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ABSTRACT 

 

Hurricanes can be a major threat to electric power systems, often resulting in 

costly repairs and lengthy restoration times. In addition, power companies often lack the 

personnel required to restore power in a timely and efficient manner and must rely on 

outside assistance from other utility companies. Statistical power outage models, such as 

the Hurricane Outage Prediction Model (HOPM), provide estimates of outages at least 

24 hours before a hurricane makes landfall. These models can greatly benefit utility 

companies by allowing for better allocation of resources and potentially shortening 

restoration times. This research will investigate the addition of two new variables, tree 

species and storm-derived precipitation, to the HOPM. 

Tree species information was extracted for the service area of a major Gulf Coast 

utility company. Storm-derived precipitation was also extracted for the service area 24 

hours before and after hurricane landfall. The model was then run for the service area 

with the new variables added, and results were generated that showed the impact of the 

new predictors on model performance. 

Of the two predictors, tree species resulted in the greatest model improvement. 

Certain tree species, such as sweetgum, may be better predictors of outages than others. 

Storm-derived precipitation was also an important predictor of outages, particularly in 

urban areas. Precipitation amounts less than about 7 inches had the greatest impact on 

outages. Inclusion of tree species and storm-derived precipitation in future versions of 
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the HOPM may enhance model performance and, in turn, aid utility companies in their 

goal of more efficient power restoration.  
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CHAPTER I  

INTRODUCTION 

 

Among natural disasters hurricanes rank as one of the most deadly and 

destructive (Emanuel 2005). These violent storms often produce damage to homes, 

businesses, and infrastructure that can be disruptive. They can also render significant 

damage to electric power distribution systems, causing major disruptions to service. 

During Hurricane Katrina in 2005, 82% of customers in one of the largest utility 

companies along the Gulf Coast lost power, and some customers had to wait up to 12 

days before their power was restored (Guikema et al. 2010). Hurricanes can severely 

damage an electrical power system; thus, predicting their impacts on the power grid 

prior to landfall will have a significant positive effect on pre-storm planning efforts for 

utility companies.   

Utility companies generally lack sufficient personnel to rapidly restore power 

after major storm events such as hurricanes. Instead, through mutual aid agreements, 

they must call on other utility providers for assistance. Before doing so, the utility 

company making the request must estimate the demand and resources required to restore 

power quickly and effectively. Requesting more assistance than necessary will result in 

unnecessary expenditures, while requesting too little assistance will result in 

significantly longer power restoration times. As part of their pre-storm planning efforts, 
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utility companies must weigh the anticipated impacts from the storm and make an 

estimate on how much assistance they will need (Guikema et al. 2010). 

Statistical, regression-based, modeling can be used to provide an estimate of a 

hurricane’s impacts on the power grid prior to landfall; this enables crews to be placed in 

the areas of greatest impact ahead of time. It also allows for a better estimate of the extra 

resources the utility company may require to restore power quickly and efficiently. 

These models use data about power system performance during past hurricanes to 

predict the performance during an approaching hurricane (Guikema et al. 2010).  

Past hurricane power outage models have incorporated environmental predictors 

such as land cover and antecedent precipitation; however, one of the primary limitations 

in these models, as identified by Liu et al. (2008), was their lack of tree-related variables 

such as number, type, age, and tree trimming frequency. Nateghi et al. (2014) 

incorporated tree trimming and determined it to be an important predictor. Liu et al. 

(2005) determined that precipitation in the week prior to hurricane landfall is a 

statistically significant predictor, and Han et al. (2009b) successfully used the 

Standardized Precipitation Index, a measure of deviation of precipitation from normal 

conditions, over varying time scales. 

This thesis will investigate whether incorporating new tree species and 

precipitation variables increases the accuracy of the hurricane outage prediction model 

(HOPM). The hypothesis is that these new predictor variables will further improve 

model performance and predictive power. 
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1.1 Research objectives 

The main purpose of this research is to evaluate whether the addition of two new 

predictor variables, tree species and 48-hour precipitation, increases the accuracy of the 

HOPM. To accomplish this purpose, the thesis has three main objectives: 

1) Identify the most suitable version of the HOPM for evaluating the influence of 

tree species and 48-hour precipitation. 

2) Determine if including tree species data in the HOPM will improve model 

accuracy. 

3) Determine if including precipitation data in the HOPM will improve model 

accuracy. 

The first objective will evaluate model error and outage prediction accuracy for 

all versions of the HOPM with and without the new variables. The results of this 

evaluation will then be used to select the most appropriate model for further analysis of 

tree species and 48-hour precipitation. 

The second objective will investigate the impact of prevalent tree species on 

HOPM predictive accuracy. Various measures of accuracy and importance will be 

calculated to evaluate the impact of tree species on outage prediction. This process will 

not only determine if the tree species variable can improve model performance, but it 

may also help identify which tree species may be more likely to cause outages. 

The third objective will involve collecting radar-derived, 48-hour precipitation 

totals, 24 hours prior to and following hurricane landfall. The radar-derived precipitation 
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data will be used as a proxy for the precipitation estimates predicted by numerical 

weather models. These will then be integrated into the HOPM to explore the impact of 

storm-derived precipitation on power outage prediction. Importance rankings and 

accuracy measures will be calculated using the same approach as Objective 2. 

Introduction of these two new predictor variables into the HOPM will potentially 

lead to improvements in model performance and will aid in selection of the most 

influential variables to include in future versions of the model. This information will also 

benefit utility providers and emergency managers in their pre-storm preparations by 

providing a more accurate pre-landfall estimate of number and location of outages as 

well as identifying areas more prone to outages. 
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CHAPTER II  

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Power outage prediction 

Statistical models to forecast weather-related power outages typically integrate 

several predictors and use them to forecast outages or damage to electrical infrastructure 

(Table 2.1). The predictors that are common to many of these models include: historical 

and present storm conditions, power system characteristics, power system reliability, and 

environmental characteristics (i.e., land cover or land use). These models have been used 

to predict power outages and damage due to a variety of weather conditions, including 

ice, lightning, wind, and hurricanes. 

Broström and Söder (2007) estimated the risk of power system failure 

(probability of outages) due to ice storms using a series of weather and component 

vulnerability models. Longer power lines are found to be more vulnerable than shorter 

lines with fewer segments (Broström and Söder 2007). Using a similar approach, 

DeGaetano et al. (2008) estimated ice accretion on distribution lines prior to the storm 

using a modified version of Jones’ (1996) ice accretion model. In place of hourly surface 

observations, DeGaetano et al. (2008) used hourly forecasted values for temperature, 

precipitation amount, and wind speed from the Weather Research and Forecasting 

(WRF) model. This revised ice accretion model improves the underestimation problem 

found in earlier models.  
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Reference Hazard 

type 

Model type Dependent 

variable 

Predictors 

Broström and Söder 

(2007) 

Ice Weather + component 

vulnerability 

Outages Ice accretion, 

precipitation, wind load 

DeGaetano et al. 

(2008) 

Ice Weather + Ice accretion  Ice accretion Temperature, 

precipitation, wind speed 

Liu et al. (2007) Ice AFT (statistical) 

 

Outages, 

restoration 

times 

Outages (duration, total, 

start time), ice thickness, 

number of customers, 

population density 

 Liu et al. (2008) Ice Spatial GLMM 

(statistical) 

Outages Protective devices 

(number), ice thickness, 

land cover type, soil 

(drainage and depth) 

Balijepalli et al. 

(2005) 

 

Lightning Monte Carlo simulation 

(statistical) 

System 

reliability 

Storm intensity/duration, 

lightning flash counts, 

outage rates 

Zhu et al. (2007) Lightning Assessment-based; 

statistical 

Outages Past outages, weather 

station observations, 

lightning (intensity and 

corridor width) 

Brown et al. (1997) Wind Monte Carlo simulation 

(statistical) 

Outages System reliability, wind 

speed and duration 

Reed (2008) Wind Fragility analysis, GIS 

analysis 

Outages System reliability, max 

wind speed, peak wind 

gust, temp, precip 

Cerruti and Decker 

(2011) 

Various GLM (statistical) Power 

system 

damage 

Forecasted weather 

conditions (various) 

Li et al. (2010) Various Poisson regression 

(statistical) 

Outages, 

damage 

Forecasted severe weather 

conditions (various) 

Zhou et al. (2006) Various Poisson regression + 

Bayesian network 

(statistical) 

Outages Forecasted weather 

conditions (wind, icing, 

lightning) 

 

Table 2.1. Summary of studies modeling the impact of weather on power outages and 

damage to electrical infrastructure. 
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Liu et al. (2007) took a different approach and estimated power restoration times 

using statistical, accelerated failure time (AFT) models. The models were fitted using 

past outage, power system, and environmental data (Table 2.1). Restoration times were 

then estimated for each county or service area sub-region using accumulated outage 

duration times and number of customers. Estimated restoration times for the January 

2004 ice storm are an average of 5% different than actual restoration times. Building off 

of the regression model used by Liu et al. (2005) to predict hurricane-induced power 

outages, Liu et al. (2008) took a slightly different approach by integrating a series of 

predictors into a spatial generalized linear mixed model (GLMM) to estimate outages 

occurring due to ice storms. The final model is found to over-predict outages due to ice 

storms. The number of protective devices and ice thickness had the greatest impact on 

outages. The same January 2004 ice storm was used to test both of these models (Liu et 

al. 2008). 

Power outage models have also been run to estimate outages due to lightning. 

For example, Balijepalli et al. (2005) used a Monte Carlo simulation to generate 

distribution system reliability indices, with storm characteristics (i.e., storm duration, 

storm intensity, and lightning flash count) and outage rates as the inputs. Zhu et al. 

(2007) investigated patterns of outage occurrence using past outage and weather station 

observations for 49 storms; these data were then used to create a statistical model to 

predict numbers of outages. Over half of distribution system outages in the summer are 

found to be attributed to lightning, and a separate model is created using only the 
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lightning data to predict outages. Certain lightning intensities and corridor widths are 

found to have a higher correlation with power outages (Zhu et al. 2007). 

Brown et al. (1997) selected storm events for analysis based on their wind speeds 

and created a Monte Carlo simulation to determine outage frequency and duration. The 

simulation was tested using wind data for Snohomish County, Washington. Momentary 

outages (less than several minutes) and long-term outages were classified separately, and 

momentary outages are found to compose a large portion of the total outages. Reed 

(2008) estimated outages due to wind for the Seattle area power distribution system. A 

fragility analysis was run for four winter storms using outage frequency and duration, 

minimum temperature, 24-hour precipitation, maximum wind speed, and peak wind gust 

data, and results were compared with data from other hurricanes and winter storms. 

Outage durations resulting from wind events are very similar for both winter storms and 

hurricanes; also, peak wind gust seems to be the best predictor of outage durations (Reed 

2008). 

Cerruti and Decker (2011) created a generalized linear model (GLM), a type of 

multiple linear regression model, to predict power system damage using forecasted 

surface weather. Surface weather for a given day was used to assign that day to a certain 

“weather mode” (i.e., thunderstorm, warm, mix, cold, heat, wind, none, or questionable), 

and a different mode of the model was run depending on the condition. When compared 

with other statistical models, the GLM seems to be most effective at predicting power 

system damage from weather forecasts (Cerruti and Decker 2011). A Poisson regression 

model was developed by Li et al. (2010) to predict the number of outages and the 
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amount of power system damage in response to a variety of severe weather conditions. A 

set of 19 major storm events were used to train the model, and the model is currently in 

use by an electric utility company in the northeastern U.S. for its distribution system. 

Zhou et al. (2006) combined both a Poisson regression and a Bayesian network model to 

estimate yearly outage rates for a power distribution system in Manhattan, Kansas. The 

Poisson model was run to predict the number of outages, while the Bayesian model was 

used to predict the probability of an outage. A variety of weather variables were used as 

predictors in the model; however, wind, icing, and lightning are determined to be the 

most influential (Zhou et al. 2006). 

 

2.2 Hurricane-induced power outage prediction 

For over a decade now, predictive models have been used to forecast power 

outages and damage to power infrastructure resulting specifically from hurricanes. Both 

non-statistical and statistical models have been used; however, most of these models are 

statistics-based. Non-statistical models tend to be either assessment-based or use some 

sort of fragility model. In the sections below, non-statistical models will be discussed 

first, followed by statistical models, including the HOPM. A summary of all non-HOPM 

models can be found in Table 2.2 below. 
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Reference Model type Dependent variable Predictors 

Davidson et al. (2003) Assessment-based Outages, customers 

affected 

Maximum wind gust, 

antecedent precip, land 

cover type, power 

system 

Reed et al. (2010) Fragility analysis Outages Wind speed ratio, 

power system 

Winkler et al. (2010) Damage and fragility 

models 

Outages, damage Wind gust speed, tree 

wind-throw, terrain, 

network topology 

Ouyang and Dueñas-

Osorio (2014) 

Four-part model Outages, restoration 

times 

Wind gust speed, tree 

wind-throw, land cover 

Krishnamurthy and 

Kwasinski (2013) 

 

Non-linear regression 

(statistical) 

Outages, restoration 

times 

Storm surge, storm 

size, max wind, wind 

exposure time 

Liu et al. (2005) Negative binomial 

regression (statistical) 

Outages Wind (max gust, 

duration, wind field), 

antecedent precip, land 

cover, tree type, soil 

drainage, hurricane 

indicator (wind speed 

and rainfall), power 

system 

Liu et al. (2007) AFT (statistical) Outages, restoration 

times 

Outages (start time), 

wind (max gust, 

duration), antecedent 

precip, land cover, 

number of customers, 

population density  

 
Liu et al. (2008) Spatial GLMM 

(statistical) 

Outages Wind (max gust, 

duration), antecedent 

precip, land cover type, 

soil (drainage and 

depth), protective  

devices (number) 

  

Table 2.2. Summary of studies modeling the impact of hurricanes on power outages and 

damage to electrical infrastructure (Quiring et al. 2011). 
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2.2.1 Review of models 

2.2.1.1 Assessment-based, hazard, and fragility models 

Prior to the development of a hurricane power outage model, assessments of past 

storms can be performed to determine the influence of certain variables and their 

usefulness as predictors in a future model. Davidson et al. (2003) examined outage and 

other distribution system data from five hurricanes affecting the Carolinas. Various 

statistical analyses (i.e., correlation, t-tests, and scatterplots) were implemented to assess 

the importance of maximum wind gust speed, rainfall, and land cover type on the 

number, distribution, and duration of outages. Wind gust speed is found to have the most 

influence on the number of outages, while land cover type is found to have a significant 

influence on the spatial distribution of outages. A combination of the land cover data 

with reports from electric utility companies indicate that most power system damage 

results from trees falling on power lines (Davidson et al. 2003). In a different approach, 

Reed et al. (2010) used various restoration functions and the IEEE1 performance index 

for outages to determine the impact of the wind speed ratio on outages and power system 

damage during Hurricane Rita. The wind speed ratio is the ratio of the maximum 

sustained wind speed for a parish to the ASCE2 2-minute wind speed for Louisiana (the 

region of study). Results of the analysis show that wind speed is the primary contributor 

to line damage (Reed et al. 2010). 

