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ABSTRACT

Regression Analysis is one of the most important tools of statistics which is widely

used in other scientific fields for projection and modeling of association between two

variables. Nowadays with modern computing techniques and super high performance

devices, regression analysis on multiple dimensions has become an important issue.

Our task is to address the issue of modeling with no assumption on the mean and

the variance structure and further with no assumption on the error distribution. In

other words, we focus on developing robust semiparametric and nonparamteric re-

gression problems. In modern genetic epidemiological association studies, it is often

important to investigate the relationships among the potential covariates related to

disease in case-control data, a study known as ”Secondary Analysis”. First we focus

to model the association between the potential covariates in univariate dimension

nonparametrically. Then we focus to model the association in mulivariate set up by

assuming a convenient and popular multivariate semiparametric model, known as

Single-Index Model. The secondary analysis of case-control studies is particularly

challenging due to multiple reasons (a) the case-control sample is not a random sam-

ple, (b) the logistic intercept is practically not identifiable and (c) misspecification

of error distribution leads to inconsistent results. For rare disease, controls (indi-

vidual free of disease) are typically used for valid estimation. However, numerous

publication are done to utilize the entire case-control sample (including the diseased

individual) to increase the efficiency. Previous work in this context has either speci-

fied a fully parametric distribution for regression errors or specified a homoscedastic

distribution for the regression errors or have assumed parametric forms on the re-

gression mean.
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In the first chapter we focus on to predict an univariate covariate Y by an-

other potential univariate covariate X neither by any parametric form on the mean

function nor by any distributional assumption on error, hence addressing potential

heteroscedasticity, a problem which has not been studied before. We develop a tilted

Kernel based estimator which is a first attempt to model the mean function non-

parametrically in secondary analysis. In the following chapters, we focus on i.i.d

samples to model both the mean and variance function for predicting Y by multiple

covariates X without assuming any form on the regression mean. In particular we

model Y by a single-index model m(XTθ), where θ is a single-index vector and m

is unspecified. We also model the variance function by another flexible single index

model. We develop a practical and readily applicable Bayesian methodology based

on penalized spline and Markov Chain Monte Carlo (MCMC) both in i.i.d set up

and in case-control set up. For efficient estimation, we model the error distribution

by a Dirichlet process mixture models of Normals (DPMM). In numerical examples,

we illustrate the finite sample performance of the posterior estimates for both i.i.d

and for case-control set up. For single-index set up, in i.i.d case only one existing

work based on local linear kernel method addresses modeling of the variance func-

tion. We found that our method based on DPMM vastly outperforms the other

existing method in terms of mean square efficiency and computation stability. We

develop the single-index modeling in secondary analysis to introduce flexible mean

and variance function modeling in case-control studies, a problem which has not

been studies before. We showed that our method is almost 2 times efficient than

using only controls, which is typically used for many cases. We use the real data

example from NIH-AARP study on breast cancer, from Colon Cancer Study on red

meat consumption and from National Morbidity Air Pollution Study to illustrate the

computational efficiency and stability of our methods.
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1. INTRODUCTION

1.1 Nonparametric Efficient Regression for Secondary Analysis in Case-Control

Studies

Case-control designs consist of a large fraction of cases (i.e diseased individuals)

and a comparable sample of controls (i.e disease-free individuals). Because they over-

sample the cases, the resulting sample is not representative of the entire population.

It is an efficient and regularly used study design for rare diseases,such as most cancers,

and is widely used in genome-wide association studies (GWAS). The primary analysis

of case-control association studies is to model the risk of disease D by covariates,

denoted here by Y and X. Secondary analysis of case-control studies models the

association between the covariates Y and X for the general population. To the best

of our knowledge, there are no methods for nonparametric regression estimation of

a mean function in the literature in this context. The goal of this paper is to regress

Y on X without any parametric form on the regression function, without assuming

homoscedasticity and with no distributional assumptions on Y . Four types of major

analysis have been conducted to assess the effects of Y given X using data from

case-control studies: (a) use only the controls; (b) use only the cases; (c) use all the

data and without taking into account the case-control sampling design; and (d) use

all the data but take the sampling design into account. For rare disease, i.e., the

disease rate less than 1% in the population, controls can be regarded as almost a

random sample from the population, and hence it is common practice to regress Y

on X among the controls only. Analysis based on the cases only or using the entire

case-control sample without taking the sampling design into account leads to serious

bias because of the over-sampling of the cases.

1



In recent years, the secondary analysis of case-control studies has received in-

creasing attention, with the intention of using all the data while taking the sampling

design into account, and thus improving efficiency of analysis compared to using the

controls only. See, for example, Jiang, et al. (2006), Lin and Zeng (2006, 2010),

Chen, et al. (2008), Monses, et al. (2009), and Wei, et al. (2013). These papers

all have parametric models for the regression function, some model the distribution

of Y given X in a parametric manner, and other insist that the regression is ho-

moscedastic. Existing parametric models are not robust to either misspecification of

the distribution of Y given X (Wei, et al., 2013), heteroscedasticity or to misspeci-

fication of the parametric regression model.

Our focus here is on nonparametric regression, a problem that has not been

discussed in the case-control literature. Since ordinary kernel regression based on

all the subjects is highly biased, we develop an novel tilted or adjusted kernel-type

estimator that allows us to use all the data in order to increase efficiency without

introducing bias. While doing so we relax the assumption of any distributional form

for the regression model and do not assume homoscedasticity, things assumed by

current methods. If the disease rate in the population is known, we show that our

tilted kernel-type estimator is consistent and is asymptotically normally distributed.

Importantly, the disease rate in the population is typically unknown. Without any

assumptions about the distribution of (Y,X) in the population, the population disease

rate cannot be estimated (Prentice and Pyke, 1979; Chatterjee and Carroll, 2005),

and thus E(Y |X) is not estimable nonparametrically from the case-control study. In

this context, many researchers make a rare disease approximation (see references in

Section 3.1.3), in which the regression among the controls is approximately consistent

for the regression function. We show how to modify our tilted kernel estimator to be

consistent for the regression among the controls, and also more efficient than using

2



only the controls.

Primarily, we have considered the case of nonparametrically estimating E(Y |X)

when no assumptions about the distribution of Y given X are made, including ho-

moscedasticity. Section 3.2.2 describes methodology in the rare case that the disease

rate in the population, π1, is known. Sections B.1 - 3.2.2 describe methodology in

the far more common case that π1 is unknown. In this common case, our simulations

show conclusively that our tilted kernel estimator defined in Section 3.2.2 is the more

efficient.

In Section 2.4, we considered the case that the disease rate in the population

is unknown, and when one is willing to specify a distribution for Y given X up

to a function µ(X) and other parameters, using a local likelihood method along

with profiling methods. We displayed the method for when Y is binary with mean

H{µ(X)}. However, we emphasized two important points: (a) such methods are

not consistent if the parametric model is misspecified; and (b) it is likely that the

logistic intercept θ0 will be very difficult to estimate numerically, and a rare disease

approximation will improve computational performance (since it eliminates θ0) while

entailing little if any bias.

Ours is the first paper to consider nonparametric regression in the secondary anal-

ysis of case-control studies. We have focused on the case of scalar X, and discovered

a tilted kernel approach for estimation. With this tilted kernel function, exten-

sions to multivariate X are surely possible, including multivariate kernel regression

(Ruppert and Wand, 1994), additive models, etc. However, with multivariate X or

higher dimensional covariates, multivariate kernel regression suffers from ”Curse of

Dimensionality”. So next we focus on a popular and relatively simpler multivari-

ate regression tool known as ”Single-Index Model” to model the regression function.

To make the model more flexible, we also model the variance function by another
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single-index model for addressing potential heteroscedasticity. In i.i.d framework,

estimating the mean function by a single-index model is well established, if we ig-

nore heteroscedasticity. Lian et al. (2015) proposed a two-stage semiparametric

Kernel approach to model the mean and variance function separately. We take a

Bayesian approach based on finite mixture of normals which could provide a stable

and practical estimates of mean and variance function both on i.i.d set up and then

on case-control set up.

1.2 Single-Index Model for Mean and Variance Function for i.i.d samples

The single-index model is an important tool in multivariate nonparametric re-

gression with useful and extensive application in various fields like econometric and

biometrics. It reduces the dimensionality from multivariate covariates to an uni-

variate predictor XTθ, where θ is a dimension reduction index. Hence, a single

index model avoids the curse of dimensionality (Bellman, 1961) while still capturing

the important features in high-dimensional data. The single index model essentially

generalizes linear regression by replacing the linear combination with an unknown

univariate link function m(XTθ). So the model can retain the flexibility of nonpara-

metric regression model with dimension reduction ability. In this paper we allow

the regression model to be heteroscedastic, so that the variance function depends on

another single-index XTγ, where γ is a dimension reduction index for the variance

function.

Various methods are already well established to model the mean function, if we

ignore the potential heteroscedasticity. Ichimura (1993) and Härdle et al. (1997)

used kernel smoothing. Carroll et al. (1997) used local linear methods. Stoker

(1986) and Härdle and Stoker (1989) used the average derivative method. Even with

sophisticated bandwidth selection or iterative improved techniques, the numerical
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instability of the above approaches persists and the potential weaknesses are dis-

cussed in details by Yu and Ruppert (2002). Yu and Ruppert (2002) proposed a

penalized spline estimation procedure. Xia and Härdle (2006) integrated the dimen-

sion reduction technique with minimum average variance estimation (MAVE, Xia,

2002). Ma and Zhu (2012) developed a semiparametic dimension reduction method

in a multiple-index structure and studied the single-index model as a special case. A

semi-Bayesian model based on P-spline and a random walk Metropolis algorithm was

proposed by Antoniadis et al. (2004) only to model the mean function who remarked

that ”A Bayesian approach offers a relatively easy to implement method with a hope

of more stable estimates, especially for small or moderate sample size”. However,

they used generalized cross validation (GCV) to choose the smoothness paramter for

the B-splines.

None of the above works in single-index modeling considered estimation of the

variance function, which can play a crucial role to construct the confidence intervals

for the mean function (Cai and Wang, 2008). Several works in last three decades

have shown that the estimation of variance function has improved the model fit. Box

and Hill (1974) improved the model fit in the study of kinetic rate parameters using

variance function. In offline quality control, Box and Meyer (1986) emphasizes not

only on the mean response but also in its variability to improve understanding the

model. Box, 1986; Box and Ramirez, 1986 advocated to employ effective variance

function estimation to account for the heteroscedasticity. Teschendorff and Wind-

schwenter (2012) recognized in cancer genomics that variability can be a predictor

of disease phenotypes. A number of publication has been done based on parametric

approaches to model the variance function (Bickel, 1978; Carroll, 1982; Carroll and

Ruppert, 1982; Davidian and Carroll, 1987). Caroll and Härdle (1989), Fuller and

Rao (1978) and Hall and Carroll (1989) modeled the variance function nonparametri-
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cally. Ma et al. (2006) studied semiparametric efficiency in heteroscedastic partially

linear models where X is scalar. Van Keilegom and Wang (2010) studied a general

class of location-dispersion regression models, including semiparametric quantile het-

eroscedastic regression. Ma and Zhu (2013) developed a doubly robust and efficienct

estimators of the mean parameters. For the single-index model, recently Lian et al.

(2014) introduced a semiparametric Kernel based efficient estimator for estimating

the mean and variance function simultaneously.

The primary goal of this work is to introduce a fully Bayesian approach for a

heteroscedastic nonparamteric single-index model. A fully Bayesian approach in

this problem can have the potential to achieve large gains in efficiency of estima-

tion compared to the existing Kernel method developed by Lian et al. (2014). In

this article, the density of the scaled error is modeled by two approaches, (a) the

normal distribution, and (b)a Dirichlet process mixture of normals (DPMN). Im-

plementing the MCMC algorithm under normal distribution is straightforward and

provides consistent estimation of the parameters. However, to ensure a more flexible

representation of the scaled errors we model the error by DPMN, which potentially

increases the efficency in estimation under heavy tail distribution or in the presence

of potential outliers. Modeling the density of interest by a flexible location-scale

mixture of normal induced by a Dirichlet process provides an efficient alternative

to nonparametric modeling in Bayesian set up (Ferguson, 1973, Escobar and West,

1995). Griffin and Steel (2010), Pelenis (2014), Sarkar et al. (2014) used the flexible

model based on Dirichlet process to achieve more efficiency in estimating the model

to gain considerable mean squared efficiency.
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1.3 Single-Index Modeling in Secondary Analysis for Case-Control Studies

Primarily case-control samples are used to study the relationship between rare

diseases (like most cancers) and the covariates. It is a popular and efficient design

to understand the risk factors for cancers and other rare diseases. In population

there are two groups, one with the disease, called cases, and another without the

disease, called controls. Random samples of comparable sizes are separately drawn

from each group to form the case-control samples. Data on various covariates are

then collected in the restrospective fashion. Due over representation of the cases

in the sample, case-control sample is not a representative of the entire population.

Therefore, generally, the case-control data set cannot be used as if it were a random

sample from the true population. In this study we model the association between

the potential covariates which are related with the disease. Indeed, unless disease

is independent of Y given X, the regression of Y on X based on the case-control

sample as it is, will lead to a relationship different from that in the true population.

The goal of this paper is to model a covariate Y by a set of multiple covariates X

nonparametrically including all the case-control sample, a problem which has not

been addressed previously in the case-control set up.

The standard method of the primary analysis of case-control data involves lo-

gistic regression modeling of the disease outcome as a function of the covariates of

interest. Epidemiologic researchers popularly use controls from case-control studies

to examine the interrelationship between certain covariates themselves, known as

secondary analysis. Such studies has received increasing attention, where it is often

of interest to investigate the effect of Age or Alcohol intake or Fat density, not only

on the primary disease outcome, but also on other secondary factors like BMI (Body

Mass Index).
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This study is particularly challenging due to multiple reasons, (a) case-control

sample is biased due to disproportionate number of cases, (b) logistic intercept of the

prospective disease model is not practically identifiable, (c) mean function is modeled

with no parametric assumption and (d) misspecification of error distribution leads to

inconsistent results. In this paper we address all of the above challenges by modeling

Y by a generalized linear model m(XTθ), known as single-index model where m is

unknown and θ represents the index or the directional vectors.

Single-index model is an efficient and popular nonparametric multivariate method

extensively used in econometrics and biomedical fields. For i.i.d case, a number of

publication has been done to model the index vector efficiently. For example, Lian,

et al. (2015) developed a semiparametric efficient estimation Kernel method consid-

ering single-index model for both mean and standard deviation function. Modeling

both mean and standard deviation function by single-index model, Rahman, et al.

(unpublished) developed an efficient Bayesian method based of finite mixture of Nor-

mal based on robust MCMC which doesn’t depend on the initial values. Drawing

inspiration from our work in second chapter, we seek to develop a semiparametric

efficient and robust method to model Y on multivariate X for the case-control set

up. We also attempt to model the variance function by another single-index model

and the error distribution is modeled by finite mixture of normals. This particular

study is not addressed before in secondary analysis.

In recent years, the secondary analysis of case-control studies has received in-

creasing attention, with the intention of using all the data while taking the sampling

design into account, and thus improving efficiency of analysis compared to using the

controls only. See, for example, Jiang, et al (2006), Lin and Zeng (2006, 2010), Chen,

et al. (2008), Monses, et al. (2009), Wei, et al. (2013), Ma and Carroll (2015). These

papers all have parametric models for the regression function, some model the dis-
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tribution of Y given X in a parametric manner, and other insist that the regression

is homoscedastic. Rahman (2014) introduced a Kernel based efficient robust method

including all the case-control data for modeling univariate Y given univariate X.

However, the method of Rahman (2014) suffers from ”curse of dimensionality” if we

considered to regress Y on multivariate X.

In our last chapter, we present our work on modeling a multivariate nonparamet-

ric regression problem in case-control studies which has not been addressed before.

We attempt to model a nonparametric multivariate regression problem by Single-

index model where we regress Y on a lower dimensionXTθ nonparametrically. This

work is also unique because we model the variance by another single-index model

based on XTγ which has been only previously addressed by Lian et al. (2015) and

Rahman et al.(2015) in i.i.d set up. To ensure for flexible modeling, we model the

distribution of the error by a finite mixture of normals. The method of Lian et

al.(2015) based on semiparametric kernel regression is efficient but the estimation

depends heavily on the initial value in estimating equation. In simulation study we

showed that when the error is away from normal distribution, the estimates based

on normal likelihood lacks efficiency with respect to using only controls. However,

the method based on mixture of normal achieves almost 2 times more efficiency than

that of using only controls in estimating the mean and the variance function.
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2. NONPARAMETRIC REGRESSION IN THE SECONDARY ANALYSIS OF

THE CASE-CONTROL STUDIES

2.1 Framework

2.1.1 Background

Let D denote case-control disease status with D = 1 denoting a case and D = 0

denoting a control. Let Y and X be two univariate continuous covariates for D.

For a case-control study with a total of n subjects, the case-control sample consist of

(Di, Yi, Xi), i = 1, 2, ..., n with n0 controls and n1 cases. Let the unknown probability

of disease in the population be π1 and thus π0 = 1− π1 is the non-diseased rate. We

assume the underlying nonparametric regression model for Y on X to be

Y = µ(X) + ε, (2.1)

where E(ε|X) = 0, while the distribution of ε given X is unspecified and may be

heteroscedastic. As is standard practice, the primary analysis relating Y and X to

D is the logistic regression model

pr(D = 1|Y,X) = exp{θ0 +m(Y,X, θ1)}/[1 + exp{θ0 +m(Y,X, θ1)}], (2.2)

where m(·) is an arbitrary known function.

Prentice and Pyke (1979) showed that θ0 is not identifiable in the logistic regres-

Reprinted with permission from A Tilted Kernel Estimator for Nonparametric Regression in
the Secondary Analysis of CaseControl Studies by Shahina Rahman, 2014. Statistics in Bioscience,
1867-1772, Copyright [2014] by Springer US.
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sion for the case-control set up unless the disease rate π1 is known. Typically the

disease rate is not known, however. When we run logistic regression in the case-

control sample, θ1 is consistently estimated, while the intercept is known to converge

to κ = θ0 + log(n1/n0)− log(π1/π0) defined by Chatterjee and Carroll, 2005. Define

Ω = (κ, θ1).

