.

Recalling that N(t) ∼ Poisson(at) and W (t) ∼ Poisson(rt) and considering

that a Poisson distribution with a large arrival rate can be e�ectively approxi-

mated by a Normal distribution (Barlow (1989), Page 40), we can approximate

N(t) ∼ Normal(at,
√
at) and W (t) ∼ Normal(rt,

√
rt). Then N(t) − W (t) ∼

Normal((a− r)t,
√

(a+ r)t) (Ross (2010), Page 280). Relying on that, we can prove

the following property.
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Property 6 The long-run average expected spot market procurements per unit

time is given by

lim
t→∞

E [B(t)]

t
= lim

t→∞

E
[
(N(t)−W (t))+]

t
= a− r. (2.5)

Proof. Since N(t)−W (t) ∼ Normal((a− r)t,
√

(a+ r)t), then we have

lim
t→∞

E

[
B(t)

t

]
= lim

t→∞

E
[
(N(t)−W (t))+]

t
= lim

t→∞

∫∞
0

z√
2π
√

(a+r)t
e−

(z−(a−r)t)2
2(a+r)t dz

t
.(2.6)

Letting v = z−(a−r)t√
(a+r)t

and rewriting (2.6), we have

lim
t→∞

E

[
B(t)

t

]
= lim

t→∞

E [(N(t)−W (t))+(t)]

t

= lim
t→∞

∫∞
− (a−r)

√
t√

a+r

√
(a+r)tv+(a−r)t

√
2π

e−
v2

2 dv

t

= lim
t→∞

√
(a+ r)t

∫∞
− (a−r)

√
t√

a+r

v√
2π
e−

v2

2 dv

t

+ lim
t→∞

(a− r)t
∫∞
− (a−r)

√
t√

a+r

1√
2π
e−

v2

2 dv

t

= lim
t→∞

√
(a+ r)

∫∞
− (a−r)

√
t√

a+r

v√
2π
e−

v2

2 dv
√
t

+ lim
t→∞

(a− r)
∫ ∞
− (a−r)

√
t√

a+r

1√
2π
e−

v2

2 dv

= 0 ·
∫ ∞
−∞

v√
2π
e−

v2

2 dv + (a− r)
∫ ∞
−∞

1√
2π
e−

v2

2 dv

= a− r.

Observe that (2.5) is directly applicable for our goal of developing an analytical
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model with the objective of minimizing the long-run average expected total cost of

the remanufacturer for computing the policy parameter of interest.

2.3.4 A Realization: An Illustration of Alternative Policies

For illustrative purposes, realizations ofW (t) andN(t) along with the correspond-

ing realizations of the used-item inventory pro�le and outstanding remanufactured-

item order pro�les are depicted in Figures 2.2 through 2.6 for all of the policies. As

noted earlier, in the description of pertinent details of the sequence of events for

each remanufacturing cycle (see Section 2.2), we have two possible cases as implied

by (2.1): The case when the available returns fall short of the accumulated demands

is illustrated in the �rst remanufacturing cycle, while the case when available returns

exceed the accumulated demands is illustrated in following cycle.
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Figure 2.2: A realization under TF -policy for two successive cycles, i.e. cycle n − 1
and cycle n.
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We have now set the stage to derive the long-run average expected total cost func-

tions under policies of interest. To this end, we consider the case where the remanu-

facturer has already operated for a su�ciently long time. Consequently, (used-item)

inventory and (remanufactured-item) order pro�les associated with the stochastic re-

turn and demand processes are in steady-state so that we can work with steady-state

distributions.

2.4 Long-run Average Expected Total Cost Functions

Let TC(·) denote the long-run average expected total cost per unit time as a

function of the policy parameter, e.g., as a function of TF , TD, TR, QD or QR. Each

of these functions consists of �ve main components representing the relevant terms

associated with the cost parameters, h, w, K along with c and p introduced in Table

2.1:

• the used-item inventory holding cost is accrued at rate h ($/unit/unit time);

• the remanufactured-item order waiting cost is accrued at rate w ($/unit/unit

time);

• the �xed operational costK ($/cycle) is incurred in each remanufacturing cycle;

• the variable cost c is incurred for each remanufactured-item; and

• the variable cost p is incurred for each used-item procured from the spot market.

It then follows that TC(·) is given by computing the individual terms

1. long-run average expected used-item inventory carrying cost per unit time,

2. long-run average expected remanufactured-item order waiting cost per unit

time,
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3. long-run average expected �xed operational cost per unit time,

4. long-run average expected variable remanufacturing cost per unit time, and

5. long-run average expected variable spot market procurement cost per unit time.

While terms 2, 3, and 4 can be evaluated by a straightforward application of the

Renewal Reward Theorem (Ross (1996), Page 133), i.e.,

Long-run average expected cost per unit time =
E [Cycle cost]
E [Cycle length]

,

exact expressions for terms 1 and 5 are di�cult to obtain as we have already

demonstrated in the previous section so that

TC(·) = h

(
E [In] +

E [Cumulative returns received in CL(·)]
E [CL(·)]

)
+
wE [Cumulative demands waiting in CL(·)]

E [CL(·)]

+
E [Fixed operational cost in CL(·)]

E [CL(·)]

+
cE [Remanufacturing quantity in CL(·)]

E [CL(·)]

+ p lim
t→∞

E

[
B(t)

t

]
.

Recalling (2.2) and (2.5), under each policy‡ the following quantities can be evaluated

using Properties 1 through 5 along with (2.3):

‡Observe that E [Fixed operational cost in CL(·)] = K for all policies except for
the TF -policy. That is, under this policy, if an empty batch is not allowed then
E [Fixed operational cost in CL(·)] = K

(
1− e−aTF

)
. One can argue that the treatment provided

in this section, however, allows empty dispatches so that E [Fixed operational cost in CL(·)] = K.
Equivalently, one can argue that the demand rate a is large enough so that aTF is also su�ciently
large. Hence, the probability that no demand arrives in a cycle is nearly zero. This, in turn, implies
that K

(
1− e−aTF

)
≈ K.
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E[In] ≤ E[Dn](C2
a + ρ2C2

r )

2(1− ρ)
,

E [Cumulative returns received in CL(·)] = E

[∫ CL(·)

0

W (t)dt

]
, (2.7)

E [Cumulative demands waiting in CL(·)] = E

[∫ CL(·)

0

N(t)dt

]
, (2.8)

E [Fixed operational cost in CL(·)] = K,

E [Remanufacturing quantity in CL(·)] = E [Dn] , and

lim
t→∞

E

[
B(t)

t

]
= a− r.

It then follows that

TC(·) =hE[In] +
hE
[∫ CL(·)

0
W (t)dt

]
E [CL(·)]

+
wE

[∫ CL(·)
0

N(t)dt
]

E [CL(·)]
+

K

E [CL(·)]

+
cE [Dn]

E [CL(·)]
+ p(a− r), (2.9)

and one can approximate TC(·) in (2.9) using

TC(·) =
hE[Dn](C2

a + ρ2C2
r )

2(1− ρ)
+
hE
[∫ CL(·)

0
W (t)dt

]
E [CL(·)]

+
wE

[∫ CL(·)
0

N(t)dt
]

E [CL(·)]

+
K

E [CL(·)]
+

cE [Dn]

E [CL(·)]
+ p(a− r). (2.10)
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2.4.1 Cost Function under TF -policy

Under TF -policy, let us recall Property 1 and then use (2.3) in conjunction with

(2.2) so that we have

E [In] ≤ a+ r

2(a− r)
. (2.11)

Also, evaluating (2.7) and (2.8) we have

E

[∫ TF

0

W (t)dt

]
=

∫ TF

0

E[W (t)]dt =

∫ TF

0

rtdt =
rTF

2

2
, and

E

[∫ TF

0

N(t)dt

]
=

∫ TF

0

E[N(t)]dt =

∫ TF

0

atdt =
aTF

2

2
.

Using (2.10), it is then easy to verify that

TC(TF ) =
h(a+ r)

2(a− r)
+
hrTF

2
+
waTF

2
+
K

TF
+ ca+ p(a− r) (2.12)

which is an economic order frequency type convex function of TF whose unique

minimizer is given by

T̂F =

√
2K

wa+ hr
. (2.13)

Substituting (2.13) in (2.12), we have

TC(T̂F ) =
h(a+ r)

2(a− r)
+
√

2(wa+ hr)K + ca+ p(a− r).

While the ideal performance of the TF -policy is di�cult to benchmark and estimate in

terms of problem parameters, the above result regarding TC(T̂F ) provides an easily
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computable proxy in closed-form for the total cost which would otherwise require a

computationally intensive simulation approach.

After a closer examination of the impact of utilizing (2.11) in the right hand side

of (2.12) under TF -policy, it is easy to verify that T̂F is independent of the �rst term

of (2.12). Hence, if one can identify the conditions under which E[In] ≈ 0 then it

can easily be argued that T̂F is a superb near-optimal policy parameter under those

conditions. Observations 1 and 2 examine such conditions.

Observation 1 If r < a/3 then E[In] < 1.

Proof. Substituting r/a < 1/3 in the right hand side of (2.11), we obtain

E[In] ≤
1 + r

a

2(1− r
a
)
<

1 + 1
3

2(1− 1
3
)

= 1.

By Observation 1, if r is less than one third of a, i.e., the return rate is truly less

than the demand rate, then the expected number of used-items in inventory at the

end of each remanufacturing cycle is less than 1.

Observation 2 If r ≤ a
(

1− 3√
aTF

)2

then P (Rn ≥ Dn) ≈ 0.

Proof. Considering that a Poisson distribution with a large arrival rate can

be e�ectively approximated by a Normal distribution (Barlow (1989), Page 40),

let us approximate the distributions of Dn and Rn under TF -policy so that Dn ∼

Normal(aTF ,
√
aTF ) andRn ∼ Normal(rTF ,

√
rTF ), respectively.

Now, recalling the well-known property of a Normal random variable which im-

plies that about 99.7% of its possible values lie within three standard deviations of

the mean, we argue that P (Rn ≥ Dn) ≈ 0 when the di�erence between E[Dn] and
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E[Rn] is more than three times the sum of
√

Var(Dn) and
√

Var(Rn), as illustrated

in Figure 2.7. That is, if

aTF − rTF ≥ 3
(√

aTF +
√
rTF

)

then P (Rn ≥ Dn) ≈ 0. Rearranging the terms of the above inequality completes the

proof.

By Observation 2, if r is less than a
(

1− 3√
aTF

)2

, then the probability that the

number of returns generated exceed the number of demands received in each reman-

ufacturing cycle is approximately equal to zero.
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 3σ
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Figure 2.7: Normal distribution approximations for cumulative return and cumula-
tive demand.

Finally, observe that under the potentially practical conditions of Observations
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1 or 2, not only the unique minimizer T̂F of the approximate cost function TC(TF )

in (2.12) provides an e�ective parameter for the TF -policy but also the cost proxy

obtained by √
2(wa+ hr)K + ca+ p(a− r)

is a superb estimate of the ideal performance. This result can be easily veri�ed by

utilizing the fact that E[In] is negligible under the conditions of Observations 1 and

2 along with (2.9), (2.10), (2.12), and (2.13).

Now that we have established formal analytical conditions demonstrating the

performance of the approximation approach proposed here, we conclude with re-

ferring the reader to the impressive numerical results in Section 2.6 examining the

performance when these conditions are violated.

2.4.2 Cost Function under TD-policy

Under TF -policy, it is possible to observe no demand arrivals in a remanufacturing

cycle. In order to avoid this situation, we consider TD-policy. Under TD-policy, let

us recall Property 2 and then use (2.3) in conjunction with (2.2) so that we have

E [In] ≤ (a+ r)

2(a− r)
( r
a

+ aTD)

(1 + aTD)
. (2.14)
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Also, evaluating (2.7) and (2.8) we have

E

[∫ X1+TD

0

W (t)dt

]
= E

[∫ X1

0

W (t)dt

]
+ E

[∫ TD

0

W (t)dt

]
= E

[
E

[∫ X1

0

W (t)dt

∣∣∣∣X1

]]
+
rTD

2

2

= E

[∫ X1

0

E[W (t)]dt

∣∣∣∣X1

]
+
rTD

2

2

= E

[∫ X1

0

rtdt

∣∣∣∣X1

]
+
rTD

2

2

= E

[
rX2

1

2

]
+
rTD

2

2
= r

(
1

a2
+
TD

2

2

)
and

E

[∫ X1+TD

0

N(t)dt

]
= E

[∫ X1

0

N(t)dt

]
+ E

[∫ TD

0

N(t)dt

]
= E

[∫ X1

0

0dt

]
+

∫ TD

0

E[N(t)]dt

=

∫ TD

0

atdt =
aTD

2

2
.

Using (2.10), it is then easy to verify that

TC(TD) =
h(a+ r)

(
r
a

+ aTD
)

2(a− r)(1 + aTD)
+

har

1 + aTD

(
1

a2
+
TD

2

2

)
+

wa2TD
2

2(1 + aTD)
+

aK

1 + aTD

+ ca+ p(a− r). (2.15)

It can be proved that (2.15) is a convex function of TD, and its minimizer is given by

T̂D =

√
2

a2
+

2K − w+h
a

wa+ hr
− 1

a
. (2.16)

Subsequently, the corresponding remanufacturing cycle length is

T̂D +
1

a
=

√
2

a2
+

2K − w+h
a

wa+ hr
, (2.17)
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and substituting (2.16) in (2.15), one can compute TC(T̂D) as an easily computable

proxy for the total cost which would otherwise require a computationally intensive

simulation approach, although in this case a convenient closed-form proxy does not

exist.

2.4.3 Cost Function under TR-policy

To ensure that at least one unit of used-item return is present in each remanu-

facturing cycle, we consider TR policy. Under TR-policy, let us recall Property 3 and

then use (2.3) in conjunction with (2.2) so that we have

E [In] ≤ (a+ r)

2(a− r)
(a
r

+ rTR)

(1 + rTR)
. (2.18)

Also, evaluating (2.7) and (2.8) we have

E

[∫ Y1+TR

0

W (t)dt

]
= E

[∫ Y1

0

W (t)dt

]
+ E

[∫ TR

0

W (t)dt

]
=
rTR

2

2
, and

E

[∫ Y1+TR

0

N(t)dt

]
= E

[∫ Y1

0

N(t)dt

]
+ E

[∫ TR

0

N(t)dt

]
= a

(
1

r2
+
TR

2

2

)
.

Using (2.10), it is then easy to verify that

TC(TR) =
h(a+ r)

(
a
r

+ rTR
)

2(a− r)(1 + rTR)
+

hr2TR
2

2(1 + rTR)
+

wra

1 + rTR

(
1

r2
+
TR

2

2

)
+

rK

1 + rTR

+ ca+ p(a− r). (2.19)

It can be proved that (2.19) is a convex function of TR, and its minimizer is given by

T̂R =

√
2

r2
+

2K +
(
a
r

)2 w+h
a

wa+ hr
− 1

r
. (2.20)
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Subsequently, the corresponding remanufacturing cycle length is

T̂R +
1

r
=

√
2

r2
+

2K + (a
r
)2w+h

a

wa+ hr
. (2.21)

and substituting (2.20) in (2.19), one can compute TC(T̂R) as an easily computable

proxy for the total cost which would otherwise require a computationally intensive

simulation approach, although in this case a convenient closed-form proxy does not

exist.

2.4.4 Cost Function under QD-policy

When QD-policy is in e�ect, the cumulative demand in each remanufacturing

cycle is a constant with value QD but the remanufacturing cycle length is a random

variable denoted by SQD .

Under QD-policy, let us recall Property 4 and then use (2.3) in conjunction with

(2.2) so that we have

E [In] ≤ r(a+ r)

2a(a− r)
. (2.22)

Also, evaluating (2.7) and (2.8) we have

E

[∫ SQD

0

W (t)dt

]
= E

[∫ SQD

0

rtdt

]
=
r

2
E
[
S2
QD

]
=
rQD(QD + 1)

2a2
, and

E

[∫ SQD

0

N(t)dt

]
= E

[
QD∑
i=1

iXi+1

]
=

QD∑
i=1

iE [Xi+1] =

QD∑
i=1

i

a
=
QD(QD − 1)

2a
.

Using (2.10), it is then easy to verify that

TC(QD) =
hr(a+ r)

2a(a− r)
+
hr(QD + 1)

2a
+
w(QD − 1)

2
+
aK

QD

+ ca+ p(a− r). (2.23)
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It can be shown that (2.23) is convex with respect to QD, and its minimizer is given

by

Q̂D =

√
2aK

w + h r
a

. (2.24)

Substituting (2.24) in (2.23), we have

TC(Q̂D) =
r(a+ r)

2a(a− r)
+
√

2(wa+ hr)K +
hr − wa

2a
+ ca+ p(a− r).

Then, TC(QD) provides an easily computable proxy in closed-form for the total

cost function which would otherwise require a computationally intensive simulation

approach.

After a closer examination of the impact of utilizing (2.22) in the right hand side

of (2.23) under QD-policy, it is easy to verify that Q̂D is independent of the �rst term

of (2.23). Hence, if one can identify the conditions under which E[In] ≈ 0 then it

can easily be argued that Q̂D is a superb near-optimal policy parameter under those

conditions. Observations 3 and 4 examine such conditions.

Observation 3 If r < a
(√

17− 3
)
/2 then E[In] < 1.

The proof is straightforward and similar to the proof of Observation 1, and, hence,

it is omitted.

By Observation 3, when the return rate is less than
(√

17− 3
)
/2 times the de-

mand rate, the expected number of used-items in inventory at the end of each re-

manufacturing cycle is less than 1.

Observation 4 If QD > 9r(a+r)
(a−r)2 then P (Rn ≥ QD) ≈ 0.
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Proof. Similar to the Proof of Observation 2, if the di�erence between QD and

E[Rn] is more than three times the sum of their standard deviations, i.e.,

QD −
rQD

a
> 3

√(
rQD

a
+
r2QD

a2

)
(2.25)

then P (Rn ≥ QD) ≈ 0. Note that (2.25) is equivalent to QD > 9r(a+r)
(a−r)2 .

By Observation 4, if the threshold value QD in QD-policy is larger than 9r(a+r)
(a−r)2 ,

then the probability that the number of returns generated, i.e., Rn, exceed the num-

ber of demands received, i.e., QD, in each remanufacturing cycle is approximately

zero.

Finally, observe that under the potentially practical conditions of Observations 3

or 4, not only the unique minimizer Q̂D of the approximate cost function TC(QD)

in (2.23) provides an e�ective parameter for the QD-policy but also the cost proxy

obtained by √
2(wa+ hr)K +

hr − wa
2

+ ca+ p(a− r)

is a superb estimate of the ideal performance. This result can be easily veri�ed by

utilizing the fact that E[In] is negligible under the conditions of Observations 3 and

4 along with (2.9), (2.10), (2.23), and (2.24).

Now that we have established formal analytical conditions demonstrating the per-

formance of the approximation approach proposed here, we conclude with referring

the reader to the impressive numerical results in Section 2.6 where we examine the

performance when these conditions are violated.

2.4.5 Cost Function under QR-policy

When QR-policy is in e�ect, the cumulative return in each remanufacturing cycle

is a constant with valueQR but the remanufacturing cycle length is a random variable

42



denoted by ZQR .

Under QR-policy, let us recall Property 5 and then use (2.3) in conjunction with

(2.2) so that we have

E[In] ≤ E[Dn](C2
a + ρ2C2

s )

2(1− ρ)
=

(a+ r)

2(a− r)
a

r
. (2.26)

Also, evaluating (2.7) and (2.8) we have

E

[∫ ZQR

0

W (t)dt

]
=
QR(QR − 1)

2r
and

E

[∫ ZQR

0

N(t)dt

]
=
aE[Z2

QR
]

2
=
aQR(QR + 1)

2r2
.

Using (2.10), it is then easy to verify that

TC(QR) =
ha(a+ r)

2r(a− r)
+
h(QR − 1)

2
+
wa(QR + 1)

2r
+
rK

QR

+ ca+ p(a− r). (2.27)

It can be shown that (2.27) is convex with respect to QR, and its minimizer is given

by

Q̂R =

√
2rK
wa
r

+ h
. (2.28)

Substituting (2.28) in (2.27), we have

TC(Q̂R) =
ha(a+ r)

2r(a− r)
+
√

2(wa+ hr)K +
wa− hr

2r
+ ca+ p(a− r).

Then, TC(Q̂R) provides an easily computable proxy for the total cost function which

would otherwise require a computationally intensive simulation approach.

After a closer examination of the impact of utilizing (2.26) in the right hand side
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of (2.27) under QR-policy, it is easy to verify that Q̂R is independent of the �rst term

of (2.27). Hence, if one can identify the conditions under which E[In] ≈ 0 then it

can easily be argued that Q̂R is a superb near-optimal policy parameter under those

conditions. Observation 5 examines such conditions.

Observation 5 If QR >
9a(a+r)
(a−r)2 then P (QR ≥ Dn) ≈ 0.

The proof is straightforward and similar to the proof of Observation 4, and, hence,

it is omitted.

By Observation 5, if the threshold value QR in QR-policy is larger than 9a(a+r)
(a−r)2 ,

then the probability that the number of returns generated, i.e., QR, exceed the

number of demands received, i.e., Dn, in each remanufacturing cycle is approximately

equal to zero.

Finally, observe that under the potentially practical condition of Observation 5,

not only the unique minimizer Q̂R of the approximate cost function TC(QR) in (2.27)

provides an e�ective parameter for the QR-policy but also the cost proxy obtained

by √
2(wa+ hr)K +

wa− hr
2r

+ ca+ p(a− r)

is a superb estimate of the ideal performance. This result can be easily veri�ed by

utilizing the fact that E[In] is negligible under the condition of Observation 5 along

with (2.9), (2.10), (2.27), and (2.28).

Now that we have established formal analytical conditions demonstrating the

performance of the approximation approach proposed here, we conclude with re-

ferring the reader to the impressive numerical results in Section 2.6 examining the

performance when these conditions are violated.
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2.5 Comparisons and Insights

In this section, we provide an overview of our results for a comparative analysis.

To this end, Table 2.3 summarizes the results in Property 1 though Property 5.

Next, we summarize the exact and approximate cost functions for our �ve policies

in Table 2.4. The minimizers of the approximate cost functions in Table 2.4 are

summarized in Table 2.5. By comparing the results under our �ve policies, we have

some additional observations.

Observation 6 The expected optimal remanufacturing cycle length under TR-

policy is longer than the expected optimal remanufacturing cycle length under TD-

policy. That is, we have

T̂R +
1

r
> T̂D +

1

a
.

Observation 7 When w > h(1 − 2r
a

), the expected optimal remanufacturing

cycle length under TF -policy is the shortest one among all the three periodic policies.

That is, we have

T̂R +
1

r
> T̂D +

1

a
> T̂F .

Observation 8 The optimal threshold value Q̂R under QR-policy is smaller than

the approximate optimal threshold value Q̂D under QD-policy, and they have the

following relationship:

Q̂R =
r

a
Q̂D.

Observation 9 The expected optimal remanufacturing cycle length when QD-

policy or QR-policy is in e�ect is same as the expected optimal remanufacturing cycle

length under TF -policy, i.e.,

E
[
SQ̂D

]
= E

[
ZQ̂R

]
= T̂F .
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Table 2.5: Near-optimal policy parameter and expected cycle length.

Policy Policy Parameter Cycle Length

TF − policy T̂F =

√
2K

wa+ hr

√
2K

wa+ hr

TD-policy T̂D =

√
2

a2
+

2K − w+h
a

wa+ hr
− 1

a

√
2

a2
+

2K − w+h
a

wa+ hr

TR-policy T̂R =

√
2

r2
+

2K +
(
a
r

)2 w+h
a

wa+ hr
− 1

r

√
2

r2
+

2K +
(
a
r

)2 w+h
a

wa+ hr

QD-policy Q̂D =

√
2aK

w + h r
a

√
2K

wa+ hr

QR-policy Q̂R =

√
2rK
wa
r

+ h

√
2K

wa+ hr

Observations 6 to 9 can be obtained directly by checking the policy parameters

summarized in Table 2.5. By Observations 6 to 9, in general, the expected optimal

remanufacturing cycle lengthes under TF -policy and threshold policies are the same.

Under TD-policy, the expected optimal remanufacturing cycle length is longer, com-

pared with TF -policy. The expected optimal remanufacturing cycle under TR-policy

is even longer, compared with TD-policy. That is because the remanufacturer needs

to wait at least one unit of demand arrives under TD-policy, or to wait at least one

unit of return arrives under TR-policy, which is not required in TF -policy; and the

mean arrival time of the �rst return is longer than the mean arrival time of the �rst

demand, since the return rate is less than the demand rate.

The above four observations compared the expected optimal cycle lengthes under

di�erent policies. The following observations investigate the dependence of policy

parameters in Table 2.5 on the model parameters.

Observation 10 All the policy parameters in Table 2.5, i.e., T̂F , T̂D, T̂R, Q̂D

and Q̂R, are increasing in K, whereas they are decreasing in w.
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Proof. We only provide the proof for that T̂R is decreasing in w, since the

other part of the observation is obvious by checking the expressions of the policy

parameters in Table 2.5.

Since T̂R =
√

2
r2

+ A− 1
r
, where A =

2K+(ar )
2 w+h

a

wa+hr
, that to prove T̂R is decreasing

in w is equivalent to prove A is decreasing in w. This can be done by checking the

�rst derivative of A with respect to w:

∂A

∂w
=

a
r2

(wa+ hr)−
(
2K + a

r2
(w + h)

)
a

(wa+ hr)2
=
−2Ka− a

r
h
(
a
r
− 1
)

(wa+ hr)2
< 0.

Hence, A is decreasing in w, which indicates that T̂R is decreasing in w.

Observation 10 indicates that the remanufacturer needs to do remanufacturing

and then satis�es the cumulative demands less frequently as the �xed cost K in-

creases, whereas it needs to remanufacture and then satis�es the demands more

frequently as the waiting cost w increases. This is intuitive: when the �xed cost is

high, the remanufacturer needs to prolong the remanufacturing cycle, i.e., to keep

low processing frequency, in order to avoid high �xed cost; when the waiting cost is

high, the remanufacturer needs to shorten the remanufacturing cycle, i.e., to keep

high processing frequency, in order to reduce the total waiting time of the demands.

Observation 11 T̂F , T̂D, Q̂D and Q̂R are decreasing in h; T̂R is decreasing in h

if 2K ≥ a
r2

(
a
r
− 1
)
w.

Proof. By checking the expressions of T̂F , T̂D, Q̂D and Q̂R in Table 2.5, it is

obvious that these policy parameters are decreasing in h. Thus we only need to check

the monotonicity of T̂R in h, which is equivalent to check the monotonicity of A in

h, where A =
2K+(ar )

2 w+h
a

wa+hr
. This can be done by checking the �rst derivative of A
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with respective to h:

∂A

∂h
=

a
r2

(wa+ hr)−
(
2K + a

r2
(w + h)

)
r

(wa+ hr)2
=
−2Kr + a

r
w
(
a
r
− 1
)

(wa+ hr)2
,

which is less than 0 if 2K ≥ a
r2

(
a
r
− 1
)
w.

Observation 11 indicates that, in general, the remanufacturer needs to do reman-

ufacturing and then satis�es the cumulative demands more frequently as the holding

h increases. That means when the holding cost is high, the remanufacturer needs to

shorten the remanufacturing cycle, i.e., to keep high processing frequency, in order

to reduce the total inventory of used-items in each cycle, and thus to reduce the total

inventory holding cost.

Observation 12 For TF -policy, T̂F is decreasing in a and r.

This observation is obvious by checking the expression of T̂F in Table 2.5, and hence,

the proof is omitted.

By Observations 9 and 12, the expected optimal cycle lengths under QD-policy

and QR-policy are also decreasing in a and r. This indicates that, under TF -policy,

QD-policy and QR-policy, the remanufacturer needs to do remanufacturing and then

satis�es the cumulative demands more frequently as the demand rate and/or the

return rate increase. This is because when the demand rate is high, the waiting cost

of the demands in each cycle is signi�cant, and shorter cycle length helps to reduce

the total waiting time of the demands in each cycle, and hence, helps to reduce the

waiting cost. Similarly, when the return rate is high, the inventory cost of used-

items in each cycle is signi�cant, and shorter cycle length helps to reduce the total

inventory of used-items, and hence, helps to reduce the inventory holding cost.

Observation 13 Under TD-policy, T̂D is decreasing in r.
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This observation is obvious by checking the expression of T̂D in Table 2.5, and hence,

the proof is omitted.

Observations 13 indicates that the remanufacturer needs to shorten the remanu-

facturing cycle as the return rate increases. This is because when the return rate is

high, the inventory cost of used-items in each cycle is signi�cant, and shorter cycle

length helps to reduce the total inventory of used-items, and hence, helps to reduce

the inventory holding cost.

Observation 14 Under TR-policy, T̂R is decreasing in a if 2K ≥ h
r

(
1 + h

w

)
.

Proof. That to check the monotonicity of T̂R in a is equivalent to check the

monotonicity of A in a, where A =
2K+(ar )

2 w+h
a

wa+hr
. This can be done by checking the

�rst derivative of A with respective to a:

∂A

∂a
=

w+h
r2

(wa+ hr)−
(
2K + a

r2
(w + h)

)
w

(wa+ hr)2
=
−2Kw + (w+h)h

r

(wa+ hr)2
,

which is less than 0 if 2K ≥ h
r

(
1 + h

w

)
.

Observations 14 indicates that, in general, the remanufacturer needs to shorten

the remanufacturing cycle as the demand rate increases. This is because when the

demand rate is high, the waiting cost of the demands in each cycle is signi�cant, and

shorter cycle length helps to reduce the total waiting time of the demands in each

cycle, and hence, helps to reduce the waiting cost.

Observation 15 Under QD-policy, Q̂D is decreasing in r, whereas it is increasing

in a.

Proof. By checking the expression of Q̂D in Table 2.5, it is obvious that Q̂D is

decreasing in r. To prove that Q̂D is increasing in a, we only need to prove that
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2aK
w+h r

a
is increasing in a. Let us denote 2aK

w+h r
a
by B, then we have

∂B

∂a
=

4Ka(wa+ hr)− 2Kwa2

(wa+ hr)2
=

2Kwa2 + 4Khar

(wa+ hr)2
> 0.

Hence, B is increasing in a, which indicates that Q̂D is increasing in a.

Observations 15 indicates that the remanufacturer needs to decrease the threshold

value QD as the return rate increases. That means the remanufacturer will shorten

the remanufacturing cycle in order to reduce the inventory cost which is signi�cant

when the return rate is high. Meanwhile, large demand rate means a large amount

of demand can be accumulated in a short time, and thus, the threshold value QD

can be large.

Observation 16 Under QR-policy, Q̂R is decreasing in a, whereas it is increasing

in r.

The proof is similar with the proof of Observation 16, and hence, is omitted.

Observations 16 indicates that the remanufacturer needs to decrease the threshold

value QR as the demand rate increases. That means the remanufacturer will shorten

the remanufacturing cycle in order to reduce the waiting cost which is signi�cant

when the demand rate is high. Meanwhile, large return rate means a large amount

of returns can be accumulated in a short time, and thus, the threshold value QR can

be large.

2.6 Numerical Experiments

A diligent numerical investigation demonstrates that although the di�erence be-

tween our approximate and exact cost functions can be substantial in some cases,

the use of the approximate policy parameters we propose would work well in prac-

tice. Hence, our contribution to the literature lies in providing a systematic and
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comprehensive analysis of cost performance of periodic and threshold policies for

the remanufacturer and determining analytically tractable and practically e�ective

approximate operating parameters.

2.6.1 Objective of Experimentation

Recall that the exact total cost function and the approximation on the total cost

function are denoted by TC(·) and TC(·), respectively, for policies characterized by

parameters TF , TD, TR, QD, and QR. Also, we let T ∗F , T
∗
D, T

∗
R, Q

∗
D, and Q

∗
R denote

the optimal values of these parameters, and recall that T̂F , T̂D, T̂R, Q̂D, and Q̂R

denote the near-optimal values of these parameters.

The goal of our numerical experimentation is two-fold. First, we want to assess the

quality of our approximations. To this end, we examine the performance implication

of using the approximation (the minimizer of which can be evaluated analytically)

rather than the exact function itself (the minimizer of which can only be evaluated

numerically) to specify the operating parameter of the system. For this purpose, we

use the following metric:

TC (̂·)− TC(·∗)
TC(·∗)

.

Second, we want to test the e�ectiveness of our approximation. To this end, we

examine the performance implication of using the minimizer of the approximation

(which can be evaluated analytically) as an approximate minimizer for the exact cost

function. For this purpose, we use the following metric:

TC (̂·)− TC(·∗i )
TC(·∗)

.

It is possible to make a distinction between problem settings where our approxi-
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mation approaches would perform well or poorly. Speci�cally, we would expect our

approaches to perform well, when the contribution of the used-item inventory holding

costs to the total cost is negligible. For this to happen, one or more of the following

factors should be in e�ect: (i) the policy parameter (cycle length or threshold value)

is su�ciently large and a small change in the policy parameter does not lead to a

substantial change in the value of the total cost; (ii) the return rate is su�ciently low

in comparison to the demand rate and the initial inventory of returned used-items

is nearly zero in each remanufacturing cycle; (iii) the unit used-item inventory hold-

ing cost is su�ciently low and the used-item inventory holding cost accounts for a

small fraction of the total cost. In settings, where the contribution of the used-item

inventory holding cost to the total cost is much more substantial, we expect our ap-

proaches to perform poorly. Therefore, in choosing parameter sets for our numerical

experiments, we include a broad set of parameter values that would lead to settings

where our approximations would perform well or poorly.

