
DYNAMIC LOAD BALANCING IN A GEOPHYSICS APPLICATION USING

STAPL

A Thesis

by

VINCENT SEBASTIEN MARSY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Nancy M. Amato
Co-Chair of Committee, Lawrence Rauchwerger
Committee Member, Richard L. Gibson Jr.
Head of Department, Dilma Da Silva

August 2015

Major Subject: Computer Science

Copyright 2015 Vincent Sebastien Marsy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79651566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Seismic wavefront simulation is a common method to understand the composi-

tion of earth below the surface, especially for hydrocarbon exploration. One of these

simulation methods is the wavefront construction algorithm. In this thesis, we re-

duced the load imbalance in a parallel implementation of the wavefront construction

algorithm. We added a generic redistribution framework for data structures in the

C++ parallel library STAPL. We present a redistribution algorithm for the paral-

lel wavefront construction application which uses the recursive coordinate bisection

method to find a near-optimal data distribution of the data. This algorithm lever-

aged the added redistribution features in STAPL to improve the running time of our

application. We compared the run time of the application with and without redis-

tribution on different geophysics models. We show that the proposed redistribution

provides up to 9.45x speedup on a Cray XE6m cluster and 11.85x speedup on an

IBM BlueGene/Q cluster.

ii

DEDICATION

To my family

iii

ACKNOWLEDGEMENTS

I want to thank my advisor, Dr. Nancy Amato, for her support during my research

at the Parasol Lab since August 2012. Dr. Amato help me choose an interesting and

challenging problem: Data redistribution in a parallel geophysics application. With

Dr. Amato feedback and encouragements I was able to go through all the difficult

steps.

I also want to thank Dr. Lawrence Rauchwerger, whose different courses and

remarks helped me gain more knowledge about high performance computing and

parallel computing in general. Dr. Richard L. Gibson Jr. gave me good suggestions

on how to improve this thesis.

I also want to thank every member of the Parasol Lab, and especially members of

the STAPL group. Without them, I could not have finished this work. Particularly

I want to thank Adam Fidel, Shishir Sharma for sharing their knowledge on the

parallel wavefront construction algorithm and the challenges of data redistribution.

I also thank Dr. Timmie Smith for sharing is knowledge on STAPL.

Finally I want to thank my parents and friends for their support and understand-

ing.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Contributions . 3
1.2 Outline of Thesis . 4

2. PRELIMINARIES AND RELATED WORK 6

2.1 STAPL Overview . 6
2.2 Parallel Wavefront Construction Method 8
2.3 Data Redistribution . 16
2.4 Dynamic Data Structures Applications 18

3. DATA REDISTRIBUTION IN STAPL . 22

3.1 Parallel Container Overview . 22
3.2 View-based Distribution . 24
3.3 Parallel Container Redistribution . 26

4. REDISTRIBUTION IN SRT USING STAPL 29

4.1 Redistribution Algorithm . 29
4.2 Choice of Parallel Data Structures . 33

4.2.1 Ray collection . 34
4.2.2 Raytube collection . 36

4.3 Usage of Recursive Coordinate Bisection 38
4.4 Frequency of Redistribution . 39

v

5. PERFORMANCE EVALUATION . 41

5.1 Machine Specifications . 41
5.2 Input Parameters . 44
5.3 Results . 50

5.3.1 Choice of imbalance threshold 50
5.3.2 Memory usage . 53
5.3.3 Performance results . 54

6. CONCLUSION AND FUTURE WORK 77

REFERENCES . 78

vi

LIST OF FIGURES

FIGURE Page

1.1 An example of a source emitting a seismic wave and the receivers
gathering the seismic data. 2

2.1 The stapl framework. 7

2.2 Different mesh initialization geometries a) Take-off angle mesh co-
ordinates, the ray parameters are defined as γ1 = ψ(declination),
γ2 = φ(azimuth), and γ3 = τ . b) Cube sphere mesh coordinates,
the ray parameters are defined as γ1 = xi, γ2 = xj , and γ3 = τ [15]. . 10

2.3 Possible load imbalance situation in the seismic ray tracing applica-
tion [15]. 12

2.4 A raytube interpolating over time [21]. 13

2.5 Interpolation of a raytube [15]. 13

2.6 (a) A complex salt dome model and (b) its load profile through time.
(p=64) (as shown in [15]). 15

2.7 Visualization of the wavefront imbalance in the salt dome model (p=4).
Each color represents one of the four different processors. 15

2.8 An example RCB decomposition in a 2D space. Each cut is done such
that the number of elements on each side of the cut is the same. . . 20

3.1 The pContainer Framework. 23

4.1 Visualization of the wavefront after redistribution in the salt dome
model (p=4). Each color represents one of the four different processors. 33

5.1 Model 1: Salt dome model [15]. 44

5.2 Model 2: Salt canopy model [15]. 46

5.3 Model 3: Cylindrical inclusions model [15]. 49

vii

5.4 Speedup of redistributed (th=1.6) vs. imbalanced. Scaled from 0 to
1 to exhibit the best threshold. 51

5.5 Speedup of redistributed version (th=1.6) versus imbalanced version
in Model 1 on Rain. 52

5.6 Salt dome model peak memory usage with 16 locations on Universitas
(a) with redistribution (th=1.6) and (b) without redistribution. . . . 53

5.7 Strong scaling of the redistributed (th=1.6) and imbalanced version
in Model 1 from 1 to 512 processors on Rain. Confidence Intervals
95%. 56

5.8 Strong scaling of the redistributed (th=1.6) and imbalanced version
in Model 1 from 128 to 512 processors on Rain. Confidence Intervals
95%. 57

5.9 Scalability of the redistributed (th=1.6) and imbalanced version in
Model 1 from 1 to 512 processors on Rain. 58

5.10 Distribution of time of the redistributed version(th=1.6) in Model 1
from 64 to 512 processors on Rain. 59

5.11 Distribution of redistribution phases as a percentage in Model 1 from
64 to 512 processors on Rain. 60

5.12 Distribution of redistribution phases in seconds in Model 1 from 64 to
512 processors on Rain. 62

5.13 Strong scaling of the redistributed (th=1.6) and imbalanced version in
Model 1 from 128 to 1024 processors on Vulcan. Confidence Intervals
95%. 63

5.14 Scalability of the redistributed (th=1.6) and imbalanced version in
Model 1 from 128 to 1024 processors on Vulcan. 64

5.15 Speedup of redistributed version (th=1.6) versus imbalanced version
in Model 1 from 128 to 1024 processors on Vulcan. 65

5.16 Distribution of time of the redistributed version(th=1.6) in Model 1
from 128 to 1024 processors on Vulcan. 66

5.17 Distribution of redistribution phases as a percentage in Model 1 from
128 to 1024 processors on Vulcan. 67

viii

5.18 Distribution of redistribution phases in seconds in Model 1 from 128
to 1024 processors on Vulcan. 68

5.19 Strong scaling of the redistributed (th=1.6) and imbalanced version
in Model 2 from 1 to 512 processors on Rain. Confidence Intervals
95%. 69

5.20 Strong scaling of the redistributed (th=1.6) and imbalanced version
in Model 2 from 128 to 512 processors on Rain. Confidence Intervals
95%. 70

5.21 Scalability of the redistributed (th=1.6) and imbalanced version in
Model 2 from 1 to 512 processors on Rain. 71

5.22 Speedup of redistributed version (th=1.6) versus imbalanced version
in Model 2 from 1 to 512 processors on Rain. 72

5.23 Strong scaling of the redistributed (th=1.6) and imbalanced version
in Model 3 from 1 to 512 processors on Rain. Confidence Intervals
95%. 73

5.24 Strong scaling of the redistributed (th=1.6) and imbalanced version
in Model 3 from 128 to 512 processors on Rain. Confidence Intervals
95%. 74

5.25 Scalability of the redistributed (th=1.6) and imbalanced version in
Model 3 from 1 to 512 processors on Rain. 75

5.26 Speedup of redistributed version (th=1.6) versus imbalanced version
in Model 3 from 1 to 512 processors on Rain. 76

ix

LIST OF TABLES

TABLE Page

4.1 Complexity of pUnorderedMap basic operations. 35

5.1 Cray XE6m (aka. Rain) hardware specifications. 42

5.2 Cray XE6m (aka. Rain) software specifications. 43

5.3 IBM BlueGene/Q (aka. Vulcan) hardware specifications. 43

5.4 IBM BlueGene/Q (aka. Vulcan) software specifications. 44

5.5 Model 1: Salt dome model regions [15]. 45

5.6 Model 1: Salt dome model simulation settings. 46

5.7 Model 2: Salt canopy model regions [15]. 47

5.8 Model 2: Salt canopy model simulation settings. 48

5.9 Model 3: Cylindrical inclusions model regions [15]. 49

5.10 Model 3: Cylindrical inclusions model simulation settings. 50

5.11 Frequency of redistribution in Model 1 (th=1.6). 61

x

1. INTRODUCTION

Parallel programming today cannot be overlooked when high performance is

needed. From basic personal computers to supercomputers, modern architectures

contain multiple cores. Using these processors in parallel to solve problems faster

seems obvious. However, writing code to do so is considered harder and more error

prone than standard sequential programming. Different programming paradigms are

available to provide a way to program various hardware architectures in parallel, all

of which provide a balance between ease of use, portability, and performance.