                                                 
1 Institute of Electrical and Electronics Engineers 
2 American Society of Civil Engineers 
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A combination of hazard and fragility models has proven to be effective in 

modeling hurricane-induced power outages and power system damage with low amounts 

of error.  In a continuation of the above study, Reed et al. (2010) conducted a fragility 

analysis comparing the wind speed ratio with fragility, the ratio of outages to total 

number of customers. Results from this analysis show that when the wind speed ratio 

was at 45%, then 50% of customers in that parish experienced outages (Reed et al. 

2010). In Winkler et al. (2010) a hurricane damage prediction model was used in 

combination with multiple component fragility models to predict power system 

reliability during hurricanes. The hurricane damage model integrates the most significant 

predictors from (Han et al. 2009b), terrain and three-second wind gust speed, and 

associates them with a fragility model to produce probabilities of damage to 

components. Meanwhile, a series of component fragility models predict the likelihood of 

failure (outages) for the transmission and distribution networks using wind gust speed 

and tree type estimates for seven species. Model error for outage prediction is estimated 

to be ~15%. Power system reliability also correlates well with network topology and 

structure of the transmission system, and certain topologies, such as the ring mesh 

topology, have proven more resistant to damage from hurricanes (Winkler et al. 2010). 

Ouyang and Dueñas-Osorio (2014) created a single comprehensive hurricane 

power outage model by combining four separate models: hurricane hazard, component 

fragility, power system performance, and system restoration. The hurricane hazard 

model uses the HAZUS software to generate storm scenarios for the study region, which 

are then applied to the other three models. The component fragility portion integrates the 
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fragility models from Winkler et al. (2010) for five power system components 

(substations, transmission lines, distribution lines, distribution nodes, and distribution 

circuits) to estimate outage probabilities for each storm. The power system performance 

portion then models power system response to component failures, and the system 

restoration model uses system resource quantities and restoration sequences (i.e., first 

transmission lines, then substations, then distribution lines) to estimate restoration times. 

The combination of these four models can also be used to generate a restoration curve 

relating the time after landfall to the number of customers with power (Ouyang and 

Dueñas-Osorio 2014). 

 

2.2.1.2 Statistical models 

Regression models, which are the main focus of this thesis, have been widely 

used to model hurricane-induced power outages. They are relatively easy to implement, 

have proven effective, and allow for the evaluation of a large quantity and variety of 

predictors, making it easy to improve model performance. 

Krishnamurthy and Kwasinski (2013) used a non-linear regression model to 

generate county-level indices and curves for maximum number of outages, average 

outage duration, and restoration times. The curve for maximum number of outages 

shows the best fit, while the curve for restoration times has a significantly weaker fit. 

This could be due to regional variance in restoration practices. Storm surge, maximum 

sustained wind speed, storm size, and the exposure time to tropical storm force winds all 
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show promise as predictors, with storm surge being the strongest predictor in coastal 

areas (Krishnamurthy and Kwasinski 2013). 

Negative binomial regression models have also proven effective for modeling 

hurricane-induced power outages. Liu et al. (2005) employed such a model to predict the 

number of outages at the zip code level. They find that negative binomial regression 

yields more accurate predictions than Poisson regression, most likely because negative 

binomial regression models take into account unequal variance among the predictors. 

The most influential variables appear to be the number of transformers (power system), 

the company affected (power system), maximum wind gust, and the hurricane indicator 

(see other predictors in Table 2.2). Rainfall and soil drainage may also be important, but 

only when trees lie close to power lines (Liu et al. 2005). 

As mentioned above, Liu et al. (2007) used AFT models to estimate power 

restoration times for hurricanes and ice storms. The restoration curves for hurricanes 

show significant overestimation, especially when compared with those of the January 

2004 ice storm, the other storm tested in this study. Despite that, however, 96% of 

customers had their power restored within the benchmark time that the model predicted 

90% of customers would have their power back; for ice storms, this was 91% (Liu et al. 

2007). The GLMM used by Liu et al. (2008) tends to over-predict outages due to 

hurricanes. Number of protective devices and maximum wind gust speed had the 

greatest impact on hurricane-induced power outages. The same hurricane (Hurricane 

Charley) and ice storm (January 2004) were used to test both models (Liu et al. 2008). 
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2.2.2 Evolution of the HOPM 

The HOPM is a statistical regression model that utilizes hurricane, 

environmental, and power system predictors to estimate the quantity and spatial 

distribution of power outages prior to landfall (Quiring et al. 2014). Over time these 

models have become increasingly accurate, but they require a large set of input variables 

(Nateghi et al. 2014). Examples of each type of variable can be seen in Table 2.3, and a 

summary of the variables included in each version of the HOPM can be found in Table 

2.4. Power system variables include the length of distribution line and the number of 

poles, switches, transformers, and customers in a given geographical area.  When 

combined, the power system variables serve as a proxy measure for the exposure of the 

power system. Environmental variables may vary depending on model version, but can 

include soil moisture, long-term antecedent precipitation, or land cover type (Quiring et 

al. 2011; Quiring et al. 2014). The model output is a forecast of the number and spatial 

distribution of power outages within the utility provider service area. 

 

Hurricane Environmental Power system 

Saffir-Simpson category Soil moisture Number of poles 

Minimum central pressure Land cover type Number of transformers 

Duration of strong winds 

 

Antecedent precipitation Number of switches 

 
Maximum wind gust speed Tree trimming frequency Number of customers 

  

Table 2.3. Common predictors used in the HOPM (Nateghi et al. 2014; Quiring et al. 

2011). 
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Reference Model type Dependent 

variable 

Hurricane Power 

system 

Environmental 

Han et al. 

(2009b) 

Negative 

binomial 

GLM 

Outages Wind (max gust, 

duration of max 

winds, max wind 

radius), time since 

last landfall, central 

pressure 

Transformers, 

poles, lines, 

switches, 

customers 

Land cover, 

soil moisture, 

antecedent 

precipitation 

Han et al. 

(2009a) 

GAM Outages Same as Han et al. 

(2009b) 

Same as Han 

et al. (2009b) 

Same as Han et 

al. (2009b) 

Guikema et al. 

(2010) 

BART/CART 

+ GLM/GAM 

 

Damage to 

poles and 

transformers 

Wind (max gust, 

duration of max 

winds) 

Transformers, 

poles, 

primary lines, 

switches 

Han et al. 

(2009b) + 

elevation, 

slope, 

topography 

Quiring et al. 

(2011) 

CART Outages Han et al. (2009b) Han et al. 

(2009b) 

Han et al. 

(2009b) + soil 

properties, 

topography 

Guikema and 

Quiring (2012) 

 

CART + 

Poisson GAM 

Outages Han et al. (2009b) Han et al. 

(2009b) 

Han et al. 

(2009b) 

Nateghi et al. 

(2014) 

Random 

forest 

Outages Wind (max gust, 

duration of max 

winds) 

Number of 

customers 

Fractional soil 

moisture (at 

two depths), 

tree trimming 

This thesis Random 

forest 

Outages Nateghi et al. 

(2014) + storm-

derived precip 

Nateghi et al. 

(2014) 

Nateghi et al. 

(2014) + tree 

species 

 
 

Table 2.4. Versions of the HOPM showing all three types of predictors (Quiring et al. 

2011). 
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The first version of the HOPM predicted power outages using negative binomial 

GLMs, a type of regression-based model that permits analysis of count data (Guikema et 

al. 2010). This version resembles the model of Liu et al. (2005), but replaced the 

indicator variables with a more extensive variable set that could be measured prior to 

landfall. Its predictions were based on maximum wind gust, duration of strong winds, 

time since the last hurricane, radius of maximum winds, and central pressure deficit 

(Han et al. 2009b; Quiring et al. 2014). Soil moisture levels from three layers of soil and 

the Standardized Precipitation Index (SPI), representing antecedent precipitation, were 

also incorporated into this version of the model. One disadvantage of this model is that it 

overestimates the number of outages in urban areas and underestimates outages in rural 

regions (Nateghi et al. 2014). 

Han et al. (2009a) improved on the accuracy of the first version of the HOPM by 

using generalized additive models (GAMs). Unlike GLMs, GAMs allow for nonlinearity 

and, thus, can better fit the power outage data, which is important for model 

development and testing (Guikema et al. 2010). GAMs were found to more accurately 

predict the number and spatial distribution of outages and overcame many of the over-

prediction issues found in the GLMs (Han et al. 2009a; Quiring et al. 2014). They may 

also give a better idea of overall system response (Han et al. 2009a). 

Guikema et al. (2010) then developed a new series of models that combined both 

the GLMs and the GAMs and added to them two data mining approaches, classification 

and regression trees (CART) and Bayesian regression trees (BART). CART uses a single 

tree to determine the relationship between the explanatory (i.e., hurricane and 
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environmental predictors) and response (i.e., number of outages or number of poles 

damaged) variables; whereas, BART constructs multiple, smaller trees to determine the 

same relationship. This new approach outperformed both of the previous regression-

based approaches and showed that the BART and CART models had significantly more 

accurate predictions than the GLM and GAM models. A limitation of this type of 

statistical model is their difficulty in handling datasets containing many groups of zeros, 

or zero-inflated data (Quiring et al. 2014). 

Similar to Guikema et al. (2010), Quiring et al. (2011) used a regression tree 

approach but used only CART instead of BART, CART, and a Poisson GAM. A large 

number of soil and topographic predictors were also entered into the model. The focus 

was on understanding the role of soil moisture and topography in predicting power 

outages. The results indicate that the addition of soil and topographic variables do not 

significantly improve predictive accuracy. One major finding was that some land cover 

variables could be used as proxies for power system data. This may be an effective way 

to generalize outage models and could be especially useful in areas where power system 

information is not available. 

The next in the series of the HOPM models was created by Guikema and Quiring 

(2012) and is a two-stage model that combines both CART and a Poisson GAM to 

predict the number of power outages. The CART first predicts where the outages will 

occur; then the Poisson GAM estimates the number of outages in each of those locations.  

This model has relatively strong predictive accuracy (Quiring et al. 2014) and offers a 

better alternative for analyzing zero-inflated data (Guikema and Quiring 2012). 
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The last in the series of the HOPM models was used by Nateghi et al. (2014) to 

predict power outages across the service areas of two Gulf Coast states. This version 

builds off previous versions by using hurricane predictor variables of maximum wind 

gust and duration of strongest winds; however, it greatly reduces the number of 

environmental variables. Soil moisture from the 2001 National Land Cover Database 

(NLCD), SPI, and mean annual precipitation, and land cover type are all carried over 

from previous models, but all other environmental variables are removed. All other 

hurricane variables are also removed except for the two mentioned previously. A tree 

trimming factor, based on prior tree trimming history, is added as an environmental 

variable, and number of customers is added as a power system variable (Nateghi et al. 

2014). Instead of a regression-based model such as GLM or GAM, Nateghi et al. (2014) 

used random forest, which is a data-mining technique similar to BART and CART. 

Random forest develops a large number of regression trees from data resampling; the 

final prediction is the average of predictions from all of the trees. A holdout analysis was 

used to test the ability of the model to predict outages. For each model (i.e., model with 

all variables, model with only the six variables) a portion of the data were held out, 

while the remaining data was used to train the model. The hold out sample was then used 

to make predictions and test the model. Results from testing this version of the HOPM 

show that it can explain much of the variance in outages with R² values of 0.70 for State 

One and 0.85 for State Two. Results also show that six fundamental variables are able to 

provide nearly as accurate an estimate as the model with all predictor variables. These 

six fundamental variables include three-second wind gust speed, duration of strongest 
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winds (above 20 m/sec), total number of customers per grid cell, tree trimming, and 

fractional soil moisture (Nateghi et al. 2014). This thesis uses this latest version of the 

HOPM and adds tree species and storm-derived precipitation (Table 2.4). 

 

2.3 Tree species 

Previous versions of the HOPM have included land use and land cover as 

predictors, but have not gone as specific as tree species. However, research has shown 

that tree species can be an important indicator of tree fall during a hurricane, which in 

turn can have a significant impact on power outages in that immediate region. According 

to Davidson et al. (2003), tree species may be an important predictor because certain 

types are more prone to breakage or have shallower root systems.  

 

2.3.1 Prior usage in power outage models 

A limited number of previous studies have incorporated tree species into 

hurricane power outage prediction models. As part of a hurricane power outage model, 

Winkler et al. (2010) developed a flying debris model using tree species, wind intensity, 

and tree diameter at breast height (DBH). The model estimates the probability of an 

outage due to flying debris in the vicinity of a power line. Each grid cell is randomly 

assigned one of seven local tree species to simulate natural variations in tree population 

(Winkler et al. 2010). Ouyang and Dueñas-Osorio (2014) applied a similar method to 
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estimate the probability of tree wind-throw (trees being uprooted or broken by the wind), 

except land cover type is used instead of tree species.  

Liu et al. (2005) integrated tree type information, along with other data such as 

maximum wind gust, land cover type, and soil drainage, into a regression model to assist 

in predicting power outages in the Carolinas. Tree type data for 22 species were obtained 

from the U.S. Forest Service at a 1 km resolution. At this resolution, tree species is not a 

significant predictor of outages, and other high resolution data such as land cover and 

soil drainage have low influence as well; however, a larger grid cell size may change 

those results (Liu et al. 2005). In a different approach, Han et al. (2009a) used mean 

annual precipitation as a proxy for variations in tree species in a hurricane power outage 

model. This thesis will evaluate the importance of tree species as a predictor in hurricane 

power outage models. 

Other research has shown that trees do play a significant role in causing outages 

during hurricanes. For example, according to outage-cause data from Duke Power, trees 

accounted for about half of all outages in the service area during Hurricanes Opal, Fran, 

and Floyd, while each of the other causes accounted for 10% or less (Davidson et al. 

2003). Also, the amount of tree trimming is considered to be one of the top six predictors 

in the latest version of the HOPM (Nateghi et al. 2014). 

Other tree variables, such as tree abundance and tree trimming, have also been 

integrated into power outage prediction models. For example, Maliszewski et al. (2012) 

discovered that the combined interaction between bird abundance, vegetation abundance, 
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and overhead lines was the second most important factor in predicting distribution 

system outages across Phoenix, Arizona. Reed (2008) found that over 85% of outages 

during the December 1999 winter storm in France were due to trees falling on lines. In 

addition, an average of 46% of outages during three winter storms in Seattle, 

Washington were due to trees (Reed 2008). Also, Guikema et al. (2006) found that 

increased tree trimming frequency in the Duke Power service area led to a reduction in 

outages under normal (non-storm) conditions. In a study done by Simpson and Van 

Bossuyt (1996), tree failure was the primary cause for 40% of outages preventable by 

regular tree trimming. 

 

2.3.2 Susceptibility to wind 

There are many studies that have evaluated the relationship between various tree 

attributes (i.e., stand height/condition, basal area, age, health) and wind resistance. This 

literature review will focus solely on the relationship between tree species and wind 

resistance, particularly with regard to hurricanes. 