2.6.2 Parameter Settings

In our experiments, we consider three levels for the demand rate a (50, 12, and

3), two levels for the �xed cost K (125 and 25), and two levels for the unit used-item

procurement cost p (10 and 80). To set the value of unit used-item inventory holding

cost, we use h = 0.10p. A careful examination of our analytical results show that

the optimal policy parameters depend on the ratios K/w and h/w. Hence, we �x

the unit customer waiting cost at w = 10. We also use a �xed value for the unit

reprocessing cost at c = 20. For a given level of the demand rate, we specify the

return rate such that r = αa. For our numerical experiments, we consider four levels

of α (0.1, 0.2, 0.4, 0.8). As a result, we consider a total of 48 problem instances and

analyze each instance under each of the �ve policies.
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2.6.3 Experimentation

Given a problem instance and a particular policy, we �rst obtain the optimal pol-

icy parameter using simulation as follows. We generate return and demand amounts

independently for 10,000 consecutive remanufacturing cycles and determine the used-

item purchase quantities for each of the remanufacturing cycles. Since our analysis

is based on the assumption that the system reaches steady state, we discard the

data that correspond to the �rst 50,000 remanufacturing cycles as warm-up and use

the data from the remaining 50,000 remanufacturing cycles to evaluate the long-run

average expected total cost. We begin by verifying the convexity of the cost function

using a plot over the search region. Using the plot, we reduce the length of the search

region and step size until we determine the optimal value of the minimizer for the

exact cost function for the policy. We then determine optimal value of the minimizer

of the approximation for the policy and evaluate the performance metrics.

2.6.4 Quality of the Bounds

In Tables 2.6 and 2.7, we report the average-case and worst-case performance for

the quality of our bounds. In particular, the value reported in each cell of Table 2.6

(Table 2.7) is the average (maximum) value for the performance metric that we use to

assess the quality of the bounds over 12 instances considered for the corresponding

level of α when a particular policy is in e�ect. The cells in the last row of these

Tables report the average (maximum) values for the performance metric over all of

the problem instances considered.

Based on the results summarized in Tables 2.6 and 2.7, we can make a number

of observations on the quality of our approximations . First and foremost, it can be

observed that our approximations perform well on average under all of the policies.

For each of the policies, the performance deteriorates as the ratio of the return rate to
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Table 2.6: Quality of the approximations (2.12) for TF -policy, (2.15) for TD-policy,
(2.19) for TR-policy, (2.23) for QD-policy, and (2.27) for QR-policy: Average-case
performance.

α TF -policy TD-policy TR-policy QD-policy QR-policy
0.1 0.42 0.37 2.17 0.03 2.86
0.2 0.53 0.49 1.52 0.11 2.08
0.4 0.83 0.87 1.50 0.30 1.79
0.8 2.01 4.00 4.52 1.32 2.60

Overall 0.95 1.43 2.43 0.46 2.33

Table 2.7: Quality of the approximations (2.12) for TF -policy, (2.15) for TD-policy,
(2.19) for TR-policy, (2.23) for QD-policy, and (2.27) for QR-policy: Worst-case per-
formance.

α TF -policy TD-policy TR-policy QD-policy QR-policy
0.1 1.50 1.24 8.12 0.12 11.22
0.2 1.89 1.66 6.23 0.35 8.07
0.4 2.87 3.08 6.39 1.09 6.53
0.8 6.34 15.42 18.29 4.26 8.10

Overall 6.34 15.42 18.29 4.26 8.10

the demand rate increases. This is not surprising. A higher return rate increases the

probability of having initial used-item inventory, which, in turn, might have a notable

impact on the expected inventory carrying cost. Consequently, the deviation between

the approximation and the exact cost function increases, reducing the quality of our

approximations . Furthermore, among the periodic policies, the approximation for

TF -policy exhibits the best average- and worst-case performance. Between the two

threshold policies, the approximation for QD-policy performs better than the one for

QR-policy both in terms of average- and worst-case performance. Last but not least,

the best threshold policy, i.e., QD-policy, is better than the best periodic policy, i.e.,

TF -policy, in terms of both the average- and worst-case performance.
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We also observe that return-based policies perform worse than their demand-

based counterparts both for periodic and threshold policies. This, in fact, is not

surprising as it is a result of our approximation approach: The approximations of the

initial used-item inventory for demand-driven policies is in�uenced by the ratio r/a,

whereas for return-driven polices, the approximations are in�uenced by a/r. Since

r < a, the demand-driven policies lend themselves into tighter approximations.

2.6.5 E�ectiveness of the Bounds

Our numerical results summarized in Tables 2.8 and provide some convincing

evidence on the practical relevance of our approximations . As before, the value

reported in each cell of Table 2.8 (Table 2.9) is the average (maximum) value for the

performance metric that we use to assess the e�ectiveness of the approximations over

12 instances considered for the corresponding level of α when a particular policy is

in e�ect.

Table 2.8: E�ectiveness of the approximations (2.12) for TF -policy, (2.15) for TD-
policy, (2.19) for TR-policy, (2.23) for QD-policy, and (2.27) for QR-policy: Average-
case performance.

α TF -policy TD-policy TR-policy QD-policy QR-policy
0.1 0.00 0.00 0.05 0.00 0.00
0.2 0.00 0.00 0.03 0.00 0.01
0.4 0.01 0.00 0.01 0.00 0.00
0.8 0.13 0.06 0.05 0.01 0.08

Overall 0.04 0.02 0.04 0.00 0.02

Recall that this performance metric quanti�es the bene�t of using the approx-

imation as an approximate minimizer for the exact cost function itself. By Tables

2.8 and , it can be observed that both the average- and worst-case results are within
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Table 2.9: E�ectiveness of the approximations (2.12) for TF -policy, (2.15) for TD-
policy, (2.19) for TR-policy, (2.23) forQD-policy, and (2.27) forQR-policy: Worst-case
performance.

α TF -policy TD-policy TR-policy QD-policy QR-policy
0.1 0.00 0.01 0.38 0.00 0.00
0.2 0.02 0.01 0.23 0.00 0.17
0.4 0.05 0.02 0.09 0.01 0.00
0.8 0.97 0.43 0.30 0.06 0.90

Overall 0.97 0.43 0.38 0.06 0.90

1%, i.e., if the minimizer of the approximations were to be used as the approximate

policy parameter, the deviation in the exact total cost function would not be larger

than 1% in the worst case across all test parameters and under any of the policies we

consider. Consequently, the minimizers of the approximations that can be obtained

numerically can be used as high-quality approximate minimizers of the exact total

cost functions for each of the corresponding policies.

2.7 The Case Where r ≥ a

In previous sections, by using Kingman's approximation in (2.2), we analyze the

case where r < a. Now, let us turn our attention to the case where r ≥ a. Obviously,

we need to avoid excessive amount of used-items by considering the disposal option

explicitly. For this reason, we need to extend the de�nitions of the �ve policies. To

this end, we introduce a new parameter U for incorporating the disposal option, and

our �ve new policies are:

• TF (�xed period) with disposal option: decision is (TF , UTF );

• TD (demand-driven periodic) with disposal option: decision is (TD, UTD);

• TR (return-driven periodic) with disposal option: decision is (TR, UTR);
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• QD (demand-driven threshold) with disposal option: decision is (QD, UQD);

• QR (return-driven threshold) with disposal option: decision is (QR, UQR).

We denote I ′n as the used-item inventory level at the end of the nth remanufac-

turing cycle after disposal, to di�erentiate it with In. B′n denotes the spot market

procurement quantity associated with remanufacturing cycle n, to be di�erentiated

with Bn.

The sequence of events for remanufacturing cycle n is as follows:

• the remanufacturer measures the initial inventory of used-items, which is the

inventory of used-items at the end of the n − 1st remanufacturing cycle after

disposal, which is denoted by I ′n−1;

• the remanufacturer consolidates returns during cycle n, and the return amount

is denoted by Rn;

• the remanufacturer observes the demand in cycle n, and the demand received

is denoted by Dn;

• a batch processing is triggered according to the policy of interest, and all the

demand Dn are cleared:

� if the used-item inventory before batch processing, i.e., I ′n−1 +Rn, is larger

than or equal to Dn, then after the batch run, I ′n−1 + Rn − Dn units of

used-items are left:

∗ if I ′n−1 +Rn−Dn is above U , then the remanufacturer disposes I ′n−1 +

Rn−Dn−U units, and keeps U units of used-items to the next cycle,

∗ otherwise, the remanufacturer keeps I ′n−1 + Rn − Dn units of used-

items to the next cycle;
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� if I ′n−1+Rn is less than Dn, the remanufacturer purchases Dn−(I ′n−1+Rn)

units of used-items from the spot market, and clears all the demand with

the used-items on hand as well as the used-items purchased from the spot

market.

Thus, the used-item inventory at the end of remanufacturing cycle n after dis-

posal, i.e., I ′n, is given by:

I ′n =

 min{U, I ′n−1 +Rn −Dn}, Dn ≤ I ′n−1 +Rn,

0, Dn > I ′n−1 +Rn.
(2.29)

and the procurement from spot market in remanufacturing cycle n, denoted by B′n,

is given by:

B′n = max{0, Dn −
(
I ′n−1 +Rn

)
} =

 0, Dn ≤ I ′n−1 +Rn,

I ′n−1 +Rn −Dn, Dn > I ′n−1 +Rn.
(2.30)

From (2.29) and (2.30), we know that the exact analytical closed-form expressions

of E[I ′n] and E[B′n] are hard to obtain, if not impossible, because of the underliniing

G/G/1 queue being controlled by two policy parameters under the new �ve policies.

The exact analytical closed-form expression for the expected disposal amount in

remanufacturing cycle n, which is given by E[(I ′n−1 + Rn −Dn − U)+], is also hard

to derive.

All the cost components are the same as stated in Section 2.4, except the disposal

cost incurred under the new policies. By using E[I ′n] and E[B′n], and considering the

disposal cost, the long-run average expected total cost function under our new policies
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are given by:

TC(·) = hE[I ′n] +
hE
[∫ CL(·)

0
W (t)dt

]
E[CL(·)]

+
wE

[∫ CL(·)
0

N(t)dt
]

E[CL(·)]
+

K

E[CL(·)]

+
cE[Dn]

E[CL(·)]
+

pE[B′n]

E[CL(·)]
+
cdE[(I ′n−1 +Rn −Dn − U)+]

E[CL(·)]
, (2.31)

where I ′n and B′n are given by (2.29) and (2.30), respectively. Note that, in (2.31),

except the �rst item and the last two items, all the other items are same as in (2.9).

Let us recall Property 1 to Property 5, and then use the results for (2.7) and (2.8)

in Section 2.4, so that we can obtain the cost functions under the �ve new policies

which are respectively given by

• TF -policy with disposal option:

TC(TF , UTF ) = hE[I ′n] +
hrTF

2
+
waTF

2
+
K

TF
+ ca

+
pE[B′n]

TF
+
cdE[(I ′n−1 +Rn −Dn − U)+]

TF
; (2.32)

• TD-policy with disposal option:

TC(TD, UTD) = hE[I ′n] +
hra

1 + aTD

(
1

a2
+
TD

2

2

)
+

wa2TD
2

2(1 + aTD)
+

aK

1 + aTD

+ca+
apE[B′n]

1 + aTD
+
acdE[(I ′n−1 +Rn −Dn − U)+]

1 + aTD
; (2.33)

• TR-policy with disposal option:

TC(TR, UTR) = hE[I ′n] +
hr2TR

2

2(1 + rTR)
+

wra

1 + rTR

(
1

r2
+
TR

2

2

)
+

rK

1 + rTR

+ca+
rpE[B′n]

1 + rTR
+
rcdE[(I ′n−1 +Rn −Dn − U)+]

1 + rTR
; (2.34)
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• QD-policy with disposal option:

TC(QD, UQD) = hE[I ′n] +
w(QD − 1)

2
+
hr(QD + 1)

2a
+
aK

QD

+ ca

+
apE[B′n]

QD

+
acdE[(I ′n−1 +Rn −Dn − U)+]

QD

; (2.35)

• QR-policy with disposal option:

TC(QR, UQR) = hE[I ′n] +
wa(QR + 1)

2r
+
h(QR − 1)

2
+
rK

QR

+ ca

+
rpE[B′n]

QR

+
rcdE[(I ′n−1 +Rn −Dn − U)+]

QR

. (2.36)

We let (T ∗F , U
∗
TF ), (T ∗D, U

∗
TD), (T ∗R, U

∗
TR), (Q∗D, U

∗
QD) and (Q∗R, , U

∗
QR) denote the

minimizers of the above �ve cost functions, respectively. Since the analytical closed-

form expressions of E[I ′n], E[B′n] and the expected disposal amount are hard to

obtain, equations (2.32) to (2.36) cannot be minimized analytically. Thus, we �nd

approximations for the cost functions, and use the minimizers of those approximate

cost functions as approximations for optimal policy parameters. For this purpose, we

propose three approximation approaches: (1) myopic approximation; (2) simulation-

based approach and (3) parameter-based approximation. We will explain these three

approaches in details in the following. Also we will check the performance of each

approximation approach numerically.

2.7.1 Myopic Approximation

The myopic approximation is intuitive and easy to implement. We let U = 0,

which means that all the extra used-items are disposed. It is intuitive because that

when r > a, there is a high chance that the return amount is larger than the demand

amount in each cycle. By (2.29) and (2.30), it is easy to verify that I ′n−1 = I ′n = 0,
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B′n = (Dn − Rn)+, and (I ′n−1 + Rn −Dn − U)+ = (Rn −Dn)+, given U = 0. Since

r > a, we roughly assume that E[B′n] ≈ 0 and E[(Rn − Dn)+] ≈ (r − a)E[CL(·)].

Then we can obtain the approximate function for (2.31), denoted by TC
(m)

(·), which

are given by:

TC
(m)

(·) =
hE
[∫ CL(·)

0
W (t)dt

]
E[CL(·)]

+
wE

[∫ CL(·)
0

N(t)dt
]

E[CL(·)]
(2.37)

+
K

E[CL(·)]
+

cE[Dn]

E[CL(·)]
+ cd(r − a).

Then, (2.32) to (2.36) can be approximated by the following equations:

TC
(m)

(TF , UTF ) =
hrTF

2
+
waTF

2
+
K

TF
+ ca+ cd(r − a), (2.38)

TC
(m)

(TD, UTD) =
hra

1 + aTD

(
1

a2
+
TD

2

2

)
+

wa2TD
2

2(1 + aTD)
+

aK

1 + aTD

+ca+ cd(r − a), (2.39)

TC
(m)

(TR, UTR) =
hr2TR

2

2(1 + rTR)
+

wra

1 + rTR

(
1

r2
+
TR

2

2

)
+

rK

1 + rTR

+ca+ cd(r − a), (2.40)

TC
(m)

(QD, UQD) =
w(QD − 1)

2
+
hr(QD + 1)

2a
+
aK

QD

+ca+ cd(r − a), and (2.41)

TC
(m)

(QR, UQR) =
wa(QR + 1)

2r
+
h(QR − 1)

2
+
rK

QR

+ca+ cd(r − a), (2.42)

respectively.

Compare equations (2.38) to (2.42) with equations in the last column in Table 2.4,

respectively, we observe that the di�erence is just constant. Due to the similarity,

the minimizers of (2.38) to (2.42) are given by T̂F , T̂D, T̂R, Q̂D and Q̂R, respectively,
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which are the minimizers of the approximate cost functions in previous situation

and are summarized in Table 2.5. Thus, using myopic approximation approach, the

approximations for optimal policy parameters under the �ve new policies are given

by (T̂F ,0), (T̂D, 0), (T̂R, 0), (Q̂D, 0) and (Q̂R, 0), respectively, where T̂F , T̂D, T̂R, Q̂D

and Q̂R are as in Table 2.5. The myopic approximations for the optimal policy

parameters under the �ve new policies are summarized in Table 2.10.

Table 2.10: Myopic approximations for optimal policy parameters.

Policy Policy Parameters

TF -policy with disposal option (T̂F , ÛTF ) =

(√
2K

wa+ hr
, 0

)
,

TD-policy with disposal option (T̂D, ÛTD) =

√ 2

a2
+

2K − w+h
a

wa+ hr
− 1

a
, 0


TR-policy with disposal option (T̂R, ÛTR) =

√ 2

r2
+

2K +
(
a
r

)2 w+h
a

wa+ hr
− 1

r
, 0


QD-policy with disposal option (Q̂D, ÛQD) =

(√
2aK

w + h r
a

, 0

)

QR-policy with disposal option (Q̂R, ÛQR) =

(√
2rK
wa
r

+ h
, 0

)

The myopic approximation actually implies that the remanufacturer disposes all

extra used-items at the end of each remanufacturing cycle, i.e., U = 0. Meanwhile,

T̂F , T̂D, T̂R, Q̂D and Q̂R are used as approximations for the optimal values of TF ,

TD, TR, QD and QR, respectively. Next, we will check numerically whether this

approximation approach works well, i.e., whether (T̂F ,0), (T̂D, 0), (T̂R, 0), (Q̂D, 0)

and (Q̂R, 0) can be used as approximations for (T ∗F , U
∗
TF ), (T ∗D, U

∗
TD), (T ∗R, U

∗
TR),

64



(Q∗D, U
∗
QD) and (Q∗R, , U

∗
QR), respectively. For this purpose, we consider six levels of

α (1.0, 1.2, 1.4, 1.6, 1.8, 2.0) and use the same parameter settings in Section 2.6.

Currently, we let cd = 0, and check the following metric for each instance

TC (̂·, 0)− TC(·∗, ·∗)
TC(·∗, ·∗)

.

This performance metric quanti�es the bene�t of using the minimizers of those

approximate cost functions as approximations for optimal policy parameters. By

Table 2.11, it can be observed that the average-case results are within 5%. By Table

2.12, the worst-case results are within 30%. Based on the results in Tables 2.11

and 2.12, we can conclude that the performance getting better as the ratio of the

return rate to the demand rate increases, when the disposal cost is zero. This is not

surprising. A higher return rate decreases the probability of needing procurement

from the spot market. Thus, there is no need to keep left-over used-items.

Table 2.11: E�ectiveness of the myopic approximation: Average-case performance.
α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 9.43% 9.62% 9.2% 9.18% 8.36%
1.2 6.35% 6.491% 5.93% 6.25% 4.55%
1.4 3.6% 3.74% 3.36% 4.241% 2.03%
1.6 2.09% 2.34% 1.91% 2.48% 0.65%
1.8 1.27% 1.37% 1.10% 1.85% 0.34%
2 0.81% 1.01 0.56% 1.27% 0.22%

Overall 3.92% 4.09% 3.68% 4.26% 2.69%

A careful examination of the data sets reveals that the worst case for each α

value happens when the shortage cost, i.e., unit purchase cost of used-item, has

major impacts on the total cost. That is in the case that the �xed cost K is low, and
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Table 2.12: E�ectiveness of the myopic approximation: Worst-case performance.
α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 29.43% 29.85% 29.36% 28.51% 28.86%
1.2 21.88% 21.47% 19.88% 21.22% 17.01%
1.4 13.83% 14.9% 13.54% 14.95% 9.47%
1.6 8.98% 10.46% 8.42% 9.92% 3.63%
1.8 7.29% 7.07% 5.52% 9.64% 1.89%
2 4.5 % 6.78% 3.02% 7.05% 1.69%

Overall 29.43 % 29.85% 29.36% 28.51% 28.86%

the purchase price p of use-item is high. Then, setting U = 0 implies high chance of

stocking out, especially for the case that α is not large. Thus, under the situation

that the shortage cost has major impacts, the dispose-all policy might result high

cost for small α.

2.7.2 Simulation-based Approach

The above section proposed a myopic approximation that assuming U = 0. The

numerical results show that this approximation approach does not work well in gen-

eral, especially in the situation that the ratio of the return rate to the demand rate is

not large enough. Next we will provide an accurate approximation approach which

is based on computationally intensive simulations.

We will take advantage of the results obtained previously. To be more speci�c,

we will still use T̂F , T̂D, T̂R, Q̂D and Q̂R in Table 2.5, as approximations for T ∗F , T
∗
D,

T ∗R, Q
∗
D and Q∗R, respectively. Then, we search for the minimizer of the approximate

cost function, which can be used as the approximation for the optimal U , numeri-

cally. Thus, using simulation-based approach, the approximations for optimal policy

parameters under the �ve new policies are given by (T̂F , U
∗(T̂F )), (T̂D, U

∗(T̂D)),

(T̂R, U
∗(T̂R)), (Q̂D, U

∗(Q̂D)) and (Q̂R, U
∗(Q̂R)), respectively, where T̂F , T̂D, T̂R, Q̂D
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and Q̂R are as in Table 2.5, and U∗(̂·) can be obtained numerically. U∗(̂·) is the

approximation for the optimal U for the given T̂F , T̂D, T̂R, Q̂D or Q̂R value. We

will check the following metric to evaluate the e�ectiveness of this approximation

approach:

TC (̂·, U∗(̂·))− TC(·∗, ·∗)
TC(·∗, ·∗)

.

The numerical results are summarized in Table 2.13 and Table 2.14 (we use the same

parameter settings as in Myopic approximation approach). By Table 2.13, it can

be observed that the average-case results are within 0.5%. By Table 2.14, it can

be observed that the worst-case results are within 3%. The numerical investigation

demonstrates that this approximation approach works well in general for our new

policies when the disposal cost is zero.

Table 2.13: E�ectiveness of the simulation-based approximation: Average-case per-
formance.

α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 0.27% 0.12% 0.17% 0.02% 0%
1.2 0.16% 0.22% 0.16% 0% 0.04%
1.4 0.22% 0.2% 0.26% 0.04% 0.05%
1.6 0.25% 0.3% 0.24% 0.04% 0.04%
1.8 0.22% 0.3% 0.23% 0.01% 0.12%
2 0.27% 0.37 0.22% 0.02% 0.23%

Overall 0.23% 0.25% 0.21% 0.02% 0.08%

2.7.3 Parameter-based Approximation

The above two sections proposed two approximation approaches for estimating

the total cost functions under our �ve new policies. The myopic approximation is
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Table 2.14: E�ectiveness of the simulation-based approximation: Worst-case perfor-
mance.

α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 1.01% 0.59% 0.62% 0.3% 0%
1.2 0.6% 0.99% 0.74% 0% 0.19%
1.4 0.99% 0.73% 1.11% 0.18% 0.25%
1.6 0.9% 1.16% 0.78% 0.22% 0.21%
1.8 0.91% 1.55% 1.14% 0.05% 0.76%
2 1.6 % 2.37% 0.91% 0.15% 1.83%

Overall 1.6 % 2.37% 1.14% 0.3% 1.83%

easy to implement, but is not accurate in general. The simulation approach can

guarantee the accuracy, but is computationally intensive. In this section we will

propose a parameter-based approximation approach which can provide easy ways to

compute the approximations for the optimal policy parameters while guarantee the

accuracy in general.

If we assume I ′n = U , and solve B′n from (2.30), then we have B′n = max{0, Dn−

Rn − U}. The disposal amount in remanufacturing cycle n is given by (U + Rn −

Dn−U)+ = (Rn−Dn)+. Recalling Properties 1 to 5, if we use Normal distributions

to approximate the Poisson distributions for Dn and Rn, then Dn−Rn is also normal

distributed. For each policy we can approximate Dn −Rn as follows:

• TF -policy with disposal option:

Dn −Rn ∼ Norm
(

(a− r)TF ,
√

(a+ r)TF

)
; (2.43)

• TD-policy with disposal option:

Dn −Rn ∼ Norm

(
(a− r)TD + 1− r

a
,

√
(a+ r)TD +

r

a
+
r2

a2

)
; (2.44)
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• TR-policy with disposal option:

Dn −Rn ∼ Norm

(
(a− r)TR − 1 +

a

r
,

√
(a+ r)TR +

a

r
+
a2

r2

)
; (2.45)

• QD-policy with disposal option:

Dn −Rn ∼ Norm

((
1− r

a

)
QD,

√(
r

a
+
r2

a2

)
QD

)
; (2.46)

• QR-policy with disposal option:

Dn −Rn ∼ Norm

((a
r
− 1
)
QR,

√(
a

r
+
a2

r2

)
QR

)
. (2.47)

We denote the CDFs of (Dn−Rn) by FTF (·), FTD(·), FTR(·), FQD(·), and FQR(·),

respectively for the �ve policies. The corresponding pdfs are denoted by fTF (·),

fTD(·), fTR(·), fQD(·), and fQR(·), respectively. Then we have

E[B′n] =

∫ ∞
U

(x− U)fi(x)dx, i ∈ {TF, TD, TR,QD,QR}, and (2.48)

E[(Rn −Dn)+)] =

∫ 0

−∞
−xfi(x)dx, i ∈ {TF, TD, TR,QD,QR}. (2.49)

Substituting I ′n = U , (2.48), and (2.49) in cost functions (2.32) to (2.36), we obtain

the following approximations for (2.32) to (2.36) respectively:

TC
(p)

(TF , UTF ) = hU +
hrTF

2
+
waTF

2
+
K

TF
+ ca

+
p
∫∞
U

(x− U)fTF (x)dx

TF
+
cd
∫ 0

−∞−xfTF (x)dx

TF
, (2.50)
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TC
(p)

(TD, UTD) = hU +
hra

1 + aTD

(
1

a2
+
TD

2

2

)
+

wa2TD
2

2(1 + aTD)
(2.51)

+
aK

1 + aTD
+ ca+

ap
∫∞
U

(x− U)fTD(x)dx

1 + aTD

+
acd
∫ 0

−∞−xfTD(x)dx

1 + aTD
,

TC
(p)

(TR, UTR) = hU +
hr2TR

2

2(1 + rTR)
+

wra

1 + rTR

(
1

r2
+
TR

2

2

)
(2.52)

+
rK

1 + rTR
+ ca+

rp
∫∞
U

(x− U)fTR(x)dx

1 + rTR

+
rcd
∫ 0

−∞−xfTR(x)dx

1 + rTR
,

TC
(p)

(QD, UQD) = hU +
w(QD − 1)

2
+
hr(QD + 1)

2a
+
aK

QD

+ ca (2.53)

+
ap
∫∞
U

(x− U)fQD(x)dx

QD

+
acd
∫ 0

−∞−xfQD(x)dx

QD

, and

TC
(p)

(QR, UQR) = hU +
wa(QR + 1)

2r
+
h(QR − 1)

2
+
rK

QR

+ ca (2.54)

+
rp
∫∞
U

(x− U)fQR(x)dx

QR

+
rcd
∫ 0

−∞−xfQR(x)dx

QR

.

By (2.50) to (2.54), it can be easily proved that: for any given TF , TC
(p)

(TF , UTF )

is convex in U ; for any given TD, TC
(p)

(TD, UTD) is convex in U ; for any given TR,

TC
(p)

(TR, UTR) is convex in U ; for any given QD, TC
(p)

(QD, UQD) is convex in U ;

and for any given QR, TC
(p)

(QR, UQR) is convex in U . Therefore, we use T̂F , T̂D, T̂R,

Q̂D and Q̂R in Table 2.5, as approximations for T ∗F , T
∗
D, T

∗
R, Q

∗
D and Q∗R, respectively,

and approximate the optimal U value by setting the �rst derivative of the above �ve

cost functions with respect to U equal to zero. Then we obtain the approximation

for the optimal U as follows:
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• TF -policy with disposal option:

ÛTF = F−1
TF

(
1− hT̂F

P

)
; (2.55)

• TD-policy with disposal option:

ÛTD = F−1
TD

(
1− h(1 + aT̂D)

aP

)
; (2.56)

• TR-policy with disposal option:

ÛTR = F−1
TR

(
1− h(1 + rT̂R)

rP

)
; (2.57)

• QD-policy with disposal option:

ÛQD = F−1
QD

(
1− hQ̂D

aP

)
; (2.58)

• QR-policy with disposal option:

ÛQR = F−1
QR

(
1− hQ̂R

rP

)
. (2.59)

By (2.55) to (2.59), together with (2.43) to (2.47), we can obtain Û values which

can be used as approximations for the real optimal U values, i.e., U∗. Thus, using

parameter-based approach, the approximations for optimal policy parameters under

the �ve new policies are given by (T̂F , ÛTF ), (T̂D, ÛTD), (T̂R, ÛTR), (Q̂D, ÛQD) and

(Q̂R, ÛQR), respectively, where T̂F , T̂D, T̂R, Q̂D and Q̂R are as in Table 2.5, and

ÛTF , ÛTD, ÛTR, ÛQD and ÛQR are given by (2.55) to (2.59), respectively. The
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parameter-based approximations for the optimal policy parameters under the �ve

new policies are summarized in Table 2.15. Next we will check the e�ectiveness of

Table 2.15: Parameter-based approximations for optimal policy parameters.

Policy Policy Parameters

TF -policy with disposal option (T̂F , ÛTF ) =

(√
2K

wa+ hr
, F−1

TF

(
1− hT̂F

P

))

TD-policy with disposal option (T̂D, ÛTD) =

√ 2

a2
+

2K − w+h
a

wa+ hr
− 1

a
, F−1

TD

(
1− h(1 + aT̂D)

aP

)
TR-policy with disposal option (T̂R, ÛTR) =

√ 2

r2
+

2K +
(
a
r

)2 w+h
a

wa+ hr
− 1

r
, F−1

TR

(
1− h(1 + rT̂R)

rP

)
QD-policy with disposal option (Q̂D, ÛQD) =

(√
2aK

w + h r
a

, F−1
QD

(
1− hQ̂D

aP

))

QR-policy with disposal option (Q̂R, ÛQR) =

(√
2rK
wa
r

+ h
, F−1

QR

(
1− hQ̂R

rP

))

this approximation using the following metric

TC (̂·, ·̂)− TC(·∗, ·∗)
TC(·∗, ·∗)

.

The results are summarized in Tables 2.16 and 2.17 (we use the same parameter

settings as in Myopic approximation approach). By Table 2.16, it can be observed

that the average-case results are within 1%. By Table 2.17, it can be observed

that the worst cases are around 5% over all policies. Thus, we can conclude that

the parameter-based approximation works well in general when the disposal cost

is zero. Recall that T̂F , T̂D, T̂R, Q̂D and Q̂R are as in Table 3, and Ûi, where

i ∈ {TF, TD, TR,QD,QR}, can be obtained by using (2.55) to (2.59). Thus, this

approximation approach is easy to implement and well-performed in the sense of

providing accurate policy parameters.

72



Table 2.16: E�ectiveness of parameter-based approximation : Average-case perfor-
mance.

α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 1.11% 0.99% 0.99% 0.9% 0.78%
1.2 0.31% 0.36% 0.27% 0.06% 0.22%
1.4 0.27% 0.23% 0.29% 0.11% 0.13%
1.6 0.27% 0.45% 0.28% 0.26% 0.12%
1.8 0.22% 0.53% 0.27% 0.45% 0.12%
2 0.33% 0.48% 0.38% 0.58% 0.26%

Overall 0.42% 0.5 % 0.41% 0.39% 0.27%

Table 2.17: E�ectiveness of parameter-based approximation: Worst-case perfor-
mance.

α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 4.45% 4.89% 5.27% 4.72% 4.47%
1.2 1.08% 0.99% 0.83% 0.37% 1.12%
1.4 0.99% 0.73% 1.14% 0.45% 0.71%
1.6 0.9% 2.14% 0.78% 0.77% 0.86%
1.8 0.91% 3.85% 1.41% 1.19% 0.76%
2 1.97 % 2.89% 2.42% 2.21% 2.19%

Overall 4.45 % 4.89% 5.27% 4.72% 4.47%
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All the above numerical results are assuming zero disposal cost, and in this sit-

uation we showed that parameter-based approximation is easy to implement and

works well in general. Next we will verify the e�ectiveness of the parameter-based

approach considering positive disposal cost explicitly. We consider two levels of the

unit disposal cost for a given level of used-item inventory holding cost: cd = 1.5h and

cd = 3h. The numerical results with positive disposal cost are summarized in Ta-

bles 2.18 and 2.19. It can be observed that the average-case results are within 1.7%

and the worst cases are around 7.6% over all policies. Thus, the parameter-based

approximation still works well with positive disposal cost.

Table 2.18: E�ectiveness of parameter-based approximation considering positive dis-
posal cost: Average-case performance.

α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 1.6% 1.63% 1.57% 1.44% 1.36%
1.2 0.49% 0.51% 0.44% 0.15% 0.32%
1.4 0.28% 0.2% 0.23% 0.04% 0.14%
1.6 0.28% 0.33% 0.22% 0.1% 0.07%
1.8 0.2% 0.38% 0.18% 0.2% 0.12%
2 0.22% 0.35% 0.24% 0.3% 0.17%

Overall 0.51% 0.57 % 0.48% 0.37% 0.36%

2.8 Conclusions

In this section, considering a fundamental inventory and production planning

problem characterized by a batch processing environment with stochastic demands

and stochastic returns along with �xed operational costs and disposal opportunities,

we propose a comprehensive set of periodic and threshold batching policies.

We aim to derive analytical expressions for the long-run average expected total

cost functions under the proposed policies to determine the optimal policy parame-
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Table 2.19: E�ectiveness of parameter-based approximation considering positive dis-
posal cost: Worst-case performance.

α TF with dis. TD with dis. TR with dis. QD with dis. QR with dis.
1 7.47% 7.19% 7.63% 7.03% 7.16%
1.2 2.31% 1.99% 1.98% 1.12% 2.13%
1.4 1% 0.89% 0.75% 0.21% 0.52%
1.6 1.13% 1.5% 0.93% 0.45% 0.4%
1.8 0.77% 2.55% 0.74% 0.7% 0.68%
2 1.31 % 2.05% 1.53% 1.31% 1.62%

Overall 7.47 % 7.19% 7.63% 7.03% 7.16%

ters. We demonstrate that the mismatch of the return and the demand leads to the

fundamental di�culty in obtaining exact closed-form expressions of the cost func-

tions. Therefore, we develop analytically tractable approximations, and we report

numerical results demonstrating the quality and e�ectiveness of these approxima-

tions. Last by not least, we observe that the demand-driven threshold policy per-

forms the best on the average in term of the resulting expected cost for the case

when the return rate is less than the demand rate.