2.1.2 Rare Disease Approximation and Motivation

If pr(D = 1) = π1 in the population is unknown, neither θ0 nor the regression of

Y on X is identified if one makes no assumptions about the distribution of Y given

X in the population. Even if one makes assumptions about the distribution of Y

given X in the population, if π1 is unknown, θ0, while being technically identified,

is very difficult to estimate numerically. For this reason, it is very common to make

a rare disease approximation, by which only we can eliminate the estimation of θ0.

Most case-control studies take place for rare diseases, and if the disease is fairly rare,

the distribution of (Y,X) in the population is well approximated by that among the

controls.

Many authors in this field have adopted this approximation, a very non-exhaustive

list of which includes Piegorsch,et al. (1994), Epstein and Satten (2003), Lin and Zeng

(2006), Modan, et al. (2001), Zhao, et al. (2003), Chatterjee, et al. (2005), Kwee,

et al. (2007), Yang, et al. (2009), Lin and Zeng (2009), Hu, et al. (2010), Li, et al.

(2010), Chen, et al. (2008, 2009, 2013) and Wei, et al. (2013). Indeed, in the case

that the regression of Y on X is linear, and the regression errors are normally dis-

tributed and homoscedastic, the software SPREG of Lin and Zeng (2009) requires

that either the disease rate in the population is specified, thus effectively specifying

θ0, or the rare disease approximation is made which eliminates θ0 from consideration.

In our nonparametric regression context, unless the disease rate in the population
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is known, neither θ0 nor the regression of Y on X are identified, and a rare disease

approximation appears to be the only means to estimate the true regression function

approximately.

When the disease is “rare”, we have that pr(D = 1|Y,X) = exp{θ0+m(Y,X, θ1)}/[1+

exp{θ0 +m(Y,X, θ1)}] ≈ exp{θ0 +m(Y,X, θ1)} and

pr(D = 0|Y,X) = H(d = 0|Y,X, θ0, θ1) = 1/[1 + exp{θ0 +m(Y,X, θ1)}] ≈ 1.(2.3)

2.2 Methodology and Estimation

2.2.1 Main Goals

Let fX,cont(x) and fX,case(x) be the density functions of X among the controls and

cases, respectively, and let fX be the density function of X in the population. Let

K(·) be a known symmetric density function. Define Kh(u) = h−1K(u/h), where h

is a bandwidth. Our goal is to estimate µ(x) = E(Y |X = x), either consistently or

approximately: as described previously, if the population disease rate π1 is unknown,

µ(x) is not identified. Also define µcont(x) = E(Y |X,D = 1).

2.2.2 When the Population Disease Rate π1 is Known

In the very uncommon case that the population disease rate π1 is unknown, it is

possible to estimate µ(x) = E(Y |X). Since π1 is known,

E(Y |X) = π1E(Y |X,D = 1) + π0E(Y |X,D = 0), (2.4)

so separate regression among cases and controls cane be used to consistently estimate

µ(x). However, as described in Section 3.2.2, in real world mostly π1 is unknown,

which leads to the regression among the controls only, is not as efficient as the method
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we will describe in that Section.

If the disease rate is known, then (θ0, θ1, κ) can be well estimated. Define

Kpop(y, x,Ω, θ0) = 1 + exp{κ + m(y, x, θ1)}/[1 + exp{θ0 + m(y, x, θ1)}]. We “tilt”

the usual Nadaraya-Watson kernel estimator as follows. Define

Λpop(Yi, x0, h,Ω, θ0) =

∫
Kpop(Yi, v,Ω, θ0)Kh(v − x0)fX(v)dv. (2.5)

Then, if π1 is known, in Theorem B.1 in the Appendix A.2, we show that a consistent

estimator of µ(x0) using both case and control data is

M̂h(x0) =
n−1

∑n
i=1 YiKh(Xi − x0)/Λpop(Yi, x0, h,Ω, θ0)

n−1
∑n

i=1Kh(Xi − x0)/Λpop(Yi, x0, h,Ω, θ0)
. (2.6)

2.2.3 When π1 is Unknown: the Control Only Method

It is well-known that since the entire case-control sample is not a random sample

from the true population, but instead highly over-represents the cases, the local

average kernel estimator (usual Nadaraya Watson estimator) based on the entire

sample given by

m̂h,naive(x0) = n−1
n∑
i=1

YiKh(Xi − x0)
/
n−1

n∑
i=1

Kh(Xi − x0). (2.7)

is highly biased except when Y is independent of the disease status D given X. When

π1 is unknown, the only possibility is to invoke a rare disease approximation that

µ(x) ≈ µcont(x). In this case, (2.4) suggests estimation using only the controls. Also

Nagerkele, et al. (1995), Jiang, et al. (2006) and Lin and Zeng (2006, 2010) advocated

that using only controls data leads to consistent estimation when the disease rate is
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small. The local average kernel estimator of µ(x0) among the controls is

m̂h,cont(x0) = n−1
n∑
i=1

(1−Di)YiKh(Xi − x0)
/
n−1

n∑
i=1

(1−Di)Kh(Xi − x0).(2.8)

Since m̂h,cont(x0) is based on a random sample from the population of controls, (2.8)

consistently estimates µcont(x0) = E(Y |X = x0, D = 0), which with a little algebra

is given by
∫
yfXY (x0, y)H(d = 0|y, x0)dy

/ ∫
fXY (x0, y)H(d = 0|y, x0)dy. For rare

disease when π1 ≈ 0, by using (2.4), µcont(x0) ≈ E(Y |X = x0) = µ(x0) as n → ∞

and h→ 0.

2.2.4 When π1 is Unknown: a Tilted More Efficient Estimator

The purpose of this section is to develop a kernel estimator that can utilize all the

data efficiently and improve upon (2.8). When π1 is unknown, as it almost always

is, (2.6) is an infeasible estimator because neither θ0 nor E(Y |X) is identifiable

from the case-control sample. However, if the disease is rare, we have that pr(D =

1|Y,X) = exp{θ0 +m(Y,X, θ1)}/[1+exp{θ0 +m(Y,X, θ1)}] ≈ exp{θ0 +m(Y,X, θ1)}

and equation (4.3)

pr(D = 0|Y,X) = H(d = 0|Y,X, θ0, θ1) = 1/[1 + exp{θ0 +m(Y,X, θ1)}] ≈ 1.

Using this, fX can be approximated by fX,cont and, Kpop(y, x,Ω, θ0) can be approx-

imated by K(y, x,Ω) = 1 + exp{κ + m(y, x, θ1)}. In other words, we approximate

the original “tilt” Λpop by a “different tilt”
∫
Kh(v − x0)K(Yi, v,Ω)fX,cont(v)dv, a

quantity unbiasedly estimated by

Λn(Yi, x0, h,Ω) = n−10

n∑
j=1

(1−Dj)K(Yi, Xj,Ω)Kh(Xj − x0). (2.9)
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Since Ω = (κ, θ1) is estimated consistently by Ω̂ by ordinary logistic regression of D

on (Y,X) (Chatterjee and Carroll, 2005), this leads to our estimator

m̂h(x0) =
n−1

∑
i=1 YiKh(Xi − x0)/Λn(Yi, x0, h,Ω)

n−1
∑

i=1Kh(Xi − x0)/Λn(Yi, x0, h,Ω)
. (2.10)

2.2.5 Algorithm When π1 is Unknown

When π1 is unknown, based on the analysis in Section 3.2.2, we propose the

following algorithm to implement the weighted adjusted local Nadaraya Watson es-

timator (2.10).

1. Estimate (κ, θ1) by (κ̂, θ̂1) by ordinary logistic regression of D on (Y,X). This

can be done legitimately because it is known that ordinary logistic regression in

a case-control study consistently estimates (κ, θ1). (Prentice and Pyke, 1979;

Chatterjee and Carroll, 2005). Denote the estimators of (κ, θ1) by Ω̂.

2. Choose a suitable symmetric density function Kh(·) such that it is > 0 for all

x in the support and is twice differentiable satisfying the common properties

of
∫
K(z)dz = 1,

∫
zK(z)dz = 0, and define

∫
z2K(z)dz = c1,

∫
K2(z)dz = c2,∫

z2K2(z)dz = c3.

3. Bandwidth selection: In R software, the library (KernSmooth) has a quick and

simple function dpill which implements a direct plug-in approach to bandwidth

selection, as described by Ruppert, Sheather and Wand (1995). Since for rare

disease the true population is almost same as the population of controls, it

is reasonable to use this function among the controls only to estimate the

bandwidth. Under the conditions of Theorem 1, this has the correct asymptotic

rate of (n0 + n1)
−1/5. It is at least possible in theory to improve upon this, see
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Theorem 2, but we found this simple device to be eminently satisfactory in our

simulations.

4. Calculate the estimator (2.10) using Ω̂ and the estimated bandwidth.

2.3 Asymptotic Theory

Our main asymptotic results are stated below, and proved in Appendix B.

Theorem 1 Define the total sample size as n = n0 + n1, and assume that n → ∞

and n1/n→ 1−c (0 < c < 1). Assume that the following sets of regularity conditions

hold.

1. The density functions fX(x) and fX,cont(x) have compact support S and are

> 0 on that support.

2. The conditional density function fY |X(y) is a bounded density function with∫
y2fY |X(y)d(y) <∞,

3. The density functions fY |X(·), fX(·) and fX,cont(·) are twice continuously and

boundedly differentiable with respect to x,

4. The kernel density K(·) is twice continuously and boundedly differentiable.

Then, as h→ 0 and nh→∞,

M̂h(x0) = µ(x0) + op(1)

Theorem 2 Under the conditions of Theorem (1), m̂h(x0) = µcont(x0) + op(1). In

addition, as π1 → 0, µcont(x0) ≈ µ(x0). Also there exist functions W (x0,Ω, θ0) and

U(x0,Ω, θ0) defined in Appendix A.1.1, such that m̂h(x0) has asymptotic bias

h2W (x0,Ω, θ0) +O(n0h)−1/2 + o{(nh)−1/2 + h2},
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and asymptotic variance equal to

(n0h)−1π0U(x0,Ω, θ0) + o(h/nh).

Thus, for b0 =
{
π0U(x0,Ω, θ0)/4W

2(x0,Ω, θ0)
}1/5

, the MSE optimal bandwidth for

estimating µcont(x0) is hopt = b0n
−1/5
0 .

Theorem 3 Under the conditions of Theorem 1, let
∫
|K(u)|2+δdu <∞ and E|ε|2+δ

for some δ > 0. Then as nh→∞,

(nh)−1/2
{
m̂h(x0)− µcont(x0)− h2W (x0,Ω, θ0)

}
→ Normal

{
0, U(x0,Ω, θ0

}
.

In addition as π1 → 0, µcont(x0) ≈ µ(x0).

Corollary 1 Let the conditions of Theorem 3 hold with the bandwidth hopt = b0n
−1/5
0 .

Then the rate of convergence is optimal and as nh→∞,

n2/5
{
m̂h(x0)− µ(x0)

}
→ Normal

{
b
5/2
0 W (x0,Ω, θ0), U(x0,Ω, θ0)

}
.
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Figure 2.1: The first row is for the case that θy = 0 and with a 5% disease rate
in the population. The second row is for the case that θy 6= 0 and with a 5%
disease rate. The second row is for the case that θy 6= 0 and with a 1% disease rate.
The left panels are the mean estimated functions across all the simulation data sets
with n = 500: truth (black, solid), using all the data and ignoring the case-control
sampling scheme (red, dotted), using only the controls (blue, dashed) and using our
new method (magenta, solid). Using only the controls is virtually indistinguishable
from our method in terms of the mean. The right panels are the pointwise mean
squared error efficiency or our method compared to using only the controls. The
dashed red line is for n = 100, the dotted blue line is for n = 300, and the solid
magenta line is for n = 500. The solid black line is at 1.0, with values above that
indicating that our method is more efficient
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Figure 2.2: The first row is for the case that θy = 0 and with a 5% disease rate
in the population. The second row is for the case that θy 6= 0 and with a 5%
disease rate. The second row is for the case that θy 6= 0 and with a 1% disease rate.
The left panels are the mean estimated functions across all the simulation data sets
with n = 500: truth (black, solid), using all the data and ignoring the case-control
sampling scheme (red, dotted), using only the controls (blue, dashed) and using our
new method (magenta, solid). Using only the controls is virtually indistinguishable
from our method in terms of the mean. The right panels are the pointwise mean
squared error efficiency or our method compared to using only the controls. The
dashed red line is for n = 100, the dot-dashed blue line is for n = 300, and the solid
magenta line is for n = 500. The solid black line is at 1.0, with values above that
indicating that our method is more efficient
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2.4 Regression for a Binary Y

To this point, we have made no assumptions about the distribution of Y given

X. We continue to assume that π1 is unknown. As shown by Wei, et al. (2013),

even in linear regression, if that distribution is misspecified, methods that make such

assumptions are not consistent if the assumptions are misspecified. This is in total

contrast to the case of random sampling, where consistency is assured as long as

E(Y |X) is specified parametrically and correctly. Insights from random sampling do

not pass over to secondary analysis for case control studies.

If one is willing to assume a parametric distribution for Y given X up to a function

µ(X), then local likelihood ideas can be used. However, we caution that the result

will not be consistent if the parametric distribution is misspecified.

As a specific example, suppose that Y is binary, and that given X it has mean

H{µ(X)}, where H(·) is the logistic distribution function. Then, as described by

Chen, et al. (2009), Lin and Zeng (2009) and Wei, et al. (2013), the semiparametric

efficient retrospective profile likelihood making no assumptions about the distribution

of X is given as follows. Define g{D, Y,X, µ(X), θ0, θ1, κ} as

g{d, y, x, µ(x), θ0, θ1, κ} = [H{µ(x)}]y[1−H{µ(x)}]1−y exp[d{κ+m(y, x, θ1)}]
1 + exp{θ0 +m(y, x, θ1)}

.

Then the semiparametric efficient retrospective profile likelihood making no assump-

tions about the distribution of X is

L{D, Y,X, µ(X), θ0, θ1, κ} =
g{D, Y,X, µ(X), θ0, θ1, κ}∑1

d=0

∑1
t=0 g{d, t,X, µ(X), θ0, θ1, κ}

.

If we want to estimate µ(·) at x0, for given (θ0, θ1, κ), we would announce an estimate
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M̂h(x0, θ0, θ1, κ) as the solution to

argmaxa
∑n

i=1Kh(Xi − x0)log[L{Di, Yi, Xi, a, θ0, θ1, κ}].

At this point, there are two possibilities.

• Since (κ, θ1) is estimable from logistic regression of D on (Y,X), get the es-

timates (κ̂, θ̂1) from that regression. Then define M̂h(x0) as M̂h(x0, θ̂0, θ̂1, κ̂),

where θ̂0 is the solution to the profiled equation

argmaxθ0,
∑n

i=1Kh(Xi − x0)log[L{Di, Yi, Xi, M̂h(Xi, θ0, θ̂1, κ̂), θ0, θ̂1, κ̂}].

• Alternatively, one could in principle also profile over (κ, θ1).

At least in principle, it should be the case that M̂h(x0, θ̂0, θ̂1)→ µ(x0). However,

one needs to be careful with this line of reasoning. Even if the distribution of Y given

X is parametrically specified, θ0 if often very poorly determined, so that θ̂0 can take

on nearly any value < 0. This is one of the reasons that the software SPREG of Lin

and Zeng, 2009 in the case that E(Y |X) = β0 +Xβ1 requires that either the disease

rate in the population is specified, thus effectively specifying θ0, or the rare disease

approximation is made, and thus eliminating θ0 from consideration.

2.5 Simulations

2.5.1 Basic Settings

For the typical case when the disease rate in the population is unknown, we

conducted simulation studies to evaluate the performance of the standard methods

and our new ”tilted efficient” method. All simulations are done using the Gaussian

kernel density function. We repeated the simulations for sample sizes n0 = 100, 300
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and 500, with approximate disease rate of 1% and 5%.

In these simulations, we generated X from the Uniform(0, 1) distribution. We

consider a nonlinear regression model Y = sin(πX) + ε and the prospective logistic

model for pr(D = 1|Y,X) = H(θ0 +θyY +θxX) with θ0 = (−6.00,−5.05), θy = 1.00,

and θx = 1.80. By equation (3.3), for θ0 = −6.00 and θ0 = −5.05, the disease rate is

approximately equals 1% and 5%, respectively. We also consider the case that Y is

independent of D given X, by setting the parameters to θ0 = −3.65, θy = 0.00, and

θx = 1 corresponding to the disease rate≈ 5%, in order to evaluate the methods when

Y is independent of the disease status for given X. In each setting, we generated

1000 data sets with an equal number of cases and controls, and repeat the simulation

for n0 = n1 = 100, 300, 500. The bandwidth was estimated as described in Section

2.2.5. We performed two different sets of simulations one with homoscedastic errors

and second with heteroscedastic errors. In each set of simulations, we contrasted

three methods, (a) ordinary Nadaraya Watson estimator using all the data in (2.7),

(b) ordinary Nadaraya Watson estimator using only the controls in (2.8) and (c) our

new adjusted Nadaraya Watson estimator in (2.10). The mean square efficiency are

smoothed by quadratic regression to illustrate the gain in the large sample efficiency

in all the cases.

In the first set of simulations, we generated homoscedastic errors ε = Normal(0, σ2)

with σ2 = (0.3, 1.00). The case θy = 0.00 is interesting, since Y is independent of

D given X and the three methods gives almost unbiased results, see Figure 2.1. For

θy 6= 0.00, the estimates obtained by Kernel estimator using all the observations is

hugely biased while the other two methods have much less bias. When the disease

rate is approximately 1%, both the estimator (2.10) and the control only estimator

(2.8) are very close to the true function (Table 2.2). The biases of estimators (2.8)

and (2.10) are given in Table 2.1.

22



Table 2.1: The bias of the new method and the standard method (only controls) in
the homoscedastic simulation for n0 = 100, 300 and 500.

