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ABSTRACT

This dissertation aims at developing generalized network models and solution

approaches for studying cluster detection problems that typically arise in networks.

More specifically, we consider graph theoretic relaxations of clique as models for

characterizing structurally cohesive and robust subgroups, developing strong upper

bounds for the maxiumum clique problem, and present a new relaxation that is useful

in clustering applications.

We consider the clique relaxation models of k-block, and k-robust 2-club for de-

scribing cohesive clusters that are reliable and robust to disruptions, and introduce a

new relaxation called s-stable cluster, for modeling stable clusters. First, we identify

the structural properties associated with the models, and investigate the computa-

tional complexity of these problems. Next, we develop mathematical programming

techniques for the optimization problems introduced, and apply them in presenting

effective solution approaches to the problems.

We present integer programming formulations for the optimization problems of

interest, and provide a detailed study of the associated polytopes. Particularly, we

develop valid inequalities and identify different classes of facets for the polytopes.

Exact solution approaches developed for solving the problems include simple branch

and bound, branch and cut, and combinatorial branch and bound algorithms. In

addition, we introduce many preprocessing techniques and heuristics to enhance their

performance. The presented algorithms are tested computationally on a number

of graph instances, that include social networks and random graphs, to study the

capability of the proposed solution methods.

As a fitting conclusion to this work, we propose new techniques to get easily com-

ii



putable and strong upper bounds for the maximum clique problem. We investigate

k-core and its stronger variant k-core/2-club in this light, and present minimization

problems to get an upper bound on the maximization problems. Simple linear pro-

gramming relaxations are developed and strengthened by valid inequalities, which

are then compared with some standard relaxations from the literature. We present

a detailed study of our computational results on a number of benchmark instances

to test the effectiveness of our technique for getting good upper bounds.
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1. INTRODUCTION

A graph, defined with a vertex set, and an edge set that represents links between

pairs of vertices, is the most popular and useful way of modeling many systems. For

example, complex systems like social networks, arising in various applications are

often modeled as a graph with entities as vertices, and there is an edge between the

vertices if they have some pairwise interaction between them. Such a representation

helps to gain very useful and insightful information about the network, and will aid in

understanding the relationships between the components of the underlying system,

and detect interesting structural properties it exhibits. For instance, when modeling

social networks as graphs, some of the most useful information that can be retrieved

include the number of jumps required for any two entities to connect and detecting

the most well connected subgroup in the network.

In any system, the overall data representing it is non-homogeneous, and hence,

graph theoretic tools have played a significant role in understanding and interpreting

this data. Graph clustering is a very popular field of study that helps in determining

the underlying structure in any network [55]. The resulting structure, called a graph

cluster, is an association of vertices that share similar traits with one another. Over

the years, graph clustering has become a very popular field of study, and a large

number of clustering techniques and algorithms [55] have been proposed in literature,

which are very useful in many data mining applications. One of the key properties

that is very significant in determining a cluster is called a cluster measure, which

simply put is the characteristic trait that the vertices share in the cluster. Here are

some examples of measures used for characterizing clusters.

Protein interaction networks: When modeled as graphs, vertices repre-
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sent proteins, and there is an edge between two vertices, if the corresponding

proteins interact with each other. Protein clusters, where two different pro-

teins interact either directly or through another protein, can be modeled using

distance measure [6].

Social networks: A key property of social network is cohesiveness and a

cohesive subgroup is one, where each entity has a large number of neighbors,

that is familiarity, signifying some kind of similarity between them. Hence, it is

easy to interpret a given social network by detecting large cohesive subgroups

using familiarity as a measure [5].

This dissertation concentrates on three such clustering measures, namely connectiv-

ity, reachability for finding closely-knit subgroups, and stability for finding a stable

cluster. In this work, models that can be used for finding clusters with these prop-

erties are discussed in detail. Next, we discuss the motivation behind choosing these

measures of clustering, and their significance.

1.1 Motivation

Many application areas, like communication networks, information networks,

energy networks etc., require that any two entities in the system have good and

undisrupted connectivity, which calls for cohesive properties in the network. In

addition, they also require that failure of one or more entities does not affect network

functioning, thus ensuring network robustness. Hence, such networks require the

existence of multiple disjoint paths between entities, so that failure of one or more

paths does not affect the passage of information across the network. Moreover,

to ensure a swift passage of information across the network, these paths must of

short length [26]. Given these properties, one can find the level of cohesiveness

and robustness of a network by detecting an underlying cluster that satisfies them.
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A clique is a subset of pairwise adjacent vertices that induces a complete graph

and is a tightly-knit structure, and has been widely used for identifying cohesive

clusters in networks. A clique ensures that there are maximum number of disjoint

paths of the smallest length possible between entities. However, requiring links to be

present between every pair of vertices in a cluster might not always be a reasonable

assumption for practical applications. Hence, a part of this dissertation studies

models that can used for identifying clusters that are robust and cohesive, but are

not as restrictive.

In addition to the above mentioned properties of cohesiveness and robustness,

cliques have other structural properties that are desirable to be present in any net-

work, namely, familiarity between entities, density of the network, and reachability

among entities. One can use these properties to identify clusters, and hence, clique

has been an ideal model for many clustering applications as it possess all of them.

However, to overcome the restricted nature of clique, over the years, a number of

models called ‘clique relaxations’ have been introduced to model clusters satisfying

one or more of them [52]. These models were obtained with the aim of character-

izing clusters based on the chosen property, and include s-plex [57], a familiarity

based relaxation of clique, s-clubs and s-cliques [42], reachability based relaxations,

γ-quasi-clique [2], a density based relaxation, and k-blocks [40, 52], a robustness

based relaxation. Such models aid in characterizing and interpreting clusters based

on their structural properties. As a continuation of modeling clusters with different

measures, we introduce a new model for characterizing clusters that holds a restric-

tion on the maximum number of entities acting independently of each other. It is

easy to see that a clique has only one such entity, and hence one can model clusters

by relaxing this property of clique.

Different clustering models including the ones described above were originally
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introduced not just due to the restrictive (ideal) nature of clique in modeling clusters,

but also due to the intractability of finding very large cliques in networks. Owing

to the popularity that cliques enjoy in many applications, efforts have been made

towards this end, that include a number of exact and enumerative algorithms for

solving this problem. This has further led to developing good lower and upper

bounds for the problem, which can then be used as a starting point for the exact

algorithms. As a fitting conclusion to this dissertation, we propose a new and simple

model for getting a tight upper bound on the largest clique found in a given graph.

1.2 Preliminaries

Before we describe the contributions made in this research work, in this section,

some essential background required for this dissertation will be reviewed. In partic-

ular, some definitions, notations and terminology that will be used throughout this

dissertation will be reviewed.

The reader is referred to Diestel [15] for some basic definition of graph-theoretic

concepts ommitted here. In this work, we consider a simple graph G = (V,E) with

vertex set V , and edge set E. For any subset of vertices S ⊆ V , G[S] = (S,E∩S×S)

denotes the graph induced by S, and the complement graph of G is denoted by

Ḡ = (V, Ē) with Ē = {(u, v) /∈ E : ∀u, v ∈ V }. The neighborhood of a vertex v ∈ V

is the number of vertices adjacent to v, and is denoted as N(v) = {u : (u, v) ∈ E},

and N [v] denotes the closed neighborhood of v in G, that is N [v] = N(v) ∪ {v}.

The degree of a vertex v ∈ V is the number of vertices adjacent to it, namely

|N(v)| and is denoted by degG(v). The minimum and the maximum degrees of a

graph G is denoted by δ(G) and ∆(G), respectively. The length of the shortest path

between i, j ∈ G is denoted by dG(i, j), and the diameter of a graph G is denoted as

diam(G) = max
i,j∈V

dG(i, j).
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Definition 1 A subset C ⊆ V is called a clique, if G[C] induces a complete subgraph.

Definition 2 A subset I ⊆ V is called an independent set or a stable set, if any pair

of vertices in I is nonadjacent, that is, Ḡ[I] induces a complete subgraph.

The maximum clique problem asks to find a clique of maximum cardinality (also

called the clique number), in a given graph G, and the cardinality of the maximum

clique is denoted by ω(G). Similarly, an independent set of maximum cardinality in

G is denoted by α(G), and by the definition above, ω(G) = α(Ḡ).

Definition 3 A subset S ⊆ V is called a k-core if δ(G[S]) ≥ k.

Definition 4 A graph G is connected, if there exists a path between every pair of

vertices.

Definition 5 A vertex cut, also called a separating set of a connected graph G, is a

subset of vertices whose removal disconnects G.

Definition 6 The vertex connectivity of G, denoted by κ(G), is the greatest integer

k such that G is k-connected.

For a complete graph Kn on n vertices, we have κ(Kn) = n− 1

Definition 7 Two vertices i, j in G are called vertex-disjoint if there are no common

vertices between the paths except the end points.

Definition 8 A graph G with more than k vertices is k-vertex connected (or k-

connected) if G[V \X] remains connected for every set X ⊆ V with |X| < k.

Definition 9 A subset S ⊆ V is called an s-plex, if degG[S](v) ≥ |S| − s,∀v ∈ S.
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Definition 10 A subset S ⊆ V is an s-club, if diam(G[S]) ≤ s.

Definition 11 A subset S ⊆ V is a dominating set for graph G if every vertex in

G is in S or is adjacent to some vertex in S.

The problems considered in this dissertation are clustering models, and a major

focus is on providing good solution approaches. We study the computational com-

plexity of the problems considered, in particular, with a number of clustering models

in the literature proved to be NP-hard, we check to see if the models considered

exhibit similar properties. For detailed review of complexity theory and approxima-

tion algorithms, we ask the reader to refer [27, 47] and [61]. In addition, we also

provide a detailed study of the polyhedra associated with the optimization problems

considered for the models. In this regard, we follow the standard notations and

terminology used in [14, 44]

1.3 Contributions

This dissertation aims to study clustering models obtained by relaxing one or

more properties of clique. The core objective is to design two kinds of models, one

that enables to find clusters that are closely-knit in the sense that it is cohesive,

robust, and reliable, and the other focuses on finding clusters with good stability. In

particular, we study the graph theoretic relaxations of clique, called k-block, k-robust

s-club to model structurally cohesive clusters, and a new relaxation, s-stable clus-

ter, to model stable clusters. We consider the optimization version of the k-block,

k-robust 2-club, and s-stable cluster models, with an eye to meet the objective men-

tioned above. We study the structural properties associated with these models, an-

alyze the computational complexity of the problems, and show that these problems

are hard to solve, which makes this work all the more interesting. Integer program-

ming formulations are presented for the optimization problems, and a detailed study
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of the associated polytopes is conducted. More specifically, we introduce valid in-

equalities and different classes of facets for the polytopes. Finally, computational

experiments are presented to validate the models. The solution approaches include,

directly solving the integer programming formulations, designing a branch and cut

algorithm by employing suitable facets, and employing other exact algorithms.

As mentioned in Section 1.1, the models considered in this dissertation were

basically introduced due to the various shortcomings seen in clique, one of which

is that the maximum clique problem is very hard to solve. The final work in this

dissertation tries to address this issue, and uses a clique-relaxation approach to get

a good upper bound on the clique number of a graph. Particularly, we use k-core

and its stronger variants, and introduce minimization problems whose lower bound

will give a good upper bound on the clique number. In this work, simple linear

programming relaxations of the problems are used to achieve the objective, and we

show that the upper bounds found are better than those obtained by the standard

linear relaxations of the clique polytope. Computational results presented show that

the considered problems have good potential to produce enhanced bounds.

1.4 Organization

The organization of this dissertation is as follows. In Chapter 2, we formally

introduce the clustering models studied in this dissertation. This will include a

discussion on the structural properties of the models, and their relation with some

existing models in the literature. Chapter 3 will focus on cohesive and robust cluster-

ing models, and Chapter 4 will discuss the stability model for clusters. In particular,

the computational complexity of the models will be discussed, integer programming

formulations will be presented, and polyhedral results, valid inequalities and facets

will be developed for all the models. In addition, exact algorithms and computa-
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tional experiments will be presented with detailed analysis. Chapter 5 will introduce

a new method for getting strong and easily computable upper bounds for the clique

number of a graph. Finally, Chapter 6 will conclude this dissertation with a review

of the research contribution made, and provide a brief discussion on directions for

future research.
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2. CLUSTERING MODELS BASED ON CLIQUE RELAXATIONS

In the previous chapter, we briefly described the broad concept of graph cluster

detection, and discussed some of the drawbacks of cliques that led to the introduc-

tion of models called clique relaxations, that are obtained by relaxing one or more

properties of clique. In this chapter, we discuss the clique relaxations that can be

used for modeling cohesive clusters in networks, and we develop a new model for

characterizing clusters based on the maximum size of an independent set in the clus-

ter. In addition, we establish some of the basic structural properties of these models.

2.1 Cohesive and Robust Relaxations

The clique relaxation models were defined with the objective to characterize

clusters, but at the same time inherit properties of a clique that are desirable in

various applications. However, among all the clique-defining properties, robustness

to disruption is one of the most important and essential characteristics of a network,

and is especially vital in social, information and communication networks. In par-

ticular, in social networks, the robustness of a network is measured using the notion

of structural cohesion. Moody and White [43] formally define structural cohesion of

a group as the minimum number of actors who, if removed from the group, would

disconnect the group. In graph theoretical terms, this represents the vertex connec-

tivity of a network, and is formalized by the concepts of k-blocks [40], and k-robust

s-clubs [62].

Definition 12 A subset S ⊆ V is called a k-block if G[S] is k-connected.
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The original definition of a k-block as defined by Matula [40] requires maximality,

however, it corresponds to maximal k-blocks in our terminology. This change in

terminology is attributed to our purpose of using k-blocks as a model for cohesive

subgroups. Hence, in this work a k-block is simply a k-connected graph. Note that,

the condition of maximality will camouflage the set of vertices that actually are

cohesive, and this will be evident from the way the optimization problem will be

defined.

Menger’s theorem states that the size of a minimum vertex cut separating a pair

of nonadjacent vertices i and j is equal to the maximum number of pairwise disjoint

paths between i and j in G. From this, it is easy to note that G is k-vertex connected

if and only if thee exists atleast k-vertex disjoint paths between each such pair of

vertices in G, which gives an alternative definition of k-block.

Definition 13 Given a subset of verices, S, if for any pair of vertices the length of

at least k-disjoint paths between them in G[S] is restricted by a given parameter s,

then S is a k-robust s-club.

The k-robust s-club model was originally introduced by Veremyev and Boginski [62],

as model for robust cluster, which ensures that the diameter or the reachability in the

cluster is maintained even after the removal of (k−1) vertices. Essentially, the main

difference between a k-block and a k-robust 2-club is the restriction on path lengths

in the definition of the latter, see Figure 2.1. A k-block ensures that the passage

of information between any two entities in the network is not disrupted, as there

exists pairwise disjoint paths between them. Given a parameter k, if there exists a

k-block of size k + 1, then it is a clique, which then becomes an ideal model for a

cluster. Hence, it is easy to see that the closer the size of a k-block is to the value

of k, the more closely-knit the cluster would be, which also explains our omission
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of maximality from the definition of k-blocks. However, if the size of the k-block

is considerably larger than k + 1, then it is possible that the corresponding cluster

will have a high diameter, potentially resulting in a high probability of failure in

communication channels [62]. This issue is overcome by the k-robust s-club model

which imposes restrictions on the length of the paths, and it is easy to note that

the model will ensure that the network remains robust and information is passed on

quickly, if the value of the path length parameter s is small. Hence, in this work, we

concentrate on the special case of the k-robust s-club when s = 2, namely a k-robust

2-club.

2

1

3

4

5

(a) 2-block

2

1

3

4

5

(b) 2-robust 2-club

Figure 2.1: Example of a 2-block and a 2-robust 2-club.

It is easy to see that if thee exists no k-block or k-robust s-club of size k + 1

in G, then the clique number ω(G) satisfies ω(G) ≤ k. Motivated by these special

properties, a study of the following two optimization problems are presented in this

dissertation.

Definition 14 (Minimum k-block) Given a graph G = (V,E) and a positive in-

teger k, find a k-block of minimum cardinality in G. The size of a minimum k-block

11



is denoted by µk(G).

Definition 15 (Minimum k-robust s-club) Given a graph G = (V,E) and pos-

itive integers k and s, find a k-robust s-club of minimum cardinality in G. The size

of a minimum k-robust s-club is denoted by µk,s(G).

We study some basic properties associated with a k-block in the context of mini-

mization, which is defined next.

2.1.1 Properties of k-Blocks

Given a k-connected graph G = (V,E), a vertex v ∈ V (G) is called an essential

vertex ifG[V \{v}] is not k-connected. A graphG = (V,E) is called critically k-vertex

connected if every v ∈ V is essential [10]. We extend this property to more than one

vertex and define a minimal k-block as a k-block S such that G[S ′] is not k-connected

for any proper subset S ′ ⊂ S. For a minimal k-block S, G[S] is critically k-connected,

but the converse is not true. This is illustrated in Fig. 2.2. The following lemma

provides some basic properties of minimal k-blocks.

1 2 7

3 4 6

5

Figure 2.2: A critically 3-connected graph G = (V,E), where V is a 3-block that is
not minimal, since S = {1, 2, 3, 4} is also a 3-block.
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Lemma 2.1.1 (a) If S is a minimal k-block and k ≥ 2, then δ(G[S]) < 3k−1
2

.

(b) Given a critically k-connected graph G = (V,E), it can be checked in polynomial

time if V is a minimal k-block.

(c) For any positive integer k ≥ 1, the ratio µk+1/µk can be arbitrarily large.

Proof (a) Follows from the result by [10] who have shown that for a critically k-

connected graph G, k ≥ 2, δ(G) < 3k−1
2

and the number 3k−1
2

cannot be improved.

(b) Checking whether V is a minimal k-block reduces to determining whether there

exists a vertex i ∈ V such that G[V \{i}] contains a k-block. Checking the existence

of a k-block can be done in polynomial time [34]. (c) Let G be a graph with the set

of vertices given by A ∪ B, where A is a clique of size k + 1, B is a tree of height l

such that the degree of the internal vertices is k+ 1 and root node has degree k. Let

r denote the root of this tree. For a1 ∈ A, add an edge between every leaf vertex and

every vertex in the set A\{a1} and add an edge between r and a1. Note that A is the

minimum k-block in G, and the only (k + 1)-block in G is A ∪ B. Thus, µk = k + 1

and µk+1 = k + 1 + kl+1−1
k−1

. Note that we can construct such a graph for any l ≥ 1.

2.2 Stable Relaxations

In this section, a new clique relaxation is introduced, that characterizes clusters,

based on the number of vertices acting independently in the cluster. An alternative

description of a clique in G is a subset of vertices S, such that α(G[S]) = 1. In other

words, if we define “stability” of a cluster as the size of the maximum independent

set in the cluster, then the stability of clique is 1, and is one of its very important

properties. In addition to the various models discussed that were based on relaxing

13



one or more of the clique-defining properties, stability is another important prop-

erty that is used for characterizing clusters in various applications, particularly in

fullerene chemistry. In fullerene chemistry [20, 25], experiments find a large number

of isomers with n atoms, and an important problem is to characterize stable iso-

mers and distinguish them from unstable ones. A key observation that isomers that

minimize their independence number are more stable than others, has introduced

independence number as a predictor of fullerene stability. However, these models do

not always require that the stability of the structure is one. In particular, relaxing

the stability property of a clique could help detect clusters with varying stability,

which will in turn be useful in understanding the stability of the associated network

associated with the cluster. Hence, in this work, we introduce a new clique relaxation

model obtained by relaxing the “stability” property of a clique, called the “s-stable

cluster”, which is defined as follows.

Definition 16 A subset of vertices S is called a s-stable cluster if the stability num-

ber of the induced subgraph α(G[S]) ≤ s.

In other words, any independent set in the induced subgraph G[S] must be of size at

most s. Note that this model is an absolute relaxation, as the condition on α(G[S]

is independent of the cardinality of set S. The s-stable cluster model corresponds to

a clique when s = 1, and relaxes the size of the stable set in the induced subgraph

when s > 1. We consider the following optimization problem associated with s-stable

clusters.

Definition 17 (Maximum s-stable cluster) Given a graph G = (V,E), and a

positive integer s, find an s-stable cluster of the largest size in G. The cardinality of

a maximum s-stable cluster is denoted by ωs(G).
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Next, we present some of the basic properties associated with s-stable clusters, and

establish relations with some existing clique relaxations.

2.2.1 Properties of s-Stable Clusters

Given a graph G = (V,E), any s-stable cluster in G can be connected or discon-

nected, see Figure 2.3. Any s-stable cluster that is disconnected can have at most s

2 1

3

4 5

6

Figure 2.3: Example of a 2-stable cluster.

connected components, and if there are s components, then each component must be

a clique. Also, note that any s-plex is an s-stable cluster, but the converse need not

be true. Some of the other basic properties of s-stable clusters are described next.

Lemma 2.2.1 Let G = (V,E) be a s-stable cluster. Then,

(1) Any vertex-induced subgraph of G is an s-stable cluster.

(2) If G is connected, then diam(G) ≤ 2s− 1.

Proof (1) As G is a s-stable cluster, α(G) ≤ s, then for any subset S ⊆ V of

vertices, we have α(G[S]) ≤ s, hence S is a s-stable cluster.

(2) Suppose diam(G) > 2s − 1. Then, there is a pair of vertices i, j ∈ V such

that dG(i, j) > 2s − 1. This implies there exist aleast 2s − 1 vertices, say,

v1, v2, . . . , v2s−1 in the shortest path between u and v in G. Hence the vertices
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i, v2, v4, . . . , v2s−2, j form a stable set of size s + 1, which cannot be true as G

is an s-stable cluster. Hence, diam(G) ≤ 2s− 1.