For the case when the return rate exceeds the demand rate so that we execute the

disposal option, the relative cost performances of the alternative batching policies

considered depend on the approximation approach associated with the disposal de-

cision. More speci�cally, when we use the myopic approach for the disposal decision,

the return-driven threshold policy is superior on the average in terms of the resulting

expected cost; when we use the simulation-based approach for the disposal decision,

the demand-driven threshold policy is superior; and when we use the parameter-based

approach for the disposal decision, the return-driven threshold policy is superior.

An important extension of our work should explore the potential bene�t of build-

ing a reprocessed device bu�er in the system to reduce the impact of customer waiting
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costs for settings where this cost can be substantial. Clearly, this extension requires a

thorough investigation of a two stock-point system, where both returned used-items

and remanufactured-items can be kept in inventory. Another important extension is

to investigate the structure of the exact optimal batching policies using stochastic

dynamic programming or Markov decision processes. Other interesting extensions

include explicit modeling of multiple decentralized agents, e.g., remanufacturer, col-

lection center, and retailer and/or considering more general return process.
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3. SEED STOCK PLANNING STRATEGIES WITH MULTIPLE AGENTS

3.1 Overview of Section 3

We consider a basic game-theoretic setting for the seed stock planning problem

in remanufacturing. The problem can be characterized as a �nite horizon inventory

control problem with multiple agents including an OEM, a NPS, and a RS. The

OEM provides a particular type of replacement part for a product it sells. The

demand of the replacement parts throughout the whole planning horizon T can be

satis�ed by using new-items procured from the NPS at the beginning of T , as well as

remanufactured-items provided by the RS until the end of T . The initial inventory,

i.e., seed stock, is treated as an operational decision variable along with other decision

variables. Since only a fraction of used-items can be remanufactured, seed stock is

crucial to guarantee enough supply of used-items for remanufacturing as well as to

satisfy the demand during the initial phase of the planning horizon. The objective is

to maximize the total pro�t by optimizing the seed stock level of new-items, initial

lot size and exchange lot size of used-items. Seed stock optimization may or may

not be controlled by the OEM due to the interactions between multiple agents. We

investigate three scenarios and two types of controls, leading to several di�erent

system settings. We are interested in the interactions between the agents, and the

impacts of the interactions on strategy performance. We aim to identify the system

setting that performs best through our analytical models and numerical experiments.

3.2 Problem Motivations and Related Literature

As noted above, we consider a basic game-theoretic setting for seed stock plan-

ning problem in remanufacturing with multiple agents including an OEM, a NPS,

and a RS. In automotive industry and electronic industry, the OEM often establishes
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remanufacturing programs to recover used products. Kodak's remanufacturing pro-

gram for single-use-cameras is successful, and Xerox recycles and remanufactures

photocopiers and print toner cartridges (Daniel et al. (2002)). Cell phone companies

often establish remanufacturing programs to recycle used phones and re-market the

remanufactured products. As noted by Akçal� and Morse (2004), to initiate the re-

manufacturing, the OEM needs to collect a certain amount of used-items, and these

used-items are from the returns of previously sold new products. Akçal� and Morse

(2004) de�ne the amount of new products released as the seed stock.

Considering the practical importance of seed stock planning, we focus on a new

seeding problem, i.e., the problem of determining the optimal seed stock level for the

OEM with explicitly modeling the NPS and RS. The goal is to analyze multi-agent

model with seed stock planning by applying game theory. First we look at determin-

istic environment for the sake of characterizing the fundamental coordination issues

arising in the forward (new-items) and reverse (used-items) �ows.

The problem studied in the current section is related to the previous research in

deterministic lot sizing models in remanufacturing (Schrady (1967); Teunter (2001);

Dobos and Richter (2004); Atasu and Çetinkaya (2006)). However, this line of re-

search does not address seed stock planning.

Another line of closely related research focuses on the application of game theory

in modeling remanufacturing decisions. We refer the reader to Souza (2013) for a

critical review of recent work. One stream of research work within this line stud-

ies competition between new and remanufactured products when remanufacturing

cannibalizes the demand for manufacturing (Ferrer (1996); Majumder and Groen-

evelt (2001); Debo et al. (2005); Ferrer and Swaminathan (2006); Ferguson and Tok-

tay (2006); Ferrer and Swaminathan (2010); Oraiopoulos et al. (2012); Heese et al.

(2005); Atasu et al. (2008)). Another stream of research work in game-theoretic
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models deals with selection problems for reverse channel structures (Savaskan et al.

(2004); Savaskan and Van Wassenhove (2006); Atasu et al. (2013); Karakayali et al.

(2007); Choi et al. (2013); De Giovanni and Zaccour (2014)). A third stream of

research work addresses the operational and coordination aspects of remanufactur-

ing practices together (Bhattacharya et al. (2006); Vorasayan and Ryan (2006); Liu

et al. (2009); Dobos et al. (2013); Pishchulov et al. (2014)). None of these papers

in the application of game theory in modeling remanufacturing decisions considers

seed stock planning. They also do not focus on how the decision domain structure

impacts the performance. Here, we consider a basic seed stock planning problem in

remanufacturing, focusing on the interaction between OEM and RS. We are inter-

ested in evaluating di�erent OEM-lead Stackelberg settings and compare them with

the centralized setting. Hence, our focus is on examining how the decision domain

structure impacts the total pro�t and identifying the most e�cient one.

We analyze three di�erent scenarios. For each scenario, we consider both central-

ized control and decentralized control. Under centralized control, we consider three

strategies:

• Centralized control strategy under which the system-wide total pro�t is maxi-

mized;

• OEM-centric control strategy under which only the OEM's pro�t is maximized;

• RE-centric control strategy under which only the RS's pro�t is maximized.

Under decentralized control, we consider the OEM-lead strategies under which the

OEM makes decisions on some variables, and then the RS makes decisions accord-

ingly on the remaining undecided variables.

Hence, we provide a systematic and thorough analysis of decentralized and cen-

tralized control strategies for seed stock planning. Our results o�er managerial in-
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sights for both the OEM and RS in making decisions on seed stock level, initial

batch size for remanufacturing, exchange lot size and remanufacturing frequency,

under di�erent technological or operational conditions.

The remainder of this section is organized as follows. In the next section, we

introduce the system setting and notation, and we derive the pro�t functions for

the OEM, RS, and system. Section 3.4 describes di�erent decision-making scenarios

and di�erent strategies in each scenario and formulates the corresponding optimiza-

tion problems. Section 3.5 examines the structural properties of the pro�t functions.

Sections 3.6, 3.7 and 3.8 analyze the problems considering three di�erent scenar-

ios, separately: Section 3.6 focuses on the scenario that the quantity of used-items

shipped from the OEM to the RS is exogenous, Section 3.7 focuses on the scenario

that the quantity of used-items shipped to the RS to initiate the remanufacturing

program is exogenous, and Section 3.8 focuses on the scenario in a Stackelberg setting

with three decision variables. In Section 3.9, we discuss numerical results. Section

3.10 summarizes the results of this section and provide future research directions.

3.3 System Setting and Pro�t Functions

We consider a setting with an OEM, a NPS, and a RS. The OEM sells a product

for which it has to provide a particular type of replacement part throughout the life

cycle of the product, i.e., until the end of the planning horizon denoted by T . This

type of replacement parts is remanufacturable, and hence, can be sent to the RS for

remanufacturing. The problem setting is illustrated in Figure 3.1.

Throughout the planning horizon T , there is a known constant demand rate for

the replacement part, denoted by a. Since each unit demand of the replacement part

generates a unit of used-item, the return rate for the used-item is also a. In order

to satisfy the demand, the OEM can either use new-items procured from the NPS
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Figure 3.1: An illustration of the seed stock planning problem.

at the beginning of the planning horizon, or use remanufactured-items provided by

the RS. The unit price for the serviceable part is π. Meanwhile, the OEM collects

used-items from customers and sends them in batches to the RS for remanufacturing.

The sequence of events are as follows: At the beginning of the planning horizon,

the OEM procures new-items at per-unit cost of cnp from the NPS and places them

in inventory as the seed stock. The seed stock with lot size Qs is depleted by the

demand. We de�ne the time period during which the inventory level of new-items

drops to 0 as the seed stock cycle and denote it by CLs. At time CL0, the OEM begins

to collect used-items (which are removed from products that are brought in warranty

service) for the program initiation lot with size Qi. Before CL0, all the returned used-

items are disposed. The time period during which Qi units of used-items are collected

is de�ned as the remanufacturing initiation cycle, denoted by CLi. The initiation
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lot sent to the RS allows the RS to have a bu�er of used-items on hand to hedge

against potential remanufacturing yield loss. After the release of the initiation lot to

start the remanufacturing program, a lot-for-lot policy goes into e�ect until the last

but one shipment. That is, whenever the OEM sends a batch of used-items to the

RS, the RS is required to send a batch of the same size of remanufactured-items to

the OEM in exchange. The exchange batch size is denoted by Qr. The time period

between two successive lot exchanges is de�ned as the collection cycle, denoted by

CLr. The OEM will pay the RS crp for each unit remanufactured-item. The per-unit

remanufacturing cost for the RS is c. The remanufacturing program stops when the

RS sends the last batch of remanufactured-items to the OEM without getting any

used-items. Then, the RS disposes the remaining unremanufactured-items, and the

OEM disposes what is returned. We assume that unit disposal cost is same for both

OEM and RS, which is denoted by cd.

Only a fraction of used-items can be remanufactured. This fraction is denoted

by γ. The remanufacturing rate, denoted by m, is known. Furthermore, m >

a. The RS inspects each coming batch of used-items with in�nite rate. All the

unremanufacturable items are disposed immediately after the inspection.

A summary of notation is provided in Table 3.1. The inventory pro�les for the

OEM and the RS are depicted in Figure 3.2. Since n = 0 implies that remanu-

facturing program is not executed, the inventory pro�les in Figure 3.2 are actually

meaningful for n ≥ 1. Observe that, when n ≥ 1, we have the following:

(i) The entire demand throughout the planning horizon must be satis�ed:

aT = Qs + nQr,
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and hence, Qs can be written as a function of n and Qr, which is given by

Qs = aT − nQr. (3.1)

(ii) Seed stock quantity must be su�cient to initiate the remanufacturing program

and to satisfy the demand before obtaining the �rst batch of remanufactured-

items from the RS:

Qs ≥ Qi +Qr. (3.2)

Substituting (3.1) in (3.2), we have

aT ≥ Qi + (n+ 1)Qr, (3.3)

and, hence, the time CL0 at which the OEM starts to collect used-items is

given by

CL0 =
aT −Qi − (n+ 1)Qr

a
. (3.4)

(iii) The total amount of used-items that are remanufacturable should be su�cient

to satisfy the entire remanufacturing requirement throughout the planning hori-

zon:

γQi ≥ (n− 1)(1− γ)Qr +Qr. (3.5)

In our analysis, we will treat Qs as a dependent variable. That is, we will calculate

the optimal values of n and Qr, and then, use (3.1) to obtain the optimal value of
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Qs. Thus, we actually have two inventory conservation constraints:

• inventory conservation constraint for the OEM which is given by (3.3);

• inventory conservation constraint for the RS which is given by (3.5).

Hence, the OEM's decisions are restricted by (3.3), while the RS's decisions are

restricted by (3.5).

3.3.1 OEM's Total Pro�t Function

First, we derive the OEM's pro�t function which consists of seven components:

(O.i) total revenue of selling serviceable parts to customers: πaT ;

(O.ii) total procurement cost for new-items at the beginning of T : cnpaT if n = 0,

and cnp(aT − nQr) otherwise;

(O.iii) total �xed shipment cost for exchanging used-items with remanufactured-

items throughout T : 0 if n = 0, and nKs otherwise;

(O.iv) total procurement cost for remanufactured-items throughout T : 0 if n = 0,

and ncrpQr otherwise;

(O.v) cumulative inventory carrying cost for used-items throughout T : 0 if n = 0,

and huMI1 otherwise, where I1 is the cumulative used-item inventory held by

the OEM throughout T ;

(O.vi) cumulative inventory carrying cost for new-items throughout T : hnM
aT 2

2
if

n = 0, and hnMA3 otherwise, where A3 is the cumulative new-item inventory

held by the OEM during the seed stock cycle;
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Table 3.1: Notation for the seed stock planning problem.
T Finite planning horizon
a Finite demand rate
γ Fraction of used-items that can be remanufactured
m Finite remanufacturing rate
Qs The quantity of new-items procured from the NPS (i.e., seed stock lot size)
Qr The quantity of used-items shipped from the OEM to the RS, which is also equal to the

quantity of remanufactured-items shipped from the RS to the OEM (i.e., exchange lot
size)

Qi The quantity of used-items shipped from the OEM to the RS to initiate the remanufac-
turing
program (i.e., initiation lot size)

n The number of consecutive remanufacturing replenishments throughout the planning hori-
zon

CL0 The time at which the OEM starts collecting used-items
CLi The length of the remanufacturing initiation cycle, i.e., CLi = Qi/a
CLr The length of a used-item collection cycle, i.e., CLr = Qr/a
CLs The length of the seed stock cycle, i.e., CLs = Qs/a
CLR The length of a remanufacturing run for processing a batch of remanufacturable items,

i.e., CLm = Qr/m
Ks Fixed shipment cost from the OEM to the RS
Kr Fixed remanufacturing setup cost incurred by the RS
π Unit price of serviceable part
cnp Unit new-item procurement cost
crp Unit remanufactured-item procurement cost, crp < cnp

c Unit remanufacturing cost, c < crp

cd Unit used-item disposal cost
hnM Unit inventory holding cost per new-item incurred by the OEM
hrM Unit inventory holding cost per remanufactured-item incurred by the OEM, hrM < hnM
huM Unit inventory holding cost per used-item incurred by the OEM, huM < hrM
hrR Unit inventory holding cost per remanufactured-item incurred by the RS
huR Unit inventory holding cost per used-item incurred by the RS, huR < hrR
A1 Cumulative used-item inventory held at the OEM during the remanufacturing initiation

cycle
A2 Cumulative used-item inventory held at the OEM during each collection cycle
A3 Cumulative new-item inventory held at the OEM during the seed stock cycle
I1 Cumulative used-item inventory held at the OEM throughout the planning horizon
I2 Cumulative remanufactured-item inventory held at the OEM throughout the planning

horizon
I3 Cumulative remanufacturable item inventory held at the RS throughout the planning

horizon
I4 Cumulative remanufactured-item inventory held at the RS throughout the planning hori-

zon
IER Cumulative echelon inventory held at the RS throughout the planning horizon
IdM Total quantity of units disposed by the OEM throughout the planning horizon
IdR Total quantity of units disposed by the RS throughout the planning horizon
ΠOEM The OEM's total pro�t throughout the planning horizon
ΠRS The RS's total pro�t throughout the planning horizon
Π The system-wide total pro�t throughout the planning horizon
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Figure 3.2: A realization of inventory pro�les for the seed stock planning problem.
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(O.vii) cumulative inventory carrying cost for remanufactured-items throughout T :

0 if n = 0, and hrMI2 otherwise, where I2 is the cumulative remanufactured-

item inventory held by the OEM throughout T ;

(O.viii) total disposal cost throughout T : cdaT if n = 0, and cdIdM otherwise, where

IdM is the total units disposed throughout T .

The OEM's total pro�t function is given by:

ΠOEM =


πaT −

[
cnpaT + hnM

aT 2

2
+ cdaT

]
n = 0

πaT − [cnp(aT − nQr) + (Ks + crpQr)n

+huMI1 + hnMA3 + hrMI2 + cdIdM
]

n = 1, 2, . . .

(3.6)

Among the above components, (O.v)�(O.viii) depend on the values of I1, A3, I2 and

IdM , respectively, which can be derived as follows:

• Cumulative used-item inventory held during the remanufacturing initiation cy-

cle:

A1 =
Qi

2
CLi =

Q2
i

2a
. (3.7)

• Cumulative used-item inventory held during each collection cycle:

A2 =
Qr

2
CLr =

Q2
r

2a
. (3.8)

• By (3.7) and (3.8), we can calculate the cumulative used-item inventory held

throughout the planning horizon which is given by:

I1 = A1 + (n− 1)A2 =
Q2
i + (n− 1)Q2

r

2a
. (3.9)
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• Cumulative new-item inventory held during the seed stock cycle:

A3 =
Qs

2
CLs =

Q2
s

2a
=

(aT − nQr)
2

2a
. (3.10)

• By (3.8), we can calculate the cumulative remanufactured-item inventory held

throughout the planning horizon which is given by:

I2 = nA2 = n
Q2
r

2a
. (3.11)

• Total quantity of used-items disposed by the OEM throughout the planning

horizon is given by:

IdM = Qs − (Qi +Qr) + 2Qr = aT − nQr − (Qi +Qr) + 2Qr. (3.12)

Substituting I1, A3, I2 and IdM , given by (3.9), (3.10), (3.11) and (3.12), respectively,

in (3.6), the OEM's total pro�t is given by

ΠOEM(n,Qr, Qi) =



(π − cnp − cd)aT − hnM aT 2

2
n = 0

πaT −
[
cnp(aT − nQr) + (Ks + crpQr)n

+huM
Q2
i

2a
+ (huM + hrM) Q2

r

2a
n− huM

Q2
r

2a

+hnM
(aT−nQr)2

2a
+ cd(aT −Qi − (n− 1)Qr)

]
n = 1, 2, . . .

(3.13)

3.3.2 RS's Total Pro�t Function

When n = 0, i.e., the remanufacturing program is not executed, the RS's total

proft is zero. Otherwise, the RS's total pro�t consists of a total of six components:

88



(R.i) total revenue of selling remanufactured-items to the OEM throughout T , i.e.,

ncrpQr,

(R.ii) total �xed remanufacturing setup cost throughout T , i.e., nKr,

(R.iii) total remanufacturing cost throughout T , i.e., ncQr,

(R.iv) cumulative inventory carrying cost for (remanufacturable) used-items through-

out T , i.e., huRI3,

(R.v) cumulative inventory carrying cost for remanufactured-items throughout T ,

i.e., hrRI4, and

(R.vi) total disposal cost of used-items throughout T , i.e., cdIdR.

Thus, the RS's total pro�t function is given by

ΠRS =

 0 n = 0

((crp − c)Qr −Kr)n− huRI3 − hrRI4 − cdIdR n = 1, 2, . . .
(3.14)

Among the above components, (R.iv)�(R.vi) depend on the values of I3, I4 and

IdR, respectively, which can be derived as follows:

• Cumulative echelon inventory of remanufacturable items and remanufactured-

items held by the RS throughout T is depicted in Figure 3.3, and can be

calculated as follows:

IER = γQinCLr − (1− γ)QrCLr

n−1∑
j=1

j =
γnQiQr

a
− n(n− 1)

2
(1− γ)

Q2
r

a
.

(3.15)
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Figure 3.3: Echelon inventory of remanufacturable items and remanufactured-items
at the RS.

• Cumulative used-items inventory held:

I3 = IER − I4. (3.16)

• Cumulative remanufactured-items inventory held:

I4 =
nQ2

r

2m
. (3.17)

• Total quantity of used-items disposed by the RS throughout T :

IdR = (1− γ)Qi + (1− γ)Qr(n− 1) + (γQi −Qr − (n− 1)(1− γ)Qr)

= Qi −Qr. (3.18)

Substituting IER , I3, I4 and IdR, given by (3.15), (3.16), (3.17) and (3.18), respectively,

in (3.14), the RS's total pro�t is given by
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ΠRS(n,Qr, Qi) =



0 n = 0

((crp − c)Qr −Kr)n

−huR
(
γQiQr
a

n− (1− γ)Q
2
r

2a
n(n− 1)

)
− (hrR − huR) Q2

r

2m
n− cd (Qi −Qr) n = 1, 2, . . .

(3.19)

3.3.3 System-wide Total Pro�t Function

Given the OEM's proft function in (3.13) and the RS's proft function in (3.19),

the total system-wide total pro�t during planning horizon T , denoted by Π, is given

by

Π(n,Qr, Qi) = ΠOEM(n,Qr, Qi) + ΠRS(n,Qr, Qi). (3.20)

The decision variables of interest are n, Qr and Qi. Using (3.1) and (3.4), Qs

and CL0 can be computed, respectively. The remainder of this section focuses on

the analysis of three di�erent scenarios: (1) computing n and Qi for an exogenous

Qr, (2) computing n and Qr for an exogenous Qi and (3) computing n, Qr and Qi

in a Stackelberg setting. Next, we present the problem formulations.

3.4 Problem Formulation

As mentioned earlier, we consider three di�erent decision-making scenarios: (1)

computing n and Qi for an exogenous Qr, (2) computing n and Qr for an exogenous

Qi and (3) computing n, Qr and Qi in a Stackelberg setting where OEM is the leader

and RS is the follower. Furthermore, we consider both centralized and decentralized

settings. Although we are primarily interested in the analysis of system performance
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under a decentralized control setting (where OEM is the leader and RS the follower),

we consider several centralized control settings to serve as benchmarks. Speci�-

cally, we consider three centralized and one decentralized setting. Under centralized

control, the optimal values of the decision variables of interest are determined to

maximize system-wide total pro�t. Under OEM-centric control, the optimal values

of the decision variables of interest are determined to maximize OEM's total pro�t.

Under RS-centric control, the optimal values of the decision variables of interest

are determined to maximize RS's total pro�t. Under OEM-lead control, given RS's

decisions on variables that maximize RS's total pro�t, OEM makes decisions on the

other decision variables so as to maximize OEM's total pro�t. Consequently, for

Scenario 1, we consider three centralized and two decentralized strategies:

P1.1 The values of n and Qi are identi�ed so as to maximize system-wide total

pro�t.

P1.2 The values of n and Qi are identi�ed so as to maximize OEM's total pro�t.

P1.3 The values of n and Qi are identi�ed so as to maximize RS's total pro�t.

P1.4 Given RS's decision on Qi that maximizes RS's total pro�t, OEM chooses the

value of n that maximizes OEM's total pro�t.

P1.5 Given RS's decision on n that maximizes RS's total pro�t, OEM chooses the

value of Qi that maximizes OEM's total pro�t.

For Scenario 2, we again consider three centralized and two decentralized strategies:

P2.1 The values of n and Qr are identi�ed so as to maximize system-wide total

pro�t.

P2.2 The values of n and Qr are identi�ed so as to maximize OEM's total pro�t.
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P2.3 The values of n and Qr are identi�ed so as to maximize RS's total pro�t.

P2.4 Given RS's decision on Qr that maximizes RS's total pro�t, OEM chooses the

value of n that maximizes OEM's total pro�t.

P2.5 Given RS's decision on n that maximizes RS's total pro�t, OEM chooses the

value of Qr that maximizes OEM's total pro�t.

For Scenario 3, we consider one centralized and six decentralized strategies:

P3.1 The values of n, Qr and Qi are identi�ed so as to maximize system-wide total

pro�t.

P3.2 Given RS's decision on n and Qi that maximize RS's total pro�t, OEM chooses

the value of Qr that maximizes OEM's total pro�t.

P3.3 Given RS's decision on n and Qr that maximize RS's total pro�t, OEM chooses

the value of Qi that maximizes OEM's total pro�t.

P3.4 Given RS's decision on Qr and Qi that maximize RS's total pro�t, OEM

chooses the value of n that maximizes OEM's total pro�t.

P3.5 Given RS's decision on Qi that maximizes RS's total pro�t, OEM chooses the

value of n and Qr that maximize OEM's total pro�t.

P3.6 Given RS's decision on Qr that maximizes RS's total pro�t, OEM chooses the

value of n and Qi that maximize OEM's total pro�t.

P3.7 Given RS's decision on n that maximizes RS's total pro�t, OEM chooses the

value of Qr and Qi that maximize OEM's total pro�t.

Table 3.2 summarizes the control problems for each scenario.
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Table 3.2: Problem con�gurations.
Objective Decision Variables Problem

Scenario Setting Function n Qi Qr (Reference)

1 1. Centralized Control Π OEM-RS OEM-RS Given P1.1
(3.21)

2. OEM-centric Control ΠOEM OEM OEM Given P1.2
(3.22)

3. RS-centric Control ΠRS RS RS Given P1.3
(3.23)

4. OEM-lead Control ΠRS ,ΠOEM OEM (lead) RS (follow) Given P1.4.1, P1.4.2
(3.24), (3.25)

5. OEM-lead Control ΠRS ,ΠOEM RS (follow) OEM (lead) Given P1.5.1, P1.5.2
(3.26) (3.27)

2 1. Centralized Control Π OEM-RS Given OEM-RS P2.1
(3.28)

2. OEM-centric Control ΠOEM OEM Given OEM P2.2
(3.29)

3. RS-centric Control ΠRS RS Given RS P2.3
(3.30)

4. OEM-lead Control ΠRS ,ΠOEM OEM (lead) Given RS (follow) P2.4.1, P2.4.2
(3.31), (3.32)

5.OEM-lead Control ΠRS ,ΠOEM RS (follow) Given OEM (lead) P2.5.1, P2.5.2
(3.26) (3.33)

3 1. Centralized Control Π OEM-RS OEM-RS OEM-RS P3.1
(3.34)

2. OEM-lead Control ΠRS ,ΠOEM RS (follow) RS (follow) OEM (lead) P3.2.1, P3.2.2
(3.23), (3.35)

3. OEM-lead Control ΠRS ,ΠOEM RS (follow) OEM (lead) RS (follow) P3.3.1, P3.3.2
(3.30), (3.36)

4. OEM-lead Control ΠRS ,ΠOEM OEM (lead) RS (follow) RS (follow) P3.4.1, P3.4.2
(3.37), (3.38)

5. OEM-lead Control ΠRS ,ΠOEM OEM (lead) RS (follow) OEM (lead) P3.5.1, P3.5.2
(3.24), (3.39)

6. OEM-lead Control ΠRS ,ΠOEM OEM (lead) OEM (lead) RS (follow) P3.6.1, P3.6.2
(3.31), (3.40)

7. OEM-lead Control ΠRS ,ΠOEM RS (follow) OEM (lead) OEM (lead) P3.7.1, P3.7.2
(3.26), (3.41)
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Thus, although the pro�t functions of the OEM, the RS, and the system are

functions of n, Qr, and Qi, some of these decision variables might be given, or

decided by the other agent, under some circumstances. We use Π(· || ∗) (or ΠOEM(· ||

∗)/ΠRS(· || ∗)) to denote the pro�t function as the function of · when ∗ is given, i.e.,

when ∗ is treated as �xed value rather than a variable.

3.4.1 Scenario 1: Computing n and Qi for an Exogenous Qr

Under this scenario, Qr is dictated by some technological or operational con-

straint. We are interested in the following problems:

1. Centralized Control : When centralized control is in e�ect, the decision

variables n and Qi are speci�ed by maximizing the total system-wide total

pro�t. Thus, the centralized problem, P1.1, is

max
n∈Z∗,Qi≥0

Π(n,Qi || Qr) (3.21)

s.t. (3.3) and (3.5),

where Π(n,Qi || Qr) is as in (3.20).

2. OEM-centric Control : When OEM-centric control is in e�ect, the decision

variables n and Qi are speci�ed by maximizing the OEM's total pro�t. Thus,

the OEM-centric problem, P1.2, is

max
n∈Z∗, Qi≥0

ΠOEM(n,Qi || Qr) (3.22)

s.t. (3.3),

where ΠOEM(n,Qi || Qr) is as in (3.13).
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3. RS-centric Control : When RS-centric control is in e�ect, the decision vari-

ables n and Qi are speci�ed by maximizing the RS's total pro�t. Thus, the

RS-centric problem, P1.3, is

max
n∈Z∗, Qi≥0

ΠRS(n,Qi || Qr) (3.23)

s.t. (3.5),

where ΠRS(n,Qi || Qr) is as in (3.19).

4. OEM-lead Control: OEM decides n and RS decides Qi: In this case,

for each n given by the OEM, the RS determines Qi that maximizes its total

pro�t. With this information, the OEM then speci�es n. In this case, the RS's

problem, P1.4.1, is

max
Qi≥0

ΠRS(Qi || (n,Qr)) (3.24)

s.t. (3.5),

where ΠRS(Qi || (n,Qr)) is as in (3.19). Given RS's optimal decision for Qi,

denoted by Q∗i,1.4(n,Qr), the OEM's problem, P1.4.2, is

max
n∈Z∗

ΠOEM(n,Q∗i,1.4(n,Qr) || Qr) (3.25)

s.t. (3.3),

where ΠOEM(n,Qi || Qr) is as in (3.13).

5. OEM-lead Control: OEM decides Qi and RS decides n: In this case,

for each Qi given by the OEM, the RS determines n that maximizes its total
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pro�t. With this information, the OEM then speci�es Qi. In this case, the

RS's problem, P1.5.1, is

max
n∈Z∗

ΠRS(n || (Qi, Qr)) (3.26)

s.t. (3.5),

where ΠRS(n || (Qi, Qr)) is as in (3.19). Given RS's optimal decision for n,

denoted by n∗1.5(Qi, Qr), the OEM's problem, P1.5.2, is

max
Qi≥0

ΠOEM(n∗1.5(Qi, Qr), Qi) || Qr) (3.27)

s.t. (3.3),

where ΠOEM(n,Qi || Qr) is as in (3.13).

3.4.2 Scenario 2: Computing n and Qr for an Exogenous Qi

Under this scenario, Qi is dictated by some technological or operational con-

straint. We are interested in the following problems:

1. Centralized Control : When centralized control is in e�ect, the decision

variables n and Qr are speci�ed by maximizing the total system-wide total

pro�t. Thus, the centralized problem, P2.1, is

max
n∈Z∗, Qr≥0

Π(n,Qr || Qi) (3.28)

s.t. (3.3) and (3.5),

where Π(n,Qr || Qi) is as in (3.20).

2. OEM-centric Control : When OEM-centric control is in e�ect, the decision
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variables n and Qr are speci�ed by maximizing the OEM's total pro�t. Thus,

the OEM-centric problem, P2.2, is

max
n∈Z∗, Qr≥0

ΠOEM(n,Qr || Qi) (3.29)

s.t. (3.3),

where ΠOEM(n,Qr || Qi) is as in (3.13).

3. RS-centric Control : When RS-centric control is in e�ect, the decision vari-

ables n and Qr are speci�ed by maximizing the RS's total pro�t. Thus, the

RS-centric problem, P2.3, is

max
n∈Z∗, Qr≥0

ΠRS(n,Qr || Qi) (3.30)

s.t. (3.5),

where ΠRS(n,Qr || Qi) is as in (3.19).

4. OEM-lead Control: OEM decides n and RS decides Qr: In this case,

for each n given by the OEM, the RS determines Qr that maximizes its total

pro�t. With this information, the OEM then speci�es n. In this case, the RS's

problem, P2.4.1, is

max
Qr≥0

ΠRS(Qr || (n,Qi)) (3.31)

s.t. (3.5),

where ΠRS(Qr || (n,Qi)) is as in (3.19). Given RS's optimal decision for Qr,
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denoted by Q∗r,2.4(n,Qi), the OEM's problem, P2.4.2, is

max
n∈Z∗

ΠOEM(n,Q∗r,2.4(n,Qi) || Qi) (3.32)

s.t. (3.3),

where ΠOEM(n,Qr || Qi) is as in (3.13).

5. OEM-lead Control: OEM decides Qr and RS decides n: In this case,

for each Qr given by the OEM, the RS determines n that maximizes its total

pro�t. With this information, the OEM then speci�es Qr. In this case, the

RS's problem, P2.5.1, is as in (3.26), which is equivalent to P1.5.1.

Given RS's optimal decision for n, denoted by n∗1.5(Qr, Qi), the OEM's problem,

P2.5.2, is

max
Qi≥0

ΠOEM(n∗1.5(Qr, Qi), Qr) || Qi) (3.33)

s.t. (3.3),

where ΠOEM(n,Qr || Qi) is as in (3.13).

3.4.3 Scenario 3: Computing n, Qr and Qi in a Stackelberg Setting

Under this scenario, n, Qr and Qi are determined under the OEM-lead Stackel-

berg settings. We are interested in the following problems:

1. Centralized Control : When centralized control is in e�ect, the variables n,

Qr and Qi are speci�ed to maximize the total system-wide total pro�t. Thus,
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the centralized problem, P3.1, is

max
n∈Z∗, Qr≥0, Qi≥0

Π(n,Qr, Qi) (3.34)

s.t. (3.3) and (3.5),

where Π(n,Qr, Qi) is as in (3.20).

2. OEM-lead Control: OEM decides Qr and RS decides n and Qi: In

this case, for each Qr given by the OEM, the RS determines n and Qi that

maximize its total pro�t. With this information, the OEM then determines

Qr. In this case, the RS's problem, P3.2.1, is as in (3.23), which is equivalent

to P1.3.

Given RS's optimal decisions for n and Qi, denoted by n∗1.3(Qr) and Q∗i,1.3(Qr),

respectively, the OEM's problem, P3.2.2, is

max
Qr≥0

ΠOEM(n∗1.3(Qr), Qr, Q
∗
i,1.3(Qr)) (3.35)

s.t. (3.3),

where ΠOEM(n,Qr, Qi) is as in (3.13).

3. OEM-lead Control: OEM decides Qi and RS decides n and Qr: In

this case, for each Qi given by the OEM, the RS determines n and Qr that

maximize its total pro�t. With this information, the OEM then determines

Qi. In this case, the RS's problem, P3.3.1, is as in (3.30), which is equivalent

to P2.3.

Given RS's optimal decisions for n and Qr, denoted by n∗2.3(Qi) and Q∗r,2.3(Qi),
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respectively, the OEM's problem, P3.3.2, is

max
Qi≥0

ΠOEM(n∗2.3(Qi), Q
∗
r,2.3(Qi), Qi) (3.36)

s.t. (3.3),

where ΠOEM(n,Qr, Qi) is as in (3.13).

4. OEM-lead Control: OEM decides n and RS decides Qr and Qi: In

this case, for each n given by the OEM, the RS determines Qr and Qi that

maximize its total pro�t. With this information, the OEM then determines n.

In this case, the RS's problem, P3.4.1, is

max
Qr≥0, Qi≥0

ΠRS(Qr, Qi || n) (3.37)

s.t. (3.5),

where ΠRS(Qr, Qi || n) is as in (3.19).