Because large-scale parallel programs work with multiple cores and distributed

memory, many requirements are added compared to sequential programs. One of

them is to specify the data layout of a data structure. Indeed, not all the elements of

a data structure reside on one processor’s memory. Typically a data structure, also

known as a container, will have its elements distributed more or less evenly amongst

all processing elements’ memory. In the sequential world, a programmer is used to

the spatial and temporal locality when accessing elements of a container. In parallel

programs, this locality has an even bigger impact: one processor wants to access

elements which reside on the processor’s memory. Otherwise the processor needs to

access that element remotely, which is costly. Of course some remote calls cannot

be avoided, but a programmer will try to specify a data layout that minimizes the

number of remote accesses.

Parallel algorithms performs better if the data is well distributed. For some

problems, distributing the data is easy, while for other it can be an issue. An example

of a problem where the distribution is challenging is a seismic ray tracing application

which implements a parallel wavefront construction algorithm [15].

1

Seismic ray tracing algorithms are used in the field of geophysics to estimate the

properties of geological formations. It is used to simulate seismic wave propagation.

In a seismic ray tracing algorithm, a hypothetical earth model is provided with

different layers in the earth’s crust. The algorithm simulates the propagation of

seismic rays from a specific source. This simulation is compared to real world data,

which was collected using seismometers. Figure 1.1 shows how the data is collected in

the real world. Usually the source can be thumper trucks, which drop heavy weights

on the ground to generate a seismic wave. The receivers are seismometers laid out

around the source. The source can also be an air gun below a boat which generates a

seismic wave. In that case the seismometers are attached behind the boat on a long

cable. The hypothetical earth model is iteratively refined by the user until the ray

tracing simulation matches the data that was collected using the methods explained

above.

Figure 1.1: An example of a source emitting a seismic wave and the receivers gath-

ering the seismic data.

2

This method, known as Forward Modeling, has a huge impact and is very im-

portant to the hydrocarbon exploration community. Methods other than ray tracing

exist to perform seismic modeling, such as finite-difference method (FDM) which

attempts to solve exact equations and apply finite-differences techniques to solve

many partial differential equations. The advantages of this method is that they can

compute the complete solution [31, 22] but the disadvantages are the difficulty to in-

terpret the results, the slow computation time and the high memory requirements of

the system [21]. The state of the art ray tracing method is the Wavefront Construc-

tion(WFC) method [29, 30, 20, 23, 11, 16, 32] as it provides many of the advantages

of the ray tracing method, without its inconveniences [17]. However, a new drawback

of the WFC method arises when parallelized [15]: The distribution of data becomes

imbalanced during the algorithm execution.

1.1 Contributions

In this thesis, our objective is to improve the distribution of the data in a seismic

ray tracing application which implements the parallel WFC algorithm using stapl.

In order to do this, we add a redistribution feature for dynamic container in stapl.

We improve the stapl framework to offer to the user containers for which the data

layout can be defined and updated easily. The infrastructure to perform data redis-

tribution should be modular, extensible and customizable so that it can handle the

change from any data layout to another data layout for data structures in stapl.

stapl already has a framework to represent data structures which will be explained

in Chapter 3. The redistribution functions are built on top of this framework in such

a way that already existing applications do not suffer from performance degradation

due to the new redistributions features. The objectives we cover in this thesis can

be summarized in these main points:

3

1. Extend stapl’s redistribution framework to easily redistribute any kind of

dynamic containers.

2. Update the Seismic Ray Tracing (SRT) application to enable the use of the

redistribution framework.

3. Use that framework, in combination with some data balancing technique in

SRT to obtain better performance and scalability for the parallel wavefront

construction algorithm.

Dynamic containers distributor. We will provide a module called the

Distributor for dynamic containers. This module is responsible for redistributing

a pContainer, handling all the necessary steps required to finish the redistribution

with a pContainer in a valid state.

Updating SRT. The first parallel implementation of SRT was done using an older

version of stapl which did not use the modern pContainers and was not using the

most efficient data structures for the work.

Use Recursive Coordinate Bisection (RCB [3]) to improve SRT’s perfor-

mance. Once SRT was written using the newest stapl features, it was possible to use

the well-known load balancing algorithm RCB in coordination with the Distributor

to automatically load-balance the data structures in SRT.

1.2 Outline of Thesis

In Chapter 2 we describe the basics of our seismic ray tracing application: the

parallel wavefront construction algorithm it is based on, and stapl, the C++ paral-

lel library used to implement it. We also discuss the related work. In Chapter 3 we

4

describe the framework for data redistribution in stapl. We then explain in Chap-

ter 4 the algorithm used to perform a redistribution of the data in the Seismic Ray

Tracing application. We then present the results of this redistribution in Chapter 5.

Finally, Chapter 6 concludes this thesis.

5

2. PRELIMINARIES AND RELATED WORK

In this chapter, we present the preliminaries and related work. First we present

describe the stapl parallel C++ library which was used for our implementation.

Next, we give an overview of the parallel wavefront construction algorithm and the

problem we encounter with it. Then, we describe the related work in the domain

of data redistribution. Finally, we describe the different techniques for partitioning

data. Specifically, we give details about the Recursive Coordinate Bisection method

that we will use in our work.

2.1 STAPL Overview

The Standard Template Adaptive Parallel Library (stapl) [6] is a parallel pro-

gramming framework that extends C++ and STL with unified support for shared

and distributed memory parallelism. stapl provides distributed data structures

(pContainers) and parallel algorithms. It relies on a runtime system which provides

the abstraction for communication between locations. Each location communicates

through asynchronous messages called RMIs [25]. A location is an individual pro-

cessing unit (a process or thread), with its own local memory address space. Accesses

of data in a location are local if the data is stored in that location’s address space,

or remote otherwise. The number of locations is specified by the user, using a com-

bination of MPI processes, and a number of stapl threads per process.

Each element in a pContainer is identified via a unique identifier: the Global

Unique ID (GID). This GID can be a scalar, but also support complex types such as

a string, or user-defined types.

6

User Application Code

A
d

a
p

ti
v
e

 F
ra

m
e

w
o

rk

Algorithms Views

Containers

Skeleton

Framework
PARAGRAPH

PARAGRAPH Executor

Run-time System

ARMI Communication

Library
Scheduler

Performance

Monitor

Figure 2.1: The stapl framework.

The major components of stapl to store and retrieve data in pContainers is the

directory. This directory has two main components: the registry and the manager.

These will be discussed in more detail in Section 3.1. The directory is responsible for

everything that is required for inserting, reading, writing, or deleting any element

of a pContainer based on its GID. View-based distributions are another first-class

concept in the pContainer framework. For any GID they map it to its location with

a two-step process: a partitioning phase, and a mapping phase. These two elements

will be discussed in details in Section 3.2, but the key advantage is, from a user’s

perspective, a simple two-function specification. This makes the programmer’s work

easier and it also facilitates the change of distribution in the framework itself. Given

any new partitioning and mapping functions, the pContainer can determine how to

redistribute the data to go from the old distribution to the new one as we will see in

section 3.3.

7

2.2 Parallel Wavefront Construction Method

The parallel SRT application [15] was originally implemented in stapl. It is an

attempt to parallelize the wavefront construction algorithm [21] using stapl. In [15],

Jain presented a successfully implemented parallel wavefront construction algorithm.

A high level description algorithm is presented in Algorithm 1.

An interesting characteristic of the algorithm that explain our choices described

in Chapter 4 is the numerical properties of the wavefront. The wavefront represents

a surface connecting the points of same travel time along each ray path [21]. The

elementary geometric subdivisions of our mesh are quadrilateral shapes. The main

idea of the algorithm is that every of these mesh cells respect some conditions in

order to keep a minimum level of ray density across the wavefront.

To initialize the mesh of rays, two methods can be used: Take-off angle mesh or

Cubed sphere mesh. Both are a set of initial rays exiting from the source. These two

methods have advantages and disadvantages. For the take-off angle method we use

two ray parameters, γ1 and γ2 and we can set the third parameter as the traveltime,

γ3 = τ , or arclength, γ3 = s [28]. To generate the initial mesh we just need to connect

the points sharing the same travel time along the ray paths (γ1 = ψ, γ2 = φ, and

γ3 = τ0). ψ represents the declination, φ represents the azimuth, and τ represents

the traveltime. The advantage of this method is that this representation is very

natural and easy to visualize and implement. However, the density of rays is not

well distributed on the sphere, we end up with a much higher density at the top and

bottom of the sphere (where the declination angle ψ = ±90◦) as pointed out in [21].

Figure 2.2 (a) shows a representation of the take-off angle mesh coordinates, where

the center represents our source. On the other hand, the Cubed-sphere method,

presented in [21], lets us use different values for γ1 and γ2. These values still identify

8

rays with unique coordinates, which fills the requirement for our algorithm. In that

second method, the parameters are generated using an imaginary cube (called focal

cube) centered at the source point. To compute the values for γ1 and γ2, the rays are

projected from the source for a unit traveltime, passing through discretized points on

each face of the cube. Each face of the cube has N ∗N points, which gives us 6 ∗N2

points over all the 6 faces of the cube. These 6 ∗N2 points are uniquely represented

as a pair of (xi, xj) coordinates, where xi is the x1 component of a face, and xj is

the x2 component of a face. These coordinates are used for γ1 and γ2. Specifically,

γ1 = xi and γ2 = xj. That method is less natural than the take-off angle method,

but the rays are then evenly distributed over the faces of the focal cube. With the

current implementation, as long as the original rays coordinates can be expressed as

unique two dimensional points (γ1, γ2) the wavefront can be successfully propagated.

9

(a) Take-off angle mesh (b) Cubed sphere mesh

Figure 2.2: Different mesh initialization geometries a) Take-off angle mesh coordi-

nates, the ray parameters are defined as γ1 = ψ(declination), γ2 = φ(azimuth), and

γ3 = τ . b) Cube sphere mesh coordinates, the ray parameters are defined as γ1 = xi,

γ2 = xj , and γ3 = τ [15].