This implies that s-stable cluster is hereditary on induced subgraphs, and for small

values of s, a connected s-stable cluster has good reachability properties. These

properties, show the close relationship that an s-stable cluster has with other clique

relaxation models. The similarities that an s-stable cluster enjoys with a clique will

also become evident when we explore the polytope associated with the optimization

problem in the forthcoming chapters.

2.3 Conclusion

In this chapter, cohesive, robust and stable models of clique relaxations were

discussed. k-blocks and k-robust s-clubs considered here for designing cohesive and

robust clusters are motivated by clusters that require a closely-knit structure, which

may not be captured by the other clique relaxations. In addition, these models

are much stronger than some other clique relaxation models, like k-cores or s-clubs,

whose properties are in fact, encompassed by k-blocks and k-robust s-clubs, which

makes studying these models interesting and worthwhile.

With the existence of so many models for studying and characterizing clusters sat-

isfying various requirements, one might ask, if these existing models are not enough or

in what way the s-stable cluster is superior, to consider it for clustering applications.

At this point, we would like to point out that the existing models were introduced

to satisfy specific needs in various applications that found clique to be of restrictive

use. In the same sense, we introduce s-stable clusters as another model, which is

most appropriate for applications that require models to minimize its independence

number to maintain its stability.
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3. THE MINIMUM K-BLOCK AND K-ROBUST 2-CLUB PROBLEMS

This chapter focuses on the cohesive and robust relaxation models defined and

motivated in Chapter 2. In particular, we study the minimum k-block and the k-

robust 2-club problems in detail. The k-block problem as defined by [40] is well

studied, however using this model for modeling cohesive subgroups may not be a

very interesting approach, as increasing the size of the k-block will not result in a

cluster that is cohesive in terms of distance between two vertices. This is overcome

by the minimum k-block and k-robust 2-club problems which will be discussed in

this chapter.

3.1 Computational Complexity

In this section, we study the hardness of approximating the minimum k-block and

the minimum k-robust 2-club problems. In addition, the computational complexity

of the augmentation version of these two problems will be discussed in detail.

For k = 1 and k = 2, the minimum k-block problem coincides with the minimum

k-core problem and is easy to solve. Indeed, for k = 1 any pair of adjacent vertices

is an optimal solution, and for k = 2 one needs to compute the length of a shortest

cycle in the graph. For k ≥ 3, we will prove that the minimum k-block problem is

hard to approximate by using a gap-preserving reduction from vertex cover on

k-regular graphs and the following fact.

Theorem 3.1.1 Vertex cover is APX-complete on k-regular graphs, for any

fixed k ≥ 3.

Proof The minimum vertex cover on k-regular graphs was proved to be APX-

complete only for k = 3 (cubic graphs) and also on graphs with degree bounded
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by k [3, 48]. [23] proved that the vertex cover problem is “hardest to approximate in

regular graphs.” This, however, does not imply that the result is valid for k-regular

graphs for each fixed k. We use the notion of L-reduction [48] defined next, that is

widely used for establishing APX-hardness results. Given two optimization problems

F and G, we say that F L-reduces to G if there are two polynomial-time algorithms

f, g and constants α, β > 0 such that for each instance x of F :

1. f produces an instance f(x) of G, such that OPTG(f(x)) ≤ αOPTF (x).

2. Given any solution of f(x) with cost c′, g produces a solution of x with cost c

such that |c−OPTF (x)| ≤ β|c′ −OPTG(f(x))|.

If F L-reduces to G and there is a polynomial-time approximation algorithm for G

with worst-case error ε, then there is a polynomial-time approximation algorithm

for F with worst-case error αβε. We now give the following L-reduction f from

Min Vertex Cover on 3-regular graphs to Min Vertex Cover on k-regular

graphs, k ≥ 4. Given a 3-regular graph G = (V,E) construct a k-regular graph

G′ = (V ′, E ′) as follows. Let |V (G)| = n. Consider k identical copies G1, G2, ..., Gk

of G. Denote the vertex set and edge set of the rth such copy respectively by Vr

and Er, r = 1, . . . , k, where Vr = {1r, . . . , nr} and Er = {(ir, jr) : (i, j) ∈ E(G)}.

Let R = ∪kr=1Vr and ER = ∪kr=1Er. For each v ∈ V (G) consider a set of (k − 3)

independent vertices Pv = {uv1, . . . , uvk−3}, and let P = ∪v∈V Pv. Put V ′ = R∪P and

E ′ = ER ∪ EP , where

EP = {(vr, uvj ) : v ∈ V, r = 1, . . . , k, j = 1, . . . , k − 3}

That is for each v ∈ V , there is an edge between vr and uvj for j = 1, . . . , k − 3 and

r = 1, . . . , k. This completes the construction of G′ = (V ′, E ′).
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It is easy to see that from every vertex cover C ⊆ V of G we can construct a vertex

cover C ′ ⊆ V ′ of G′ of size exactly n(k− 3) + 3|C|, by choosing vr ∈ Vr, r = 1, . . . , k

if v ∈ C and by choosing the set Pv if v /∈ C. Since G is 3-regular we have n = |V | ≤

|E| ≤
∑

v∈C deg(v) = 3|C|. Then, |C ′| = n(k − 3) + 3|C| ≤ 3(k − 3)|C| + 3|C| =

3(k − 2)|C| and, this satisfies the first property of L-reduction with α = 3(k − 2).

Conversely, given any vertex cover C ′ ⊆ V ′ of G′, we can transform it back

to a vertex cover C ⊆ V of G as follows. First note that if vr /∈ C ′ for some

r ∈ {1, . . . , k}, then Pv ⊆ C ′. Hence given any vertex cover C ′, if C1, C2, . . . , Ck ⊆ C ′

are the subsets of vertices selected respectively from V1, . . . , Vk, then Ci must be a

vertex cover of Gi for each i ∈ {1, . . . , k} and hence, the corresponding vertices in V

must be a vertex cover of G. Let h be such that |Ch| = min{|C1|, . . . , |Ck|}. Then

C = {v ∈ V : vh ∈ Ch} is a vertex cover of G and |C| ≤ 1
3
(|C ′| −n(k− 3)). Together

with the observation |OPTV C(G′)| ≤ 3|OPTV C(G)| + n(k − 3) from the previous

paragraph, it is easy to see that f is a L-reduction with β = 1.

We now use this result and extend the construction used by [4] to prove the

following:

Proposition 3.1.2 The minimum k-block problem does not admit a PTAS for any

fixed k ≥ 3, unless P = NP, even if restricted to k-connected graphs.

Proof : For any k ≥ 3, we give a gap-preserving reduction [61] from Vertex Cover

on k-regular graphs. Given a k-regular graph G = (V,E) on n vertices, we construct

an instance G′k of the minimum k-block problem. Without loss of generality, assume

that |E(G)| = kn
2

= k(k − 1)l for some integer l ≥ 2.

The construction described by [4] is as follows. Let T be a tree of height l + 1

such that all its internal vertices have degree k and the number of leaves is k(k−1)l.

The total number of vertices in T is 1 + k((k−1)l+1−1)
k−2

. Let I and F represent the
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Figure 3.1: Graph G′k constructed in Proposition 3.1.2 for k = 4.

set of internal vertices and leaves of T , respectively. Add a set of vertices E of

cardinality k(k − 1)l such that each of its vertices uniquely represents an edge from

E(G). Construct a Hamilton cycle with E ∪ F inducing a bipartite graph with E

and F as the partition classes. Add the vertex set V. Since each vertex in E uniquely

represents an edge in graph G, join the sets E and V according to the incidence

relations in G, i.e., add an edge between a vertex in E that corresponds to the edge

e ∈ E(G) and a vertex v ∈ V (G) if and only if edge e is incident to vertex v in G.

To complete the construction of G′k = (V ′k , E
′
k) (see Fig. 3.1), we add a set of

independent vertices A of cardinality (k− 3) and add two complete bipartite graphs

with partition classes A and E, and A and F , respectively.

We prove that minimum k-blocks of G′k correspond to minimum vertex covers of

G and vice-versa. Note that any k-block H of G′k must include at least one vertex

from the set V ′k\V , since V is an independent set in G′k. Including any vertex from

V ′k\V in H implies that V ′k\V ⊆ H, because of degree constraints. Let V1 = V ′k\V.

20



By construction, there are (k− 1) disjoint paths between each pair of vertices in the

set E ∪F ∪A. Hence, the set E ∪F ∪A is a (k−1)-block. In the tree T , each vertex

in level l is adjacent to at least (k−1) vertices in level (l+1). This implies that V1 is

a (k − 1)-block. Notice that by construction, E represents the edge set of G and all

its vertices have degree k− 1 in G′k[V1]. Hence, it is necessary to include a minimum

number of vertices from the set V , say J ⊆ V to satisfy the degree requirements and

such a set J will be a vertex cover of G. Let H = V1 ∪ J .

Next, we show that H is a k-block. Let S be any subset of H such that |S| = k−1.

It is enough to prove that G′k[H\S] is connected and for this, we will use the notion

of k-fan, which is defined as follows. Given a subset U ⊆ V and a vertex v ∈ V \U ,

a set of v − U paths is called a v − U fan if any two paths have only v in common,

and if |U | = k, then it is a k-fan.

Case 1: S ⊆ V1. If |A∩S| < k−3 then G′k[H\S] is connected as G′k[V1] is connected.

If A ⊆ S, then it is enough to prove that G′k[H\A] is 3-connected. Since for any

vertex t ∈ I, there exists a set of k vertices Ft ⊆ F such that t − Ft forms a k-fan,

removal of any 2 vertices from I does not disconnect G′k[H\S]. Removal of any 2

vertices from E∪F splits E∪F into two components with one of the following three

possibilities: there is an isolated vertex e ∈ E, there is an isolated vertex f ∈ F , or

both components have at least one vertex each from the sets E and F . In the first

two cases, G′k[(E ∪ J)\S] and G′k[(I ∪ F )\S] remain connected, and in the last case

G′k[(E ∪ F ∪ I)\S] always remains connected. Hence, G′k[H\S] is connected.

Case 2: S ⊆ J . J is an independent set and each vertex in J is adjacent to k vertices

in E. Hence, G′k[H\S] is connected.

Case 3: S ∩ V1 6= ∅ and S ∩ J 6= ∅. This is a subset of the previous two cases.

In all the three cases above, H is a k-block. This implies that since V ′k\V is
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included in any k-block H of G′k, the minimum k-block problem in G′k corresponds

to finding the smallest subset of vertices in V covering all the vertices in E, which

is exactly the minimum vertex cover problem for G, and the minimum vertex covers

of G corresponds to minimum k-blocks of G′k. Thus,

µk(G
′
k) = |T |+ |E|+ |A|+ |C∗|

=
k(k − 1)l(2k − 3)− 2 + (k − 2)(k − 3)

k − 2
+ |C∗|,

where C∗ is a minimum vertex cover of G.

Assume that for an ε > 0, we can find in polynomial time a solution to the

minimum k-block problem of size Sk(G
′
k) in G′k, such that Sk(G

′
k) ≤ (1 + ε)µk(G

′
k).

Using the above argument, any minimum k-block in G′ corresponds to a vertex cover

of size Svc(G) in the given graph G such that

Sk(G
′
k) =

k(k − 1)l(2k − 3)− 2 + (k − 2)(k − 3)

k − 2
+ Svc(G),

Then,

Svc(G) = Sk(G
′
k)−

k(k − 1)l(2k − 3)− 2 + (k − 2)(k − 3)

k − 2

≤ (1 + ε)µk(G
′
k)−

k(k − 1)l(2k − 3)− 2 + (k − 2)(k − 3)

k − 2

= (1 + ε)‖C∗|+ ε(
k(k − 1)l(2k − 3)− 2 + (k − 2)(k − 3)

k − 2
)

Since G is a k-regular graph, we have |E(G)| = k(k − 1)l = kn
2

, and any optimal
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vertex cover |C∗| ≥ kn
2

. Then,

Svc(G) ≤ (1 + ε)‖C∗|+ ε(
kn(2k − 3)

2(k − 2)
+
−2 + (k − 2)(k − 3)

k − 2
)

≤ (1 + ε)‖C ∗ |+ ε(
|C∗|(2k − 3)

k − 2
+ k)

≤ (1 + ε(1 +
k(3k − 5)

k − 2
))|C∗|

Hence, existence of a PTAS for the minimum k-block problem implies a PTAS for

the minimum vertex cover. The result follows from Proposition 3.1.1.

Remark Given a graph G = (V,E), a subset S ⊆ V of vertices is called a k-

connected d-dominating set (k-d-CDS) if κ(G[S]) ≥ k and |N(i)∩S| ≥ d,∀i ∈ V \S.

In the graph G′k constructed in Proposition 3.1.2, a minimum k-block in G′k is a

minimum k-d-CDS for G′k for d ≤ k and vice-versa. This implies that finding a

minimum k-d-CDS for k ≥ 3, d ≤ k is equivalent to finding a minimum k-block in

G′k and hence, the minimum k-d-CDS problem, where k ≥ 3, d ≤ k, does not admit

a PTAS, unless P=NP.

The minimum k-robust 2-club problem can be solved in polynomial time for

k = 1, 2 as it coincides with the minimum k-core problem for k = 1, and asks to find

the smallest cycle of length at most 4 for k = 2. For k = 3, the complexity of the

problem remains open. We prove the following result for k ≥ 4.

Theorem 3.1.3 The minimum k-robust 2-club problem does not admit a PTAS for

any fixed k ≥ 4, unless P=NP, even if restricted to graphs with the set of vertices

forming a k-robust 2-club.

Proof For any k ≥ 4, we give a gap-preserving reduction from vertex cover on

(k − 1)-regular graphs. Given a (k − 1)-regular graph G = (V,E) on n vertices, we
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construct an instance G′′k = (V ′′k , E
′′
k ) of the minimum k-robust 2-club problem, for

k ≥ 4. Without loss of generality, assume that |E(G)| = (k−1)n
2

= (k − 1)(k − 2)l for

some integer l ≥ 2.

Consider the graph G′k−1 constructed in Proposition 3.1.2. Put V ′′k = V ′k−1 ∪ C,

and E ′′k = E ′k−1∪E1, where C is a set of k independent vertices and E1 = {(u, v) : u ∈

C, v ∈ V ′k−1}. This completes the construction of G′′k,∀k ≥ 4. Then, with a similar

argument as in the proof of Proposition 3.1.2, we can prove that the minimum k-

robust 2-club, for any fixed k ≥ 4 does not admit a PTAS, unless P=NP.

Remark Given a graph G = (V,E), a subset S ⊆ V of vertices is called a d-

dominating k-robust 2-club if S is a k-robust 2-club and |N(i) ∩ S| ≥ d,∀i ∈ V \S.

In the graph G′′k constructed in Proposition 3.1.3, a minimum k-robust 2-club in G′′k

is also a minimum d-dominating k-robust 2-club for G′′k, for d ≤ 2k − 1, k ≥ 4 and

vice-versa. This implies that finding a minimum d-dominating k-robust 2-club, for

d ≤ 2k − 1, k ≥ 4, is equivalent to finding a minimum k-robust 2-club in G′′k and

hence, the minimum d-dominating k-robust 2-club, where d ≤ 2k − 1 and k ≥ 4,

does not admit a PTAS, unless P=NP.

3.1.1 Augmentation Problems

Consider the augmentation version of the minimum k-block problem [39], the

k-Vertex Connected Subgraph Augmentation Problem (k-VCSAP) that is defined as

follows: Given a k-vertex connected graph G = (V,E) and a subset S ⊆ V , find

a smallest subset S ′ ⊆ (V \S) of vertices, such that the set S ∪ S ′ is a k-block. k-

VCSAP can be seen as a generalization of the minimum k-block problem, where the

minimum k-connected network designed, must include a given set of vertices.

The augmentation version of the minimum k-block problem can be used for en-

hancing the reliabiliy of an existing network and has application in fault-tolerance
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and wireless networks [39]. In addition to connectivity, one of the measures that is

most commonly used for designing reliable networks and has been well studied, is its

diameter [22, 36, 63, 68]. This gives rise to the augmentation version of the k-robust

2-club problem, which can be defined in a similar fashion as the k-VCSAP.

[39] proved that k-VCSAP is APX-hard, and gave a lower bound of O(log(log n))

on the approximation ratio for polynomial-time algorithms under the assumption

P6=NP. We prove an analogous result for the k-robust 2-club subgraph augmentation

problem.

Proposition 3.1.4 The k-robust 2-club subgraph augmentation problem does not

admit a PTAS for k ≥ 4, unless P=NP.

Proof Consider the graph G′′k = (V ′′k , E
′′
k ) constructed in Proposition 3.1.3. Note

that V ′′k is a k-robust 2-club. Then, given a (k − 1)-robust 2-club S = V ′′k \V in G′′k,

finding a smallest set S ′ ⊆ V ′′k \S such that S ′ ∪ S is a k-robust 2-club is equivalent

to finding a minimum vertex cover of G. The result follows from Proposition 3.1.3.

Given a set of elements U = {1, 2, ..., n} and a set N of subsets of U whose union is U ,

the minimum set cover problem asks to find a smallest subset S of N whose union is

U. It is known that unless P=NP, approximating the set cover problem within c log n

is NP-hard for some constant c [54]. We use this result to prove the following.

Proposition 3.1.5 Unless P=NP, approximating the k-robust 2-club subgraph aug-

mentation problem within c log(log n) for some constant c is NP-hard, where n is the

number of vertices in the problem instance.

Proof Given an instance (U,N) of the minimum set cover problem such that |U | > k,

we construct an instance (G = (V,E), S) of the k-robust 2-club subgraph augmen-

tation problem such that a minimum cover of U implies a minimum set S ′ ⊆ (V \S)

25



such that S ∪ S ′ induces a k-robust 2-club in G and vice-versa. The construction of

G is as follows.

Let V = U ′∪N ′∪V1∪V2, where the vertices in U ′ and N ′ distinctly represent the

elements in U and the sets in N , respectively, and G[V1], G[V2] are complete graphs,

each of size k − 1. Add edges between vertices in the sets V1 and U ′, V1 and N ′, V2

and N ′, and U ′ and V2. Two vertices Ni ∈ N ′ and u ∈ U ′ are connected if and only

if u ∈ Ni in the given instance of set cover. This completes the construction of G

with S = V \N ′. It is easy to see that S is a (k − 1)-robust 2-club, as there exists

exactly (k− 1) paths of length at most 2 between any vertex u ∈ V1∪V2 and v ∈ U ′.

Also, there exists no k-robust 2-club R ⊆ S. Therefore, from the construction of G,

it is easy to see that finding a minimum subset S ′of N ′ such that S ∪S ′ is a k-robust

2-club in G is equivalent to finding a minimum cover for the given instance of set

cover.

Using the argument in [39], since N could be the power set of U , we have |N | ≤

2|U | and n = |V | ≤ 2|U | + |V1| + |V2| + |U |. Then, for some constants c, c′ and a

sufficiently large n, |U | ≥ c′ log n and

c log |U | ≥ c log(c′ log n) = c log c′ + c log log n ≥ c log log n

3.2 Mixed Integer Programming Formulations

Mathematical programming formulations for the minimum k-block and minimum

k-robust 2-club problems are presented, and the associated polytopes are studied in

this section.

26



3.2.1 The k-Block Polytope

Consider a graph G = (V,E). For any set S ⊆ V , let xS denote the incidence

vector of S. Given any two nonadjacent vertices s, t ∈ V , a set of vertices Tst ⊂ V is

called an s-t separator if its removal results in a disconnected graph that has s and

t in different connected components.

The proposed formulation for the minimum k-block problem is based on the

following equivalent characterization of a k-block. A subset S ⊆ V is a k-block if

and only if for all the minimal s-t separators Tst in G, |S ∩ Tst| ≥ k, for any pair of

nonadjacent vertices s, t ∈ S. Let Tst denote the set of all minimal s-t separators in

G. We have:

µk(G) = min
∑
i∈V

xi (3.1)

subject to
∑
v∈Tst

xv ≥ k(xs + xt − 1),∀Tst ∈ Tst,∀s, t : (s, t) /∈ E (3.2)∑
i∈V

xi ≥ k + 1 (3.3)

x ∈ {0, 1}|V |. (3.4)

Constraint (5.2) ensures that the subgraph induced by the subset of vertices {i :

xi = 1} is k-vertex connected. This being a minimization problem, constraint (3.3)

ensures that zero is not included in the feasible solution. The number of constraints

of type (5.2) can be exponential, which makes it very difficult to solve this problem.

Consider an alternative formulation based on multi-commodity flow [53, 64] for

the minimum k-block problem as a consequence of Menger’s theorem. Let f stij be the

flow from s to t that passes through edge (i, j) ∈ E. Then the minimum k-block
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problem can be formulated as:

µk(G) = min
∑
i∈V

xi (3.5)

subject to
∑
j∈V

f stsj −
∑
j∈V

f stjs ≥ k(xs + xt − 1), ∀s, t ∈ V (3.6)∑
j∈V

f stjt −
∑
j∈V

f sttj ≥ k(xs + xt − 1), ∀s, t ∈ V (3.7)∑
j∈V

f stvj −
∑
j∈V

f stjv = 0, ∀v ∈ V \{s, t}, ∀s, t ∈ V (3.8)∑
j∈V

f stvj ≤ xv, ∀v ∈ V \{s, t}, ∀s, t ∈ V (3.9)∑
i∈V

xi ≥ k + 1 (3.10)

0 ≤ f stij ≤ 1, ∀(i, j) ∈ E, ∀s, t ∈ V (3.11)

x ∈ {0, 1}|V |. (3.12)

Constraints (3.6) & (3.7) ensure that there exists a flow of at least k units from

origin s ∈ V to destination t ∈ V, for every pair of vertices s, t included in the subset

{i : xi = 1} that induces a k-vertex connected subgraph. Constraint (3.8) represents

the flow balance constraints, and constraint (3.9) ensures that there is flow only

in the subset of vertices {i : xi = 1} that induces a k-vertex connected subgraph.