Given RS's optimal decisions for Qr and Qi, denoted by Q∗r,3.4(n) and Q∗i,3.4(n),

respectively, the OEM's problem, P.3.4.2, is

max
n∈Z∗

ΠOEM(n,Q∗r,3.4(n), Q∗i,3.4(n)) (3.38)

s.t. (3.3),

where ΠOEM(n,Qr, Qi) is as in (3.13).

5. OEM-lead Control: OEM decides n and Qr, and RS decides Qi: In

this case, for each (n,Qr) pair given by the OEM, the RS determines Qi that

maximizes its total pro�t. With this information, the OEM then determines

101



n and Qr. In the case, the RS's problem, P3.5.1, is as in (3.24), which is

equivalent to P1.4.1.

Given RS's optimal decision for Qi, denoted by Q∗i,1.4(n,Qr), the OEM's prob-

lem, P3.5.2, is

max
n∈Z∗, Qr≥0

ΠOEM(n,Qr, Q
∗
i,1.4(n,Qr)) (3.39)

s.t. (3.3),

where ΠOEM(n,Qr, Qi) is as in (3.13).

6. OEM-lead Control: OEM decides n and Qi, and RS decides Qr: In

this case, for each (n,Qi) pair given by the OEM, the RS determines Qr that

maximizes its total pro�t. With this information, the OEM then determines

n and Qi. In this case, the RS's problem, P3.6.1, is as in (3.31), which is

equivalent to P2.4.1.

Given RS's optimal decision for Qr, denoted by Q∗r,2.4(n,Qi), the OEM's prob-

lem, P3.6.2, is

max
n∈Z∗, Qi≥0

ΠOEM(n,Q∗r,2.4(n,Qi), Qi) (3.40)

s.t. (3.3),

where ΠOEM(n,Qr, Qi) is as in (3.13).

7. OEM-lead Control: OEM decides Qr and Qi, and RS decides n: In

this case, for each (Qr, Qi) pair given by the OEM, the RS determines n that

maximizes its total pro�t. With this information, the OEM then determines

Qr and Qi. In this case, the RS's problem, P3.7.1, is as in (3.26), which is
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equivalent to P1.5.1 and P2.5.1.

Given RS's optimal decision for n, denoted by n∗1.5(Qr, Qi), the OEM's problem,

P.3.7.2, is

max
Qr≥0, Qi≥0

ΠOEM(n∗1.5(Qr, Qi), Qr, Qi) (3.41)

s.t. (3.3),

where ΠOEM(n,Qr, Qi) is as in (3.13).

3.5 Structural Properties of Cost Functions

Before we proceed to calculate the optimal solutions of the problems formulated

in Section 3.4, we will examine some structural properties of ΠOEM , ΠRS and Π that

can be utilized to develop approaches to compute the optimal solutions.

Property 7 The following are structural properties of ΠOEM , ΠRS and Π for

n = 0.

1. When n = 0, ΠOEM(0, Qr, Qi) =
(
π − cnp − cd

)
aT − hnM aT 2

2
≡ ΠOEM(n = 0).

2. When n = 0, ΠRS(0, Qr, Qi) = 0 ≡ ΠRS(n = 0).

3. When n = 0, Π(0, Qr, Qi) =
(
π − cnp − cd

)
aT − hnM aT 2

2
≡ Π(n = 0).

Property 8 The following relate to the structural properties of ΠOEM , ΠRS and

Π for any given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0.

1. For any given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0, ΠOEM(n,Qr, Qi) is

concave in Qi with the unique maximizer given by

Qi,OEM(n,Qr) =
acd

huM
. (3.42)
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2. For any given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0, ΠRS(n,Qr, Qi) is a

linearly decreasing function of Qi for any Qi.

3. For any given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0, Π(n,Qr, Qi) is a linearly

decreasing function of Qi for Qi > 0.

Proof.

1. For any given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0, it can be easily shown

that

∂ΠOEM

∂Qi

= −huM
Qi

a
+ cd, and

∂2ΠOEM

∂Q2
i

= −h
u
M

a
< 0.

Hence, ΠOEM(n,Qr, Qi) is concave in Qi for any given (n,Qr) pair with the

unique maximizer given by (3.42).

2. For any given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0, it can be easily shown

that

∂ΠRS

∂Qi

= −huR
γQrn

a
− cd < 0.

Thus, ΠRS(n,Qr, Qi) is linearly decreasing in Qi, for any given (n,Qr) pair,

where n ∈ Z+ and Qr ≥ 0.

3. It can be shown that, for any given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0,

we have

∂Π

∂Qi

= −huM
Qi

a
− huR

γQrn

a
< 0,
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for any Qi > 0. Thus, Π(n,Qr, Qi) is linearly decreasing in Qi > 0, for any

given (n,Qr) pair, where n ∈ Z+ and Qr ≥ 0.

Property 9 The following relate to the structural properties of ΠOEM , ΠRS and

Π for any given (n,Qr) pair, where n ∈ Z+ and Qi ≥ 0.

1. For any given (n,Qi) pair, where n ∈ Z+ and Qi ≥ 0, ΠOEM(n,Qr, Qi) is

concave in Qr with the unique maximizer given by

Qr,OEM(n,Qi) =
(cnp − crp + hnMT )n+ (n− 1)cd

hnMn
2 + hrMn+ huM(n− 1)

a. (3.43)

2. For any given (n,Qi) pair, where n ∈ Z+ and Qi ≥ 0, ΠRS(n,Qr, Qi) is not

concave in Qr in general:

• For any given Qi ≥ 0, and n in the region 1 ≤ n ≤ (hrR−h
u
R)a

huR(1−γ)m
+ 1,

ΠRS(n,Qr, Qi) is concave in Qr with the unique maximizer given by

Qr,RS(n,Qi) =
(crp − c)na+ cda− huRγQin

(hrR−h
u
R)a

m
n− huR(1− γ)n(n− 1)

. (3.44)

• For any given Qi ≥ 0, and n in the region n >
(hrR−h

u
R)a

huR(1−γ)m
+1, ΠRS(n,Qr, Qi)

is convex in Qr with the unique minimizer given by (3.44).

3. For any given (n,Qi) pair, where n ∈ Z+ and Qi ≥ 0, Π(n,Qr, Qi) is concave

in Qr with the unique maximizer given by

Qr(n,Qi) =
(cnp + cd − c+ hnMT )a− huRγQi

hnMn+ hrM + huM(1− 1
n
)− huR(1− γ)(n− 1) +

(hrR−h
u
R)a

m

. (3.45)
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Proof.

1. For any given (n,Qi) pair, where n ∈ Z+ and Qi ≥ 0, it is easy to show that

∂ΠOEM

∂Qr

= (cnp + cd − crp + hnMT )n− cd

−
(
hnMn

2 + hrMn+ huM(n− 1)
) Qr

a
, and

∂2ΠOEM

∂Q2
r

= −h
n
Mn

2 + hrMn+ huM(n− 1)

a
< 0.

Hence, ΠOEM(n,Qr, Qi) is concave in Qr for any given (n,Qi) pair, where

n ∈ Z+ and Qi ≥ 0, with the unique maximizer given by (3.43).

2. For any given (n,Qi) pair, where n ∈ Z+ and Qi ≥ 0, it is easy to show that

∂ΠRS

∂Qr

= (crp − c)n+ cd − huRγQin

a

−
(

(hrR − huR)n

m
− huR(1− γ)n(n− 1)

a

)
Qr, and

∂2ΠRS

∂Q2
r

= −(hrR − huR)n

m
+
huR(1− γ)n(n− 1)

a
.

Hence, either of the following two cases is true:

• If n is in the region 1 ≤ n ≤ (hrR−h
u
R)a

huR(1−γ)m
+ 1 then ∂2ΠRS

∂Q2
r
≤ 0, and hence,

ΠRS(n,Qr, Qi) is concave in Qr with the unique maximizer given by (3.44)

• If n is in the region n >
(hrR−h

u
R)a

huR(1−γ)m
+ 1 then ∂2ΠRS

∂Q2
r

> 0, and hence,

ΠRS(n,Qr, Qi) is convex in Qr with the unique minimizer given by (3.44).
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3. For any given (n,Qi) pair, where n ∈ Z+, and Qi ≥ 0, it is easy to show that

∂Π

∂Qr

= (cnp + cd − c+ hnMT )n− huRγQin

a
−

(
hnMn

2 + hrMn+ huM(n− 1)

−huR(1− γ)n(n− 1) +
(hrR − huR)na

m

)
Qr

a
, and

∂2Π

∂Q2
r

= −
(
hnMn

2 + hrMn+ huM(n− 1)− huR(1− γ)n(n− 1)

a
+

(hrR − huR)n

m

)
.

Since hnM > huR, γ ≤ 1 and n ≥ 1, it can be easily shown that ∂2Π
∂Q2

r
< 0, and

hence, Π(n,Qr, Qi) is concave in Qr, and ∂Π
∂Qr

= 0 yields its unique maximizer

as in (3.45).

Property 10 Treating n as a positive continuous variable momentarily, for any

given (Qr, Qi) pair, ΠRS(n,Qr, Qi) is convex in n.

Proof. For any given (Qr, Qi) pair, it is easy to show that

∂ΠRS

∂n
= −

[
Kr − (crp − c)Qr +

huRγQiQr

a
+
huR(1− γ)Q2

r

2a

+
(hrR − huR)Q2

r

2m
− huR(1− γ)Q2

r

a
n

]
, and

∂2ΠRS

∂n2
=

huR(1− γ)Q2
r

a
≥ 0.

Hence, ΠRS(n,Qr, Qi) is convex in n, for any given (Qr, Qi) pair.

3.6 Scenario 1: Computing n and Qi for an Exogenous Qr

We begin with analyzing the problems formulated in Section 3.4.1 where Qr is

exogenous. We will develop formal approach for computing the optimal n value

and Qi value for each of the following �ve problem settings: (1) centralized control;
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(2) OEM-centric control; (3) RS-centric control; (4) OEM-lead control where OEM

decides n and RS decides Qi, and (5) OEM-lead control where OEM decides Qi and

RS decides n.

3.6.1 Scenario 1: Centralized Control

In this section, we analyze P1.1 in (3.21) to determine the values of n and Qi

that maximize the system-wide total pro�t. Using (3.3) and (3.5), we can derive an

upper bound on the value of n.

Property 11 When Qr is exogenous, under centralized control, the feasible re-

gion for n is given by 0 ≤ n ≤ (aT
Qr
− 2)γ.

Proof. By de�nition, n is non-negative, i.e., n ≥ 0. (3.3) and (3.5) together

imply

aT − (n+ 1)Qr ≥ Qi ≥
1

γ
((n− 1)(1− γ)Qr +Qr) , (3.46)

and, hence, we have aT −(n+1)Qr ≥ 1
γ

((n− 1)(1− γ)Qr +Qr), which is equivalent

to n ≤ (aT
Qr
− 2)γ.

Recall that Π(n,Qi || Qr) = Π(n,Qr, Qi), and is as in (3.20). The following

property is helpful for computing the optimal solution of P1.1 in (3.21).

Property 12 When Qr is exogenous, under centralized control, for any given

n ≥ 1, the optimal value of Qi is given by

Q∗i,1.1(n,Qr) =

(
n

γ
− n+ 1

)
Qr. (3.47)
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Proof. By (3.46), for any given (n,Qr) pair, the smallest value of Qi is

1

γ
((n− 1)(1− γ)Qr +Qr) ,

which is equivalent to
(
n
γ
− n+ 1

)
Qr. By Property 8.3, Π(n,Qi || Qr) is non-

increasing in Qi for any given (n,Qr) pair, where n ≥ 1 and Qr ≥ 0. Hence, the

optimal value of Qi is given by (3.47).

By Property 12, we obtain the upper bound of Π(n,Qr || Qi) for n ≥ 1, which is

given by Π(n,Q∗i,1.1(n,Qr) || Qr). Remember that the pro�t function Π(n,Qr || Qi)

for n ≥ 1 is di�erent with the pro�t function Π(n = 0), however, by substituting

n = 0 in Π(n,Q∗i,1.1(n,Qr) || Qr), we obtain

Π(0, Q∗i,1.1(0, Qr) || Qr) = (π − cnp − cd)aT − hnM
aT 2

2
= Π(n = 0),

by Property 7.3. Thus, Π(n,Q∗i,1.1(n,Qr) || Qr) can be treated as the upper bound

of Π(n,Qr || Qi) for n ≥ 0, i.e., the whole feasible region of n. Then, for computing

the optimal value of n for P1.1 in (3.21), it su�ces to �nd n∗1.1(Qr) such that

n∗1.1(Qr) = arg max
0≤n≤( aT

Qr
−2)γ

{Π(n,Q∗i,1.1(n,Qr) || Qr)},

where Q∗i,1.1(n,Qr) is given by (3.47). The following property of Π(n,Q∗i,1.1(n,Qr) ||

Qr) is su�cient for computing n∗1.1(Qr).

Property 13 Treating n as a continuous variable momentarily, for any given

Qr > 0, Π(n,Q∗i,1.1(n,Qr) || Qr) is concave in n, and its unique maximizer, denoted

by n0
1.1, is given by
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n0
1.1(Qr) =

 (cnp + cd − c+ hnMT )aQr − (Ks +Kr)a

− (hrR−h
u
R)aQ2

r

2m
− (hrM+( 2

γ
−1)huM+(1−γ)huR)Q2

r

2

(
huM

(
1
γ
− 1
)2

+ hnM + huR(1− γ)

)
Q2
r

. (3.48)

Proof. Treating n as a continuous variable momentarily, it can be easily shown

that

∂Π(n,Q∗i,1.1(n,Qr) || Qr)

∂n
= −


(
huM

(
1
γ
− 1
)2

+ hnM + huR(1− γ)

)
Q2
r

a
n+

Ks +Kr − (cnp + cd − c+ hnMT )Qr +
(hrR − huR)Q2

r

2m
+(

hrM +
(

2
γ
− 1
)
huM + (1− γ)huR

)
Q2
r

2a

 , and

∂2Π(n,Q∗i,1.1(n,Qr) || Qr)

∂n2
= −

(
huM

(
1
γ
− 1
)2

+ hnM + huR(1− γ)

)
Q2
r

a
< 0.

Hence, Π(n,Q∗i,1.1(n,Qr) || Qr) is concave in n with a unique maximizer given by

(3.48).

Using Properties 11 and 13, we can characterize the optimal solution of P1.1.

Corollary 1 The optimal solution under centralized control for Scenario 1, de-

noted by (n∗1.1(Qr), Q
∗
i,1.1(Qr)), is given by
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n∗1.1(Qr) =



0 , n0
1.1(Qr) ≤ 0,

arg max{Π(bn0
1.1(Qr)c, Q∗i,1.1

(
bn0

1.1(Qr)c, Qr
)
|| Qr), 0 < n0

1.1(Qr)

Π(dn0
1.1(Qr)e, Q∗i,1.1

(
bn0

1.1(Qr)c, Qr
)
|| Qr)},<

(
aT
Qr
− 2
)
γ,⌊(

aT
Qr
− 2
)
γ
⌋
, n0

1.1(Qr) ≥
(
aT
Qr
− 2
)
γ,

(3.49)

Q∗i,1.1(Qr) =

 0, if n∗1.1(Qr) = 0,

Q∗i,1.1(n∗1.1(Qr), Qr), otherwise,
(3.50)

where n0
1.1(Qr) and Q

∗
i,1.1(n,Qr) are given by (3.48) and (3.47).

3.6.2 Scenario 1: OEM-centric Control

In this section, we analyze P1.2 in (3.22) to determine the values of n and Qi

that maximize OEM's total pro�t. Using (3.3), we can derive an upper bound on

the value of n, and for any given n, we can derive an upper bound on the value of

Qi.

Property 14 When Qr is exogenous, under OEM-centric control, the feasible

region for n is given by 0 ≤ n ≤ aT
Qr
− 1. For each n, the feasible region for Qi is

given by 0 ≤ Qi ≤ aT − (n+ 1)Qr.

Proof. By de�nition, n and Qi are non-negative, i.e., n ≥ 0 and Qi ≥ 0. (3.3)

implies that 0 ≤ Qi ≤ aT − (n+ 1)Qr. Consequently, we have 0 ≤ aT − (n+ 1)Qr,

which is equivalent to n ≤ aT
Qr
− 1.

Recall that ΠOEM(n,Qi || Qr) = ΠOEM(n,Qr, Qi), and is as in (3.13). The

following property is helpful for computing the optimal solution of P1.2 in (3.22).
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Property 15 When Qr is exogenous, under OEM-centric control, for any given

n ≥ 1, the optimal value of Qi is given by

Q∗i,1.2(n,Qr) =


acd

huM
, acd

huM
< aT − (n+ 1)Qr,

aT − (n+ 1)Qr,
acd

huM
≥ aT − (n+ 1)Qr.

(3.51)

Proof. By Property 14, for any given n, the feasible region of Qi is given by

0 ≤ Qi ≤ aT − (n+ 1)Qr. By Property 8.1, for any given (n,Qr) pair, where n ≥ 1

and Qr ≥ 0, ΠOEM(n,Qi || Qr) is concave in Qi with a unique maximizer given by

(3.42). Hence, the optimal value of Qi is given by (3.51).

By Property 15, we obtain the upper bound of ΠOEM(n,Qi || Qr) for 1 ≤ n ≤
aT
Qr
− 1, which is given by ΠOEM(n,Q∗i,1.2(n,Qr) || Qr), and can be written as follows

ΠOEM(n,Q∗i,1.2(n,Qr) || Qr) =

 F a
1.2(n || Qr), 1 ≤ n < a

Qr

(
T − cd

huM

)
− 1,

F b
1.2(n || Qr),

a
Qr

(
T − cd

huM

)
− 1 ≤ n ≤ aT

Qr
− 1,

(3.52)

where, F a
1.2(n || Qr) and F a

1.2(n || Qr) are given by

F a
1.2(n || Qr) = ΠOEM

(
n,
acd

huM

∣∣∣∣∣∣∣∣ Qr

)
and (3.53)

F b
1.2(n || Qr) = ΠOEM(n, aT − (n+ 1)Qr || Qr), (3.54)

respectively.

For computing the optimal value of n for P1.2 in (3.22), it su�ces to �nd n∗1.2(Qr)

such that

n∗1.2(Qr) = arg max
0≤n≤ aT

Qr
−1

{ΠOEM(n,Q∗i,1.2(n,Qr) || Qr),ΠOEM(n = 0)},

112



where Q∗i,1.2(n,Qr) is given by (3.51), ΠOEM(n,Q∗i,1.2(n,Qr) || Qr) is given by (3.52),

and ΠOEM(n = 0) is as in Property 7.1. The following properties of F a
1.2(n || Qr)

and F a
1.2(n || Qr) are su�cient for computing n∗1.2(Qr).

Property 16 Treating n as a continuous variable momentarily, for any given

Qr > 0, ΠOEM(n,Q∗i,1.2(n,Qr) || Qr) in (3.52) is piecewise concave in n. To be more

speci�c, we have

• For any given Qr > 0, F a
1.2(n || Qr) in (3.53) is concave in n with a unique

maximizer, denoted by na1.1(Qr), which is given by

na1.2(Qr) =
(cnp + cd − crp + hnMT )aQr −Ksa−

(huM+hrM )Q2
r

2

hnMQ
2
r

. (3.55)

• For any given Qr > 0, F a
1.2(n || Qr) in (3.53) is concave in n with a unique

maximizer, denoted by na1.1(Qr), which is given by

nb1.2(Qr) =
(cnp − crp + huMT + hnMT )aQr −Ksa−

(3huM+hrM )Q2
r

2

(huM + hnM)Q2
r

. (3.56)

Proof. Treating n as a continuous variable momentarily, it is easy to show that

∂F a
1.2(n || Qr)

∂n
= (cnp + cd − crp + hnMT )Qr −Ks −

(huM + hrM)Q2
r

2a
− hnMQ

2
r

a
n and

∂2F a
1.2(n || Qr)

∂n2
= −h

n
MQ

2
r

a
< 0.

Hence, F a
1.2(n || Qr) is concave in n with a unique maximizer given by (3.55).
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∂F b
1.2(n || Qr)

∂n
= (cnp − crp + huMT + hnMT )Qr −Ks

−(3huM + hrM)Q2
r

2a
− (huM + hnM)Q2

r

a
n, and

∂2F b
1.2(n || Qr)

∂n2
= −(huM + hnM)Q2

r

a
< 0.

Hence, F b
1.2(n || Qr) is concave in n with a unique maximizer given by (3.56).

Recalling (3.52), and by Property 16, we can derive the maximizer of

ΠOEM(n,Q∗i,1.2(n,Qr) || Qr) for 1 ≤ n ≤ aT
Qr
− 1.

Corollary 2 The maximizer of ΠOEM(n,Q∗i,1.2(n,Qr) || Qr), where 1 ≤ n <

a
Qr

(
T − cd

huM

)
− 1, denoted by na∗1.2(Qr), is given by

na∗1.2(Qr) =



1, na1.2(Qr) ≤ 1,

arg max{F a
1.2(bna1.2(Qr)c || Qr), 1 < na1.2(Qr) <

F a
1.2(dna1.2(Qr)e || Qr)}, a

Qr

(
T − cd

huM

)
− 1,⌊

a
Qr

(
T − cd

huM

)
− 1
⌋
, na1.2(Qr) ≥ a

Qr

(
T − cd

huM

)
− 1,

(3.57)

where F a
1.2(n || Qr) and n

a
1.2(Qr) are given by (3.53) and (3.55), respectively.

The maximizer of ΠOEM(n,Q∗i,1.2(n,Qr) || Qr), where
a
Qr

(
T − cd

huM

)
− 1 ≤ n ≤

aT
Qr
− 1, denoted by nb∗1.2(Qr), is given by
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nb∗1.2(Qr) =



⌊
a
Qr

(
T − cd

huM

)
− 1
⌋
, nb1.2(Qr) <

a
Qr

(
T − cd

huM

)
− 1,

arg max{F b
1.2(bnb1.2(Qr)c || Qr),

a
Qr

(
T − cd

huM

)
− 1 ≤

F b
1.2(dnb1.2e || Qr)}, nb1.2(Qr) <

aT
Qr
− 1,⌊

aT
Qr
− 1
⌋
, nb1.2(Qr) ≥ aT

Qr
− 1,

(3.58)

where F b
1.2(n || Qr) and n

b
1.2(Qr) are given by (3.54) and (3.56), respectively.

Proof. The proof is straightforward by using (3.52) and Property 16, and hence,

is omitted.

Recalling that ΠOEM(n,Q∗i,1.2(n,Qr) || Qr) in (3.52) is the upper bound of

ΠOEM(n,Qr || Qi), where 1 ≤ n ≤ aT
Qr
− 1, and by Corollary 2, we can characterize

the optimal solution of P1.2.

Corollary 3 The optimal solution under OEM-centric control for Scenario 1,

denoted by (n∗1.2(Qr), Q
∗
i,1.2(Qr)), is given by

n∗1.2(Qr) = arg max{F a
1.2(na∗1.2(Qr) || Qr), F

b
1.2(nb∗1.2(Qr) || Qr),

ΠOEM(n = 0)}, (3.59)

Q∗i,1.2(Qr) =

 0, if n∗1.2(Qr) = 0,

Q∗i,1.2(n∗1.2(Qr), Qr), otherwise.
(3.60)

Proof. The proof is straightforward by Corollary 2 and Property 15, and, hence,

it is omitted.
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3.6.3 Scenario 1: RS-centric Control

In this section, we analyze P1.3 in (3.23) to determine the values of n and Qi

that maximize RS's total pro�t. Using (3.5), we can derive a lower bound on the

value of Qi, for any given n ≥ 1.

Property 17 When Qr is exogenous, under RS-centric control, for any given

n ≥ 1, the feasible region for Qi is given by Qi ≥
(
n
γ
− n+ 1

)
Qr.

Proof. The proof is straightforward by rewriting (3.5).

Recall that ΠRS(n,Qi || Qr) = ΠRS(n,Qr, Qi), and is as in (3.19). The following

property is helpful for computing the optimal solution of P1.3 in (3.23).

Property 18 When Qr is exogenous, under RS-centric control, for any given

n ≥ 1, the optimal value of Qi is given by

Q∗i,1.3(n,Qr) =

(
n

γ
− n+ 1

)
Qr. (3.61)

Proof. By Property 8.2, for any given (n,Qr) pair, where n ≥ 1 and Qr ≥ 0,

ΠRS(n,Qi || Qr) is linearly decreasing in Qi. Thus, the optimal value of Qi is given

by the lower limit of the feasible region of Qi, which is given by (3.61) as shown in

Property 17.

By Property 18, we obtain the upper bound of ΠRS(n,Qi || Qr) for n ≥ 1,

which is given by ΠRS(n,Q∗i,1.3(n,Qr) || Qr). Remember that the pro�t function

ΠRS(n,Qi || Qr) for n ≥ 1 is di�erent with the pro�t function ΠRS(n = 0), however,

by substituting n = 0 in ΠRS(n,Q∗i,1.3(n,Qr) || Qr), we obtain

ΠRS(0, Q∗i,1.3(0, Qr) || Qr) = 0 = ΠRS(n = 0),
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by Property 7.2. Thus, ΠRS(n,Q∗i,1.3(n,Qr) || Qr) can be treated as the upper bound

of Π(n,Qr || Qi) for n ≥ 0, i.e., the whole feasible region of n. Then, for computing

the optimal value of n for P1.3 in (3.23), it su�ces to �nd n∗1.3(Qr) such that

n∗1.3(Qr) = arg max
n∈Z∗

{ΠRS(n,Q∗i,1.3(n,Qr) || Qr)}, (3.62)

where Q∗i,1.3(n,Qr) is given by (3.61). The following property of Π(n,Q∗i,1.3(n,Qr) ||

Qr) is su�cient for computing n∗1.3(Qr).

Property 19 Treating n as a continuous variable momentarily, for any given

Qr > 0, ΠRS(n,Q∗i,1.3(n,Qr) || Qr) in (3.62) is concave with a unique maximizer n0
1.3

which is given by

n0
1.3(Qr) =

(
crp − c−

(
1
γ − 1

)
cd
)
aQr −Kra−

(
huR(1+γ)

2 +
(hrR−h

u
R)a

2m

)
Q2
r

huR(1− γ)Q2
r

. (3.63)

Proof. Treating n as a continuous variable momentarily, it is easy to show that

∂ΠRS(n,Q∗i,1.3(n,Qr) || Qr)
∂n

=

(
crp − c−

(
1

γ
− 1

)
cd
)
Qr −Kr

−
(
huR(1 + γ)

2a
+

(hrR − huR)

2m

)
Q2
r −

huR(1− γ)Q2
r

a
n, and

∂2ΠRS(n,Q∗i,1.1(n,Qr) || Qr)
∂n2

= −
huR(1− γ)Q2

r

a
< 0.

Hence, ΠRS(n,Q∗i,1.3(n,Qr) || Qr) is concave in n with a unique maximizer given by (3.63).

Using Property 19, and recalling (3.62), we can characterize the optimal solution

of P1.3.

Corollary 4 The optimal solution under RS-centric control for Scenario 1, de-
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noted by (n∗1.3(Qr), Q
∗
i,1.3(Qr)), is given by

n∗1.3(Qr) =


0, n0

1.3(Qr) ≤ 0,

arg max{ΠRS(bn0
1.3(Qr)c, Q∗i,1.3 (bn0

1.3(Qr)c, Qr) || Qr),

ΠRS(dn0
1.3(Qr)e, Q∗i,1.3 (bn0

1.3(Qr)c, Qr) || Qr)}, n0
1.3(Qr) > 0,

Q∗i,1.3(Qr) =

 0, if n∗1.3(Qr) = 0,

Q∗i,1.3(n∗1.3(Qr), Qr), otherwise,

where n0
1.3(Qr) and Q

∗
i,1.3(n,Qr) are given by (3.63) and (3.61), respectively.

3.6.4 Scenario 1: OEM-lead Control: OEM Decides n and RS Decides Qi

In this section, we analyze P1.4.1 and P1.4.2 formulated by (3.24) and (3.25),

respectively. The OEM determines the value of n, and then the RS determines the

value of Qi. To determine the value of n, the OEM will rely on the prediction of the

RS's response for any given n value.

This prediction can be obtained by deriving the RS's optimal value of Qi that

maximizes the RS's total pro�t for any given (n,Qr) pair. We denote the RS's

optimal response by Q∗i,1.4(n,Qr), which is the solution of P1.4.1 in (3.24). Recalling

Property 18, for any given n ≥ 1, and Qr is exogenous, the optimal value of Qi for

the RS is given by Q∗i,1.3(n,Qr). Thus, Q∗i,1.4(n,Qr) = Q∗i,1.3(n,Qr) for any n ≥ 1.

After predicting the RS's response, the OEM's decision is to determine the value

of n that maximizes the OEM's total pro�t, i.e., the solution of P1.4.2 in (3.25).

Substituting Q∗i,1.4(n,Qr) in (3.25), the OEM's problem can be rewritten as

max
n∈Z∗

ΠOEM

(
n,

(
n

γ
− n+ 1

)
Qr

∣∣∣∣∣∣∣∣ Qr

)
(3.64)

s.t. n ≤
(
aT

Qr

− 2

)
γ.
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The following property of ΠOEM

(
n,
(
n
γ
− n+ 1

) ∣∣∣∣∣∣ Qr

)
is su�cient for comput-

ing the optimal value of n for (3.64).

Property 20 Treating n as a continuous variable momentarily, for any given

Qr ≥ 0, ΠOEM

(
n,
(
n
γ
− n+ 1

)
Qr

∣∣∣∣∣∣ Qr

)
in (3.64) is concave in n with a unique

maximizer n0
1.4(Qr) given by

n0
1.4(Qr) =

(
cnp − crp + cd

γ
+ hnMT

)
aQr −Ksa−

(huM( 2
γ
−1)+hrM)Q2

r

2(
hnM + huM

(
1
γ
− 1
)2
)
Q2
r

. (3.65)

Proof. Treating n as a continuous variable momentarily, it can be easily shown

that

∂ΠOEM

(
n,
(
n
γ
− n+ 1

)
Qr

∣∣∣∣∣∣ Qr

)
∂n

=

(
cnp − crp +

cd

γ
+ hnMT

)
Qr −Ks

−

(
huM

(
2
γ
− 1
)

+ hrM

)
Q2
r

2a

−

(
hnM + huM

(
1
γ
− 1
)2
)
Q2
r

a
n, and

∂2ΠOEM

(
n,
(
n
γ
− n+ 1

)
Qr

∣∣∣∣∣∣ Qr

)
∂n2

= −

(
hnM + huM

(
1
γ
− 1
)2
)
Q2
r

a
< 0.

Hence, ΠOEM

(
n,
(
n
γ
− n+ 1

)
Qr

∣∣∣∣∣∣ Qr

)
is concave in n with a unique maximizer

given by (3.65).

Using Property 20, we can characterize the optimal solutions of P1.4.1 in (3.24)

and P1.4.2 in (3.25).

Corollary 5 Under OEM-lead control where OEM decides n and RS decides Qi
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for Scenario 1, the optimal value of n for the OEM, denoted by n∗1.4(Qr), is given by

n∗1.4(Qr) =



0, n0
1.4(Qr) ≤ 0,

arg max
{

ΠOEM

(
bn0

1.4(Qr)c,
(
bn0

1.4(Qr)c
γ − bn0

1.4(Qr)c+ 1
)
Qr

∣∣∣∣∣∣ Qr) ,

ΠOEM

(
dn0

1.4(Qr)e,
(
dn0

1.4(Qr)e
γ − dn0

1.4(Qr)e+ 1
)
Qr

∣∣∣∣∣∣ Qr)},

0 < n0
1.4(Qr) <

(
aT
Qr
− 2
)
γ,⌊(

aT
Qr
− 2
)
γ
⌋

n0
1.4 ≥

(
aT
Qr
− 2
)
γ,

(3.66)

where n0
1.4(Qr) is given by (3.65).

The RS's optimal response is given by

Q∗i,1.4(Qr) =

 0, if n∗1.4(Qr)
= 0,(

n∗1.4(Qr)

γ
− n∗1.4(Qr) + 1

)
Qr, otherwise.

3.6.5 Scenario 1: OEM-lead Control: OEM Decides Qi and RS Decides n

In this section, we analyze P1.5.1 and P1.5.2 formulated by (3.26) and (3.27),

respectively. The OEM determines the value of Qi, and then the RS determines the

value of n. To determine the value of Qi, the OEM will rely on the prediction of the

RS's response for any given Qi value.

This prediction can be obtained by deriving the RS's optimal value of n that

maximizes the RS's total pro�t for any given (Qi, Qr) pair. We denote the RS's

optimal response by n∗1.5(Qi, Qr), which is the solution of P1.5.1 in (3.26). Recalling

Property 10, for any given (Qi, Qr) pair, ΠRS(n,Qr, Qi) is convex in n. Thus, the

maximizer should be at one of the boundary constraints. Using (3.5), we can obtain

the feasible region for n.

Property 21 When Qr is exogenous, under OEM-lead control where the OEM
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decides Qi and the RS decides n, for any given Qi, the feasible region for n is given

by 0 ≤ n ≤ γ(Qi−Qr)
(1−γ)Qr

.

Proof. By de�nition, n is non-negative, i.e., n ≥ 0. The proof is straightforward

by rewriting (3.5), and, hence, it is omitted.

Using Properties 10 and 21, we can specify the optimal value of n by checking

the properties of the boundary points.

Property 22 When Qr is exogenous, under OEM-lead control where the OEM

decides Qi and the RS decides n, to determine the RS's optimal response to any Qi

value, i.e., to calculate n∗1.5(Qi, Qr), it su�ces to consider the following cases:

1. When Qi <
Qr
γ
, n∗1.5(Qi, Qr) = 0, i.e., no remanufacturing.

2. When Qi ≥ Qr
γ
, either of the following is true:

2.1. If ∂ΠRS
∂n

(1 || (Qi, Qr)) ≥ 0 then we have

n∗1.5(Qi, Qr) = arg max

{
ΠRS(n = 0),ΠRS

(⌊
γ(Qi −Qr)

(1− γ)Qr

⌋ ∣∣∣∣∣∣∣∣ (Qi, Qr)

)}
.

