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ABSTRACT

Many complex systems involve entities that interact with each other through var-

ious relationships (e.g., people in social systems, neurons in the brain). These entities

and interactions are commonly represented using graphs due to several advantages.

This dissertation focuses on developing theory and algorithms for novel methods in

graph theory and optimization, and their applications to social and brain networks.

Specifically, the major contributions of this dissertation are three fold. First,

this dissertation aims not only to develop a new clique relaxation model based on a

structural metric, clustering coefficient, but also to introduce a novel graph clustering

algorithm using this model. Clique relaxations are used in classical models of cohesive

subgroups in social network analysis. Clustering coefficient was introduced more

recently as a structural feature characterizing small-world networks. Leveraging the

similarities between the concepts of cohesive subgroups and small-world networks

(i.e., graphs that are highly clustered with small path lengths). The first part of this

dissertation introduces a new clique relaxation, α-cluster, defined by enforcing a lower

bound α on the clustering coefficient in the corresponding induced subgraph. Two

different definitions of the clustering coefficient are considered, namely, the local and

global clustering coefficient. Certain structural properties of α-clusters are analyzed,

and mathematical optimization models for determining the largest size α-clusters in

a network are developed and applied to several real-life social network instances. In

addition, a network clustering algorithm based on local α-cluster is introduced and

successfully evaluated.

Second, this dissertation explores a novel mathematical model called the max-

imum independent union of cliques problem (max IUC problem), which arises as a
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special case of α-clusters. It is an interesting problem for which both the maximum

clique and maximum independent sets are feasible solutions and individually their

corresponding sizes are lower bounds for the size of the IUC solution. After present-

ing the structural properties as well as the complexity results of different graph types

(planar, unit disk graphs and claw-free graphs), an integer programming formula-

tion is developed, followed by a branch-and-bound algorithm and several heuristic

methods to approximate the maximum independent union of cliques problem.The

developed methods have been empirically evaluated on many benchmark instances.

Finally, this dissertation, in collaboration with Texas Institute of Preclinical Stud-

ies (TIPS), applies clique relaxation models to explore a new experimental data to

understand the effect of concussion on animal brains. Our research involves cohesive

and robust clustering analysis of animal brain networks utilizing a unique and novel

experimental data. In collaboration with TIPS, we have analyzed multiple pairs of

fMRI data about animal brains that are measured before and after a concussion.

We utilize network analysis to first identify the similar regions in animal brains, and

then compare how these regions as well as graph structural properties change before

and after a concussion. To the best of our knowledge, this study is unique in the

literature in that it not only explicitly examines the relation between concussion level

and the functional unit interaction but also uses very detailed and fine-grained fMRI

measurements of brain data.
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1. INTRODUCTION

Many complex systems may involve entities that interact with each other. For

example, social systems include individuals who may interact with each other through

various relationships such as friendship and co-occurrence. Another example can be

a biological system such as a living brain that contains functional units that interact

with each other to perform high-level functions such as hearing and walking.

Many interesting properties of these systems might require to identify closely-knit

subgroups of entities within these systems. For example, in social systems, identifying

interacting group of people (i.e., cohesive subgroup) might reveal interesting social

circles. In biological systems, cohesive subgroups might identify anatomical parts

that are responsible for specific functions.

These systems can be simply and effectively represented using graphs. Their en-

tities can be represented as nodes, and pairwise interactions between entities can be

represented as edges. One of the advantages of such representation is that graph the-

ory, combinatorial optimization, and algorithms theory can be utilized to effectively

answer interesting questions related to these systems. Focus of this dissertation is

to model them as graphs and develop mathematical models as well as algorithms to

obtain cohesive subgroups within these systems.