In a study done by Kupfer et al. (2008) following Hurricane Katrina, tree species 

was found to be the third most important variable for determining forest damage in 

Southern Mississippi. Merry et al. (2009) found that tree species and tree species 

response to storm surge, among other variables, was critical in determining the amount 

of forest damage that occurs during a hurricane. They also found that stem strength is 

highly dependent on tree species (Merry et al. 2009). Garrigues et al. (2012) discovered 
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that tree damage during Hurricane Katrina was almost entirely related to tree stand 

characteristics, including tree species, and not to storm-related factors, such as wind 

speed or storm track. 

 

2.3.2.1 Factors influencing wind resistance 

Due to similarities between study area, study storms, and tree species included, 

the findings from Duryea et al. (2007) are the primary source of wind resistance data 

used for comparison in this thesis. Duryea et al. (2007) studied the impact of winds from 

eight hurricanes on urban tree species in Florida. Each of these storms made landfall 

between 1992 and 2005, and two of the storms, Dennis and Ivan, are also included in the 

HOPM. Urban tree damage was measured within 3 to 6 days after the storm made 

landfall; neighborhoods were randomly selected on the strong side of the storm. In total 

100 neighborhoods and 18,200 trees were sampled; results were then compared with a 

survey of arborists, scientists, and urban foresters in Florida, which contained their 

rankings for wind resistance of southeastern United States coastal plains tree species. For 

Hurricane Ivan, Duryea et al. (2007) found that tree species with the highest survival 

(percent standing after the hurricane) included sand live oak, American holly, southern 

magnolia, live oak, wax myrtle, sweetgum3, crape myrtle, dogwood, and sabal palm. 

For Hurricanes Erin and Opal (1995), dogwood, live oak, sabal palm, sand live oak, and 

                                                 
3 Bolded tree species indicate those present in the HOPM. 
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southern magnolia also had the highest survival. Laurel oak generally had poorer 

survival than the other oaks (Duryea et al. 2007). 

Branch loss may also be an important measure of resilience to hurricane winds. 

Species with the least branch loss included crape myrtle, loblolly pine, American holly, 

and tulip poplar. Large trees generally lost the most branches, followed by medium trees 

and then smaller trees. Also, pines tended to snap, while broadleaf trees were more 

susceptible to uprooting. Trees with large amounts of branch loss may not be considered 

healthy trees, so survival was recalculated, with standing trees having 50% or greater 

branch loss being classified as dead (Duryea et al. 2007). Using the recalculated survival 

for Hurricane Ivan, tree species used in the HOPM rank as follows, from greatest to least 

survival: sweetgum, dogwood, slash pine, laurel oak, water oak, loblolly pine, and 

longleaf pine. 

Combining the survival and branch loss results from Duryea et al. (2007) with 

results from the survey and from scientific literature, Duryea et al. (2007) created a wind 

resistance classification of southeastern U.S. urban tree species (Table 2.5). Duryea et al. 

(2007) note that this list must be used with caution because there are many factors (i.e., 

hurricane wind speed, precipitation, soil, tree age and health) that can affect resilience. 

According to the classification table, tree species in the HOPM with the highest wind 

resistance include: dogwood; medium-high: sweetgum and swamp chestnut (same genus 

as chestnut oak); medium-low: white oak, slash pine, longleaf pine, loblolly pine; and 

lowest: laurel oak and water oak.  
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Highest Medium-high Medium-low Lowest 

Florida scrub 

hickory 

Florida sugar maple Boxelder Pecan 

Dogwood (60%) 

 

 

Japanese maple Red maple Tulip poplar 

Dahoon holly River birch Silver maple Carolina 

laurelcherry Inkberry Ironwood Sugarberry Bradford pear 

American holly Pignut hickory Hackberry Southern red 

oak Yaupon holly Mockernut hickory Camphor Laurel oak (4%) 

Crape myrtle Red bud Loquat Water oak (8%) 

Southern magnolia Fringe tree Silverdollar 

eucalyptus 

Chinese tallow 

Sand live oak Common persimmon Green ash Chinese elm 

Turkey oak White ash Red mulberry Southern red 

cedar Myrtle oak Sweetgum (50%) Wax myrtle Leyland cypress 

Live oak Sweetbay magnolia Redbay Sand pine 

Podocarpus Saucer magnolia Sycamore Spruce pine 

Sparkleberry Water tupelo Black cherry Washington fan 

Baldcypress Black tupelo White oak (55%)  

Pondcypress American 

hophombeam 

Willow oak  

Pindo or jelly Chickasaw plum Weeping willow  

Canary island date Swamp chestnut (43%) American elm  

Date Shumard oak Slash pine (25%)  

Cabbage, sabal Post oak Longleaf pine (56%)  

 Winged elm Loblolly pine (20%)  

  

Table 2.5. Wind resistance of southeastern U.S. tree species (Duryea et al. 2007); 

species included in the HOPM are in black. Percentages indicate the number of trees in a 

survey sample with a high level of wind resistance. 

 

In addition to branch loss, other tree species characteristics may also play a 

significant role in a species’ resistance to hurricane winds. For example, Duryea et al. 

(2007) found that a higher amount of defoliation (leaf loss) can lead to a higher rate of 

survival following a hurricane; this was true for both survival and recalculated survival 
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in their study. The tendency for certain species to defoliate during periods of strong wind 

reduces their likelihood of becoming uprooted or having branches broken and may give 

them a distinct advantage over other species in terms of survival (Duryea and Kampf 

2007). Table 2.6 below compares certain tree species characteristics (breakage, 

uprooting, and defoliation) with tree species survival rates during six hurricanes 

(Andrew, Erin, Opal, Charley, Jeanne, and Ivan) from Duryea et al. (2007). Breakage 

and uprooting are ranked from least to greatest, and defoliation and survival are ranked 

from greatest to least. Darker shading indicates higher amounts, while lighter shading 

indicates lower amounts. Rankings for breakage and uprooting were derived from Barry 

et al. (1993) and Xi and Peet (2008) for southeastern U.S. forests. Rankings for 

defoliation were derived from Gresham et al. (1991) and Duryea et al. (2007) for 

Hurricanes Hugo and Ivan, respectively. Generally tree species with lower amounts of 

breakage and uprooting, and a higher amount of defoliation, had a higher rate of survival 

during a hurricane. Sweetgum and dogwood both follow this pattern fairly well, with the 

exception that dogwood may have a higher risk of being uprooted. Many of the pines 

tend to have much lower survival rates due to more broken branches, a greater chance of 

uprooting, and greater leaf retention. Survival may also be influenced by the lifespan of 

a tree species; older trees tend to be more susceptible to disease and more prone to 

breakage during strong winds. Sweetgum ranks among the longer-living species, with a 

lifespan of over 100 years, while laurel oaks are fairly short-lived, with lifespans 

generally under 50 years Also, urban trees may have shorter lifespans than trees in 

forested areas (Duryea and Kampf 2007). 
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Breakage Uprooting Defoliation Survival 

Sweetgum Sweetgum Dogwood Dogwood (92%) 

Dogwood 

 

White oak Sweetgum Sweetgum (90%) 

Water oak Chestnut oak Laurel oak Laurel oak (87%) 

White oak Longleaf pine Loblolly pine Slash pine (85%) 

Chestnut oak Slash pine Water oak Longleaf pine (75%) 

Virginia pine Loblolly pine Longleaf pine Loblolly pine (74%) 

Longleaf pine Water oak  Water oak (72%) 

Slash pine Dogwood   

Loblolly pine    

 

Table 2.6. Tree species characteristics (Duryea et al. 2007; Gresham et al. 1991; Stanturf 

et al. 2007; Xi and Peet 2008) vs. Survival (Duryea et al. 2007), for HOPM species only. 

Darker shading indicates higher probabilities. Percentage values are the average % 

survival of a species during six hurricanes (Andrew, Erin, Opal, Charley, Jeanne, and 

Ivan). 

 

2.3.2.2 Wind resistance of specific tree species 

As previously mentioned, the nominal class rankings in Table 2.5 are derived 

from survival statistics after eight Florida hurricanes, five of which struck the Gulf Coast 

(Erin, Opal, Charley, Ivan, and Dennis), combined with data from a survey of arborists 

and other scientists. The percentage values in the table represent the number of trees in a 

sample with a high level of wind resistance and are derived solely from the survey data. 

Some discrepancies can be seen between the two datasets, especially for longleaf 

pine and white oak. For longleaf pine this may be because, although pines are very 

sensitive to wind, they may not show immediate signs of damage; instead, death may 

occur over a period of weeks, months, or even years (Duryea and Kampf 2007). Duryea 
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and Kampf (2007) found this to be the case during Hurricane Charley when 48% of 

longleaf pines standing immediately after the storm had died three months later. In 

addition, a publication produced by the Alabama Cooperative Extension System, lists 

longleaf pine as having medium-high wind resistance (Tilt et al. 2006). Another possible 

explanation for this anomaly would be the predominant location in which each of these 

species is found. In their study of the DeSoto National Forest in southern Mississippi, 

Kupfer et al. (2008) indicated that pines (especially longleaf, loblolly, shortleaf, and 

slash pines) generally prevail across upland areas, while oaks and sweetgum dominate 

the bottomlands. This suggests that pines may have greater exposure to higher wind 

speeds due to their prevalence in elevated areas such as hilltops, while oak and 

sweetgum may have reduced exposure to wind. In the same study, however, Kupfer et 

al. (2008) found that plots with more hardwoods are prone to greater damage; this would 

then suggest that hardwoods, like oak and sweetgum, would be more prone to damage 

power lines. Again, this just goes to show that no list of wind-resistant tree species is 

exact, as other factors such as tree health, topography, or geographic location may play a 

significant role as well. 

Fredericksen et al. (1993) took a different approach and focused on testing wind 

resistance of loblolly pines using simulated wind stress. Broken limbs are found to be 

more the result of stem failure than uprooting. Also, longleaf pine may be more resistant 

to hurricane winds than other species of pine. In a study done by Johnsen et al. (2009) 

following Hurricane Katrina, stands of longleaf pine suffered less mortality than both 

slash pine and loblolly pine, with loblolly pine having the highest mortality rate. 
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Variation in mortality among species were apparent even when taking other factors, such 

as soil or topography, into account (Johnsen et al. 2009). This supports the finding of 

Gresham et al. (1991) that identified longleaf pine as suffering less damage than loblolly 

pine during Hurricane Hugo and the finding that loblolly pines may be more susceptible 

to wind-throw than other pines (Merry et al. 2009). 

In a study done by Conner et al. (2002) sweetgum was found to be more 

susceptible to wind damage than damage from flooding, along with American elm, ash, 

red maple, and several species of oak. This supports the findings of Duryea (1997) who 

determined that sweetgum holds up moderately well to hurricane winds and experienced 

a branch loss of over 50% during Hurricanes Erin and Opal. Also, during a Texas 

tornado, sweetgum topped the list of survivors, but also had the most branch damage 

(Glitzenstein and Harcombe 1988). Despite significant branch loss, sweetgum is ranked 

by Duryea et al. (2007) as having a medium-high resistance to wind and has been ranked 

similarly by other studies (Duryea et al. 2007). This relatively high ranking is likely due 

to its strong root system combined with short, firm branches and long, skinny petioles 

(stalks that connect the leaves to the branches) that detach easily from the branches 

during strong winds (Duryea et al. 2007). 

Dogwood also has a fairly high rate of survival during exposure to hurricane 

winds, probably due to its low amount of branch breakage and tendency to defoliate. 

During Hurricanes Camille and Hugo, dogwoods were found to be one of the most easily 

uprooted species (Duryea 1997; Gresham et al. 1991); however, Duryea (1997) found 
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that to be quite the contrary during Hurricanes Erin and Opal, when the majority of 

dogwoods remained standing. 

Among the oaks, live oak appears to have the best rate of survival during 

hurricanes, probably due to its longer life span, over 100 years, and tendency to defoliate 

during periods of strong winds. During Hurricane Ivan, defoliation of live oaks was 

positively correlated with higher wind resistance (Duryea and Kampf 2007). Also during 

Hurricane Ivan, live oak and sand live oak had a significantly higher rate of survival than 

laurel oak and water oak. A similar trend was observed for Hurricanes Erin, Opal, and 

Dennis which also affected the Florida panhandle (Duryea et al. 2007). Laurel oaks and 

water oaks reside among the less wind-resistant species due to their shorter life span, tall 

height, and shallow root system, all of which result in a higher risk of stem breakage and 

uprooting (Duryea and Kampf 2007; Gresham et al. 1991; Hook et al. 1991). Water oak 

also tends to grow in soils with poor drainage, which may increase its risk of being 

uprooted (Hook et al. 1991). Along with pines, laurel and water oaks were found to 

cause the most property damage during Hurricane Ivan (Duryea et al. 2007). 

 

2.4 Precipitation 

The version of the HOPM developed in this thesis includes storm-related 

precipitation. According to Quiring et al. (2011), heavy precipitation occurring during 

the hurricane may result in inland flooding, thus increasing the number of outages and 

time to restore power. During Hurricane Katrina, flooding in New Orleans was a major 
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cause of outages and damage to electrical infrastructure, especially substations and other 

ground-based equipment (Kwasinski et al. 2009). 

Other hurricane power outage models, including previous versions of the HOPM, 

have included antecedent precipitation as a predictor. Although results vary, antecedent 

precipitation, especially when combined with other factors, has generally proven to be 

an important predictor of hurricane-induced power outages. 

Han et al. (2009b) and Han et al. (2009a) both used the SPI as a predictor in their 

hurricane outage models, while Nateghi et al. (2011) identified the SPI and soil moisture 

the day before landfall as two of the top 14 predictors in their fitted BART model. In the 

most recent, reduced version of the HOPM used by Nateghi et al. (2014) and in this 

thesis, fractional soil moisture is identified as one of the six key variables in predicting 

hurricane-induced power outages.  

On the contrary, some studies have shown that antecedent precipitation has very 

little, if any, effect on hurricane-induced power outages. For example, Davidson et al. 

(2003) showed that rainfall measured in the seven days prior to landfall had a very weak 

correlation with outages and restoration times. Also, in the HOPM of Quiring et al. 

(2011), SPI does not rank in the top 10 variables and therefore is not included in the final 

version of their model. 

It is often the combination of precipitation with other factors, such as tree species 

or wind, which makes it an important predictor of outages. In a study done over Alberta, 

Canada, Shen and Koval (1999) found that more outages are due to wind and lightning, 
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but that it is the combination of wind, trees, rainfall, and soil saturation that leads to 

increased outages. According to Liu et al. (2005), rainfall or flooding may influence 

hurricane-induced power outages only when trees are in close proximity to power lines. 

Guikema and Quiring (2012) integrated long-term precipitation and soil moisture into 

their hurricane outage prediction models and suggested that soil moisture may be 

important to determining tree and pole stability during a hurricane. Similarly, Han et al. 

(2009a) incorporated mean annual precipitation and SPI into their model and proposed 

that wet conditions may increase the number of downed poles and trees during 

hurricanes, while unusually dry conditions may result in the snapping of branches (Han 

et al. 2009a; Nateghi et al. 2011).  Nateghi et al. (2011) reported that precipitation may 

play a role in outage duration due to delays in crews getting to the outage site. 