Finally, constraint (3.10) ensures that zero is not included in the feasible solution.

Let Pk(G) denote the k-block polytope of G that does not include an empty

k-block, and for any v ∈ V , let Sv denote a k-block in G such that v ∈ Sv.

Theorem 3.2.1 Consider a graph G = (V,E) with the following property: For

each vertex v ∈ V , there exists a k-block Sv in G such that v ∈ Sv is not an essential

vertex of G[Sv].

1. dim(Pk(G)) = |V |.
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2. xv ≥ 0 induces a facet of Pk(G) if for each w ∈ V \{v}, there exists a k-block

Sw in G such that w ∈ Sw is not an essential vertex of G[Sw] and v /∈ Sw.

3. xv ≤ 1 induces a facet of Pk(G) if for each w ∈ V \{v}, there exists a k-block

Sw in G such that w ∈ Sw is not an essential vertex of G[Sw] and v ∈ Sw.

Proof 1. We prove there are no implicit equalities in Pk(G). Suppose there is a

valid inequality αTx ≤ β such that αTx = β, ∀x ∈ Pk(G). For each v ∈ V the

incidence vectors xSv , xSv\{v} ∈ Pk(G), and hence, αTxSv = β and αTxSv\{v} =

β. This implies that αv = 0,∀v ∈ V and β = 0. Hence, there is no such

implicit equality in Pk(G) and Pk(G) is full dimensional.

2. Let F 0
v = {x ∈ Pk(G) : xv = 0}. Let there be a valid inequality αTx ≤ β such

that F = {x ∈ Pk(G) : αTx = β} ⊇ F 0
v . For each w ∈ V \{v}, v /∈ Sw and

xSw , xSw\{w} ∈ F 0
v . Then αTxSw = β, αTxSw\{w} = β implies that αw = 0,∀w ∈

V \{v} and β = 0. Hence, F 0
v = F is a facet.

3. Let F 1
v = {x ∈ Pk(G) : xv = 1}. Let there be a valid inequality αTx ≤ β such

that F = {x ∈ Pk(G) : αTx = β} ⊇ F 1
v . For each w ∈ V \{v}, v ∈ Sw and

xSw , xSw\{w} ∈ F 1
v . Then αTxSw = β, αTxSw\{w} = β implies that αw = 0,∀w ∈

V \{v} and β = αv. Hence, F 1
v = F is a facet.

Note that given a graph G = (V,E), if there exist v ∈ V such that there exists no

k-block in G containing v, then Pk(G) is not full dimensional.

Corollary 3.2.2 Given a (k + 1)-connected graph G = (V,E),

1. dim(Pk(G)) = |V |.

2. xv ≥ 0 induces a facet of Pk(G) if |T vij| ≥ k+2, ∀T vij ∈ Tij, and ∀i, j ∈ V, where

T vij is a minimum i-j separator that contains v.
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3. xv ≤ 1 induces a facet of Pk(G) for every i ∈ V .

Theorem 3.2.3 Consider a graph G = (V,E) that satisfies the conditions of Theo-

rem 3.2.1. Let Tij denote a minimal i-j separator for any pair of vertices i, j ∈ V . Let

R ⊆ V be an inclusion-wise maximal set such that for any pair of vertices i, j ∈ R,

there exists a Tij with |Tij| < k. Then,
∑

i∈R xi ≤ 1 induces a facet of Pk(G) if

for each vertex v ∈ V \R, there exists a k-block Sv in G such that v ∈ Sv is not an

essential vertex of G[Sv] and R ∩ Sv 6= ∅.

Proof The validity of the inequality follows from the equivalent characterization of

k-block given above. We now prove that FR = {x ∈ Pk(G) :
∑

i∈R xi = 1} is a facet.

Let there be a valid inequality αTx ≤ β such that F = {x ∈ Pk(G) : αTx = β} ⊇ FR.

Then, for each v ∈ V \R, there exists a k-block Sv in G such that xSv ∈ FR. Then

αTxSv = β, αTxSv\{v} = β implies that αv = 0, ∀v ∈ V \R. Also, for each i ∈ R,

xSi
∈ FR. Hence, for each i ∈ R, αTxSi

= β and β = αi. Hence, FR = F is a facet.

Note that maximality of R is essential in Theorem 3.2.3, since if R is not maximal,

the last condition cannot be satisfied for each v ∈ V \R and
∑

i∈R xi ≤ 1 does not

induce a facet of Pk(G).

Let I denote a maximal independent set in G. Given a k-block S in G, if v ∈ S∩I

then |NG(v) ∩ S| ≥ k. Then
∑

v∈V \I xv ≥ k is valid for Pk(G).

Theorem 3.2.4 Consider a (k + 1)-connected graph G = (V,E). Then for any

maximal independent set I of size k or more in G,
∑

v∈V \I xv ≥ k induces a facet of

Pk(G) if (i, j) ∈ E for each i ∈ I, j ∈ V \I.

Proof Let F 1
I = {x ∈ Pk(G) :

∑
v∈V \I xv = k} denote the face induced. Let there

be a valid inequality αTx ≤ β such that F = {x ∈ Pk(G) : αTx = β} ⊇ F 1
I . Let
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S = S ′ ∪ I, where S ′ ⊆ V \I and |S ′| = k. Then xS ∈ F 1
I . Consider a vertex v ∈ S ′

and w ∈ V \S and let R = (S ∪ {w})\{v}. Then xR ∈ F 1
I and αTxR = β, αTxS = β

implies αv = αw. Since S, v and w are arbitrary αv = µ,∀v ∈ V \I, for some scalar

µ. If |I| > k, consider a subset P ′ of V such that |P ′| = k (For the case |I| = k, since

G is (k + 1)-connected, we can find a set of vertices P ′ ⊆ V \I such that G[P ′] is

connected and |P ′| = k). For each i ∈ I, let Pi = P ′ ∪ (I\{i}) and P = P ′ ∪ I, then

xPi
, xP ∈ F . Then αTxPi

= β, αTxP = β implies αi = 0,∀i ∈ I and β = kµ, proving

that F 1
I is a maximal face and hence a facet.

3.2.2 The k-Robust 2-Club Polytope

Veremyev and Boginski [62] gave a compact formulation for the maximum k-

robust 2-club problem. Let A = [aij]
n
i,j=1 be the adjacency matrix of G. Then, the

minimum k-robust 2-club problem can be formulated as:

µk,2(G) = min
∑
i∈V

xi (3.13)

subject to aij +
∑

v∈N∩(i,j)

xv ≥ k(xi + xj − 1), ∀i, j ∈ V (3.14)

∑
i∈V

xi ≥ k + 1 (3.15)

x ∈ {0, 1}|V |, (3.16)

where N∩(i, j) denotes the common neighborhood of vertices i, j in G, that is,

N∩(i, j) = N(i)∩N(j). Constraint (3.14) ensures that for any pair of vertices in the

subgraph induced by the subset of vertices {i : xi = 1}, there exists k vertex-disjoint

paths, each of length at most 2. Denote by Pk2(G) the k-robust 2-club polytope of G

that does not include an empty k-robust 2-club. As any k-robust 2-club is also a k-

block, the results of the k-block polytope in Section 3.2.1 (except Theorem 4.10) can
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be easily extended to the k-robust 2-club polytope by analogously defining minimum

a-b separators and essential vertices for a k-robust 2-club.

Given a graph G = (V,E), a subset I of V is a 2-independent set in G if dG(i, j) >

2,∀i, j ∈ I.

Theorem 3.2.5 ([6]) Let I be a maximal 2-independent set in G. Then
∑

i∈I xi ≤

1 induces a facet for the 2-club polytope.

Theorem 3.2.6 Consider a graph G = (V,E) that satisfies the following condition:

For each v ∈ V there exists a k-robust 2-club Sv such that v ∈ Sv and Sv\{v} is a

k-robust 2-club. Let I denote a maximal 2-independent set in G. Then
∑

i∈I xi ≤ 1

induces a facet of Pk2(G) if I ∩ Sv 6= ∅, for each v ∈ V \I.

Proof Since any inequality valid for the 2-club polytope is also valid for the k-

robust 2-club polytope, using Theorem 3.2.5,
∑

i∈I xi ≤ 1 is valid for Pk2(G). To

prove that it is a facet, first notice that dim(Pk2(G)) = |V | and let F 2
I = {x ∈

Pk2(G) :
∑

i∈I xi = 1} be the face induced. Let there be a valid inequality αTx ≤ β

such that F = {x ∈ Pk2(G) : αTx = β} ⊇ F 2
I . For each v ∈ V \I, xSv , xSv\{v} ∈ F 2

I .

Then, αTxSv = β, αTxSv\{v} = β implies that αv = 0, ∀v ∈ V \I. Also, for each

i ∈ I, xSi
∈ F 2

I . Hence for each i ∈ I, αTxSi
= β implies β = αi. Hence, F 2

I = F is

a facet.

Theorem 3.2.7 Given ω(G), the clique number of a graph G = (V,E), if k ≥ ω(G),

then
∑

i∈V xi ≥ k+3 is valid for Pk2(G) and subsumes the inequality
∑

i∈V xi ≥ k+1.

Proof Since k ≥ ω(G), µk,2(G) ≥ k + 2. We aim to show that a k-robust 2-club of

size k + 2 cannot exist. Assume the contrary, i.e., let there be a k-robust 2-club S

of cardinality (k+ 2). Then, there exists a pair of nonadjacent vertices a, b ∈ S such

that |NG[S](a) ∩NG[S](b)| = k. Consider any vertex c ∈ NG[S](a) ∩NG[S](b). Since S
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is a k-robust 2-club, |NG[S](b)∩NG[S](c)| = k− 1. This implies that each neighbor c

of b is adjacent to each of the k − 1 remaining neighbors of b. Hence, {b} ∪NG[S](b)

is a clique of size k + 1, which is a contradiction.

Before we discuss the computational experiments for the minimum k-core and k-

robust 2-club problems, we generalize the two problems and study their augmentation

versions.

3.2.3 Augmentation Problems

Given a proper subset S ⊂ V , the augmentation version of the minimum k-block

and k-robust 2-club problems can be formulated as,

min
x∈X

∑
i∈V

xi (3.17)

where, X = {x ∈ {0, 1}n : (5.2), (3.3) & xi = 1,∀i ∈ S} for the augmentation version

of the k-block problem and X = {x ∈ {0, 1}n : (3.14), (3.15) & xi = 1,∀i ∈ S} for

the augmentation version of the k-robust 2-club problem. When |S| ≥ 2, the lower

bound constraint
∑

i∈V xi ≥ k + 1 can be removed from the formulations.

3.3 Computational Experiments

In this section, computational experiments are performed to evaluate the effec-

tiveness of the considered formulations for k-block and the k-robust 2-club models

when solved directly using a standard solver. As mentioned in Section 3.2.1, the

number of constraints of type (5.2) in the formulation (3.1)-(3.4) for the minimum

k-block problem can be exponential, and hence it is very difficult to enumerate them.

Consider the following relation between the minimum k-core, the minimum k-block

33



and the minimum k-robust 2-club numbers of a graph G.

mk(G) ≤ µk(G) ≤ µk,2(G), (3.18)

where mk(G) is the minimum k-core number of a graph. With this relation, one can

use the minimum k-robust 2-club and the minimum k-core problems, respectively,

as upper and lower bounds for the minimum k-block problem.

We present some computational results for the minimum k-block and the mini-

mum k-robust 2-club problems, respectively obtained by solving the multi-commodity

flow formulation (3.5)-(3.12) given in Section 3.2.1, and the IP formulation (3.13)-

(3.16) given in Section 3.2.2. All numerical experiments were run on Dell Computer

with Intelr Xeonr E5620 2.40 GHz processor and 12GB of RAM, and FICO Xpress-

Optimizer 7.7 [24] solver was used. We consider instances from the second and the

tenth DIMACS implementation challenges [16, 17], Trick’s coloring instances [13],

and random instances [19] to perform the experiments. The random instances are

based on G(n, p) model [19], where n represents the number of vertices and p de-

notes the probability that two vertices are adjacent. For example, in Table 3.1, the

instance “n50p05” denotes that n = 50 and p = 0.05. The instances from the tenth

DIMACS challenge are typically large and sparse. Since any k-block and k-robust

2-club is also a k-core, reduction in the graph size of these instances can be achieved

by finding the largest k-core possible in the given instance and then solving for the

k-block and the k-robust 2-club models in the reduced instance.

We present the results of the computational experiments in Tables 3.1–3.4. The

columns of these tables show the parameters of the graph instances: graph order,

size, density, clique number; number of vertices, edges and the density of the reduced

instances and their preprocessing time for reduction, the minimum k-block number
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Table 3.1: The minimum k-block number for DIMACS, Trick’s coloring and random
instances.

Instance Vertices Edges Density % ω(G) µk(G) for k =
ω(G)− 1 ω(G) ω(G) + 1 ω(G) + 2

anna.col 138 493 5.22 11 11 - - -
david.col 87 406 10.85 11 11 - - -
huck.col 74 301 11.14 11 11 - - -
jean.col 80 254 8.04 10 10 - - -
miles.col 128 387 4.76 8 8 - - -
myciel3.col 11 20 36.36 2 2 4 8 -
myciel4.col 23 71 28.06 2 2 4 8 11
myciel5.col 47 236 21.83 2 2 4 6 8
mug88 1.col 88 146 3.81 3 3 - - -
mug88 25.col 88 146 3.81 3 3 - - -
mug100 1.col 100 166 3.35 3 3 - - -
mug100 25.col 100 166 3.35 3 3 - - -
1-Fullins 3.col 30 100 22.99 3 3 5 7 16
1-Insertions 4.col 67 232 10.49 2 2 4 8 15
2-Fullins 3.col 52 201 15.16 4 4 7 13 -
2-Insertions 3.col 37 72 10.81 2 2 4 16 -
3-Insertions 3.col 56 110 7.14 2 2 4 20 -
queen5 5.col 25 160 53.33 5 5 8 9 12
queen6 6.col 36 290 46.03 6 6 9 12 13
celegans metabolic.graph 453 2025 1.98 9 9 14 19 -
chesapeake.graph 39 170 22.94 5 5 7 11 -
cond-mat-2005.graph 40421 175691 0.02 30 30 - - -
dolphins.graph 62 159 8.41 5 5 - - -
email.graph 1133 5451 0.85 12 12 - - -
ieeebus.graph 118 179 2.59 4 4 - - -
jazz.graph 198 2742 14.06 30 30 - - -
karate.graph 34 78 13.90 5 5 - - -
kreb.graph 62 153 8.09 6 6 - - -
polbooks.graph 105 441 8.08 6 6 9 - -
power.graph 4941 6594 0.05 6 6 - - -
rgg n 2 17 s0.graph 131072 728753 0.01 15 15 - - -
rgg n 2 19 s0.graph 524288 3269766 0.002 17 17 - - -
n50p05 50 62 5.06 3 3 - - -
n50p10 50 143 11.67 4 4 10 - -
n50p15 50 186 15.18 4 4 10 16 -
n50p20 50 252 20.57 4 4 6 10 17
n55p05 55 66 4.44 2 2 4 - -
n55p10 55 164 11.04 3 3 5 15 -
n55p15 55 209 14.07 3 3 6 11 21
n60p05 60 86 4.86 3 3 - - -
n60p10 60 168 9.49 3 3 5 15 -
n60p15 60 277 15.65 4 4 7 14 22
n65p05 65 116 5.58 3 3 14 - -
n65p10 65 228 10.96 3 3 5 11 32
n70p05 70 120 4.97 3 3 9 - -
n70p10 70 243 10.06 3 3 5 10 35
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Table 3.2: DIMACS, Trick’s coloring and random instances running time (in sec) for
the minimum k-block problem.

Instance Reduced Time for k =
Vertices Edges Density % ω(G)− 1 ω(G) ω(G) + 1 ω(G) + 2

anna.col n\r n\r n\r 287.37 235.13 227.02 225.52
david.col n\r n\r n\r 96.70 76.07 74.39 73.69
huck.col n\r n\r n\r 48.59 36.28 35.81 39.46
jean.col n\r n\r n\r 77.64 40.11 38.64 38.37
miles.col n\r n\r n\r 482.69 174.91 157.64 151.19
myciel3.col n\r n\r n\r 0.21 0.44 0.38 0.06
myciel4.col n\r n\r n\r 1.68 3.63 5.88 4.09
myciel5.col n\r n\r n\r 24.72 113.89 83.36 93.68
mug88 1.col n\r n\r n\r 158.72 200.08 32.25 29.36
mug88 25.col n\r n\r n\r 301.65 218.53 35.08 30.31
mug100 1.col n\r n\r n\r 242.03 379.87 47.50 44.80
mug100 25.col n\r n\r n\r 483.23 481.68 51.00 44.97
1-Fullins 3.col n\r n\r n\r 7.58 9.75 9.68 7.72
1-Insertions 4.col n\r n\r n\r 46.41 307.32 378.56 927.21
2-Fullins 3.col n\r n\r n\r 72.25 122.14 102.23 12.41
2-Insertions 3.col n\r n\r n\r 5.65 15.64 21.97 2.45
3-Insertions 3.col n\r n\r n\r 17.48 89.98 285.59 8.79
queen5 5.col n\r n\r n\r 7.01 17.07 17.90 23.31
queen6 6.col n\r n\r n\r 29.61 89.38 288.17 276.83
celegans metabolic.graph 51 383 30.04 138.34 129.17 85.89 25.81
chesapeake.graph 33 152 28.79 16.45 31.91 20.91 3.63
cond-mat-2005.graph 30 435 100.00 7.28 6.94 7.00 6.99
dolphins.graph 36 109 17.30 72.34 12.01 11.39 10.83
email.graph 12 66 100.00 0.20 0.19 0.21 0.19
ieeebus.graph 4 6 100.00 0.02 0.02 0.02 0.02
jazz.graph 30 435 100.00 7.27 6.94 6.81 6.91
karate.graph 10 25 55.56 0.76 0.07 0.07 0.07
kreb.graph 11 34 61.82 0.52 0.09 0.09 0.09
polbooks.graph 65 300 14.42 113.87 173.78 38.22 32.38
power.graph 12 36 54.55 0.65 0.15 0.14 0.14
rgg n 2 17 s0.graph 34 262 46.70 32.81 6.78 6.74 6.64
rgg n 2 19 s0.graph 19 170 99.42 3.08 1.15 1.17 1.19
n50p05 n\r n\r n\r 19.54 4.66 4.57 4.48
n50p10 n\r n\r n\r 79.27 45.49 9.86 9.44
n50p15 n\r n\r n\r 114.80 196.11 131.36 11.62
n50p20 n\r n\r n\r 61.49 144.96 543.87 634.01
n55p05 n\r n\r n\r 8.96 44.98 6.15 5.98
n55p10 n\r n\r n\r 54.40 163.83 230.07 13.40
n55p15 n\r n\r n\r 32.49 199.87 382.58 586.41
n60p05 n\r n\r n\r 68.32 9.39 8.92 8.65
n60p10 n\r n\r n\r 32.18 147.14 88.53 17.13
n60p15 n\r n\r n\r 113.84 464.08 1544.58 1602.36
n65p05 n\r n\r n\r 88.02 40.95 13.98 13.34
n65p10 n\r n\r n\r 50.56 269.19 656.61 462.81
n70p05 n\r n\r n\r 66.26 123.52 18.29 16.63
n70p10 n\r n\r n\r 105.32 503.13 1718.66 1987.75
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for k = ω(G)−1, ω(G), ω(G)+1, ω(G)+2 and their respective computational times,

and the minimum k-robust 2-club number for k = ω(G)−1, ω(G) and their respective

computational times. As the tenth DIMACS instances are large and sparse, the

minimum k-block and the minimum k-robust 2-club numbers in these instances are

respectively obtained by solving the multi-commodity flow formulation (3.5)-(3.12),

and the IP formulation (3.13)-(3.16) on the largest (ω(G)− 1)-core in the instances.

In the tables, ‘-’, denotes that no solution of size at least k+ 1 exists in the instance,

‘∗’ denotes that optimal solution was not found within a 3-hour limit, and ‘n\r’

denotes that the instance was not reduced by preprocessing.

From Table 3.1 and Table 3.3, it is easy to see that though the k-robust 2-club

model can be solved in large instances, the results show that for most of the instances

considered, finding a k-connected structure with good reachability properties is very

restricted as compared to finding a k-connected structure with no constraint on path

length. This phenomenon was also observed by [64] when solving for maximum

subgraphs with relative vertex connectivity. Also, from Table 3.2 and Table 3.4, it

is easy to note that for most of the instances, as k is increased from ω(G) − 1, the

run time increases whenever a non-trivial, feasible solution is found. This shows that

both the problems can be solved very quickly for values of k for which there exists a

clique of size k + 1 in the graph.

From the optimal values in Table 3.1 and Table 3.3, it is easy to see that the k-

block and the k-robust 2-club models are tightly-knit. Also, for many of the instances

there is no k-robust 2-club of size greater than the maximum clique of that instance.

This implies that the minimum k-robust 2-club emulates the clique structure and

can be applied for modeling robust structures with good reachability properties.

However, this does not imply that modeling cohesive structures as a k-robust 2-

club is restrictive in nature. It rather gives an understanding of the kind of highly
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cohesive clusters one can find in these instances, which in this case are restricted

to cliques, and that the minimum k-robust 2-club subgraphs in these instances are

highly connected. On the other hand, from Table 3.1 it can be seen that for a number

of instances the minimum k-block problem gives a feasible solution when k ≥ ω(G).

However, as the value of k increases from ω(G)− 1, the size of the highly connected

cluster found also increases. These observations show that the minimum k-robust

2-club and the minimum k-block problems can be used for detecting highly cohesive

structures in networks, and also for getting a good upper bound on the clique number

of a graph.