10

Algorithm 1 Parallel wavefront construction algorithm.

Require: Earth model, mesh description, number of source and their position

1: Initialize the rays and the ray tubes in parallel using the user specified geometry

2: while (true) do

3: for i = 0 to
dtray tube

dtray

4: parallel for each ray ∈ collection of rays

5: Trace the rays by one time step

6: If the ray segments intersect a surface in the earth model, then create

new ray segments if needed

7: end parallel for

8: end for

9: parallel for each ray tube ∈ collection of ray tubes

10: Step the ray tube by one time step

11: Interpolating/coarsening the ray tube if necessary

12: end parallel for

13: if No ray tube remains

14: break

15: end if

16: end while

11

Figure 2.3: Possible load imbalance situation in the seismic ray tracing applica-

tion [15].

The mesh cells are what we call raytubes. Each raytube represents a set of four

or five rays; at each time step of the algorithm, a raytube is going to check if a

threshold of error is crossed for the rays it is responsible for. This error can be

computed using different physical properties of the rays. These criteria can be the

distance between the adjacent rays, the area defined by the four corner rays of a

raytube, or more complicated criteria such as the travel time perturbation using

paraxial ray tracing [21]. If this threshold is crossed, a raytube interpolates to keep

the rays density in an acceptable range. Interpolating will divide the raytube into

children raytubes. This will increase the number of rays in the area of the wavefront

where the raytube is. These new children raytubes will have their properties below

the error threshold chosen by the geophysicist.

12

Figure 2.4: A raytube interpolating over time [21].

Figure 2.4 shows an example where a raytube interpolates over time, the location

one which the original rays and the raytube were now have increased its number of

rays and raytubes.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Original rays

Interpolated rays

(a) with 4 rays

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Original rays

Interpolated rays

(b) with 5 rays

Figure 2.5: Interpolation of a raytube [15].

In Algorithm 1 at line 11: the interpolation and coarsening of the raytubes is

13

what makes the algorithm’s results more interesting than a conventional ray trac-

ing application. However, it is the main cause of poor scalability in the parallel

implementation. A raytube interpolation is dependent on the input model and the

characteristics of its rays. Some processors can have raytubes which decide to in-

terpolate often, which creates an uneven distribution of the raytubes and rays. Fig-

ure 2.5 shows simply how the load imbalance can arise: At every interpolation new

rays are going to be created. If we use 4 rays per raytube as shown in (a), then a

raytube generates 5 additional rays. If we use 5 rays per raytube as shown in (b)

then 8 additional rays are added. Coarsening is the reverse process: When rays of

neighboring raytubes are too close to each other, these raytubes can merge back

into their original parent raytube. This can also generate an uneven distribution of

the rays and raytubes across processors. An example of the load imbalance can be

seen in Figure 2.3. Figure 2.6 shows a particular model that exhibits this imbalance

behavior. Figure 2.6(a) shows an example earth model for the simulation, and Fig-

ure 2.6(b) shows the disparities of load over time on 64 processors. The maximum

load is represented by the bars, while the average load is represented by the line. We

can see that the maximum load on a processor can be significantly higher than the

average load across processors.

14

(a) (b)

Figure 2.6: (a) A complex salt dome model and (b) its load profile through time.

(p=64) (as shown in [15]).

Figure 2.7: Visualization of the wavefront imbalance in the salt dome model (p=4).

Each color represents one of the four different processors.

Figure 2.7 is a visualization of the wavefront on four processors.We show only

15

four processors so that the we can easily distinguish between the four areas on the

wavefront. Originally, the rays in the wavefront were distributed evenly between

each processor. Over time, we notice that a majority of the rays of the wavefront

are held by the processors represented in blue.

2.3 Data Redistribution

Several efforts to make parallel programming easier to users exist. Some, such

as Cilk [12] and Intel TBB [14], only target shared memory architectures. In that

context, the data is present only on one physical memory, and thus the concept

of remote access is not as important; a poorly laid out data distribution will only

show poor spatiotemporal locality, or could lead to false sharing. However, these

issues are orders of magnitude less impacting than remote memory accesses, where

the latency and bandwidth to access the data reduces performance. In the shared

memoy context it is still important that each thread shares the work evenly, but

insuring that each thread handles the same amount of data is not a significant chal-

lenge. Some frameworks such as Chapel [7], UPC [24], and X10 [10] which target

distributed memory architectures encounter the problem of poorly located data and

try to solve these issues by providing user-friendly ways to allow data redistribution.

In [26], the authors discuss how Chapel users can enable re-allocation of data, but

these re-allocations show suboptimal performances due to re-allocation communica-

tion performed without aggregation. Aggregating means that if some data needs to

be migrated from one processor to another, only one message will carry the data, in-

stead of one message per datum. Aggregation avoids a large amount of unnecessary

latency. In [26] the authors show that for some specific key cases involving block and

cyclic distributions (which are dense regular domains), the authors are able auto-

matically aggregate communication. In [2], the X10 authors present some compiler

16

optimizations to reduce communication overheads, but the data migration is also

done without aggregation. The solution we will describe in Section 3.3 does perform

an aggregation of the data. UPC presents how carefully crafted collective commu-

nication such as an all-to-all communication done with a complexity of O(n ∗ log n)

instead of O(n2) can improve performance.

However, none of these framework propose a generic algorithm for redistribution.

The data migration task is left to the user, who can use the interface provided by

these system. In UPC an exchange method can perform the collective exchange.

In X10 the data migration is the responsibility of the user, with potential compiler

optimizations reducing communication. In Chapel, if the users only use Block and

Cyclic distributions and specifies them in the code, then the redistribution is hidden

from the user. Otherwise the user has to take care of it.

Moreover, the unique key used to represent each element in these frameworks

is limited to scalar key types. stapl’s redistribution framework is more generic by

allowing any type of key but still aggregating communication for the redistribution.

In this thesis we focus on a centralized redistribution, where each processor shares

the same global knowledge about the data imbalance. Another type of redistribu-

tion is decentralized redistribution. In that case, each processor does not share

global knowledge, but instead evaluate the imbalance using load information from

its neighbors processors. For instance, in the Neighborhood load balancing algorithm

NeighborLB [18], each processors compare its load with its neighbors and decide

to redistribute data with them. This type of redistribution does not require global

communication which could improve the scalability of the algorithm, but could yield

to less accurate redistributions.

17

2.4 Dynamic Data Structures Applications

Other parallel scientific applications show similar issues to SRT. For instance prob-

lems like adaptive mesh refinement [4] can exhibit the same behavior: Over time,

the data will grow and shrink at different rates on each processor. Many techniques

exist to find a better partitioning of the data, each with their advantages and disad-

vantages which needs to be considered on a per application basis.

Graph partitioning is a popular method for distributing load evenly. It requires

the problem to be expressed in form a of a graph G = (V,E) where V are vertices

and E edges. These edges are links that connect vertices. These links represent

certain properties about the connection between two vertices.

A graph partitioner then computes sub-domains with the same number of vertices

and which also satisfies constraints on the edges. For instance, the constraint can be

that the sum of the edges connecting each sub-domain is minimized. The disadvan-

tages are that the problem needs to be expressed as a graph, and the computation

of this graph partitioning can be costly [8].

When the problem can be expressed in a n-dimensional space, we can use a

geometric partitioner instead. One advantage of such partitioner is that the problem

does not need to be expressed as a graph. Objects to partition must be represented

as a n-dimensional unique coordinate. The performance of geometric partitioner

is better than the graph partitioner, since the constraints are simpler than some

constraints on edges. We saw in section 2.2 how rays in the mesh in the parallel

wavefront construction algorithm can be represented in a 2D space using (γ1, γ2)

coordinates, which makes geometric partitioning a good candidate for SRT.

There exist a few frameworks which provide geometric partitioning, Zoltan [9]

is one such framework. The interoperability of stapl with different frameworks

18

makes it easy to use one of Zoltan’s partitioning methods to find a fast and good

partitioning of the rays.

Various geometric partitioning methods exits, a popular one is is Hilbert space-

filling curve [13]. Hilbert ordering linearly orders and generates an evenly balanced

partitioning. However, its main disadvantage is that each region does not share the

same number of neighbor partition. With our raytubes, we want to minimize the

communication between processors, so we decided to us another geometric partition-

ing technique: Recursive Coordinate Bisection(RCB). RCB guarantees us that each

sub-region will have at most four neighbors sub-regions.

The Recursive Coordinate Bisection (RCB) algorithm was described by Berger

and Bokhari [3]. The algorithm operates on data represented in a spatial domain.

Each datum has an x1, x2, ..., xn unique representation in a n-dimension domain.

During the first step of the RCB algorithm, the domain is cut into two regions. That

cut is orthogonal to one of the coordinate axes of the original domain. The cut is

done such that there is half of the elements on one side, and half of the elements

on the other side. The next steps is repeating recursively the cutting on the two

sub-regions computed at the previous step. The recursion stops when we reach the

desired number of created sub-regions. These sub-regions are the sub-domains that

we will use to partition our data.

19

Figure 2.8: An example RCB decomposition in a 2D space. Each cut is done such

that the number of elements on each side of the cut is the same.

Figure 2.8 shows a potential decomposition of points in a 2D space. In this

example we would have three levels of cut, leading to eight different regions. These

regions would contain the same number of points.

The original algorithm was created a number of sub-regions equal to a power of

two, but the implementation we use in Zoltan [9] can handle any number of sub-

regions. Indeed, nothing prevents us to cut a region in n sub-regions instead of only

two regions.