These findings suggest that electric utilities can be impacted in two ways by 

precipitation. First, rainfall can saturate the ground which can lead to trees and poles 

falling, especially when combined with wind and already saturated soils. Second, rainfall 

can lead to flooding, which can cause damage to ground-level infrastructure and delay 

repair crews from getting to the outage site. Precipitation often works in combination 

with other factors to cause outages.  
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CHAPTER III  

DATA AND METHODS 

 

3.1 Study region 

The region used to test this version of the HOPM is the State A service area of a 

major Gulf Coast utility provider. The utility provider has divided their service area into 

15,213 grid cells across four states, each having a size of 3.66 km (12,000 feet) by 2.44 

km (8,000 feet) (Quiring et al. 2014). The State A portion consists of 6,681 grid cells, 

which represent approximately 44% of the entire service area, or 59,615 square 

kilometers (Figure 3.1). Most of the grid cells are concentrated near urban areas or 

where larger numbers of power system equipment (i.e., distribution lines, transformers) 

are located. Approximately 56% of the state does not fall within a grid cell. These gaps 

in grid cell coverage indicate areas covered by another utility provider or areas lacking 

power system equipment; usually these are areas with little or no population.  

The State A portion of the utility service area is chosen as a proxy for the entire 

service area to facilitate comparison with the version of the HOPM used by Nateghi et 

al. (2014). It is also centrally-located within the service area and lies closest to the track 

of three of the four hurricanes used to evaluate this version of the HOPM (Figure 3.2). 

Using just one state also allows for greater efficiency in both the data extraction and 

modeling processes. Additionally, using the State A portion of the service area facilitates 
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comparison with prior versions of the model, which evaluated several states, including 

State A (Han et al. 2009a; Han et al. 2009b; Nateghi et al. 2014; Quiring et al. 2011). 

 

 

Figure 3.1. State A portion of utility company service area. 
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Figure 3.2. State A service area showing hurricane tracks and the number of customers. 

 

3.2 Hurricanes of interest 

For consistency with previous versions of the HOPM, this thesis will include data 

from four hurricanes (Figure 3.2): Danny (1997), Ivan (2004), Dennis (2005), and 

Katrina (2005). Georges has been used in previous versions of the model, however, it 

will not be included here due to major inconsistencies with the precipitation data (see 

section 3.4 for details).  
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Danny formed near the coast of Louisiana and moved slowly east-northeastward, 

eventually making landfall near the Mississippi River delta as a category one hurricane. 

A second landfall, and the point of reference for this study, was made near the mouth of 

Mobile Bay in State A on July 19th, 1997. Following its second landfall, Danny 

continued to meander slowly northward over State A for several days, gradually 

weakening to a tropical depression (Pasch 1997).  

Ivan originated off the west coast of Africa and reached category five strength in 

the Caribbean, but weakened to a category three storm just prior to landfall near Gulf 

Shores, State A on September 16th, 2004. By September 17th, Ivan was a tropical 

depression centered over the northeastern part of State A (Stewart 2004).  

Dennis also originated off the west coast of Africa and eventually made landfall 

in Cuba as a category four storm. After departing Cuba, Dennis continued its trek 

westward and northwestward, ultimately making landfall on Santa Rosa Island, just east 

of Pensacola on the Florida panhandle, as a category three storm (Beven 2005).  

Katrina developed over the Bahamas and made its first landfall on the 

southeastern Florida peninsula as a category one storm. As Katrina reemerged over the 

Gulf of Mexico, it rapidly strengthened into a dangerous category five storm as it 

approached the Central Gulf Coast. A second landfall was made along the Mississippi 

Delta near Buras, Louisiana on August 29th, 2005 as a strong category three storm, 

followed by a final landfall near the Louisiana/Mississippi state line, which will be the 

point of reference for this study. Of all the hurricanes included in the HOPM, Katrina 
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was by far the strongest and most destructive, with significant impacts extending 

hundreds of miles from the center (Knabb et al. 2005). 

 

3.3 Datasets 

3.3.1 Tree species 

The host-tree species dataset from the 2012 National Insect and Disease Risk 

Map (NIDRM) was selected to represent tree species for this thesis. This dataset, in 

conjunction with other data layers, is used by the Forest Health Technology Enterprise 

Team (FHTET) of the USDA Forest Service to model tree species risk due to insect, 

disease, and other hazards (Krist et al. 2012). This particular dataset was chosen for use 

in this thesis primarily because of its comprehensive coverage, with very few data gaps 

across the study region, even in urban areas (Figure 3.3). The number and grouping of 

species classes is also an improvement over the 2008 U.S. Forest Type dataset (Table 

3.1; Figures 3.3, 3.4), the only other known and complete tree species dataset with U.S. 

coverage.  

The 2012 NIDRM data were acquired directly from Jim Ellenwood at FHTET 

and were available in raster (ESRI GRID) format, which facilitated the extraction 

process. The dataset contains the dominant tree species by grid cell for the entire United 

States at a 240-meter resolution. Dominance is determined by selecting the species with 

the largest amount of basal area, or amount of square feet of wood per unit area, in each 
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raster cell and assigning it to that cell (J. Ellenwood 2014, personal communication; 

Krist et al. 2012).  

 

Dataset Source Number of 

classes 

(U.S.) 

Number of 

classes (study 

area) 

Spatial 

resolution 

NIDRM 2012 Krist et al. 

(2012) 

306 92 240-m or 30-

m 

U.S. Forest Type Ruefenacht 

et al. (2008) 

133 40 250-m 

 

Table 3.1. Tree species dataset comparison. 

 

The 2012 NIDRM host species dataset was derived by predicting tree species 

parameters (i.e., basal area, stand density index, and quadratic mean diameter) for 

300,000 USDA Forest Service Forest Inventory and Analysis (FIA) plots using a 

classification and regression trees (CART) model. The model included FIA plot data 

overlaid with a wide variety of geospatial predictor layers, including soils, climate, 

terrain, and Landsat satellite reflectance values. Tree species parameter values were 

calculated for each midpoint between FIA plots. The 2012 NIDRM is a dramatic 

improvement over the 2006 NIDRM which was based solely on FIA data and used a 

simple Inverse Distance Weighting (IDW) technique, instead of a regression-based 

model, to generate the midpoint values (Krist et al. 2012). 
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Figure 3.3. Tree species from the 2012 NIDRM, with major urban areas 

(https://www.census.gov/geo/maps-data/data/tiger-line.html). 
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Figure 3.4.  Tree species from the 2008 U.S. Forest Type dataset, with major urban 

areas. 
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3.3.2 48-hour Precipitation 

The National Centers for Environmental Prediction (NCEP) Environmental 

Modeling Center (EMC) Stage II/Stage IV hourly precipitation dataset was chosen as a 

proxy for the 48-hour precipitation centered on the time of landfall. These data are 

currently used at NCEP to verify precipitation forecasts and as input into various 

environmental models (Lin and Mitchell 2005). The Stage IV data are also widely used 

by the National Weather Service (NWS) River Forecast Centers (Lin and Mitchell 

2005), where they are referred to as Stage III (Lin 2014a). This particular dataset was 

chosen because of its hourly availability, which allows for greater precision in defining 

the 48-hour period for precipitation surrounding landfall, and for its “multi-sensor” 

approach, integrating radar-derived data with the rain gage data (Lin 2001, 2014a; Lin 

and Mitchell 2005). 

The Stage II (http://data.eol.ucar.edu/codiac/dss/id=21.049) and Stage IV 

(http://data.eol.ucar.edu/codiac/dss/id=21.093) datasets were both obtained from the 

National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) 

website at a 4-kilometer resolution. The data were converted to GeoTIFFs using the 

NOAA Weather & Climate Toolkit (http://www.ncdc.noaa.gov/wct/). Each file 

contained hourly precipitation totals in millimeters. The Stage II data were available 

from 1996 to 2001 and they were used for all hurricanes occurring prior to 2002 (Danny 

only). The Stage IV data were available beginning in 2002 and were used for the 

remainder of the storms (Ivan, Dennis, and Katrina). 
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The Stage II data were derived from NWS hourly digital precipitation (HDP) 

radar estimates from the WSR-88D (NEXRAD) radar product. These data then 

underwent a bias correction using three sets of rain gage reports from Automated 

Surface Observation System (ASOS) and Hydrometeorological Automated Data System 

(HADS) observations (Lin 2001; Lin and Mitchell 2005). The Stage IV data were 

created using a similar procedure, only they were derived from the Stage III data 

available at each of the 12 River Forecast Centers and then mosaicked together (Lin 

2014a; Lin and Mitchell 2005). The total accumulated 48-hour precipitation for each 

storm is shown in Figure 3.5. A significant advantage of the Stage IV (and Stage III) 

data is the manual quality control (QC), which includes the hourly removal of gages that 

are malfunctioning and radar artifacts that may appear in the data (NWS 2015). 
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Figure 3.5. Pre-processed total 48-hour precipitation (4-km resolution) from the Stage II 

(Danny) and Stage IV (Ivan, Dennis, Katrina) datasets for the study region. 



 

44 

 

3.3 Methods 

3.3.1 Objective 1:  Identify the most suitable version of the HOPM for evaluating 

the influence of tree species and 48-hour precipitation 

As described in Chapter II, the version of the HOPM used in this thesis is a 

random forest model, where the final result (predicted outages4) is the average of 

predictions from a large set of regression trees. The number of trees is determined by the 

randomForest function in R, which accepts a response variable (i.e., number of outages) 

and a set of predictor variables (Table 3.2) as its inputs. In this case, the actual number 

of outages from each of the four hurricanes (Danny, Dennis, Ivan, and Katrina) will be 

used for the response variable. For the predictor variables in Table 3.2, hurricane 

characteristics (i.e., wind speed and duration of strongest winds) are derived from data 

for each of the four storms, power system data (i.e., transformers, poles, overhead line, 

switches, customer density, and tree trimming) are acquired directly from the utility 

company, and environmental data are obtained from a variety of relevant sources. All 

datasets, except for tree species and 48-hour precipitation, have already been 

incorporated and used in previous versions of the HOPM. 

                                                 
4 An outage can be defined as a “non-transitory activation of a protective device”; protective devices 

include fuses, circuit breakers, or automatic circuit reclosers. Quiring, S. M., A. B. Schumacher, and S. D. 

Guikema, 2014: Incorporating Hurricane Forecast Uncertainty into a Decision-Support Application for 

Power Outage Modeling. B Am Meteorol Soc, 95, 47-58, doi: 10.1175/Bams-D-12-00012.1. The nearest 

protective device upstream activates when an agent causes physical damage to the power system, such as 

when a tree falls on a line. This is done to isolate the damage, and all customers on that portion of the 

system temporarily lose power. This one incident is then considered to be a single outage and can result in 

varying numbers of customers losing power. Liu, H., R. A. Davidson, and T. Apanasovich, 2007: 

Statistical forecasting of electric power restoration times in hurricanes and ice storms. IEEE Transactions 

on Power Systems, 22, 2270-2279. 
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Version Response 

variable 

Predictor variables 

All 

variables 

Outages Elevation, Transformers, Poles, Overhead line, Switches, Time since 

last landfall, Wind speed (max), Duration of strongest winds, Slope, 

Aspect, Topography, Land cover type, Mean annual precipitation, 

Standardized Precipitation Index, Soil moisture (depth 15), Soil 

moisture (depth 26), Soil type, Soil layers (number), Soil layer depth, 

Hydrologic group, Customer density, Tree trimming, Tree species, 

48-hour precipitation 

Public Outages Elevation, Time since last landfall, Wind speed (max), Duration of 

strongest winds, Slope, Aspect, Topography, Land cover type, Mean 

annual precipitation, Standardized Precipitation Index, Soil moisture 

(depth 1), Soil moisture (depth 2), Soil type, Soil layers (number), 

Soil layer depth, Hydrologic group, Customer density, Tree 

trimming, Tree species, 48-hour precipitation 

Gust Outages Wind speed (max), Customer density, Tree species, 48-hour 

precipitation 

Wind Outages Wind speed (max), Duration of strongest winds, Customer density, 

Tree species, 48-hour precipitation 

Reduced Outages Wind speed (max), Duration of strongest winds, Soil moisture (depth 

1), Soil moisture (depth 2), Customers (number), Tree trimming, 

Tree species, 48-hour precipitation 

Mean-only 

(no model) 

Outages Mean of the training (leftover) sample 

 

Table 3.2. Description of the five model versions. New predictors are in bold. 

 

The first step in model selection is running the HOPM for all model versions 

with and without tree species and 48-hour precipitation. As mentioned in Chapter II, 

there are six versions of the HOPM, each with different predictors: All Variables, Public, 

                                                 
5 0-10 cm depth 
6 40 cm and below 
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Gust, Gust and Duration, and Reduced (Table 3.2). The Reduced model is the one used 

by Nateghi et al. (2014). Each of these models will be run three separate times for all 

hurricanes combined (26,724 grid cells total), each time with a different combination of 

the new input datasets: tree species only, 48-hour precipitation only, and tree species and 

48-hour precipitation combined. As part of each model run, a holdout analysis will be 

performed, in which data for 30% (~8,056) of the grid cells will be held out, while the 

remainder of the data (~18,668 grid cells) will be used to train the model. The holdout 

analysis will be run for 30 iterations, and the 30% holdout will be randomly generated 

for each iteration. As in Nateghi et al. (2014), a mean-only, or “no model”, scenario will 

also be generated by taking the mean of the response variable (actual outages) for all of 

the training (leftover) grid cells. This scenario will serve as a baseline for each of the 

five models (i.e., it is the no-skill model). 

After training is complete, the new version of the model can then be tested. The 

first part of the testing process will involve generating error statistics to quantify 

predictive accuracy for each of the held-out grid cells. This will be done in R for each of 

the five models, with (the three combinations) and without the new variables added. 

Mean absolute error (MAE), or the mean absolute difference between the actual and 

predicted values, will be calculated for each of the thirty holdouts using the following 

formula:  
1

8056
∑ |𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖|

8056
𝑖=1 . Mean square error (MSE), or the mean 

squared difference between the actual and predicted values, will also be calculated:  

1

8056
∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)

28056
𝑖=1 . Standard deviation from the mean (SD) will then 
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be computed for MAE and MSE using the sd function in R. The percent change in MAE 

and MSE, 
 𝑒𝑟𝑟𝑜𝑟𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑒𝑟𝑟𝑜𝑟𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑒𝑟𝑟𝑜𝑟𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅
× 100 (where a = without new variables added and b = with 

new variables added), will also be calculated for each of the five models for tree species 

only, 48-hour precipitation only, and both combined. A negative value for percent 

change indicates a decrease in error with the new variables added, while a positive value 

shows an increase in error. Because MSE gives more weight to the higher residuals 

(Guikema and Quiring 2012), MSE is typically a better measure of error for normal 

distributions, while MAE is generally preferred for more uniform distributions (Chai and 

Draxler 2014). On the contrary, Willmott and Matsuura (2005) argue that MAE should 

always be preferred over MSE and RMSE in evaluating average model performance. 

This is, in part, because the larger errors tend to have a greater influence on the total 

squared error than the smaller errors, resulting in increasingly larger values for MSE and 

RMSE (Willmott and Matsuura 2005). For the purposes of this thesis, both MAE and 

RMSE will be considered equally. 