3.4 Conclusion

In this chapter, we have considered two concepts, k-block and k-robust 2-club,

that model structurally cohesive and robust clusters in networks. We discussed

some basic properties of k-blocks and proved that the minimum k-block and the

minimum k-robust 2-club problems are APX-hard for k ≥ 3 and k ≥ 4 respectively,

and also established inapproximability results for the augmentation version of the

problems. Integer programming formulations are proposed, and a polyhedral study

is conducted for both problems. Sample numerical experiments are reported for

both problems. If k < ω(G), both minimum k-blocks and minimum robust 2-clubs

are just cliques of size k + 1. We observed that in most of the cases considered

there is no k-robust 2-club if k ≥ ω(G) and that infeasibility is established quite

quickly. However, for most of the instances, the minimum k-block problem produces

a feasible, nontrivial solution for k ≥ ω(G). The models are flexible in the sense

that the level of cohesiveness required in the clusters found can actually be specified

by choosing the appropriate value of k. The choice of the values of k that would be

interesting from a practical perspective depends on availability of a good estimate
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Table 3.3: The minimum k-robust 2-club number for DIMACS, Trick’s coloring and
random instances.

Instance Vertices Edges Density % ω(G) µk,2(G) for k =
ω(G)− 1 ω(G)

mann a9.clq 45 918 92.73 16 16 ∗
c-fat200-1.clq 200 1534 7.71 12 12 -
c-fat200-2.clq 200 3235 16.26 24 24 -
c-fat200-5.clq 200 8473 42.58 58 58 -
johnson8-2-4.clq 28 210 55.56 4 4 13
johnson8-4-4.clq 70 1855 76.81 14 14 ∗
johnson16-2-4.clq 120 5460 76.47 8 8 ∗
hamming6-2.clq 64 1824 90.48 32 32 ∗
hamming6-4.clq 64 704 34.92 4 4 10
anna.col 138 493 5.22 11 11 -
david.col 87 406 10.85 11 11 -
huck.col 74 301 11.14 11 11 -
jean.col 80 254 8.04 10 10 -
miles.col 128 387 4.76 8 8 -
myciel3.col 11 20 36.36 2 2 -
myciel4.col 23 71 28.06 2 2 -
myciel5.col 47 236 21.83 2 2 -
mug88 1.col 88 146 3.81 3 3 -
mug88 25.col 88 146 3.81 3 3 -
mug100 1.col 100 166 3.35 3 3 -
mug100 25.col 100 166 3.35 3 3 -
1-Fullins 3.col 30 100 22.99 3 3 -
1-Insertions 4.col 67 232 10.49 2 2 -
2-Fullins 3.col 52 201 15.16 4 4 -
2-Insertions 3.col 37 72 10.81 2 2 -
3-Insertions 3.col 56 110 7.14 2 2 -
queen5 5.col 25 160 53.33 5 5 -
queen6 6.col 36 290 46.03 6 6 -
adjnoun.graph 112 425 6.84 5 5 -
as 22july06.graph 22963 48436 0.02 17 17 -
astro-ph.graph 16706 121251 0.09 57 57 -
celegans metabolic.graph 453 2025 1.98 9 9 -
chesapeake.graph 39 170 22.94 5 5 -
cnr-2000.graph 325557 2738969 0.01 84 84 -
coAuthorsCiteseer.graph 227320 814134 0.00 87 87 -
coAuthorsDBLP.graph 299067 977676 0.00 115 115 -
cond-mat-2005.graph 40421 175691 0.02 30 30 -
dolphins.graph 62 159 8.41 5 5 -
email.graph 1133 5451 0.85 12 12 -
football.graph 115 613 9.35 9 9 -
ieeebus.graph 118 179 2.59 4 4 -
jazz.graph 198 2742 14.06 30 30 -
karate.graph 34 78 13.90 5 5 -
kreb.graph 62 153 8.09 6 6 -
memplus.graph 17758 54196 0.03 97 97 -
PGPgiantcompo.graph 10680 24316 0.04 25 25 28
polblogs.graph 1490 16715 1.51 20 20 23
polbooks.graph 105 441 8.08 6 6 -
power.graph 4941 6594 0.05 6 6 -
rgg n 2 17 s0.graph 131072 728753 0.008 15 15 -
rgg n 2 19 s0.graph 524288 3269766 0.002 18 18 -
rgg n 2 20 s0.graph 1048576 6891620 0.002 17 17 -
n50p10 50 143 11.67 4 4 -
n50p15 50 186 15.18 4 4 -
n50p20 50 252 20.57 4 4 -
n55p10 55 164 11.04 3 3 -
n55p15 55 209 14.07 3 3 -
n60p10 60 168 9.49 3 3 -
n60p15 60 277 15.65 4 4 -
n65p05 65 116 5.58 3 3 -
n65p10 65 228 10.96 3 3 -
n70p05 70 120 4.97 3 3 -
n70p10 70 243 10.06 3 3 -
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Table 3.4: DIMACS, Trick’s coloring and random instances running time (in sec) for
the minimum k-robust 2-club problem.

Instance Reduced Preprocessing Time for k =
Vertices Edges Density % time ω(G)− 1 ω(G)

mann a9.clq n\r n\r n\r n\r 1.45 >10800
c-fat200-1.clq n\r n\r n\r n\r 5.78 8.75
c-fat200-2.clq n\r n\r n\r n\r 1.84 2.36
c-fat200-5.clq n\r n\r n\r n\r 8.81 3.23
johnson8-2-4.clq n\r n\r n\r n\r 0.18 0.47
johnson8-4-4.clq n\r n\r n\r n\r 247.17 >10800
johnson16-2-4.clq n\r n\r n\r n\r 14.80 >10800
hamming6-2.clq n\r n\r n\r n\r 2434.85 >10800
hamming6-4.clq n\r n\r n\r n\r 0.55 0.86
anna.col n\r n\r n\r n\r 27.17 26.83
david.col n\r n\r n\r n\r 9.08 9.09
huck.col n\r n\r n\r n\r 5.08 5.05
jean.col n\r n\r n\r n\r 5.13 5.12
miles.col n\r n\r n\r n\r 18.35 20.07
myciel3.col n\r n\r n\r n\r 0.11 0.03
myciel4.col n\r n\r n\r n\r 0.22 0.15
myciel5.col n\r n\r n\r n\r 1.75 1.58
mug88 1.col n\r n\r n\r n\r 4.10 4.08
mug88 25.col n\r n\r n\r n\r 3.93 4.09
mug100 1.col n\r n\r n\r n\r 5.89 5.86
mug100 25.col n\r n\r n\r n\r 6.16 33.19
1-Fullins 3.col n\r n\r n\r n\r 0.32 0.31
1-Insertions 4.col n\r n\r n\r n\r 3.31 3.17
2-Fullins 3.col n\r n\r n\r n\r 1.69 1.69
2-Insertions 3.col n\r n\r n\r n\r 0.37 0.36
3-Insertions 3.col n\r n\r n\r n\r 1.23 1.24
queen5 5.col n\r n\r n\r n\r 0.44 0.46
queen6 6.col n\r n\r n\r n\r 1.15 1.11
adjnoun.graph 79 359 11.65 0.002 0.11 0.09
as 22july06.graph 144 2758 26.79 0.090 4.43 9.99
astro-ph.graph 57 1596 100.00 0.012 0.10 0.09
celegans metabolic.graph 51 383 30.04 0.001 0.07 0.06
chesapeake.graph 33 152 28.79 0.001 0.52 0.53
cnr-2000.graph 86 3652 99.92 3.943 18.84 0.98
coAuthorsCiteseer.graph 87 3741 100.00 0.074 0.29 0.29
coAuthorsDBLP.graph 115 6555 100.00 0.115 0.65 0.69
cond-mat-2005.graph 30 435 100.00 0.019 0.03 0.03
dolphins.graph 36 109 17.30 0.001 0.06 0.03
email.graph 12 66 100.00 0.002 0.02 0.02
football.graph 114 606 9.41 0.001 0.21 0.16
ieeebus.graph 4 6 100.00 0.001 0.02 0.02
jazz.graph 30 435 100.00 0.001 0.04 0.03
karate.graph 10 25 55.56 0.001 0.02 0.02
kreb.graph 11 34 61.82 0.002 0.05 0.03
memplus.graph 97 4656 100.00 0.005 0.39 0.40
PGPgiantcompo.graph 126 2326 29.54 0.003 7.14 6.89
polblogs.graph 438 11495 12.01 0.002 84.24 126.98
polbooks.graph 65 300 14.42 0.001 0.08 0.07
power.graph 12 36 54.55 0.002 0.02 0.02
rgg n 2 17 s0.graph 34 262 46.70 0.044 0.05 0.03
rgg n 2 19 s0.graph 19 170 99.42 0.199 0.04 0.03
rgg n 2 20 s0.graph 172 1624 11.04 0.440 1.05 2.23
n50p10 n\r n\r n\r n\r 1.23 1.22
n50p15 n\r n\r n\r n\r 1.51 1.55
n50p20 n\r n\r n\r n\r 1.99 2.03
n55p10 n\r n\r n\r n\r 1.65 1.59
n55p15 n\r n\r n\r n\r 1.99 1.95
n60p10 n\r n\r n\r n\r 2.09 2.02
n60p15 n\r n\r n\r n\r 3.19 3.22
n65p05 n\r n\r n\r n\r 1.83 1.79
n65p10 n\r n\r n\r n\r 3.18 3.19
n70p05 n\r n\r n\r n\r 2.21 2.14
n70p10 n\r n\r n\r n\r 3.96 3.88
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of ω(G), which can be obtained efficiently even for very large networks [65]. On the

one hand, the values of k for which the considered problems are infeasible (which can

typically be established quickly) yield an upper bound k on the clique number and on

the other hand, an optimal solution of size > k+ 1 to one of our problems, whenever

exists, not only provides the upper bound k on the clique number, but also yields

a structurally cohesive cluster that is nontrivial. In the latter case, the problems

appear to be harder to solve in practice. An interesting avenue for further research

would be to improve the inapproximability results for the problems considered and

develop a cutting plane or a branch and cut algorithm using the established valid

inequalities.
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4. THE MAXIMUM S-STABLE CLUSTER PROBLEM

This chapter will focus on the new clique relaxation model introduced in Chap-

ter 2, namely, s-stable cluster, for describing stable clusters. Here, we will discuss

some local optimality conditions for the maximum s-stable cluster problem, which

is an extension of the work done on the independent set problem by Nemhauser and

Trotter [45], study the s-stable cluster polytope in detail, and introduce two exact

algorithms for solving the maximum s-stable cluster problem.

4.1 Computational Complexity

Given a simple graph G = (V,E) and positive integers s, c, s-Stable Cluster

problem asks, does there exists an s-stable cluster of size at least c in G ?

The s-stable cluster property is non-trivial, interesting and hereditary on induced

subgraphs, hence using the result by Yannakakis [67], we have the following result.

Theorem 4.1.1 s-Stable Cluster is NP-complete for any fixed s ≥ 1.

We show this result explicitly in a restricted class of graphs called claw-free graphs.

A graph is claw-free if it does not contain the complete bipartite graph K1,3 (“claw”)

as an induced subgraph. We show that s-Stable Cluster is NP-complete on

claw-free graphs using a reduction from Clique, which is NP-complete on claw-free

graphs [21].

Proposition 4.1.2 s-Stable Cluster is NP-complete on claw-free graphs.

Proof Clearly, s-Stable Cluster is in NP for constant s. For any fixed s ≥ 2,

we give a reduction from Clique on claw-free graphs. Given a claw-free graph

G = (V,E) on |V | = n vertices, we construct a claw-free graph G′ = (V ′, E ′),
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which is an instance of s-Stable Cluster problem, as follows. Let Gi = (Vi, Ei),

i = 1, . . . , s− 1, be copies of the complete graph Kn+1 on n + 1 vertices, and let G′

be the disjoint union of G and G1, . . . , Gs−1.

We now prove that the maximum s-stable clusters in G′ correspond to the maxi-

mum cliques in G and vice-versa. Firstly, observe that the largest s-stable cluster H

in G′ must include the set ∪s−1
i=1Vi, as Gi is complete for each i = 1, . . . , s− 1. This

implies that if S = H∩V is not empty then S must be a clique in G, as otherwise the

number of independent vertices in H would be greater than s + 1. Using these two

observations, it is easy to see that any maximum s-stable cluster in G′ corresponds

to a maximum clique in G and vice-versa.

4.2 Local Optimality Conditions

Nemhauser and Trotter [45] studied the optimality conditions of the vertex pack-

ing problem, which is nothing else but the maximum clique (1-stable cluster) problem

in the complement graph. In this section, we analyze whether these optimality con-

ditions can be extended to s-stable clusters when s ≥ 2.

First, consider the following notations which will be used in this section. Let PsG

denote the family of all s-stable clusters in G, and let IkG denote the family of all

stable sets of cardinality k in G. For any P ∈ PsG and k = 1, 2, . . . , s, define N̄k(P )

as follows:

N̄k(P ) = {v ∈ U : U ∈ IkG and P ∪ U /∈ PsG},

and let N̄0(P ) = ∅. Define N̄(P ) = ∪sr=1N̄r(P ). Let c(P ) denote the cardinality of

set P in G. Next, we generalize the notion of augmenting subsets introduced in [45]

for vertex packing to s-stable clusters. For P ∈ PsG, let P̄ = V \P.
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Definition 18 Given a set P ∈ PsG, a subset I ⊆ P̄ is called an augmenting subset

to P , if (P ∪ I)\R ∈ PsG and c((P ∪ I)\R)) > c(P ) for some subset R ⊆ P .

It is easy to see that P is an optimum s-stable cluster if and only if there exists no

augmenting subset to P in G. The augmenting subset admits the following equivalent

characterization.

Proposition 4.2.1 Given a set P ∈ PsG, a subset I ⊆ P̄ is an augmenting subset to

P if and only if I ∈ PsG, and there exists R ⊆ (P ∩ N̄(I)) such that (P ∪ I)\R ∈ PsG

and c(I) > c(R).

Proof First, note that for any subset S ⊆ V \N̄(I) such that S ∈ PsG, we have

I ∪ S ∈ PsG. Hence, if R ⊆ P is such that I ∪ R /∈ PsG, then R ⊆ N̄(I) ∩ P .

Hence, if I is an augmenting subset to P , then by Definition 18, there exists R ⊆ P

such that (P ∪ I)\R) ∈ PsG, and c((P ∪ I)\R) > c(P ), implying that I ∈ PsG and

c(I) > c(R) for some R ⊆ N̄(I) ∩ P . To show the other direction, it is easy to see

that if there exists R ⊆ (P ∩ N̄(I)) such that (P ∪ I)\R ∈ PsG and c(I) > c(R), then

c((P ∪ I)\R)) > c(P ), and the result follows.

Given I ⊆ P̄ , let P (I) be the smallest subset of P∩N̄(I) such that (P∪I)\P (I) ∈

PsG. Then, c(I) > c(R) ≥ c(P (I)).

When s = 1, given P, I ∈ PsG in G such that P ∩ I = ∅, checking if I is an

augmenting subset to P is easy, as P (I) = P ∩ N̄(I) such that (P ∪ I)\P (I) ∈ PsG,

can be found in polynomial time. However, when s ≥ 2, P (I) is a subset of P ∩N̄(I),

which gives way to two problems, namely, the hardness of finding P (I) and checking

if I is an augmenting subset to P .

Theorem 4.2.2 Given a graph G = (V,E) and sets P, I ∈ PsG such that P ∩ I = ∅,

finding the smallest set P (I), such that (P ∪ I)\P (I) ∈ PsG is NP-hard.
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Proof For any s ≥ 2, we give a reduction from an instance of clique on s-stable

clusters, which can be proved NP-complete using a reduction from max 2-sat, to an

instance G′s = (V ′s , E
′
s), P, I of the augmentation subset problem. The construction

of G′s = (V ′s , E
′
s) is as follows. Let Gi = (Vi, Ei), i = 1, . . . , s − 1, be copies of the

complete graph Kn+1 on n+1 vertices, where Vi = {0i, 1i, . . . , ni}, ∀i = 1, . . . , (s−1).

Let V ′s = (∪s−1
i=1Vi)∪V ∪{u0} and E ′s = (∪s−1

i=1Ei)∪E∪Eu0∪E ′u0 , where Eu0 = {(0i, u0) :

i = 1, . . . , s − 1} and E ′u0 = {(v, u0) : ∀v ∈ V }. This completes the construction of

G′s with P = V and I = V ′s\V . It is easy to see that P, I ∈ P s
G′

s
. We now prove that

a clique of the largest cardinality in G correspond to the smallest set P (I) such that

(P ∪ I)\P (I) ∈ PsG, and vice-versa.

First, note that the sets {i1, i2, . . . , is−1}, for each i = 0, 1, . . . , n are stable sets

of size s − 1, that is α(I) = s − 1. Hence, any set P ′ ⊆ P such that P ′ ∪ I ∈ PsG,

must be a clique as otherwise, for any u, v ∈ P ′ such that (u, v) /∈ E, the set

{u, v, i1, i2, . . . , is−1} will be a stable set of size s + 1. This implies that a clique of

maximum cardinality P ′ in G will imply the smallest set P (I) = P\P ′ such that

P ′∪ I ∈ PsG. Similarly, if P (I) is the smallest set such that (P ∪ I)\P (I) ∈ PsG, then

P\P (I) is a maximum clique in G.

Theorem 4.2.3 Given a graph G = (V,E) and sets P, I ∈ PsG such that P ∩ I = ∅,

checking if I is an augmenting subset to P is NP-hard, for any fixed s ≥ 3.

Proof We give a reduction from an instance φ of 3-sat to an instanceG = (V,E), P, I

of the augmentation subset problem such that φ is satisfiable if and only if I is an

augmenting subset to P . The construction of G = (V,E) is as follows.

Let φ = C1 ∧C2 ∧ · · · ∧Cm be a 3-CNF with m clauses, and for r = 1, . . . ,m, Cr

has exactly 3 distinct literals lr1, l
r
2, l

r
3. Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gs−1 =

(Vs−1, Es−1) be such that for each clause Cr = (lr1, l
r
2, l

r
3) in φ, we place three vertices
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vr1
(p), vr2

(p), vr3
(p) into Vp, for p = 1, 2, . . . , (s − 1), and we put an edge between 2

vertices vri
(p) and vsj

(p) in Vp if the following conditions hold:

• the literals corresponding to vri
(p) and vsj

(p) are in different clauses, that is r 6= s.

• the literals corresponding to vri
(p) and vsj

(p) are consistent, that is lri and lsj are

not negations of each other.

Let Ẽ be the edge set between the sets Va and Vb, for all distinct pairs a, b ∈

{1, 2, . . . , s− 1}. Then, for any two vertices vri
(a) ∈ Va , vsj

(b) ∈ Vb, (vri
(a), vsj

(b)) ∈ Ẽ,

if the following conditions hold:

• when the literals corresponding to vri
(a) and vsj

(b) belong to the same clause,

that is when r = s, the literals are the same, that is i = j.

• when the literals corresponding to vri
(a) and vsj

(b) doesn’t belong to the same

clause, that is when r 6= s, they are not negations of each other.

Let the graph G′ = (V ′, E ′) be such that V ′ = ∪s−1
i=1Vi, and E ′ = (∪s−1

i=1Ei) ∪ Ẽ.

Then, it is easy to see that for any vri
(a), vsj

(b) ∈ V ′ such that (vri
(a), vsj

(b)) /∈ E ′,

either the literals corresponding to both the vertices belong to the same clause when

a = b, or they are not consistent. Hence, for any three vertices vri
(a), vsj

(b), vtk
(c) ∈ V ′

we have, NG′ [vri
(a)] ∪ NG′ [vsj

(b)] ∪ NG′ [vtk
(c)

] = V ′, implying that α(G′) = 3. Let

G′′1, G
′′
2, . . . , G

′′
s−1 be (s−1) identical copies of a complete graph on 2m vertices, where

m is the number of clauses in the 3-sat instance φ. Denote the vertex set and edge set

of the rth such copy respectively by V ′′r and E ′′r , where V ′′r = {0r, 1r, . . . , (2m− 1)r},

and E ′′r = {(ir, jr) : j > i, i = 0, 1, . . . , 2m − 1}. Let the graph Ǵ = (V́ , É) be such

that V́ = (∪s−1
i=1V

′′
i ) ∪ {u0}, and É = (∪s−1

i=1E
′′
i ) ∪ Eu0 , where Eu0 = {(u0, 0r) : r =

1, 2, . . . s− 1}. It is easy to see that α(Ǵ) = s, since the set {u0, i1, i2, . . . , is−1}, for

i = 0, 1, . . . , 2m−1 is an independent set of size s. Finally, we have G = (V,E), with
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V = V ′ ∪ V́ , and E = E ′ ∪ É ∪ Ê, where Ê = {(u0, v) : ∀v ∈ V ′}. This completes

the construction of G, with P = V ′ and I = V́ such that c(I) = 2m(s− 1) + 1, and

c(P ) = 3m(s− 1). Then, we have P, I ∈ PsG, and P ∩ I = ∅.

First note that I is an augmenting subset to P if and only if, for any subset

P ′ ⊆ P such that P ′ ∪ I ∈ PsG, P ′ is a clique and c(P\P ′) ≤ 2m(s− 1).

Suppose φ has a satisfying assignment, then each clause Cr contains at least one

literal lri that is assigned 1, and each such literal corresponds to a vertex vri
(p), for

p = 1, . . . , s − 1. Picking one such true literal from each clause yields a set P ′ of

m(s−1) vertices. Then by the construction of G, we know that P ′ is a clique. Hence,

I ∪ P ′ ∈ PsG, and c(I) > c(P\P ′), implying that I is an augmenting subset to P .