2.2. If ∂ΠRS
∂n

(1 || (Qi, Qr)) < 0 and

2.2.1. ∂ΠRS
∂n

(⌊
γ(Qi−Qr)
(1−γ)Qr

⌋ ∣∣∣∣∣∣ (Qi, Qr)
)
≤ 0 then

n∗1.5(Qi, Qr) = arg max {ΠRS(n = 0),ΠRS(1 || Qi, Qr)} .

2.2.2. ∂ΠRS
∂n

(⌊
γ(Qi−Qr)
(1−γ)Qr

⌋ ∣∣∣∣∣∣ (Qi, Qr)
)
> 0 then

n∗1.5(Qi, Qr) = arg max {ΠRS(n = 0),ΠRS(1 || Qi, Qr),

ΠRS

(⌊
γ(Qi −Qr)

(1− γ)Qr

⌋ ∣∣∣∣∣∣∣∣ (Qr, Qr)

)}
.
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where ΠRS(n = 0) = 0, ∂ΠRS
∂n

is given by (3.46).

Proof. By Property 21, the feasible region of n is given by 0 ≤ n ≤ γ(Qi−Qr)
(1−γ)Qr

. If

Qi <
Qr
γ
, i.e., γ(Qi−Qr)

(1−γ)Qr
< 1, then the only possible value of n is 0. Otherwise, i.e.,

γ(Qi−Qr)
(1−γ)Qr

≥ 1, the feasible region of n contains positive value.

The proofs of parts 2.1 and 2.2 are straightforward by recalling Property 10, and,

hence, they are omitted.

After predicting the RS's response, the OEM's decision is to determine the value

of Qi that maximizes the OEM's total pro�t, i.e., solution of P1.5.2 in (3.27). By

Property 22, in order to ensure that RS remanufactures, the lowest value of Qi

should be Qr
γ
. Moreover (3.3) sets an upper bound on the value of Qi. The following

property de�nes the search region for the optimal value of Qi for P1.5.2.

Property 23 When Qr is exogenous, under OEM-lead control where the OEM

decides Qi and the RS decides n, the OEM's optimal decision for the value of Qi,

denoted by Q∗i,1.5(Qr), should satisfy

Q∗i,1.5(Qr) ∈ {0}
⋃[

Qr

γ
,min{aT − γ(aT −Qr), aT − 2Qr}

]
.

Proof. By Property 22, in order to ensure that RS remanufactures, the lowest

value of Qi should be Qr
γ
, i.e., Qi ≥ Qr

γ
. Then, the RS may set n equal to 1 or⌊

γ(Qi−Qr)
(1−γ)Qr

⌋
. By (3.3), i.e., aT ≥ Qi + (n∗1.5(Qi, Qr) + 1)Qr, either of the following is

true:

• If n∗1.5(Qi, Qr) = 1 then aT ≥ Qi + 2Qr, i.e., Qi ≤ aT − 2Qr.

• If n∗1.5(Qi, Qr) =
⌊
γ(Qi−Qr)
(1−γ)Qr

⌋
then aT ≥ Qi +

(⌊
γ(Qi−Qr)
(1−γ)Qr

⌋
+ 1
)
Qr ≥ Qi +

γ(Qi−Qr)
(1−γ)

, which is equivalent to Qi ≤ aT − γ(aT −Qr).
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Thus, either of the following is true:

• In the case RS remanufactures, Qr
γ
≤ Q∗i,1.5(Qr) ≤ min{aT − γ(aT −Qr), aT −

2Qr}.

• In the case RS does not remanufacture, Q∗i,1.5(Qr) = 0.

Using Property 23, we can derive the optimal solutions of P1.5.1 in (3.26) and

P1.5.2 in (3.27).

Corollary 6 Under OEM-lead control where OEM decides Qi and RS decides n

for Scenario 1, the optimal value of Qi for the OEM, denoted by Q∗i,1.5(Qr), is given

by

Q∗i,1.5(Qr) =


0, if ΠOEM(n∗1.5(Q0

i,1.5(Qr), Qr), Q
0
i,1.5(Qr) || Qr)

≤ ΠOEM(n = 0),

Q0
i,1.5(Qr), otherwise,

(3.67)

where n∗1.5(Qi, Qr) is as in Property 22, ΠOEM(n = 0) is as in Property 7, and

Q0
i,1.5(Qr) is given by

Q0
i,1.5(Qr) = arg max

Qr
γ
≤Qi≤min{aT−γ(aT−Qr),aT−2Qr}

{ΠOEM(n∗1.5(Qi, Qr), Qi || Qr)} .

The RS's optimal response is given by n∗1.5(Q∗i,1.5(Qr), Qr).

3.7 Scenario 2: Computing n and Qr for an Exogenous Qi

In this section, problems formulated in Section 3.4.2, where Qi is exogenous,

are analyzed. We develop formal approach for computing the optimal n value and

Qr value for each of the following �ve problem settings: (1) centralized control;
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(2) OEM-centric control; (3) RS-centric control; (4) OEM-lead control where OEM

decides n and RS decides Qr, and (5) OEM-lead control where OEM decides Qr and

RS decides n.

3.7.1 Scenario 2: Centralized Control

In this section, we analyze P2.1 in (3.28). The following property is helpful for

computing the optimal solution of P2.1 in (3.28).

Property 24 When Qi is exogenous, under centralized control, for any given

n ≥ 1, the optimal value of Qr is given by

Q∗r,2.1(n,Qi) =


0, Qr(n,Qi) ≤ 0,

Qr(n,Qi), 0 < Qr(n,Qi) < min
{

γQi
n(1−γ)+γ ,

aT−Qi
n+1

}
,

min
{

γQi
n(1−γ)+γ ,

aT−Qi
n+1

}
,Qr(n,Qi) ≥ min

{
γQi

n(1−γ)+γ ,
aT−Qi
n+1

}
,

(3.68)

where Qr(n,Qi) is given by (3.45).

Proof. (3.3), (3.5) and the non-negative constraint of Qr imply that

Qr ≤
aT −Qi

n+ 1
and

Qr ≤
γQi

n(1− γ) + γ
.

Hence, for any given n ≥ 1, the feasible region of Qi is given by

0 ≤ Qr ≤ min

{
aT −Qi

n+ 1
,

γQi

n(1− γ) + γ

}
. (3.69)

Recalling Property 9.3 which states that, for any given n ≥ 1, Π(n,Qr || Qi) is

concave in Qr with a unique maximizer given by (3.45). The proof immediately

follows from Property 9.3 and (3.69), and, hence, it is omitted.
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By Property 24, we obtain the upper bound of Π(n,Qr || Qi) for n ≥ 1, which is

given by Π(n,Q∗r,2.1(n,Qi) || Qi). For computing the optimal value of n for P2.1 in

(3.28), it su�ces to �nd n∗2.1(Qi) such that

n∗2.1(Qi) = arg max
n∈Z∗

{Π(n,Q∗r,2.1(n,Qi) || Qi),Π(n = 0)}, (3.70)

where Q∗r,2.1(n,Qi) is given by (3.68), and Π(n = 0) is as in Property 7.3.

The following property de�nes an upper bound for the search region of n.

Property 25 When Qi is exogenous, under centralized control, the optimal value

of n, denoted by n∗2.1(Qi), satis�es

0 ≤ n∗2.1(Qi) ≤
(cnp + cd)aT + hnM

aT 2

2

Ks +Kr

. (3.71)

Proof. Recalling Property 7.3, and using (3.70), it is easy to show that

Π(n = 0) ≤ Π(n∗2.1(Qi), Q
∗
r,2.1(n∗2.1(Qi), Qi) || Qi) ≤ πaT − (Ks +Kr)n

∗
2.1(Qi).

Hence, we have n∗2.1(Qi) ≤
(cnp+cd)aT+hnM

aT2

2

Ks+Kr
, which together with n ≥ 0 implies

(3.71).

Property 25 helps to limit the search region for the value of n:

n = 0, 1, . . . ,

⌊
(cnp + cd)aT + hnM

aT 2

2

Ks +Kr

⌋
.

Using Properties 24 and 25, we can derive the optimal solution of problem (3.28).

Corollary 7 The optimal solution under centralized control for Scenario 2, de-
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noted by (n∗2.1(Qi), Q
∗
r,2.1(Qi)), is given by

n∗2.1(Qi) = arg max
n=0,1,...,N2.1

{Π(n,Q∗r,2.1(n,Qi) || Qi),Π(n = 0)},

Q∗r,2.1(Qi) = Q∗r,2.1(n∗2.1(Qi), Qi), (3.72)

where Q∗r,2.1(n,Qi) is as in (3.68), Π(n = 0) is as in Property 7.3, and N2.1 is given

by

N2.1 =

⌊
(cnp + cd)aT + hnM

aT 2

2

Ks +Kr

⌋
. (3.73)

3.7.2 Scenario 2: OEM-centric Control

In this section, we analyze P2.2 in (3.29) to determine the values of n and Qi

that maximize OEM's total pro�t. The following property is helpful for computing

the optimal solution of P2.2 in (3.29).

Property 26 When Qi is exogenous, under OEM-centric control, for any given

n ≥ 1, the maximizer of ΠOEM(n,Qr || Qi) is given by

Q∗r,2.2(n,Qi) =

 Qr,OEM(n,Qi), 0 < Qr,OEM(n,Qi) <
aT−Qi
n+1

,

aT−Qi
n+1

, Qr,OEM(n,Qi) ≥ aT−Qi
n+1

,
(3.74)

where Qr,OEM(n,Qi) is given by (3.43).

Proof. (3.3) and the non-negative constraint for Qr implies that, for any given

n ≥ 1, the feasible region of Qi is given by

0 ≤ Qr ≤
aT −Qi

n+ 1
. (3.75)
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Recalling Property 9.1 which states that, for any given n ≥ 1, ΠOEM(n,Qr || Qi)

is concave in Qr with a unique maximizer given by (3.43). The proof immediately

follows from Property 9.1 and (3.75), and, hence, it is omitted.

By Property 26, we obtain the upper bound of ΠOEM(n,Qr || Qi) for n ≥ 1,

which is given by ΠOEM(n,Q∗r,2.2(n,Qi) || Qi). For computing the optimal value of

n for P2.2 in (3.29), it su�ces to �nd n∗2.2(Qi) such that

n∗2.2(Qi) = arg max
n∈Z∗

{ΠOEM(n,Q∗r,2.2(n,Qi) || Qi),ΠOEM(n = 0)}, (3.76)

where Q∗r,2.1(n,Qi) is given by (3.74), and ΠOEM(n = 0) is as in Property 7.1.

The following property de�nes an upper bound for the search region of n.

Property 27 When Qi is exogenous, under OEM-centric control, the optimal

value of n, denoted by n∗2.2(Qi), satis�es

0 ≤ n∗2.2(Qi) ≤
(cnp + cd)aT + hnM

aT 2

2

Ks

. (3.77)

Proof. Recalling Property 7.1, and using (3.76), it can be easily shown that

ΠOEM(n = 0) ≤ ΠOEM(n∗2.2(Qi), Q
∗
r,2.2(n∗2.2(Qi), Qi) || Qi) ≤ πaT −Ksn

∗
2.2(Qi).

Hence, we have n∗2.2(Qi) ≤
(cnp+cd)aT+hnM

aT2

2

Ks
, which together with n ≥ 0 implies

(3.77).

Property 27 helps to limit the search region for the value of n:

n = 0, 1, . . . ,

⌊
(cnp + cd)aT + hnM

aT 2

2

Ks

⌋
.

Using Properties 26 and 27, we can derive the optimal solution of problem (3.29).
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Corollary 8 The optimal solution under OEM-centric control for Scenario 2,

denoted by (n∗2.2(Qi), Q
∗
r,2.2(Qi)), is given by

n∗2.2(Qi) = arg max
n=0,1,...,N2.2

{ΠOEM(n,Q∗r,2.2(n,Qi) || Qi),ΠOEM(n = 0)},

Q∗r,2.2(Qi) = Q∗r,2.2(n∗2.2(Qi), Qi), (3.78)

where Q∗r,2.2(n,Qi) is as in (3.74), ΠOEM(n = 0) is as in Property 7.1, and N2.2 is

given by

N2.2 =

⌊
(cnp + cd)aT + hnM

aT 2

2

Ks

⌋
. (3.79)

3.7.3 Scenario 2: RS-centric Control

In this section, we analyze the P2.3 in (3.30) to determine the values of n and

Qi that maximize RS's total pro�t. The following property is helpful for computing

the optimal solution of P2.3 in (3.30).

Property 28 When Qi is exogenous, under RS-centric control, for any given

n ≥ 1, either of the following is true:

• For any given 1 ≤ n ≤ (hrR−h
u
R)a

huR(1−γ)m
+1, the maximizer of ΠRS(n,Qr || Qi) is given

by

Q∗r,2.3(n,Qi) =


0, Qr,RS(n,Qi) ≤ 0,

Qr,RS(n,Qi), 0 < Qr,RS(n,Qi) <
γQi

n(1−γ)+γ
,

γQi
n(1−γ)+γ

, Qr,RS(n,Qi) ≥ γQi
n(1−γ)+γ

.
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• For any given n >
(hrR−h

u
R)a

huR(1−γ)m
+ 1, the maximizer of ΠRS(n,Qr || Qi) is given by

Q∗r,2.3(n,Qi) = arg min
Qr

{
ΠRS (n,Qr = 0 || Qi) ,ΠRS

(
n,Qr =

γQi
n(1− γ) + γ

∣∣∣∣∣∣ Qi)} ,
where Qr,RS(n,Qi) is given by (3.44).

Proof. (3.5) and the non-negativity constraint for Qr imply that, for any given

n ≥ 1, the feasible region of Qr is given by

0 ≤ Qr ≤
γQi

n(1− γ) + γ
. (3.80)

Recalling Property 9.2 which states that ΠRS(n,Qr || Qi) is concave in Qr for any

n in the region 1 ≤ n ≤ (hrR−h
u
R)a

huR(1−γ)m
+ 1, while is convex in Qr for any n in the region

n >
(hrR−h

u
R)a

huR(1−γ)m
+ 1. The proof immediately follows from Property 9.2 and (3.80), and,

hence, it is omitted.

By Property 28, we obtain the upper bound of ΠRS(n,Qr || Qi) for n ≥ 1, which

is given by ΠRS(n,Q∗r,2.3(n,Qi) || Qi). For computing the optimal value of n for P2.3

in (3.30), it su�ces to �nd n∗2.3(Qi) such that

n∗2.3(Qi) = arg max
n∈Z∗

{ΠRS(n,Q∗r,2.3(n,Qi) || Qi),ΠRS(n = 0)}, (3.81)

where Q∗r,2.3(n,Qi) is as in Property 28, and ΠRS(n = 0) is as in Property 7.2.

The following property de�nes an upper bound for the search region of n.

Property 29 When Qi is exogenous, under RS-centric control, the optimal value

of n, denoted by n∗2.3(Qi), satis�es

0 ≤ n∗2.3(Qi) ≤
γQi(c

rp − c)− γKr

Kr(1− γ)
. (3.82)
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Proof. Recalling Property 7.2, and using (3.81), it is easy to show that

0 = ΠRS(n = 0) ≤ ΠRS(n∗2.3(Qi), Q
∗
r,2.3(n∗2.3(Qi), Qi) || Qi)

≤ ((crp − c)Q∗r,2.3(n∗2.3(Qi), Qi)−Kr)n
∗
2.3(Qi). (3.83)

If n∗2.3(Qi) = 0 then Q∗r,2.3(n∗2.3(Qi), Qi) = 0. Otherwise, i.e., n∗2.3(Qi) > 0, (3.83)

implies that

Kr + (c− crp)Q∗r,2.3(n∗2.3(Qi), Qi) ≤ 0,

which is equivalent to

Q∗r,2.3(n∗2.3(Qi), Qi) ≥
Kr

crp − c
. (3.84)

Using (3.80) and (3.84), it can be easily shown that

Kr

crp − c
≤ Q∗r,2.3(n∗2.3(Qi), Qi) ≤

γQi

n∗2.3(Qi)(1− γ) + γ
, (3.85)

which implies that n∗2.3(Qi) ≤ γQi(c
rp−c)−γKr
Kr(1−γ)

.

Property 29 helps to limit the search region for the value of n:

n = 0, 1, . . . ,

⌊
γQi(c

rp − c)− γKr

Kr(1− γ)

⌋
.

Using Properties 28 and 29, we can derive the optimal solution of problem (3.30).

Corollary 9 The optimal solution under RS-centric control for Scenario 2, de-

130



noted by (n∗2.3(Qi), Q
∗
r,2.3(Qi)), is given by

n∗2.3(Qi) = arg max
n=0,1,...,N2.3

{ΠRS(n,Q∗r,2.3(n,Qi) || Qi),ΠRS(n = 0)}

Q∗r,2.3(Qi) = Q∗r,2.3(n∗2.3(Qi), Qi), (3.86)

where Q∗r,2.3(n,Qi) is as in Property 28, ΠRS(n = 0) is as in Property 7.2, and N2.3

is given by

N2.3 =

⌊
γQi(c

rp − c)− γKr

Kr(1− γ)

⌋
.

3.7.4 Scenario 2: OEM-lead Control: OEM Decides n and RS Decides Qr

In this section, we analyze P2.4.1 and P2.4.2 formulated by (3.31) and (3.32),

respectively. The OEM determines the value of n, and then the RS determines the

value of Qr. To determine the value of n, the OEM will rely on the prediction of

RS's response for any given n value.

This prediction can be obtained by deriving the RS's optimal value of Qr that

maximizes the RS's total pro�t for any given (n,Qi) pair. We denote the RS's

optimal response by Q∗r,2.4(n,Qi), which is the solution of P2.4.1 in (3.31). Recalling

Property 28, for any n ≥ 1, and Qi is exogenous, the optimal value of Qr for the RS

is given by Q∗r,2.3(n,Qi). Thus, Q∗r,2.4(n,Qi) = Q∗r,2.3(n,Qi) for any n ≥ 1.

After predicting the RS's response, the OEM's decision is to determine the value

of n that maximizes the OEM's total pro�t, i.e., the solution of P2.4.2 in (3.32). The

following property de�nes an upper bound for optimal n value.

Property 30 When Qi is exogenous, under OEM-lead control where the OEM

decides n and the RS decides Qr, the optimal value of n for the OEM, denoted by
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n∗2.4, satis�es

0 ≤ n∗2.4 ≤ N2.2, (3.87)

where N2.2 is given by (3.79).

Proof. The proof is similar to the proof of Property 27, and, hence, it is omitted.

Property 30 helps to limits the searching region for the value of n: n = 0, 1, . . . , N2.2.

Using Properties 28 and 30, we can derive the optimal solutions of P2.4.1 in (3.31)

and P2.4.2 in (3.32).

Corollary 10 When Qi is exogenous, under OEM-lead control where OEM de-

cides n and RS decides Qr, the OEM's optimal decision for the value of n, denoted

by n∗2.4(Qi), is given by

n∗2.4(Qi) = arg max
n=0,1,...,N2.2

{ΠOEM(n,Q∗r,2.3(n,Qi) || Qi),ΠRS(n = 0)}, (3.88)

where Q∗r,2.3(n,Qi) is as in Property 28, ΠRS(n = 0) is as in Property 7.2, and N2.2

is given by (3.79).

The RS's optimal response is given by Q∗r,2.3(n∗2.4(Qi), Qi).

3.7.5 Scenario 2: OEM-lead Control: OEM Decides Qr and RS Decides n

In this section, we analyze P2.5.1 and P2.5.2 formulated by (3.26) and (3.33),

respectively. The OEM determines the value of Qr, and then the RS determines the

vlaue of n. To determine the value of Qr, the OEM will rely on the prediction of the

RS's response for any given Qr value.
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This prediction can be obtained by deriving the RS's optimal value of n that

maximizes the RS's total pro�t for any given (Qi, Qr) pair. The RS's optimal re-

sponse is given by n∗2.5(Qi, Qr) which is the solution of P2.5.1 in (3.26). Recalling

Property 22, when (Qi, Qr) is given, the optimal value of n for the RS is given by

n∗1.5(Qi, Qr). Thus, n∗2.5(Qi, Qr) = n∗1.5(Qi, Qr) for any Qr ≥ 0.

After predicting the RS's response, the OEM's decision is to determine the value

of Qr that maximizes the OEM's total pro�t, i.e., the solution of P2.5.2 in (3.33).

Recalling Property 22, in order to ensure that the RS remanufactures, the largest

value of Qr should be Qiγ. The following property de�nes the search region for the

optimal value of Qr ≥ 0.

Property 31 When Qi is exogenous, under OEM-lead control where the OEM

decides Qr and the RS decides n, the OEM's optimal decision for the value of Qr,

denoted by Q∗r,2.5(Qi), satis�es 0 ≤ Qr ≤ min{aT −Qi, Qiγ}.

Proof. (3.3) and non-negativity constraints of Qr and n imply that

0 ≤ Qr ≤ aT −Qi,

which together with Property 22.1 imply that 0 ≤ Qr ≤ min{aT −Qi, Qiγ}.

Using Property 31, we can derive the optimal solutions of P2.5.1 in (3.26) and

P2.5.2 in (3.33).

Corollary 11 Under OEM-lead control where OEM decides Qr and RS decides

n for Scenario 2, the optimal value of Qr for the OEM, denoted by Q∗r,2.5(Qi), is
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given by

Q∗r,2.5(Qi) =


0, if ΠOEM(n∗1.5(Q0

r,2.5(Qi), Qi), Q
0
r,2.5(Qi) || Qi)

≤ ΠOEM(n = 0),

Q0
r,2.5(Qi), otherwise,

(3.89)

where n∗1.5(Qi, Qr) is as in Property 22, ΠOEM(n = 0) is as in Property 7.1, and

Q0
r,2.5(Qi) is given by

Q0
r,2.5(Qi) = arg max

0≤Qr≤min{aT−Qi,Qiγ}
{ΠOEM(n∗1.5(Qi, Qr), Qr || Qi)} .

The RS's optimal response is given by n∗1.5(Q∗r,2.5(Qi), Qi).

3.8 Scenario 3: Computing n, Qr and Qi in a Stackelberg Setting

In this section, problems formulated in Section 3.4.3 are analyzed. We develop

formal approach for computing the optimal values of n, Qr and Qi for each of the

following seven problem settings: (1) centralized control; (2) OEM-lead control where

OEM decides Qr and RS decides n and Qi; (3) OEM-lead control where OEM decides

Qi and RS decides n and Qr; (4) OEM-lead control where OEM decides n and RS

decides Qr and Qi; (5) OEM-lead control where OEM decides n and Qr, and RS

decides Qi; (6) OEM-lead control where OEM decides n and Qi, and RS decides Qr;

(6) OEM-lead control where OEM decides Qr and Qi, and RS decides n.

3.8.1 Scenario 3: Centralized Control

In this section, we analyze P3.1 in (3.34). Recalling Property 8.3, for any given

(n,Qr) pair, where n ∈ Z+ and Qr ≥ 0, Π(n,Qr, Qi) is a linearly non-increasing

function of Qi in Qi ≥ 0. Thus, we can use the result in Property 12, and conclude

that for any given proper (n,Qr) pair the optimal Qi value under centralized control
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for Scenario 3, denoted by Q∗i,3.1(n,Qr), is given by Q∗i,3.1(n,Qr) = Q∗i,1.1(n,Qr) =(
n
γ
− n+ 1

)
Qr. Hence, Π

(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
provides an upper bound of

Π (n,Qr, Qi) for n ≥ 1. We denote Π
(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
by F3.1(n,Qr). Note

that, F3.1(0, Qr) = Π(n = 0) = (π−cnp−cd)−hnM aT 2

2
by Property 7.3, which implies

that F3.1(n,Qr) can be treated as the upper bound of Π (n,Qr, Qi) for n ≥ 0, i.e.,

the whole feasible region of n. Then, to determine the optimal value of n for P3.1 in

(3.34), it su�ces to solve the following problem

min
n∈Z∗,Qr≥0

F3.1(n,Qr) (3.90)

s.t. aT ≥
(
n

γ
− n+ 1

)
Qr + (n+ 1)Qr =

(
n

γ
+ 2

)
Qr

where F3.1(n,Qr) = Π
(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
.

The following property of F3.1(n,Qr) is helpful for calculating the optimal solution

of problem (3.90).

Property 32 For any given n ≥ 0, F3.1(n,Qr) is a concave function of Qr with

a unique positive maximizer given by

Q0
r,3.1(n) =

(cnp + cd − c+ hnMT )a
hnMn+ hrM + huM

((
1
γ
− 1
)2

n+ 2
γ
− 1

)
+huR ((1− γ)n+ γ + 1) +

(hrR−h
u
R)a

m


. (3.91)

Proof. Recalling that F3.1(n,Qr) = Π
(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
, it is easy to show

that
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∂F3.1(n,Qr)

∂Qr
= (cnp + cd − c+ hnMT )n−

[
hnMn

a
+
hrM
a

+
huM
a

((
1

γ
− 1

)2

n+
2

γ
− 1

)

+
huR
a

((1− γ)n+ γ + 1) +
hrR − huR

m

]
nQr, and

∂2F3.1(n,Qr)

∂Q2
r

= −

[
hnMn

a
+
hrM
a

+
huM
a

((
1

γ
− 1

)2

n+
2

γ
− 1

)

+
huR
a

((1− γ)n+ γ + 1) +
hrR − huR

m

]
n ≤ 0.

Hence, F3.1(n,Qr) is concave in Qr for any given n ≥ 0 with a unique maximizer

given by (3.91). Since cnp ≥ c, Q∗r,3.1(n) is positive.

Recalling the constraint in (3.90), and by Property 32, we can easily prove the

following corollary.

Corollary 12 For any given n ≥ 0, the maximizer of F3.1(n,Qr) is given by

Q∗r,3.1(n) =


0, n = 0,

Q0
r,3.1(n), Qr,3.1(n) < aT

n
γ

+2
,

aT
n
γ

+2
, Q0

r,3.1(n) ≥ aT
n
γ

+2
,

(3.92)

where Q0
r,3.1(n) is given by (3.91).

Proof. When n = 0, i.e., no remanufacturing happens, we have Qr = 0. The

following proof is straightforward by using Property 32 and the constraint in (3.90),

and hence, it is omitted.

By Corollary 12, F3.1(n,Q∗r,3.1(n)) is the upper bound of F3.1(n,Qr) for n ≥ 0,

and hence, is the upper bound of Π(n,Qr, Qi) for n ≥ 0. Thus, to calculate the
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optimal value of n for P3.1 in (3.34), it su�ces to �nd n∗3.1 such that

n∗3.1 = arg max
n∈Z∗

{F3.1(n,Q∗r,3.1(n))}, (3.93)

where F3.1(n,Q∗r,3.1(n)) = Π
(
n,Q∗r,3.1(n),

(
n
γ
− n+ 1

)
Q∗r,3.1(n)

)
, and Q∗r,3.1(n) is

given by (3.92).

The following property de�nes an upper bound for the search region of n.

Property 33 The optimal value of n under centralized control for Scenario 3,

denoted by n∗3.1, satis�es

0 ≤ n∗3.1 ≤ N2.1, (3.94)

where N2.1 is given by (3.73).

Proof. By (3.93) and recalling that F3.1(n,Qr) = Π
(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
, it

is easy to show that

F3.1(0, Q∗r,3.1(0)) ≤ F3.1(n∗3.1, Q
∗
r,3.1(n∗3.1)) ≤ πaT − (Ks +Kr)n

∗
3.1. (3.95)

Hence, we have n∗3.1 ≤
(cnp+cd)aT+hnM

aT2

2

Ks+Kr
= N2.1, which together with n ≥ 0 implies

(3.94).

Using Property 33 and Corollary 12, we can derive the optimal solution of P3.1

in (3.34).

Corollary 13 The optimal solution under centralized control for Scenario 3, de-

noted by (n∗3.1, Q
∗
r,3.1, Q

∗
i,3.1), is given by
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n∗3.1 = arg max
n=0,1,...,N2.1

{F3.1(n,Q∗r,3.1(n))}, Q∗r,3.1 = Q∗r,3.1(n∗3.1),

Q∗i,3.1 = Q∗i,3.1(Q∗r,3.1, n
∗
3.1), (3.96)

where N2.1 is given by (3.73), F3.1(n,Qr) = Π
(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
, Q∗r,3.1(n) is

given by (3.92), and Q∗i,3.1(n,Qr) =
(
n
γ
− n+ 1

)
Qr.

3.8.2 Scenario 3: OEM-lead Control: OEM Decides Qr and RS Decides n and Qi

In this section, we analyze P3.2.1 and P3.2.2 formulated by (3.23) and (3.35),

respectively. The OEM and the RS make decisions in a Stackelberg setting that the

OEM decides the value of Qr and then the RS decides the values of n and Qi. To

determine the value of Qr, the OEM will reply on the prediction of RS's response

for any given Qr value.

This prediction is the solution of P1.3 in (3.23) which is given by (n∗1.3(Qr), Q
∗
i,1.3(Qr))

in Corollary 4. By observing the results in Corollary 4 and (3.63), the OEM can

derive the conditions under which the RS agrees to start remanufacturing, as the

following property shows.

Property 34 The RS will agree to start remanufacturing only if all of the fol-

lowing inequalities hold

crp − c−
(

1

γ
− 1

)
cd ≥ 0, (3.97)

2

(
huR(1− γ) +

(hrR − huR)a

m

)
Kr <

(
crp − c−

(
1

γ
− 1

)
cd
)2

a, and (3.98)
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
(
crp − c−

(
1
γ − 1

)
cd
)
a

−
√(

crp − c−
(

1
γ − 1

)
cd
)2
a2 − 2

(
huR(1− γ) +

(hrR−h
u
R)a

m

)
Kra


huR(1− γ) +

(hrR−h
u
R)a

m

< Qr (3.99)

<


(
crp − c−

(
1
γ − 1

)
cd
)
a

+

√(
crp − c−

(
1
γ − 1

)
cd
)2
a2 − 2

(
huR(1− γ) +

(hrR−h
u
R)a

m

)
Kra


huR(1− γ) +

(hrR−h
u
R)a

m

.

Proof. Recalling Corollary 4 and (3.63), it is easy to show that (3.97) is the

necessary condition for n0
1.3(Qr) to be positive, and then the necessary condition for

n∗1.3(Qr) to be positive.

By Corollary 4, n∗1.3(Qr) can be positive only when n0
1.3(Qr) > 0 which is equiv-

alent to

(
huR(1 + γ)

2
+

(hrR − huR)a

2m

)
Q2
r −

(
crp − c−

(
1

γ
− 1

)
cd
)
aQr +Kra < 0. (3.100)

(3.98) is the necessary condition for existing real Qr such that (3.100) holds. Then,

the real Qr value that satis�es (3.100) is in the region determined by (3.99).

After predicting the RS's response, the OEM's decision is to determine the value

of Qr that maximizes the OEM's total pro�t, i.e., the solution of P3.2.2 in (3.35).

This can be done by search algorithm over the region determined by (3.99).

Corollary 14 Under OEM-lead control where OEM decides Qr and RS decides

n and Qi, the optimal value of Qr for the OEM, denoted by Q∗r,3.2, is given by

Q∗r,3.2 =

 0, if ΠOEM(n∗1.3(Q0
r,3.2), Q∗i,1.3(Q0

r,3.2), Q0
r,3.2) ≤ ΠOEM(n = 0),

Q0
r,3.2, otherwise,
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where (n∗1.3(Qr), Q
∗
i,1.3(Qr)) is as in Corollary 4, and Q0

r,3.2 is given by

Q0
r,3.2 = arg max

Qr∈(3.99)

{
ΠOEM(n∗1.3(Qr), Q

∗
i,1.3(Qr), Qr)

}
.

The RS's optimal response is given by (n∗1.3(Q∗r,3.2), Q∗i,1.3(Q∗r,3.2)).

3.8.3 Scenario 3: OEM-lead Control: OEM Decides Qi and RS Decides n and Qr

In this section, we analyze P3.3.1 and P3.3.2 formulated by (3.30) and (3.36),

respectively. The OEM and the RS make decisions in a Stackelberg setting that the

OEM decides the value of Qi and then the RS decides the values of n and Qr. To

determine the value of Qi, the OEM will reply on the prediction of RS's response for

any given Qi value.

This prediction is the solution of P2.3 in (3.30) which is given by (n∗2.3(Qi), Q
∗
r,2.3(Qi))

in Corollary 9.

After predicting the RS's response, the OEM's decision is to determine the value

of Qi that maximizes the OEM's total pro�t, i.e., the solution of P3.3.2 in (3.36).

This can be done by search algorithm over the region c.

Corollary 15 Under OEM-lead control where OEM decides Qi and RS decides

n and Qr, the optimal value of Qi for the OEM, denoted by Q∗i,3.3, is given by

Q∗i,3.3 =

 0, if ΠOEM(n∗2.3(Q0
i,3.3), Q∗r,2.3(Q0

i,3.3), Q0
i,3.3) ≤ ΠOEM(n = 0),

Q0
i,3.3, otherwise,

where (n∗2.3(Qi), Q
∗
r,2.3(Qi)) is as in Corollary 9, and Q0

i,3.3 is given by

Q0
i,3.3 = arg max

0≤Qi≤aT

{
ΠOEM(n∗2.3(Qi), Q

∗
r,2.3(Qi), Qi)

}
.
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The RS's optimal response is given by (n∗2.3(Q∗i,3.3), Q∗r,2.3(Q∗i,3.3)).

3.8.4 Scenario 3: OEM-lead Control: OEM Decides n and RS Decides Qr and Qi

In this section, we analyze P3.4.1 and P3.4.2 formulated by (3.37) and (3.38),

respectively. The OEM and the RS make decisions in a Stackelberg setting that the

OEM decides the value of n, and then the RS decides the values of Qr and Qi. To

determine the value of n, the OEM will rely on the prediction of RS's response for

any given n value.