When presented in 1987, it was advertised as a good static load-balancing algo-

rithm, but it actually exhibits good properties for dynamic load balancing. Indeed,

throughout the execution of the program, the RCB algorithm will produce incremental

partitions, which minimizes the changes of each region. This will reduce the amount

20

of communication needed during the redistribution phase. Each of the sub-region

in a 2D space is made with cuts parallel to the main axis of our domain, these

sub-regions are rectangles by definition, so they share at most four sides with other

sub-regions.

SRT shows a particular problem that is not frequently seen in other scientific ap-

plications, which is a strong coupling of two different data structures: one for the

rays and one for the raytubes. The flexibility of stapl makes it easy for an appli-

cation to make use of the same partitioning for these two different data structures.

We will give more details about this strong coupling in chapter 4

21

3. DATA REDISTRIBUTION IN STAPL

In this chapter, we go into details on how to perform redistribution in stapl.

First, we describe in details the components of the pContainer that will need to

be updated. Next we describe in details the interface to specify the partitioning in

stapl, using View-based distributions. Then we describe the algorithm for redistri-

bution of a pContainerin stapl and discuss its correctness.

3.1 Parallel Container Overview

The parallel container framework was first described in [27]. A parallel container

(pContainer) is an object oriented implementation of a data structure in STAPL’s

parallel environment. It is a distributed data structure that holds a finite collection

of elements in a non-replicated fashion. The pContainer is defined by a global

directory, as well as one container manager per location, which will handle the

different local base containers. Each type of pContainer has a specific type of base

containers. For instance a stapl::unordered map will have as a base container the

std::unordered map so that the complexity to find/insert/erase local elements is

O(1). Figure 3.1 shows a breakdown of the pContainer framework.

22

Figure 3.1: The pContainer Framework.

The directory has two important components: the manager and the registry.

The manager is responsible for knowing which location is responsible of any given

GID. To be able to answer this, it relies on the partition and the mapper that will be

described in Section 3.2. The registry on the other hand is responsible of knowing

if a GID is present or not in the pContainer. If an RMI reaches a location with

the intention of updating some GID’s value, the registry will queue that request until

the GID is indeed registered. This permits asynchronous use of the pContainers,

providing scalable performance. The registry is also the component responsible for

the knowledge where each GIDs are actually stored. Some containers can bypass the

manager and register a key at a different location. This is true for elements that have

been migrated using the per-element migration; in such cases, the manager would

still be responsible for knowing the location of the registry that knows where the GID

is.

The container manager is responsible for local base containers. For some distri-

butions there will be only one base container per location. Other distributions, such

23

as cyclic distributions, may place multiple base containers on a location. Each base

container is uniquely identified by its Partition ID (PID).

3.2 View-based Distribution

As we can see in Figure 2.1, pViews [5] are one of the major component of stapl.

They are used to get a lightweight representation of containers. They are inspired

from the C++ STL (The Standard Template Library) iterators. Like algorithms in

the STL that only use iterators as input and output, pViews in stapl are used in

a similar way to provide a decoupling of containers and algorithms. Equation 3.1

shows what the necessary components of a pView are (as described in [5]).

V iew = {Container,Domain, Set of operators,Mapping functor} (3.1)

But pViews can give an abstract representation of more than pContainers. In

fact, the pContainer’s partition and mapper described in Section 3.1 are now de-

coupled from the pContainer through a view-based distribution.

VSystem = {Locations, | Locations |, ∅, ID} (3.2)

VPartition = {VSystem, PartitionDomain, ∅, P ID → LID functor} (3.3)

VElements = {VPartition, GIDsDomain, ∅, GID → PID functor} (3.4)

The distribution of a container can now easily be replaced by providing the triply-

nested view defined by Equations 3.2, 3.3, and 3.4. The first pView, described in

Equation 3.2, is the system pView. It provides an abstraction over the actual system,

with a set of locations, the number of locations, and the unique location IDs (LID).

The second pView, described in Equation 3.3, is the partition view: it provides

24

an abstraction over the first view, it is also providing the knowledge of the total

number of partitions for the container (i.e. the PartitionDomain) and a partition ID

(PID) to LID mapping function. The last pView, described in Equation 3.4, is the

elements view: it provide an abstraction over the second view, it is also providing

the knowledge of the domain of the GIDs and a GID to PID mapping function.

The user does not need to create these three views herself, the interface in stapl

gives access to the most common distributions in a single line of code (cyclic, block,

block-cyclic) as well as an arbitrary distribution, where the user specifies the GIDs’

domain, the GID → PID functor, and the PID → LID functor. The rest is

taken care of by the framework. These are the most important components for the

user: the GID → PID functor is the functor used by the pContainer’s Partitioner

to figure out in which Partition a GID has to go, while the PID → LID functor

is the functor used by the pContainer’s Mapper to figure out on which location a

partition is supposed to be located.

Such a view-based distribution can be used to initialize a pContainer’s distribu-

tion and it is also used to trigger a redistribution.

For instance a user will simply express a new view-based distribution in C++ by

passing the two functors we described above:

1 auto vb ds = s t ap l : : a r b i t r a r y (

2 container domain ,

3 s t ap l : : g e t num loca t i ons () ,

4 GID to PID functor ,

5 PID to LID functor) ;

The container’s domain contains information about the set of elements that the

container can hold. Then, the interface to redistribute a pContainer is simply:

1 my container . r e d i s t r i b u t e (vb ds) ;

25

In the next section we are going to see in details what happen once the redistri-

bution is triggered.

3.3 Parallel Container Redistribution

Whenever a pContainer needs to be redistributed, both the directory and con-

tainer managers need to be updated. The directory’s manager needs to be updated

with the new partition and mapper, which is easy due to the view-based distribution

described in the previous section. Its registry needs to ensure that GIDs are registered

on the correct location. Indeed, each key needs to be registered where the Partitioner

and Mapper expects the key to be. This means that in addition of updating the con-

tainer manager’s base containers, that registry also needs to be updated.

To be able to aggregate communication, even for arbitrary distributions, we use

a well-known and efficient all-to-all communication pattern referred as the butterfly

communication pattern. It is a good way to share information among all locations

in O(log n) steps, where n is the number of locations.

26

Algorithm 2 pContainer redistribution.

Require: A pContainer

1: Identify how many elements of the pContainer to send to other locations using

the new distribution Partitioner and Mapper

2: Perform a butterfly all-to-all communication so that each location knows how

many elements to expect

3: Ship the data to other locations in an aggregated message

4: while (there is still elements to receive from other locations) do

5: Receive elements and add them to their respective new base containers

6: end while

7: Register the new elements

8: Advance epoch

Algorithm 2 shows the high level algorithm for the redistribution. It is based on

recent previous work in stapl where the butterfly was used for a different purpose.

It was exchanging GIDs sets, to figure out the exact set of GIDs each location was

about to receive. This is a sufficient strategy for containers where GIDs are scalar,

but it was undefined for non-scalar key types. To be generic and work with any GIDs

we extend the algorithm in the following manner: first each location checks for each

of its registered GIDs where they should move, and keeps a record of, according to

the new partition-mapper, where each key is now supposed to go. It then proceeds

to the butterfly algorithm, where as a post-condition each location has knowledge

of exactly how many elements it is supposed to contain. A location then sends one

asynchronous message to each location, with all the data to ship. This aggregation

avoids the need to send an RMI per element. It then waits until it receives all RMIs

27

(if any) and registers the new set of GIDs on that location. It then increments its

epoch by one.

Incrementing the epoch guarantees that the redistribution is fully completed be-

fore doing other work on the data, without requiring an expensive global synchro-

nization. For instance, if a location l1 proceeds to send new RMIs to location l2

after its part of the redistribution is done, but before l2 is completed, then l2 will

not execute these RMIs before it also increments its epoch (i.e. finish its part of the

redistribution).

28

4. REDISTRIBUTION IN SRT USING STAPL

As we saw in section 2.2, the seismic ray tracing application was implemented

using stapl. To handle redistribution, we use the latest features from stapl as

described in the previous chapter. In this chapter, we first present the redistribution

algorithm in SRT. Next, we discuss the data structures we use in SRT. Then, we present

how the Recursive Coordinate Bisection technique is used to improve locality of

reference with the final objective of improving the application’s performance. Finally

we discuss about the frequency of the redistribution in SRT.

4.1 Redistribution Algorithm

In section 2.2 we described the parallel wavefront construction. Algorithm 3 is an

improvement over Algorithm 1, where we add the redistribution features. In [15], Jain

mentionned that a redistribution could be perform but this was not implemented.

29

Algorithm 3 Parallel wavefront construction algorithm with redistribution.

Require: Earth model, mesh description, number of source and their position

1: Initialize the rays and the ray tubes in parallel using the user specified geometry

2: while (true) do

3: for i = 0 to
dtray tube

dtray

4: parallel for each ray ∈ collection of rays

5: Trace the rays by one time step

6: If the ray segments intersect a surface in the earth model, then create

new ray segments if needed

7: end parallel for

8: end for

9: parallel for each ray tube ∈ collection of ray tubes

10: Step the ray tube by one time step

11: Interpolating/coarsening the ray tube if necessary

12: end parallel for

13: if No ray tube remains

14: break

15: end if

16: if Load balancing needed

17: Use load balancing algorithm

18: end if

19: end while

30

Algorithm 4 SRT redistribution.

Require: A ray collection and raytube collection.