Conversely, suppose I is an augmenting subset to P , then we have the smallest

set P (I) such that (P ∪ I)\P (I) ∈ PsG and c(P (I)) ≤ 2m(s− 1). This implies that,

there exists a set P ′ = P\P (I), which must be a clique of size at least m(s−1). Note

that no edges in G′ connect vertices that correspond to literals that are negations

of each other, or to literals that are in the same clause, unless the vertices are in

distinct sets Va, Vb ⊆ V , a 6= b. Hence the size of the maximum clique in G′ can be

at most m(s− 1), with m vertices each from Gi, for i = 1, . . . , s− 1. Hence, since I

is an augmenting subset to P , we have a clique P ′ of size m(s−1). By taking a copy

Gp for some p ∈ {1, 2, . . . , s− 1}, and by assigning 1 to literal lri such that vri
(p) ∈ Vp

is in the clique, we ensure that each clause is satisfied in the given 3-sat instance φ,

and hence φ is satisfied.

The characterization of an augmenting subset yielded a local sufficient condition for

optimality for the vertex packing problem [45], which can be generalized as follows.

Theorem 4.2.4 If P is an optimum s-stable cluster in Ĝ which is the graph induced

by P ∪ N̄(P ), then P ⊆ P ∗, where P ∗ is an optimum s-stable cluster in G.
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Proof Let P ′ be an optimum stable set in G′, the graph induced by V ′ = V \(P ∪

N̄(P )), and let P ∗ = P ∪P ′, and P̄ ′ = V ′\P ′. Define P̄ ∗ = N̄(P )∪ P̄ ′ and let I ⊆ P̄ ∗

such that I ∈ PsG. Define I = I1∪I2, where I1 = I∩N̄(P ), I2 = I∩P̄ ′, and I1∩I2 = ∅.

Consider a smallest subset P ∗(I) ⊆ P ∗∩N̄(I), such that (P ∗∪I)\P ∗(I) ∈ PsG. Then,

since P ∩ N̄(I2) = ∅ we have,

P ∗ ∩ N̄(I) = (P ∪ P ′) ∩ N̄(I)

= (P ∩ N̄(I)) ∪ (P ′ ∩ N̄(I)).

Note that, P ∪ I2 ∈ PsG, and hence, P ∩ N̄(I2) = ∅. Then, we claim that P ∩ N̄(I) =

P ∩ N̄(I1). Suppose not, then there exists a set of vertices R ⊆ P and H ⊆ I, such

that R ∪H /∈ PsG, and H ∩ I2 6= ∅. Then, H ⊆ N̄(P ) implying that I2 ∩ N̄(P ) 6= ∅,

and hence P ∪ I2 /∈ PsG which is not true. Then,

P ∗ ∩ N̄(I) = (P ∩ N̄(I1)) ∪ (P ′ ∩ N̄(I1)) ∪ (P ′ ∩ N̄(I2))

∪((P ′ ∩ N̄(I))\((P ′ ∩ N̄(I1)) ∪ (P ′ ∩ N̄(I2))).

Let P ∗(I) = A1 ∪ A2 ∪ A3 ∪ A4, where A1 ⊆ P ∩ N̄(I1), A2 ⊆ P ′ ∩ (N̄(I1)\N̄(I2)),

A3 ⊆ P ′ ∩ N̄(I2), and A4 ⊆ (P ′ ∩ N̄(I))\((P ′ ∩ N̄(I1)) ∪ (P ′ ∩ N̄(I2)) . Then,

A2 ∩ P = ∅, A3 ∩ P = ∅. This implies that, since (P ∗ ∪ I)\P ∗(I) ∈ PsG, we have

(P ∪ I1)\A1 ⊆ (P ∗ ∪ I)\P ∗(I), and (P ∪ I1)\A1 ∈ PsG. Hence, due to optimality of

P in P ∪ N̄(P ), and since I1 ⊆ N̄(P ), using Proposition 4.2.1 we have,

c(I1) ≤ c(A1) ≤ c(A1 ∪ A2). (4.1)

Similarly, since A1 ∩ P ′ = ∅, A2 ∩ N̄(I2) = ∅, and (P ′ ∪ I2)\A3 ⊆ (P ∗ ∪ I)\P ∗(I), we
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have (P ′ ∪ I2)\A3 ∈ PsG. Hence, due to the optimality of P ′ in P ′ ∪ P̄ ′, and since

I2 ⊆ P̄ ′, we have

c(I2) ≤ c(A3) ≤ c(A3 ∪ A4). (4.2)

Summing up inequalities (4.1) and (4.2), we have

c(I) = c(I1) + c(I2) ≤ c(A1 ∪ A2) + c(A3 ∪ A4),

and since A1, A2, A3 and A4 are disjoint sets,

c(I) ≤ c(A1 ∪ A2 ∪ A3 ∪ A4) = c(P ∗(I)).

Since P ∗(I) is the minimum possible set of vertices in P ∗ ∩ N̄(I) such that (P ∗ ∪

I)\P ∗(I) ∈ PsG, no such augmenting set I of P ∗ exists, and hence, using proposi-

tion 4.2.1, P ∗ is an optimum s-stable cluster in G and the result follows.

4.3 The s-Stable Cluster Polytope

Consider a graph G = (V,E) with |V | = n. For any set A ⊆ V , let xA denote

the incidence vector of A. Let Is+1 denote the family of all independent sets of size

s+ 1 in G and A be a |Is+1| × n matrix, whose rows correspond to independent sets

of size s+ 1. Then, the maximum s-stable cluster can be formulated as:

ωs(G) = max
∑
i∈V

xi (4.3)

subject to Ax ≤ s (4.4)

x ∈ {0, 1}n (4.5)
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Constraint (5.2) ensures that the subgraph induced by the subset of vertices {i : xi =

1} is an s-stable cluster. Let LPs(G) = {x ∈ Rn : Ax ≤ s, x ≤ 1} be the feasible

region of the linear programming(LP) relaxation of the above formulation given by

max
x∈LP s

G

∑
i∈V

xi. (4.6)

If x is an extreme point of LP s
G, then the values of xj,∀j ∈ V includes 0, 1 or

s
s+1

. Then we have the following generalization of the result given in [45] for vertex

packing.

Lemma 4.3.1 If the optimal solution x to (4.6) is given by xj = s
s+1

,∀j ∈ V , then

it is the unique solution to (4.6) if and only if ∀P ∈ P s
G,

c(P ) <
s∑
r=1

s− (r − 1)

r
c(N̄r(P )\ ∪r−1

k=0 N̄k(P )). (4.7)

Proof Suppose there exists P ∈ P s
G such that,

c(P ) ≥
s∑
r=1

s− (r − 1)

r
c(N̄r(P )\ ∪r−1

k=0 N̄k(P ))

⇐⇒ (1− s

s+ 1
)c(P ) ≥

s∑
r=1

(
s

s+ 1
− r − 1

r
)c(N̄r(P )\ ∪r−1

k=0 N̄k(P ))

⇐⇒ c(P ) +
s∑
r=1

r − 1

r
c(N̄r(P )\ ∪r−1

k=0 N̄k(P )) ≥ s

s+ 1
(c(P ) +

s∑
r=1

c(N̄r(P )\ ∪r−1
k=0 N̄k(P )))

⇐⇒ c(P ) +
s∑
r=1

r − 1

r
c(N̄r(P )\ ∪r−1

k=0 N̄k(P )) ≥ s

s+ 1
[c(V )− c(V \(P ∪ N̄(P )))]

⇐⇒ c(P ) +
s∑
r=1

r − 1

r
c(N̄r(P )\ ∪r−1

k=0 N̄k(P )) +
s

s+ 1
c(V \(P ∪ N̄(P ))) ≥ s

s+ 1
c(V )

⇐⇒ cx′ ≥ cx, for some feasible solution x′,
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where

x′j =


1 j ∈ P

r−1
r

j ∈ N̄r(P )\ ∪r−1
k=0 N̄k(P ),∀r = 1, .., s

xj j ∈ V \(P ∪ (∪sr=1N̄r(P ))),

(4.8)

implying that x is not the unique solution.

Note that, if P is maximal in Lemma 4.3.1, then N̄(P ) = N̄1(P ).

The s-stable cluster polytope of G, denoted by Ps(G), is the convex hull of the

incidence vectors of all the s-stable clusters in G. The following theorem establishes

the basic properties of Ps(G).

Theorem 4.3.2 (Full dimension) Let Ps(G) denote the s-stable cluster polytope of

G. Then,

1. dim(Ps(G)) = |V |.

2. xv ≥ 0 induces a facet of Ps(G) for every v ∈ V .

3. For s ≥ 2, xv ≤ 1 induces a facet of Ps(G) for every v ∈ V .

Proof Let ei be the unit vector with ith component 1 and the rest zero.

1. The points 0, ei,∀i ∈ V are |V | + 1 affinely independent points in Ps(G), and

hence, dim(Ps(G)) = |V |.

2. Let F 0
v = {x ∈ Ps(G) : xv = 0}. Then 0, ew,∀w ∈ V − {v} are |V | affinely

independent points in F 0
v . Hence, dim(F 0

v ) = |V | − 1 and it is a facet.

3. For s ≥ 2, let F 1
v = {x ∈ Ps(G) : xv = 1}. Then ev, ev + ew,∀w ∈ V − {v} are

|V | affinely independent points in F 1
v . Hence, dim(F 1

v ) = |V | − 1 and it is a

facet.
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Lemma 4.3.3 Let I denote an independent set of size at least s + 1. Then the

inequality
∑

v∈I xi ≤ s induces a facet of Ps(G) if and only if I is maximal.

Proof Let I be any maximal independent set in G, and let FI = {x ∈ Ps(G) :∑
v∈I xv = s} denote the face induced. Let there be a valid inequality αx ≤ β such

that F = {x ∈ Ps(G) : αx = β} ⊇ FI . For every S ⊆ I such that |S| = s, xS ∈ F

and hence, αxS = β. This implies that αv = αw = α, ∀v, w ∈ I, and β = sα. Since

I is maximal, for each v ∈ V \I let Sv ⊆ I be such that |Sv| = s, and there exists a

vertex u ∈ Sv such that (u, v) ∈ E. Then, we have xSv∪{v}, xSv in FI . This implies

that αv = 0,∀v ∈ V \I, and
∑

v∈I αxv = sα. Hence, F 3
I is a maximal face, and hence

a facet.

For the other direction, let I not be maximal and
∑

v∈I xv ≤ s induces a facet of

Ps(G). Then, there exists an independent set I ′ such that I ⊂ I ′, and
∑

v∈I′ xv ≤ s

is valid for Ps(G) and subsumes
∑

v∈I xv ≤ s implying that it cannot be a maximal

face.

Let I denote the family of all maximal independent sets in G, and B be a |I|×n

matrix, whose rows correspond to maximal independent sets in G. Then, we can

alternatively formulate the maximum s-stable cluster problem as:

ωs(G) = max
∑
i∈V

xi (4.9)

subject to Bx ≤ s (4.10)

x ∈ {0, 1}|V | (4.11)

Note that B can be restricted to contain maximal independent sets of size at least

s + 1. In general, the number of maximal independent sets in a given graph may
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be exponential and hence, solving this formulation is difficult. In fact, the maximal

independent set formulation for the maximum clique problem is proved to be hard

to solve. Next, we prove some classes of facets for the s-stable cluster polytope.

4.3.1 Hereditary Property

Let Π be any hereditary property of graphs. Given a graph G = (V,E), let the

edge set E ′ be such that G = (V,E ′) is a complete graph, and let θΠ(G) denote the

cardinality of the largest induced subgraph in G satisfying Π. Denote by PΠ(G) the

convex hull of all the incidence vectors satisfying property Π in G.

For any given hereditary property Π, an edge e ∈ E ′\E is called an essential edge

of G if θΠ(G+e) = θΠ(G)+1. The following theorem is a variant and a generalization

of a result and proof given by Chvátal [11] for the stable set polytope, which was

also proved to be true for the co-s-plex polytope [41].

Theorem 4.3.4 Let G = (V,E) be a graph and E∗ ⊆ E ′\E be the set of essential

edges of G for a given property Π. If G∗ = (V,E∗) is connected then the inequality

∑
v∈V

xv ≤ θΠ(G)

induces a facet of PΠ(G).

Proof We show that the proof given in [41] works for all graphs satisfying the given

conditions. Let G satisfy the given conditions and let |V | = n. Let PΠ(G) = {x ∈

Rn
+|

∑
v∈V αivxv ≤ bi, i ∈ I}, where the inequalities are all the facets excluding the
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non-negativity constraints. We consider the dual programs.

max{
∑
v∈V

xv|x ≥ 0,
∑
v∈V

αivxv ≤ bi, i ∈ I}

min{
∑
i∈I

λibi|λ ≥ 0,
∑
i∈I

αivλi ≥ 1, v ∈ V }.

An optimal solution λ∗ to the minimization problem above satisfies
∑

i∈I λibi =

θΠ(G). Let there be a vertex k ∈ V and by dual feasibility there exists j ∈ I such

that λ∗j , αjk > 0. Let (u,w) ∈ E∗. Then there exists incidence vectors y ∈ PΠ(G)

and z ∈ PΠ(G) such that,

∑
v∈V

yv =
∑
v∈V

zv = θΠ(G) (4.12)

with,

yu = zw = 1, yw = zu = 0, and yv = zv∀v ∈ V \{u,w}. (4.13)

Then

∑
v∈V

αjvyv =
∑
v∈V

αjvzv = bj. (4.14)

Suppose not, then WLOG let
∑

v∈V αjvzv < bj. Then,

∑
v∈V

zv ≤
∑
v∈V

(
∑
i∈I

αivλi)zv =
∑
i∈I

(
∑
v∈V

αivzv)λi ≤
∑
i∈I

λibi = θΠ(G),

contradicting (4.12). Now, equations (4.12) and (4.13) imply that αju = αjw, and

this holds for any (u,w) ∈ E∗. Now, since G∗ is connected, we have µ = αjv = αjk >
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0,∀v ∈ V , for some positive scalar µ. Hence, equations (4.12) and (4.14) imply that

bj =
∑
v∈V

αjvzv = µ
∑
v∈V

zv = µθΠ(G),

implying that the inequality
∑

v∈V xv ≤ θΠ(G) induces a facet of PΠ(G).

An s-stable cluster is a hereditary property on graphs such that e ∈ E ′\E is an

essential edge if ωs(G+ e) = ωs(G) + 1 . Then, we have the following corollary.

Corollary 4.3.5 Let G = (V,E) be a graph and E∗ ⊆ E ′\E be the set of essential

edges of G for an s-stable cluster. If G∗ = (V,E∗) is connected then the inequality∑
v∈V xv ≤ ωs(G) induces a facet of Ps(G).

4.3.2 Paths, Holes, & Wheels

In general, classes of facets induced by paths, holes and wheels have been devel-

oped for some clique relaxation models that include co-s-plex [41].

Let P n denote the path on n vertices. If n ≤ 2s, then P n is an s-stable cluster

as the size of any maximal independent set in P n is s. For n > 2s, we have the

following result.

Lemma 4.3.6 ωs(P
n) = 2s, ∀n > 2s,∀s ≥ 1.

Proof Given a path P n, label the vertices with {1, .., n} such that, vertex i is adja-

cent to vertices i−1, i+1, ∀i ∈ {2, .., n−1}. Then, any consecutive set of 2s vertices

is an s-stable cluster. Hence, αs(P
n) ≥ 2s. For the other inequality, note that the

set of odd vertices and even vertices respectively form maximal independent sets in

P n. As the maximal independent set inequalities induce facets of Ps(G), we have,

ωs(G) ≤
∑

v∈Pn xv ≤ 2s.
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Let Hn denote a hole (induced chordless cycle) on n vertices. If n ≤ 2s+ 1, then

Hn is an s-stable cluster. If n ≥ 2s + 2, then Hn is not an s-stable cluster as there

exists an independent set of size at least s+ 1.

Lemma 4.3.7 ωs(H
n) = 2s, ∀n ≥ 2s+ 2, s ≥ 1.

Proof Label the vertices in Hn with {1, 2, .., n} such that N(1) = {2, n}, N(n) =

{1, n − 1}, N(i) = {i − 1, i + 1},∀i ∈ {2, .., n − 1}. Then, any set of 2s consecutive

vertices is an s-stable cluster and hence, αs(H
n) ≥ 2s. Consider the cases:

1. n is even: The set of odd vertices and even vertices form maximal independent

sets in Hn. Hence, using the argument in Lemma 4.3.6 the result follows.

2. n is odd : Consider the following maximal independent sets of size n−1
2

: Ii =

{i, (i+ 2) mod n, (i+ 4) mod n, ..., (n+ (i− 3)) mod n},∀i ∈ {1, .., n}. The

number of such sets is n, and each vertex occurs exactly in n−1
2

inequali-

ties. Since they are maximal independent sets, we have
∑

v∈Ii xv ≤ s,∀i ∈

{1, 2, .., n}. Summing the n inequalities,

∑
v∈Hn

xv ≤ 2s
n

n− 1
=⇒

∑
v∈Hn

xv ≤ b2s+
2s

n− 1
c.

Since n ≥ 2s+ 2, we have, ωs(H
n) ≤

∑
v∈Hn xv ≤ 2s, and the result follows.

Theorem 4.3.8 Let G = (V,E) be an odd hole on n vertices with n > 2s+ 1. Then

the inequality
∑

i∈V xi ≤ 2s induces a facet of Ps(G).

Proof We will prove this result using Corollary 4.3.5. In an odd hole, any consec-

utive set of 2s − 2 vertices S ⊂ V form an (s − 1)-stable cluster. Then, for any

i ∈ {1, 2, . . . , n}, there exists an edge (i, (i mod n) + 1) ∈ E such that (i, v), ((i

mod n) + 1, v) /∈ E for any v ∈ S, and the set S ′ = S ∪ {i, (i mod n) + 1} is an
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s-stable cluster of size 2s. If we add an edge (i, (i mod n) + 2) to G, then the set

{i, (i mod n) + 1, (i mod n) + 2} forms a triangle, and the set S ′∪{(i mod n) + 2}

forms an s-stable cluster of size s + 1. Hence the edge (i, (i mod n) + 2) is an es-

sential edge of G. This is true for any pair of vertices i, (i mod n) + 2 ∈ V , for

i ∈ {1, 2, . . . , n}, and if E ′ is the edge set such that G = (V,E ′) is a complete graph,

then the set of edges E∗ = {(i, (i+ 2) mod n) ∈ E ′ : ∀i = 1, 2, . . . , n} is an essential

edge set of G for an s-stable cluster. Then G∗ = (V,E∗) is a Hamilton cycle, and by

Corollary 4.3.5, the inequality
∑

v∈Hn xv ≤ 2s induces a facet of Ps(H
n).

A wheelW n+1 on n+1 vertices is a graph containing a holeHn and an extra vertex

u, such that u is adjacent to each v ∈ Hn. It is easy to see that ωs(W
n+1) = 2s+ 1.

Then,
∑

v∈Wn+1 xv ≤ 2s+ 1 is valid for Ps(W
n+1).

Corollary 4.3.9 For n odd, and n > 2s+1, the inequality
∑

v∈Hn xv ≤ 2s is a facet

of PS(W n+1).

Proof We prove the result by lifting the odd hole inequality given in Theorem 4.3.8.

By Theorem 4.3.8,
∑

v∈Hn xv ≤ 2s induces a facet of Ps(H
n). Let u be the ad-

ditional vertex in W n+1 such that u is adjacaent to all v ∈ Hn, and let αu =

2s−max{
∑

v∈Hn xv : x ∈ Ps(W n+1), xu = 1}. Then, αuxu +
∑

v∈Hn xv ≤ 2s induces

a facet of Ps(W
n+1), and we know that αu = 0. Hence,

∑
v∈Hn xv ≤ 2s induces a

facet of Ps(W
n+1).

Now, we provide a class of graphs, for which there exists a complete description

for the s-stable cluster polytope. Let B′x ≤ s be the restricted set of inequalities

given by (4.10), that only includes the maximal independent sets of size at least s+1.

Theorem 4.3.10 Let G = (V,E) be a union of paths P1, P2, . . . Pr, r ≥ 1 such that

|V | ≥ s+ 1. Then Ps(G) = {x ∈ Rn
+ : B′x ≤ s, x ≤ 1}, s ≥ 2.
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Proof Suppose Ps(G) 6= {x ∈ Rn
+ : B′x ≤ s, x ≤ 1}. Then, there exists a facet

Fα = {x ∈ Ps(G) : αx = β}, where the inequality αx ≤ β is neither induced

by any maximal independent set nor is a positive scalar multiple of the inequality

x ≤ 1. First, note that G can be written as a disjoint union of at most two maximal

independent sets, as G is a union of connected components P1, P2, ..Pr, r ≥ 1 where

each Ci denotes a path. Then, V = H1 ∪ H2, where H1, H2 are disjoint maximal

independent sets of G. To see this, consider a component Pp, such that |Pp| is odd.

Then, we can split this into two independent sets Pp1 and Pp2 of cardinality |Pp+1

2
|

and |Pp−1

2
|, respectively. Similarly, if |Pp| is even, we get two independent sets Pp1

and Pp2 , each of size |Pp

2
|. Then, H1 = ∪p∈{1,..,r}Pp1 , and H2 = ∪p∈{1,..,r}Pp2 are two

disjoint maximal independent sets of G, such that H1 is the largest independent set

in G.