This prediction can be obtained by deriving the RS's optimal values of Qr and

Qi that maximize the RS's total pro�t for any given n value. We denote the RS's

optimal response by (Q∗r,3.4(n), Q∗i,3.4(n)), which is the solution of P3.4.1 in (3.37). If

n = 0, i.e., no remanufacturing, Qr = Qi = 0 by Property 7. Thus we will focus on

the case n ≥ 1.

Recalling Property 8.2, when n ≥ 1 is given, for any Qr ≥ 0, ΠRS(Qr, Qi || n)

is a linearly decreasing function of Qi. Thus, for any given proper (n,Qr) pair, the

optimal value of Qi is given by Q∗i,3.4(Qr, n) =
(
n
γ
− n+ 1

)
Qr as proved in Property

18. Then, we obtain the upper bound of ΠRS(Qr, Qi || n) for n ≥ 1, which is given

by ΠRS

(
Qr,

(
n
γ
− n+ 1

)
Qr

∣∣∣∣∣∣ n). To compute the optimal solution for problem

(3.37), it su�ces to obtain Q∗r,3.4(n) such that

Q∗r,3.4(n) = arg max
Qr≥0

ΠRS

(
Qr,

(
n

γ
− n+ 1

)
Qr || n

)
. (3.101)

The following property is su�cient for computing Q∗r,3.4(n) in (3.101).

Property 35 For any given n > 0, ΠRS

(
Qr,

(
n
γ
− n+ 1

)
Qr

∣∣∣∣∣∣ n) is concave in
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Qr with a unique maximizer give by

Q0
r,3.4(n) =

crp − cd
(

1
γ
− 1
)
− c

huR(n(1−γ)+γ+1)

a
+

hrR−h
u
R

m

. (3.102)

Proof. For any n > 0, it can be easily shown that

∂ΠRS

(
Qr,

(
n
γ − n+ 1

)
Qr

∣∣∣∣∣∣ n)
∂Qr

=

(
crp − cd

(
1

γ
− 1

)
− c
)
n

−
(
huR (n(1− γ) + γ + 1)

a
+
hrR − huR

m

)
nQr, and

∂2ΠRS

(
Qr,

(
n
γ − n+ 1

)
Qr

∣∣∣∣∣∣ n)
∂Q2

r

= −
(
huR (n(1− γ) + γ + 1)

a
+
hrR − huR

m

)
n < 0.

Hence, ΠRS

(
Qr,

(
n
γ
− n+ 1

)
Qr || n

)
is concave in Qr with a unique maximizer

give by (3.102).

Using Property 35, we can derive the RS's optimal response for any given n ≥ 1.

Corollary 16 For any given n ≥ 1, the maximizer of the RS's pro�t function is

given by

Q∗r,3.4(n) =

 0 if crp ≤ c+ cd
(

1
γ
− 1
)
,

Q0
r,3.4(n) if crp > c+ cd

(
1
γ
− 1
)
,

and

Q∗i,3.4(n) =

(
n

γ
− n+ 1

)
Q∗r,3.4(n), (3.103)

where Q0
r,3.4(n) is given by (3.102).

Proof. The proof is straightforward by using Property 35, Qr ≥ 0 andQ∗i,3.4(Qr, n) =(
n
γ
− n+ 1

)
Qr, and, hence, it is omitted.

After predicting the RS's response, the OEM's decision is to determine the value

of n, denoted by n∗3.4, that maximizes the OEM's total pro�t, i.e., the solution of
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P3.4.2 in (3.38). This can be done by searching over a �nite region of n. The

following property de�nes this searching region.

Property 36 Under OEM-lead control where OEM decides n and the RS decides

Qr and Qi, the optimal value of n for the OEM, denoted by n∗3.4, should satisfy

0 ≤ n∗3.4 ≤ N2.2,

where N2.2 is given by (3.79).

Proof. The proof is similar with the proof for (3.77), and hence, it is omitted.

Using Property 36 and Corollary 16, we can derive the optimal solutions of P3.4.1

in (3.37) and P3.4.2 in (3.38).

Corollary 17 Under OEM-lead control where OEM decides n and the RS decides

Qr and Qi, the optimal value of n for the OEM, denoted by n∗3.4, is given by

n∗3.4 = arg max
n=0,1,...,N2.2

{ΠOEM

(
n,Q∗r,3.4(n), Q∗i,3.4(n)

)
}, (3.104)

where N2.2 is given by (3.79), Q∗r,3.4(n) and Q∗i,3.4(n) are as in Corollary 16.

The RS's optimal response, denoted by (Q∗r,3.4, Q
∗
i,3.4), is given by

Q∗r,3.4 = Q∗r,3.4(n∗3.4), Q∗i,3.4 = Q∗i,3.4(n∗3.4). (3.105)

3.8.5 Scenario 3: OEM-lead Control: OEM Decides n and Qr and RS Decides Qi

In this section, we analyze P3.5.1 and P3.5.2 formulated by (3.24) and (3.39),

respectively. The OEM and the RS make decisions in a Stackelberg setting that the

OEM decides the values of n and Qr, and then the RS decides the value of Qi. To
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determine the values of n and Qr, the OEM will reply on the prediction of the RS's

response for any given (n,Qr) pair.

This prediction is the solution of P1.4.1 in (3.24) which is given by Q∗i,1.4(n,Qr) =(
n
γ
− n+ 1

)
Qr.

After predicting the RS's response, the OEM's decision is to determine the values

of n andQr that maximize the OEM's total pro�t, i.e., the solution of P3.5.2 in (3.39),

i.e., the OEM's problem is given by

max
n∈Z∗, Qr≥0

ΠOEM

(
n,Qr,

(
n

γ
− n+ 1

)
Qr

)
(3.106)

s.t. aT ≥
(
n

γ
+ 2

)
Qr.

The following property is helpful for calculating the optimal values of n and Qr

for the OEM.

Property 37 For any n ≥ 1, ΠOEM

(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
is concave in Qr

with a unique maximizer given by

Q0
r,3.5(n) =

cnp − crp + hnMT + cd

γ

huM

(
n
(

1
γ
− 1
)2

+ 2
γ
− 1

)
+ hrM + hnMn

a. (3.107)

Proof. For any n ≥ 1, it is easy to show that

∂ΠOEM

(
n,Qr,

(
n
γ − n+ 1

)
Qr

)
∂Qr

=

(
cnp − crp + hnMT +

cd

γ

)
n

−
huM

(
n
(

1
γ − 1

)2
+ 2

γ − 1

)
+ hrM + hnMn

a
nQr, and

∂2ΠOEM

(
n,Qr,

(
n
γ − n+ 1

)
Qr

)
∂Q2

r

= −
huM

(
n
(

1
γ − 1

)2
+ 2

γ − 1

)
+ hrM + hnMn

a
n < 0.
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Hence, ΠOEM

(
n,Qr,

(
n
γ
− n+ 1

)
Qr

)
is concave in Qr with a unique maximizer

given by (3.107).

The constraint in problem (3.106) implies that, for any given n ≥ 1, Qr should

satisfy Qr ≤ aT
n
γ

+2
. Hence, for any given n ≥ 0, we can characterize the optimal value

of Qr for the OEM.

Corollary 18 Under OEM-lead control where OEM decides n and Qr and RS

decides Qi, for any n ≥ 0, the optimal value of Qr for OEM is given by

Q∗r,3.5(n) =


0, if n = 0,

Q0
r,3.5(n), if Q0

r,3.5(n) < aT
n
γ

+2
and n ≥ 1,

aT
n
γ

+2
, if Q0

r,3.5(n) ≥ aT
n
γ

+2
and n ≥ 1.

(3.108)

Proof. The proof is straightforward by using (3.106) and Property 37, and hence,

it is omitted.

By corollary 18, ΠOEM

(
n,Q∗r,3.5(n),

(
n
γ
− n+ 1

)
Q∗r,3.5(n)

)
is the upper bound

of

ΠOEM

(
n,Qr,

(
n
γ
− n+ 1

)
Qr)
)
for any (n,Qr) pair. To computing the optimal

value of n for the OEM, it su�ces to obtain n∗3.5 such that

n∗3.5 = arg max
n∈Z∗

{
ΠOEM

(
n,Q∗r,3.5(n),

(
n

γ
− n+ 1

)
Q∗r,3.5(n)

)}
. (3.109)

The following property de�nes an upper bound for the search region of n.

Property 38 Under OEM-lead control where OEM decides n and Qr and RS

decides Qi, the optimal value of n for the OEM should satisfy

0 ≤ n∗3.5 ≤ N2.2, (3.110)
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where N2.2 is given by (3.79).

Proof. The proof is similar with the proof for (3.77), and hence, it is omitted.

Property 38 helps to limit the search region of n value: n = 0, 1, . . . , N2.2.

Using Property 38 and Corollary 18, we can derive the optimal solutions of P3.5.1

in (3.24) and P3.5.2 in (3.39).

Corollary 19 Under OEM-lead control where OEM decides n and Qr and RS

decides Qi, the optimal values of n and Qr for the OEM, denoted by n∗3.5 and Q∗r,3.5,

respectively, are given by

n∗3.5 = arg max
n=0,1,...,N2.2

{
ΠOEM

(
n,Q∗r,3.5(n),

(
n

γ
− n+ 1

)
Q∗r,3.5(n)

)}
, (3.111)

where N2.2 is given by (3.79), Q∗r,3.5(n) is as in Corollary 18.

The RS's optimal response, denoted by Q∗i,3.5, is given by

Q∗i,3.5 =

(
n∗3.5
γ
− n∗3.5 + 1

)
Q∗r,3.5. (3.112)

3.8.6 Scenario 3: OEM-lead Control: OEM Decides n and Qi and RS Decides Qr

In this section, we analyze P3.6.1 and P3.6.2 formulated by (3.31) and (3.40),

respectively. The OEM and the RS make decisions in a Stackelberg setting that the

OEM decides the values of n and Qi, and then the RS decides the value of Qr. To

determine the values of n and Qi, the OEM will reply on the RS's response for any

given (n,Qi) pair.

This prediction can be obtained by deriving the RS's optimal value of Qr that

maximizes the RS's total pro�t for any given (n,Qi) pair, i.e., the solution of P2.4.1

in (3.31), and the solution is given by Q∗r,2.3(n,Qi) in Property 28.
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After predicting the RS's response, the OEM's decision is to determine the values

of n andQi that maximize the OEM's total pro�t, i.e., the solution of P3.6.2 in (3.40),

which can be obtained by searching over the region 0 ≤ Qi ≤ aT , n = 0, 1, . . . , N2.2,

where N2.2 is given by (3.79).

Corollary 20 Under OEM-lead control where OEM decides n and Qi and RS

decides Qr, the optimal (n,Qi) pair for the OEM, denoted by (n∗3.6, Q
∗
i,3.6), is given

by

(n∗3.6, Q
∗
i,3.6) = arg max

n=0,1,...,N2.2, 0≤Qi≤aT
{ΠOEM

(
n,Qi, Q

∗
r,2.3(n,Qi)

)
}, (3.113)

where N2.2 is given by (3.79), Q∗r,2.3(n,Qi) is as in Property 28.

The RS's optimal response, denoted by Q∗r,3.6, is given by

Q∗r,3.6 = Q∗r,2.3(n∗3.6, Q
∗
i,3.6). (3.114)

3.8.7 Scenario 3: OEM-lead Control: OEM Decides Qr and Qi and RS Decides n

In this section, we analyze P3.7.1 and P3.7.2 formulated by (3.26) and (3.41),

respectively. The OEM and the RS make decisions in a Stackelberg setting that the

OEM determines the values of Qr and Qi, and then the RS determines the value of

n. To determine the values of Qr and Qi, the OEM will reply on the RS's response

for any given (Qr, Qi) pair.

This prediction can be obtained by deriving the RS's optimal value of n that

maximizes the RS's total pro�t for any given (Qr, Qi) pair, i.e., the solution of P1.5.1

in (3.26), and the solution is given by n∗1.5(Qi, Qr) in Property 22.

After predicting the RS's response, the OEM's decision is to determine the

(Qi, Qr) pair that maximizes the OEM's total pro�t, i.e., the solution of P3.7.2
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in (3.41). Property 31 de�nes the search region for the optimal value of Qr, for a

given Qi. The searching region for Qi is from 0 to aT .

Corollary 21 Under OEM-lead control where OEM decides Qr and Qi and RS

decides n, the optimal (Qr, Qi) pair for the OEM, denoted by (Q∗r,3.7, Q
∗
i,3.7), is given

by

(Q∗r,3.7, Q
∗
i,3.7) = arg max

0≤Qi≤aT
{ arg max

0≤Qr≤min{aT−Qi,Qiγ}
ΠOEM (n∗1.5(Qi, Qr), Qi, Qr)}, (3.115)

where n∗1.5(Qi, Qr) is as in Property 22.

The RS's optimal response, denoted by n∗3.7, is given by

n∗3.7 = n∗1.5(Q∗r,3.7, Q
∗
i,3.7). (3.116)

3.9 Numerical Experiments

In this section we provide numerical results for two types of remanufacturable au-

tomotive parts to demonstrate the performance of di�erent system settings. These

two types of automotive parts are engines and transmissions. Engines are di�cult

and expensive to remanufacture, whereas transmissions are easier and cheaper to

remanufacture. For engines, the life cycle is short, and the demand is low. The

di�erence between the unit cost for a new engine and the unit cost for a remanufac-

tured engine is low. For transmissions, the life cycle is longer, and the demand is

larger. The di�erence between the unit cost for a new transmission and the unit cost

for a remanufactured transmission is substantial. The remanufacturing yield rate for

engines is lower than that for transmissions. Thus the system bene�t from remanu-

facturing transmissions is higher than that from remanufacturing engines. For both

of these two di�erent types of remanufacturable parts, we will demonstrate the best
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settings in di�erent scenarios.

3.9.1 Parameter Settings

Our parameters are from an OEM in the automotive industry. We masked the

numbers for con�dential purpose. For the missing parameters, we use factorial design

to consider di�erent levels. The parameter settings are summarized in Table 3.3. We

consider three levels for the �xed shipment cost from the OEM to the RS, i.e., Ks,

(25, 50 and 100), and two levels for the �xed remanufacturing setup cost incurred

by the RS, i.e., Kr, (100 and 200). For engines, we consider three levels of unit

remanufacturing cost c (24, 26.25 and 28.125), and three levels of the remanufacturing

rate m (600, 900 and 1350). For transmissions, we consider three levels of unit

remanufacturing cost c (16, 17.5 and 18.75), and three levels of the remanufacturing

ratem (1500, 2250 and 3375). As a result, we consider a total of 54 problem instances

for each type of automotive parts.

Table 3.3: Parameter settings.
π cnp crp cd hnM hrM huM hrR huR T a γ

Engine 77.91 38 37.5 4.125 0.12 ∗ cnp 0.12 ∗ crp 2.625 0.12 ∗ c 2.625 10 600 0.8
Trans. 171.4125 58.5 25 3.125 0.12 ∗ cnp 0.12 ∗ crp 1.875 0.12 ∗ c 1.875 15 1200 0.95

3.9.2 Experimentation

Given a problem instance, we solve the optimization problems for a total of 17

system settings summarized in Table 3.2, which belong to 3 di�erent scenarios. For

each scenario, we check the performance of each system setting by comparing its

optimal pro�t with the optimal pro�t under centralized control. Let us denote the

optimal pro�t of Setting j in Scenario i by Π∗i,j, i = 1, 2, 3, j = 1, 2, · · · , 5 for
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Scenarios 1 and 2, and j = 1, 2, · · · , 7 for Scenario 3. Then, we use the following

metric to denote the performance of each setting:

Π∗i,1 − Π∗i,j
Π∗i,1

,

where Π∗i,1 is the optimal pro�t of the centralized control setting in Scenario i, i =

1, 2, 3. Thus, the smaller value the above formula has, the better performance its

corresponding setting has. To evaluate the impacts of di�erent settings on the pro�ts

of the OEM and the RS, we use the following metrics

Π∗OEM,i,1 − Π∗OEM,i,j

Π∗OEM,i,1

and
Π∗RS,i,1 − Π∗RS,i,j

Π∗RS,i,1
,

respectively, where Π∗OEM,i,1 (Π∗RS,i,1) is the OEM's (RS's) pro�t under centralized

control in Scenario i, i = 1, 2, 3, and Π∗OEM,i,j (Π
∗
RS,i,j) is the OEM's (RS's) pro�t

of Setting j in Scenario i, i = 1, 2, 3, j = 1, 2, · · · , 5 for Scenarios 1 and 2, and

j = 1, 2, · · · , 7 for Scenario 3.

In Tables 3.4 and 3.5, we report the average performance of each setting for

engines and transmissions, respectively. Based on Tables 3.4 and 3.5, we observe

that the results for engines and transmissions are rather consistent:

• For Scenario 1 (Qr is exogenous), we observe that

� under Setting 2 (OEM-centric Control) and Setting 3 (RS- centric Con-

trol), at least one agent will not enter the market: the RS will not enter the

market under Setting 2 (OEM-centric Control), while the OEM will not

enter the market under Setting 3 (RS-centric Control). That is because

when one agent has all the power on decision variables, the decentralized

control will fail the market by neglecting the pro�t and requirement of
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the other agent who does not have any power.

� under Settings 4 (OEM-lead control where OEM determines n) and 5

(OEM-lead control where OEM determines Qi), both of which are OEM-

lead controls where the power on decision variables is divided among the

agents, the system can achieve channel coordination.

From the above observations, we can conclude that, for the situation that the

exchange lot size Qr is exogenous, channel coordination can be achieved under

OEM-lead control strategies as long as the RS can determine one decision

variable.

• For Scenario 2 (Qi is exogenous), we observe that

� under Setting 2 (OEM-centric Control), the RS will not enter the market.

The reason is same as in Scenario 1, Setting 2.

� under Setting 3 (RS-centric Control), the RS's pro�t is higher than the

RS's pro�t under centralized control, while the OEM's pro�t is lower than

the OEM's pro�t under centralized control. Although it is RS-centric

control, the RS cannot take all the market pro�t. The reason is that, by

the inventory conservation constraint for the RS in (3.5), Qi restricts the

values of n and Qr, and thus limits the RS's power.

� under Settings 4 (OEM-lead control where OEM determines n) and 5

(OEM-lead control where OEM determines Qr), both of which are OEM-

lead controls where the power on decision variables is divided among the

agents, the OEM's pro�t is higher than the OEM's pro�t under centralized

control, while the RS's pro�t is lower than the RS's pro�t under centralized

control. That is because, under OEM-lead control strategies, the OEM
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can predict the RS's decisions and then lead the game, i.e., the OEM

has more power on the decisions. However, The OEM cannot take all the

market pro�t since the RS has some power to restrict the OEM's decisions.

� under Setting 5 (OEM-lead control where OEM determinesQr), the system-

wide total pro�t is close to the optimal system-wide total pro�t under

centralized control. The performance of Setting 5 is the best among all

the OEM-lead decentralized control strategies.

• For Scenario 3, we observe that

� Setting 3 (OEM lead control where OEM determines Qi and then RS

determines n and Qr) has the best performance among all the OEM-

lead decentralized control strategies in terms of resulting the system-wide

total pro�t which is close to the optimal system-wide total pro�t under

centralized control.

� Settings 5 (OEM lead control where OEM determines n and Qr and then

RS determines Qi), 6 (OEM lead control where OEM determines n and Qi

and then RS determines Qr) and 7 (OEM lead control where OEM deter-

mines Qi and Qr and then RS determines n) also have good performances

in terms of providing near centralized optimal solutions.

� Settings 2 (OEM lead control where OEM determines Qr and then RS

determines n and Qi) and 4 (OEM lead control where OEM determines

n and then RS determines Qi and Qr) do not have good performances:

Setting 4 is the worst, with 23.33% deterioration on average for engines

or 13.83% deterioration on average for transmissions. Setting 2 is the

second worst, with 10.93% deterioration on average for engines and 5.52%

deterioration on average for transmissions.
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From the above observations, it is better for the system to let the OEM deter-

mine Qi. The explanation is as follows: Although the system-wide inventory

related costs, shipment related cost and �xed cost are di�erent with that in-

curred by the OEM, the system's main goal, i.e., to e�ciently remanufacture

used-items to satisfy the demand, is consistent with the main goal of the OEM.

To achieve that goal, the initial lot size sent to the RS, i.e., Qi, is an essen-

tial policy parameter. Indeed, by the inventory conservation constraint for the

RS in (3.5), Qi actually restricts the total amount of remanufactured-items

sent back to the OEM by restricting the values of n and Qr. The OEM has

the intention to send large Qi to the RS to obtain enough remanufactured-

items as well as to get rid of used-items returned from customers. Once Qi

is decided, the RS will always utilize the initial batch e�ciently due to pro�t

consideration. Thus, all the settings in which the OEM can decide Qi have

�ne performance, and the most e�cient setting is that the OEM determines

Qi and then the RS determines n and Qr. Another well-performed setting, in

which the OEM cannot determine Qi, is that the OEM can force the RS to

order large Qi, as in Setting 5. In Setting 5, the OEM determines n and Qr,

and thus determines the total amount of remanufacture-items that the RS has

to provide. In this setting, the RS has to order large Qi to satisfy the total

demand of remanufactured-items.

In the settings with bad performance, the RS can decide Qi as well as one of n

andQr. Then the RS can actually determine the total amount of remanufactured-

items that send to the OEM. Since the RS's pro�t is from selling remanufactured-

items to the OEM, instead of satisfying the customer's demand directly, the

RS will not take into consideration how to satisfy the demand e�ciently by
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using remanufactured-items. Thus, the RS's decision might be far from what

the system expects.

Table 3.4: Average performance of each setting for engine.

Scenario Setting
Π∗i,1−Π∗i,j

Π∗i,1

Π∗OEM,i,1−Π∗OEM,i,j
Π∗OEM,i,1

Π∗RS,i,1−Π∗RS,i,j
Π∗RS,i,1

1 2 \ −5.66% \
3 \ \ −46.13%
4 0 0 0
5 0 0 0

2 2 \ −57.57% \
3 2.48% 3.59% −18.09%
4 2.28% −0.91% 63.56%
5 1.41% −0.85% 40.72%

3 2 10.93% 3.34% 66.29%
3 0.21% 0.47% −2.11%
4 23.33% 20.12% 46.07%
5 1.08% −0.41% 13.81%
6 1.07% −0.41% 13.73%
7 1.18% −0.4% 14.65%

3.10 Conclusions

In this section, we consider a basic game-theoretic setting for seed stock planning

in a batch remanufacturing environment with two agents including an OEM and a

RS. The seed stock, batching decision, and the initial batch size for remanufacturing

are characterized by variables Qs, Qr, and Qi, respectively, along with the number of

consecutive remanufacturing replenishments which is characterized by the variable

n.

We consider three di�erent scenarios that indicate three di�erent practical situa-

tions: the exchange lot size Qr is exogenous due to some technological or operational
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Table 3.5: Average performance of each setting for transmission.

Scenario Setting
Π∗i,1−Π∗i,j

Π∗i,1

Π∗OEM,i,1−Π∗OEM,i,j
Π∗OEM,i,1

Π∗RS,i,1−Π∗RS,i,j
Π∗RS,i,1

1 2 \ −1.8% \
3 \ \ −172.94%
4 0 0 0
5 0 0 0

2 2 \ −1.95% \
3 2.2% 2.85% −27.85%
4 1.05% −0.43% 72.56%
5 0.74% −0.39% 50.8%

3 2 5.52% 2.5% 88.7%
3 0.03% 0.02% 0.11%
4 13.83% 12.41% 52.32%
5 0.33% −0.13% 14.08%
6 0.35% −0.13% 14.51%
7 0.36% −0.12% 14.86%

constraint; the initial lot size Qi is exogenous due to some technological or opera-

tional constraint; and both Qr and Qi are decision variables. For each of the above

scenarios, we investigate both centralized control strategies and OEM-lead decen-

tralized control strategies in the Stackelberg setting. We �rst evaluate the properties

of the pro�t functions, and then we propose e�cient methods for obtaining optimal

solutions, i.e., optimal control strategies. We perform numerical experiments for two

di�erent types of automotive parts: engines and transmissions. The numerical inves-

tigation reveals the settings with good performance as well as the settings with bad

performance. By analyzing our numerical results, we �nd that, in order to pursue

high system-wide total pro�t, it is better to have the OEM determine the initial lot

size Qi directly or indirectly. Our work provides insights for how the decision domain

structure impacts the system performance and helps to identify the e�cient one. The

results provide managerial insights for both the OEM and the RS in making deci-
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sions on seed stock level, initial batch size for remanufacturing, exchange lot size and

remanufacturing frequency, under di�erent technological or operational conditions.

An important direction for future research is to investigate the seed stock planning

problem in a stochastic environment with stochastic return process and/or random

remanufacturing yield. Another important future research direction is to investigate

potential channel coordination strategies for the settings in which system-wide pro�t

maximization cannot be achieved in this section. Last but not least, it is worthwhile

to investigate di�erent types of decentralized control strategies including RS-lead

decentralized control strategies or Nash setting.
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4. CHANNEL COORDINATION STRATEGIES IN THE REVERSE SUPPLY

CHAIN

4.1 Overview of Section 4

This section deals with coordination strategies for the OEM and CC. The problem

studied here may be referred as reverse channel coordination problem due to its re-

lationship with the traditional channel coordination problem (Toptal and Çetinkaya

(2008)). Used-items arrive to the CC according to a stochastic process which is

referred as the return process. The CC consolidates used-items using the return-

driven threshold policy, and then sends them to the OEM in a large load. Since

the OEM and CC have di�erent cost considerations and make decisions individu-

ally, coordination mechanisms are useful such that the system-wide total pro�t is

maximized. First, the return process is modeled as a general renewal process, and

we prove that when the return �ow is exogenous, an all-unit-premium mechanism

is able to coordinate the system. We derive analytical expressions for calculating

the parameters representing the coordination mechanism. We �nd conditions under

which these analytical expressions lead to closed-form solutions. Then, we apply

our results considering several special cases including the cases of deterministic re-

turn process, renewal return process with unit load, and renewal return process with

exponentially distributed loads. For these special cases, we also extend our results

to the situation that the return rate depends on the collection price. When the

return rate depends on the collection price, we prove that all-unit-premium mech-

anism cannot guarantee the centralized optimal pro�t, i.e., channel coordination.

However, by employing all-unit-premium and franchise fee mechanisms together, the

channel coordination objective can be achieved. Analytical and numerical examples
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are provided to illustrate the pro�t improvement due to coordination.

4.2 Problem Motivations and Related Literature

Inspired by our results in Section 3, we now consider a fundamental coordination

problem in the reverse supply chain. This problem is in fact a generalization of the

problems studied in Sections 2 and 3 in the sense that a stochastic batch processing

environment is modeled for channel coordination purposes. As de�ned by Toptal and

Çetinkaya (2006), channel coordination is the approach to identify the ine�ciencies

in decentralized solutions for the purpose of aligning the individual incentives for

multiple parties with those of the centralized solutions. That is, the decentralized

solution may be improved such that: "(i) it results in the same values for the decision

variables as the centralized solution; and (ii) it suggests a mutually agreeable way of

sharing the resulting pro�ts" (Toptal and Çetinkaya (2006); Toptal and Çetinkaya

(2008)).

As we mentioned in the previous sections, the OEM often establishes a reman-

ufacturing program to recover used-items. However, in general, the OEM does not

necessarily collect used-items directly. Consumers often prefer the convenience of

returning used-items to agents who are in close proximity (see Savaskan et al. (2004)

for a systematic analysis of used-item return practices). Thus, retailers or third par-

ties that are close to consumer markets usually act as CCs, where used-items are

gathered, sorted and then sent in batches to OEMs.

For example, supermarkets, such as Walmart, pay customers for empty bottles;

and mobile phone companies, like AT&T and TMobile, collect used iPhones or other

Apple-brand products with attractive prices. The CC obtains revenue by selling

remanufacturable used-items to the OEM. These used-items enter the production

line to be remanufactured. Since the cost of remanufacturing of used-items, which are
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actually semi-manufactured-goods, is usually lower than the cost of manufacturing

of raw materials, the OEM gains pro�ts from remanufacturing.

Due to di�erent cost considerations, the OEM and the CC prefer di�erent batch-

ing strategies for sending used-items. Moreover, in many situations, the CC may

decide the collection price of used-items, and then may manipulate the return �ow

in a way that might not be preferred by the OEM. Thus, e�ective coordination

strategies are useful to achieve system-wide pro�t maximization.

In this context, we consider a channel coordination problem between the OEM

and CC in a stochastic environment. The OEM is the leader who determines the

purchase price of the used-item. After observing the purchase price of used-item, the

CC decides the batching strategy and the collection price.

The coordination problem introduced and examined here is closely related to

two streams of previous research. The �rst stream of research deals with channel

coordination strategies in traditional (i.e., forward) supply chains, while the second

stream deals with channel coordination strategies in closed-loop supply chains.

For a comprehensive review of the existing literature in the �rst stream, we refer

the reader to several systematic literature reviews including Tsay et al. (1999), Ca-

chon (2003), Arshinder et al. (2011) and Li and Wang (2007). It is worth noting that

the coordination strategies investigated here are inspired by quantity discount pric-

ing strategies investigated by Monahan (1984); Banerjee (1986); Lee and Rosenblatt

(1986); Goyal (1987); Joglekar (1988); Monahan (1988); Weng and Wong (1993);

Weng (1995a); and Weng (1995b) while considering deterministic demand settings

in traditional supply chains. More recent research work on coordination strategies

focuses on the traditional newsboy setting with stochastic demand (Cachon and Lar-

iviere (2001, 2005); Gerchak and Wang (2004); Özer (2006); Özer et al. (2007, 2011);

Taylor (2002); Taylor and Xiao (2010)). Inspired by the work on coordination strate-
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gies in traditional supply chains, we investigate how the coordination ideas can be

applied in reverse supply chain with stochastic return �ows.

For comprehensive reviews of the existing literature on channel coordination

strategies in closed-loop supply chains, the reader is referred to Corbett and Savaskan

(2002), Debo et al. (2004) and Govindan et al. (2013). Most of the current papers

in this area focus on the coordination and integration of forward and reverse �ows

(Ketzenberg et al. (2003); Nativi and Lee (2012)); or on coordination strategies that

focus on forward �ows (Bhattacharya et al. (2006); Vorasayan and Ryan (2006); Liu

et al. (2009); Dobos et al. (2013); Pishchulov et al. (2014)). That is, the proposed

pricing strategies are applied for the remanufactured products, but the focus is on

the resale channel, and the resulting price a�ects the demand instead of the return

�ow. Savaskan et al. (2004) focus on the collection channel selection problem and

model a decentralized system considering three options: (1) the manufacturer col-

lects returns, (2) the retailer collects returns, and (3) the third party collects returns.

Option (2) is the most e�cient one for which a two-part tari� mechanism is proposed

to achieve channel coordination. However, they do not include operating costs, e.g.,

inventory holding cost, transportation cost etc., and they assume deterministic re-

turn �ows. Also, all the other papers considering channel coordination problems in

the reverse supply chain ignore inventory and transportation costs and only focus on

the OEM's pro�t.

The coordination problem considered here focuses on the reverse channel con-

sisting of the OEM and CC observing a general renewal return processes. The CC

in charge of collection activity sends used-items to the OEM in batches and earns

revenue for each unit of used-item delivered. In deciding the batch size of used-items

sent to the OEM, the CC adopts the return-driven threshold policy introduced in

Section 2. Each coming batch of used-items from the CC enters the OEM's produc-
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tion line immediately. Since the production rate is �nite, each batch of used-items

generates inventory cost. Thus, the OEM prefers fast delivery with small batches.

However, every delivery is associated with a �xed cost for the CC, and, thus, the

CC's optimal delivery batch size may be larger than what the OEM prefers. We also

consider the situation in which the CC can determine the collection price and, in

turn, can in�uence the return �ow. From the perspective of the OEM, high return

rate, which usually requires high collection price, means high opportunity for sav-

ings from remanufacturing of used-items. However, the CC is not always willing to

increase the collection price. Hence, our goal is to design coordination mechanisms

for a win-win solution for both the OEM and CC while maximizing the system-wide

total pro�ts.

The remainder of this section is organized as follows. In Section 4.3, we model the

pro�t maximization problem for general return �ows. In Section 4.4, we propose an

e�ective coordination mechanism, and in Section 4.5, we investigate the coordination

mechanism for a speci�c class of renewal return processes, and then extends the

results to consider the case that the CC can determine the collection price. In

Section 4.6, we examine some special cases to show how the coordination mechanism

works. Section 4.7 investigates the cost saving due to coordination, and provides

several numerical examples. Section 4.8 summarizes the results of this section.

4.3 Model Basics

We consider a single-OEM-single-CC system in a stochastic environment. The

OEM produces single type product that can be produced from either remanufactur-

ing of used-items or manufacturing of new materials. The cost of remanufacturing

is lower than the cost of manufacturing. Thus, remanufacturing brings the OEM

savings. The OEM pays the CC the unit price for each unit of used-item. Used-
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items are collected, sorted and cleaned by the CC. The CC incurs holding cost of

used-items as well as �xed shipment cost for each delivery. Our model is similar to

the model studied by Ruiz-Benitez et al. (2003), in which the model is under the

control of a centralized processing center. We investigate the channel coordination

problem where the OEM is the leader who determines the purchase price of the used-

item. After observing the purchase price of used-item, the CC decides the batching

strategy and the collection price. The system setting is illustrated in Figure 4.1.

Return 

Process
CCOEM

Remanufacturable

     used-items

Production

    line

Figure 4.1: An illustration of the channel coordination problem.