New Method Controls only
x0 0.19 0.39 0.59 0.79 0.19 0.39 0.59 0.79
100 -0.024 -0.078 -0.113 -0.092 -0.034 -0.091 -0.115 -0.082

σ = 1.0 300 -0.029 -0.071 -0.100 -0.089 -0.019 -0.077 -0.098 -0.078
π1 = 5% 500 -0.031 -0.066 -0.100 -0.093 -0.032 -0.064 -0.095 -0.082

100 -0.003 -0.041 -0.065 -0.047 -0.004 -0.036 -0.065 -0.033
σ = 1.0 300 -0.006 -0.034 -0.057 -0.043 -0.004 -0.031 -0.055 -0.028
π1 = 1% 500 -0.005 -0.031 -0.052 -0.043 -0.003 -0.041 -0.048 -0.028

100 -0.005 -0.025 -0.035 -0.031 -0.001 -0.029 -0.033 -0.019
σ = 0.3 300 -0.008 -0.017 -0.027 -0.025 -0.002 -0.021 -0.025 -0.016
π1 = 5% 500 -0.007 -0.014 -0.025 -0.023 -0.001 -0.017 -0.021 -0.016

100 -0.003 -0.021 -0.033 -0.025 -0.004 -0.025 -0.029 -0.013
σ = 0.3 300 -0.006 -0.015 -0.023 -0.020 -0.002 -0.017 -0.021 -0.011
π1 = 1% 500 -0.006 -0.012 -0.019 -0.019 -0.002 -0.014 -0.017 -0.012

We summarize the results for pointwise mean square efficiency in Table 2.2 and

Figure 2.1. Our proposed method significantly outperforms the controls only ap-

proach in terms of efficiency. When the disease rate is 1%, the overall gain in mean

square efficiency becomes is approximately 1.5.

2.5.2 Heteroscedastic Errors

In the second set of simulations, we generated heteroscedastic errors. The same

distribution of ε was used, except that ε was multiplied by (1 + X2)3/4/2 in all the

cases, so that the var(ε|X) = (1 +X2)3/4/4. The results for the heteroscedastic case

are summarized in Table 2.3 and 2.4. The results are very similar to the results of the

homoscedastic case. Figure 2.2 shows both new method and the controls are almost

unbiased for heteroscedastic errors. It also shows that the mean square efficiency of

our new method (2.10) is even larger than in the homoscedastic case.
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Table 2.2: The mean square efficiency of the new method over the standard method
(only controls) in the homoscedastic simulation for n0 = 100, 300 and 500.

MSE Efficiency
X0 0.01 0.19 0.39 0.59 0.79 0.99
100 1.137 1.349 1.553 1.403 1.331 1.410

σ = 1.0 300 1.054 1.358 1.363 1.223 1.143 1.342
π1 = 5% 500 1.026 1.346 1.348 1.117 1.021 1.272

100 1.187 1.401 1.446 1.498 1.371 1.432
σ = 1.0 300 1.075 1.490 1.439 1.357 1.254 1.198
π1 = 1% 500 1.042 1.437 1.456 1.274 1.178 1.169

100 1.019 1.517 1.722 1.563 1.525 1.269
σ = 0.3 300 0.971 1.435 1.714 1.393 1.269 1.141
π1 = 5% 500 0.971 1.479 1.714 1.309 1.201 1.122

100 1.009 1.556 1.699 1.492 1.368 1.256
σ = 0.3 300 0.995 1.527 1.739 1.506 1.349 1.141
π1 = 1% 500 0.980 1.617 1.653 1.519 1.519 1.124

Table 2.3: The bias of the new method and the standard method (only controls) in
the heteroscedastic simulation of Section 2.5.2 for n0 = 100, 300 and 500.

New Method Controls only
X0 0.19 0.39 0.59 0.79 0.19 0.39 0.59 0.79
100 -0.007 -0.041 -0.062 -0.054 -0.016 -0.049 -0.063 -0.045

π1 = 5% 300 -0.01 -0.03 -0.051 -0.053 -0.019 -0.035 -0.049 -0.044
500 -0.011 -0.027 -0.049 -0.052 -0.019 -0.031 -0.048 -0.044
100 -0.003 -0.032 -0.048 -0.037 -0.011 -0.04 -0.048 -0.027

π1 = 1% 300 -0.007 -0.023 -0.039 -0.033 -0.015 -0.029 -0.038 -0.024
500 -0.008 -0.021 -0.034 -0.034 -0.016 -0.025 -0.033 -0.025
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Table 2.4: The mean square efficiency of the new method and the standard method
(only controls) in the heteroscedastic simulation of Section 2.5.2 for n0 = 100, 300
and 500.

MSE Efficiency
X0 0.01 0.19 0.39 0.59 0.79 0.99
100 1.187 1.401 1.446 1.498 1.371 1.432

π1 = 5% 300 1.075 1.490 1.439 1.357 1.254 1.198
500 1.042 1.437 1.456 1.274 1.178 1.169
100 1.055 1.355 1.637 1.499 1.499 1.459

π1 = 1% 300 1.010 1.292 1.546 1.335 1.271 1.295
500 0.983 1.361 1.540 1.208 1.183 1.266
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2.6 Empirical Example

2.6.1 Colorectal Adenoma Study

The rate of occurrence of colorectal adenoma (D), responsible for the colon can-

cer is typically not known. So we implemented our ”tilted efficient” method on a

case-control data set with 640 cases and 665 controls. The cases and controls were

defined by the occurrence of colorectal adenoma (D). In our analysis, X is red meat

consumption in grams. We used two different versions of Y, namely the heterocyclic

amines MeIQx and PhIP (both measured in nanograms) that are produced during

the cooking of meat. PhIP and MeIQx were transformed by adding 1.0 and taking

logarithms, while red meat was transformed as 10 plus the logarithm. We calculated

the mean square errors by the bootstrap method, with 1000 bootstrap samples.

Preliminary analysis of the controls data indicated a highly statistically signifi-

cant linear effects of red meat consumption on MEIQx and PHIP. The p-values for

the coefficient for a quadratic fit exceeds 0.20 in both the cases. In addition, the

regression of PHIP on red meat consumption is heavily heteroscedastic, while the

regression of MeIQx on red meat is passably homoscedastic. For MeIQx, where the

regression is homoscedastic, both the controls and new method have roughly the

same bias. In this case however, the new method achieves an approximately 150%

average efficiency gain in efficiency as expected. For PhIP, where the regression is

heteroscedastic, the MSE average efficiency gain of the new method is almost 150%,

see Figure 2.3.

2.6.2 NIH-AARP Study

As a further illustration, we used data from the National Institutes of Health-

AARP Diet and Health Study (NIH-AARP). We constructed case-control studies

from these data with 4 controls for every case. Here the outcome D was incidence of
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Figure 2.3: Results for the data analysis in Section 2.6.1. First row are the fitted
functions in the kernel regression of MeIQx and PhIP on red meat, respectively, with
the magenta solid line being our method and the blue dashed line using the controls
only. The second row are the pointwise mean squared error efficiency of our method
for the two responses (solid magenta line). The dashed black line is at 1.0, with
values above that indicating that our method is more efficient

colorectal cancer, responsible for colon cancer. We did separate analysis for men and

women, in the latter case deleting those with missing menopausal hormone therapy

status, none of whom developed colorectal cancer. In this study, the sample sizes

were n = 21240 with 4248 number of cases and 16992 number of controls. We

performed separate studies of the association between body mass index (BMI) and

Fat Density as Y , and Age as X. In the second study we regress Y on Alcohol

intake as X. We did a preliminary analysis among the controls and found out a

strong quadratic relationship exist in the four different associations with p-value less

than 2e−16. Also, the regression of BMI and Fat Density is heavily heteroscedastic
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on alcohol intake while that on the age is highly homoscedastic. We calculated the

mean square errors by the bootstrap method, with 500 bootstrap samples.

In both the study the estimates obtained from ”tilted efficient” method (2.10)

and only controls method has almost same estimates except for regressing BMI with

respect to age. In all the scenarios our estimator shows a clear quadratic trend.

The MSE average efficiency gain of the new method is approximately 110% for the

homoscedastic regression on age. In case of heteroscedastic regression on alcohol

intake the average MSE efficiency gain is almost 115%, see Figure 2.4.

2.7 Discussion

Primarily, we have considered the case of nonparametrically estimating E(Y |X)

when no assumptions about the distribution of Y given X are made, including ho-

moscedasticity. Section 3.2.2 describes methodology in the rare case that the disease

rate in the population, π1, is known. Sections B.1 - 3.2.2 describe methodology in

the far more common case that π1 is unknown. In this common case, our simulations

show conclusively that our tilted kernel estimator defined in Section 3.2.2 is the more

efficient.

In Section 2.4, we considered the case that the disease rate in the population

is unknown, and when one is willing to specify a distribution for Y given X up

to a function µ(X) and other parameters, using a local likelihood method along

with profiling methods. We displayed the method for when Y is binary with mean

H{µ(X)}. However, we emphasized two important points: (a) such methods are

not consistent if the parametric model is misspecified; and (b) it is likely that the

logistic intercept θ0 will be very difficult to estimate numerically, and a rare disease

approximation will improve computational performance (since it eliminates θ0) while

entailing little if any bias.
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Figure 2.4: Results for the data analysis in Section 2.6.2. First row are the fitted
functions in the kernel regression of BMI on age and alcohol content, respectively,
with the magenta solid line being our method and the blue dashed line using the
controls only. The second row are the fitted functions of Fat-density on the same
regressors. The third row are the pointwise mean squared error efficiencies of our
method for the two responses (solid magenta line for BMI and dashed blue line for
Fat-density). The dashed black line is at 1.0, with values above that indicating that
our method is more efficient

Ours is the first paper to consider nonparametric regression in the secondary anal-

ysis of case-control studies. We have focused on the case of scalar X, and discovered a
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tilted kernel approach for estimation. With this tilted kernel function, extensions to

multivariate X are surely possible, including multivariate kernel regression (Ruppert

and Wand, 1994), additive models, etc.
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3. BAYESIAN SINGLE-INDEX MODELING WITH VARIANCE ESTIMATION

3.1 Single-Index Model with Variance Function

We consider the heteroscedastic regression models where the mean function is a

single-index model and the variance function depends on another single-index model,

so that for i = 1, ..., n,

Yi = m(XT
i θ) + s(XT

i γ)εi, (3.1)

where the Yi are scalar continuous response variables, the Xi are p-dimensional con-

tinuous predictors and ε is independent of X. The unknowns are the p-dimensional

index vectors θ and γ, the regression function m(·) and standard deviation function

s(·). The regression errors ε are independent and identically distributed according

to some density fε(·), with restriction E(ε) = 0 and E(ε2) = 1 to ensure identifiabil-

ity. Hence, the conditional heteroscedasticity is only explained through the variance

function s2(·). To avoid identifiability issues, we need additional restrictions on the

single-index vectors, specifically, ‖θ‖ = ‖γ‖ = 1.

To develop an efficient and practical Bayesian estimation methodology for the

index-vectors θ,γ, the mean function m(XT
i θ) and the variance function s2(XT

i γ),

we consider the following MCMC estimation procedure. Our development proceeds

in the following step.

(a) Initial estimation for the starting values for the index parameter θ.

(b) Using the squared residuals from the initial estimates of the mean function,

develop an initial estimate of the index vector γ.
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(c) Design a non-informative prior for each of the parameters.

(d) Update the parameters for the mean function, including the index vector θ in

each MCMC iteration step.

(e) Update the parameters for the variance function, including γ in each MCMC

step.

In this paper we use the definition of the inverse-gamma and gamma distribution

from Berger (1985),

IG(A,B) =
1

Γ(A)BAxA+1
exp

{
− 1/(Bx)

}
I(0,∞)(x)

and

Gamma(A,B) =
1

Γ(A)BA
xA−1 exp

{
− x/B

}
I(0,∞)(x).

The generic notation p0 is used for specifying priors and hyperparameters. The

notation Normal(·|µ, σ2) is used to denote a normal distribution with mean µ and

variance σ2.

3.1.1 Estimation of the Single-Index Vectors

In this problem, the mean and the variance functions are depend on the single-

index vectors, θ and γ, and are thus crucial in the mean and variance estimation.

Essentially, the single index parameter helps in the reduction of dimension and boils

down to estimate the central mean space E(Y |X) by XTθ (Cook and Li, 2002)

and E(ε2|X) by XTγ. In this article, our goal is to introduce a fully Bayesian

method to estimate the index vectors. If we want to use a non-informative prior, then

selecting the initial value for the single-index vector is crucial. To make the estimation
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procedure simple, we will use the Principal Hessian Direction (PHD) method (Li,

1992), only to decide on the starting value for the single-index parameter.

Initial values for θ and γ: Define ΛPHD = E[{Y −m(XTθ)}2XXT] and ΓPHD =

E[{|ε| − s(XTγ)}2XXT]. This method is simple and requires only computing the

eigenvector associated with the maximum non-zero eigenvalue of the Principal Hes-

sian matrices ΛPHD and ΓPHD to form the bases of the subspace, SE(Y |X) and SE(ε2|X)

respectively. We define Y = n−1
∑n

i=1 Yi, ei = |Yi − Y | and e = n−1
∑n

i=1 ei. To

get a reasonable starting value, we estimate ΛPHD by Λ̂ = n−1
∑n

i=1(Yi − Y )2XiX
T
i

and ΓPHD by Γ̂ = n−1
∑n

i=1(ei − e)2XiX
T
i . To make θ and γ identifiable, we can

either set the norm of the vectors to 1 or fix one of the component at 1. Without

loss of generality, we fix the first component of θ to 1, defining the other components

of θ as θ−1 = (θ2, ......, θp). We use the eigenvector corresponding to the maximum

eigenvalue of Λ̂ as a starting value for θ−1. Similarly we denote γ−1 = (γ2, ......, γp)

and calculate the starting value for γ−1 using the maximum eigen value of Γ̂. For

each MCMC iteration step, we fix θ1 = γ1 = 1 and specify normal priors on the rest

of the components of the vectors

p0(θ−1) = Normal(·|θprior,Σθ), (3.2)

p0(γ−1) = Normal(·|γprior,Σγ), (3.3)

where θprior,γprior, Σθ and Σγ are pre-specified constants.

3.1.2 Estimation of the Mean Function

If the potential heteroscedasticity is ignored, methods for estimating the flexible

and smooth mean function using penalized splines are already well established (Yu
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and Ruppert, 2002; Antoniadis, et al., 2004). Given θ, a general approach discussed

by Eilers and Marx (1996) is to model the regression function m(·) by a linear

combination of basis splines or B-splines with fixed knots and smoothing parameter

ρ1, better known as penalized splines or P-splines. Let B1j(t) be the jth B-spline,

recursively defined by De Boor (2001) of order q for the knot sequence T = tKj=1 is

a sequence of equally-spaced points, called interior knots. Augment these so that

t1−q = · · · = t−1 = t0 = 0 < t1 < · · · < tK < 1 = tK+1 = · · · = tK+q, in which

tj = jh for j = 0, · · · , K + 1, h = 1/(K + 1) is the distance between neighboring

knots. Define B1(t) = {B1j(t)}Mj=1, where M = K + q − 2. The mean function is

evaluated at the “transformed design points” ti = XT
i θ̂ for i = 1, ....., n as

m̂(ti) =
M∑
j=1

B1j(ti)βj. (3.4)

Let D be a fixed, symmetric and a positive semidefinite N -dimensional matrix. The

penalized least squares estimator β̂(ρ1,θ) for the mean function minimizes

n∑
i=1

{Yi − B1(ti)Tβ}2 + ρ1β
TDβ.

Here β = (β1, β2, ..., βM)T and D = DT
r Dr is the matrix representation of the dif-

ference operator ∆r of order r defined by Eilers and Marx (1996). For simplicity of

notation, we define X̃θ = B1(XTθ) to obtain the least square estimators for β as

β̂(ρ1,θ)LS = (X̃T
θ X̃θ + ρ1D)−1X̃T

θY.

We can use β̂LS as a potential starting value for the MCMC iteration. We model

the mean function by a B-spline with smoothness inducing prior on the coefficients,
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given as

p0(β) ∝ ρ
M/2
1 exp{−ρ1βTDβ/2}, (3.5)

ρ1 ∼ Gamma(Aρ1, Bρ1).

The prior p0(β) induces smoothness in the coefficients because it penalizes∑n
j=r+1(∆rβj)

2 = βTDβ, the sum of squares of the second order difference in β.

Determining a suitable smoothing parameter in spline methods is crucial. Anto-

niadis et al. (2004) provided a semi-Bayesian method to model the mean function

for single-index model by P-splines where the smoothing parameter was determined

by generalized cross validation (GCV). In that case, estimation of the smoothing

parameter would depend on the index-vectors, making the problem computationally

difficult. However, in a fully Bayesian approach we place a continuous prior distribu-

tion on the smoothing parameter. That automatically avoids the possibility of zero

smoothing and the estimation of the smoothness parameter becomes independent of

the index-vectors.

3.1.3 Estimation of the Variance Function

We define the true absolute residual as |εi| = |Yi − m(XT
i θ)| for i = 1, . . . , n.

In the parametric case, Davidian and Carroll (1987) gave the general methodology

and theory for the variance function. They pointed out that estimation of variance

function based on squared residuals are less robust to outliers than those based

on absolute residuals. Lian et al. (2013) used two-stage approach to model the

variance function by estimated absolute residuals r̂ = |Y −m̂(XTθ̂)|. In our Bayesian

approach, estimation of a flexible variance function s(·) and the corresponding single-

index vector γ is straightforward. We only need to specify the prior distribution of
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the parameters. Examples of modeling log-transformed variance functions by flexible

mixture of splines are abundant in the literature, for example Yau and Kohn (2003),

Liu, et al. (2006). In this article, for fixed γ, we model the variance function

by a positive mixture of B-splines of order q with K1 knots at transformed points

wi = XT
i γ̂ as

s(wi) =

M1∑
j=1

B2j(wi) exp(ξj) (3.6)

where, M1 = K1+q−2. For simplicity, we define X̃γ = B2(XTγ). Then a reasonable

starting value for the P-spline coefficient ξ of the variance function is

exp
{
ξ̂(ρ2,γ)LS

}
= |(X̃T

γ X̃γ + ρ2D)−1X̃T
γ r̂

2|,

A flexible Bayesian model for the variance function with smoothness inducing priors

on the coefficients is

p0(ξ) ∝ ρ
M1/2
2 exp{−ρ2 exp (ξ)TD exp (ξ)/2}, (3.7)

ρ2 ∼ Gamma(Aρ2, Bρ2).

Here ρ2 is the smoothing parameter for the variance function. Larger values of ρ2

with smaller number of knots K1 imposes a stronger penalty, resulting in smoother

variance function.