Given that Fα = {x ∈ Ps(G) : αx = β} is a facet of Ps(G), we have β = max{αx :

x ∈ Ps(G)}. If |H1| < s+1, then ωs(G) = |V |, and Fα ⊆ {x ∈ Ps(G) : xi = 1}. Then,

by Theorem 4.3.2, Fα is not a facet. If |H1| ≥ s+1, we claim that Fα ⊆ {x ∈ Ps(G) :∑
i∈H1

xi = s}. Suppose not. Then, for each x ∈ Fα, there is a maximal independent

set I that is satisfied at equality, as otherwise β 6= max{αx : x ∈ Ps(G)}. Then,

for each i ∈ I such that xi = 1, either i is an isolated vertex in G, in which case

i ∈ H1, or, if i is not an isolated vertex and i /∈ H1, then there exists j ∈ V such

that j ∈ N(i) and xj = 1, in which case j ∈ H1. Note that the maximum number

of such vertices possible is s, and hence
∑

i∈H1
xi = s. This implies that ∀x ∈ Fα,∑

i∈H1
xi ≤ s is always satisfied at equality, and Fα ⊆ {x ∈ Ps(G) :

∑
i∈H1

xi = s}.

Hence, for any α > 0, s ≥ 2, αx ≤ β does not induce a facet of Ps(G).

Corollary 4.3.11 Ps(P
n) = {x ∈ Rn

+ : B′x ≤ s, x ≤ 1}, s ≥ 2.

Corollary 4.3.12 Ps(H
n) = {x ∈ Rn

+|B′x ≤ s,
∑

i∈V (Hn) xi ≤ 2s, x ≤ 1}, for n
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odd, n ≥ 2s+ 2.

Proof Suppose not. Then, there exists a facet F = {x ∈ Ps(Hn)|αx = β}, where the

inequality αx ≤ β is not induced by the vertex set V (Hn), any maximal independent

set, or is a positive scalar multiple of the inequality x ≤ 1. Define Vα = {v ∈ V :

αv > 0} and consider the graph G[Vα]. G[Vα] is either a connected path or a set of

disconnected paths, and F induces a facet of Ps(G[Vα]), which is contradiction to

Theorem 4.3.10.

Corollary 4.3.13 Ps(H
n) = {x ∈ Rn

+|B′x ≤ s, x ≤ 1}, for n even, n ≥ 2s+ 2.

4.4 Exact Algorithms

In this section we describe two exact algorithms for the maximum s-stable cluster

problem, and discuss their performance on various graphs, when s = 2. In particular,

we implement a branch and cut framework, and adapt a combinatorial branch and

bound algorithm for hereditary structures for the maximum s-stable cluster problem.

4.4.1 Branch & Cut Algorithm

Here, we discuss the implementation of the branch and cut algorithm for the

maximum s-stable cluster problem, when s = 2. The implementation is done using

ILOG CPLEX 11.0 framework with the CPLEX callback functions. This framework

is very advantageous as it has effective default settings for branching process, node

selection and allows the user to customize the branch and cut algorithm in CPLEX

that includes the separation and addition of user-defined cuts.

In our implementation, we only test the performance of the maximal indepen-

dent set inequalities for the maximum s-stable cluster problem. Preliminary com-

putational experiments shows that, the upper bound obtained by solving the LP

relaxation given by (4.3)-(4.5) is very weak. Hence, we strengthen this relaxation by
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adding O(n2) maximal independent set inequalities (4.10), generated using Heuris-

tic 3, and use it in the branch and cut algorithm for finding a strong upper bound

in the root node. Ideally, it is enough to solve the LP relaxation given by maximal

independent set inequalities that subsumes the inequalities given by (5.2). How-

ever, generating all these inequalities is tedious, and hence this approach is not used.

Given an LP solution, we apply the greedy heuristic used by Balasundaram et al [5]

for the k-plex problem, to identify the violated maximal independent set inequalities.

Separation of MIS: Given an LP solution x for the maximum s-stable cluster

problem, we remove all the vertices in V for which xv = 0 to obtain V ′. For generating

a maximal independent set I, we initialize I with every vertex from V ′. We find a

vertex with minimum degree from G[V ′\N [I]] to update I, and repeat this step until

V \N [I] is empty.

In addition, we turned off all the CPLEX generated cuts, as we found that

adding these cuts increased the computation time, but we used the default settings in

CPLEX for the branching process. We set a time limit of 3 hours using the CPLEX

parameter TiLim. The algorithm terminates if the problem is infeasible or it reports

the best integer feasible solution and the upper bound on the optimal solution, if

optimality is not reached within the time limit.

4.4.2 Algorithms for Hereditary Structures

Given a graph G = (V,E) and a hereditary property Π, Tukhanov et el. [60] gave

an exact algorithmic framework for detecting optimal structure satisfying Π. This

is an exact combinatorial branch and bound algorithm that chooses a candidate

set C from V , and finds the optimal set of vertices S satisfying property Π from

C. This procedure is iterated by adding a vertex from V \C to the candidate set

C, and updating the optimal solution, until V \C = ∅. In each iteration, given
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Heuristic 1 Greedy Heuristic to Generate O(n2) MIS.

1: for i ∈ V do
2: for j ∈ V \N [i] do
3: I = {i, j}
4: for v = j + 1, . . . , |V |+ j − 1 do
5: u = v mod |V |
6: if u /∈ N [I] then
7: I = I ∪ {u}
8: end if
9: end for
10: end for
11: end for

a candidate set C and the current feasible solution S, an updated candidate set

C ′ ⊆ C\S is obtained, which satisfies the property that S∪{v} is a feasible solution,

for every v ∈ C ′. This updated candidate set C ′ is obtained using a simple verification

procedure based on property Π that, given a candidate set C and a feasible solution

S ⊆ C, checks if S ∪ {v} is a feasible solution, for every v ∈ C\S. The complete

details of this algorithm can found in [60].

We know that the s-stable cluster is a hereditary property on induced subgraphs,

and hence we can adapt their algorithm by giving a suitable verification procedure.

Given a candidate set C and an s-stable cluster S ⊆ C, it should be noted that the

most straight forward way to verify if S ′ = S∪{v} is also an s-stable cluster, for any

v ∈ C\S, is to ensure that there exists no stable set of cardinality s+ 1 in S ′. This

involves checking every s + 1 vertices in set S, and hence is a very tedious process

for large values of s. However, for small values of s, this procedure works well and

is given by Algorithm 2. Given a feasible solution S and a vertex v ∈ C\S, the

algorithm checks if S ∪ {v} is an s-stable cluster.
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Algorithm 2 Simple s-stable set verification procedure.

1: function Is2stableset(S,s,v)
2: NNi ←− non-neighbors of vertex i in S
3: for u ∈ S do
4: if (u, v) /∈ E then
5: NNv ←− NNv ∪ {u}
6: end if
7: end for
8: if α(G[NNv]) = s then
9: return false
10: end if
11: return true
12: end function

4.5 Computational Experiments

In this section, we discuss the computational results of the exact algorithms

implemented for s-stable clusters, when s = 2. All numerical experiments were run

on Dell Computer with Intelr Xeonr E5620 2.40 GHz processor and 12GB of RAM,

and CPLEX solver was used for the branch & cut implementation. The test bed

for the experiments consists of instances from the second and the tenth DIMACS

implementation challenges [16, 17], and some random instances [19]. The random

instances are based on G(n, p) model [19], where n represents the number of vertices

and p denotes the probability that two vertices are adjacent. We considered p values

of 0.75, 0.8, 0.85, 0.9, 0.95 and 0.25, 0.35, 0.45, 0.55, 0.65 to test the performance of the

algorithms, respectively on dense graphs and graphs of sparse and moderate density.

We also restricted the value of n to 200 as the branch and cut algorithm ran out

of memory for sparse graphs with more than 200 vertices, and as mentioned earlier,

we imposed a time limit of 3 hours on both algorithms. In all the tables given, the

branch and cut algorithm is denoted by “BC”, and the combinatorial branch and
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bound algorithm is denoted by “A2”.

Tables 4.1 & 4.2 show the running times in seconds for the algorithms, respectively

for random graphs with moderate and high density. The 2-stable cluster numbers for

graphs with moderate and high density obtained respectively by the combinatorial

branch and bound, and the branch and cut algorithms are given in Tables 4.3 &

4.4. The computational results for the DIMACS and coloring instances are given

in Table 4.5, which contains the instance information, including graph order, size,

density, the 2-stable clusters numbers found by the algorithms, and their run times

in seconds. In the tables, a run time of “>10800” implies that the algorithm could

not find an optimal solution within the time limit, in which case, the size of the

2-stable cluster found by the combinatorial branch and bound algorithm is denoted

by ≥, and for the branch and cut algorithm, the best integer solution and the bound

on the optimal solution found are reported.

From Tables 4.1 & 4.2, it is clear that both the algorithms perform well for

moderate and very dense graphs of size < 100. However, it can be noted that, for

graphs of cardinality ≥ 100, the branch and cut algorithm, in general, performs well

for dense graphs, which is evident from the running times that gradually increases

as the density of the graph decreases. This may be due to the fact that, in dense

graphs the number of maximum independent set inequalities violated is less, and

adding the O(n2) maximal independent set inequalities at the root node produces a

strong relaxation. Similarly, it can be observed that the combinatorial branch and

bound algorithm performs well for graphs of sparse and moderate density, which was

also evident from the computational results presented in [60]. The same phenomenon

is reiterated in the results presented for the DIMACS instances in Table 4.5. The

observation, that the branch and cut algorithm runs out of memory for large and

sparse graphs may be due to the separation heuristic employed for generating the
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Table 4.1: Comparison of run times (in sec) on random graphs (n > 50, p ≤ .65) for
s = 2.

n p = .25 p = .35 p = .45 p = .55 p = .65
A2 BC A2 BC A2 BC A2 BC A2 BC

50 0.02 4.06 0.02 9.32 0.04 4.33 0.07 6.04 0.3 0.88
60 0.07 23.8 0.11 22.24 0.22 33.51 0.99 20.22 3.44 7.35
70 0.07 96.13 0.27 155.74 1.22 105.6 3.09 91.8 11.32 24.97
80 0.13 305.75 0.57 407.4 2.06 503.97 33.95 454 67.26 59.3
90 0.22 1237.88 1.08 728.11 6.12 1859.44 87.33 1211.92 959.88 1574.02
100 0.27 2347.27 1.31 4114.34 25.31 7932.4 252.01 4139.52 6751.2 4072.31
110 0.85 4815.74 4.5 >10800 32.09 >10800 823.32 >10800 >10800 >10800
120 0.59 7479.3 9.89 >10800 224.09 >10800 6756.67 >10800 >10800 >10800
130 0.82 >10800 23.97 >10800 256.1 >10800 4790.84 >10800 >10800 >10800
140 3.96 >10800 43.08 >10800 840.55 >10800 >10800 >10800 >10800 >10800
150 3.98 >10800 121.04 >10800 2111.3 >10800 >10800 >10800 >10800 >10800
160 8.73 >10800 103.11 >10800 7148.36 >10800 >10800 >10800 >10800 >10800
170 16.26 >10800 332.86 >10800 6784.55 >10800 >10800 >10800 >10800 >10800
180 39.51 >10800 254.62 >10800 >10800 >10800 >10800 >10800 >10800 >10800
190 23.93 >10800 578.27 >10800 >10800 >10800 >10800 >10800 >10800 >10800
200 59.18 >10800 1109.59 >10800 >10800 >10800 >10800 >10800 >10800 >10800

Table 4.2: Comparison of run times (in sec) on random graphs (n > 50, p ≥ .75) for
s = 2.

n p = .75 p = .80 p = .85 p = .90 p = .95
A2 BC A2 BC A2 BC A2 BC A2 BC

50 1.41 0.25 1.05 0.16 0.32 0.05 0.35 0.02 0.02 0.02
60 9.11 0.46 7.77 0.29 1.38 0.04 0.16 0.02 0.02 0.04
70 156.57 6.09 112.26 1.00 189.94 0.16 0.32 0.02 0.04 0.02
80 1150.87 85.29 631.09 4.84 1216.89 2.27 45.42 0.07 0.04 0.05
90 7981.70 130.84 >10800 38.97 9121.37 0.82 1425.53 0.05 0.15 0.00
100 >10800 311.65 >10800 249.90 >10800 11.53 >10800 0.18 40.82 0.08
110 >10800 >10800 >10800 4223.68 >10800 42.61 >10800 0.44 41.72 0.04
120 >10800 >10800 >10800 3388.53 >10800 104.01 >10800 0.29 >10800 0.04
130 >10800 >10800 >10800 >10800 >10800 1582.26 >10800 0.58 >10800 0.10
140 >10800 >10800 >10800 >10800 >10800 9204.79 >10800 6.49 >10800 0.08
150 >10800 >10800 >10800 >10800 >10800 >10800 >10800 23.02 >10800 0.04
160 >10800 >10800 >10800 >10800 >10800 >10800 >10800 31.41 >10800 0.02
170 >10800 >10800 >10800 >10800 >10800 >10800 >10800 1509.59 >10800 0.05
180 >10800 >10800 >10800 >10800 >10800 >10800 >10800 >10800 >10800 0.05
190 >10800 >10800 >10800 >10800 >10800 >10800 >10800 >10800 >10800 0.04
200 >10800 >10800 >10800 >10800 >10800 >10800 >10800 >10800 >10800 0.16
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Table 4.3: 2-stable clusters found by A2 on random graphs.

n p = .25 p = .35 p = .45 p = .55 p = .65
50 9 11 13 16 21
60 10 12 14 18 23
70 10 13 15 20 25
80 11 13 16 20 28
90 11 14 17 23 26
100 11 14 18 22 29
110 12 14 18 23 ≥28
120 13 15 19 23 ≥29
130 12 15 19 25 ≥29
140 12 15 19 ≥24 ≥29
150 13 15 19 ≥24 ≥28
160 12 16 19 ≥23 ≥29
170 13 16 20 ≥25 ≥30
180 13 16 ≥20 ≥23 ≥30
190 14 16 ≥20 ≥23 ≥27
200 13 16 ≥21 ≥23 ≥29

violated maximal independent set inequalities, which is quite expensive. Overall, our

computational results suggest that the branch and cut algorithm performs well for

dense graphs, while the combinatorial branch and bound algorithm works well for

sparse and moderately dense graphs.

4.6 Conclusion

In this work, we introduced a new clique relaxation, namely s-stable cluster, for

modeling clusters with the independence number bounded by s. We studied some

basic properties associated with this model, and established the NP-completeness of

the maximum s-stable cluster problem, for any fixed positive integer s, on claw-free

graphs. In addition, we studied some optimality conditions established for stable

set problem, and analyzed their relevance for s-stable clusters, for s ≥ 2. Two
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Table 4.4: 2-stable clusters found by B&C on random graphs.

n p = .75 p = .80 p = .85 p = .90 p = .95
50 26 31 35 40 48
60 31 36 40 50 58
70 33 39 46 57 67
80 36 41 47 60 76
90 38 44 54 67 84
100 41 46 56 70 89
110 [39,41] 47 61 73 99
120 [42,45] 51 64 80 102
130 [41,48] [51,56] 66 86 113
140 [41,51] [52,59] 68 92 116
150 [42,56] [54,64] [70,74] 91 123
160 [46,60] [54,67] [69,78] 96 127
170 [43,63] [57,72] [73,84] 98 138
180 [44,65] [56,74] [74,86] [99,102] 142
190 [43,68] [54,77] [70,90] [102,107] 150
200 [43,72] [55,80] [73,93] [110,113] 157

Table 4.5: Compuational results for DIMACS Instances for s = 2.

Instance BC A2
Vertices Edges Density % ω2(G) time (sec) ω2(G) time (sec)

adjnoun 112 425 6.84 9 111.40 9 0.03
anna 138 493 5.22 18 10.35 18 0.02
c-fat200-1.clq 200 1534 7.71 24 85.45 24 0.08
c-fat200-2.clq 200 3235 16.26 46 97.80 46 0.06
c-fat200-5.clq 200 8473 42.58 116 6894.89 ≥99 >10800
david 87 406 10.86 19 1.16 19 0.02
dolphins 62 159 8.41 10 0.47 10 0.02
football 115 613 9.36 18 5.26 18 0.16
hamming6-2.clq 64 1824 90.48 64 0.02 64 0.02
hamming6-4.clq 64 704 34.93 10 3.55 10 0.01
hamming8-2.clq 256 31616 96.87 256 0.05 256 1.44
hamming8-4.clq 256 20864 63.93 32 76.80 32 1852.57
huck 74 301 11.15 20 0.55 20 0.01
ieeebus 118 179 2.60 7 104.38 7 0.02
jazz 198 2742 14.06 47 1300.38 47 0.07
johnson16-2-4.clq 120 5460 76.48 16 0.15 ≥16 >10800
johnson8-2-4.clq 28 210 55.56 8 0.04 8 0.01
johnson8-4-4.clq 70 1855 76.82 28 0.07 28 0.21
karate 34 78 13.91 9 0.08 9 0.03
kreb 62 153 8.10 11 0.52 11 0.01
MANN a27.clq 378 70551 99.02 261 0.07 261 2.28
MANN a9.clq 45 918 92.73 33 0.00 33 0.02
san200 0.7 1 200 13930 70.00 [48,53] >10800 ≥28 >10800
san200 0.7 2 200 13930 70.00 [35,36] >10800 ≥16 >10800
san200 0.9 1 200 17910 90.00 125 8.54 ≥75 >10800
san200 0.9 2 200 17910 90.00 114 30.74 ≥65 >10800
san200 0.9 3 200 17910 90.00 88 0.11 ≥46 >10800
sanr200 0.7 200 13868 69.69 [34,63] >10800 ≥33 >10800
sanr200 0.9 200 17863 89.77 [105,111] >10800 ≥65 >10800
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binary programming formulations are presented for the maximum s-stable cluster

problem, and different classes of facets are introduced for the associated polytope.

A branch and cut algorithm is implemented using a family of facets introduced, and

a combinatorial branch and bound algorithm for hereditary structures is adapted.

Computational experiments are performed for a number of random and standard

graph instances using both algorithms, and their results are compared.

This chapter presents more of a basic study of the s-stable cluster model, which

gives way to a number of research questions that needs to be answered. In view of

the fact that the s-stable cluster has a similar polyhedral structure as a clique, it

is imperative to analyze, if all the properties that hold for a clique polytope, still

hold true for s-stable clusters, when s ≥ 2. Another important question is, can a

relaxation be obtained for the maximum s-stable cluster problem, that finds as good

an upper bound as the Lovász [38] theta number is for the maximum clique problem?
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5. STRONG UPPER BOUNDS FOR THE MAXIMUM CLIQUE PROBLEM

In Chapters 2, 3, & 4, we discussed clique relaxation models for modeling cohe-

sive, robust and stable clusters, which were introduced to overcome the restrictive

nature of cliques, and are more practical and useful in various applications. This

however has not reduced the popularity that the maximum clique problem enjoys,

and it is still one of the well-studied problems in theoretical computer science. The

fact that the problem is NP-hard [27] and is hard to approximate [32], has made it

all the more challenging and interesting to study.

Motivated by these factors, many exact algorithms that use branch and bound

technique [46, 49, 51, 58, 66], enumerative algorithms [8, 59], and a number of heuris-

tics [9, 28] that approximate ω(G), have been developed. To this end, many convex

relaxations [50] that determine a good upper bound on ω(G) have also been proposed.

Perhaps the strongest results in this direction are related to the notion of Lovász

theta [38], denoted by θ(G), which satisfies the inequalities ω(G) ≤ θ(G) ≤ χ(G),

known as the sandwich theorem [35]. Here χ(G) is the chromatic number, which is

the minimum number of colors required for a proper coloring of G. Both ω(G) and

χ(G) are hard to compute, whereas θ(G) can be computed in polynomial time. The

Lovász theta and its stronger variants have been used to obtain tight upper bounds

on the clique number in several works [7, 31, 33, 37, 56]. However, computing such

bounds involves lifting to spaces of very high dimensions, making them applicable to

only small graphs in practice.

In this work, we take an alternative approach based on clique relaxation models

obtained by enforcing elementary clique-defining properties [52]. In such models, we

require that a subset of vertices satisfies a property that must hold for any clique
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of a fixed size k + 1. Then solving the problem of minimizing the size of such a

clique relaxation structure in G will yield a clique of size k + 1 whenever one exists,

and an empty set or a set of size greater than k + 1 if there is no clique of size

k + 1 in the graph. Hence, if a heuristic is available that produces a maximum

clique on some graph G, this approach can be used to verify the optimality of the

heuristic solution by either detecting infeasibility or establishing a nontrivial (that

is, better than k + 1) lower bound on the objective of the considered minimization

problem for k = ω(G). Hence, our objective in this work is to develop nontrivial,

easily computable lower bounds for the minimization problem in order to get a tight

upper bound on ω(G). More specifically, linear programming (LP) based bounds for

two variants of the minimum k-core problem (defined below) are investigated and

compared to the standard LP relaxations for the maximum clique problem.

Given G = (V,E) and positive integer k, a k-core S is such that δ(G[S]) ≥ k,

and the degeneracy of G is given by the largest k for which G has a nonempty

k-core. Obviously, any clique of size k + 1 is a k-core. Hence, given a heuristic

lower bound k for ω(G), the k-core obtained by recursively removing all vertices of

degree less than k from the graph (“peeling”) can be used for scale-reduction in very

large and sparse graphs for employing exact algorithms to solve the maximum clique

problem [1, 18, 65]. However, the peeling procedure yields the maximum-size k-core

in the graph that may be much larger than the clique number. In this work, we

use minimum k-cores to get a tighter upper bound on the clique number of a graph.

Consider the following problem:

Definition 19 (Minimum k-core) Given a graph G = (V,E), and a positive in-

teger k such that G has degeneracy at least k, find a smallest non-empty k-core in

G. The size of a minimum k-core is denoted by mk(G).
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It is easy to see that if there exists a non-empty clique of size k+1, thenmk(G) = k+1,

and for a given k, if there exists no k-core in G or mk(G) > k + 1, then ω(G) ≤ k.

This property makes this problem very suitable for developing a good upper bound

for the maximum clique problem. However, using exact algorithms for finding the

smallest such k satisfying this property may not be a good approach from a computa-

tional standpoint as, unlike the maximum k-core which is polynomially solvable, the

minimum k-core problem does not admit a constant factor approximation for k ≥ 3,

unless P = NP [4]. Hence, as a starting point, we aim to show that simple linear

programming relaxations of the minimum k-core problem and its stronger versions

can be used to find easily computable, tight upper bounds for the maximum clique

problem.