The inter-arrival time between successive return loads is a random variable de-

noted by Yi, i = 1, . . . , n, where Yi's are independent and identically distributed

(i.i.d.) with E[Yi] = 1/λ. We denote the arrival time of the ith return load by Si,

i = 1, . . . , n, and Si =
∑i

j=1 Yj, and hence, W1(t) = sup{i : Si ≤ t} is the number of

return loads by time t. Each return load contains a random number of used-items

Li, i = 1, . . . , n, where Li's are independent and identically distributed (i.i.d.) with

E[Li] = µ. Thus, the arrival rate of used-items are given by r = λµ. We denote

the cumulative amount of used-items immediately after the ith return load by Ri,

i = 1, . . . , n, and Ri =
∑i

j=1 Lj, and hence, W2(y) = sup{i : Ri < y} counts the

maximum number of return loads consolidated up to y units. Hence, the cumulative

amount of used-items up to time t is a renewal process denoted by {W (t), t > 0},
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andW (t) =
∑W1(t)

i=1 Li. The CC adopts the return-driven threshold policy that sends

all the accumulated used-items to the OEM whenever the on hand inventory level of

used-items exceeds a threshold value Q. We consider threshold policy here because

it has been proved that threshold policy superior to its alternatives (Çetinkaya et al.

(2006)). The inventory pro�les are depicted in Figure 4.2.

t

t

Q

R1

R2

R3

R4

S1 S2 S3 S4

1/P 1/P...

Used-item inventory
profile at the CC

Used-item inventory
profile at the OEM

R4

Figure 4.2: A realization of inventory pro�les for the channel coordination problem.

The time between two successive batch deliveries is de�ned as a cycle. We assume

that the demand rate of the products is much higher than the return rate of used-

items. This is intuitive since not every sold products will be returned, and not

all returned items are remanufacturable. Here, we do not consider the yield issue

and call remanufacturable items as used-items. However, it is easy to include yield

issue into our problem by timing the return rate by the yield rate. Our goal is to
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design e�ective coordination mechanisms in a stochastic environment. The notation

is summarized in Table 4.1.

The inventory pro�le for the CC is actually same as that of the retailer in ship-

ment consolidation problems (see Çetinkaya and Bookbinder (2003), Çetinkaya et al.

(2008)). The return �ow here is equivalent to the demand �ow in shipment consol-

idation problems, and the inventory cost here is equivalent to the waiting cost. As

shown in shipment consolidation literature, the expected cycle length is given by

E[SW2(Q)+1] =
E[W2(Q) + 1]

λ
, (4.1)

and the expected batch size sent to the OEM is given by

E[RW2(Q)+1] = µE[W2(Q) + 1]. (4.2)

Next we derive the pro�t functions for the OEM and CC, respectively.

4.3.1 Pro�t Function of the CC

Let E[ΠCC(Q)] denote the CC's long-run average expected total pro�t per unit

time, which is a function of the policy parameter Q. By renewal reward theory (Ross

(1996), Page 133), we have

E[ΠCC(Q)] =
E[CC′s Cycle profit]

E[Cycle length]
. (4.3)

For the CC, the expected cycle pro�t consists of three main components:

(i) expected revenue from selling used-items to the OEM, which is given by

E[(POEM − PCC − v)RW2(Q)+1] = (POEM − PCC − v)µE[W2(Q) + 1],
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Table 4.1: Notation for channel coordination problem.
Q Quantity-based operating parameter under return-driven threshold pol-

icy
POEM Unit purchase price paid by the OEM to the CC for each unit of used-item
∆ All-unit premium policy parameter, i.e., the premium that the OEM pays

the CC
PCC Unit collection price
Yi Inter-arrival time between the i− 1st return load and the ith return load

with E[Yi] = 1/λ, and Y1 is the time of arrival for the �st return load in
a cycle

Si Arrival time of the ith return load, Si =
∑i

j=1 Yj
W1(t) Number of return loads by time t, W1(t) = sup{i : Si ≤ t}
Li Number of used-items in the ith return load with E[Li] = µ and

V ar(Li) = s2

Ri Cumulative amount of used-items immediately after the ith return load,
Ri =

∑i
j=1 Lj

W2(y) Maximum number of return loads consolidated up to y units, W2(y) =
sup{i : Ri < y}

W (t) Cumulative used-items up to time t, W (t) =
∑W1(t)

i=1 Li
r Return rate of used-items (unit/unit time), r = λµ
m Production rate of the OEM (unit/unit time)
π Unit price of serviceable part ($/unit)
c Unit remanufacturing cost ($/unit)
K Fixed operational cost of each delivery incurred by the CC
v Variable transportation cost ($/unit)
η The CC's minimum pro�t per unit time allowed ($/unit time)
huM Used-item inventory holding cost incurred by the OEM ($/unit/unit

time)
huC Used-item inventory holding cost incurred by the CC ($/unit/unit time)
ΠOEM The OEM's total pro�t per unit-time
ΠCC The CC's total pro�t per unit-time
Π The system-wide total pro�t per unit-time
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where the equation holds by (4.2);

(ii) �xed operational cost which is given by K;

(iii) expected holding cost which is given by

huCE

W2(Q)∑
i=1

RiYi+1

 = huCE

E
W2(Q)∑

i=1

RiYi+1

∣∣∣∣∣W2(Q)


= huCE

[
1

λ
E

[
R1 +R2 + · · ·+RW2(Q)

∣∣∣∣∣W2(Q)

]]

=
huC
λ
E [µ+ 2µ+ · · ·+W2(Q)µ]

=
huCµ

λ
E

[
W2(Q) (W2(Q) + 1)

2

]
=
huCµ

2λ

(
E
[
(W2(Q) + 1)2]− E [W2(Q) + 1]

]
.

The method used here to calculate the expected holding cost per collection cycle

can also be used to calculate the expected waiting penalty cost per consolidation

cycle considered by Çetinkaya et al. (2008). If we interpret our Ri as the cumulative

demand after the ith order, the expected cumulative inventory held per collection

cycle in our problem is equivalent to the expected cumulative customer waiting per

consolidation cycle considered by Çetinkaya et al. (2008). While Çetinkaya et al.

(2008) rely on a renewal type equation to obtain the expression for expected waiting

penalty cost, our method relies on the �rst and second moments of W2(Q). As

we demonstrate momentarily, if the variance of W2(Q) is a linear function of the

expectation of W2(Q), then we have analytical expressions for pro�t functions, their

maximizers, and parameters for channel coordination mechanisms.

Recalling (4.1), and using (i), (ii), and (iii) in (4.3), the long-run average expected
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total pro�t per unit time for the CC is given by

E[ΠCC(Q)] =λµ(POEM − PCC − v)− Kλ

E[W2(Q) + 1]

− huCµ

2

(
E[(W2(Q) + 1)2]

E[W2(Q) + 1]
− 1

)
.

Since E[(W2(Q)+1)2] = (E[W2(Q)+1])2 +V ar(W2(Q)+1), the above equation can

be rewritten as follows

E[ΠCC(Q)] = λµ(POEM − PCC − v) +
huCµ

2
− Kλ

E[W2(Q) + 1]
− huCµ

2
E[W2(Q) + 1]

−h
u
Cµ

2

V ar(W2(Q) + 1)

E[W2(Q) + 1]
. (4.4)

By (4.4), we observe that E[ΠCC(Q)] only contains the �rst and second moments

of W2(Q).

4.3.2 Pro�t Function of the OEM

Let E[ΠOEM(POEM)] denote the OEM's long-run average expected total pro�t

per unit time, which is a function of the policy parameter POEM . By renewal reward

theory (Ross (1996), Page 133), we have

E[ΠOEM(POEM)] =
E[OEM′s Cycle profit]

E[Cycle length]
. (4.5)

For the OEM, the expected cycle pro�t consists of two main components:

(i) expected revenue from remanufacturing, which is given by

E
[
(π − c− POEM)RW2(Q)+1

]
= (π − c− POEM)µE [W2(Q) + 1] ,

where the equation holds by (4.2);
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(ii) expected holding cost which is given by

huME

 1

m

RW2(Q)+1∑
i=1

i

 =
huM
m

E
[
(RW2(Q)+1 + 1)RW2(Q)+1

]
2

=
huM
2m

(
E
[
R2
W2(Q)+1

]
+ E

[
RW2(Q)+1

])
. (4.6)

In the above equation, the expression for E[RW2(Q)+1] is given by (4.2), and

we can calculate E
[
R2
W2(Q)+1

]
as follows:

E
[
R2
W2(Q)+1

]
= E

W2(Q)+1∑
i=1

2

Li

 = E

E
W2(Q)+1∑

i=1

Li

2∣∣∣∣∣W2(Q)


= E

E
W2(Q)+1∑

i=1

L2
i + 2

∑
i 6=j,i,j=1,··· ,W2(Q)+1

LiLj

∣∣∣∣∣W2(Q)


= E

[
(W2(Q) + 1)

(
µ2 + s2

)
+ 2C2

W2(Q)+1µ
2
]

= E
[
(W2(Q) + 1)

(
µ2 + s2

)
+ (W2(Q) + 1)W2(Q)µ2

]
= E

[
(W2(Q) + 1)2 µ2 + (W2(Q) + 1) s2

]
= µ2E

[
(W2(Q) + 1)2]+ s2E [(W2(Q) + 1)] . (4.7)

Substituting (4.2) and (4.7) in (4.6), the expected holding cost incurred by the

OEM per cycle is given by

huM
2m

(
µ2E

[
(W2(Q) + 1)2]+

(
s2 + µ

)
E [(W2(Q) + 1)]

)
.

Recalling (4.1), and using (i) and (ii) in (4.5), the long-run average expected total

pro�t per unit time for the OEM is given by

E[ΠOEM(POEM)] = λµ

(
π − c− POEM −

huM
2m

(
1 +

s2

µ

))
− huMλµ

2

2m

E[(W2(Q) + 1)2]

E[W2(Q) + 1]
.
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Since E[(W2(Q)+1)2] = (E[W2(Q)+1])2 +V ar(W2(Q)+1), the above equation can

be rewritten as follows

E[ΠOEM(POEM)] = λµ

(
π − c− POEM −

huM
2m

(
1 +

s2

µ

))
− huMλµ

2

2m
E[W2(Q) + 1]

−h
u
Mλµ

2

2m

V ar(W2(Q) + 1)

E[W2(Q) + 1]
. (4.8)

Observing the long-run average expected total pro�t per unit time for the CC

in (4.4) and for the OEM in (4.8), both E[ΠCC(Q)] and E[ΠOEM(POEM)] contain

only E[W2(Q) + 1] and V ar(W2(Q) + 1). For notation simpli�cation purpose, we

denote E[W2(Q) + 1] by f1(Q) and denote V ar(W2(Q)+1)
E[W2(Q)+1]

by f2(Q), and then rewrite

E[ΠCC(Q)] in (4.4) and E[ΠOEM(POEM)] in (4.8) as follows

E[ΠCC(Q)] = λµ(POEM − PCC − v) +
huCµ

2
− Kλ

f1(Q)
− huCµ

2
f1(Q)

− huCµ

2
f2(Q), and (4.9)

E[ΠOEM(POEM)] = λµ

(
π − c− POEM −

huM
2m

(
1 +

s2

µ

))
− huMλµ

2

2m
f1(Q)

− huMλµ
2

2m
f2(Q). (4.10)

The long-run average expected system-wide total pro�t, denoted by E[Π(Q)], is

the summation of E[ΠCC(Q)] and E[ΠOEM(POEM)]:

E[Π(Q)] = λµ

(
π − c− PCC − v −

huM
2m

(
1 +

s2

µ

))
− Kλ

f1(Q)

−
(
huCµ

2
+
huMλµ

2

2m

)
f1(Q)

−
(
huCµ

2
+
huMλµ

2

2m

)
f2(Q). (4.11)

In this section, we formulated the model and derived the pro�t functions for the
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CC and OEM, respectively. Based on the pro�t functions, we will investigate the

coordination mechanism in the next section. Similar to Section 3, we use Π(· || ∗) (or

ΠOEM(· || ∗)/ΠCC(· || ∗)) to denote the pro�t function as the function of the variable

· when ∗ is given, i.e., when ∗ is treated as �xed value rather than a variable.

4.4 Coordination Mechanism for General Renewal Return Process

We denote the decentralized solutions of Q for the CC and OEM by Qd
CC and

Qd
OEM , respectively, and denote the centralized solution of Q for the system by Q∗.

Then for any given POEM , we have:

E[ΠCC(Q∗)] ≤ E[ΠCC(Qd
CC)], and (4.12)

E[Π(Qd
CC)] ≤ E[Π(Q∗)]. (4.13)

Property 39 For any given POEM , the OEM's pro�t is non-decreasing if central-

ized solution is adopted, compared with decentralized solution, i.e., E[ΠOEM(POEM ||Q∗)]−

E[ΠOEM(POEM ||Qd
CC)] ≥ 0.

Proof. Since E[Π(Q)] = E[ΠOEM(POEM ||Q)] + E[ΠCC(Q)], then by (4.13) we

have

E[ΠOEM(POEM ||Qd
CC)] + E[ΠCC(Qd

CC)] ≤ E[ΠOEM(POEM ||Q∗)] + E[ΠCC(Q∗)],

which leads to

E[ΠOEM(POEM ||Q∗)]− E[ΠOEM(POEM ||Qd
CC)] ≥ E[ΠCC(Qd

CC)]− E[ΠCC(Q∗)] ≥ 0.

(4.14)

The second inequality holds because of (4.12).

170



4.4.1 Decentralized Solution

Under decentralized control, the OEM determines the value of POEM , and then

the CC determines the vale of Q. To determine the value of POEM , the OEM will

rely on the prediction of the CC's response for any given POEM value.

This prediction can be obtained by deriving the CC's optimal value of Q that

maximizes the CC's pro�t function for any given POEM . Recall the CC's pro�t

function in (4.9). The CC's decentralized optimal value of Q, denoted by Qd
CC , is

the root of dE[ΠCC(Q)]/dQ = 0, i.e.,

Kλ

f 2
1 (Q)

f ′1(Q) =
huCµ

2
(f ′1(Q) + f ′2(Q)).

Hence, Qd
CC can be obtained by solving the following equation

f 2
1

(
Qd
CC

)(
1 +

f ′2(Qd
CC)

f ′1(Qd
CC)

)
=

2Kλ

huCµ
. (4.15)

By (4.15) we can observe that Qd
CC does not depend on POEM . Then, by (4.10), we

observe that, the OEM's pro�t is decreasing in POEM . However, if POEM is below

the entry price for the CC, which is the price that guarantees a pro�t per unit time

at least above η for the CC, i.e., E[ΠCC(Qd
CC ||POEM)] ≥ η, then the CC will not

enter the market. Denote PE
OEM as the entry price. The value of POEM has to satisfy

POEM ≥ PE
OEM(Qd

CC)

= PCC + v − huC
2λ

+
K

µf1(Qd
CC)

+
huC
2λ
f1(Qd

CC)− huC
2λ
f2(Qd

CC) +
η

λµ
. (4.16)

Thus, the OEM's optimal value of POEM , denoted by P d
OEM , is given by P

E
OEM(Qd

CC)

in (4.16). Then, under the OEM-lead decentralized control, the CC can take its min-
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imum allowed pro�t η, and the OEM can take all the rest pro�t in the system.

4.4.2 Coordination Mechanism

We let IOEM(POEM) = E[ΠOEM(POEM ||Q∗)]− E[ΠOEM(POEM ||Qd
CC)], then

IOEM(POEM) is the pro�t increment for a given POEM when centralized solution of

Q, i.e., Q∗, is adopted. By Property 39, IOEM(POEM) ≥ 0 for any value of POEM .

In order to induce the CC to adopt Q∗, the OEM needs to adjust P d
OEM , i.e. pays

the CC some extra money, i.e., premium for each unit of used-item, denoted by ∆,

such that

E[ΠCC(Q∗||(P d
OEM + ∆))] ≥ E[ΠCC(Qd

CC ||P d
OEM)].

Recalling the CC's pro�t function in (4.9), the above inequality is equivalent to

λµ∆ ≥ E[ΠCC(Qd
CC ||P d

OEM)]− E[ΠCC(Q∗||P d
OEM)].

We de�ne the "break even premium", denoted by ∆(BE), as the minimum value

of ∆ such that the the CC agrees to adopt centralized solution. Then ∆(BE) is

given by

∆(BE) =
1

λµ

(
E[ΠCC(Qd

CC ||P d
OEM)]− E[ΠCC(Q∗||P d

OEM)]
)
. (4.17)

By (4.14 ) and (4.17), we have

E[ΠOEM(P d
OEM ||Q∗)]− E[ΠOEM(P d

OEM ||Qd
CC)] ≥ λµ∆(BE).
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By (4.10), the above inequality is equivalent to

E[ΠOEM(P d
OEM + ∆(BE)||Q∗)] ≥ E[ΠOEM(P d

OEM ||Qd
CC)].

Thus, the OEM's pro�t increases under this all-unit-premium coordination mech-

anism. Actually, ∆ is a pivot that decides how the pro�t is divided between the OEM

and CC. ∆(BE) is the lower bound of ∆. The upper bound of ∆ can be obtained

by solving the following inequality

E[ΠOEM(P d
OEM + ∆||Q∗)] ≥ E[ΠOEM(P d

OEM ||Qd
CC)],

which implies that the OEM will always set ∆ at the value with which its pro�t

is, at least, non-decreasing. Substituting the OEM's pro�t function in the above

inequality, we have

∆ ≤ ∆̄

=
1

λµ

(
E[ΠOEM(P d

OEM ||Q∗)]− E[ΠOEM(P d
OEM ||Qd

CC)]
)

=
1

λµ
IOEM(P d

OEM). (4.18)

We conclude this section by the following all-unit-premium mechanism that can

coordinate the system:

All-unit-premium mechanism: the OEM pays the CC the premium of ∆ for

each unit of used-item if the CC sends used-items in a batch whenever the inventory

of used-items exceeds Q∗, where ∆ ∈ [∆(BE), ∆̄]. ∆(BE) and ∆̄ are given by (4.17)

and (4.18), respectively.

It is hard to obtain the closed-form expressions for Qd
CC and Q∗, if not impossible,
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due to the complicated pro�t expressions. Thus, it is also hard to obtain the closed-

form expression for the coordination parameter ∆. However, for a class of renewal

return processes, we can obtain the closed-form expressions for the optimal solutions.

We discuss that in the following section in which we also extend the model to consider

price-dependent return �ows.

4.5 Su�cient Conditions for Channel Coordination Mechanisms in Closed-form

In this section we will focus on a class of renewal return processes and derive

closed-form optimal solutions. This class of renewal return processes satis�es the

following two conditions:

Assumption 1 V ar(W2(Q)+1) = αE[W2(Q)+1]+β, where α and β are constants;

Assumption 2 f1(Q) = E[W2(Q) + 1] has inverse function. i.e., f−1
1 exists.

Note that f1(Q) is non-decreasing in Q. By Assumptions 1 and 2, we have f2 =

α + β/f1(Q).

The renewal return processes with unit return load and with exponentially dis-

tributed loads are all belonging to this class.

For this class of return processes, the pro�t functions (4.9), (4.10), and (4.11) can

be rewritten as follows:

E[ΠCC(Q)] = λµ(POEM − PCC − v) +
huCµ

2
(1− α)

−
(
Kλ+

huCµβ

2

)
1

f1(Q)
− huCµ

2
f1(Q), (4.19)

E[ΠOEM(POEM)] = λµ

(
π − c− POEM −

huM
2m

(
1 +

s2

µ
+ µα

))
− huMλµ

2

2m

(
f1(Q) +

β

f1(Q)

)
, and (4.20)
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E[Π(Q)] =λµ

(
π − c− PCC − v −

huM
2m

(
1 +

s2

µ
+ µα

))
+
huCµ

2
(1− α)

−
(
Kλ+

(
huCµ

2
+
huMλµ

2

2m

)
β

)
1

f1(Q)

−
(
huCµ

2
+
huMλµ

2

2m

)
f1(Q). (4.21)

4.5.1 Closed-form Expressions of the Parameters of Coordination Mechanism

Observing the pro�t functions in (4.19), (4.20), and (4.21), they are all functions

of 1
f1(Q)

and f1(Q). The coe�cients of f1(Q) are negative in all the three pro�t

functions. By checking the coe�cients of 1
f1(Q)

, we have the following structural

properties.

Property 40 Consider the pro�t functions E[ΠCC ] in (4.19), E[ΠOEM ] in (4.20),

and E[Π] in (4.21) as functions of f1(Q), then the value of β determines the concavity

of the above pro�t functions in the following way:

1. If β ≤ −2Kλ
huCµ

then E[ΠCC ], E[ΠOEM ], and E[Π] are all decreasing in f1(Q).

2. If −2Kλ
huCµ

< β ≤ − 2Kλm
huCµm+huMλµ

2 then E[ΠOEM ] and E[Π] are all decreasing in

f1(Q), and E[ΠCC ] is concave in f1(Q) with the unique maximizer give by

fd1,CC =

√
2Kλ

huCµ
+ β. (4.22)

3. If − 2Kλm
huCµm+huMλµ

2 < β ≤ 0 then E[ΠOEM ] is decreasing in f1(Q), E[ΠCC ] is

concave in f1(Q) with the unique maximizer give by (4.22), and E[Π] is concave

in f1(Q) with the unique maximizer give by

f ∗1 =

√
2Kλm

huCµm+ huMλµ
2

+ β. (4.23)
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4. If β > 0 then E[ΠCC ] and E[Π] are all concave functions of f1(Q) with unique

maximizers given by (4.22) and (4.23), respectively. E[ΠOEM ] is also concave

function of f1(Q) with unique maximizers given by

fd1,OEM =
√
β. (4.24)

Proof. By (4.19), (4.20), and (4.21), E[ΠCC ], E[ΠOEM ], and E[Π] are functions

of f1(Q), respectively.

Take the �rst and second derivatives of E[ΠCC ] with respect to f1(Q), and we

have

dE[ΠCC ]

df1

=

(
Kλ+

huCµβ

2

)
1

f 2
1

− huCµ

2
, and

d2E[ΠCC ]

df 2
1

= −2

(
Kλ+

huCµβ

2

)
1

f 3
1

.

Recall that f1(Q) is positive and non-decreasing in Q. If β ≤ −2Kλ
huCµ

then E[ΠCC ] is

decreasing in f1(Q), otherwise E[ΠCC ] is concave in f1(Q) with the unique maximizer

given by (4.22). Similarly, take the �rst and second derivatives of E[ΠOEM ] and E[Π]

with respect to f1(Q), respectively, and we have

dE[ΠOEM ]

df1

= −h
u
Mλµ

2

2m

(
1− β

f 2
1

)
,

d2E[ΠOEM ]

df 2
1

= −h
u
Mλµ

2

2m

2β

f 3
1

,

dE[Π]

df1

=

(
Kλ+

(
huCµ

2
+
huMλµ

2

2m

)
β

)
1

f 2
1

−
(
huCµ

2
+
huMλµ

2

2m

)
, and

d2E[Π]

df 2
1

= −2

(
Kλ+

(
huCµ

2
+
huMλµ

2

2m

)
β

)
1

f 3
1

.

The following proof is similar as above, and hence, is omitted.
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By Property 40, the optimal values of Q for E[ΠCC ], E[ΠOEM ], and E[Π] can be

obtained, respectively, as the following corollary shows.

Corollary 22 The values of Q that can maximize the cost functions E[ΠCC ] in

(4.19), E[ΠOEM ] in (4.20), and E[Π] in (4.21), denoted by Qd
CC, Q

d
OEM , and Q∗,

respectively, are given by

1. If β ≤ −2Kλ
huCµ

then Qd
CC = Qd

OEM = Q∗ = 1.

2. If −2Kλ
huCµ

< β ≤ − 2Kλm
huCµm+huMλµ

2 then Qd
OEM = Q∗ = 1, and

Qd
CC = f−1

1

(√
2Kλ

huCµ
+ β

)
. (4.25)

3. If − 2Kλm
huCµm+huMλµ

2 < β ≤ 0 then Qd
OEM = 1, Qd

CC is given by (4.25), and

Q∗ = f−1
1

(√
2Kλm

huCµm+ huMλµ
2

+ β

)
. (4.26)

4. If β > 0 then Qd
CC and Qd

CC are given by (4.25) and (4.26), respectively, and

Qd
OEM = f−1

1

(√
β
)
. (4.27)

Proof. The proof is straight-forward using (4.22), (4.23), and (4.24) in Property

40 and Assumption 2, and hence, is omitted.

Corollary 23 For any β, Qd
OEM ≤ Q∗ ≤ Qd

CC.

Proof. Recalling that f1(Q) is non-decreasing in Q, the proof is straight-forward

by comparing Qd
OEM , Q

∗, and Qd
CC in Corollary 22.
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By Corollary 23, the centralized optimal value of Q is no greater than the CC's

decentralized optimal value of Q, and is no less than the OEM's decentralized op-

timal value of Q. Corollary 22 provides the closed-form expressions for the optimal

values of Q. Using the results in Property 40 and Corollary 22, the all-unit-premium

mechanism proposed in Section 4.4.2 can be modi�ed as follows:

All-unit premium mechanism modi�ed: the OEM pays the CC the premium

of ∆ for each unit of used-item if the CC lowers fd1,CC(=f1(Qd
CC)) by D factor, i.e.,

f1(Q) = Dfd1,CC , where ∆ ∈ [∆(BE), ∆̄]. ∆(BE) and ∆̄ are given by

∆(BE) =

√
(2Kλ+ huCµβ)huCµ

2λµ

(1−D)2

D
, and

∆̄ =
huMµ

2m

(2Kλ+ huCµβ)D − huCµβ√
(2Kλ+ huCµβ)huCµ

1−D
D

,

respectively. The two equations above can be obtained by substituting fd1,CC given

by (4.22) in (4.17) and (4.18), respectively.

Note: in order to lower fd1,CC by D, the CC needs to lower Qd
CC by D′, where

D′ =
f−1

1

(
D
√

2Kλ
huCµ

+ β
)

f−1
1

(√
2Kλ
huCµ

+ β
) . (4.28)

4.5.2 Price-dependent Return Flows

In some situations, the CC can determine the collection price of used-items.

The collection price usually can impact the return �ow to some extend. Then the

parameters of the return �ow are price-dependent: λ = λ(PCC), µ = µ(PCC), and

s = s(PCC). We rewrite the pro�t functions in (4.19), (4.20), and (4.21) considering

price factor as follows:
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E[ΠCC(Q,PCC)] = λ(PCC)µ(PCC)(POEM − PCC − v) +
huCµ(PCC)

2
(1− α)

−
(
Kλ+

huCµ(PCC)β

2

)
1

f1(Q||PCC)
−
huCµ

2
f1(Q||PCC), (4.29)

E[ΠOEM (POEM )] = λ(PCC)µ(PCC)

(
π − c− POEM −

huM
2m

(
1 +

s2(PCC)

µ(PCC)
+ µ(PCC)α

))
−
huMλ(PCC)µ2(PCC)

2m

(
f1(Q||PCC) +

β

f1(Q||PCC)

)
, and (4.30)

E[Π(Q,PCC)] = λ(PCC)µ(PCC)

(
π − c− PCC − v −

huM
2m

(
1 +

s2(PCC)

µ(PCC)
+ µ(PCC)α

))
+
huCµ(PCC)

2
(1− α)

−
(
Kλ(PCC) +

(
huCµ(PCC)

2
+
huMλ(PCC)µ2(PCC)

2m

)
β

)
1

f1(Q||PCC)

−
(
huCµ(PCC)

2
+
huMλ(PCC)µ2(PCC)

2m

)
f1(Q||PCC). (4.31)

The following lemma shows that partial coordination is better than no coordination

in the price-dependent return �ow case.

Lemma 1 If the OEM and CC adopt their decentralized optimal prices P d
OEM and

P d
CC, respectively. Denote Q

∗(P d
CC) as the jointly optimal threshold value. Then, the

system-wide pro�t per unit time with Q∗(P d
CC), which is given by Π(Q∗(P d

CC), P d
CC),

is higher than Πd
CC + Πd

OEM , where Πd
CC = ΠCC(Qd

CC(P d
CC), P d

CC , ) and Πd
OEM =

ΠOEM(P d
OEM ||(Qd

CC(P d
CC), P d

CC)), i.e., Πd
CC and Πd

OEM are the pro�t functions under

decentralized control.

Proof. By Corollary 22, when the collection price is P d
CC , we have

Qd
CC(P d

CC) = f−1
1

(√
2Kλ(P d

CC)

huCµ(P d
CC)

+ β

)
, and

Q∗(P d
CC) = f−1

1

(√
2Kλ(P d

CC)m

huCµ(P d
CC)m+ huMλ(P d

CC)µ2(P d
CC)

+ β

)
.
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Then, by (4.29), (4.30), and (4.31), we have

Π(Q∗(P dCC), P dCC)− (Πd
CC + Πd

OEM )

=Π(Q∗(P dCC), P dCC)−
(

ΠCC(QdCC(P dCC), P dCC) + ΠOEM (P dOEM ||(QdCC(P dCC), P dCC))
)

=

(
Kλ(P dCC) +

(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)
β

) √
huCµ(P dCC)

2Kλ(P dCC) + βhuCµ(P dCC)

+

(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)
2Kλ(P dCC) + βhuCµ(P dCC)√

huCµ(P dCC)
.

− 2

√√√√√√
(
Kλ(P dCC) +

(
huCµ(P dCC)

2 +
huMλ(P dCC)µ2(P dCC)

2m

)
β
)

×
(
huCµ(P dCC)

2 +
huMλ(P dCC)µ2(P dCC)

2m

)
>0.

The last inequality holds since


(
Kλ(P dCC) +

(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)
β

) √
huCµ(P dCC)

2Kλ(P dCC) + βhuCµ(P dCC)

+

(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)
2Kλ(P dCC) + βhuCµ(P dCC)√

huCµ(P dCC)


2

− 4

(
Kλ(P dCC) +

(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)
β

)
×
(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)

=


(
Kλ(P dCC) +

(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)
β

) √
huCµ(P dCC)

2Kλ(P dCC) + βhuCµ(P dCC)

−
(
huCµ(P dCC)

2
+
huMλ(P dCC)µ2(P dCC)

2m

)
2Kλ(P dCC) + βhuCµ(P dCC)√

huCµ(P dCC)


2

≥ 0.
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Actually, for any given PCC , in order to guarantee the agreement between the

OEM and CC in adopting Q∗(PCC), the following two equations need to be satis�ed:

E[ΠOEM(POEM ||(Q∗(PCC), PCC))] ≥ E[Πd
OEM ], and (4.32)

E[ΠCC(Q∗(PCC), PCC)] ≥ E[Πd
CC ], (4.33)

where E[Πd
OEM ] and E[Πd

CC ] are decentralized optimal pro�ts for the OEM and CC,

respectively.

By (4.32) we have

POEM,max(PCC) =π − c− huM
2m

(
1 +

s2(PCC)

µ(PCC)
+ µ(PCC)α

)
− E[Πd

OEM ]

λ(PCC)µ(PCC)

− huMµ(PCC)

2m

(√
2Kλ(PCC)m

huCµ(PCC)m+ huMλ(PCC)µ2(PCC)
+ β

+
β√

2Kλ(PCC)m
huCµ(PCC)m+huMλ(PCC)µ2(PCC)

+ β

 . (4.34)

By (4.33) we have

POEM,min(PCC) =PCC + v − huC
2λ(PCC)

(1− α)

+

(
K

µ(PCC)
+

huCβ

2λ(PCC)

)
1√

2Kλ(PCC)m
huCµ(PCC)m+huMλ(PCC)µ2(PCC)

+ β

+
huC

2λ(PCC)

√
2Kλ(PCC)m

huCµ(PCC)m+ huMλ(PCC)µ2(PCC)
+ β

+
E[Πd

CC ]

λ(PCC)µ(PCC)
. (4.35)
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Let f(PCC) = POEM,max(PCC)− POEM,min(PCC), then

f(PCC) =
1

λ(PCC)µ(PCC)

(
E[Π(Q∗(PCC), PCC)]−

(
E[Πd

OEM ] + E[Πd
CC ]
))
. (4.36)

Equation (4.36) can be rewritten as

E[Π(Q∗(PCC), PCC)] = f(PCC)λ(PCC)µ(PCC) + E[Πd
OEM ] + E[Πd

CC ].

Hence, f(PCC) represents the pro�t increase per unit used-item due to adopting

the jointly optimal threshold value Q∗(PCC) instead of the CC's decentralized op-

timal threshold value Qd
CC(PCC). The expression f(P ∗CC)λ(P ∗CC)µ(P ∗CC) represents

the pro�t increase per unit time by adopting the centralized control mechanism

(Q∗(P ∗CC), P ∗CC).

Recall the pro�t functions of the OEM in (4.29) and the CC in (4.30), the OEM's

unit purchase price POEM is a pivot that decides how the pro�t is divided between

the two agents. According to Weng (1995b), a simple mechanism, which divides the

pro�t increase between the two agents, is that let ε percentage of the pro�t increase

goes into the OEM's pocket and 1− ε percentage of the pro�t increase goes into the

CC's pocket, where ε is determined by negotiation. This mechanism is also applicable

in our model. The OEM's pro�t will be increased by εf(P ∗CC)λ(P ∗CC) per unit time,

while the CC's pro�t will be increased by (1−ε)f(P ∗CC)λ(P ∗CC)) per unit item. Then,

the jointly optimal unit purchase price is given by

P ∗OEM = εPOEM,min(P ∗CC) + (1− ε)POEM,max(P
∗
CC). (4.37)

Next, we will check whether the all-unit-premium mechanism proposed in Section

4.4.2 can still coordinate the system in the case with price-dependent return �ows.
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Recall the mechanism that the OEM pays the CC P ∗OEM for per unit used-item and

requires the CC deliver a batch when the on hand inventory of used-items exceeds

Q∗. The pro�t function of the CC is given by:

E[ΠCC(PCC ||(P ∗OEM , Q∗))] =λ(PCC)µ(PCC)(P ∗OEM − PCC − v) +
huCµ(PCC)

2
(1− α)

−
(
Kλ(PCC) +

huCµ(PCC)

2

)
1

f1(Q∗||PCC)

− huCµ(PCC)

2
f1(Q∗||PCC).

The maximizer of the above equation might not be the centralized optimal collection

price P ∗CC which can be obtained by solving dE[Π(Q∗(PCC),PCC)]
dC

= 0.