In this paper, the predictor variables XTθ and XTγ changes with each MCMC

iteration of θ and γ. We fix K1 and K2, the numbers of knots to model the mean

function and the variance function respectively. In each iteration, we place the knots

equally spaced in XTθ and XTγ. For smooth and either monotonic or unimodal
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regression functions, Ruppert (2000), Yu and Ruppert (2002) recommended 5-10

knots to be adequate. However, more than 10 knots are needed if the true function

has many local minima and maxima, but this is unlikely in applications of the single-

index model. Yu and Ruppert (2002) also showed that fixed-knot asymptotics give

a practical result, converging to a known normal distribution.

3.2 Estimation of the Density Function of the Error

We consider fε as the density of the errors for the estimation of the mean function

m(·). In this paper we consider two different distributions in modeling the density of

the scaled errors, (I) standard normal distribution and (II) DPMM. While estimation

based on (I) is straightforward, simple and produces consistent results, method (II)

can capture multimodality and heavy tails. By using (II), along with consistency,

we can achieve a potential gain in efficiency in small or moderate sample size.

3.2.1 Model-I: Normal Distribution

In this method we take a standard normal distribution for modeling the density

of ε

fε(ε) = Normal(ε|0, 1). (3.8)

This implies that the conditional distribution of Y given X is Normal{·|m(XTθ),

s2(XTγ)}.

3.2.2 Model-II: Dirichlet Process Mixture Models (DPMM)

Misspecification of the error distribution may lead to inefficient estimation, espe-

cially for heavy tailed distribution. The model can be robustified by assuming that

the error ε is modeled nonparametrically. To do so, in recent Bayesian literature,

there has been an explosion of interest in the Bayesian nonparametric methods due
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to their flexibility and to the availability to the easy to use algorithms for posterior

computations. Most of the focus has been on modeling the distribution of the error

ε by DPMM. See for example, Bush and MacEachern (1996), Gelfand et al. (2005),

Leslie et al. (2007), Griffin and Steel (2010), Pelenis (2014).

For modeling a density f(·), a DPMM, usually denoted as DP(αP0) with con-

centration parameter α, base measure P0 and mixture components coming from a

parametric family {fc(·|φ) : φ ∼ P0}, can be specified as

f(·) =
∞∑
k=1

πkfc(·|φk), φk ∼ P0, πk = π∗k

k−1∏
i=1

(1− π∗j ), π∗k ∼ Beta(1, α),

In the literature, this construction of random mixture weights {πk}∞k=1, illustrated

first by Sethuraman (1994), is known as Stick-breaking representation, hence π ∼

Stick(α). Lo (1984) showed that a DPMM of normal density, that is fc(·) =

Normal(·) is dense in the space of densities with respect to Lebesgue measure. Hence,

DPMMs of normals are popular for modeling densities (Escobar and West, 1995;

West, et al. 1994). In the context of regression analysis, moment constraint infi-

nite mixture models of Normal has been considered by Griffin and Steel (2010) and

Pelenis (2014), so that the mean of the error can be restricted at 0.

Drawing inspiration from them, we let fc(·) to be a two component mixture of

normal as

fc(·|p, µ1, µ2, σ
2
1, σ

2
2) = pNormal(·|µ1, σ

2
1) + (1− p)Normal(·|µ2, σ

2
2),

subject to the moment constraint

pµ1 + (1− p)µ2 = 0. (3.9)
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We define µ∗k = −pµk/(1 − p) to obtain the complete DPMM prior for the density

function of ε, namely,

fε(ε) =
∞∑
k=1

πkfc(ε|pk, µk, µ∗k, σ2
k1, σ

2
k2), (3.10)

π ∼ Stick(α), pk ∼ Unif(0, 1),

µk ∼ Normal(a0, b0), σ2
k1, σ

2
k2 ∼ IG(c0, d0).

Here α, b0, c0 and d0 are positive preassigned constants.

Ishwaran and James (2001) constructed an useful class of DPC(αP0) process

which are constructed by applying a truncation to DP(αP0) process. The truncation

is applied by discarding C + 1, C + 2, · · · terms in the infinite DP(αP0) process and

replacing πC with 1− p1− · · ·− pC−1. Determination of appropriate truncation level

can be based on the moments of the random weights. They also showed that for

each positive integer r ≥ 1, E(
∑∞

k=C pk)
r and E(

∑∞
k=C p

r
k) decreases exponentially

fast in C and, thus, for a moderate C, we should be able to achieve an accurate

approximation. They have also given precise bound for marginal density of Y , gC

under DPC(αP0) process, ‖gC − g∞‖1 ∼ 4n exp{−(N − 1)/α}, where ‖ · ‖1 denotes

the L1 distance and g∞ denotes the marginal density of Y under DP(αP0). Hence for

α = 1, C = 20 and C = 10 we get an L1 bound of order 10−6 and 10−3 respectively.

Therefore, even for a sample size of 500, a mere truncation of C = 10 leads to an

approximating hierarchical model that is virtually indistinguishable from one based

on the DP(αP0) prior. See Ishwaran and James (2000) for more discussion and for

application of this truncation to estimate finite mixture of normals.

Thus we consider truncated DP (αP0) process of finite mixture of densities upto
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a fixed number C as follows

f(·) =
C∑
k=1

πkfc(·|φk), φk ∼ P0, πk = π∗k

k−1∏
i=1

(1− π∗j ), π∗k ∼ Beta(1, α),

Blocked Gibbs Sampler can be applied to finite dimensional DP(αP0). The finite

dimensionality of such priors is a key to the success of the method because it allows us

to express our model entirely in terms of a finite number random variables. This then

allows the blocked Gibbs sampler to update (Block of parameters), which because

of the nature of the prior, are drawn from simple multivariate distributions. Other

screening techniques by Berkhof et al. (2003) and Li and Chen (2010) for number of

components for the finite mixture model can also be used to determine C.

3.2.3 Identifiability of Standard Deviation Function

In section 3.1, we define the single-index model in equation (3.1) where we put

a restriction on the second order moment of error to identify the standard deviation

function s(·). However in the previous section we did not put any such restrictions

on the distribution of the error. If we impose the restriction on the distribution

on error, we need to put severe constraints on the prior of the location and scale

parameters on the error. To avoid such a complicate approach, we implement an

extremely simple way to follow the constraint. All we need to do is to adjust a

positive constant (0 < a < ∞) in the error and the standard deviation function as

follows.

s(XTγ)ε =
s(XTγ)

a
× aε

= s̃(XTγ)ε̃
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Here, s̃(·) = s(·)/a and ε̃ = ε/a. Hence ε̃ becomes free of second order moment

restriction since E(ε̃2) = a2 > 0. Thus ε̃ could be modeled efficiently by the penalized

method discussed in section 3.1.3. Then the original standard deviation function

ŝ(XTγ̂) can be estimated simply by â × s̃(XTγ̂). The constant â is consistently

estimated by the standard deviation of the estimated distribution of ε̃. That is,

â2 =
∑C

k=1 π̂k{pk(ŝ2k1 + µ̂2
k1) + (1− pk)(ŝ2k2 + µ̂2

k2)}, where pkµk1 + (1− pk)µk2 = 0.

3.3 Simulation Studies

3.3.1 Basic Settings

In this section we conduct a series of simulations based on different sample sizes

n = 200, 500 and 1000 to compare the kernel method of Lian, et al. (2014) with our

normal model (Model-I) and the DPMM model (Model-II). Data are generated from

a “sine-bump” model, a design similar to that of Carroll et al. (1997), namely,

yi = sin
{
π(XT

i θ − A)/(B − A)
}

+
{

0.2 + (XT
i γ)2/8

}
εi, (3.11)

where X = (X1, X2, ...., X8)
T, with each component being independent Uniform(0, 1)

with A =
√

3/2− 1.645/
√

12 and B =
√

3/2 + 1.645/
√

12.

We take θT = (1, 1, 1, 1, 0.5, 0.5,−0.5,−0.5)/
√

5 and γT = (1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5)

/
√

5. Including a burn-in of 3000 iterations, we use a total of 10, 000 MCMC itera-

tions to obtain the posterior average of each parameters. In each case, 100 simulated

datasets were generated with 3 different error models, namely, (I) normal (mean =

0, σ = 1), (II) Scaled Gamma (mean = 0, scale = 1), and (III) Mixture of Normals

(mean = 0, scale = 1). We use P-splines of order 3 with 10-knots for the mean

function and use 5 knots for variance function estimation.

In the simulation, for the fully Bayesian method, the following prior distributions
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Figure 3.1: The mean and standard deviation function estimation for 3 different
error distribution, (a) Normal (first row), (b) scaled Gamma (second row) and (c)
Mixture of Normals (third row) based on sample size 500. The “blue dashed curve”
is the estimate from Method-I (Normal errors). The “solid magenta curve” and
“red dot-dashed curve” represents DPMM and local linear kernel method (LLK1)
respectively. 42



are used

1. Index vectors: θi, γi ∼ Normal(0, 10) for i = 2, ...., 8.

2. Smoothing parameter: ρ1, ρ2 ∼ IG(3, 1).

3. B-spline coefficients: p0(β) ∝ ρ1β
TDT

r Drβ and p0(ξ) ∝ ρ2 exp(ξ)TDT
r Dr exp(β).

The matrix Dr can be computed by using a built-in function diff() of order

r on an identity matrix in R.

4. DPMM model parameters: We take a finite number of clusters C = 10; π ∼

Stick(1); µk ∼ Normal(0, 1); σ2
k1, σ

2
k2 ∼ IG(1, 1) for k = 1, ...., 10.

The priors are all proper but not informative. We found the results insensitive to

moderate modifications of these priors. For purpose of bias and mean squared error

calculations, the P-spline estimates of mean and variance functions were computed

on a grid of 100 points in the interval chosen to contain the distribution of X. In the

Metropolis-Hasting steps we choose the proposed distributions to be symmetric. The

choice of the “width” of the proposed distribution is sometimes crucial in achieving a

good mixing of the Markov chains. We define I as a diagonal matrix, Uniform+(a−

δ, a+ δ) as the absolute value from Uniform(a− δ, a+ δ) if the random value is less

than 0. For sampling the probability weights π, if the value is greater than 1, then

the distribution returns 2−Uniform(a− δ, a+ δ). The proposal distributions for the

parameters of the MCMC chain are as follows.

i. Index vectors: θ−1 ∼ Normal{θ−1(n), 0.01I}; γ−1 ∼ Normal{γ−1(n), 0.01I}.

ii. B-spline coefficients: β ∼ Normal{β(n), 0.001I}; ξ ∼ Normal{ξ(n), 0.01I}.

iii. DPMM model parameters: π ∼ Uniform+{π(n) − 0.01,π(n) + 0.01)};

µ ∼ Normal{µ(n), 0.001I}; σ2
1 ∼ Uniform+{σ2

1(n) − 0.1,σ2
1(n) + 0.1};
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σ2
2 ∼ Uniform+{σ2

2(n) − 0.1,σ2
2(n) + 0.1}.

For each d = 1, · · · , 100 data set, let θ̂d be the posterior estimate of the index

vector θ. The Monte Carlo estimate of root mean squared error (RMSE) for θ is

calculated as S−1
∑S

d=1 ‖θ̂d − θ‖/p. The RMSE for the index vector γ is calculated

similarly. Let Xgrid = (X1, · · · , X100) be equally-spaced 100 grid points on an in-

terval [0, 1]. RMSE for the smooth function m(·) at Zgrid = XT
gridθ is computed as

MISEest = (100S)−1
∑S

d=1

∑100
i=1 ‖m̂(Zgrid) −m(Zgrid)‖, where ‖ · ‖ is the euclidean

distance for norm of a vector. The RMSE for the index vector θ and γ are given in

Table 3.1. In Table 3.2, we calculate the RMSE for the mean and standard devia-

tion functions for each settings. We calculate the Relative Efficiency of Method II

over Method I as p−1
∑p

i=1 (RMSE of Method II for θi/ RMSE of Method I for θi).

Similarly we compare the efficiency of Method II over Kernel method for estimating

θ and γ.

We show in the simulations that the method based on local linear kernel (LLK)

method of Lian et al. (2014) is sensitive to the initial values of the single-index

parameters θ and γ. We take two different set up denoted as LLK1 and LLK2 to

compare the performances. In LLK1 we choose the starting value close to the truth

while in LLK2 we chose estimates from the Principal Hessian Direction method

(PHD) which is used for our methods. In Table 3.1, we show that the estimates

of the single-index vector looses huge amount of efficiency for LLK2, thus selection

of good starting value is important for the local linear method to yield consistent

estimates. For each parameter, the “Average Efficiency” is calculated for the robust

method (DPMM) with respect to other methods, where the average is taken over

the three different sample sizes. When the true distribution of error is normal, then

our method based on normal likelihood (Normal) yields minimum root mean square
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θ γ
LLK Normal DPMM LLK2 LLK Normal DPMM LLK2

ε ∼ Normal
n = 200 0.049 0.045 0.051 0.168 0.234 0.211 0.226 0.153
n = 500 0.033 0.025 0.027 0.144 0.149 0.137 0.140 0.152
n = 1000 0.021 0.016 0.016 0.135 0.099 0.096 0.101 0.164
Avg. Efficiency 1.159 0.928 5.689 1.031 0.958 1.129

ε ∼ Gamma
n = 200 0.047 0.043 0.038 0.176 0.148 0.179 0.198 0.149
n = 500 0.030 0.025 0.018 0.139 0.122 0.148 0.145 0.154
n = 1000 0.022 0.017 0.011 0.129 0.106 0.124 0.092 0.168
Avg. Efficiency 1.596 1.326 8.209 0.914 1.091 1.199

ε ∼ Mixture of Normals
n = 200 0.051 0.044 0.023 0.177 0.114 0.167 0.162 0.154
n = 500 0.031 0.025 0.011 0.137 0.105 0.134 0.077 0.158
n = 1000 0.020 0.017 0.007 0.133 0.100 0.104 0.042 0.171
Avg. Efficiency 2.597 2.172 13.05 1.498 1.757 2.358

Table 3.1: The table shows the “root mean squared error” for single-index vec-
tors θ and γ, which is evaluated for each of the 100 datasets under 3 different
error distributions, namely, (1) Normal (0, 1), (2) Scaled Gamma (mean = 0, sd
= 1) and (3) Mixture of normals (mean = 0, scale = 1). For each error distribu-
tion, we compare the performance of the new methods,(I) Normal and (II) DPMM
with the local linear kernel method (LLK, when the starting value is closer to true
value and LLK2, when the starting values are chosen by Principal Hessian Direc-

tion Method) for samples sizes, n = 200, 500 and 1000. RMSE for θ̂ is calculated

as 100−1
∑100

d=1 ‖θ̂d − θtrue‖/p, where θtrue = (1, 1, 1, 1, 0.5, 0.5,−0.5,−0.5)/
√

5 and

γtrue = (1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5) /
√

5.

error for all parameters. The average loss in efficiency for the DPMM method in

estimating the parameter θ and γ is 0.072 and 0.042 respectively. When the true

distribution of error is scaled gamma, a skewed distribution, the average gain in

efficiency of the DPMM method in estimating θ is substantial and is approximately

1.325 times that of the normal method and 1.727 times that of the semiparametric

kernel method. When the true distribution is a mixture of normals which represents

a case when the true distribution can have potential outliers, DPMM attains almost
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Mean function(m) Standard deviation(s)
LLK Normal DPMM LLK2 LLK Normal DPMM LLK2

ε ∼ Normal
n = 200 0.404 0.348 0.355 0.693 0.295 0.087 0.124 0.403
n = 500 0.261 0.288 0.293 0.699 0.111 0.084 0.104 0.533
n = 1000 0.223 0.243 0.249 0.227 0.163 0.089 0.099 0.371
Avg. Efficiency 0.975 0.979 1.749 1.698 0.803 4.041

ε ∼ Scaled Gamma
n = 200 0.319 0.342 0.332 0.325 0.113 0.094 0.093 0.739
n = 500 0.228 0.284 0.277 0.247 0.108 0.098 0.074 0.424
n = 1000 0.198 0.247 0.236 0.226 0.092 0.087 0.052 0.229
Avg. Efficiency 0.874 1.034 0.944 1.481 1.336 6.937

ε ∼ Mixture of normals
n = 200 0.287 0.361 0.353 0.358 0.223 0.087 0.080 0.934
n = 500 0.283 0.285 0.277 0.349 0.179 0.085 0.078 0.366
n = 1000 0.228 0.261 0.253 0.200 0.139 0.081 0.070 0.310
Avg. Efficiency 0.912 1.028 1.022 2.356 1.176 6.932

Table 3.2: The table shows the “root mean squared error” for mean function (m) and
standard deviation function (s), which is evaluated for each of the 100 datasets under
3 different error distributions, namely, (1) Normal (0, 1), (2) Scaled Gamma (mean
= 0, sd = 1) and (3) Laplace (mean = 0, scale = 1). For each error distribution, we
compare the performance of the new methods, (I) Normal and (II) DPMM with the
local linear kernel method (LLK, when the starting value is closer to true value and
LLK2, when the starting values are chosen by Principal Hessian Direction Method).
RMSE for m̂ is calculated as 100−1

∑100
d=1 ‖m̂d−mtrue‖, wheremtrue = sin{π(XT

i θ−
A)/(B−A)} and strue = {0.2+(XT

i γ)2/8}, A and B are constants defined in section
3.3.1.

2 times more efficiency in estimating θ and γ than the other methods. Also the

more robust method DPMM achieves substantial amount of efficiency with respect

to the other methods in all the cases. With respect to the local linear kernel method,

DPMM method gains almost 2.2 times root mean square efficiency for the mixture

of normal case. The root mean square error of each method decreases as the sample

size increases for all the parameters.

In Figure 3.1, we compare the modeling of all the methods for sample size equals
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to 500. The estimation of the mean function by all the methods are almost unbiased

as they are almost indistinguishable from the true model. The estimation of the

standard deviation function is usually more difficult than the mean function if the

error distribution is not correctly specified. P-spline fit using the DPMM method is

closer to the true standard deviation function yielding significantly lesser amount of

bias than the other methods. In Figure 3.2, we present the precision of the estimation

of the distribution of the error for increasing sample size for different error models

by the DPMM method.