The organization of this chapter is as follows. Section 5.1 discusses the mini-

mum k-core problem and its stronger version, which can be exploited to develop

continuous relaxations to find a good upper bound for the clique number. The lin-

ear programming relaxations and its comparison to the standard relaxations for the

clique polytope is discussed in Section 5.2, and Section 5.3 reports the results of

computational experiments. Finally, Section 5.4 concludes this chapter.

5.1 Minimum k-Core and k-Core/2-Club problems

A subset S is called a minimal k-core if G[S\S ′] is not a k-core for any proper

subset S ′ ⊂ S. By definition, a minimum k-core is minimal, and may not be unique.

Observe that, any minimal k-core is connected.

For a given positive integer s, a set S ⊆ V is an s-club if diam(G[S]) ≤ s. An

s-club S is a k-core/s-club if δ(G[S]) ≥ k. A minimal k-core/s-club can be defined in

a similar manner as a minimal k-core. Then, we consider the minimum k-core/s-club

problem that is defined as follows.
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Definition 20 (Minimum k-core/s-club) Given a graph G = (V,E) and a posi-

tive integer k, find a smallest non-empty k-core/s-club in G. The size of a minimum

k-core/s-club is denoted by mk,s(G).

Note that any k-core/s-club will always be a k-core, but the converse need not be

true, and hence, mk,s(G) ≥ mk(G). Thus, the property of a minimal k-core that

makes it suitable for developing a good upper bound on the clique number of a

graph also holds true for a k-core/2-club, that is, for a given k, if there exists no

k-core/s-club in G or mk,s(G) > k + 1, then ω(G) ≤ k and the smallest k satisfying

this property is a tight upper bound on the clique number.

A small value of s will inadvertently help in reducing the search space, especially

in sparse graphs and help in achieving the goal of a tighter structure that is closer

to clique. Thus, we consider the special case of the k-core/s-club model with s = 2,

namely the k-core/2-club model, which has the following relation with a k-core.

Property 1 A k-core G = (V,E) of cardinality at most 2k + 1, is connected with

diam(G) ≤ 2.

In fact a k-core of size k + 1 is a clique, and hence its diameter is one.

As we pointed out above, the inequality mk,s(G) ≥ mk(G) always holds. An

interesting question to answer is, when is mk(G) strictly less than mk,s(G)? Next we

show that this question is NP-hard to answer. We start with the following lemma.

Lemma 5.1.1 (a) Given k ≥ 3, j > k + 1, a graph G = (V,E) can be constructed

in polynomial time such that |V | = j and V is a minimal k-core that is also a

minimal k-core/2-club.

(b) Given k ≥ 3, j > 2k + 1, a graph G = (V,E) can be constructed in polynomial
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time such that |V | = j and V is a minimal k-core that is not a minimal k-

core/2-club.

Proof (a) Let A and W be vertex sets of size k−3 and j−k+3, respectively. Let

G = (V,E) be a graph with V = A∪W and E such that G[A] is complete, G[W ]

is a wheel, and the remaining edges are given by E ′ = {(a, w) : a ∈ A,w ∈ W}.

It is easy to see that V is a minimal k-core and a minimal k-core/2-club.

(b) Consider two vertex sets A1, A2 of size k − 2 and a set C = {v1, . . . , vj−2k+4}

of size j − 2k + 4. Let G = (V,E) be a graph with V = A1 ∪ A2 ∪ C and E is

such that G[A1], G[A2] is complete, G[C] is a chordless cycle such that N(v1) =

{v2, vj−2k+4}, N(vj−2k+4) = {v1, vj−2k+3}, andN(i) = {vi−1, vi+1}, ∀i ∈ {2, . . . , j−

2k + 3}. The remaining edges in E are given by E1 ∪ E2, where E1 =

{(a1, vi) : a1 ∈ A1, i ∈ {1, . . . b j−2k+4
2
c} and E2 = {(a2, vi) : a2 ∈ A2, i ∈

{b j−2k+4
2
c + 1, . . . , j − 2k + 4}. It is easy to see that V is a minimal k-core,

and diam(G) > 2.

Proposition 5.1.2 Given a graph G = (V,E), it is NP-hard to check if mk(G) =

mk,2(G) for a fixed k ≥ 3.

Proof Suppose there is a polynomial time algorithm A that, given a graph G =

(V,E), correctly answers if mk(G) = mk,2(G) with “yes” or “no”.

1. Suppose the answer is “no”, i.e., mk(G) < mk,2(G). Then 2k + 1 < mk(G) <

mk,2(G) Then we prove that mk(G) can be computed using a polynomial time

algorithm A1, which proceeds as follows. Let Hj,k be the graph constructed

using Lemma 5.1.1(a). For j = 2k + 2, 2k + 3, . . ., we incrementally update

G′ = G ∪ Hj,k while mk(G
′) = mk,2(G′). We terminate as soon as mk(G

′) <

mk,2(G′) for some step j′, implying that mk(G) = j′ − 1.
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2. Suppose the answer is “yes”, i.e., mk(G) = mk,2(G). We check if there is a

k-core of size k + 1, . . . , 2k + 1 in G. This can be done in O(n2k+1). If there

is no k-core of size at most 2k + 1, then we can compute mk(G) using the

following polynomial time algorithm A2. Let Gj,k be the graph constructed

using Lemma 5.1.1(b).

For j = 2k+ 2, 2k+ 3, . . ., we consider G′ = G∪Gj,k while mk(G
′) < mk,2(G′).

As the value of j increases, at some value j′ we will have mk(G
′) = mk,2(G′) =

j′, implying that mk(G) = mk,2(G) = j′.

This proves that if such an algorithm A exists, we can compute mk(G) in polynomial

time. The result follows from the fact that the minimum k-core problem is hard to

approximate [4].

5.2 The Proposed Bounds

In this section, we develop linear programming relaxations for the minimum k-

core and k-core/2-club problems, and strengthen by introducing some cutting planes.

In addition, we show that the upper bounds found by solving these relaxations are

better than those found by solving he standard linear programming relaxations of

the clique problem.

5.2.1 Minimum k-Core

Given a graphG = (V,E) and a positive integer k, let xS denote the characteristic

vector of a set S ⊆ V . Then, the minimum k-core problem can be formulated as a
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binary program:

mk(G) = min
∑
i∈V

xi (5.1)

subject to
∑
v∈N(i)

xv ≥ kxi,∀i ∈ V (5.2)

∑
i∈V

xi ≥ k + 1 (5.3)

x ∈ {0, 1}|V |. (5.4)

Constraint (5.2) ensures that for any vertex i ∈ V such that xi = 1, the degree

of i in the subgraph induced by the subset of vertices {i : xi = 1} is at least k,

and constraint (5.3) ensures that only a non-empty k-core is included as a feasible

solution.

Denote by Pk(G) the k-core polytope of G given by the convex hull of all non-

empty k-cores in G, and let LPk(G) denote the feasible region of the LP relaxation

of the above formulation, obtained by relaxing the binary constraint (5.4) to

0 ≤ xi ≤ 1,∀i ∈ V.

Next we provide some valid inequalities that are facet inducing for Pk(G), when G

is a (k + 1)-core.

Lemma 5.2.1 Given a graph G = (V,E), where V is a (k + 1)-core, we have:

1. dim(Pk(G)) = |V |.

2. xv ≥ 0 induces a facet of Pk(G) if |N(j)| ≥ k + 2,∀j ∈ V such that v ∈ N(j).

3. xv ≤ 1 induces a facet of Pk(G) for every v ∈ V .
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Proof Let e be the vector of all ones, and ei be the unit vector with 1 as the ith

component and rest 0.

1. The points e, e − ei,∀i ∈ V are |V | + 1 affinely independent points in Pk(G),

and hence, dim(Pk(G)) = |V |.

2. Let F 0
v = {x ∈ Pk(G) : xv = 0}. Then e− ev, e− ev − ew,∀w ∈ V \{v} are |V |

affinely independent points in F 0
v . Hence dim(F 0

v ) = |V |−1, and F 0
v is a facet.

3. Let F 1
v = {x ∈ Pk(G) : xv = 1}. Then e, e − ei,∀i ∈ V \{v} are |V | affinely

independent points in F 1
v . Hence dim(F 1

v ) = |V | − 1, and F 1
v is a facet.

For any u, v ∈ V such that (u, v) /∈ E, if u, v are included in the k-core, then the

total number of vertices included in the k-core must be at least k + 2. Hence, the

inequality given by
∑

i∈V \{u,v} xi ≥ k is valid for Pk(G). This can be generalized for

any maximal independent set in the following manner.

Theorem 5.2.2 (MIS Inequality) For a graph G = (V,E), let V be a (k + 1)-core.

Then for any maximal independent set I of size k + (k mod 2) or more in G, the

inequality

∑
v∈V \I

xv ≥ k (5.5)

induces a facet of Pk(G) if (i, j) ∈ E for each i ∈ I, j ∈ V \I.

Proof The validity of the inequality follows from the fact that if a vertex v ∈ I

is in the k-core, then inequality (5.2) implies that
∑

v∈V \I xv ≥ k, and if I is not

included in the k-core, then inequality (5.3) implies that
∑

v∈V \I xv ≥ k + 1. Let

FI = {x ∈ Pk(G) :
∑

v∈V \I xv = k}. To prove that the inequality induces a facet, let

there be a valid inequality αTx ≤ β such that F = {x ∈ Pk(G) : αTx = β} ⊇ FI .
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Let S = S ′ ∪ I, where S ′ ⊆ V \I and |S ′| = k. Then xS ∈ FI . Consider a vertex

v ∈ S ′ and w ∈ V \S and let R = (S ∪ {w})\{v}. Then xR ∈ FI and αTxR = β,

αTxS = β implies αv = αw. Since S, v and w are arbitrary αv = µ,∀v ∈ V \I, for

some scalar µ. Consider a subset P ′ of V such that |P ′| = k, and if k is even then

P ′ contains k
2

pairs of adjacent vertices. For each i ∈ I, let Pi = P ′ ∪ (I\{i}) and

P = P ′ ∪ I, then xPi
, xP ∈ F . Then αTxPi

= β, αTxP = β implies αi = 0,∀i ∈ I

and β = kµ, proving that FI is a maximal face and hence a facet.

The result above implies that, the addition of the maximal independent set in-

equalities may strengthen the considered LP relaxation. Let Ĩ(G) denote the family

of all maximal independent sets in G. Then, the strengthened relaxation is given by,

Zk
LP = min

∑
i∈V

xi (5.6)

subject to
∑
v∈N(i)

xv ≥ kxi,∀i ∈ V (5.7)

∑
i∈V

xi ≥ k + 1 (5.8)∑
i∈V \I

xi ≥ k,∀I ∈ Ĩ(G) (5.9)

0 ≤ xi ≤ 1, ∀i ∈ V. (5.10)

Let K∗1 be such that,

K∗1 = min
k∈Z+

k s.t Zk
LP > k + 1 or LPk(G) = ∅

Then, since Zk
LP ≤ mk(G), we have ω(G) ≤ K∗1 . Hence K∗1 is the upper bound on the

clique number obtained by solving the linear programming relaxation (5.6)-(5.10) of

the minimum k-core problem. Denote this upper bound by UB1, that is, UB1 = K∗1 .
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5.2.2 Minimum k-Core/2-Club

The binary program for the minimum k-core/2-club problem can be formulated

by adding the diameter constraints to the formulation of the minimum k-core prob-

lem:

mk,2(G) = min
∑
i∈V

xi (5.11)

subject to
∑
v∈N(i)

xv ≥ kxi,∀i ∈ V (5.12)

∑
v∈N∩(i,j)

xv ≥ xi + xj − 1, ∀(i, j) /∈ E, i 6= j (5.13)

∑
i∈V

xi ≥ k + 1 (5.14)

x ∈ {0, 1}|V |. (5.15)

where, N∩(i, j) denotes the common neighborhood of vertices i, j in G, that is,

N∩(i, j) = N(i)∩N(j). Constraint (5.13) ensures that for any pair of vertices in the

subgraph induced by the subset of vertices {i : xi = 1}, there exists a path of length

at most 2. Denote by Pk,2(G) the k-core/2-club polytope that does not include the

zero vector. Since any k-core/2-club is also a k-core, the results of the k-core polytope

can be extended easily to the k-core/2-club polytope. Hence, inequality (5.5) is valid

for Pk,2(G).

Let the feasible region of the LP relaxation of the above formulation for the

minimum k-core/2-club problem be denoted by LPk,2. The corresponding tightened

linear programming relaxation obtained after adding the maximal independent in-

equalities (5.9), that are valid for Pk,2(G), is given by,

Zk,2
LP = min{

∑
i∈V

xi : (5.9), (5.12), (5.13), (5.14), 0 ≤ xi ≤ 1,∀i ∈ V } (5.16)
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Let K∗2 be such that,

K∗2 = min
k∈Z+

k s.t Zk,2
LP > k + 1 or LPk,2 = ∅

Then, since mk,2(G) ≥ LPk,2(G), we have ω(G) ≤ K∗2 . Hence K∗2 is the upper

bound to the maximum clique problem found by solving the LP relaxation (5.16)

of the minimum k-core/2-club problem. Denote this upper bound by UB2, that is,

UB2 = K∗2 .

5.2.3 Comparison with the Fractional Clique Polytope

In this subsection, we review the standard LP relaxations for the maximum clique

problem, and compare the corresponding upper bounds with the bounds from the

proposed relaxations.

The clique polytope of a graph G = (V,E) denoted by Pclique(G), is the convex

hull of the incidence vectors of cliques and is given by,

Pclique(G) = conv{x ∈ {0, 1}|V | : xi + xj ≤ 1,∀(i, j) /∈ E},

and the edge formulation for the maximum clique problem is given by:

ω(G) = max{
∑
i∈V

xi : x ∈ Pclique(G)}.

Let Ĩ(G) denote the family of all the maximal independent sets in G. Then for any

I ∈ Ĩ(G), the inequality given by

∑
i∈I

xi ≤ 1 (5.17)
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is a facet of Pclique(G). Hence, an alternative formulation based on the maximal

independent set inequalities is given by,

ω(G) = max{
∑
i∈V

xi :
∑
i∈I

xi ≤ 1,∀I ∈ Ĩ(G), x ∈ {0, 1}|V |}.

Let the fractional clique polytopes based on the edge inequalities and the maximal

independent set inequalities be given by,

Fe(G) = {x ∈ Rn : xi + xj ≤ 1, ∀(i, j) /∈ E, 0 ≤ xi ≤ 1,∀i ∈ V }

FI(G) = {x ∈ Rn :
∑
i∈I

xi ≤ 1,∀I ∈ Ĩ(G), 0 ≤ xi ≤ 1,∀i ∈ V },

and their corresponding linear programming relaxations be given by,

Ze
LP = max

x∈Fe(G)

∑
i∈V

xi (5.18)

ZI
LP = max

x∈FI(G)

∑
i∈V

xi (5.19)

Then, since FI(G) ⊆ Fe(G), we have ω(G) ≤ bZI
LP c ≤ bZe

LP c. Let UBe, UBI denote

the upper bounds on the clique number of a given graph found by solving the linear

programming relaxations (5.18) & (5.19) respectively, where, UBI = bZI
LP c and

UBe = bZe
LP c.

We now show that the upper bounds UB1, UB2, found respectively by solving

the LP relaxations of the minimum k-core and k-core/2-club problems, are better

than the bounds UBI ans UBe .

Lemma 5.2.3 ω(G) ≤ UB2 ≤ UB1 ≤ UBI ≤ UBe

Proof We need to show that UB1 ≤ UBI . Assume the contrary, that is, UB1 >

UBI , and let UB1 = K∗1 = s. Then, Zs
LP > s + 1 or LPs(G) = ∅, and ZI

LP < s.
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Let k = s− 1, then by the definition of K∗1 , Zk
LP = s. Let xs−1 ∈ Rn be the optimal

solution to the linear programming relaxation (5.6) - (5.10) with k = s − 1, and∑
i∈V x

s−1
i = s. Then using the MIS inequality

∑
i∈V \I x

s−1
i ≥ s− 1 we have,

s =
∑
i∈V

xs−1
i ≥ s− 1 +

∑
i∈I

xs−1
i ,∀I ∈ Ĩ(G)

=⇒
∑
i∈I

xs−1
i ≤ 1,∀I ∈ Ĩ(G)

This implies that xs−1 ∈ FI , and ZI
LP ≥

∑
i∈V x

s−1
i = s. Then, UBI = bZI

LP c ≥ s

which is a contradiction. Hence, UB1 ≤ UBI .

Since LPk,2 ⊆ LPk, we have Zk
LP ≤ Zk,2

LP , and hence, K∗2 ≤ K∗1 .

5.3 Computational Experiments

In this section, we present computational results to evaluate the quality of the

upper bounds for the maximum clique problem found by the proposed relaxations,

as well as a comparison with some existing bounds found in the literature. Note

that the LP relaxations LPk, LPk,2 can be made tighter by adding the maximal

independent set inequalities (5.9). However, the number of maximal independent sets

in a given instance may be exponential. Hence, we use Heuristic 3 to generate O(n2)

maximal independent sets, and computationally show that adding the inequalities

given by (5.9) just for the generated sets make the relaxations very strong. It should

be noted that the heuristic duplicates some of the sets, and hence the total number

of inequalities generated will be less than n2. However, computationally it is seen

that the cardinality of the maximal independent sets chosen using this method, in

general, is quite large, and this makes it very effective in cutting out many fractional

solutions.

From Lemma 5.2.3, it is clear that the LP relaxation LPk,2 in theory, may give a
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Heuristic 3 Greedy Heuristic to Generate O(n2) MIS.

1: for i ∈ V do
2: for j ∈ V \N [i] do
3: I = ∅ ∪ {i, j}
4: for v = j + 1, . . . , |V |+ j − 1 do
5: u = v mod |V |
6: if u /∈ N [I] then
7: I = I ∪ {u}
8: end if
9: end for
10: end for
11: end for

better upper bound than LPk due to the addition of diameter constraints. However,

in practice, addition of these constraints does not have much effect, especially in

dense graphs due to Property 1. Hence, we exploit the diameter constraints to make

the model more tight, by solving the LP relaxation (5.16) in the 2-neighborhood

N [N [v]] of a given vertex, where N [v] is the closed neighborhood of v given by

N(v) ∪ {v}. This procedure was originally introduced in [6] to solve the maximum

2-club problem and is adapted to serve our purpose as follows. Given a value of k,

solve for Zk,2
LP using (5.16) in G, however if the value of Zk,2

LP obtained is equal to k+1,

then pick a vertex v ∈ V , and fix xv = 1. Then, solve (5.16) in the 2-neighborhood

N [N [v]] of v, and update V by removing v. This process is iterated for each vertex

v ∈ V , until V = ∅, and the minimum solution obtained is reported.

We solve the LP relaxations (5.6)-(5.10) of the minimum k-core problem given in

Section 5.2.1 and (5.16) of the minimum k-core/2-club problem given in Section 5.2.2

to get the upper bounds UB1 and UB2, respectively. The maximal independent sets

used in inequality (5.9) are generated by Heuristic 3, and for a given k, Zk,2
LP is

obtained using the 2-neighborhood procedure explained above. All numerical exper-
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iments were run on Dell Computer with Intelr Xeonr E5620 2.40 GHz processor

and 12GB of RAM, and CPLEX 11.0 solver was used. We consider instances from

the second and the tenth DIMACS implementation challenges [16, 17] and Trick’s

coloring instances [13] to perform the experiments. We solve the relaxations on the

maximum k-core found in these instances, as it is easy to show that a minimum

k-core must be a part of the maximum k-core.

Table 5.1 shows the parameters of the graph instances: graph order, size, density,

clique number, the upper bounds UB1, UB2 found by the relaxations LPk, LPk,2

respectively, the objective function values Zk
LP , Z

k,2
LP , and the running times in CPU

seconds for the proposed relaxations. In the computational results presented in the

table, ‘∗’ denotes that the upper bound found was not the optimal bound, ‘−’ denotes

that the clique number of the instance is not known, ‘inf’ denotes that the relaxation

was infeasible, and ‘†’ denotes that UB2 was found after solving the relaxation in

the 2-neighborhood of each vertex as described earlier.

From the table, it is clear that the proposed relaxations give very tight upper

bounds, mostly optimal bounds, for the considered instances. The relaxations espe-

cially give optimal bounds for all but two of the DIMACS instances, and it is also

clear that the computational time is in general very low for both the relaxations.

However, the running time tends to increase when UB2 is found by solving LPk,2 in

the 2-neighborhood of each vertex, but this procedure is only used for eleven of the

instances considered. It should also be noted that, for all the instances for which the

relaxations yielded an infeasible solution, the largest k-core for k = ω(G) was empty.

This shows that the pre-processing technique works very well given a heuristic lower

bound, and hence, the method proposed gives a strong upper bound for ω(G).
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Table 5.1: Upper bounds obtained for DIMACS and Trick’s coloring instances.