Using the predict function within the randomForest package in R, outage 

predictions will then be generated for the remainder (leftover portion) of the grid cells. 

MAE and MSE will be calculated using the methods described above. Maps showing 

outage quantities and the absolute error, or absolute difference in actual and predicted 

outages, by grid cell will be generated using ArcGIS and will aid in model selection. 

Finally, the error statistics, and their associated standard deviations, will be used 

along with the outage maps to determine the optimal model for examining the impact of 
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tree species and 48-hour precipitation on model performance. The ideal model in this 

case will have the lowest of the MAE and MSE values, as well as the highest reduction 

in error from the model without tree species and 48-hour precipitation. It will also show 

the least spatial bias in absolute error. Once a model is chosen, tree species and 48-hour 

precipitation can then be evaluated for their performance in the model (Objectives 2 and 

3). 

 

3.3.2 Objective 2: Determine if including tree species data in the HOPM will 

improve model accuracy 

The original 2012 NIDRM displays tree species at a 240-meter resolution, so the 

data need to be resampled to the resolution of the utility company grid cells. The 

resampling will be done using Zonal Statistics in ArcGIS, and the majority tree species 

will be assigned to each grid cell. This identifies the most prevalent tree species in each 

grid cell, and each prevalent species covering at least 0.5% of the total grid cells will be 

used in the model. This process results in a total of 12 NIDRM classes: 10 are tree 

species classes, one is an ‘other’ class, and the final is an empty class representing gaps 

in the data (Figure 3.6a). For the purposes of this thesis, the ‘other’ class and the empty 

class will be combined into one class and interpreted as ‘other land cover’. A 

comparison with the 2011 National Land Cover Dataset 

(http://www.mrlc.gov/nlcd2011.php) confirms that the areas covered by both of these 

classes contain little to no tree cover. Typically these are regions dominated by water, 
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cropland, pastureland, or dense urban development. In total then there are 11 classes that 

will be input into the model, 10 of which represent a specific tree species (Figure 3.6b). 

Combined these 11 classes account for 86% of the NIDRM raster cells, and over 98% of 

the grid cells within the service area (Table 3.3). 

 

 

Figure 3.6. a. Tree species (majority) by grid cell, 28 classes, in order of descending 

prevalence. Urban areas are outlined in white. b. Tree species (% coverage) by grid cell, 

11 classes, in order of descending prevalence. 
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Majority (HOPM) 

species 

% total 

grid cells 

Num 

grid 

cells 

% total 

NIDRM cells 

loblolly pine 69.20% 4623 41.83% 

sweetgum 11.17% 746 14.92% 

other 4.74% 317 8.84% 

empty 3.64% 243 4.99% 

longleaf pine 2.98% 199 1.98% 

chestnut oak 1.53% 102 1.90% 

slash pine 1.30% 87 1.05% 

laurel oak 1.02% 68 1.32% 

water oak 0.78% 52 3.62% 

white oak 0.73% 49 2.43% 

flowering 
dogwood 

0.58% 39 1.87% 

Virginia pine 0.45% 30 1.20% 

TOTAL 98.11% 6555 85.95% 

black cherry 0.31% 21 0.70% 

swamp tupelo 0.28% 19 0.42% 

pignut hickory 0.25% 17 1.20% 

green ash 0.25% 17 1.18% 

yellow-poplar 0.22% 15 1.61% 

scarlet oak 0.13% 9 0.35% 

sweetbay 0.10% 7 0.52% 

water tupelo 0.09% 6 0.15% 

shortleaf pine 0.06% 4 0.91% 

eastern redcedar 0.04% 3 0.25% 

red maple 0.03% 2 1.27% 

post oak 0.03% 2 1.19% 

baldcypress 0.01% 1 0.05% 

blackgum 0.01% 1 0.42% 

sourwood 0.01% 1 0.33% 

live oak 0.01% 1 0.03% 

TOTAL 100.00% 6681 96.54% 

 

Table 3.3. Coverage for Majority and HOPM species classes (bolded classes are those 

used in the HOPM). 
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Prior to model integration, percent coverage will be calculated for each of the 11 

tree species classes by grid cell using the Tabulate Area tool in ArcGIS. This tool 

calculates the areal coverage for each class in square meters. To obtain the percent 

coverage by grid cell, the areal coverage for each species will be divided by the sum of 

the areal coverage for all species combined. The most prevalent species by grid cell, 

according to percent coverage, is shown in Figure 3.6b. 

The tree species percentages for each grid cell were aggregated with the other 

predictors used by the HOPM. The final product is a spreadsheet containing all of the 

predictors by grid cell for each of the four hurricanes. There is a separate column in the 

spreadsheet with the name of each storm (e.g., Danny), and for every grid cell that 

belongs to that storm, a value of ‘1’ is assigned to that column. Thus, the spreadsheet 

will contain four sets of 6,681 grid cells, one for each hurricane.  

After the model is run (Objective 1), several statistical measures will be 

generated to evaluate the performance of tree species in the HOPM. These measures 

include variable importance, partial dependence, and local variable importance. Prior to 

calculation of these measures, maps will be generated that display the polarized 

differences in the absolute error (AE) by grid cell. These maps will highlight areas where 

the model has improved the most with the addition of the new variables as well as areas 

where the model has experienced a decline in performance. The polarized differences of 

AE are calculated by subtracting the AE for the respective model (without the new 

variables added) from the same model (with the new variables added). 
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3.3.2.1 Variable importance 

First, measures of variable importance are automatically generated as part of 

running the random forest model in R. A brief overview of how a random forest 

functions is useful for explaining how variable importance is calculated. The random 

forest function creates subsets of the training data, with each subset consisting of 

randomly selected grid cells (Benyamin 2012). A decision tree is then grown for each 

subset, and each tree predicts the number of outages for each grid cell in the holdout 

dataset. The average prediction for a grid cell across all trees then becomes the predicted 

number of outages for that grid cell (Liaw and Wiener 2002). Within each tree, a series 

of splits are made, with each split usually being referred to as a node. At each node, 

several predictors are randomly selected from the full set and assessed for their ability to 

split the data (Figure 3.7; Benyamin 2012; Stewart 2014; Touw et al. 2012). Ultimately, 

the predictor resulting in the lowest residual sum of squares (RSS) will be selected to 

define the split at that node (Kühnlein et al. 2014; Touw et al. 2012). This process of 

node splitting continues until each end node reaches purity (RSS = 0), or until a certain 

minimum sample size (e.g., five grid cells in a node) is reached (Guikema et al. 2010). 
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Figure 3.7. Sample random forest tree. 

 

To calculate variable importance, the decrease in RSS is summed for every node 

where that predictor variable is used to split the data (Touw et al. 2012), and then 

normalized by the total number of trees (Horvath et al. 2007). This value is the decrease 

in node impurity, which is the same as the increase in node purity (IncNodePurity) 

reported by R. Typically a higher node purity for a predictor indicates a better 

relationship with the actual number of outages (Stewart 2014). After the increase in node 

purity is generated, the importance of each variable will be normalized so that the most 

important variable has a value of 100 (Quiring et al. 2011). The variables will then be 

ranked in order of decreasing importance. Due to random sampling, outage predictions 

and rankings of variable importance vary slightly from one model run to the next. The 
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variables that are ranked highest are the ones that have the greatest node purity across all 

runs. 

 

3.3.2.2 Partial dependence 

Next, partial dependence plots will be generated for tree species and 48-hour 

precipitation using the method from Nateghi et al. (2014). Partial dependence is a 

measure of the influence of a particular predictor variable on the response variable (in 

this case, outages) while the effects of the other predictors are held constant (Nateghi et 

al. 2014). Partial dependence plots are important because they indicate which variables 

may have the most predictive power and they can also depict thresholds where a variable 

may have even greater influence. For example, wind gust has a strong (non-horizontal) 

relationship with outages right around 25 m/s, after which the curve flattens and 

becomes more horizontal, indicating less of a relationship (Figure 3.8). Thus, it could be 

said that an increase in wind gust speed from 20 to 30 m/s has a much greater impact on 

the number of outages than an increase from 10 to 20 m/s. 
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Figure 3.8. Partial dependence plot for 3-second wind gust speed. 

 

3.3.2.3 Local variable importance 

To assist in the interpretation of partial dependence, maps showing local variable 

importance will be generated in ArcGIS and used in conjunction with the wind 

resistance and survival rankings from several of the studies mentioned in Chapter II. For 

example, Duryea et al. (2007) examined the response of over eighty tree species in 

Florida to winds from nine hurricanes including Dennis, Ivan, and Katrina. The local 

variable importance scores may help explain why certain species are more important. 

According to Touw et al. (2012), local variable importance in a random forest 

can describe the link between variables and samples. Each local variable importance 

score will be calculated from the out-of-bag (OOB) data from all trees in the random 
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forest. The OOB data comes from the sample and is the portion (usually 1/3) of the 

validation data that is not used to train each tree. To calculate local variable importance, 

a portion of the OOB data is first permuted, or altered; then, the MSE for the permuted 

OOB data and the original OOB data are calculated. The permuted MSE is then 

subtracted from the original MSE to get a local importance score for each variable in 

each grid cell. The score is a measure of the predictive accuracy of the sample, and in 

this case, it is a measure of the impact on the correct prediction of outages. A negative 

score indicates a negative impact on the prediction of outages, or in other words, the 

variable did not improve the prediction. A 0 score is neutral, and a positive score 

indicates that the variable had a positive impact on, or improved, the prediction of 

outages. A higher score indicates a more positive impact on outage prediction 

(Grömping 2009; Touw et al. 2012). 

To calculate local variable importance, thirty iterations of the HOPM will be run 

for the model version selected in Objective 1. Local variable importance (LVI) scores 

will then be generated for each variable by grid cell. As in Tonn et al. (2014), LVI scores 

will be calculated for each grid cell by taking the mean importance of all four storms for 

the selected variable and then dividing that value by the sum of the mean importance 

scores for all of the variables. The result is a percentage importance value that indicates 

the importance, or contribution, of the variable in relation to the other variables in the 

model. LVI scores will only be calculated for tree species having a significant 

relationship with outages, as indicated by the partial dependence plots and variable 
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importance scores. An LVI map will also be generated to show the variable with the 

highest importance for each grid cell. 

 

3.3.3 Objective 3:  Determine if including precipitation data in the HOPM will 

improve model accuracy 

Using the NCEP data, hourly precipitation totals will be acquired for the 24 

hours prior to and following the time of landfall for each hurricane. For storms with 

multiple landfalls, the point of landfall closest to the service area will be used (Table 

3.4); for Danny, Dennis, and Katrina, this also corresponds to the final point of landfall7. 

A similar method is used by Zhu and Quiring (2013) and Zhu et al. (2013) to estimate 

daily tropical cyclone precipitation (TCP) in Texas. In both of those studies, hurricane 

positions (based on center of circulation) are obtained for every six-hour period, and 

buffers based on the radius of the outer closed isobar (ROCI) are generated for each 

position. All of the buffers for a given day are then merged into one buffer, and 

precipitation measurements from any weather station located within that buffer are 

attributed to the storm total precipitation for that day (Zhu and Quiring 2013). 

 

                                                 
7 After passing over State A, Ivan moved northeastward toward the Delmarva Peninsula and out into the 

Atlantic. Several days later, the storm began moving south and then southwestward, back over Florida and 

into the Gulf of Mexico once again. A second landfall was made in southwestern Louisiana on September 

24, 2004. Stewart, S. R., 2004: Tropical Cyclone Report: Hurricane Ivan, 2-24 September 2004. National 

Hurricane Center, 44 pp, [Available online at http://www.nhc.noaa.gov/data/tcr/AL092004_Ivan.pdf.] 
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Hurricane Landfall      

date 

Landfall 

time (UTC) 

Landfall                          

coordinates 

Wind speed 

at landfall 

48-hour 

precip 

Danny 7/19/1997 18:00 30.4° N, 87.9° W      33 m/s        

(75 mph) 
18:00 

7/18-7/20 

Ivan 9/16/2004  6:50 30.2° N, 87.9° W 

 
54 m/s      

(121 mph) 
7:00          

9/15-9/17 

Dennis 7/10/2005 19:30 30.4° N, 87.1° W  54 m/s     

 (121 mph) 
20:00        

7/09-7/11 

Katrina 8/29/2005 14:45 30.2° N, 89.6° W 

 

54 m/s      

(121 mph) 

15:00        

8/28-8/30 

 

Table 3.4. Landfall data for the four hurricanes (Beven 2005; Knabb et al. 2005; Pasch 

1997; Stewart 2004). The last column is the 48-hour timespan used for data extraction. 

 

To apply this model in real-time, it will be necessary to forecast precipitation. 

This is difficult to do many days prior to landfall. Therefore, the 48-hour window 

centered on landfall may not be an appropriate timescale to employ for real-time 

applications. It is used in this study because it typically corresponds with the highest 

precipitation amounts for most storms. 

One of the downsides to using the Stage II data is that it contains negative (-1) 

values. This may be due to radar malfunction (Ware 2005) and/or missing gage data (Lin 

2014b). For the purposes of this analysis, these negative values are assumed to indicate 

missing data (NoData), as no information was found on these values in the metadata. 
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Before converting to inches and calculating the 48-hour sum for each storm, each pixel 

containing a -1 value was set to zero. Since Danny is the only storm that contains -1 

values, the impact should be minimal (Figure 3.9). In addition, a maximum of only 6 out 

of 48 hours have -1 values for Danny, and most of these are confined to a very small 

area in the northwest corner of the service area (Figure 3.9). 

 

 

Figure 3.9. Locations of missing (-1) values for Danny. 

 

The precipitation data are at a 4-kilometer resolution, so they were resampled to 

the resolution of the utility company grid cells in ArcGIS using Zonal Statistics. The 
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mean, minimum, and maximum precipitation value was assigned to each grid cell 

(Figure 3.10).  

 

Figure 3.10. Post-processed 48-hour precipitation (mean) by grid cell for each storm 

(Danny, Ivan, Dennis, and Katrina). 
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Figure 3.10 Continued. 

 

After the model is run (Objective 1), similar methods will be used to evaluate the 

addition of 48-hour precipitation on model performance. These include calculation of the 

polarized differences in AE as well as measures of variable importance, partial 

dependence, and local variable importance, which will be calculated using the same 

methodology described in Objective 2.  

The issues with the data from Georges led us to assess differences between the 

Stage II and Stage IV datasets. For hurricanes where both the Stage II and the Stage IV 

data are available (Ivan, and Katrina), 48-hour precipitation totals from the Stage II data 

are subtracted from the Stage IV totals, and maps displaying the differences are 
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generated in ArcGIS. Observed differences are as high as 9.3 inches for Ivan and 7.4 

inches for Katrina (Figure 3.11). This rather drastic result raises some concern in using 

the Stage II data; however, it is the only option for Danny. 

 

 

Figure 3.11. Stage IV-Stage II difference maps for Ivan and Katrina (inches). 
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CHAPTER IV  

MODEL EVALUATION AND SELECTION 

 

4.1 Model error 

The main goal of Objective 1 is to determine the most appropriate model for 

analyzing the effect of tree species and 48-hour precipitation. This is done by calculating 

error statistics for each model using the three combinations of variables as input (tree 

species only, 48-hour precipitation only, and both combined). This process is done in 

multiple stages, each one filtering out less accurate or less appropriate models. 