3.4 Air Pollution Data

We use the NMMAPS (National Morbidity Mortality Air Pollution Study) database

which contains daily mortality, weather and pollution data for 1987-2000. In the

lower atmosphere (troposphere), ozone (O3) is the most important photochemical

oxidants. Controlled exposure studies on human and animals have provided evi-

dence that ozone can cause adverse health effects both in short term and long term

exposure. So in this study we want to model the association between the mean ozone

level and levels of other 7 pollutants such as, temperature, relative humidity, mean

CO2 level, mean PM10 level, mean SO2 level, daily humidity range and daily temper-

ature for the year 1997. After eliminating one day with missing observations, we use

observations from n = 364 days. All the levels of pollutants has been standardized

with respect to their sample mean and sample standard deviation to do the model-

ing. The normal probability plot of deviance residuals show substantial departure

from normality towards the right tail (Figure 3.3). Shapiro-Wilk test of normality

on the residuals provides a pvalue of 0.0054 indicating a significant deviation from

normality. So using a robust method (DPMM) could be more efficient than the nor-

mal method in this dataset. To do the local linear method we used the estimates
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Figure 3.2: Estimation of the density of error by DPMM method for n = 200, 500,
1000. The first row shows the result when the true density is “Normal (0,1)”, the
second row corresponds to “scaled Gamma (mean = 0, sd = 1)” and the third row
corresponds to “mixture of two normal distributions (mean = 0, sd = 1)”. The
“grey solid line” represents the true density, and the “black solid line” represents the
DPMM estimation.
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Figure 3.3: Summarizes the result of the Air Pollution data in Section 3.4. The first
row shows the modeling of the mean level of ozone (left) and standard deviation of
the ozone (right) with respect to the other pollutants. The “grey dots” in the mean
function estimation are the true data points of mean ozone level. The “grey dots”
in the variance function is the absolute residuals after mean modeling. The DPMM
estimation is denoted by “magenta solid” line, the Normal method estimation is
denoted by “blue dashed line”, ordinary least square regression by “black solid line”
and the local linear kernel method is denoted by “red dot-dashed” line. The second
row represents the qqplot of the residuals (left) and the estimation of the density
(right) of the residuals by DPMM method (black solid line) and kernel method (blue
dashed line).

from the DPMM method as initial values for the iterations.

In Figure 3.3 we model the distribution of the error by DPMM method which

looks asymmetric. We model the mean and the standard deviation function in Figure
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3.3 and find a significant positive association between the mean ozone level and the

levels of other pollutants. We also did an ordinary least square regression to model

the mean ozone level and found that the estimated line is quite to the estimated

curves from the semiparametric methods. In Table 3.3, we summarize the effects

of the other pollutants by estimating θ and γ. Levels of the mean temperature

has substantial positive effects on the mean ozone level. Whereas the mean CO2

and relative humidity has significant negative effects. The nature of the results are

fairly consistent with the findings by Ciaula and Bilancia (2015). A strong positive

association between PM10 and the ozone level can be inferred from all the methods.

We calculate the standard errors of the estimates by 100 Bootstrap samples where

we found that the robust method DPMM obtains significant lower standard errors

for the single-index parameters than the other methods.

3.5 Discussion

In this paper we attempt to model both the mean and variance function by

single-index model, a popular multivariate semiparametric model with a powerful

dimension reduction quality. To our best knowledge, one existing work by Lian, et

al. (2014) addresses the issue by local linear kernel approach. In the numerical ex-

amples, we found that the method is quite sensitive to the starting values and thus

can have serious issues in practical applications. We have an entirely different ap-

proach based on random effects B-spline methodology of mean and variance function,

with flexible truncated Dirichlet process mixture of normals for the regression errors.

We use Bayesian computation to fit, because the structure makes such computation

simple and straightforward. In simulation, we found that the precision of the esti-

mates largely increases under our method compared to that of the kernel approach.

Even with initial values selected by simple methods like ordinary ridge regression
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Parameters Method Mean Relative Mean Mean Mean Humidity Temp
Temp Humidity CO2 PM10 SO2 Range Range

θ̂ Normal 0.334 -0.251 -0.650 0.415 -0.335 -0.040 0.342
ŝe 0.018 0.011 0.004 0.007 0.010 0.092 0.012

DPMM 0.226 -0.403 -0.533 0.460 -0.394 -0.066 0.362
ŝe 0.009 0.013 0.018 0.009 0.017 0.084 0.020

LLK2 0.543 -0.176 -0.600 0.361 -0.264 0.090 0.325
ŝe 0.013 0.024 0.006 0.013 0.016 0.041 0.015

γ̂ Normal 0.632 -0.458 -0.507 0.024 -0.318 0.161 -0.077
ŝe 0.039 0.057 0.011 0.100 0.042 0.052 0.074

DPMM 0.242 -0.514 -0.326 0.331 -0.359 0.422 -0.392
ŝe 0.015 0.015 0.052 0.037 0.033 0.036 0.044

LLK2 0.247 -0.584 -0.582 -0.052 -0.499 0.079 -0.002
ŝe 0.051 0.007 0.008 0.063 0.011 0.044 0.106

Table 3.3: Summary of the estimates of single index parameters θ and γ (in bold)
denoting the effects of the other Air pollutants on the mean ozone level. The standard
errors (ŝe) are based on 100 bootstrap samples. We compare our methods based on
our Method I (Normal) and Method-II (DPMM) models with that of the local linear
kernel method (LLK2) of Lian, et al. (2014). Here Temperature is denoted as
“Temp”.

and principal hessian direction method (Li, 1991), our method yields consistent and

efficient estimations in 5000 MCMC steps which takes about 15 mins in R using

the Normal method and about 30 mins using the mixture of Normals. However,

whether single-index model can be applicable to large scale problems where n < p

needs future study. An important extension of the current work and the subject of

an ongoing research project is to find an integrated model which can effectively do

variable selection of pertinent covariates to do single-index regression.
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4. SINGLE-INDEX MODEL FOR SECONDARY ANALYSIS IN

CASE-CONTROL STUDIES

4.1 The Model Framework

4.1.1 Background

Let the disease status be denoted as D with D = 1 denoting a case and D = 0

denoting a control. For d = 0, 1, let πd = pr(D = d), the probability that D = d

in the population. The disease status D is related to covariates (Y,X) through the

linear model

pr(D = d|X, Y ) = H(d,x, y) =
exp{d(α0 + xTα1 + yα2)}
1 + exp{α0 + xTα1 + yα2}

(4.1)

where α = (α0,α1, α2). In the secondary analysis, we seek to understand the regres-

sion relationship between covariate Y and multivariate covariate X in the true popu-

lation based on n1 number of cases and n0 number of controls. We write n = n0 +n1

and introduce the parameter κ = α0 + log(n1/n0)− log(π1/π0). This reparametriza-

tion has the advantage that we can identify κ and (α1, α2) from a logistic analysis

of D on (Y,X), although we cannot identify α0 (Prentice and Pyke, 1979; Chatter-

jee and Carroll, 2005) from such logistic regression alone. We are interested in the

following model

Y = m(XTθ) + s(XTγ)ε (4.2)

where, m(·) and s(·) are unkown flexible function based on unknown p-dimensional

index vectors θ and γ, The error ε are independent and identically distributed ac-
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cording to some density fε(·), with only restrictions E(ε|X) = 0 and E(ε2|X) = 1

to ensure identifiability. Hence, the conditional heteroscedasticity is only explained

through the variance function s2(·). To avoid identifiability issues, we need additional

restrictions on the single-index vectors, specifically, ‖θ‖ = ‖γ‖ = 1.

4.1.2 Modeling the Mean Function m(·)

Many of the problems in case-control studies involve nonlinear relationship be-

tween covariates that are difficult to model parametrically. There is a clear impera-

tive to be able to handle such nonlinear relationships effectively through more flexible

techniques. Although there are several methods for constructing ”smooth” function,

in this paper we focus on penalized splines. It has the attractiveness of being a rela-

tively straightforward extension of linear mixed model (O’ Sullivan, 1986; Eilers and

Marx, 1996).

Given θ, a general approach discussed by Eilers and Marx (1996) is to model

the regression function m(·) by a linear combination of basis splines or B-splines

with fixed knots and smoothing parameter ρ1, better known as penalized splines or

P-splines. Let B1(t) = {B1j(t)}Mj=1, where M = K + q − 2 be a qth order B-spline

with K fixed knots. The coefficient of the kth knot is denoted by βj for j = 1, .....,M .

The mean function is evaluated at the “transformed design points” ti = XT
i θ̂ for

i = 1, ....., n as

m̂(ti) =
M∑
j=1

B1j(ti)βj. (4.3)

Let D be a fixed, symmetric and a positive semi-definite N -dimensional matrix. The

53



penalized least square estimator β̂(ρ1,θ) for the mean function minimizes

n∑
i=1

{Yi − B1(ti)Tβ}2 + ρ1β
TDβ,

Here β = {β1, β2, ..., βM}T and D = DT
r Dr is the matrix representation of the

difference operator ∆r of order r defined by Eilers and Marx (1996). For simplicity

of notation, we define X̃θ = B1(XTθ) to obtain the least square estimators for β

β̂(ρ1,θ)LS = (X̃T
θ X̃θ + ρ1D)−1X̃T

θY.

We can use β̂LS as a potential starting value for the MCMC iteration.

4.1.3 Modeling the standard deviation function s(·)

In many cases, the assumption of constant conditional variance is unrealistic.

There are instances in biology where the effect of a treatment is to cause an increase

in variance rather than an increase in mean. A comprehensive review of heteroscedas-

ticity is given in Carroll and Ruppert (1988). There are instances that even with

various transformation, it is hard to stabilize the variance. We take up the flexi-

ble approach based on penalized splines to model the variance function as another

single-index model with respect to X.

In the Bayesian approach, estimation of a flexible variance function s(·) and the

corresponding single-index vector γ is straightforward. We only need to specify the

prior distribution of the parameters. Although there are many ways to implement

variance function, one such example of modeling log-transformed variance function

by flexible mixture of splines are abundant in the literature, for example Yau and

Kohn (2003), Liu, et al. (2006). In this article, for fixed γ, we model the variance

function by a positive mixture of B-splines of order q with K1 knots at transformed

54



points where we use the exponential function to ensure that the variance function is

positive wi = XT
i γ̂ as

s(wi) =

M1∑
j=1

B2j(wi) exp(ξj) (4.4)

where, M1 = K1+q−2. For simplicity, we define X̃γ = B2(XTγ). Then a reasonable

starting value for the P-spline coefficient ξ of the variance function is

exp
{
ξ̂(ρ2,γ)LS

}
= |(X̃T

γ X̃γ + ρ2D)−1X̃T
γ r̂

2|,

4.1.4 Case-control Likelihood

The conditional distribution of Y givenX is modeled as fε{y−m(XTθ), s(XTγ)}.

For the case-control studies, Jiang et al. (2006), Chen et al. (2008) and Lin and

Zeng (2009) derived the efficient profile likelihood. Write (Ω = κ,α1, α2). The joint

density of D, Y given X is

g(d, y|X,θ,γ,Ω) = fε[{y −m(XTθ)}/s(XTγ)]
exp{d(α0 + xTα1 + yα2)}
1 + exp(α0 + xTα1 + yα2)

The semiparametric efficient retrospective profile likelihood for Y |X when the dis-

tribution of Y given X is specified is

L(Y |X, D = d,θ,γ,α) =
g(d, y|X,θ,γ,α)∫
g(d, t|X,θ,γ,α)dt

(4.5)

Under homoscedastic errors, Wei et al. (2013) showed that the scores function of the

regression parameters yield 0 under the true value only if the density fε is specified

properly. So this motivates our search for a robust nonparametric estimation method
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under high-dimensional set up. The notation Normal(·|µ, σ) is used to denote a

normal distribution with mean µ and standard deviation σ. We denote φ(·) as the

standard normal distribution. In this article, we model fε by two ways

I. Errors are normally distributed with mean 0 and standard deviation 1.

fε(·) = φ(·).

II. A more robust model based on finite mixture of Normals with mean 0

fε(·) =
C∑
k=1

wk{pkN(·|µk1, σk1) + (1− pk)N(·|µk2, σk2)},

where
∑C

k=1wk = 1 and pkµk1 + (1− pk)µk2 = 0 for k = 1, · · · , C.

4.2 Identifiability Issues and Rare disease approximation

It is typical in case-contol studies that the disease rate, π1 = pr(D = 1) is not

known. Also under case-control set up, the logistic intercept α0 is not identifiable

(Prentice and Pyke, 1979). So under frequentist set up, the score function of α0

produces extremely unstable results, Wei et al. (2013). That motivates us to sub-

stitute the complete likelihood by an approximate likelihood which can yield almost

consistent results without estimating α0.

Since case-control studies are almost inevitably conducted for rare outcomes, the

rare disease approximation is natural in most applications. Although the word ”rare”

has no specific definition but it is certainly 1% or less. In other words, a disease is

rare if pr(D = 1) = π1 ≈ 0. In the literature most researchers like Piegorsch et al.

(1994), Epstien and Satten (2003), Lin and Zeng (2006), Modan et al. (2001), Zhao

et al. (2003), Kwee et al. (2007), Lin and Zeng (2009), Hu et al. (2010), Wei et al.
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(2013) and Rahman et al. (2014) used the following approximation to find almost

consistent results.

pr(D = 1|Y,X) =
exp(α0 + xTα1 + yα2)

1 + exp(α0 + xTα1 + yα2)
≈ exp(α0 + xTα1 + yα2) (4.6)

Equivalently, under rare disease, pr(D = 0|Y,X) becomes approximately equal to 1.

4.2.1 Standard Method: Using Only Controls

Due to overrepresentation of cases in the sample, case-control samples are not

random sample from the true population. So application of standard method of

estimation leads to biased results. Case-controls are typically used to study rare dis-

ease. Otherwise, with disease rate π1 being unknown the nonparametric estimation

is not identifiable. So in this case, invoking rare disease approximation has been a

popular way to solve the problem ( Nagerkele, et al., 1995; Jiang, et al. 2006; Lin

and Zeng, 2010; Rahman, 2015). Under rare disease approximation, when π1 ≈ 0 or

when π1 ≈ 1, the population of control can be regarded approximately equal to the

true population. Then the standard methods based on i.i.d samples applied to only

controls lead to approximately consistent result.

When error distribution is fε(·) = Normal(·|0, 1), the likelihood based only on

controls is

Lcon,0,1(y|d,X,θ,γ) = φ[{y −m(XTθ)}/s(XTγ)]1−d

So taking the logarithms and summing over the observed data, the log-likelihood

function is

Lcon,0,1(y|d,X,θ,γ) =
n∑
i=1

(1− di)log
(
φ[{yi −m(Xi

Tθ)}/s(Xi
Tγ)]

)
(4.7)
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When the error distribution is a finite mixture model of Normals,

Lcon,mixture(y|d,X,θ,γ) =
n∑
i=1

(1− di)log[
C∑
k=1

wk{pkN(·|µk1, σk1) + (1− pk)N(·|µk2, σk2)}](4.8)

4.2.2 Approximate Efficient Likelihood Using Normal Errors

Define gapprox(y|d,X,θ,γ,Ω) = fε[{y − m(XTθ)/s(XTγ)] exp{d(κ + xTα1 +

yα2)}. Under the rare disease approximation the working likelihood can be written

as

Lapprox(Y |X, D = d,θ,γ,Ω) =
gapprox(y|d,X,θ,γ,Ω)∫
gapprox(t|d,X,θ,γ,Ω)dt

When fε(·) is Normal(0, 1), the approximate case-control likelihood is

Lnorm(y|d,X,θ,γ, α2) = exp[dα2y − d{α2m(XTθ) + α2
2s

2(XTγ)/2}]φ{y −m(XTθ)

s(XTγ)
}(4.9)

So, the rare disease approximation in equation (4.6) allows us to avoid the identifiabil-

ity issue of logistic intercept. And it also enables us to utilize the entire case-control

sample in the likelihood.

4.2.3 Approximate Efficient and Robust Likelihood Using Finite Mixture of

Normals

Recall that in section 4.1.4, we discussed that the score under case-control likeli-

hood donot yield 0 under true parameter if the conditional distribution of f(Y |X) is

misspecified. So our goal of this paper is to find a robust and efficient estimation of

m(·) and s(·) using the entire case-control data. Rahman et al. (2015) showed that

finite mixture of Normal can be suitably used to capture any considerable deviation

from normality while estimating mean and variance function for single-index model.
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In particular, they showed that for heavy tail distribution, finite mixture of Normals

can achieve a substantial gain in efficiency under i.i.d. set up.

Write Ψ = (κ,αx, αy,θ,γ, {µk1}Ck=1, {σk1}Ck=1, {σk2}Ck=1). Define Q1(d, α2,Ψ) =∑C
k=1wkpk exp{dα2s(X

Tγ)µk1 + dα2
2s

2(XTγ)s2k1/2} and Q2(d, α2,Ψ) =∑C
k=1wk(1−pk) exp{dα2s(X

Tγ)µk2+dα2
2s

2(XTγ)s2k2/2}. The approximate efficient

case-control likelihood under finite mixture of Normal is

Lrobust(y|d,X,Ψ, α2) =
exp{dα2y − dα2m(XTθ)}
Q1(d, α2,Ψ) +Q2(d, α2,Ψ)

[
×

C∑
k=1

wk{pkN({y|µk1, σk1)

+(1− pk)N(y|µk2, σk2)}
]

(4.10)

4.3 Estimation Methods

4.3.1 Using Only Controls

The controls can be regarded as random sample of the true population if the

disease is rare. Therefore the true regression function can be estimated using only

the controls using the likelihood in (4.7) and (4.8). Hence the method is similar to

i.i.d samples developed by Rahman et al. (2016). The method is as follows.

(a) Starting values for index vectors θ and γ are obtained by applying Principal

Hessian Direction matrix (Li, 1992) on the controls.

(b) Design the non-informative prior for all parameters.

(c) Update all the parameters by MCMC based only on controls.

(d) Obtain the posterior estimates β̂con, ξ̂con, θ̂con and γ̂con.

4.3.2 Efficient Estimation Using Entire Case Control Data

Rahman et al. (2015) showed that Bayesian MCMC procedure can attain a prac-

tical, consistent and efficient estimation of mean and variance single-index model for
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i.i.d samples. The method is successful in obtaining the consistent estimates of the

true mean and variance function without depending heavily on the initial values un-

like other frequentist method. That motivates us to develop a Bayesian methodology

based on finite mixture error model. The lay-out of the efficient estimation strategy

under case-control set up is as follows.