Instance Vertices Edges Density % ω(G) UpperBound LPR time(sec)

UB1 UB2 Zk
LP Z

k,2
LP

LPk LPk,2

brock200 1.clq† 200 14834 74.55 21 38∗ 33∗ 39.03 34.02 68.38 333.97

brock200 2.clq† 200 9876 49.63 12 22∗ 16∗ 23.05 17.04 88.02 493.58

brock200 3.clq† 200 12048 60.55 15 27∗ 21∗ 28.02 22.01 80.64 417.91

brock200 4.clq† 200 13089 65.78 17 30∗ 24∗ 31.01 25.01 79.82 394.33

c125.9.clq† 125 6963 89.85 34 43∗ 40∗ 44.03 41.01 3.22 15.40

c250.9.clq† 250 27984 89.91 44 71∗ 68∗ 72.01 69.02 102.17 572.26
c-fat200-1.clq 200 1534 7.71 12 12 12 13.1 13.1 10 4.33
c-fat200-2.clq 200 3235 16.26 24 24 24 25.06 25.06 6.82 4.19

c-fat200-5.clq† 200 8473 42.58 58 66∗ 58 67.01 59.04 5.56 236.67

DSJC125.1.clq† 125 736 9.50 4 5∗ 4.00 6.06 5.33 2.83 61.49

DSJC125.5.clq† 125 6961 89.82 10 16∗ 13∗ 17.06 14.06 10.43 56.10

DSJC125.9.clq† 125 3891 50.21 34 42∗ 41∗ 43.01 42.03 3.14 16.03
hamming6-2.clq 64 1824 90.48 32 32 32 33.04 33.04 0.08 0.08

hamming6-4.clq† 64 704 34.92 4 5∗ 4 6.16 5.34 0.18 3.2
hamming8-2.clq 256 31616 96.86 128 128 128 129.01 129.01 1.42 1.89
hamming8-4.clq 256 20864 63.92 16 16 16 17.07 17.07 6.83 8.55
johnson16-2-4.clq 120 5460 76.47 8 8 8 9.15 9.15 0.32 0.32
johnson32-2-4.clq 496 107880 87.88 16 16 16 17.06 17.06 14.67 14.49
johnson8-2-4.clq 28 210 55.56 4 4 4 5.33 5.33 0.05 0.05
johnson8-4-4.clq 70 1855 76.81 14 14 14 15.08 15.08 0.07 0.07

keller4.clq† 171 9435 64.92 11 15∗ 14∗ 16.06 15.04 22.94 154.26

mann a27.clq† 378 70551 99.01 126 135∗ 131∗ 136.01 132.01 1.44 144.65

mann a45.clq† 1035 533115 99.63 343 360∗ 354∗ 361.003 355.006 17.58 3600.51

mann a9.clq† 45 918 92.73 16 18∗ 17∗ 19.06 18.07 0.02 0.22

san200 0.7 2.clq† 200 13930 70.00 18 20∗ 18.00 21.09 19.03 19.72 247.97
san200 0.9 1.clq 200 17910 90.00 70 70 70 71.02 71.02 2 2.95
san200 0.9 2.clq 200 17910 90.00 60 60 60 61.02 61.02 2.58 3.52
san200 0.9 3.clq 200 17910 90.00 44 44 44 45.03 45.03 1.75 2.16

sanr200 0.7.clq† 200 13868 69.69 18 33∗ 28∗ 34.02 29.01 79.32 356.64

sanr200 0.9.clq† 200 17863 89.76 – 59∗ 57∗ 60.01 58.03 2.82 138.17
1-FullIns 3.col 30 100 22.99 3 3 3 4.29 4.29 0.08 0.04

1-FullIns 4.col† 93 593 13.86 3 4∗ 3 5.37 4.5 0.57 9.29
1-Insertions 4.col 67 232 10.49 2 2 2 3.05 3.05 0.35 0.19

1-Insertions 5.col† 202 1227 6.04 2 3∗ 2 4.36 4 4.72 239.36
2-FullIns 3.col 52 201 15.16 4 4 4 5.23 5.24 0.21 0.11

2-FullIns 4.col† 212 1621 7.25 4 5∗ 4 6.34 5.34 7.6 312.52
2-Insertions 3.col 37 72 10.81 2 2 2 3.37 3.64 0.07 0.07
2-Insertions 4.col 149 541 4.91 2 2 2 3.13 3.13 2.53 1.08
anna.col 138 493 5.22 11 11 11 inf inf 0.02 0.01
david.col 87 406 10.85 11 11 11 inf inf 0.01 0.02
huck.col 74 301 11.14 11 11 11 inf inf 0 0.02
jean.col 80 254 8.04 10 10 10 inf inf 0.02 0.01
miles.col 128 387 4.76 8 8 8 inf inf 0.04 0.05
mug100 1.col 100 166 3.35 3 3 3 4.25 4.25 0.91 0.35
mug100 25.col 100 166 3.35 3 3 3 4.27 4.27 0.8 0.44
mug88 1.col 88 146 3.81 3 3 3 4.25 4.25 0.69 0.03
mug88 25.col 88 146 3.81 3 3 3 4.28 4.28 0.61 0.27
myciel3.col 11 20 36.36 2 2 2 3.05 3.05 0.02 0.02

myciel4.col† 23 71 28.06 2 3∗ 2 4.34 4 0.04 0.1

myciel5.col† 47 236 21.83 2 3∗ 2 4.14 3.5 0.1 0.69
queen5 5.col 25 160 53.33 5 5 5 6.25 6.25 0.05 0.05

queen6 6.col† 36 290 46.03 6 7∗ 6 8.17 7.23 0.05 0.25
adjnoun.graph 112 425 6.84 5 5 5 6.16 6.16 0.35 0.24
as 22july06.graph 22963 48436 0.02 17 17 17 18.08 18.08 2 1.21
astro-ph.graph 16706 121251 0.09 57 57 57 inf inf 0.03 0.09
celegans metabolic.graph 453 2025 1.98 9 9 9 10.09 10.09 0.12 0.13
chesapeake.graph 39 170 22.94 5 5 5 6.25 6.25 0.05 0.04
cnr-2000.graph 325557 2738969 0.01 84 84 84 inf inf 4.02 7.84
coAuthorsCiteseer.graph 227320 814134 0.00 87 87 87 inf inf 0.09 0.21
coAuthorsDBLP.graph 299067 977676 0.00 115 115 115 inf inf 0.12 0.39
cond-mat-2005.graph 40421 175691 0.02 30 30 30 inf inf 0.02 0.04
dolphins.graph 62 159 8.41 5 5 5 inf inf 0.08 0.08
email.graph 1133 5451 0.85 12 12 12 inf inf 0.03 0.03
football.graph 115 613 9.35 9 9 9 inf inf 1.21 0.69
ieeebus.graph 118 179 2.59 4 4 4 inf inf 0.01 0.02
jazz.graph 198 2742 14.06 30 30 30 inf inf 0.03 0.04
karate.graph 34 78 13.90 5 5 5 inf inf 0.02 0.03
kreb.graph 62 153 8.09 6 6 6 inf inf 0.03 0.02
memplus.graph 17758 54196 0.03 97 97 97 inf inf 0.01 0.1
PGPgiantcompo.graph 10680 24316 0.04 25 25 25 26.07 26.07 1.63 1.01
polbooks.graph 105 441 8.08 6 6 6 7.2 7.2 0.26 0.13
power.graph 4941 6594 0.05 6 6 6 inf inf 0.03 0.01
rgg n 2 17 s0.graph 131072 728753 0.01 15 15 15 inf inf 0.05 0.1
rgg n 2 19 s0.graph 524288 3269766 0.00 18 18 18 inf inf 0.53 0.42
rgg n 2 20 s0.graph 1048576 6891620 0.00 17 17 17 18.04 18.04 1.83 3.45
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Table 5.2: Comparison with upper bounds using the LP relaxation of the edge for-
mulation.

Instance Vertices ω(G) UpperBound
UB1 UB2 UBe

mann a9.clq 45 16 18∗ 17∗ 18∗

c-fat200-1.clq 200 12 12 12 12
c-fat200-2.clq 200 24 24 24 24
c-fat200-5.clq 200 58 66∗ 58 66∗

johnson8-2-4.clq 28 4 4 4 4
johnson8-4-4.clq 70 14 14 14 14
johnson16-2-4.clq 120 8 8 8 8
hamming6-2.clq 64 32 32 32 32
hamming6-4.clq 64 4 5∗ 4 5
hamming8-2.clq 256 128 1128 128 128
hamming8-4.clq 256 16 16 16 16
san200 0.9 1.clq 200 70 70 70 70
san200 0.9 2.clq 200 60 60 60 60
san200 0.9 3.clq 200 44 44 44 44
anna.col 138 11 11 11 11
david.col 87 11 11 11 11
huck.col 74 11 11 11 11
jean.col 80 10 10 10 10
miles.col 128 8 8 8 8
myciel3.col 11 2 2 2 2
myciel4.col 23 2 3∗ 2 3∗

myciel5.col 47 2 3∗ 2 3∗

mug88 1.col 88 3 3 3 12∗

mug88 25.col 88 3 3 3 12∗

mug100 1.col 100 3 3 3 14∗

mug100 25.col 100 3 3 3 14∗

1-FullIns 3.col 30 3 3 3 3
1-FullIns 4.col 93 3 4∗ 3 5∗

1-FullIns 5.col 282 3 4∗ 3 6∗

1-Insertions 4.col 67 2 2 2 2
1-Insertions 5.col 202 2 3∗ 2 3∗

2-FullIns 3.col 52 4 4 4 5∗

2-FullIns 4.col 212 4 5∗ 4 6∗

2-Insertions 3.col 37 2 2 2 2
2-Insertions 4.col 149 2 2 2 2
queen5 5.col 25 5 5 5 5
queen6 6.col 36 6 7∗ 6 7∗
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Table 5.3: Comparison with SDP-based bounds [31].

Instance Vertices ω(G) UB1 UB2 SDP

mann a9.clq 45 16 18 17∗∗ 17.475∗∗

mann a27.clq 378 126 135 131∗∗ 132.7629
mann a45.clq 1035 343 360 354∗∗ 356

johnson8-2-4.clq 28 4 4 4 4
johnson8-4-4.clq 70 14 14 14 14
johnson16-2-4.clq 120 8 8 8 8

san200 0.9 1.clq 200 70 70 70 70
san200 0.9 2.clq 200 60 60 60 60
san200 0.9 3.clq 200 44 44 44 44
sanr200 0.9.clq 200 - 59 57 49.2735∗∗

Table 5.4: Comparison with Ellipsoidal [37] and SDP [29] based bounds.

Instance Vertices ω(G) UpperBound
UB2 E1 N-VI

brock200 1.clq 200 21 33 27.79∗∗ -
brock200 2.clq 200 12 16 14.32∗∗ -
brock200 3.clq 200 15 21 19∗∗ -
brock200 4.clq 200 17 24 21.52∗∗ -
c125.9.clq 125 34 40 38.05 36.23∗∗

c250.9.clq 250 44 68 57.41∗∗ -
c-fa200-5.clq 200 58 58∗∗ 60.36 -
DSJC125.1.clq 125 4 4∗∗ - 4.04∗∗

DSJC125.5.clq 125 10 13 11.48∗∗ 11.46∗∗

DSJC125.9.clq 125 34 41 38.44 36.01∗∗

keller4.clq 171 11 14 14.09 13.15∗∗

mann a27 378 126 131∗∗ 132.88 -
mann a9.clq 45 16 17∗∗ - 17.29∗∗

p hat300-3.clq 300 36 52 41.66∗∗ -
san200 0.7 2.clq 200 18 18∗∗ 18.1∗∗ -
sanr200 0.7.clq 200 18 28 24∗∗ -
sanr200 0.9.clq 200 42 57 49.77∗∗ -
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5.3.1 Comparison with Existing Approaches

We compare the upper bounds UB1, UB2 with upper bound UBe found by solving

the LP relaxation of the edge formulation for the maximum clique problem given

by (5.18). We strengthen the fractional edge polytope by adding O(n2) maximal

independent set inequalities, given by (5.17). To make the comparison fair, we use

the same O(n2) maximal independent sets generated by Heurisic 3.

Table 5.2 shows the bounds UB1, UB2 found by the proposed relaxations and

UBe found by solving the relaxation (5.18) of the edge formulation after adding

O(n2) maximal independent set inequalities (5.17). In all the cases presented, the

bounds found by the proposed relaxations are as good or better than UBe. Also, the

proposed relaxations can solve very large sparse instances by employing the peeling-

based preprocessing.

Gruber and Rendl [31] presented a semidefinite programming (SDP) based ap-

proach for approximating the independence number. The approach solves SDP re-

laxations to improve the initial bound obtained by solving the stable set relaxation

introduced by Lovász [38]. We compare their bounds with the bounds UB1, UB2

proposed by our relaxation on a subset of the DIMACS instances for which the re-

sults were reported in [31]. Table 5.3 provides the bounds, where the column ‘SDP’

refer to the bounds from their SDP relaxation. In this table, ‘∗∗’ denotes that the

bound is best among all the bounds, but still is not the optimal one. From the table,

it is clear that for all but one of the instances compared, the proposed relaxation is

as good or better than the SDP relaxation.

Finally, we compare the bounds presented here with the results from [37] and [29].

Locatelli [37], improved Lovász theta number and its variants by adding non-valid

inequalities, however they were able to solve instances of size less than 200 due to
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memory issues, and only reported the average computation time. Giandomenico

et al. [29] developed a branch and cut algorithm, that uses cutting planes derived

by constructing an ellipsoid containing the stable set polytope, and reported some

preliminary experimental results with a time limit of about 3 hours. Table 5.4 shows

the comparison of bounds for the instances mentioned in [37] and [29] mentioned

respectively by, N-VI and E1, with UB2. Since UB2 was better than UB1, we omit

UB1 from this table. In the table, ‘-’ denotes that bound for the instance was not

reported, and ‘∗∗’ denotes that the bound is best among all. From Table 5.4, it

can be observed that for most of the instances, the gap between the bounds found

by the proposed relaxation for the minimum k-core/2-club model and the bounds

found by the ellipsoid method is not very large, and in a few cases our bounds out

perform them. It was observed that though on an average the computation times of

the ellipsoid method and the proposed relaxations looked similar, for the instances

when the gap between the bounds is large, their computation time was significantly

larger than the time reported by us. In addition, the proposed relaxations can solve

large graphs of size greater than 1000 as evident from Table 5.1. The inferior bounds

found by the proposed methods may be attributed to the fact that, these are simple

linear relaxations, strengthened with a fixed number of maximal independent set

inequalities. The bounds obtained may be improved by the addition of more valid

inequalities, but then the computational time may also increase. Hence, there is a

trade off between the quality of bounds produced and computation time.

5.4 Conclusion

This work proposes LP-based methods that take advantage of k-core and k-

core/2-club models to find a tight upper bound for the maximum clique problem.

We discuss some basic properties of the two models and prove that the upper bounds
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found by the proposed methods are better than the standard linear programming

relaxations for the maximum clique problem. We computationally show that the

upper bounds found by the proposed relaxations are of good quality, and provide a

comparison with some existing bounds from the literature. It is seen that our upper

bounds are as good as some of the existing bounds, and that they are computationally

easy to find. The fact that the proposed method relies on the existence of a good

lower bound for the maximum clique problem may not be an issue, as there are many

heuristics that provide good lower bounds, and our method can verify the optimality

of the clique number proposed by many algorithms. An interesting avenue for future

work is to see if a tighter convex relaxation can be developed for the minimum k-core

and k-core/2-club models, that can enhance the bounds found by the proposed LP

relaxations.
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6. CONCLUSION AND FUTURE WORK

Graph clustering has gained immense popularity over the recent years, and a

number of techniques have been developed that has made its applicability widen

across many domains. This dissertation considers graph theoretic relaxations of

clique for characterizing structurally cohesive and robust clusters, and modeling sta-

ble clusters. While other models like s-plex and s-clubs have been studied in the

literature as models of clusters with cohesivness and reachability properties, the

cluster measure used was that of familiarity in the former and diameter in the lat-

ter. Here, we consider models that encapsulate structures that are highly connected,

robust and stable. In particular, we study the k-block, k-robust s-club, and s-stable

cluster models, and consider optimization problems that identify different structural

properties of the models, thus interpreting and detecting clusters that helps in un-

derstanding the overall network properties.

In this work, we study some basic properties exhibited by the k-block, k-robust

s-club, and s-stable cluster models, and show their relationship with other cluster

models. It is seen that the k-block and k-robust s-club models also inherit the

property of familiarity from clique, and that the s-stable cluster model has good

reachability properties. This in turn helps us to define the optimization problem for

each model suitably, that is, we select minimization problems for the k-block and

k-robust s-clubs, and maximization for s-stable clusters, that enables us in model-

ing both closely-knit clusters that are very well connected with good reachability

properties, and large stable clusters, whose reachability is based on its connectivity.

When studying models for clustering, it is always desirable to have polynomial

time algorithms that detect the clusters of interest easily. In this regard, we study the
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computational complexities of finding minimum k-blocks, minimum k-robust s-clubs

and maximum s-stable clusters in graphs. We establish that minimization problems

of k-block, for k ≥ 3 and k-robust 2-club for k ≥ 4 are very hard to approximate,

even when the given graph itself is a k-block and a k-robust 2-club respectively. In

addition, we see that, the augmentation problems which are generalizations of these

problems, are also hard to approximate, and establish that the domination version

of both these problems are hard to approximate as well. The decision version of the

s-stable cluster problem is shown to be NP-complete trivially for any arbitrary s,

and we establish that the maximum s-stable cluster problem is NP-hard on claw-free

graphs.

The complexity results on arbitrary graphs give rise to some questions which need

to be addressed in future research. Firstly, the hardness of approximation results

established for the minimum k-block and k-robust 2-club problems, does not rule out

a constant factor approximation for these problems, and it would be interesting to

find a characterization of graphs for which the maximal k-blocks are always minimum.

In addition, models which have the properties of connectivity and robustness are

very applicable in the field of information and communication networks, and these

networks are in general modeled using unit-disk graphs. Hence, it would be very

interesting to establish complexity results of the minimization problems considered

on unit-disk graphs.

Our study shows the various structural and polyhderal similarities that the s-

stable cluster model enjoys with clique. It would be interesting to find the classes of

graphs in which the maximum s-stable cluster problem is easy to solve, which will aid

in understanding the relationship between the two problems further. For instance,

the maximum clique problem can be solved polynomially on unit-disk graphs [12]

and perfect graphs [30], and it would be interesting to see if the maximum s-stable
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cluster problem exhibit the same property.

As a part of our solution approaches towards the optimization problems of inter-

est, we propose mixed integer formulations for the minimum k-block, k-robust 2-club

problems, and the maximum s-stable cluster problem. Formulations based on cut-

set and multi-commodity flow are established for the minimum k-block problem, and

a simple diameter based formulation is presented for the minimum k-robust 2-club

problem. Valid inequalities and conditions under which they will be facet inducing

are discussed for both the associated polytopes. The formulations are extended to

their respective augmentation problems. Though, a detailed polyhedral study is con-

ducted for both the problems, there are still certain gaps which needs to be filled in

both cases. For the k-block and k-robust 2-club models, we present a class of graphs

for which the polytope is full dimensional, it would be interesting to see if there are

any other classes of graphs for which this is true, and this might lead to a whole new

set of facets, which can then be used for developing a branch and cut algorithm.

Two alternative formulations, similar to the maximum clique problem, are pre-

sented for the maximum s-stable cluster problem, and some of the results presented

for the vertex packing problem are analyzed to be extended. In particular, local

optimality conditions are generalized for the maximum s-stable cluster problem. We

introduce different classes of facets, in particular the rank inequality introduced by

Chvátal [11], and provide a complete description of the s-stable cluster polytope for

certain classes of graphs. A very interesting point to note in our polyhedral study

is that, the maximal independent set inequality seem to be facet defining for all the

clique relaxation models presented here, albeit under certain conditions. As men-

tioned earlier in this chapter, it would be interesting to see if the same properties

that holds true for the classical maximum clique problem, is also true for the s-stable

cluster model. In particular, it would be interesting to check other classes of graphs
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for which a complete description of the clique polytope is possible. It was also ob-

served earlier in Chapter 4 that the LP relaxation of the maximum s-stable cluster

problem is very weak, unless the maximal independent set inequalities are added to

it. An interesting question is, can a standard LP model be generated with a fixed

number of maximal independent set inequalities for any arbitrary s, that will be a

strong relaxation when used in the branch and cut algorithms.

We present two exact algorithms, a branch and cut and a combinatorial branch

and bound, for the maximum s-stable cluster problem. We analyze the performance

of the maximal independent set inequalities in the branch and cut algorithm, and

adapt a combinatorial branch and bound algorithm meant for detecting optimal

hereditary structures. Results show the performance of the algorithm on dense and

sparse graphs. For the combinatorial branch and bound, we provide a simpler verifi-

cation procedure when s = 2. However, it should be noted that the complexity of the

verification procedure is O(ns), which is not very good when s is large. Hence, there

is a need to develop a much simple verification procedure that will be suitable and

easy to compute for large values of s. The branch and cut algorithm presented, uses

the solver options for node selection, which can be a direction of exploration. The

algorithm can be enhanced by choosing better node selection methods, as this was

the case with the maximum clique problem. Also, the performance of the algorithm

after the addition of all facets, namely, cycles and holes, needs to be evaluated. This

involves choosing the order of adding violated cuts, which may lead to interesting

results.

We solve the multi-commodity flow formulation for the minimum k-block prob-

lem, and the diameter formulation for minimum k-robust 2-club problem directly

after some preprocessing. It should be noted that branch and cut algorithm, if de-

veloped using the described facets, will perform well only for certain classes of graphs.
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Hence, we propose a more heuristic based approach for these problems. The lack

of hereditary property in these structures should be made note of when developing

good heuristics for the problems, and the suggested preprocessing techniques such

as local 2-neighborhood search can also be used for developing these heuristics.

The final part of our research work focuses on developing good upper bounds for

the maximum clique problem. We propose a duality-like approach, where we solve a

minimization problem to get an upper bound for a maximization problem. We use

the minimum k-core and k-core/2-club problems for this purpose, and present LP

relaxations for the same. We show that the proposed methods give better bounds

than the standard relaxations for the maximum clique problem. It is also computa-

tionally shown that our bounds are better than some existing bounds. It would be

interesting to see if we can develop tighter convex relaxations for these two problems,

and analyze if other clique relaxation models can be used for developing good upper

bounds for the maximum clique problem.
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