In order to induce the CC set the collection price at P ∗CC , the OEM has to set

the unit purchase price at PC
OEM such that

dE[ΠCC(P ∗CC ||(PC
OEM , Q

∗))]

dC
= 0. (4.38)

We can solve PC
OEM from the above equation. Meanwhile, in order to compensate

the OEM for adopting PC
OEM rather than P ∗OEM , the CC needs to pay the OEM a

�xed payment (PC
OEM − P ∗OEM)λ(P ∗CC)µ(P ∗CC) per unit time as the franchise fee.

The coordination mechanism is denoted by

{PC
OEM , Q

∗, (PC
OEM −P ∗OEM)λ(P ∗CC)µ(P ∗CC)}: the OEM pays the unit purchase price

PC
OEM if the CC can deliver the used-items in a batch whenever the inventory ex-

ceeds Q∗. At the same time, the OEM charges the CC the franchise fee (PC
OEM −

P ∗OEM)λ(P ∗CC)µ(P ∗CC) per unit time, where PC
OEM can be obtained by solving (4.38).

In this section, we focused on a class of stochastic process and investigated the

coordination mechanisms. Closed-form expressions for coordination parameters were

derived. Then the results were extended to the price-dependent return case where
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the CC determines the collection price. It showed that the all-unit-premium and

franchise fee mechanism together can coordinate the system. In the following section,

we will provide several examples to illustrate how our coordination mechanism is

applied.

4.6 Special Cases

In this section, we provide some special cases to show how the coordination mech-

anism works. These special cases include deterministic return �ow case, renewal

return process with unit return load case, and renewal return process with exponen-

tially distributed return loads case. Among these cases, renewal return process with

unit return load includes the Poisson return process, and the renewal return process

with exponentially distributed return loads includes the marked Poisson return pro-

cess with exponentially distributed return loads. For these cases, the coordination

mechanisms under return-driven threshold policy are provided for two situations: the

collection price is exogenous, and the collection price is determined by the CC.

4.6.1 Deterministic Return Flow

We �rst evaluate the most basic case that the return �ow is deterministic with rate

λ(PCC), and µ(PCC) = 1 and s(PCC) = 0. Then, we have f1(Q) = E [W2(Q) + 1] =

Q and f2(Q) = V ar(W2(Q)+1)
E[W2(Q)+1]

= 0 by the de�nition of W2(Q). Recalling Assumption

1, we have α = β = 0. In this situation, the pro�t functions for the CC in (4.29),

the OEM in (4.30), and the system in (4.31) can be rewritten as follows:

ΠCC(Q,PCC) = λ(PCC)(POEM − PCC − v) +
huC
2
− Kλ(PCC)

Q
− huCQ

2
, (4.39)

ΠOEM(Q,PCC) = λ(PCC)

(
π − c− POEM −

huM
2m

)
− huMλ(PCC)Q

2m
, and (4.40)
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Π(Q,PCC) =λ(PCC)

(
π − c− PCC − v −

huM
2m

)
+
huC
2

− Kλ(PCC)

Q
− huCm+ huMλ(PCC)

2m
Q. (4.41)

We �rst examine the situation that the collection price is exogenous. Recall the

results in Section 4.5.1 (Corollary 22.3, Corollary 23). For any given PCC , we have

Qd
CC(PCC) =

√
2Kλ(PCC)

huC
,

Q∗(PCC) =

√
2Kλ(PCC)m

huCm+ huMλ(PCC)
, and

Q∗(PCC) < Qd
CC(PCC).

The all-unit premium mechanism for deterministic return �ow case is stated as

follows:

The OEM pays the CC the premium of ∆ for each unit of used-item if the CC

lowers Qd
CC by D factor, where

√
KhuC

2λ(PCC)

(1−D)2

D
= ∆(BE) ≤ ∆ ≤ ∆̄ =

huMλ(PCC)

m

√
Kλ(PCC)

2huC
(1−D) .

In order to lower Qd
CC to Q∗, the factor D is given by

D∗ =
Q∗

Qd
CC

=

√
huCm

huCm+ huMλ(PCC)
.

Recall that Q∗(PCC) is the jointly optimal threshold value for a given PCC . When

PCC is determined by the CC, in order to guarantee that both agents agree on

Q∗(PCC), the following two inequalities need to be satis�ed:
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ΠOEM(POEM ||(Q∗(PCC), PCC)) ≥ Πd
OEM , and

ΠCC(Q∗(PCC), PCC) ≥ Πd
CC ,

as in (4.32) and (4.33), respectively. Substituting α = β = 0, µ(PCC) = 1, and

s(PCC) = 0 in equations (4.34) and (4.35), we have

POEM,max(PCC) =π − c− huM
2m
− huM

m

√
Kλ(PCC)

2 (huCm+ huMλ(PCC))
− Πd

OEM

λ(PCC)
, and

POEM,min(PCC) =PCC + v − huC
2λ(PCC)

+

√
K (huCm+ huMλ(PCC))

2λ(PCC)m

+
huC
λ

√
Kλ(PCC)m

2 (huCm+ huMλ(PCC))
+

Πd
CC

λ(PCC)
.

Take the di�erence and we obtain that

f(PCC) = POEM,max(PCC)− POEM,min(PCC)

=
1

λ(PCC)

(
Π(Q∗(PCC), PCC)−

(
Πd
OEM + Πd

CC

))
= π − c− PCC − v −

huM
2m

+
huC

2λ(PCC)
−

√
2K

(
huC

λ(PCC)
+
huM
m

)
− Πd

OEM + Πd
CC

λ(PCC)
. (4.42)

We know that f(PCC) represents the pro�t increase per unit used-item due to

adopting the jointly optimal threshold value instead of the CC's decentralized optimal

threshold value, for any given PCC . For deterministic return �ow, f(PCC) has the

following property:

Property 41 If λ′(PCC) > 0 and λ′′(PCC) < 0, then f(PCC) is a concave func-

186



tion of PCC. Moreover, If λ(0) = 0 then f(PCC) has two positive roots.

Proof. The second order condition of f(PCC) is given by

f ′′(PCC) = −(λ′(PCC))2

λ3(PCC)

√
KhuC√

huM
m +

huC
λ(PCC)

(
Πd
OEM + Πd

CC +
√

2

(
1− 1

4

huC

huM
λ(PCC)
m + huC

))

+
λ′′(PCC)

λ2(PCC)


√
KhuC√

2
(
huM
m +

huC
λ(PCC)

) + Πd
OEM + Πd

CC

 .

It is obvious that huC

huM
λ(PCC )

m
+huC

< 1. Hence, if λ′′(PCC) < 0 then f ′′(PCC) < 0, i.e.,

f(PCC) is concave in PCC .

To prove that f(PCC) has two positive roots, i.e., ∃ PU
CC > PL

CC > 0 such that

f(PL
CC) = f(PU

CC) = 0, it is su�cient to prove ∃ P 0
CC > 0 such that f(P 0

CC) > 0 and

f(0) = f(∞) < 0. From Lemma 1, we know that Π(Q∗(P d
CC), P d

CC) > Πd
CC + Πd

OEM ,

thus f(P d
CC) > 0. Recalling f(PCC) in (4.42), we have f(0) = f(∞) = −∞.

By Property 41, we know that the jointly optimal collection price P ∗CC lies in

(PL
CC , P

U
CC). Then, the jointly optimal purchase price is given by (4.37).

As shown in Section 4.5.2, when the CC determines the collection price, the

all-unit-premium mechanism might fail in inducing the CC to choose the jointly

optimal collection price P ∗CC . To be more speci�c, by only adopting all-unit-premium

mechanism, i.e., the OEM pays the CC P ∗OEM as in (4.37) for per unit used-item and

requires the CC adopt the jointly optimal threshold value Q∗, the pro�t function of

the CC is given by

ΠCC(PCC ||(P ∗OEM , Q∗)) = λ(PCC)(P ∗OEM − PCC − v) +
huC
2

−Kλ(PCC)

Q∗
− huCQ

∗

2
. (4.43)
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The maximizer of equation (4.43) might not be the centralized optimal collection

price P ∗CC . Observe that the expression of ΠCC(PCC ||(POEM , Q∗)) depends on POEM .

The �rst order and second order conditions for ΠCC(PCC ||(POEM , Q∗)) are given by

dΠCC(PCC ||(POEM , Q∗))
dC

= −λ(PCC) + λ′(PCC)

(
POEM − PCC − v −

K

Q∗

)
, and

(4.44)

d2ΠCC(PCC ||(POEM , Q∗))
dC2

= −2λ′(PCC) + λ′′(PCC)

(
POEM − PCC − v −

K

Q∗

)
. (4.45)

Since λ′(PCC) > 0 and λ′′(PCC) < 0, d
2ΠCC(PCC ||(POEM ,Q∗))

dC2 < 0. Thus,

ΠCC(PCC ||(POEM , Q∗)) is concave in PCC , and its maximizer is the root of the equa-

tion dΠCC(PCC ||(POEM ,Q∗))
dC

= 0. In order to induce the CC to set the collection price at

P ∗CC , the OEM has to set the unit purchase price at the value given by the following

equation

PC
OEM = P ∗CC + v +

K

Q∗
+
λ(P ∗CC)

λ′(P ∗CC)
. (4.46)

In order to compensate the OEM for choosing PC
OEM rather than P ∗OEM , the CC

needs to pay the OEM a �xed payment (PC
OEM − P ∗OEM)λ(P ∗CC) per unit time as

the franchise fee. Thus, we obtained all the optimal parameters for the coordination

mechanism {PC
OEM , Q

∗, (PC
OEM−P ∗OEM)λ(P ∗CC)} in the deterministic return �ow case.

4.6.2 Unit Return Load

In previous section, we evaluated the coordination mechanisms for deterministic

case. Next, we focus on stochastic return �ow. First we consider the case that the

used-item is returned one by one, i.e., the return �ow follows a renewal process. In

this situation, we have µ(PCC) = 1 and s2(PCC) = 0, and thus, f1(Q) = E[W2(Q)] +

1 = Q and V ar(W2(Q)) = 0. The pro�t functions (4.29) to (4.31) can be speci�cally
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written as

E[ΠCC(Q,PCC)] = λ(PCC)(POEM − PCC − v) +
huC
2
− Kλ(PCC)

Q
− huCQ

2
, (4.47)

E[ΠOEM(POEM)] = λ(PCC)

(
π − c− POEM −

huM
2m

)
− huMλ(PCC)Q

2m
, and (4.48)

E[Π(Q,PCC)] = λ(PCC)

(
π − c− PCC − v −

huM
2m

)
+
huC
2

− Kλ(PCC)

Q
− huCm+ huMλ(PCC)

2m
Q, (4.49)

respectively. Comparing (4.47) to (4.49) with (4.39) to (4.41), we can see that the

pro�t functions with renewal return process are the same as the pro�t functions in

the deterministic case. Thus, all the results in Section 4.6.1 can be carried over to

the renewal return process directly.

4.6.3 Exponentially Distributed Return Loads

In this section, we consider the case that the return loads arrive according to a

renewal process and each return load contains an exponentially distributed amount

of used-items. In this situation, s2(PCC) = µ(PCC), f1(Q) = E[W2(Q) + 1] =

Q/µ(PCC) + 1, and V ar(W2(Q)) = Q/µ(PCC) = E[W2(Q) + 1] − 1, which leads to

f2(Q) = 1 − 1/f1(Q), i.e., α = 1, β = −1. The pro�t functions (4.29) to (4.31) can

be speci�cally written as

E[ΠCC(Q,PCC)] =λ(PCC)µ(PCC)(POEM − PCC − v)

−
(
Kλ(PCC)− huCµ(PCC)

2

)
1

Q/µ(PCC) + 1

− huCµ(PCC)

2
(Q/µ(PCC) + 1) , (4.50)
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E[ΠOEM(POEM)] = λ(PCC)µ(PCC)

(
π − c− POEM −

huM
2m

(2 + µ(PCC))

)
− huMλ(PCC)µ2(PCC)

2m

(
Q/µ(PCC) + 1− 1

Q/µ(PCC) + 1

)
, and

(4.51)

E[Π(Q,PCC)] = λ(PCC)µ(PCC)

(
π − c− PCC − v −

huM
2m

(2 + µ(PCC))

)
−
(
Kλ(PCC)− huCµ(PCC)

2
− huMλ(PCC)µ2(PCC)

2m

)
1

Q/µ(PCC) + 1

−
(
huCµ(PCC)

2
+
huMλ(PCC)µ2(PCC)

2m

)
(Q/µ(PCC) + 1) , (4.52)

respectively.

Recalling Corollary 22 and β = −1, for any given PCC , the maximizers of the

cost functions E[ΠCC ] in (4.19), E[ΠOEM ] in (4.20), and E[Π] in (4.21) are given by

1. If 2Kλ(PCC)
huCµ(PCC)

≤ 1 then Qd
CC(PCC) = Qd

OEM(PCC) = Q∗(PCC) = 1.

2. If 2Kλ(PCC)m
huCµ(PCC)m+huMλ(PCC)µ2(PCC)

≤ 1 ≤ 2Kλ(PCC)
huCµ(PCC)

then Qd
OEM(PCC) = Q∗(PCC) = 1,

and

Qd
CC(PCC) = max

((√
2Kλ(PCC)

huCµ(PCC)
− 1− 1

)
µ(PCC), 1

)
. (4.53)

3. If 1 ≤ 2Kλ(PCC)m
huCµ(PCC)m+huMλ(PCC)µ2(PCC)

then Qd
OEM = 1, Qd

CC is given by (4.53), and

Q∗(PCC) = max

((√
2Kλ(PCC)m

huCm+ huMλ(PCC)µ2(PCC)
− 1− 1

)
µ(PCC), 1

)
.

(4.54)

The all-unit premium mechanism that can coordinate the system when PCC is

exogenous is stated as follows: The OEM pays the CC the premium of ∆ for each
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unit of used-item if the CC lowers Qd
CC to Q∗, ∆ ∈ [∆(BE), ∆̄], and

∆(BE) =

√
(2Kλ(PCC)− huCµ(PCC))huCµ(PCC)

2λ(PCC)µ(PCC)

(1−D)2

D
, and

∆̄ =
huMµ(PCC)

2m

2Kλ(PCC) + huCµ(PCC)(1−D)√
(2Fλ(PCC)− huCµ(PCC))huCµ(PCC)

1−D
D

,

where,

D =
Q∗(PCC)

Qd
CC(PCC)

.

When PCC is determined by the CC, the coordination mechanism

{PC
OEM , Q

∗, (PC
OEM − P ∗OEM)λ(P ∗CC)µ(P ∗CC)} can be determined as in Section 4.5.2:

P ∗CC can be obtained by solving

dE[Π(Q∗(PCC), PCC)]

dC
= 0,

and Q∗ = Q∗(P ∗CC). Then PC
OEM is determined by solving

dE[ΠCC(P ∗CC ||(PC
OEM , Q

∗))]

dC
= 0.

Substituting β = −1 in POEM,max(P
∗
CC) given by (4.34) and in POEM,min(P ∗CC) given

by (4.35), P ∗OEM can be determined by using (4.37).

In this section, we applied the coordination mechanisms proposed in Section 4.5

into three special cases: deterministic return �ow, renewal return �ow with unit

return load, and renewal return �ow with exponentially distributed return loads.

The renewal type return �ows with unit or exponentially distributed return loads

are more general than the Poisson type return �ows with unit or exponentially dis-
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tributed return loads. For each case, we illustrated how to calculate the coordination

parameters in two situations: (1) the collection price is exogenous; (2) the CC can

determine the collection price.

4.7 Cost Saving Analysis

In Section 4.4, we investigated the coordination mechanism for the reverse supply

chain in a stochastic environment. It has been proved that when the collection price is

exogenous, the all-unit-premium mechanism can achieve channel coordination. Then,

we provided the method to calculate coordination mechanism parameters for a special

class of renewal return processes in Section 4.5. Section 4.6 applied the method to

several speci�c examples. Next, focusing on the situation that the collection price is

exogenous, we investigate the cost saving due to coordination.

We will provide some examples to show the circumstance where the cost saving is

signi�cant, as well as the circumstance where the cost saving is not obvious. Besides,

we will illustrate the situations in which the deterministic results can and cannot be

used as approximations for stochastic models.

We de�ne the rate of improvement due to coordination by IR:

IR =
Π(Q∗)− Π(Qd

CC)

Π(Qd
CC)

,

where Q∗ is the centralized solution due to coordination, Qd
CC is the decentralized

solution. Then for deterministic return �ow, we can measure the IR analytically.

Property 42 For deterministic return �ow, the rate of improvement due to co-

ordination is given by:
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IR =

(√
huMλ

huCm
+ 1− 1

)2

(
π − c− PCC − v −

huM
2m

)
2λ√

2KλhuC
+
√

huC
2Kλ
− huMλ

huCm
− 2

.

Proof.

IR =
Π(Q∗)− Π(Qd

CC)

Π(Qd
CC)

=

Kλ
QdCC

+
huC+huMλ/m

2
Qd
CC − Kλ

Q∗
− huC+huMλ/m

2
Q∗(

π − c− PCC − v −
huM
2m

)
λ+

huC
2
− Kλ

QdCC
− huC+huMλ/m

2
Qd
CC

=

√
KλhuC

2
+

huC+huMλ/m

2

√
Kλ
2huC
−
√

2Kλ (huC + huMλ/m)(
π − c− PCC − v −

huM
2m

)
λ+

huC
2
−
√

KλhuC
2
− (huC + huMλ/m)

√
Kλ
2huC

=
huM

λ
m

√
Kλ
2huC
−
√

2KλhuC

(√
1 +

huMλ

huCm
− 1
)

(
π − c− PCC − v −

huM
2m

)
λ+

huC
2
−
√

2KλhuC − huMλ/m
√

Kλ
2huC

=

huMλ

m
− 2huC

(√
1 +

huMλ

huCm
− 1
)

(
π − c− PCC − v −

huM
2m

)
λ

√
2huC√
Kλ

+
huC
2

√
2huC√
Kλ
− 2huC −

huMλ

m

=

huMλ

huCm
− 2
√

1 +
huMλ

huCm
+ 2(

π − c− PCC − v −
huM
2m

)
λ 2√

2KλhuC
+

√
huC√

2Kλ
− 2− huMλ

huCm

=

(√
1 +

huMλ

huCm
− 1
)2

(
π − c− PCC − v −

huM
2m

)
λ 2√

2KλhuC
+

√
huC√

2Kλ
− 2− huMλ

huCm

.

Note that, Property 42 is also applicable for renewal type return �ow with unit return

load.

By Property 42, we have the following observations:

(O. 1) when huM = 0, IR = 0;
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(O. 2) IR increases if any of the following values increase: huMλ

huCm
, K, and PCC + v.

Thus, coordination will bring signi�cant cost savings in the following situations:

(1) the inventory holding cost is signi�cant for the OEM; (2) the �xed cost is signif-

icant for the CC. Next, we will use an numerical example to illustrate this.

Example 1: The parameter set is given by: m = 80, π − c = 20, PCC = 16,

r(= λµ) = 20, K = 200, v = 4, huM = 4, huC = 0.5. Note that, for this data set

huMλ

huCm
= 2. Then, we have the following results:

• For Deterministic case: (µ = 1, s = 0, λ = 20)

IR = 22.72%, Q∗ = 73, Qd
CC = 126.

• For renewal return process with unit return load: (µ = 1, s = 0, λ = 20)

IR = 22.72%, Q∗ = 73, Qd
CC = 126.

• For renewal return process with exponentially distributed return loads:

� (µ = s2 = 1, λ = 20): IR = 23.19%, Q∗ = 72, Qd
CC = 125;

� (µ = s2 = 2, λ = 10): IR = 23.38%, Q∗ = 71, Qd
CC = 124;

� (µ = s2 = 4, λ = 50): IR = 23.73%, Q∗ = 69, Qd
CC = 122.

• For renewal return process with uniform return load:

� Yi ∼ U [0, 2], (µ = 1, s2 = 1
3
, λ = 20): IR = 23.29%, Q∗ = 72, Qd

CC = 126;

� Yi ∼ U [0, 4], (µ = 2, s2 = 4
3
, λ = 10): IR = 23.16%, Q∗ = 72, Qd

CC = 125;

� Yi ∼ U [0, 8], (µ = 4, s2 = 16
3
, λ = 5): IR = 23.44%, Q∗ = 70, Qd

CC = 124.

In Example 1, where the two conditions for bringing large cost savings are sat-

is�ed, the rates of improvement IR's are high (around 23%) in all the listed cases.
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The optimal values of Q in stochastic cases are close to that in deterministic case.

If the two conditions are not satis�ed, the pro�t improvement due to coordination

might be trivial. Actually, when huM = 0, there will be no pro�t improvement at all,

by Property 42. Next, We provide an example in which huM is same as in Example 1

and the pro�t improvement is trivial.

Example 2: In this data set, the values of m, π− c, PCC , r, v, and huM are as in

Example 1. The �xed cost K = 50, and the CC's unit inventory cost per unit time

huC = 4. In this situation, the impact of �xed cost is less than that in Example 1.

Note that, for this data set huMλ

huCm
= 1

4
. Then, we have the following results:

• For Deterministic case: (µ = 1, s = 0, λ = 20)

IR = 0.45%, Q∗ = 20, Qd
CC = 22.

• For renewal return process with unit return load: (µ = 1, s = 0, λ = 20)

IR = 0.45%, Q∗ = 20, Qd
CC = 22.

• For renewal return process with exponentially distributed return loads:

� (µ = s2 = 1, λ = 20): IR = 0.45%, Q∗ = 19, Qd
CC = 21;

� (µ = s2 = 2, λ = 10): IR = 0.52%, Q∗ = 18, Qd
CC = 20;

� (µ = s2 = 4, λ = 50): IR = 0.58%, Q∗ = 16, Qd
CC = 18.

• For renewal return process with uniform return load:

� Yi ∼ U [0, 2], (µ = 1, s2 = 1
3
, λ = 20): IR = 0.77%, Q∗ = 19, Qd

CC = 22;

� Yi ∼ U [0, 4], (µ = 2, s2 = 4
3
, λ = 10): IR = 0.56%, Q∗ = 19, Qd

CC = 21;

� Yi ∼ U [0, 8], (µ = 4, s2 = 16
3
, λ = 5): IR = 0.77%, Q∗ = 17, Qd

CC = 20.
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In Example 2, the rates of improvement are less than 1% in all listed situations.

It illustrates that when �xed cost is not the major cost for the CC, the coordination

mechanism will not bring obvious cost saving.

In the above two examples, we observe that the optimal values of Q are large, and

the results in stochastic cases are close to the results in deterministic case. Then,

the solution for deterministic model can be used as the approximation for stochastic

models. This might not be true in general. In the above examples, we also note that,

the di�erence between the results in stochastic cases and the results in deterministic

cases becomes more obvious when the value of µ increases. Actually, even with the

same return rate r, the approximation might fail in some situations, especially when

µ is large. Moreover, when Q∗ is small, a slightly change of Q might cause large

results di�erence.

We de�ne the error of using results in deterministic case as approximations for

stochastic situations by ER, and then

ER =
E[Π∗]− E[Π(Q∗deterministic)]

E[Π∗]
· 100%,

where E[Π∗] is the optimal pro�t in stochastic case, and E[Π(Q∗deterministic)] is the

expected pro�t using the solution of deterministic model. Next, we provide an ex-

ample in which the values of ER might be large, i.e., the solution of deterministic

model cannot be treated as an approximation for stochastic models.

Example 3: When the parameter set is given by: m = 10, π−c = 30, PCC = 16,

r(= λµ) = 4, K = 25, v = 4, huM = 4, huC = 0.5, we have the following results:

• For Deterministic case: Q∗ = 2Kλ
huC

= 10.

• For renewal return process with unit return load: (µ = 1, s = 0, λ = 20)
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Q∗ = 10 and ER = 0.

• For renewal return process with exponentially distributed return loads:

� (µ = s2 = 1, λ = 4): Q∗ = 9 and ER = 0.73%;

� (µ = s2 = 2, λ = 2): Q∗ = 8 and ER = 3.08%;

� (µ = s2 = 4, λ = 1): Q∗ = 5 and ER = 11.79%.

• For renewal return process with uniform return load:

� Yi ∼ U [0, 2], (µ = 1, s2 = 1
3
, λ = 4): Q∗ = 9 and ER = 0.45%;

� Yi ∼ U [0, 4], (µ = 2, s2 = 4
3
, λ = 2): Q∗ = 8 and ER = 1.27%;

� Yi ∼ U [0, 8], (µ = 4, s2 = 16
3
, λ = 1): Q∗ = 8 and ER = 4.54%.

From the above example, we observe that the value of ER increases in µ. In

the situation that the variance of return load is large, e.g., exponentially distributed

return loads, the ER is large. When µ = 4, the variance s2 = 4 in exponentially

distributed return loads case, and the error is up to 11.79%. This example shows

that the solution of deterministic model cannot always be used as the approximation

for stochastic models in general. Thus, investigation of the coordination mechanism

for general stochastic model is necessary.

4.8 Conclusions

This section extends the fundamental ideas of channel coordination in traditional

supply chains to consider the collection channels in closed-loop supply chains. We

consider an OEM-CC pair facing stochastic return �ows. We derive analytical ex-

pressions for calculating the parameters representing the coordination mechanism.

We �nd conditions under which these analytical expressions lead to closed-form so-
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lutions. Two situations are considered: the situation where the collection price is

exogenous, and the situation where the CC can determine the collection price.

For the situation where the CC has no power on the collection price and the

return �ow is exogenous, we show that:

• For any given purchase price that the OEM pays the CC, the centralized control

results in a higher pro�t for the OEM while lowering the CC's pro�t.

• The OEM can take all pro�ts of the system by setting the purchase price as

the entry price for the CC.

• By an all-unit-premium policy, the system can achieve coordination.

For the situation where the CC has power on the collection price and can in�uence

the return �ow, we show that:

• For any given collection price, the jointly optimal threshold value, i.e., collection

quantity, is smaller than the CC's decentralized threshold value.

• Partial coordination is better than no coordination, i.e., even in the situation

that the OEM adopts the decentralized purchase price and the CC adopts the

decentralized collection price, the jointly optimal threshold value outperforms

the decentralized threshold value.

• The all-unit-premium policy fails to induce the CC to choose the jointly optimal

collection price. However, the all-unit-premium and franchise fee mechanisms

together can coordinate the system.

Next, we consider several special cases including the cases of deterministic return

�ows, renewal type return �ows with unit return load and exponentially distributed

return loads. Then, we investigate the cost savings due to coordination in these

198



special cases. Numerical examples are provided to illustrate the setting where co-

ordination can or cannot improve pro�t signi�cantly. We also provide examples to

show that the solution of the deterministic model should not be used as an approx-

imation. Thus, it is important to study the coordination mechanisms for stochastic

model in reverse supply chains.

The contribution of this section is that we propose a basic framework for channel

coordination mechanisms in reverse supply chains in a stochastic environment, build-

ing on which more complex systems and coordination mechanisms can be studied

in the future. Some immediate extensions include: (1) considering yield issues of

used-items so that the fraction of remanufacturable items is uncertain; (2) model-

ing competition, e.g., considering models with multiple OEMs and/or multiple CCs

among which competition exists; and (3) integrating the reverse and forward channels

via e�ective closed-loop channel coordination mechanisms.
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5. CONCLUSIONS

This dissertation concentrates on inventory control models in remanufacturing

with batch processing, seed stock planning, and coordination considerations. We

investigate three distinct, yet related, inventory control problems in remanufacturing

that aim at �lling the gaps existing in current literature. Our contributions include

• Building analytical remanufacturing model with stochastic demand and stochas-

tic return with disposal and �xed operational cost considerations;

• Analyzing seed stock models with multiple agents using game theory; and

• Applying channel coordination strategies for reverse supply chains under stochas-

tic environment.

In Section 2, we consider a fundamental inventory and production planning prob-

lem characterized by stochastic demand and return along with �xed operational costs

and disposal opportunities. By applying queueing theory and normal approximation,

we develop e�ective and e�cient approximations for optimal policy parameters under

each proposed policy with or without disposal. We show that when the return rate

is higher than the demand rate, a disposal option is a necessary decision variable to

achieve cost minimization.

In Section 3, we consider a basic game-theoretic setting for seed stock planning

problem in remanufacturing with two agents including an OEM and an RS. We inves-

tigate how decision domain structure impacts the system performance and provide

managerial insights for both OEM and RS in making decisions.

In Section 4, we extend the fundamental ideas of channel coordination in tradi-

tional supply chains to consider the collection channels in closed-loop supply chains
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in a stochastic environment. A basic framework is proposed for channel coordina-

tion mechanisms in reverse supply chains and closed-form solutions are derived for

models under mild conditions. We illustrate the situation when coordination can or

cannot bring signi�cant pro�t improvement, and demonstrate that the solution of a

deterministic model cannot be used as the approximation in general.

Several extensions related to the presented work are proposed in each section.

Besides, some other interesting extensions should explore more general and realistic

models such as

• Considering more general stochastic process instead of Poisson process in Sec-

tion 2, deterministic return process in Section 3, and renewal return process in

Section 4;

• Integrating coordination mechanisms in reverse channels with forward channels

under stochastic return and stochastic demand; and

• Considering �nite horizon inventory control problems with multiple agents

in the stochastic environment, and designing coordination mechanisms with

batching and seed stock planning considerations.
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APPENDIX A

ALTERNATIVE APPROXIMATION FOR THE COST FUNCTION UNDER TF

POLICY IN SECTION 2

By taking advantage of the property of the Normal distribution, we can obtain

another approximation for the cost function under TF policy, i.e., TC(TF ).

Property 43 If r < a
(

1− 3√
maTF

)2

then P (
∑m

i=1 Ri ≥
∑m

i=1Di) ≈ 0.

Proof. By the summation property of Poisson distribution,
∑m

i=1Di is also a

Poisson distributed random variable with mean maTPT and variance maT . Simi-

larly,
∑m

i=1Ri ∼ Poisson(mrTF ). Using Normal distributions to approximate the

distributions of Dn and Rn, we have that (
∑m

i=1Ri −
∑m

i=1 Di) ∼ Normal(mrTF −

maTF ,
√
mrTF +maTF ). Recalling the property of a Normal random variable that

about 99.7% of its possible values lie within three standard deviations of the mean,

we argue that P (
∑m

i=1 Ri ≥
∑m

i=1Di) ≈ 0 if maTF −mrTF > 3(
√
maTF +

√
mrTF ),

which is equivalent to

r < a

(
1− 3√

maTF

)2

.

By Lemma 43, there is no more than m consecutive cycles hold ending inventories if

we begin observing the system with no initial used-item inventory. Let us consider

the case when m = 2 and the condition in Lemma 43 holds. Then we can conclude

that if In−1 = 0 then In = (Rn −Dn)+, otherwise In = 0.

Recalling that In−1 can be interpreted as the waiting time of the nth customer,

as stated in section 2.3.3.1, P (In−1 = 0) is the probability that the system is idle,
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i.e., P (In−1 = 0) = (1− r
a
). Then, the expectation of In can be obtained as follows:

E[In] =
(

1− r

a

)∫ ∞
0

x√
2π(aTF + rTF )

e
− 1

2

(
x−(r−a)TF√
aTF+rTF

)2

dx. (A.1)

Letting y = x−(r−a)TF√
aTF+rTF

, we can rewrite equation (A.1) as

E[In] =
1− r

a√
2π

∫ ∞
(r−a)TF√
(a+r)TF

(√
(a+ r)TFy + (r − a)TF

)
e−

1
2
y2dy. (A.2)

The integrand of (A.2) is positive. Hence, we have

1√
2π

∫ ∞
(r−a)TF√
(a+r)TF

(
√

(a+ r)TFy + (r − a)TF )e−
1
2
y2dy

<
1√
2π

∫ ∞
0

(
√

(a+ r)TFy + (r − a)TF )e−
1
2
y2dy

=

√
(a+ r)TF

2π
+

(a− r)TF
2

.

Consequently, we have

E[In] <
(

1− r

a

)(√(a+ r)TF
2π

+
(a− r)TF

2

)
. (A.3)

using E[In] ≈
(
1− r

a

)(√ (a+r)TF
2π

+ (a−r)TF
2

)
, we can obtain another approxima-

tion for TC(TF ) which is given by

TC
′
(TF ) = h

(
1− r

a

)(√(a+ r)TF
2π

+
(a− r)TF

2

)
+

(wa+ hr)TF
2

+
F

TF

+ca+ p(a− r). (A.4)
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TC
′
(TF ) is not a convex function, however it can be proved that it has the unique

local minimizer which is also the global minimizer.

Proposition 1 TC
′
(TF ) has a unique global minimizer.

Proof. By (A.4), if TF →∞ then TC
′
(TF )→∞; if TF → 0 then TC

′
(TF )→∞.

Thus, TC
′
(TF ) is a coercive continuous function and there is at least one global

minimizer.

The �rst order condition for (A.4) is given by

wa+ hr + h(1− r
a
)2a

2
− F

T 2
F

+
h(1− r

a
)

2

√
a+ r

2π

1√
TF
. (A.5)

The second order condition for (A.4) is given by

(
2F

T 2
F

−
h(1− r

a
)

4

√
a+ r

2π

1√
TF

)
1

TF
. (A.6)

(A.5) has an unique root T ∗
′

F which satis�es

wa+ hr + h(1− r
a
)2a

2
+
h(1− r

a
)

2

√
a+ r

2π

1√
T ∗
′

F

=
F

(T ∗
′

F )2
. (A.7)

Substituting (A.7) into (A.6), we can obtain the following inequality

(
wa+ hr + h(1− r

a
)2a+

3h(1− r
a
)

4

√
a+ r

2π

1√
T ∗
′

F

)
1

T ∗
′

F

> 0.

Thus, T ∗
′

F is the unique local minimizer.

Moreover, from (A.6) it is obvious that when TF < 4 3

√
2πF 2

h2(1− r
a

)2(a+r)
, TC

′
(TF ) is

convex, otherwise, it is concave. Then, T ∗
′

F is also the unique global minimizer.

213