During the first stage, MAE and MSE are calculated for each model. The Gust 

model has the highest MAE and MSE, while the Reduced and All Variables models have 

the lowest errors (Tables 4.1 and 4.2). Therefore, these two models are the most suitable 

for assessing the importance of new variables and they will be used in the subsequent 

analyses. This finding agrees with Nateghi et al. (2014). Including a larger number of 

predictors and/or more power system predictors typically increases model accuracy.  
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Variable Reduced All 

Variable

s 

Public Gust+ 

Duration 

Gust Mean 

only 

Mean 

MAE 

Mean 

SD 

Tree only 0.747 0.755 0.773 0.830 0.849 1.605 0.791 0.014 

Tree and precip 
 

0.754 0.762 0.780 0.812 0.824 1.612 0.787 0.017 

Precip only 0.757 0.762 0.781 0.827 0.906 1.606 0.806 0.021 

Model mean 0.753 0.760 0.778 0.823 0.860 1.608 0.795 0.017 

 

Table 4.1. Mean Absolute Error (MAE) for the 5 models that were evaluated: Reduced, 

All Variables, Public, Gust + Duration, and Gust. Mean only (no model) is shown for 

comparison only and it is not included in calculation of mean MAE and mean SD. 

 

Variable All 

Variable

s 

Reduced Public Gust+ 

Duration 

Gust Mean 

only 

Mean 

MSE 

Mean 

SD 

Tree only 4.084 4.114 4.293 5.002 5.307 14.56

1 

4.560 0.491 

Tree and precip 
t 

4.447 4.414 4.646 5.281 5.474 15.29

3 

4.852 0.602 

Precip only 4.391 4.491 4.646 5.569 6.436 15.09

3 

5.107 0.684 

Model mean 4.307 4.340 4.528 5.284 5.739 14.98

2 

4.840 0.592 

 

Table 4.2. Mean Square Error (MSE) for the 5 models that were evaluated: Reduced, All 

Variables, Public, Gust + Duration, and Gust. Mean only (no model) is shown for 

comparison only and it is not included in calculation of mean MSE and mean SD. 

 

The next stage involves looking at the change in model error with the new 

variables added. The percent change in MAE and MSE is calculated for the Reduced and 

All Variables models for each of the three combinations of new variables (Table 4.3). 

The Reduced model shows the greatest improvement with the addition of the new 

variables. The addition of tree species or both tree species and 48-hour precipitation 

variables has the greatest influence in terms of reducing model error. Adding the tree 

species and precipitation variables to the All Variables model has little influence on 

model performance. This is likely because the All Variables model already has a large 
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number of predictors, some of which may serve as proxies for the new variables being 

added. The Reduced model has significantly fewer predictors and therefore benefits the 

most from the addition of new variables.   

 

Model MAE 

(new) 

MAE 

(old) 

MAE 

(%Δ) 

MSE 

(new) 

MSE 

(old) 

MSE 

(%Δ) 

Reduced, combined 0.754 0.762 -1.050 4.414 4.764 -7.347 

Reduced, tree only 0.747 0.754 -0.928 4.114 4.406 -6.627 

Reduced, precip only 0.757 0.760 -0.395 4.491 4.703 -4.508 

Mean 0.753 0.759 -0.791 4.340 4.624 -6.161 

All Variables, combined 0.762 0.763 -0.131 4.447 4.452 -0.112 

All Variables, tree only 0.755 0.757 -0.264 4.084 4.089 -0.122 

All Variables, precip only 0.762 0.761  0.131 4.391 4.389 0.046 

Mean 0.760 0.760 -0.088 4.307 4.310 -0.063 

 

Table 4.3. Change in error (%, new MAE-old MAE). A negative (-) % change in error 

indicates a decrease in error with the new variables added. 

 

Error graphs can also give a little more perspective to changes in error among the 

models (Figure 4.1). Both the All Variables and the Public models show little change in 

error with the addition of the new tree species and 48-hour precipitation variables. These 

two models already contain many variables and so the addition of new variables has 

little influence. The addition of the new variables in the other three models (Gust, 

Gust+Duration, and Reduced) decreases error, with the most significant reduction being 

in the Gust only model. It is also apparent when looking at the MAE graphs that the 

Reduced model has a comparable amount of error to that of the All Variables or Public 

models. The MSE graphs also show that, among those three models, the Reduced model 
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experiences the largest decrease in error with the addition of the new variables. These 

observations confirm what was stated previously and provide further evidence for using 

the Reduced model for this analysis. 

 

 
Figure 4.1. MAE/MSE error graphs for all model versions. 
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Figure 4.1 Continued. 

 

4.2 Outage prediction performance 

One way to quantify outage prediction performance is to show the spatial pattern 

of differences in the absolute error (AE). AE is generally preferred over squared error 

(SE) because it is less influenced by outliers (Chai and Draxler 2014; Guikema and 

Quiring 2012). Displaying the error in this way can aid in identifying spatial patterns 

where model performance may be particularly high or low. This was done previously by 

Quiring et al. (2011) to evaluate the influence of new variables on a prior version of the 

HOPM. Here the polarized differences of AE are calculated by grid cell for the two 

model candidates, the Reduced and the All Variables models (Figure 4.2). The polarized 

differences in AE are generated by subtracting the AE for the respective model (without 

the new variables added) from the same model (with the new variables added). 

Differences that are greater than 1.5 standard deviations below the mean are shown in 

green and indicate that the model improved with the addition of the new variables. 
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Differences greater than 1.5 standard deviations above the mean are shown in brown and 

indicate that the model performance declined with the addition of the new variables 

(Figure 4.2). 

 

 

Figure 4.2. Polarized differences in AE (Model 1 – Model 2) for the Reduced and All 

Variables models. Model 1 = without the new variables added; Model 2 = with the new 

variables added. Differences > 1.5 SD below the mean (green) indicate significant model 

improvement, while differences > 1.5 SD above the mean (brown) indicate a significant 

decline in performance. 

 

The polarized differences of AE show that the Reduced model, with tree species 

and 48-hour precipitation variables added, performs better (by 93 grid cells) than the 

original Reduced model (without the added variables), particularly in urban areas. The 
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All Variables model was more accurate in 223 grid cells, and less accurate in 220 grid 

cells, with the addition of the new variables. Therefore, overall there was not a consistent 

pattern of model improvement for the All Variables model. 

Hot spot maps can provide an even clearer depiction of model performance by 

identifying statistically significant clusters of positive (red) and negative (blue) AE 

differences using the Getis-Ord Gi statistic (Figure 4.3). These maps highlight the spatial 

patterns in Figure 4.2, with the Reduced model showing many more areas of 

improvement (blue) spatially than the All Variables model, which actually shows one 

large area of decline in accuracy (red). Again, the areas of greatest change in accuracy 

tend to be centered on the major cities.  

Another way to assess model performance is to divide the grid cells into bins 

based on the number of outages and then calculate the MAE for each bin. This method 

was used previously by Han et al. (2009a) to compare the accuracy of two prior versions 

of the HOPM. Four outage groups were determined using the Natural Breaks (Jenks) 

classification scheme in ArcGIS. The change in MAE for each of these groups again 

shows that the Reduced model experiences a larger decrease in error with the addition of 

the new variables than the All Variables model (Table 4.4). In fact, the All Variables 

model actually experiences a slight increase in average MAE with the addition of the 

new variables. The MAE for both models is consistently lower with fewer outages, 

which is to be expected due to the larger sample size. The Reduced model experiences 

its greatest improvement in the grid cells with the highest number of outages (> 21), 
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while the All Variables model shows more improvement, though very minimal, in grid 

cells with lower numbers of outages. 

 

 

Figure 4.3. Statistically significant clusters of positive (red) and negative (blue) 

polarized AE differences, calculated using the Getis-Ord Gi statistic. More negative AE 

differences (blue) indicate higher model performance, while more positive AE 

differences (red) indicate lower model performance. 
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  Reduced,  combined  All Variables, combined  

Actual 

outages  

Num 

cells 

MAE 

(new) 

MAE 

(old) 

MAE 

(Δ) 

MAE 

(new) 

MAE 

(old) 

MAE 

(Δ) 

0 ~ 2 5805 0.261 0.272 -0.011 0.258 0.259 -0.001 

2 ~ 8 718 1.234 1.321 -0.087 1.202 1.210 -0.008 

8 ~ 21 134 3.162 3.291 -0.129 3.139 3.119 0.020 

> 21 24 8.187 8.809 -0.622 7.739 7.686 0.053 

Mean - 3.211 3.423 -0.212 3.085 3.069 0.016 

 

Table 4.4. Change in MAE (MAEnew – MAEold) by outage group (actual outages are for 

all four storms combined). 

 

4.3 Model selection 

In summary, of the five models, the Reduced model is the one that shows the 

greatest improvement with the addition of the new variables. As indicated by Figures 4.2 

and 4.3 above, there is a spatial pattern to where the Reduced model performs better with 

the addition of the new variables. This may help identify predictors in the All Variables 

model that are highly correlated with the new variables. In addition to showing 

improvement in model accuracy, the Reduced model is also the version of the HOPM 

used by Nateghi et al. (2014), and therefore it will serve as a good basis for comparison 

in this thesis.  
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CHAPTER V  

EVALUATION OF TREE SPECIES 

 

5.1 Error and outage prediction performance 

The addition of tree species results in the lowest MAE and MSE for the Reduced 

model (Tables 4.1 and 4.2). This suggests that tree species variables are useful for 

improving model performance. Error decreases significantly when tree species is added 

to the model (Table 4.3). Tree species and precipitation combined result in the most 

error reduction, followed by tree species alone, and lastly 48-hour precipitation. 

Another method for assessing the influence of the new predictors is to calculate 

the polarized difference in AE by service area grid cell, as was done for the Reduced and 

All Variables models in Chapter IV. The polarized difference is computed by simply 

subtracting the AE of the original model (without the added variables) from the AE of 

the new model (with the added variables). Thus, a negative (-) polarized difference value 

would indicate an improvement in AE for that grid cell with the addition of the new 

variables, while a positive difference value would indicate a decline in AE. The spatial 

pattern for the polarized difference in AE is fairly similar for both tree species and 48-

hour precipitation (Figure 5.1), with greater differences in error generally occurring near 

urban areas.  
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Figure 5.1. Polarized differences in AE (Model 1 – Model 2) for the Reduced model 

with tree species and precipitation added. Model 1 = without the new variables added; 

Model 2 = with the new variables added. Differences > 1.5 SD below the mean (green) 

indicate significant model improvement, while differences > 1.5 SD above the mean 

(brown) indicate a significant decline in performance. 

 

To facilitate comparison between the two sets of variables, the polarized 

difference data are summarized in Table 5.1. The number of grid cells showing an 

improvement (higher) or a decline (lower) in model performance are grouped by three 

ranges of SD for each of the three variable sets. The percent differences between the 

number of improving and declining grid cells for each SD range are also shown. A 

positive percent difference value indicates that the number of improving grid cells are 

greater than the number of declining grid cells, while a negative value signifies a greater 



 

74 

 

number of declining grid cells. The results indicate that the addition of tree species and 

48-hour precipitation both result in similar improvements to model performance, with 

48-hour precipitation resulting in the greatest overall improvement in model 

performance, particularly at lower SD’s. This trend then suggests that tree species may 

play an important role in grid cells showing average-to-high levels of improvement, 

while 48-hour precipitation plays a fairly important role across all grid cells. 

 

Model +/-0.5 to +/-1.5 SD +/-1.5 SD to +/-2.5 SD > +/-2.5 SD Average 

Tree only 7 29 37 24 

Precip only 13 25 40 26 

Combined -1 42 44 28 

Average 6 33 41 26 

 

Table 5.1. Percent differences in model performance, based on polarized differences in 

AE. Values indicate the percent difference between improving (-SD) and declining 

(+SD) grid cells for each range of SD’s. 

 

 “Hot spot” maps are also generated in ArcGIS using the Getis-Ord Gi statistic, 

which uses spatial autocorrelation to identify statistically significant high and low 

clusters in the data (Figure 5.2). In this case, areas in blue are where the model performs 

better (lower difference in AE), while the areas in red are where the model performs 

worse (higher difference in AE). The addition of tree species variables seems to result in 

multiple areas of model improvement scattered throughout the service area, with the 

most improvement occurring in urban areas. There are also a few areas where the new 

model performs worse, most notably in the north-central portion of the service area on 
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the outskirts of a large city. Overall, tree species seems to result in model improvement 

over a broad spatial area, covering multiple regions of the service area, while 48-hour 

precipitation focuses almost strictly on the major cities. 

 

 

Figure 5.2. Statistically significant clusters of positive (red) and negative (blue) 

polarized AE differences (with tree species and with precipitation added), calculated 

using the Getis-Ord Gi statistic. More negative AE differences (blue) indicate higher 

model performance, while more positive AE differences (red) indicate lower model 

performance. The black outline denotes major urban areas. 

 

Lastly, MAE for tree species is calculated for four outage groups (Table 5.2). 

These are the same groupings used in Chapter IV and are determined using the same 

methodology. A negative change in MAE signifies an improvement in model 
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performance, while a positive change indicates a decline in model performance. The 

change in MAE with the addition of both variable sets becomes more negative with an 

increase in the number of outages (and a resulting smaller sample size of grid cells), 

which suggests that tree species and precipitation are more accurate predictors for grid 

cells having larger numbers of outages. For the majority of the grid cells, tree species 

appears to perform slightly better; although, it does seem that 48-hour precipitation may 

be a better predictor for grid cells with higher numbers of outages.  

 

  Tree species  48-hour precipitation  

Actual 

outages  

Num 

cells 

MAE 

(new) 

MAE 

(old) 

MAE 

(Δ) 

MAE 

(new) 

MAE 

(old) 

MAE 

(Δ) 

0 ~ 2 5805 0.264 0.274 -0.010 0.265 0.272 -0.007 

2 ~ 8 718 1.270 1.337 -0.067 1.279 1.33 -0.051 

8 ~ 21 134 3.245 3.333 -0.088 3.331 3.429 -0.098 

> 21 24 7.648 7.782 -0.134 7.917 8.519 -0.602 

Mean - 3.107 3.182 -0.075 3.198 3.388 -0.190 

 

Table 5.2. Change in MAE by outage group (actual outages are for all four storms 

combined). 

 

In summary, the addition of tree species results in general model improvement, 

while improvement from 48-hour precipitation is almost strictly limited to major urban 

areas (where in some cases it may outperform tree species). Overall, tree species may 

have a slightly greater effect on improving model performance than 48-hour 

precipitation, but combined is definitely where they hold the greatest predictive power.  
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5.2 Variable importance 

To assess the influence of each individual covariate within the tree species set, 

variable importance (the increase in node purity) is calculated using the random forest 

function in R. As in Quiring et al. (2011), variable importance values are normalized, 

with the most important covariate having a value of 100. 