1: Compute imbalance ratio by finding the maximum load and the average load

2: if imbalance ratio greater than imbalance threshold then

3: Compute better partition with Zoltan’s RCB

4: Redistribute ray collection

5: Redistribute raytube collection

6: end if

Lines 16 and 17 of algorithm 3 are the new steps performed in our parallel wave-

front construction algorithm. Algorithm 4 is the detailed algorithm of the redistri-

bution in SRT. Line 16 of Algorithm 3 is the line 2 of Algorithm 4, and line 17 of

Algorithm 3 is the line 3 through 5 of Algorithm 4. All the steps are performed by a

LoadBalancer module. The LoadBalancer module has a simple interface presented

below:

1 template <class Raytube Col lect ion Type , class RayCollectionType>

2 class LoadBalancer

3 {

4 LoadBalancer (RayCollectionType∗ r , Raytube Col lect ion Type ∗ r t) ;

5 bool I sRed i s t r ibut ionNeeded () ;

6 void FindBet t e rPar t i t i on () ;

7 void Red i s t r i bu t e () ;

8 } ;

In the SRT application, the load balancer object is instantiated once. This

generic interface lets the user experiment with different load balancing methods.

31

The LoadBalancer has access to the two data structures so that it can call the

redistribute algorithm of stapl when necessary. Internally it has to create the

new distribution, using the view-based distribution interface presented in 3.2. In

our case, we get a new arbitrary distribution, where the Partitioner has information

gathered from the RCB decomposition. The method IsRedistributionNeeded is

simply returning a Boolean indicating if a redistribution is needed or not. This is

line 2 of Algorithm 4. In our case we compute the imbalance ratio, and if it crossed

the threshold, it returns TRUE. The imbalance ratio and choice of this threshold

will be discussed in section 4.4.

Line 3 of Algorithm 4 is the FindBetterPartition method. It calls the Zoltan

RCB algorithm and gets the different cuts information. These cuts are stored in the

functor that will be used as the Partitioner. More details about this step are given

in section 4.3

Finally, the method at line 4 and 5 of Algorithm 4 are done by Redistribute.

This method generates the new arbitrary view-based distribution and calls stapl’s

redistribute method for the ray collection and the raytube collection.

32

Figure 4.1: Visualization of the wavefront after redistribution in the salt dome model

(p=4). Each color represents one of the four different processors.

In Figure 2.7 from section 2.2 we presented a visualization of the wavefront on four

processors, we could see that one of the four locations was handling the majority of

the rays. Figure 4.1 is the visualization of that same wavefront, in the same Model at

the same time step using our new algorithm. We can notice that the four processors,

in white, red, blue, and light green share rays more evenly. Rays are now evenly

distributed among processors, which will decrease the wavefront overall propagation

time.

4.2 Choice of Parallel Data Structures

In [15], Jain presents the original implementation of the parallel wavefront con-

struction algorithm in stapl. We present the data structures we used to store the

rays and raytubes. These data structures rely on the view-based distribution to

specifiy their data layout

33

4.2.1 Ray collection

We use the pUnorderedMap container to store the rays. The reasons behind

this choice were simple: A parallel data structures was needed for the rays, the

requirements were:

• Add rays in the container

• Support the interpolation of a new ray between existing rays

• Lookup rays quickly

As an associative container, the pUnorderedMap was a good choice since it let

easily the user access to the rays based on its unique identifier: the 2D coordinates

(r, c) of a ray. These (r, c) coordinates are unique coordinates obtained using the

initial mesh decomposition presented in 2.2. The (r, c) are computed using the unique

(γ1, γ2) coordinates of a ray. The Key/Value mapping provided by this associative

container was a perfect fit here. Other containers such as the pGraph can provide

this mapping as well, but since no relationship between the elements was required.

In other words, there was no need for edges connecting the rays. For that reason,

the simpler pUnorderedMap data structure was chosen.

The pUnorderedMap uses the std::unordered map as its underlying base con-

tainer, which is a hash table. It uses a hash function. In our case the hash function

hashes the rays (r, c) coordinates. A hash function [19] is a function that can map

the key to a fixed size digital datum. This fixed sized value, called hash code, can

then be used to infer the location of the element in the hash table. The hash function

needs to be good to ensure the O(1) operations, but for 2D coordinates this is not a

problem.

34

Table 4.1: Complexity of pUnorderedMap basic operations.

Container pUnorderedMap

Insertion O(1)

Lookup O(1)

Traversal O(n)

The pUnorderedMap is a generic data structure, the declaration of it is user

friendly. The type for the key and value needs to be provided, as well as three

parameters: The hash function, and the view-based partitioner and mappers that

were described in section 3.2.

1 template <class Ray , class Interpo lat ion Manager>

2 class r a y c o l l e c t i o n

3 : public p unordered map<RayId ,

4 Ray ,

5 hash<Ray Id>,

6 view−based Par t i t i on ,

7 view−based Mapper>

As for the STL, The genericity of stapl let us specify the types without too

much code. Tracing the rays in another important step in the algorithm, and this is

done using a pAlgorithm from stapl. The complexity of the operation is an O(n
p
)

operation, when n is the pContainer size and p is the number of locations. This

is true in theory, but this assumes that each location holds O(n
p
) elements. Indeed,

each location takes care of tracing the rays it holds locally, but if we were to be in the

degenerate case where one location holds O(n) elements and all the other locations

hold O(1) elements, then the complexity of the tracing step would be O(n), which is

35

not better than sequential. In practice, the running time of the tracing is bounded

by the most loaded location, as we explained in section 2.2.

4.2.2 Raytube collection

The raytube collection is using stapl’s dynamic graph: the pGraph.

1 template <class Raytube Type>

2 class r a y t ub e c o l l e c t i o n

3 : public p graph<DIRECTED,

4 MULTIEDGES,

5 Raytube Type ,

6 int ,

7 view−based Par t i t i on ,

8 view−based Mapper>

The pGraph needs to know about the Raytube type, and we use edges to represent

the parent-child relation between raytubes and children raytubes. These children

raytubes are the one created when an interpolation in required. We also pass the

view-based partitioner and mappers that were described in section 3.2.

As every pContainer, the pGraphvertices are identified using a unique GID. This

is a scalar called vertex descriptor. In this thesis, we use a specific formula to choose

the GID of a descriptor. We do this such that the view-based partition of the graph

can take advantage of the view-based partition we determined for the pUnorderedMap

and which we will describe more in details in section 4.3.

In order to reuse the same decomposition for the raytubes and the rays, we needed

a way to map the raytubes GIDs (called descriptors) which are represented as scalars

in the pGraph to the same location where most of its rays are. For this, we use a

combination of a raytube’s top-left ray’s r and c coordinates, as well as the raytube’s

current level of interpolation to encode a unique raytube descriptor. This technique

36

makes the reuse of the RCB decomposition for both the rays and raytubes.

The formula used to encode the raytube’s descriptor is presented in equations 4.1

to 4.4

1D ray id = r ∗ number of columns ∗ c (4.1)

shift of = log2(DescriptorMAX V ALUE)− log2(Max interpolation level) + 1 (4.2)

shifted level = current interpolation level� shift of (4.3)

raytube descriptor = ray id | shifted level (4.4)

As we can see in equation 4.1, we first generate a 1D representation of the 2D

(r, c) pair. It is easy since the maximum column number (cmax) is known. Then we

reserve a few bits to encode the interpolation level of the raytube. That way we will

not have conflicts of descriptor unicity between raytubes of different interpolation

level but who take care of the same top-left ray. This is shown in equations 4.2

and 4.3. Finally, as we can see in equation 4.4, we get a unique raytube descriptor

by combining the two sets of bits from equations 4.1 and 4.3 using a simple ”OR”

operation.

When it comes to using the ray partitioner for the raytube, we find the original

(r, c) coordinates from the descriptor with the following information. Equation 4.5

gives us a mask of the useful bits to find the (r, c) coordinates. The other bits

contains the interpolation level information, and are not useful here. They are only

present to guarantee a unique descriptor for that particular raytube.

37

useful bits = DMAX V ALUE � log2(Max interpolation level) + 1 (4.5)

1D ray id = raytube descriptor & useful bits (4.6)

r =
1D ray id

number of columns
(4.7)

c = (1D ray id) mod (number of columns) (4.8)

From these useful bits mask, we find the ray id expressed in one dimension using

equation 4.6. With trivial mathematical operations we can find easily (r, c) as shown

in equations 4.7 and 4.8

4.3 Usage of Recursive Coordinate Bisection

RCB will help us easily define partitions that contain approximatively the same

number of rays. It also gives us an advantage concerning the raytubes: some raytubes

will have to read remote rays; these raytubes are the raytubes on the boundaries of

a processor. For these raytubes, it is possible to minimize the number of remote

calls between raytube and rays by keeping the raytubes aligned with the rays. The

solution chosen here is to always place a raytube where its top-left ray is. If we

redistribute raytubes without regard to the rays’ distribution, the number of remote

calls could be much higher.

Since each ray is represented by 2D coordinates, the Recursive Coordinate Bisec-

tion method was a good fit to this problem. We have a higher chance of having rays

that are physically close to each other in the same partition. We use Zoltan’s RCB

implementation to generate p areas, where p is the number of locations in our stapl

38

program.

Once we have a good RCB decomposition, we give this decomposition’s information

to the pContainer’s partitioner, which will use the different areas solved by the RCB

algorithm. During the interpolation phase, if new rays and raytubes need to be

added, they will be added according to these areas.

At each time step, interpolation and coarsening will happen, changing the load

per location. The load-balancing analysis in combination with stapl’s redistribution

algorithm will take care of balancing the application.

4.4 Frequency of Redistribution

Redistribution comes with a cost: analyzing the load and generating a new RCB

decomposition adds some overhead ta. Performing the redistribution itself, adds some

extra overhead tr caused by determining how to aggregate and move the data around.