(a) Estimate the true logistic regression parameters κ, α1 and α2 by ordinary

logistic regression of D on (Y,X). This is a good starting value for because

the ordinary logistic regression in a case-control study consistently estimates

(α1, α2) and κ (Prentice and Pyke, 1979; Chatterjee and Carroll, 2005). We

denote the estimates as κ̂init and (α̂1,init, α̂2,init).

(b) Use θ̂con, γ̂con as the starting values for the index parameter θ,γ.

(c) Use β̂con, ξ̂con as the starting values for the regression parameter β, ξ.

(d) Use the same non-informative prior for each of the parameters.

(e) Since full posterior conditional distribution of the parameters are not straight-

forward, update all the parameters by MCMC algorithm.

4.4 Prior Specification

In this section we develop the fully Bayesian structure of the model by placing

priors on all the parameters. In this paper we use the definition of the inverse-gamma

and gamma distribution from Berger (1985),

IG(A,B) =
1

Γ(A)BAxA+1
exp

{
− 1/(Bx)

}
I(0,∞)(x)

60



and

Gamma(A,B) =
1

Γ(A)BA
xA−1 exp

{
− x/B

}
I(0,∞)(x).

The generic notation p0 is used for specifying priors for parameters and hyperparam-

eters.

1. Single-index Vectors: Without loss of generality, we fix the first component

of θ to 1, while rest of the component of θ as θ−1 = (θ2, ......, θp). We use the

eigenvector corresponding to the maximum eigenvalue of Λ̂ as a starting value

for θ−1. Similarly we denote γ−1 = (γ2, ......, γp) and calculate the starting

value for γ−1 using the maximum eigen value of Γ̂. For each MCMC iteration

step, we fix θ1 = γ1 = 1 and specify normal prior on the rest of the components

of the vectors

p0(θ−1) = Normal(·|θprior,Σθ),

p0(γ−1) = Normal(·|γprior,Σγ),

where θprior,γprior, Σθ and Σγ are pre-specified constants.

2. Mean function: Let β = {β1, β2, ..., βM}T and D = DT
r Dr is the matrix

representation of the difference operator ∆r of order r defined by Eilers and

Marx (1996). We model the mean function by a B-spline with smoothness
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inducing prior on the coefficients, given as

p0(β) ∝ ρ
M/2
1 exp{−ρ1βTDβ/2},

ρ1 ∼ Gamma(Aρ1, Bρ1).

The prior p0(β) induces smoothness in the coefficients because it penalizes∑n
j=r+1(∆rβj)

2 = βTDβ, the sum of squares of the second order difference in

β.

3. Variance function: A flexible Bayesian model for the variance function with

smoothness inducing priors on the coefficients is

p0(ξ) ∝ ρ
M1/2
2 exp{−ρ2 exp (ξ)TD exp (ξ)/2},

ρ2 ∼ Gamma(Aρ2, Bρ2).

Here ρ2 is the smoothing parameter for the variance function. Larger values

of ρ2 with smaller number of knots K1 imposes stronger penalty resulting in

smoother variance function.

4. Finite mixture of Normal model parameters: For modeling a density

f(·), a DPMM with concentration parameter α, base measure P0 and mix-

ture components coming from a parametric family {fc(·|φ) : φ ∼ P0}, can be

specified as

f(·) =
∞∑
k=1

πkfc(·|φk), φk ∼ P0, πk = π∗k

k−1∏
i=1

(1− π∗j ), π∗k ∼ Beta(1, α),

In the literature, this construction of random mixture weights {πk}∞k=1, illus-

trated first by Sethuraman (1994), is known as Stick-breaking representation,
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hence π ∼ Stick(α). Lo (1984) showed that a DPMM of normal density, that

is fc(·) = Normal(·) is dense in the space of densities with respect to Lebesgue

measure. Hence, DPMMs of normals are popular for modeling densities (Esco-

bar and West, 1995; West, et al. 1994). In the context of regression analysis,

moment constraint infinite mixture models of Normal has been considered by

Griffin and Steel (2010) and Pelenis (2014) so that the mean of the error can

be restricted at 0. Drawing inspiration from them, we let fc(·) to be a two

component mixture of normal as

fc(·|p, µ1, µ2, σ
2
1, σ

2
2) = pNormal(·|µ1, σ

2
1) + (1− p)Normal(·|µ2, σ

2
2),

subject to the moment constraint

pµ1 + (1− p)µ2 = 0. (4.11)

We define µ∗ = −pµ1/(1 − p) and impose the constraint (4.11) to obtain the

complete DPMM prior for the density function of ε

fε(ε) =
∞∑
k=1

πkfc(ε|pk, µk1, µ∗k, σ2
k1, σ

2
k2), (4.12)

π ∼ Stick(α), pk ∼ Unif(0, 1),

µk ∼ Normal(a0, b0), σ2
k1, σ

2
k2 ∼ IG(c0, d0).

Here α, b0, c0 and d0 are positive preassigned constants. We used blocked Gibb’s

sampler to sample the parameters from their posterior (Ishwaran and James,

2001).

DPMMs are essentially mixture models with a potential infinite number of
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mixtures or ’clusters’. However, for a given data set of finite size, the number

of active clusters exhibited by the data is finite. So instead of infinite mixture

of normals, we can consider a finite mixture of densities upto a number C

f(·) =
C∑
k=1

πkfc(·|φk), φk ∼ P0, πk = π∗k

k−1∏
i=1

(1− π∗j ), π∗k ∼ Beta(1, α),

Screening techniques by Berkhof et al. (2003) and Li and Chen (2010) for

number of components for the finite mixture model can be used to determine

C.

4.5 Simulation

We performed a simulation studies both at and away the Gaussian model to

assess the first nonparametric single-index model attempt in case-control studies.

Our simulations indicate that our MCMC posterior estimates has small bias. We

also show that our method achieves significant gain in efficiency when compared

with using only controls while the approach that uses all the data but ignores the

case-control sampling design suffers from bias. The result presented here are based

on P-splines with 10 knots for mean function estimation and 5 knots for variance

function estimation. In each case, 500 cases and 500 controls are generated with

Xi generated from Unif(0, 1) and Y is simulated from the following model used by

Carroll et al. (1997),

yi = sin
{
π(XT

i θ − A)
}

+
{

0.2 + (XT
i γ)2/8

}
εi, (4.13)

where A =
√

3/2− 1.645/
√

12.

We take θT = (1, 1, 1)/
√

3 and γT = (1, 1, 1)/
√

3. We use two distribution for

the distribution of errors εi, (I) Normal(εi|0, 1) and (II) Laplace distribution with
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mean 0 and standard deviation 1. The logistic regression model is pr(D = 1|Y,X) =

H(α0 + αyY + αxX) with αy = 0.25 and αx
T = (1, 1, 1). We use α0 = −5.2 to

simulate from the true population with disease rate approximately 3%. We con-

trasted four methods, (a) the single-index model using entire data sets ignoring

the case-control set up which is expected to be biased (ALL), (b) using only con-

trols based on Normal density(CONT), (c) using the adjusted Likelihood based on

Normal density (ANL) and (d) using the adjusted Likelihood based on mixture of

normals (AMNL). To compare the performance of the methods, we simulated 100

datasets where we computed the root mean squared error (RMSE) and standard

error (s.e) of the index vectors θ, γ, mean function m(·) and standard deviation

function s(·). For B simulated datasets, we computed the RMSE(θ̂i) of parameter

θ = (θ1, · · · , θ3) as

√
1/B

∑B
r=1(θ̂ir − θi)2. For the mean and standard deviation

function we calculate the root mean squared error in a predefined grid on (0, 1) di-

vided into 100 equal intervals. For a point zi on the grid, we compute the RMSE of

m̂(zi) as
√

1/B
∑B

r=1{m̂(zi)r −m(zi)}2.

In Table 4.1 and Table 4.2, the ”MSE Efficiency” of the new methods ANL,

AMNL and ALL is calculated with respect to the control only method (CON) by

(MSE Efficiency of the method)/(MSE Efficiency of the controls). For αy = 0.00

then Li, et al. (2010) observed that when Y is independent of D given X, then

the association between the covariates in the cases remains same as that for the

underlying true population. So we present the result for αy = 0.25. Here the

approach that uses all the data (ALL) as i.i.d. is biased in estimating the mean and

standard deviation function. The estimates of θ under ”ALL” method is biased, see

Table 4.1. Under true Normal model, our Bayesian method using adjusted Normal

likelihood (ANL) is more efficient in estimating both θ and γ. The adjusted method

is almost 1.5 times as efficient as that of using standard method on controls. In
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Normal model Laplace Model
CONT ANL AMNL ALL CONT ANL AMNL ALL

θ1 = 0.577
Mean 0.581 0.580 0.586 0.768 0.574 0.572 0.576 0.774
s.e 0.007 0.008 0.009 0.004 0.019 0.012 0.018 0.004
MSE Eff 1.587 0.991 0.171 0.916 1.456 0.098

θ2 = 0.577
Mean 0.567 0.571 0.578 0.465 0.599 0.595 0.585 0.464
s.e 0.027 0.019 0.024 0.016 0.015 0.016 0.007 0.016
MSE Eff 1.301 1.218 0.261 1.116 2.540 0.232

θ3 = 0.577
Mean 0.573 0.576 0.577 0.440 0.558 0.575 0.577 0.431
s.e 0.028 0.023 0.028 0.018 0.004 0.005 0.001 0.018
MSE Eff 1.157 1.158 0.478 2.235 3.481 0.137
Mean function Efficiency

2.325 2.083 1.004 2.011 3.015 0.865

Table 4.1: Result of the simulation study for the single index parameter θ =
(θ1, θ2, θ3) with n1 = 500 cases and n0 = 500 controls, and a disease rate of approx-
imately 3%. To obtain the response, we consider two distributions, ”Normal Model
(ε ∼ N(0, 1))” and ”Laplace model (ε ∼ Laplace(0,1)”). For 100 simulated data
sets, we computed the mean of the estimates(”Mean”), it’s standard error (”s.e”),
lower (”Lower) and upper (”Upper”) 95% confidence intervals and the root-mean-
squared error efficiency (”MSE Eff”) compared with using only the controls. Our
methods (ANL) and (AMNL) are contrasted with using (a) only controls with nor-
mal likelihood (”CONT”) and (b) Entire case-control data with normal likelihood
(”ALL”).

estimating the mean function, both the adjusted likelihood based on Normal (ANL)

and mixture of Normals (AMNL) are almost 2 times more efficient than that of using

only controls (CON). However, while estimating the standard deviation function, a

more difficult problem, our method based on mixture of normal is less biased and

more efficient than other methods. When the error is away from Gaussian, for

example, we consider the case when the error distribution is Laplace, we found that

our method using normal likelihood lacks efficiency. Our adjusted method using

finite mixture of normals is almost 1.5 times as efficienct than the adjusted normal
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Normal model Laplace Model
CONT ANL AMNL ALL CONT ANL AMNL ALL

γ1 = 0.577
Mean 0.680 0.628 0.677 0.619 0.533 0.612 0.518 0.488
s.e 0.014 0.009 0.022 0.015 0.071 0.062 0.041 0.089
MSE Eff 2.004 1.021 1.965 1.768 1.139 0.791

γ2 = 0.577
Mean 0.526 0.532 0.528 0.528 0.606 0.532 0.587 0.284
s.e 0.035 0.039 0.033 0.061 0.074 0.069 0.066 0.441
MSE Eff 0.970 0.977 0.661 1.970 2.878 0.168

γ3 = 0.577
Mean 0.510 0.565 0.511 0.576 0.570 0.681 0.620 0.748
s.e 0.012 0.047 0.005 1.715 0.125 0.117 0.211
MSE Eff 1.397 1.029 0.429 1.202 2.797 0.591
S.D. function Efficiency

1.152 1.809 0.473 1.182 1.462 0.846

Table 4.2: Result of the simulation study for the single index parameter γ =
(γ1, γ2, γ3) with n1 = 500 cases and n0 = 500 controls, and a disease rate of ap-
proximately 3%. To obtain the response, we consider two distributions, ”Normal
Model (ε ∼ N(0, 1))” and ”Laplace model (ε ∼ Laplace(0,1)”. For 100 simulated
data sets, we computed the mean of the estimates (”Mean”), it’s standard error
(”s.e”), lower (”Lower) and upper (”Upper”) 95% confidence intervals and the root-
mean-squared error efficiency (”MSE Eff”) compared with using only the controls.
Our methods (ANL) and (AMNL) are contrasted with using (a) only controls with
normal likelihood (”CONT”) and (b) Entire case-control data with normal likelihood
(”ALL”).

likelihood method in estimating the mean function and almost 3 times efficient than

that using only controls. In estimating the variance function, the adjusted method

based on finite mixture of normal attains maximum efficiency with respect to using

only controls and the normal likelihood method.

4.6 Secondary Analysis on NIH-AARP Data Diet and Health Study

We use the case-control data from NIH-AARP (National Institute of Health-

American Association of Retired Persons to study on the association between the
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BMI(Body Mass Index) and eating habit (like, Alcohol intake). This study was

done in 1995-1996 to address the epidemiologic investigations of diet and cancer

(Schatzkin, et al. 2001). The study is based on the responses from the baseline

questionnaire to both men and women of age 50 years and over, an age when cancer

occurrence is becoming more frequent. In this paper we focus on the breast cancer

incidences of n1 = 1025 number of cases and n0 = 1086 of controls. ”BMI” is

recorded in kg/m2, ”Alcohol intake” is recorded in gm/day, ”Age” in years and

”Fat density” in percentages. In this data set, there was no missing data and we

standardized each variables before using our methods.

Before applying our method, we do a preliminary analysis by fiting a quadratic

model to model ”BMI” by ”Fat density”, ”Age” and ”Alcohol intake”. The pvalue

for the quadratic part is < 10−3. We compare 3 methods, (a) Using only con-

trols(CON), (b) Using adjusted likelihood based on Normal errors(ANL), (c) Using

adjusted likelihood based on Mixture of Normals(ANML).

The results are given in Table 4.3. We see in Table 4.3 that estimation of θ for Age

and Fat density is almost same for all the three methods. To compute the efficiency

of the methods we compare the standard errors of the estimates. Efficiency of the

robust method (AMNL) is higher than the rest of the approaches. The efficiency

gain is almost 2 times that of the controls (CONTROLS) in estimating the mean

function parameter θ(Table 4.3). While estimating the standard deviation function,

the efficiency gain of Normal approach (ANL) is greater than that of the AMNL.

For estimation of ALCOHOL effect, the standard errors of all the methods are quite

high signifying a non-significant effect of Alcohol in modeling BMI. The pvalues for

linear and quadratic model reveals very insignificant effect of Alcohol on BMI in

this dataset. The effect of FAT DENSITY is quite high in all the methods, which

matches with the preliminary linear model done of BMI and other covariates.
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θ γ
CONT ANL AMNL CONT ANL AMNL

AGE
Mean -0.414 -0.406 -0.431 -0.461 -0.665 -0.652
s.e 0.071 0.092 0.073 0.198 0.191 0.138
Efficiency 0.771 0.973 1.037 1.435

ALCOHOL
Mean -0.221 0.198 0.014 -0.217 0.332 -0.050
s.e 0.301 0.172 0.145 0.243 0.109 0.306
Efficiency 1.742 2.076 2.229 0.794

FAT DENSITY
Mean 0.883 0.892 0.902 0.861 0.669 0.756
s.e 0.129 0.051 0.049 0.195 0.085 0.136
Efficiency 2.519 2.584 2.294 1.434

Table 4.3: Result of NIH-AARP study when BMI is modeled by single-index func-
tion of ”Age”, ”Alcohol Intake” and ”Fat Density” from the 1000 cases of Breast
Cancer and 1000 number of controls. For 100 simulated data sets, we computed
the mean of the estimates(”Mean”), it’s standard error (”s.e”), lower (”Lower) and
upper (”Upper”) 95% confidence intervals and the standard error efficiency (”Effi-
ciency”) compared with using only the controls. Our methods (ANL) and (AMNL)
are contrasted with using only controls with normal likelihood (”CONT”).
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5. CONCLUSIONS

5.1 Nonparametric Regression Method for the Secondary Analysis in

Case-Control Studies

Primarily, in the second Chapter, we have considered the case of nonparametri-

cally estimating E(Y |X) when no assumptions about the distribution of Y given X

are made, including homoscedasticity. First we describe methodology in the rare case

that the disease rate in the population, π1, is known. We describe methodology in

the far more common case that π1 is unknown. In this common case, our simulations

show conclusively that our tilted kernel estimator is the more efficient.

We considered the case that the disease rate in the population is unknown, and

when one is willing to specify a distribution for Y given X up to a function µ(X)

and other parameters, using a local likelihood method along with profiling methods.

We displayed the method for when Y is binary with mean H{µ(X)}. However,

we emphasized two important points: (a) such methods are not consistent if the

parametric model is misspecified; and (b) it is likely that the logistic intercept θ0

will be very difficult to estimate numerically, and a rare disease approximation will

improve computational performance (since it eliminates θ0) while entailing little if

any bias.

Ours is the first work to consider nonparametric regression in the secondary anal-

ysis of case-control studies. We have focused on the case of scalar X, and discovered a

tilted kernel approach for estimation. With this tilted kernel function, extensions to

multivariate X are surely possible, including multivariate kernel regression (Ruppert

and Wand, 1994), additive models, etc.
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5.2 Semiparametric Regression Method for the Heteroscedastic Single-Index

Model

In the third Chapter we attempt to model both the mean and variance function

by single-index model, a popular multivariate semiparametric model with a powerful

dimension reduction quality. To our best knowledge, one existing work by Lian, et

al. (2014) addresses the issue by local linear kernel approach. In the numerical ex-

amples, we found that the method is quite sensitive to the starting values and thus

can have serious issues in practical applications. We have an entirely different ap-

proach based on random effects B-spline methodology of mean and variance function,

with flexible truncated Dirichlet process mixture of normals for the regression errors.

We use Bayesian computation to fit, because the structure makes such computation

simple and straightforward. In simulation, we found that the precision of the esti-

mates largely increases under our method compared to that of the kernel approach.