The importance graph in Figure 5.3 shows the variable importance, ranked by 

increase in node purity, for all covariates in the Reduced model. The number of 

customers and the tree trimming factor rank the highest, followed by wind duration and 

speed, soil moisture, and 48-hour precipitation. The tree species covariates rank lowest 

on this scale of variable importance. However, as is evidenced in the previous section, 

this alone does not mean they are insignificant predictors, and combined they can result 

in considerable model improvement. 
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Figure 5.3. Variable importance graph for the Reduced model. 

 

Within the tree species covariates, several clusters can be identified by grouping 

covariates with similar normalized importance scores (Table 5.3). This results in four 

groups total for the tree species covariates. The first group, showing the most 

importance, includes sweetgum, other, and loblolly pine. The three 48-hour precipitation 

covariates are also assigned to this same group. The second group consists of water oak 

and chestnut oak, followed by the third group containing laurel oak, longleaf pine, and 

white oak; and the fourth group with flowering dogwood, Virginia pine, and slash pine. 

Each of the tree species covariates will be discussed in more detail in the next section. 
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Predictor  Normalized 

importance 

Normalized importance 

(rounded) 

Mean 48-hr precip 13.78 14 

Min 48-hr precip 13.74 14 

Max 48-hr precip 12.74 13 

Sweetgum 11.86 12 

Other 10.92 11 

Loblolly pine 9.89 10 

Water oak 8.47 8 

Chestnut oak 8.44 8 

Laurel oak 3.97 4 

Longleaf pine 3.65 4 

White oak 3.11 3 

Flowering dogwood 2.26 2 

Virginia pine 1.93 2 

Slash pine 1.88 2 

 

Table 5.3. Variable importance, normalized (only the added variables are shown) and 

grouped by clusters. 

 

5.3 Partial dependence 

The generation of partial dependence plots can give a much better idea of a 

covariate’s relationship with outages than variable importance alone. Instead of 

assigning a numerical ranking, partial dependence associates the percent coverage of a 

tree species with a certain number of outages. This pairing of prevalence with number of 

outages can give meaningful insights into the role a certain species may play in outage 

prediction. It can also be helpful in determining which species may result in higher 

numbers of outages. 
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5.3.1 Group one (Highest importance) 

Of all 11 tree species classes, sweetgum appears to have one of the most 

significant relationships with power outages. As seen in the partial dependence plot 

(Figure 5.4), a constant, nearly linear, increase in outages persists until about 70% 

prevalence. This nearly linear relationship with outages is unique to sweetgum. After 

about 70% prevalence, sweetgum shows very little association with outages. A lesser 

relationship with outages also occurs between about 50 and 60% prevalence. This 

general trend of a decline in outage relationship with increasing prevalence indicates 

that, in grid cells covered by mostly sweetgum, variables other than sweetgum are 

affecting the number of outages. This also seems to support the finding from Duryea et 

al. (2007) that sweetgum is one of the most wind-resistant species. In areas where 

sweetgum is most prevalent (>70%), outages may be less likely to happen, and if they do 

occur, it will likely be due to some other variable.  
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Figure 5.4. Percentage of sweetgum (per grid cell) vs. number of outages. 

 

The Other covariate is associated with areas containing fewer trees, such as 

farmland, water, or urban areas. The trend of the Other covariate partial dependence plot 

(Figure 5.5) is drastically different from sweetgum and many of the other tree species. 

At lower levels of prevalence, the Other covariate appears to have a negative association 

with outages, indicating that lesser amounts of the Other covariate in a grid cell may 

mean fewer outages. At higher levels of prevalence, however, and especially above 

about 80% prevalence, the Other covariate has a very positive association with outages, 

indicating that higher amounts of the Other covariate probably will lead to greater 

numbers of outages. This makes sense, especially if the Other covariate is used as a 

proxy for urban or more developed regions. 
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Figure 5.5. Percentage of the Other covariate (per grid cell) vs. number of outages. 

 

Loblolly pine shows a trend very similar to the Other covariate, with a negative 

relationship at a lower percent prevalence (<10%) and a positive relationship at higher 

levels of percent prevalence (>80%) (Figure 5.6). This pattern indicates that a higher 

proportion of loblolly pine may lead to more outages, while the absence of loblolly pine 

may result in fewer outages. This finding also agrees with Duryea et al. (2007) and other 

studies that loblolly pine may be a less wind-resistant species, having about a 60% 

survival rate (Duryea et al. 2007). 
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Figure 5.6. Percentage of loblolly pine (per grid cell) vs. number of outages. 

 

5.3.2 Group two (Medium-high importance) 

Unlike the previously mentioned tree species classes, changing the proportion of 

water oak does not have a major impact on the number of outages (Figure 5.7). This 

could be due to its lack of coverage throughout the service area. At very low levels of 

percent prevalence, water oak may contribute to lower numbers of outages or have very 

little relationship with outages at all. However, between about 5% and 30% coverage, 

water oak does seem to have a positive relationship with the number of outages. Above 

30% prevalence, there seems to be little or no relationship. It is difficult to identify the 

exact association that water oak may have with outages, and a larger sample size of grid 

cells containing water oak may aid in identifying the nature of the relationship. 
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Figure 5.7. Percentage of water oak (per grid cell) vs. number of outages. 

 

Chestnut oak has a strong positive relationship with outages up to about 15% 

prevalence, after which there is little or no relationship with the number of outages. The 

shape of this curve is most similar to that of sweetgum. It suggests that as the prevalence 

of chestnut oak increases, the number of outages remain relatively constant. This agrees 

with Duryea et al. (2007), which ranks chestnut oak, or swamp chestnut, as having a 

medium-high wind resistance, just below that of sweetgum. 
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Figure 5.8. Percentage of chestnut oak (per grid cell) vs. number of outages. 

 

5.3.3 Group three (Medium-low importance) 

Unlike most of the tree species in groups one and two, the majority of those in 

group three show little or no relationship with outages regardless of their prevalence. 

This appears to be the case for both laurel oak and longleaf pine. Laurel oak does show a 

slight negative relationship with outages at its lowest levels of percent prevalence and a 

slight positive relationship with outages between 20 and 30 percent prevalence (Figure 

5.9). The plot for longleaf pine (Figure 5.10) shows a small positive relationship with 

outages at lower percentages, but again this is negligible compared with that of the other 

tree species. As with water oak, a larger sample size of grid cells containing these two 

tree species may assist in identifying stronger relationships. 
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Figure 5.9. Percentage of laurel oak (per grid cell) vs. number of outages. 

 

 

Figure 5.10. Percentage of longleaf pine (per grid cell) vs. number of outages. 
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White oak has a strong positive relationship with outages up until about 50% 

prevalence (Figure 5.11). Unlike most other tree species, white oak shows an apparent 

peak in outages between 40 and 50 percent prevalence. This indicates that a higher 

presence of white oak may, to some degree, result in a higher number of outages. Above 

50% prevalence, white oak shows little or no relationship with the number of outages, 

which suggests that white oak may prevent the number of outages from increasing in 

grid cells where it is more widespread. The results from Duryea et al. (2007) and other 

related studies also seem to be mixed whether white oak is a wind-resistant species. 

Thus, white oak likely falls somewhere in the middle, between sweetgum and loblolly 

pine, in terms of wind resistance and its relationship with outages. 

 

 

Figure 5.11. Percentage of white oak (per grid cell) vs. number of outages. 
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5.3.4 Group four (Lowest importance) 

Flowering dogwood ranks as one of the least important covariates. As the 

prevalence of flowering dogwood increases up to 40%, there is a slight increase in the 

number of outages (Figure 5.12). After about 50% prevalence, the partial dependence 

plot levels off. Similar patterns were observed with sweetgum, chestnut oak, and white 

oak, all of which showed moderate-to-high levels of wind resistance (Duryea et al. 

2007).  

 

 

Figure 5.12. Percentage of flowering dogwood (per grid cell) vs. number of outages. 

 

The partial dependence plot for Virginia pine closely resembles that of white oak. 

Two areas with higher slopes are visible below 30% prevalence, with little to no 
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relationship with outages thereafter (Figure 5.13). This pattern suggests that other 

covariates may be contributing to the number of outages in grid cells where Virginia 

pine is most prevalent. 

 

 

Figure 5.13. Percentage of Virginia pine (per grid cell) vs. number of outages. 

 

Similar to laurel oak and longleaf pine, slash pine shows little or no relationship 

with outages across all levels of prevalence (Figure 5.14). This could again be due to a 

lack of grid cells containing slash pine.  
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Figure 5.14. Percentage of slash pine (per grid cell) vs. number of outages. 

 

5.3.5 Discussion 

According to the variable importance and partial dependence results, tree species 

covariates contributing most significantly to the model include sweetgum, other, and 

loblolly pine. Chestnut oak, white oak, and Virginia pine also show strong relationships 

to outages in the partial dependence plots and may be useful predictors. Also, there 

appears to be a relatively strong spatial relationship between tree species and outages, 

with species in central and northern portions of the service area (i.e., sweetgum, loblolly 

pine, chestnut oak, and white oak) showing a significantly stronger relationship with 

outages than species in southern portions of the service area (i.e., laurel oak, longleaf 

pine, and slash pine) (Figure 5.15). Many other confounding factors may also contribute 
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to such a relationship, including proximity to coastline, precipitation, and storm track 

and intensity.  

 

 

Figure 5.15. Outages and tree species. Species with a stronger relationship to outages 

are outlined in red. Species with little to no outage relationship are outlined in yellow. 

 

To aid in further identification of relationships between individual tree species 

covariates and outages, a comparison between percent prevalence and outage 

relationship is done for each tree species (Table 5.4). A high negative relationship with 

Majority Tree Species

loblolly pine
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longleaf pine
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water oak
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outages indicates that the species, at that level of prevalence, results in a decrease in 

outages. A high positive relationship shows that the species, at that level of prevalence, 

may lead to an increase in outages. Species showing either a negative relationship or no 

relationship at greater than 50% prevalence and a positive relationship below 50% 

prevalence are highlighted in light blue. They include sweetgum, chestnut oak, white 

oak, and flowering dogwood. These species do not contribute to an increase in outages at 

high levels of prevalence, which may be indicative of a higher wind resistance. At lower 

levels of prevalence, they do show a positive relationship with outages, but this is likely 

due to the influence of other covariates or other outside factors. Species showing a 

positive relationship with outages at greater than 50% prevalence and a negative 

relationship below 50% prevalence are highlighted in red. These species include the 

Other covariate, representative of farmland and developed areas, and loblolly pine. 

These are covariates that may contribute to an increase in outages at higher levels of 

prevalence. These findings seem to agree with those of past studies, including Duryea et 

al. (2007). 

 

 

 

 

 

 

 



 

93 

 

Predictor Highest (-) 

relationship, 

↓outages 

Little/no 

relationship 

Highest (+) 

relationship, 

↑outages 

Sig (Δ outages) 

Sweetgum - > 70% 0-50% ~0.4 

Other 0-10% 10-30% 80-100% ~0.5 

Loblolly pine 0-10% 10-40% 50-90% ~0.2 

Water oak 0-5% 40-60% 5-30% ~0.1 

Chestnut oak - 50-80% 0-10% ~0.3 

Laurel oak 0-3% 40-70% - ~0.0 

Longleaf pine - 3-90% 0-3% ~0.0 

White oak - 50-60% 0-30%, 40-50% ~0.3 

Flowering dogwood - 50-60% 0-20%, 40-50% ~0.1 

Virginia pine - 30-60% 0-30% ~0.3 

Slash pine 0-3% 3-80% - ~0.0 

 

Table 5.4. Percent prevalence and outage relationship comparison. A higher (-) 

relationship corresponds to a decrease in outages, while a higher (+) relationship 

signifies an increase in outages. Red species covariates may be associated with more 

outages, blue species covariates may be related to fewer outages, and gray species 

covariates have little or no influence on outages. 

 

5.4 Local variable importance 

The local variable importance is calculated for each of the more significant tree 

species predictors (highlighted in Table 5.4). LVI may provide more details about the 

spatial distribution of importance for the selected covariates. Scores are calculated for 

each grid cell by taking the mean importance of all four storms for the selected covariate 

and then dividing that value by the sum of the mean importance scores for all of the 

covariates. The result is a percentage importance value that indicates the importance, or 

contribution, of the covariate in relation to the other covariates in the model. A negative 

percent LVI value indicates a lack of importance for that grid cell and shows where the 

covariate may have resulted in a decrease in model improvement. A zero value indicates 
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little or no importance, while an increasingly positive value specifies that the covariate 

may be a reasonable predictor for that particular grid cell and result in some model 

improvement. 

In Figure 5.16 the percent LVI for each of the six tree species is displayed in 

terms of standard deviation from the mean. This classification should help identify areas 

of most significant importance. Of the six species, sweetgum and chestnut oak show the 

most cohesive clusters of significant importance. For sweetgum, an area of relatively 

high importance is concentrated within a major urban area in the southwest portion of 

the service area. For chestnut oak, several significant areas of high importance are 

visible. The main center is located in the southwest portion of the service area and 

includes a major city; another is situated just to the northeast of that region, and yet 

another is focused along a band extending through the center of the service area.  

The four other tree species show less significant areas of importance. However, 

the white oak and the Other covariates both appear to have an area of higher importance 

extending to the south from the northernmost urban area. Loblolly pine and flowering 

dogwood also show some areas of slightly higher importance on the northwestern 

outskirts of a major urban area in the southwest corner of the service area. 
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Figure 5.16. Local variable importance (LVI) for selected tree species. LVI is calculated 

as the % LVI of a covariate out of the total LVI for all covariates (old and new) in the 

model. Major urban areas are outlined in black. 
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Figure 5.16 Continued. 

 

To better illustrate the relationship of tree species importance with the 

importance of the other covariates, maps are generated that compare the highest percent 

LVI values for tree species with the percent LVI values for all new covariates (Figure 

5.17a) and for all covariates (old and new) combined (Figure 5.17b). In both cases, only 

covariates with the highest percent LVI value are shown for each grid cell. Chestnut oak, 

loblolly pine, sweetgum, and the Other covariate all seem to have the most widespread 

coverage of higher LVI values (Figure 5.17b), and this trend agrees with the partial 

dependence and LVI plots above. Also, the majority of species with the highest 

importance tend to be concentrated in the southwest corner of the service area, near the 
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coast (Figure 5.17a). The only major exceptions to this are chestnut oak and the Other 

covariate. 

 

 

Figure 5.17. a. Tree species with the highest % LVI (out of all new covariates) by grid 

cell. b. New covariates with the highest % LVI out of all covariates (old and new). 

Major urban areas are outline in black. 

 

In summary, chestnut oak, loblolly pine, and sweetgum clearly show more 

significant clusters of higher importance, which indicates that these species may have a 

significant effect on outages in these areas. For sweetgum, the areas of highest 

importance appear to be urban regions, while for chestnut oak they are more widespread, 

affecting urban and rural regions almost equally. The presence of chestnut oak may also 
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be a significant factor in outages near the coast. The lack of clustering of the other 

covariates does not necessarily indicate these covariates are of lesser importance in the 

model, but that their importance and contribution to the model may be more uniform 

across the service area. Also, tree species in general appears to have a significantly 

higher importance in the southwest corner of the service area, where it is also a more 

important predictor of outages than almost all of the other covariates (old and new). 
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CHAPTER VI  

EVALUATION OF 48-HOUR PRECIPITATION 

 

6.1 Error and outage prediction performance 

The addition of 48-hour precipitation to the Reduced model results in some 

improvement, but only about half as much as with tree species or tree species and 

precipitation combined (Tables 4.1 and 4.2). This suggests that 48-hour precipitation 

may play a role in improving model performance, particularly when accompanied by 

tree species. 