All useful work (propagation, interpolation, coarsening, etc.) step takes tc. Without

redistribution, tc can be higher due to the fact that one over loaded processor could

potentially do most of the work while other processors sit idle. With redistribution,

tc should be smaller. If ta + tr for that step is larger than the improvement for tc at

the next step, then the overall running time might actually be worse. To solve this

we propose to analyze the average and the maximum load of each processor. From

these measures we compute the imbalance ratio as presented in equation 4.9. The

maximum load is the number of rays on the location that has the highest count of

it. The average load is the sum of all the rays divided by the number of locations.

imbalance ratio =
maximum load

average load
(4.9)

If the imbalance ratio crosses a certain threshold, then the RCB analysis and the

redistribution itself are triggered as we shown in section 4.1

39

We will discuss in the next Chapter the impact of choosing a different imbalance

ratio on the overall running time.

40

5. PERFORMANCE EVALUATION

We presented the design and implementation of our load balance technique for

SRT. In this chapter, we discuss the performance of the application on a Cray XE6m

cluster we use at the Parasol Lab at Texas A&M University. We focus on the prop-

agation phase of the algorithm. The initialization has no load imbalance problems,

and was shown in [15] to be negligible compared to the overall runtime. All exper-

iments were ran at least 32 times, and confidence interval levels of 95% are shown

when possible. We first introduce the clusters hardware and software specifications

on which the experiments were run. Next, we present the three different models that

were used in SRT. We then present the results. We discuss how the change of the

imbalance threshold impacts performance. We briefly discuss the impact on memory

of our redistributed version. Then we discuss about strong scaling experiments, scal-

ability, and speedup of our SRT implementation compared to the imbalanced-SRT.

5.1 Machine Specifications

We ran experiments on Rain, a Cray XE6m cluster. Table 5.1 shows the hardware

configuration for the cluster, it has 576 compute cores connected in a 2-D torus

fashion. Given the communication pattern in SRT, where the mapping is done on a

mesh, the 2-D torus configuration suits us well.

41

Table 5.1: Cray XE6m (aka. Rain) hardware specifications.

Board count 6

Nodes per board 4

Node count 24

Cores per node 32 on 12 nodes

64 on 12 nodes

Total number of cores 576

Processor Type 64-bit AMD Opteron (Interlagos) 6272, 2.1GHz

Cache 8x61 KB L1 I-cache, 16x16 KB L1 D-cache, 8x2

MB L2 cache per core, 2x8 MB shared L3 cache

Memory 32 or 64 GB registered ECC DDR3 SDRAM per

compute node

Average memory per core 2 GB

Interconnect 1 Gemini routing and communication ASIC per

two compute node.

48 switch ports per Gemini chip (160GB/s internal

switching capacity per chip).

2-D torus interconnect

Table 5.2 shows the software installed when we ran experiments, g++4.9 was our

C++ compiler, and when Zoltan was used it was part of Trilinos 11.12.1.1. stapl

relies on the C++ Boost library, on this machine version 1.56 was used.

42

Table 5.2: Cray XE6m (aka. Rain) software specifications.

OS Cray Linux Environment

Compilers Cray g++ version 4.9.2

MPI version 2.0

Libraries Cray Trilinos version 11.12.1.1

Boost version 1.56

We also ran experiments on Vulcan, an IBM BlueGene/Q cluster at Lawrence

Livermore National Laboratory. We can see from Table 5.3 that the configuration is

different from Rain: we have access to more cores, but each core is less powerful, and

on average each core can only use up to 1GB of memory. In Table 5.4 we notice that

the latest compiler we can use is not as up to date as Rain: g++4.7.2 was released

in 2012, while g++4.9 in 2014. The support for the C++11 features is better in the

latest version.

Table 5.3: IBM BlueGene/Q (aka. Vulcan) hardware specifications.

Total number of cores 392,216

Processor Type 1.6 GHz PowerPC A2 processors

Memory 16 GB per compute node

Average memory per core 1 GB

Interconnect 5-D torus interconnect

43

Table 5.4: IBM BlueGene/Q (aka. Vulcan) software specifications.

OS PowerPC 64 Linux Environment

Compilers g++ version 4.7.2

MPI version 2.1

Libraries Trilinos version 12.0.1

Boost version 1.53

5.2 Input Parameters

In the next section we will present results for three different earth models The

first one is the most interesting, as it is the most realistic model and also exhibits

the highest ratio of imbalance. We present that model in Figure 5.1, and then we

will show how the other models follow the same performance trends.

Figure 5.1: Model 1: Salt dome model [15].

Figure 5.1 is that realistic model, the high number of different regions with dif-

44

ferent properties makes the ray diverge multiple times through the execution. It is

composed of seven different regions. Six of them are layered and the seventh region

is a salt dome in the middle of the area. The characteristics of these regions are

presented in Table 5.5

Table 5.5: Model 1: Salt dome model regions [15].

Region 1 Vp=2.7 km/s, Vs=1.5 km/s, ρ=2.55

Region 2 Vp=3 km/s, Vs=1.73 km/s, ρ=2.5

Region 3 Vp=3.2 km/s, Vs=1.8 km/s, ρ=2.55

Region 4 Vp=3.3 km/s, Vs=1.9 km/s, ρ=2.7

Region 5 Vp=3.4 km/s, Vs=1.9 km/s, ρ=2.67

Region 6 Vp=3.6 km/s, Vs=2.1 km/s, ρ=2.7

Region 7 Vp=4.78 km/s, Vs=2.7 km/s, ρ=2.2

In Table 5.6 we explain the different parameters used in our test, these can be

changed by the user.

45

Table 5.6: Model 1: Salt dome model simulation settings.

Wave type P

Initialization Cube sphere

Time step for tracing 0.02

Time step for propagation 0.04

Maximum interpolation level 20

Patch test Single Sided Balanced

Patch test upper threshold 0.0005

Patch test lower threshold 0.00005

Interpolation method Central finite difference

The following models are simpler models, but also benefited from redistribution

Figure 5.2 is also realistic. It represents a salt canopy configuration. The seven

regions are presented in Table 5.7 and the simulation settings are shown in Table 5.8.

Figure 5.2: Model 2: Salt canopy model [15].

46

Table 5.7: Model 2: Salt canopy model regions [15].

Region 1 Vp=3 km/s, Vs=1.73 km/s, ρ=2.5

Region 2



20.28 13.104 15.028 0. 0. 0.

13.104 20.28 15.028 0. 0. 0.

15.028 15.028 22.542 0. 0. 0.

0. 0. 0. 4.498 0. 0.

0. 0. 0. 0. 4.498 0.

0. 0. 0. 0. 0. 3.588


ρ=2.4

Region 3



25.9 6.825 7.075 0. 0. 0.

6.825 25.9 7.075 0. 0. 0.

7.075 7.075 23.775 0. 0. 0.

0. 0. 0. 7.325 0. 0.

0. 0. 0. 0. 7.325 0.

0. 0. 0. 0. 0. 9.525


ρ=2.5

Region 4 Vp=3.4 km/s, Vs=1.83 km/s, ρ=2.67

Region 5 Vp=3.8 km/s, Vs=1.9 km/s, ρ=2.7

Region 6 & 7 Vp=4.78 km/s, Vs=2.7 km/s, ρ=2.2

47

Table 5.8: Model 2: Salt canopy model simulation settings.

Wave type P

Initialization Cube sphere

Time step for tracing 0.02

Time step for propagation 0.04

Maximum interpolation level 20

Patch test Single Sided Balanced

Patch test upper threshold 0.0001

Patch test lower threshold 0.00002

Interpolation method Central finite difference

Figure 5.3 is more regular, and not as realistic. It is an earth model of a simple

region with two cylindrical inclusion. The three regions are presented in Table 5.9

and the simulation settings are shown in Table 5.10. We will see how this model is

less prone to imbalance will benefit less from redistribution.

48

Figure 5.3: Model 3: Cylindrical inclusions model [15].

Table 5.9: Model 3: Cylindrical inclusions model regions [15].

Region 1



25.9 6.825 7.075 0. 0. 0.

6.825 25.9 7.075 0. 0. 0.

7.075 7.075 23.775 0. 0. 0.

0. 0. 0. 7.325 0. 0.

0. 0. 0. 0. 7.325 0.

0. 0. 0. 0. 0. 9.525


ρ=2.5

Region 2 Vp=2.8 km/s, Vs=1.5, ρ=2.6

Region 3 Vp=2.8 km/s, Vs=1.5, ρ=2.6

49

Table 5.10: Model 3: Cylindrical inclusions model simulation settings.

Wave type P

Initialization Cube sphere

Time step for tracing 0.02

Time step for propagation 0.04

Maximum interpolation level 20

Patch test Single Sided Balanced

Patch test upper threshold 0.0001

Patch test lower threshold 0.00002

Interpolation method Central finite difference

5.3 Results

In this section we will first study how the imbalance threshold choice can impact

performances, then we look at the memory usage, and finally we show different

running time results. The imbalanced version we experiment against is SRT with the

latest pContainer, but with no redistribution overhead at all.

5.3.1 Choice of imbalance threshold

We tried different imbalance threshold and studied the improvement over SRT

without redistribution. Figure 5.4 shows the improvement of the propagation time

when redistributing versus the original SRT. The results have been scaled from 0

to 1 so that we can show a clear trend for the imbalance ratio. As we expected,

picking a ratio of 1.0 is not optimal, as we pay the cost of redistributing too often.