Even with initial values selected by simple methods like ordinary ridge regression

and principal hessian direction method (Li, 1991), our method yields consistent and

efficient estimations in 5000 MCMC steps which takes about 15 mins in R using

the Normal method and about 30 mins using the mixture of Normals. However,

whether single-index model can be applicable to large scale problems where n < p

needs future study. An important extension of the current work and the subject of

an ongoing research project is to find an integrated model which can effectively do

variable selection of pertinent covariates to do single-index regression.
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APPENDIX A

FIRST APPENDIX

A.1 Notation and Supporting Lemmas

A.1.1 Notation

In this Section we introduce notation that is needed for deriving the main re-

sults. Superscript (1) refers to a first derivative, (2) refers to a second derivative, etc.

We assume that fXY (·), fX(·) and fX,cont(·) is twice continuously and boundedly

differentiable with respect to x.

Define

µ(x0) = E{Y |X = x0}, µcont(x0) = E{Y |D = 0},

K(j)(y,Ω, x) = ∂(j)K(y, x,Ω)/∂xj;

Write

H(d = 0|y, x, θ0, θ1) = Kpop(y, x0,Ω, θ0)/K(y, x0,Ω)

= {1 + exp(θ0 +m(y, x0, θ1)}−1;

µcont(x0) =

∫
yfY X(y, x0)H(d = 0|y, x, θ0, θ1)dy∫
fY X(y, x0)H(d = 0|y, x, θ0, θ1)dy

,
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Define

m̂h(x0) = C1n(x0)/C0n(x0),

for p = 0,1 Cpn(x0) = n−1
n∑
i=1

Y p
i G0(Xi,Ω, x0),

G0(Xi,Ω, x0) = Kh(Xi − x0)/Λn(Yi, x0, h,Ω),

Λn(Yi, x0, h,Ω) = n−10

n∑
j=1

(1−Dj)Kh(Xj − x0)K(y,Xj,Ω),

for p=0,1 Mnp(y, x, x0,Ω) = n−1
n∑
i=1

Y p
i Kh(Xi − x0)/a2(Yi,Ω, x0),

Dnp(y, x, x0,Ω) = n−1
n∑
i=1

Y p
i Kh(Xi − x0)a3(y,Ω, x)/a22(Yi,Ω, x0),

a2(y, x0,Ω) = fX,cont(x0)K(Yi,Ω, x0),

a3(y,Ω, x0) = K(1)(y,Ω, x0)f
(1)
X,cont(x0) + (1/2)K(2)(y,Ω, x0)fX,cont

+ 1/2K(y, x0,Ω)f
(2)
X,cont(x0),

For p=0,1, also define

Bp(x0,Ω, θ0) =

∫
a3(y,Ω, x0)

a22(y,Ω, x0)
yp{f (1)

XY (y, x0)K(1)
pop(y, x0,Ω, θ0)

+ 1/2fXY (y, x0)K(2)
pop(y, x0,Ω, θ0) + 1/2K(y, x0,Ω)f

(2)
XY (y, x0) + o(h2)}dy,

Rp(x0,Ω, θ0) =

∫
ypa3(y,Ω, x0)/a

2
2(y,Ω, x0)fXY (y, x0)Kpop(y, x0,Ω, θ0)dy,

Mp(x0) =

∫
yp
fY X(y, x0)

fX,cont(x0)
H(d = 0|y, x, θ0, θ1)dy,
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Let

U0(x0,Ω, θ0) = c2

∫
Kpop(y, x0,Ω, θ0)/a

2(y, x0,Ω)fY X(y, x0)dy,

U1(x0,Ω, θ0) = c2

∫
y2Kpop(y, x0,Ω, θ0)/a

2(y, x0,Ω)fY X(y, x0)dy,

U2(x0,Ω, θ0) = c2

∫
yKpop(y, x0,Ω, θ0)/a

2(y, x0,Ω)fY X(y, x0)dy,

U(x0,Ω, θ0) =
U0(x0,Ω, θ0)M

2
1 (x0)

M0(x0)
+
U1(x0,Ω, θ0)

M2
0 (x0)

− 2U2(x0,Ω, θ0)M1(x0)

M3
0 (x0)

W (x0,Ω, θ0) = M0(x0)
−1{c1R1(x0,Ω, θ0)−R0(x0,Ω, θ0)M1(x0)/M

2
0 (x0)}

b0 =
{
π0U(x0,Ω, θ0)/4W

2(x0,Ω, θ0)
}1/5

.

A.1.2 Lemma 1

We first state a lemma that will be used repeatedly in the development of the

asymptotic theory. Recall that the retrospective likelihood for Y,X given D = d is

pr(Y,X|D = d) = pr(D = d|Y,X)pr(Y,X)/pr(D = d).

Lemma 1 Let “Ecc” denote expectation under the case-control sampling design, i.e.,

conditional on D. Under the case-control sampling design, conditioned on the dis-

ease status, for any measurable function Q(Y,X) of data (D, Y,X), the retrospective

expectation is given by

Ecc{n−1
n∑
i=1

Q(Yi, Xi)} = n−1
n∑
i=1

E{Q(Yi, Xi)|Di = di}

= {n0/(nπ0)}
∫ ∫

fXY (x, y)Q(y, x)Kpop(y, x,Ω)dydx
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Proof. Using the notation in Section A.1.1 we deduce

Ecc{n−1
n∑
i=1

Q(Yi, Xi)} = E{n−1
n∑
i=1

Q(Yi, Xi)|D = Di}

=
1∑
d=0

(nd/n)E{Q(y, x)|D = d}

=
1∑
d=0

{nd/(nπd)}
∫ ∫

Q(y, x)f(d|y, x)fY,X(x, y)dxdy

= (1/n)

∫ ∫
Q(y, x)fY X(y, x)

n0/π0 + n1/π1 exp{θ0 +m(y, x, θ1)}
1 + exp{θ0 +m(y, x, θ1)}

dxdy

= {n0/(nπ0)}
∫ ∫

fY X(x, y)Q(y, x)
1 + exp{κ+m(y, x, θ1)}
1 + exp{θ0 +m(y, x, θ1)}

dydx

= {n0/(nπ0)}
∫ ∫

fY X(x, y)Q(y, x)Kpop(y, x,Ω, θ0)dydx,

as claimed.

A.1.3 Supplementary Lemmas

Here we provide supporting lemmas which supplement the derivation of the

asymptotic theory of m̂h(x0) defined at (2.10). Recall the notation in appendix

A.1.1 where we defined m̂h(x0) = C1n(x0)/C0n(x0). In this section, our aim is to

show C1n(x0)/C0n(x0)→ µcont(x0) in probability.

Lemma 2 Recall the definition of Λn(y, x, h,Ω) at (2.9).

Λn(Yi, x0, h,Ω) = n−10

n∑
j=1

(1−Dj)Kh(Xj − x0)K(y,Xj,Ω)

= fX,cont(x0)K(y, x,Ω) + h2c1a3(y,Ω, x0) +Op{(n0h)−1/2}+

op{h2 + (n0h)−1/2}.

Proof. Define z = (x− x0)/h, using the Taylor series expansion w.r.t x0 and recall∫
K(z) = 1,

∫
zK(z) = 0 and

∫
z2K(z) = c1, we obtain the expectation and variance

84



among the controls

E{Λn(Yi, x0, h,Ω)|D = 0} =

∫
Kh(x− x0)K(y, x,Ω)fX,cont(x)dx

= (1/h)

∫
K(z)K(y, x0 + zh,Ω)fX,cont(x0 + zh)dx

=

∫
K(z)

{
K(y, x0,Ω) + zhK(1)(y, x0,Ω) + z2h2K(2)(y, x0,Ω) + op(h

2)
}

×
{
fX,cont(x0) + zhf

(1)
X,cont(x0) + z2h2f

(2)
X,cont(x0) + op(h

2)
}
dx

= fX,cont(x0)K(y, x0,Ω) + h2c1{K(1)(y,Ω, x0)f
(1)
X,cont(x0)

+(1/2)K(2)(y,Ω, x0)fX,cont + (1/2)K(y, x0,Ω)f
(2)
X,cont(x0)}+ op(h

2);

var{n−10

n∑
i=1

(1−Dj)Kh(Xj − x0)K(y,Xj,Ω)}

≤ n−10

∫
K2
h(X − x0)K2(y, x,Ω)fX,cont(x)dx

= (n0h)−1
∫
K2(z)K2(y, x0 + zh,Ω)fx,cont(x0 + zh)dz

= Op(n0h)−1 + op(n0h)−1.

Hence

Λn(Yi, x0, h,Ω) = fX,cont(x0)K(y, x,Ω) + h2c1a3(y,Ω, x0)

+Op{(n0h)−1/2}+ op{h2 + (n0h)−1/2}

= a2(y, x0,Ω) + h2c1a3(y,Ω, x0) +Op{(n0h)−1/2}+ op{h2 + (n0h)−1/2.

Lemma 3

Dnp(y, x0,Ω) = n0/(nπ0)

∫
ypa3(y, x0,Ω)/a22(y, x0,Ω)fXY (y, x0)Kpop(y, x0,Ω, θ0)dy

+ Op(h2) +Op(nh)−1/2 + op{(nh)−1/2 + h2},
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and

Mnp(y, x0,Ω) =
n0

nπ0fX,cont(x0)

∫
ypfY X(y, x0)H(d = 0|y, x, θ0, θ1)dy +Op(h2)

+ Op(nh)−1/2 + op{(nh)−1/2 + h2}.

Proof. Using Lemma 1 and Taylor series expansion we obtain

E
(
Dnp|D = d

)
= E{n−1

n∑
i=1

Y p
i

Kh(Xi − x0)a3(y,Ω, x0)
a22(y,Ω, x0)

|D = Di}

= n0/(nπ0)

∫ ∫
ypKh(x− x0)

a3(y, x0,Ω)

a22(y, x0,Ω)
fXY (y, x)Kpop(y,Ω, x)dydx

= n0/(nπ0)

∫
yp
a3(y,Ω, x0)

a22(y,Ω, x0)
fXY (y, x0)Kpop(y, x0,Ω, θ0)dy

+ h2c1

∫
yp
a3(y,Ω, x0
a22(y,Ω, x0)

{f (1)
XY (y, x0)K(1)

pop(y, x0,Ω, θ0) +

+ (1/2)fX,Y (y, x0)K(2)
pop(y,Ω, x0)

+(1/2)Kpop(y, x0,Ω, θ0)f (2)
XY (y, x0) + o(h2)}dy

= n0/(nπ0)Rp(x0,Ω, θ0) + h2n0/(nπ0)Bp(x0,Ω, θ0) + op(h
2).

The case-control variance of Dnp is

var
(
Dnp|D = d

)
= n−2

n∑
i=1

var{Y p
i

Kh(Xi − x0)a3(y,Ω, x0)
a22(y,Ω, x0)

|D = Di}

≤ Op(nh)−1 + op{(nh)−1 + h2}.

Similarly we can prove that

Ecc{Mnp(y, x,Ω)} =
n0

nπ0fX,cont(x0)

∫
ypfY X(y, x0)

Kpop(y, x0,Ω, θ0)
K(y, x0,Ω)

dy +Op(h2) + op(h
2)

= n0/(nπ0)Mp(x0) +Op(h2) + op(h
2),

var{Mnp(y, x,Ω)} ≤ Op(nh)−1 + op{(nh)−1 + h2}.
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Lemma 4

Cpn = Mp(x0) + h2c1
n0

nπ0
Bp(x0,Ω, θ0) + h2

n0

nπ0
Rp(x0,Ω, θ0)

+Op{(n0h)−1/2}+ op{(nh)−1/2 + h2}

Proof. From the notation in Appendix A.1.1, we know that

Cpn(x0) = n−1
n∑
i=1

Y p
i Kh(Xi − x0)

Λn(Yi, x0, h,Ω)
,

Using Lemma 2, and defining Vn = Op{(n0h)−1/2}+op{h2 +(n0h)−1/2},we expanded

the denominator Λn(Yi, x0, h,Ω) to obtain

Cpn(x0) = n−1
n∑
i=1

Y p
i Kh(Xi − x0)

fX,cont(x0)K(Yi, x,Ω) + h2c1a3(Yi,Ω, x0) + Vn
,

By the definition of a2(y, x0,Ω), we obtain

Cpn(x0) = n−1
n∑
i=1

Y p
i

Kh(Xi − x0)
a2(Yi,Ω, x0)

−c1h2n−1
n∑
i=1

Y p
i

Kh(Xi − x0)a3(y,Ω, x)

a22(Yi,Ω, x0)
+ Vn

= Mnp(y, x, x0,Ω)− c1h2Dnp(y, x, x0,Ω) + Vn.

Now we use Lemma 3 for Mnp(y, x, x0,Ω) to obtain

Cpn =
n0

nπ0
Mp(x0) + h2c1

n0

nπ0
Rp(x0,Ω, θ0) + h4

n0

nπ0
Bp(x0,Ω, θ0) + Vn.
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A.2 Asymptotic Theory

B.1 Proof of Theorem 1

We start with finding the case control expectation of the denominator of (2.6) as

E
{
n−1

n∑
i=1

Kh(Xi − x0)/Λpop(Yi, x0, h,Ω, θ0)|Di = di
}

= {n0/(nπ0)}
∫ ∫

YiKh(Xi − x0)
Λpop(Yi, x0, h,Ω, θ0)

fXY (x, y)Kpop(y, x,Ω, θ0)dydx

= {n0/(nπ0)}
∫ ∫

Kh(x− x0)Kpop(y, x,Ω, θ0)fXY (x, y)dx∫
Kh(v − x0)Kpop(y, v,Ω, θ0)fX(v)dv

dy,

By Taylor series expansion of fXY (x, y) and Kpop(y, x,Ω, θ0) with respect to x about

x0 we have

∫
fXY (x, y)Kh(x− x0)Kpop(y, x,Ω, θ0)dx

= fXY (x0, y)Kpop(y, x0,Ω, θ0) + c1h
2{f (1)

XY (x0, y)K(1)
pop(y, x0,Ω, θ0)

+(1/2)f
(2)
XY (x0, y)Kpop(y, x0,Ω, θ0) + fXY (x0, y)K(2)

pop(y, x0,Ω, θ0)}+ o(h2),

and

∫
Kh(v − x0)Kpop(y, v,Ω)fX(v)dv

= fX(x0)Kpop(y, x0,Ω, θ0) + h2c1f
(1)
X (x0)K(1)

pop(y, x0,Ω, θ0)

+(1/2)h2c1{f (2)
X (x0)Kpop(y, x0,Ω, θ0) + fX(x0)K(2)

pop(y, x0,Ω, θ0)}+ o(h2).

88



Further, with some algebra we can show that as h→ 0, n→∞ and n0/n→ c

E
{
n−1

n∑
i=1

Kh(Xi − x0)/Λpop(Yi, x0, h,Ω, θ0)|Di = di
}

=
n0

nπ0fX(x0)

∫
fXY (x0, y)

Kpop(y, x0,Ω, θ0)
Kpop(y, x0,Ω, θ0)

dy + O(h2) + o(h2)

=
n0

nπ0fX(x0)

∫
fXY (x0, y)dy +O(h2) + o(h2).

Similarly we have

lim
h→0

E
{
n−1

n∑
i=1

YiKh(Xi − x0)/Λpop(Yi, x0, h,Ω, θ0)|Di = di
}

=
n0

nπ0fX(x0)

∫
yfXY (x0, y)dy

Thus, when h→ 0 and nh→∞

M̂h(x0) =

∫
yfXY (x0, y)dy∫
fXY (x0, y)dy

+ op(1) = µ(x0) + op(1).

B.2 Proof of Theorem 2

Recall the notation in appendix A.1.1 where we defined m̂h(x0) = C1n(x0)/C0n(x0)

and the definition Vn = Op{(n0h)−1/2}+ op{h2 + (n0h)−1/2}. We first use the Taylor

series expansion of C1n/C0n to derive the consistency of m̂h(x0) to µcont(x0). Define
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A = n0/(nπ0).

m̂h(x0)

=
C1n

C0n

=
AM1(x0) + h2c1AR1(x0,Ω, θ0) + h4AB1(x0,Ω, θ0) + Vn
AM0(x0) + h2c1AR0(x0,Ω, θ0) + h4AB0(x0,Ω, θ0) + Vn

= M1(x0) + h2R1(x0,Ω, θ0) + Vn

× [
1

M0(x0)
− h2

M2
0 (x0)

R0(x0,Ω, θ0) + Vn]

=
M1(x0)

M0(x0)
+ h2M0(x0)

−1{c1R1(x0,Ω, θ0)−
R0(x0,Ω, θ0)M1(x0)

M2
0 (x0)

}+ Vn

= µcont(x0) +Op(h2) + Vn.

We thus obtain the asymptotic bias of m̂h(x0) as

E{m̂h(x0)− µcont(x0)} = h2/M0(x0){c1R1(x0,Ω, θ0)−
R0(x0,Ω, θ0)M1(x0)

M2
0 (x0)

}+ Vn

= h2W (x0,Ω, θ0) + Vn.