An assessment of the percent differences between the higher and lower 

performing grid cells shows strong positive values for 48-hour precipitation across all 

SD’s (Table 5.1). Positive percent difference values indicate that the model is improving 

with the addition of the new variable. The results also show that 48-hour precipitation 

contributes to the greatest overall improvement in model performance, particularly at 

lower SD’s, or in grid cells showing lower levels of improvement. This suggests that the 

addition of 48-hour precipitation may serve to fill in some of the gaps and improve 

accuracy in grid cells where tree species does not. 

The “hot spot” map in Figure 5.2 identifies clusters where the model performs 

better (lower polarized difference in AE) or worse (higher polarized difference in AE) 

with 48-hour precipitation added. Four main areas of improvement are apparent, 
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primarily occurring in or near major cities. This trend makes sense as the vast majority 

of power system equipment is located in areas with more customers, or higher 

population densities, and as a result greater improvements are likely to occur within 

those grid cells. However, the addition of 48-hour precipitation also seems to result in 

more improvement in larger cities than the addition of tree species. This suggests that a 

higher number of customers may not be the only factor influencing improvement, but 

that 48-hour precipitation may actually play a significant role in outage prediction for the 

major cities within the service area. 

In addition to the areas of improvement, one rather large area of declining 

performance is also apparent on the western side of a major city in the southwest corner 

of the service area. A variety of factors could contribute to such a decline, including the 

relatively small sample of hurricanes used to train the model. Inclusion of more storms, 

especially ones that track closest to the regions of highest error, may help to reduce or 

even eliminate areas such as this in the future. 

Classification of the change in MAE by outage group (Table 5.2) confirms many 

of the relationships found in Figure 5.2. In areas with a greater number of outages, the 

addition of 48-hour precipitation tends to result in the greatest model improvement; 

these would typically be areas with a larger number of customers, or major cities. 

However, even in grid cells with lower numbers of outages, 48-hour precipitation still 

contributes significantly to model improvement, falling just behind tree species in terms 

of negative change in MAE. 
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In summary, the addition of 48-hour precipitation results in less overall model 

improvement than tree species. However, it does perform significantly better than tree 

species in major urban areas, and this may serve to fill in some of the gaps that tree 

species may have missed. A greater sample set of storms for the training dataset will also 

likely improve performance of 48-hour precipitation in the model. 

 

6.2 Variable importance 

The variable importance graph (Figure 5.3) below shows that all three 48-hour 

precipitation covariates rank higher than the tree species covariates, but lower than all of 

the original covariates. Mean and minimum 48-hour precipitation have nearly the same 

importance scores, while maximum 48-hour precipitation seems to play a slightly less 

significant role in outage prediction for the model. The 48-hour precipitation covariates 

also fall in close proximity to the two soil moisture covariates, indicating that some 

relationship between 48-hour precipitation and soil moisture probably exists. As noted in 

the previous section, 48-hour precipitation still results in significant model improvement, 

even with soil moisture present. 

The normalized importance scores in Table 6.1 show the similarity of the mean 

and minimum 48-hour precipitation covariates, with the maximum 48-hour precipitation 

covariate falling well below the other two. This suggests that when adding 48-hour 

precipitation to future versions of the HOPM, only one 48-hour precipitation covariate 
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would need to be included, with the mean or minimum being preferred. Also, the two 

soil moisture covariates are clearly in their own group. 

 

Predictor  Normalized 

importance 

Normalized importance 

(rounded) 

Soil moisture 3 19.02 19 

Soil moisture 1 18.16 18 

Mean 48-hr precip 13.78 14 

Min 48-hr precip 13.74 14 

Max 48-hr precip 12.74 13 

Sweetgum 11.86 12 

Other 10.92 11 

Loblolly pine 9.89 10 

 

Table 6.1. Variable importance, normalized and grouped by clusters. 

 

6.3 Partial dependence 

6.3.1 Comparison 

All three 48-hour precipitation covariates have a significant positive relationship 

with outages below ~7 inches (Figures 6.1, 6.2, and 6.3). This trend shows that low to 

moderate amounts of precipitation falling over the course of a hurricane in the service 

area contribute the most to outages. Above ~7 inches of rain, however, the precipitation 

does not appear to be strongly related to outages. Thus, there appears to be somewhat of 

an upper limit on the influence of precipitation. Minimum 48-hour precipitation seems to 

result in the most significant change in outages (Figure 6.2), followed by mean 48-hour 

precipitation (Figure 6.1), with maximum 48-hour precipitation resulting in the least 
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amount of change (Figure 6.3). Minimum 48-hour precipitation has the steepest curve, 

which is indicative of a strong relationship with outages. 

 

  

Figure 6.1. Mean 48-hour precipitation (by grid cell) vs. number of outages. 
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Figure 6.2. Minimum 48-hour precipitation (by grid cell) vs. number of outages. 

 

 

Figure 6.3. Maximum 48-hour precipitation (by grid cell) vs. number of outages. 
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6.3.2 Discussion 

Based on the above analysis, precipitation can significantly increase outages, but 

only up to ~7 inches, after which there is little effect. As the three precipitation 

covariates are strongly related, only one would need to be used in the HOPM. This 

would probably be either the mean or the minimum, as they both rank highest in variable 

importance for the model. The mean may be the best representative of 48-hour 

precipitation and the ideal covariate to include in the model, especially since it ranks 

highest of all the 48-hour precipitation covariates in importance. 

 

6.4 Local variable importance 

Local variable importance (LVI) may provide insights regarding specific 

locations in the service area where 48-hour precipitation has the greatest impact on 

outage prediction. It is calculated for each of the three 48-hour precipitation covariates 

using the same method described previously for tree species. In Figure 6.4, percent LVI 

is displayed in terms of standard deviation from the mean. This classification will 

hopefully serve to highlight areas of greatest and least importance. A positive percent 

LVI value indicates that the covariate has greater importance in that particular grid cell, 

while a negative percent LVI value shows a lack of importance. A value close to zero is 

indicative of little or no importance. Covariates with higher LVI values in a grid cell 

may be a significant predictors of outages for that grid cell.  
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Of the three 48-hour precipitation covariates, the minimum 48-hour precipitation 

covariate appears to show a more cohesive spatial pattern of importance (Figure 6.4). 

Areas of greatest importance for this covariate tend to occur within major urban areas 

and over the northern portion of the service area. Mean and maximum 48-hour 

precipitation both show a similar pattern, though not as pronounced and with fewer 

significant clusters in the northern portion of the service area. 
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Figure 6.4. Local variable importance (LVI) for 48-hour precipitation. LVI is calculated 

as the % LVI of a covariate out of the total LVI for all covariates (old and new) in the 

model. Major urban areas are outlined in black. 
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To further examine the relationship of 48-hour precipitation importance with the 

importance of the other covariates, maps displaying 48-hour precipitation with the 

highest percent LVI values out of all new covariates (Figure 6.5a) and the highest 

percent LVI values out of all covariates (Figure 6.5b) are produced. A clear pattern is 

evident where the minimum 48-hour precipitation covariate holds greater importance 

over northeastern sections of the service area, while the maximum 48-hour precipitation 

covariate seems to have more influence in central portions. Importance for mean 48-hour 

precipitation appears to be dispersed fairly equally throughout the service area. All 

precipitation covariates show the least importance in the far southwest corner of the 

service area, which is also where tree species tends to have the greatest influence on 

outage prediction. 

In summary, 48-hour precipitation may be a better predictor of outages in or near 

major cities as well as in central and northern portions of the service area. Also, the 

minimum 48-hour precipitation may have a greater influence, and be a better predictor 

of outages, over the northern tier of the service area. 48-hour precipitation tends to have 

less of an impact on outage prediction in the southwest corner of the service area, which 

is where tree species holds the highest importance for the model. 
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Figure 6.5. a. 48-hour precipitation with the highest % LVI (out of all new covariates) 

by grid cell. b. New covariates with the highest % LVI out of all covariates (old and 

new). Major urban areas are outline in black. 
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CHAPTER VII  

CONCLUSION 

 

7.1 Summary 

This thesis has examined the importance of two new variables, tree species and 

storm-derived (48-hour) precipitation, on HOPM prediction of hurricane-induced power 

outages. In Objective 1, the new variables were added to several different versions of the 

HOPM. An optimal model was then selected for use in the analysis, which was the 

Reduced (six-variable) model used by Nateghi et al. (2014). With the new variables 

added, this model performed as well as the All Variables model. This may be useful in 

determining which version of the HOPM to use in the future. 

Objective 2 focused on tree species and assessed how adding new tree variables 

influenced model performance. Comparisons were made with and without tree species 

added to see its effect on the model. In general, tree species tended to improve the model 

more than 48-hour precipitation, especially in non-urban areas and in the southwest 

corner of the service area. To assess the impact of specific tree species on outages, 

partial dependence plots and maps of variable importance were also generated. Using 

these results, it was possible to determine how individual tree species influenced power 

outages. According to variable importance and partial dependence, sweetgum and non-

treed areas (Other) had the greatest overall impact on outages, while laurel oak, longleaf 

pine, and slash pine had the least impact. Species that had the greatest impact on outages 
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were typically more prevalent in central and northern portions of the service area, while 

species with little or no impact on outages were more prevalent near the coast in the 

southern portion of the study region. Certain tree species, such as sweetgum, chestnut 

oak, white oak, and flowering dogwood, typically have a higher wind-resistance and so 

there may be fewer outages in locations where these species are most common. Other 

tree species (i.e., loblolly pine) tend to have a lower wind-resistance and may result in 

more outages in locations where they are highly concentrated. 

Objective 3 examined how the total precipitation for the 48-hour period 

surrounding landfall (pre- and post-landfall) influenced outages. Unlike tree species, 48-

hour precipitation appeared to have a greater impact in urban areas, particularly in 

central and northern portions of the service area, and model improvements were almost 

exclusively limited to these locations. Based on the partial dependence plot, 48-hour 

precipitation was most strongly related to outages when rainfall was less than 7 inches. 

The slope of the relationship was relatively flat when there was more than 7 inches of 

rainfall which suggests that there is a threshold above which additional rainfall does not 

lead to additional outages. The results also showed that the mean or minimum 48-hour 

precipitation are better predictors of outages than the maximum 48-hour precipitation. 

 

7.2 Implications 

The prediction of power outages in advance of a land-falling hurricane has many 

benefits for utility companies, and potentially emergency managers and the general 
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public as well. Utility companies generally lack sufficient personnel to efficiently restore 

power after a major event such as a hurricane, and they often must call on other 

neighboring utility providers for assistance. Prior to doing so, the utility company 

requesting assistance must first estimate the number of personnel and the amount of 

equipment that may be required to restore power quickly and effectively. A delicate 

balance must be maintained, as requesting more assistance than is needed could result in 

unnecessary expenditures, while requesting too little assistance may result in longer 

power restoration times. Thus, an accurate power outage prediction model, along with a 

knowledge of the key drivers of outages, will be beneficial for utility planning prior to 

such storm events. This study has sought to meet both of those requirements and, along 

with an improved version of the HOPM, provide an analysis of how tree species and 

precipitation influence outages.  

First, the improved version of the HOPM developed from this thesis contains 

significantly fewer covariates than the All Variables model. This will benefit utility 

companies by reducing runtime, while providing more accurate outage predictions.  

Next, the variable importance and partial dependence plots helped to identify tree 

species which have more of an impact on outages. These species can then be included in 

future versions of the HOPM, thus reducing the number of tree species covariates 

needed to run the model while maintaining a high level of accuracy. Also, the 

identification of locations in the service area where a highly susceptible tree species is 

located may aid in pinpointing specific areas where further preventative action, such as 

additional tree trimming, may be needed. Likewise, if a location contains a tree species 
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that generally has greater wind resistance then less frequent tree trimming may be 

required. 

Lastly, an improved understanding of how storm-derived (48-hour) precipitation 

influences outages may be helpful for pre-storm planning and mitigation efforts. 

Increases in rainfall were associated with increases in outages. Therefore, additional 

crews may need to be dispatched to areas forecast to receive greater amounts of 

precipitation. It also appears that there are certain regions within the service area where 

storm-derived precipitation may be more of a factor than others. These locations are 

useful to know for assisting with preparedness and mitigation efforts.  

 

7.3 Future improvements and research 

As with any research study, there are a variety of alterations that could be made 

to improve both the methodology and the results. Most of the improvements mentioned 

below pertain to either the two input datasets or the methods used to extract these 

datasets. 

For tree species, a slightly different approach would be to generate a new 

covariate for each species along roads. It would be fairly easy to obtain a detailed road 

dataset for the service area, and then in ArcGIS create appropriate-sized buffers around 

each of the road centerlines. The tree species dataset could then be clipped to the buffers, 

so that only percent tree species near roads would be included for each grid cell. A 30-

meter resolution version of the tree species dataset is also available from FHTET, and 
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this would allow for even greater accuracy when clipping out the tree species. The 

premise behind this new predictor would be that distribution lines and poles are typically 

found near roads to facilitate access by power crews. Thus, the percent coverage of tree 

species near roads would likely be a better predictor of outages than the percent 

coverage across the entire grid cell. Also, the addition of more tree species covariates or 

the inclusion of other tree-related predictors (i.e., age, health, height, root structure, and 

DBH) may also serve to enhance model performance. 

For storm-derived precipitation, perhaps a less-biased and more spatially 

consistent dataset, such as PRISM (http://www.prism.oregonstate.edu), could be used 

instead of the NCEP Stage II/IV data. Though PRISM is only available on a daily basis, 

the quality of the data appears to be considerably improved over the NCEP data, with 

fewer gaps and interpolated regions, and daily data should still give a sufficiently 

accurate representation of total precipitation surrounding the time of landfall. The data 

are also available to order at an 800-meter resolution as opposed to a 4-kilometer 

resolution. PRISM data are available back to 1981, so the use of this dataset may also 

allow for the inclusion of more storms in the model. This would likely result in greater 

accuracy, not just for precipitation, but for all hurricane-related variables. 

Further model improvement may also result from the inclusion of data from 

neighboring states in the utility company service area. This will most likely produce a 

greater number of tree species covariates for analysis, in addition to adding more 

diversity to the other predictors in the model. 
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7.4 Conclusion 

The accurate and timely prediction of power outages prior to hurricane landfall 

can have a significant and far-reaching impact on utility companies as well as the 

general public. Tree species and storm-derived (48-hour) precipitation are both 

influential predictors of power outages within this utility company’s service area, and the 

addition of these variables to the HOPM can significantly improve model performance. 

Also, certain regions of the service area may be more susceptible to outages due to the 

influence of these two variables during a hurricane. 
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