In our experiments, a ratio between 1.2 and 1.8, regardless of the processor count,

was optimal. In the case of Forward modeling, where the user will refine the model

50

iteratively, every model will have a similar physical layout for which finding the best

threshold will be easy.

Figure 5.4: Speedup of redistributed (th=1.6) vs. imbalanced. Scaled from 0 to 1 to

exhibit the best threshold.

Figure 5.5 shows the actual speedup at a fixed threshold of 1.6. We can see that

we always get improvement. The variation of improvement will be discussed when

we show scalability results in section 5.3.3.

51

Figure 5.5: Speedup of redistributed version (th=1.6) versus imbalanced version in

Model 1 on Rain.

52

5.3.2 Memory usage

(a)

(b)

Figure 5.6: Salt dome model peak memory usage with 16 locations on Universitas

(a) with redistribution (th=1.6) and (b) without redistribution.

53

Memory usage is an important factor when running an application, in the pre-

vious section we show that each core has around 2GB of RAM available. If all the

cores on a node became highly overloaded, the application would terminate. With

redistribution, Figure 5.6 shows a memory analysis using the tool Massif from the

Valgrind suite. It lets us analyze the heap memory usage of our application. In both

runs the average memory usage was 212 MB. With redistribution we can see that

the maximum imbalance ratio of memory is 1.47 with a location reaching 312 MB.

Without redistribution, a processor peaks at 451 MB, giving us an imbalance ratio

of 2.12. Massif was not available on Rain, and the instrumentation slows down and

requires a lot of extra memory, for that reason we decided to run it on Universitas,

a local shared-memory machine on 16 cores, with 64GB of RAM.

Depending on which machine the application is ran on, memory consumption

can have an important impact, for instance the Vulcan supercomputer at Lawrence

Livermore National Laboratory only has 1 GB of RAM per core, so if we decide to

increase the precision of our algorithm, we need to make sure that some nodes are

not going to be overloaded.

5.3.3 Performance results

In Section 5.3.1 and above we compared the improvements of Model 1 with a

specific maximum interpolation level set to 3, limiting the number of interpolation a

raytube can perform to at most three levels. This interpolation level is used in SRT’s

implementation to guarantee the uniqueness of rays and raytubes GIDs. With the

current implementation, that maximum level can be raised to 22, which means that

each raytube could interpolate 22 times, which would create 422 children raytubes

for each original raytube. The maximum of 22 is set by the size in bits of a long

unsigned int which is 64 bits. If in the future this becomes a problem, that size

54

could be easily changed to more bits, 128 bits for instance. In that case a raytube

could interpolate 53 times, creating 453 children raytubes.

However, this limit can also be used to artificially limit the interpolation in order

to reduce memory usage. Indeed, if a system is limited in memory, without redis-

tribution, a processor could easily run out of memory if it decides to interpolate too

many times.

Theoretically, raising the maximum interpolation level by k can make a location

interpolate and produce 4k times more raytubes. Indeed, each raytube creates 4

children raytube at each interpolation phase. The number of rays only increase by a

factor of 1.6k or 2.6k if we use the raytube with four rays or raytube with five rays

version. This means the actual memory footprint increases at a lower rate than the

work. Even though we grow only by a factor of 2.6k the number of rays, each new

raytube has to read the value of four rays, which means that, ignoring any caching

mechanisms, there would be 4k more work.

This exponential growth is a major problem, a good maximum level must be

chosen by the geophysics user, or a higher error threshold must be chosen to limit

interpolation. This depends on what the user expects for her results. In our ex-

periments we set that level high enough to let the algorithm interpolate as much as

required by the model settings.

We now present various results for our three models, we will present and discuss

strong scaling experiments, scalability measurements, speedup, and a breakdown of

the main steps of the application.

55

5.3.3.1 Model 1 - Salt dome

Figure 5.7: Strong scaling of the redistributed (th=1.6) and imbalanced version in

Model 1 from 1 to 512 processors on Rain. Confidence Intervals 95%.

Figure 5.7 shows the strong scaling of the application from 1 to 512 processors, we

can see that the trend with and without redistribution is around the same. Figure 5.8

is a zoomed view from 128 to 512 processors we can see that at 512 processors we

are almost six times faster. We can see that the benefits of redistribution increase

as the processor count increases. At 32 processors we went from 222 seconds to 81

56

seconds, giving us only a 2.75x improvement. However, at 512 processors we went

from 76 seconds to 8 seconds, giving us a 9.5x improvement (or a 90% reduction in

the running time).

Figure 5.8: Strong scaling of the redistributed (th=1.6) and imbalanced version in

Model 1 from 128 to 512 processors on Rain. Confidence Intervals 95%.

Figure 5.9 shows the scalability of the two versions. The redistributed version

scales better and with more consistently. The reason the version without redistribu-

tion doesn’t scale as regularly is because of the original distribution. Indeed, without

redistribution, the original partitioning is done such that each processor start with

57

a block of the same size, with an equal number of rays and raytubes. Depending

on the processor count, the block size will be different. Even though these blocks

hold the same number of initial rays and raytubes, it is does not take into account

which raytubes are going to interpolate often. Sometimes the original partitioning

will have a better distribution of the raytube once they decide to interpolate. In

our experiments, the non redistributed version cannot scale better than 10, this is

consistent with the results from [15]. This lack of regularity of the non-redistributed

version explains the speedup plot from figure 5.5.

Figure 5.9: Scalability of the redistributed (th=1.6) and imbalanced version in Model

1 from 1 to 512 processors on Rain.

58

We now look into details in the distribution of time in SRT. Figure 5.10 shows that

when we increase the number of processors the time taken by all the steps involved in

redistributing the data increases. Since redistributing involves more communication

than the wavefront propagation, this is expected.

Figure 5.10: Distribution of time of the redistributed version(th=1.6) in Model 1

from 64 to 512 processors on Rain.

Figure 5.11 is a breakdown of the redistribution’s steps, we notice that, as a

percentage of the runtime, every step is becoming more and more important. When

looking at the number of redistributions in Table 5.11, we can see that as we increase

59

the number of processors, with the same fixed imbalance ratio threshold, the total

number of redistribution increases.

Figure 5.11: Distribution of redistribution phases as a percentage in Model 1 from

64 to 512 processors on Rain.

Figure 5.12 is the sane breakdown as Figure 5.11 but this time the y-axis is

the actual runtime in seconds. We notice that the total time spent analyzing the

imbalance remains flat. This is expected, as computing the imbalance ratio is a small

reduction operation. On a higher processor count, this could become a bottleneck.

The redistribution phase takes less time as we increase the number of processors

60

from 64 to 256 processors, the reason is that every processor has less and less data to

exchange. However, one of the steps of the redistribution algorithm is the all-to-all

communication, which is likely to become a bottleneck at a higher processor count.

We can see the time taken from 256 to 512 processors being almost the same. Finally,

the Recursive Coordinate Bisection step takes more and more time, this is due to the

fact that there is more redistributions performed, but if we look at the time taken for

a single RCB decomposition, it also increases with the processor count. The reason is

that we have more processors involved in the algorithm’s communication phases.

Table 5.11: Frequency of redistribution in Model 1 (th=1.6).

Processor count Number of redistributions

128 21

256 31

512 43

61

Figure 5.12: Distribution of redistribution phases in seconds in Model 1 from 64 to

512 processors on Rain.

We now look at the performance results obtained on Vulcan for the same Model.

Figure 5.13 shows the running time from 128 to 1024 of the two same version we

ran on Rain. We can see the same trend for runtime improvements. As on Rain,

the non redistributed version initial partitioning is not favorable at 512 processors,

it however gets better for 1024 processors, where the runtime is reduced by at least

200 seconds.

62

Figure 5.13: Strong scaling of the redistributed (th=1.6) and imbalanced version in

Model 1 from 128 to 1024 processors on Vulcan. Confidence Intervals 95%.

Figure 5.14 shows the scalability of the two versions. The baseline is with 128

processors, which is represented as a scalability value of 1 one the plot. The redis-

tributed version scales more consistently as we increase the processor count.

63

Figure 5.14: Scalability of the redistributed (th=1.6) and imbalanced version in

Model 1 from 128 to 1024 processors on Vulcan.

Whenever the non redistributed version has a poor distribution, we can notice

the best speedups. For instance in Figure 5.15, we notice a speedup of almost 12

at 512 processors. This speedup is smaller at 1024 processors, but the redistributed

version is always faster.

64

Figure 5.15: Speedup of redistributed version (th=1.6) versus imbalanced version in

Model 1 from 128 to 1024 processors on Vulcan.

The breakdown of SRT’s running time on Vulcan presented from Figures 5.16, 5.17,

and 5.18 shows the same trends as the results on Rain. However, for the same

processor count, the redistribution steps on Vulcan take less time than on Rain.

This can be explained with the higher quality Interconnect from the BlueGene/Q

cluster.

65

Figure 5.16: Distribution of time of the redistributed version(th=1.6) in Model 1

from 128 to 1024 processors on Vulcan.

66

Figure 5.17: Distribution of redistribution phases as a percentage in Model 1 from

128 to 1024 processors on Vulcan.

67

Figure 5.18: Distribution of redistribution phases in seconds in Model 1 from 128 to

1024 processors on Vulcan.

In Figure 5.18 we notice the same trend for actual seconds spent on each phase,

and we actually see that the redistribution almost stay the same from 256 to 1024

processors. As discussed previously, the redistribution is likely to take more time

with more processors.

5.3.3.2 Model 2 - Salt canopy

Model 2, as described in section 5.2, is not as complex as Model 1. This decrease

in complexity makes the rays less likely to interpolate, which is good for the original

68

non redistributed version. Figures 5.19 and 5.20 shows the redistributed version is

still faster, but not too far from the original version.