Next, we use Taylor series so that var
(
C1n/C0n

)
≈ α2

1/α
4
0var(C0n)+1/α2

0var(C1n)−

2α1/α
3
0cov(C1n, C0n), where α1 = E(C1n) and α0 = E(C0n). However, in our study

both expectation and variance are take in case-control framework. So for p = 0,1 we

will consider E(Cpn|D = d) = n0/(nπ0)Mp(x0) and we deduce the variance

var
(
C1n|D = d

)
= var

{
n−1

∑n
i=1 YiKh(xi − x0)
An(y, x,Ω)

∣∣∣∣D = di

}
= var

{
n−1

n∑
i=1

YiKh(xi − x0)
a2(Yi, x0,Ω) + Vn

∣∣∣∣D = di

}

= n−1var

{
YiKh(xi − x0)

a2(Yi, x0,Ω) + Vn

∣∣∣∣D = di

}
,
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Consider

var

{
Y Kh(xi − x0)
a2(Y, x0,Ω)

∣∣∣∣D = d

}
= E

[{
Y Kh(X − x0)
a2(Y, x0,Ω)

|D = d

}2
]

−
[
E

{
Y Kh(X − x0)
a2(Y, x0,Ω)

|D = d

}]2
,

It is easy to see that

E

[{
Y Kh(X − x0)
a2(Y, x0,Ω)

|D = d

}2
]

=
n0

nhπ0
U1(x0,Ω, θ0) + o(

h

nh
),

where U1(x0,Ω, θ0) = c2
∫
y2Kpop(y, x0,Ω, θ0)/a

2(y, x0,Ω)fY X(y, x0)dy and
∫
K2(z)dz =

c2. Hence,

var
(
C1n|D = d

)
=

n0

n2hπ0
U1(x0,Ω, θ0)− n−1A2M2

1 (x0) + o(
h

nh
),

Arguing as before, we may deduce that

var
(
C0n|D = d

)
=

n0

n2hπ0
U0(x0,Ω, θ0)− n−1A2M2

0 (x0) + o(
h

nh
),

cov
(
C1n, C0n|D = d

)
=

n0

n2hπ0
U2(x0,Ω, θ0)− n−1A2M1(x0)M0(x0) + o(

h

nh
),

where U0(x0,Ω, θ0) = c2
∫
Kpop(y, x0,Ω, θ0)/a

2(y, x0,Ω)fY X(y, x0)dy are defined in

Appendix A.1.1. From the notation in Appendix A.1.1 for U(x0,Ω, θ0), and simply

by plugging in the Taylor series approximation of var
(
C1n/C0n

)
mentioned above ,

we obtain

var
{
m̂h(x0)

}
=

π0
n0h

U(x0,Ω, θ0) + o(h/nh).
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The approximate mean square error (MSE) of the estimator is thus

MSE
{
m̂h(x0)

}
= Bias2

{
m̂h(x0)

}
+ var

{
m̂h(x0)

}
≈ h4W 2(x0,Ω, θ0) +

π0
n0h

U(x0,Ω, θ0).

Minimizing the MSE obtained above we get the optimal bandwidth hopt as propor-

tional to n
−1/5
0 , that is hopt = b0n

−1/5
0 , where b0 = {π0U(x0,Ω, θ0)/4W

2(x0,Ω, θ0)}1/5,

as claimed.

B.3 Proof of Theorem 3

We next derive the asymptotic distribution of m̂h(x0). First recall that m̂h(x0) =

C1n/C0n. By Lemma 4, C0n can be expressed as {n0/(nπ0)}Mp(x0) + O(h2) + Vn.

We define Zni = YiKh(xi − x0)/An(yi, x0,Ω) and write

m̂h(x0) = π0n0M0(x0)
−1

n∑
i=1

YiKh(xi − x0)/An(Yi, x0,Ω) +Op(h2) + Vn,

= π0n0M0(x0)
−1

n∑
i=1

Zni +Op(h2) + Vn.

so that {Zni} is a triangular array of random variables. We will use Lyapounov’s

Central Limit Theorem for triangular arrays to derive the asymptotic distribution of

our estimator. In particular, s2n = var{m̂h(x0)} = {π0/(n0h)}U(x0,Ω, θ0) + o(h/nh).

The Lyapounov’s condition holds if there exist δ > 0 such that s
−(2+δ)
n

∑n
i=1E{|Zni−
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E(Zni)|}2+δ → 0 for n→∞. Here, the condition is satisfied with δ = 1 because

ρni = Ecc

{
|Zni − E(Zni)|

}3

≤ 8Ecc
(
Zni
)3

=

∫
8y3K3(u)

h2An(y, x0)
Kpop(y, x0 + uh)fY X(y, x0 + uh)dydu

+ O(h2)

=

∫
y3

8c3Kpop(y, x0 + uh)fY X(y, x0 + uh)

h2An(y, x0)
dydu+O(h−1).

Therefore,

∑n
i=1 ρni

(s2n)3/2
≤ O(nh−2)

{O(nh−1)}3/2
→ 0 if nh→∞.

Hence, when nh→∞,

(nh)1/2
[
m̂h(x0)− E{m̂h(x0)}

]
→ Normal

{
0, U(x0,Ω, θ0)

}
(nh)1/2

[
m̂h(x0)− µcont(x0)− h2W (x0,Ω, θ0)

]
→ Normal

{
0, U(x0,Ω, θ0)

}
.
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APPENDIX B

SECOND APPENDIX

B.1 Posterior Inference

We develop a fully Bayesian approach for the Single-Index Model by

Y = B1(XTθ)β + B2(XTγ) exp(ξ)ε. (B.1)

We have already specified the prior for all the parameters (θ,γ), P-spline coefficients

(β, ξ) and smoothing parameters (ρ1, ρ2) in Section 3.1. The prior for the error dis-

tribution parameters are specified in Section 3.2. Recall, X̃θ = B1(XTθ), X̃γ =

B2(XTγ). We use the notation [A] and [A|B] to represent the marginal and condi-

tional densities respectively. We denote L(θ,β, X,γ, ξ, ρ1, ρ2) = [Y |X,θ,β,γ, ξ, ρ1, ρ2]

as the likelihood. Then the joint posterior density is

[θ,β,γ, ξ, ρ1, ρ2|Y,X] ∝ [Y |X,θ,β,γ, ξ, ρ1, ρ2][β|θ, ρ1][ρ1][θ][γ][ξ|γ, ρ2][ρ2].

B.1 Normal Error Distribution

Consistent estimation for both the mean function and the variance function can

be easily attained if we assume the distribution of the error to be standard normal. So

in the first section of Bayesian estimation, we consider standard normal distribution

for estimating both the regression function and the variance function. We also define

Vγ,ξ = diag{X̃γ exp(ξ)} for notation simplicity.

The complete conditionals for θ, γ, ξ require Metropolis-Hastings step. Fixed

positive tuning parameters for Metropolis Hastings are denoted as δ1, δ2 and δ3. The
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starting values for θ, γ, β, ξ are set at θ̂PHD, γ̂PHD, β̂LS and ξ̂LS. The values of ρ1

and ρ2 are initiated at a large value say, 10 to generate observations from each of the

conditional distributions.

1. A candidate observation of θ−1, denoted by θ−1new is generated from a proposal

multivariate normal distribution centered at θ−1current and covariance matrix

δ1Ip−1 . With a symmetric proposal distribution, we accept θ−1new with prob-

ability min(1,∆1) where,

∆1 =
L(θnew,β, X,γ, ξ, ρ1, ρ2)× p0(θnew)

L(θcurrent,β, X,γ, ξ, ρ1, ρ2)× p0(θcurrent)

=
exp{−(Y − X̃θnewβ)TV−1γ,ξ(Y − X̃θnewβ)/2}

exp{−(Y − X̃θcurrentβ)TV−1γ,ξ(Y − X̃θcurrentβ)/2}

× exp{−(θnew − θprior)TΣ−1θ (θnew − θprior)/2}
exp{−(θcurrent − θprior)TΣ−1θ (θcurrent − θprior)/2}

.

2. Define A1(θ, ρ1,γ, ξ) =
(
X̃T
θ V−1γ,ξX̃θ+ρ1D

)−1
. The complete conditional distri-

bution for the P-spline coefficient for the mean function β and the smoothing

parameter ρ1 are

β|Y,X,θ,γ, ξ, ρ1 ∼ Normal
{
A1(θ, ρ1,γ, ξ)X̃T

θ V−1γ,ξY,A1(θ, ρ1,γ, ξ)
}
,

ρ1|β ∼ G
{
Aρ1 +M/2,

(
1/Bρ1 + βTDβ/2

)−1}
.

If we take an sth order B-spline with K number of knots then M is equal to

K + s− 2.

3. Recall that Vγ,ξ = diag{X̃γ exp(ξ)}. A candidate for γ−1 is also obtained from

a symmetric proposal multivariate normal distribution centered at γ−1current

and covariance matrix δ2Ip−1. We accept the candidate γ−1newwith probability
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equals to min(1,∆2), where

∆2 =
L(θ,β, X,γnew, ξ, ρ1, ρ2)× p0(γnew)

L(θ,β, X,γcurrent, ξ, ρ1, ρ2)× p0(γcurrent)

=
exp{−(Y − X̃θβ)TV−1γnew,ξ

(Y − X̃θβ)/2}
exp{−(Y − X̃θβ)TV−1γcurrent,ξ

(Y − X̃θβ)/2}

×
exp{−(γnew − γprior)TΣ−1γnew

(γnew − γprior)/2}
exp{−(γcurrent − γprior)TΣ−1γcurrent

(γcurrent − γprior)/2}
.

4. The complete conditionals for ξ also requires Metropolis algorithm, in which

we generate a candidate observation of ξnew from multivariate normal prior

centered at ξcurrent and covariance matrix δ3IM . The probability of accepting

the new candidate for ξ is min(1,∆3)

∆3 =
L(θ,β, X,γ, ξnew, ρ1, ρ2)× p0(ξnew)

L(θ,β, X,γ, ξcurrent, ρ1, ρ2)× p0(ξcurrent)

=
exp{−(Y − X̃θβ)TV−1γ,ξnew

(Y − X̃θβ)/2}

exp{−(Y − X̃θβ)TV−1γ,ξcurrent
(Y − X̃θβ)/2}

× ρ2 exp(ξnew)TD exp(ξnew)

ρ2 exp(ξcurrent)TD exp(ξcurrent)
.

And the complete conditional for ρ2 is

ρ2|ξ ∼ G
[
Aρ2 +M/2,

{
1/Bρ2 + exp(ξ)TD exp(ξ)/2

}−1]
.

Since the value of θ and γ are continually changing in each iteration, XTθ and

XTγ must be recomputed for each iteration of the MCMC in order to update the P-

spline coefficients β and ξ. We keep track of the value of m̂ = X̃θβ and ŝ = X̃γ exp(ξ)

for a fixed uniformly distributed grid of points G. This enables us to keep track of
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pointwise moments and percentiles. The pointwise mean curve is a natural estimate

of the regression mean function m(·). Similarly, variance function can be estimated

by pointwise variance curve.

B.2 Dirichlet Process of Infinite Mixture of Normals

We used the Blocked Gibbs Sampler (Ishwaran and James, 2001) to draw the

posterior inference for the parameters specific to DPMMs and other parameters are

updated using the Metropolis Hastings algortihm. For a given data set, the sample

size = n can acts as an upper bound on the number of mixture components in the

sample for fitting DPMM. The generic notation q(current → proposed) will denote

the proposal distributions of the Metropolis-Hastings steps proposing a move from

the current value to the proposed value. In this paper we used a finite number of

labels w. Define cluster labels as C1:w where Ci = k if εi comes from the kth Cluster

of the DPMM. Define the latent variables Z1:w corresponds to the cluster level, where

Zi = k if εi comes from Ck. We also define, ui(θ, β, γ, ξ) = (yi− X̃θβ)/

√
X̃γ exp(ξ)

1. Update the Latent Variable Z1:w: We propose a new value of Zi for i =

1, ..., w according to the conditional mulitnomial sampling with

pr(Zi = k|–) =
πk{pkNormal(ui;µ1k, σ1k) + (1− pk)Normal(ui;µ2k, σ2k)}∑w
l=1 πl{plNormal(ui;µ1l, σ1l) + (1− pl)Normal(ui;µ2l, σ2l)}

.

2. Update the Stick breaking weight πk: We draw πk from the marginalized

conditional distribution of

pr(πk|–) = Beta(1 + nk, α +
w∑

l=k+1

nl), k = 1, ...., w − 1
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3. Update the constraint parameters of the DPMM (p, µ, σ1, σ2): For

all k in Zw
i=1 , we propose a new value for (pk, µk, σ1k, σ2k) with proposal

q{(pk, µk, σ1k, σ2k)→ (pk,new, µk,new, σ1k,new, σ2k,new)} = TU(pk,new|pk, [0, 1])

Unif(σ1k,new|σ1k, δ1) Unif(σ2k,new|σ2k, δ2) Normal(µk,new|µk, δµ), where

TU(·|c, [a, b]) denotes Truncated Uniform centered at c and output restricted

to the interval [a, b]. We update the proposed value with the probability

min
[
1,

q{(pk, µk, σ1k, σ2k)→ (pk,new, µk,new, σ1k,new, σ2k,new)}
q{(pk,new, µk,new, σ1k,new, σ2k,new)→ (pk, µk, σ1k, σ2k)}

×
∏n

i=1 fε{ui|(pk,new, µk,new, σ1k,new, σ2k,new)}∏n
i=1 fε{ui|(pk, µk, σ1k, σ2k)}

]
.

4. Update the Single Index parameter θ for mean function m: We

use Metropolis Hasting Sampler to update θ with random walk proposal for

q(θ2:p → θ2:p,new) = MVN(θ2:p,new|θ2:p,Wθ). We denote θnew = (1, θ2:p,new) and

update θ to the proposed value with probability

min
[
1,

q(θnew → θ)

q(θ → θnew)

∏n
i=1 fε{ui(θnew,β, γ, ξ)|(pk, µk, σ1k, σ2k)}∏n
i=1 fε{ui(θ, β, γ, ξ)|(pk, µk, σ1k, σ2k)}

p0(θnew)

p0(θ)

]
.

5. Update the P-spline coefficient β for the mean function m: The full

conditional of β is given by

p(β|–) ∝ p0(β|ρ1)
n∏
i=1

fε{ui(θ, β, γ, ξ)|(pk, µk, σ1k, σ2k)}.

We use Metropolis-Hastings sampler to update β with random walk proposal

q(β → βnew) = MVN(βnew|β,Wβ).We update the smoothing hyper-parameter

98



ρ1 using its closed form full conditional

ρ1|β ∼ G
{
Aρ1 +M/2,

(
1/Bρ1 + βTDβ/2

)−1}
.

6. Update the variance function: We define a random walk proposal q(γ2:p →

γ2:p,new) = MVN(γnew|γ,Wγ) and define γnew = (1,γ2:p,new). Then we up-

date γ to the proposed one with probability

min
[
1,

q(γnew → γ)

q(γ → γnew)

∏n
i=1 fε{ui(γnew,θ, β, ξ)|(pk, µk, σ1k, σ2k)}∏n
i=1 fε{ui(γ, θ, β, ξ)|(pk, µk, σ1k, σ2k)}

p0(γnew)

p0(γ)

]
.

The full conditional of ξ is given by

p(ξ|–) ∝ p0(ξ|ρ2)
n∏
i=1

fε{ui(θ,β,γ, ξ)|(pk, µk, σ1k, σ2k)}.

We use Metropolis-Hastings sampler to update β with random walk proposal

q(ξ → ξnew) = MVN(ξnew|ξ,Wξ). Finally, we update the smoothing hyper-

parameter ρ2 using its closed form full conditional

ρ2|ξ ∼ G
[
Aρ2 +M/2,

{
1/Bρ2 + exp(ξ)TD exp(ξ)/2

}−1]
.

The covariance matrix Wθ,Wγ of the proposal distribution for θ and γ is

taken to be the indentity matrix multiplied by a tuning parameter. The tuning

parameter is such chosen so that we can get good acceptance rates for the

Metropolis- Hastings samplers, the values δ = 0.01, 0.1, 1 works well for the

simulation considered.
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APPENDIX C

THIRD APPENDIX

C.1 Exact Likelihood: Under Normal Case for Rare Disease

Write Θ = (κ,αx, αy,θ,γ). If we assume that Y givenX is Normal{m(XTθ), s(XTγ)},

then the proposed likelihood function is

exp{d(κ+ Y αy +XTαX)}φ{(Y −m(XTθ)/s(XTγ)}∫
{1 + exp(κ+ tαy +XTαX)}φ{(t−m(XTθ)/s(XTγ)}dt

Define

C(X,Θ) = exp{κ+XTαX + αym(XTθ) + α2
ys

2(XTγ)/2};

Then the denominator of the likelihood function is

∫
exp(1 + κ+ tαy +XTαX)φ{(t−m(XTθ)/s(XTγ)}dt

=

∫
s(XTγ)φ(z)dz +

∫
exp {κ+XTαX + αym(XTθ) + zαys(X

Tγ)}s(XTγ)φ(z)dz

= s(XTγ)[1 + exp {κ+XTαX + αym(XTθ)}
∫

exp {zαys(XTγ)}φ(z)dz]

= s(XTγ)[1 + exp {κ+XTαX + αym(XTθ) + α2
ys

2(XTγ)/2}]

= s(XTγ){1 + C(X,Θ)}

Hence the loglikelihood function is

L(D, Y,X,Θ) = −log{1 + c(X,Θ)} − log{s(XTγ)}+D(κ+ αyY +XTαX) +

log[φ{Y −m(XTθ)/s(XTγ)}]
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The sum of the loglikelihood function is

n∑
i=1

L(di, yi,Xi,Θ) = −
n∑
i=1

log{1 + c(Xi,Θ)} −
n∑
i=1

log{s(Xi
Tγ)}

+
n∑
i=1

di(κ+ αyyi +Xi
TαX) +

n∑
i=1

log[φ{yi −m(Xi
Tθ)/s(Xi

Tγ)}]

C.2 Exact Likelihood: Under Finite Mixture of Normals for Rare Disease

Define Ψ = (κ,αx, αy,θ,γ, {µk1}Ck=1, {σk1}Ck=1, {σk2}Ck=1). If we assume that Y

given X is

fε{
Y −m(XTθ)

s(XTγ)
} =

C∑
k=1

πk[pkN{
Y −m(XTθ)

s(XTγ)
, µk1, σk1}

+(1− pk)N{
Y −m(XTθ)

s(XTγ)
, µk2, σk2}]

where, pkµk1+(1−pk)µk2 = 0 for k = 1, · · · , C. Then the proposed likehood function

is

exp{d(κ+ Y αy +XTαX)}fε{(Y −m(XTθ)/s(XTγ)}∫
{1 + exp(κ+ tαy +XTαX)}fε{(t−m(XTθ)/s(XTγ)}dt

Define

A(X,Ψ) =
C∑
k=1

πk{pkσk1 + (1− pk)σk2}

B(X,Ψ) = exp{κ+αT
XX + αYm(XTθ)}

D(X,Ψ) =
C∑
k=1

πk[pkσk1 exp {αY s(XTγ)µk1 + s2(XTγ)σ2
k1/2}+

(1− pk)σk2 exp {αY s(XTγ)µk2 + s2(XTγ)σ2
k2/2}]
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Then the denominator of the likelihood function is

s(XTγ){A(X,Ψ) +B(X,Ψ)D(X,Ψ)}

Hence the loglikelihood function is

L(D, Y,X,Θ) = −log{A(X,Ψ) +B(X,Ψ)D(X,Ψ)} − log{s(XTγ)}

+D(κ+ αyY +XTαX) + log[fε{Y −m(XTθ)/s(XTγ)}]
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