Figure 5.19: Strong scaling of the redistributed (th=1.6) and imbalanced version in

Model 2 from 1 to 512 processors on Rain. Confidence Intervals 95%.

However, we can see in Figure 5.21 that the redistributed version scales better

and more consistently than the non-redistributed version.

69

Figure 5.20: Strong scaling of the redistributed (th=1.6) and imbalanced version in

Model 2 from 128 to 512 processors on Rain. Confidence Intervals 95%.

Figure 5.22 show that we manage to get up to 350% improvement over the original

version on 256 processors, and a 200% improvement on 512 processors.

70

Figure 5.21: Scalability of the redistributed (th=1.6) and imbalanced version in

Model 2 from 1 to 512 processors on Rain.

71

Figure 5.22: Speedup of redistributed version (th=1.6) versus imbalanced version in

Model 2 from 1 to 512 processors on Rain.

5.3.3.3 Model 3 - Cylindrical inclusions

The last Model we present, is one of the simplest models, as we can see in Fig-

ure 5.3, this model only has 3 regions. Figures 5.23 and 5.24 show how small the

improvements are. However, the redistributed version is still faster as we increase

the processor count.

72

Figure 5.23: Strong scaling of the redistributed (th=1.6) and imbalanced version in

Model 3 from 1 to 512 processors on Rain. Confidence Intervals 95%.

73

Figure 5.24: Strong scaling of the redistributed (th=1.6) and imbalanced version in

Model 3 from 128 to 512 processors on Rain. Confidence Intervals 95%.

Figure 5.25 shows that the non redistributed version scales more consistently.

Since the model is simpler, not as much interpolation of the raytubes is required.

However, we can notice a better scalability of the redistributed version

74

Figure 5.25: Scalability of the redistributed (th=1.6) and imbalanced version in

Model 3 from 1 to 512 processors on Rain.

In Figure 5.26, we see that he speedup of the redistributed version over the

non redistributed version are more modest than the realistic models. We can get a

speedup up to 120% on 16 processors, but after 64 processors we see a speedup of

approximatively 30%.

75

Figure 5.26: Speedup of redistributed version (th=1.6) versus imbalanced version in

Model 3 from 1 to 512 processors on Rain.

76

6. CONCLUSION AND FUTURE WORK

In this thesis we have described our work to improve stapl’s existing view-based

distribution and redistribution framework to be more generic. We also described

our work on the SRT application to support utilizing stapl’s latest version and use

a Recursive Coordinate Bisection framework on the two main data structures in

order to generate a decomposition that is used to redistribute these containers. We

describe a method to reduce the overhead of redistribution in SRT and only perform

it when necessary, and provide performance results.

The redistribution performed here is done using global information, requiring all

locations to communicate to share that information. In the future, we could use

a decentralized approach, such as Neighborhood load balancing [18], where locations

share load information only with its immediate neighbors. This decentralized method

should be careful about keeping a low count of remote reads for the raytubes if we

do not want performance to suffer. The current global redistribution could also

be improved by reducing the amount of global communication required. The goal

would be to eliminate the expensive all-to-all global communication step, especially

when locations want to redistribute only with their closest neighbors, as this kind of

communication pattern might not scale well as we increase the number of processors.

Finally, the original distribution requires redistribution because of its too naive

partitioning but recently Alyabes [1] presented a method to improve on that initial

partitioning, improving execution time up to 35%. It could be interesting to see if

this method combined with the method presented in this thesis could improve our

parallel seismic ray tracing application.

77

REFERENCES

[1] A. F. Alyabes. Static Load Balancing using Non-Uniform Mesh Partition-

ing based on Ray Density Prediction for the Parallel Wavefront Construction

Method. Master’s thesis, Department of Geology and Geophysics, Texas A&M

University, 2014.

[2] R. Barik, J. Zhao, D. Grove, I. Peshansky, Z. Budimlic, and V. Sarkar. Com-

munication optimizations for distributed-memory x10 programs. In Parallel

Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages

1101–1113, May 2011.

[3] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems

on multiprocessors. Computers, IEEE Transactions on, C-36(5):570–580, May

1987.

[4] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydro-

dynamics. J. Comput. Phys., 82(1):64–84, May 1989.

[5] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase, N. Thomas, X. Xu,

M. Bianco, N. M. Amato, and L. Rauchwerger. The STAPL pView. In Int.

Workshop on Languages and Compilers for Parallel Computing (LCPC), in

Lecture Notes in Computer Science (LNCS), Houston, TX, USA, September

2010.

[6] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase,

N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger. STAPL:

Standard template adaptive parallel library. In Proc. Annual Haifa Experimen-

78

tal Systems Conference (SYSTOR), pages 1–10, New York, NY, USA, 2010.

ACM.

[7] D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cascade High Productiv-

ity Language. In The Ninth Int. Workshop on High-Level Parallel Programming

Models and Supportive Environments, volume 26, pages 52–60, Los Alamitos,

CA, USA, 2004.

[8] N. Castet. A Parallel Graph Partitioner for STAPL. Master’s thesis, Department

of Computer Science, Texas A&M University, May 2013.

[9] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R. Heaphy, and L.A.

Riesen. Hypergraph-based dynamic load balancing for adaptive scientific com-

putations. In Proc. International Parallel and Distributed Processing Symposium

(IPDPS), pages 1 –11, March 2007.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar. X10: an Object-Oriented Approach to Non-

Uniform Cluster Computing. In Annual ACM SIGPLAN Conf. on Object-

Oriented Programming, Systems, Languages, and Applications, pages 519–538,

New York, NY, USA, 2005. ACM Press.

[11] N. Ettrich and D. Gajewski. Wave front construction in smooth media for

prestack depth migration. Pure and Applied Geophysics, 148:481–502, 1996.

[12] M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5 mul-

tithreaded language. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 1998.

[13] D Hilbert. ber die stetige abbildung einer linie auf flchenstck. In Mathematische

Annalen, volume 38, pages 459–460, 1891.

79

[14] Intel. Reference Manual for Intel Threading Building Blocks, version 1.13, 2009.

[15] T. K. Jain. Parallel Seismic Ray Tracing. Master’s thesis, Department of Com-

puter Science, Texas A&M University, May 2013.

[16] R. L. Gibson Jr. Ray tracing by wavefront construction in 3-D, anisotropic

media. Eos Transactions, American Geophysical Union, 80:F696, 1999.

[17] R. L. Gibson Jr., V. D. Durussel, and K. J. Lee. Modeling and velocity analysis

with a wavefront construction algorithm for anisotropic media. Geophysics,

70:T63–T74, 2005.

[18] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented

system based on C++. ACM SIGPLAN Notices, 28:91–108, 1993.

[19] D. E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting

and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City,

CA, USA, 1998.

[20] G. Lambaré, P. S. Lucio, and A. Hanyga. Two-dimensional multivalued trav-

eltime and amplitude maps by uniform sampling of a ray field. Geophysical

Journal International, 125:584–598, 1996.

[21] K. J. Lee. Efficient ray tracing algorithms based on wavefront construction and

model based interpolation method. PhD thesis, Texas A.& M. University, 2005.

[22] A. R. Levander. Fourth-order finite-difference p-sv seismograms. Geophysics,

53:1425–1436, 1988.

[23] P. S. Lucio, G. Lambaré, and A. Hanyga. 3D multidimensional travel time and

amplitude maps. Pure and Applied Geophysics, 148:449–479, 1996.

[24] R. Nishtala, G. Almasi, and C. Cascaval. Performance without pain = pro-

ductivity: Data layout and collective communication in upc. In Proceedings

80

of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’08, pages 99–110, New York, NY, USA, 2008. ACM.

[25] I. Papadopoulos, N. Thomas, A. Fidel, N. M. Amato, and L. Rauchwerger. In

Proceedings of the 29th International Conference on Supercomputing(ICS), page

to appear, Newport Beach, California, USA, 2015.

[26] A. Sanz, R. Asenjo, J. Lopez, R. Larrosa, An. Navarro, V. Litvinov, S. Choi,

and B. L. Chamberlain. Global data re-allocation via communication aggrega-

tion in chapel. In Proceedings of the 2012 IEEE 24th International Symposium

on Computer Architecture and High Performance Computing, SBAC-PAD ’12,

pages 235–242, Washington, DC, USA, 2012. IEEE Computer Society.

[27] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Papadopoulos, O. Pearce,

T. Smith, N. Thomas, X. Xu, N. Mourad, J. Vu, M. Bianco, N. M. Amato,

and L. Rauchwerger. The STAPL Parallel Container Framework. In Proc.

ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPoPP), pages 235–246, San

Antonio, Texas, USA, 2011.

[28] V. Červený. Seismic Ray Theory. Cambridge University Press, 2001.

[29] V. Vinje, E. Iversen, and H. Gjøystdal. Traveltime and amplitude estimation

using wavefront construction. Geophysics, 58:1157–1166, 1993.

[30] V. Vinje, K. Åstebøl, E. Iversen, and H. Gjøystdal. 3-d ray modeling by wave-

front construction in open models. Geophysics, 64:1912–1919, 1999.

[31] J. Virieux. P-sv wave propagation in heterogeneous media: Velocity-stress finite-

difference method. Geophysics, 51:889–901, 1986.

[32] H. Gjøystdal, E. Iversen, I. Lecomte, V. Vinje, and K. Åstebøl. Review of ray

theory applications in modeling and imaging of seismic data. Studia Geophysica

81

et Geodaetica, 46:113–164, 2002.

82