In the following sections, we first introduce a new mathematical model that cor-

responds to a new definition for cohesive subgroups based on a commonly used graph

metric, and we develop a network clustering algorithm using this new model. Sec-

ond, we develop exact and approximate algorithms for a special case of our first

model, for which two classical canonical problems (i.e., maximum independent set

and maximum clique) are lower bounds. Finally, this dissertation explores a unique
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and novel experimental data set about animal brains. Using graph mining tools, we

examine the effect of concussion on animal brains.

1.1 Clique Relaxations and Clustering Coefficients of Networks

A cohesive subgroup is a “tightly knit” subset of actors in a social network, which

was originally modeled using the graph-theoretic concept of a clique [42]. The notion

of a clique embodies a perfect cohesive group, it compels every two individuals in

the subgroup to be directly connected to each other. However, this can often be

impractical in real-life social networks. Indeed, requiring every possible pairwise

connection between the individuals in a subgroup is often implausible and stringent.

In addition, clique-detection algorithms may fail to identify cliques in which a few

edges are absent due to imprecisions in collecting the data. To overcome these issues,

clique relaxation models have been introduced, including the k-clique [41], relaxing

direct interaction between individuals; the k-club [3, 44], relaxing reachability; the

k-plex [53], allowing at most k non-neighbors; and s-defective clique [65], allowing at

most s missing edges. Clique relaxation models have been extensively used in social

network analysis [50, 45, 52, 61].

Section 3 proposes a novel clique relaxation based on the notion of clustering

coefficient. This concept gained popularity in the study of the so-called small-world

networks [62, 63], where it is used to model an observation that two people are

more likely to be friends if they have a friend in common. For a given actor (node)

with more than one friend (neighbor), its local clustering coefficient measures the

probability that its two randomly picked friends are also friends with each other.

Clustering coefficient is equal to one when the node’s neighborhood is fully directly

connected (forms a clique). On the other hand, a close to zero clustering coefficient

means that there are hardly any connections in the neighborhood. Many real-life
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networks have been empirically found to have nodes with rather high clustering

coefficients [46], which also appears to be a natural property to expect of cohesive

subgroups in social networks. In fact, according to [35, p. 35], clustering coefficient

is “the most common way of measuring some aspect of cliquishness”.

Hence, it is reasonable to define a cohesive subgroup by requiring that the corre-

sponding subset of nodes induces a connected subgraph with a desired (high) clus-

tering coefficient α. We will refer to such a structure as an α-cluster. If α = 1, the

connectivity requirement ensures that an α-cluster is a clique. Otherwise, if α < 1,

an α-cluster can be viewed as a clique relaxation.

Our study focuses on computing α-clusters of the largest size in networks, which

is of interest for several reasons. Larger cohesive subgroups tend to have more influ-

ence on the overall network structure than their smaller counterparts. In fact, the

largest size of a cohesive subgroup of a certain kind can be thought of as a global

measure of cohesiveness of the whole network with respect to the imposed definition

of cohesiveness. The presence of large cohesive subgroups consisting of considerable

portions of a network implies a high level of cohesion in the network, whereas their

absence indicates the opposite. Nevertheless, smaller cohesive subgroups may also

be of interest, and the approaches proposed in this work can be easily modified to

compute all α-clusters of a given size by introducing the corresponding constraints

in the considered optimization models.

Dropping the connectivity requirement from the α-cluster definition results in a

structure whose connected components are α-clusters. This motivates a novel cluster-

ing algorithm, which uses the multiple α-clusters as the “seeds”, with the remaining

nodes assigned to these seed clusters using a certain strategy. The algorithm yields

encouraging results on the set of social network instances used in our experiments.
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1.2 Maximum Clique and Maximum Independent Set on Networks

The maximum clique and maximum independent set problems are the two classi-

cal problems in combinatorial optimization [16, 2, 8, 1, 33]. Maximum clique problem

is one of the Karp’s 21 problems that are shown to be NP-complete [37] and both

problems remain hard to approximate [51, 6, 28, 67]. Solutions of these two problems

are closely related, indeed, a set of vertices C is a clique if and only if C is an indepen-

dent set in the complementary graph G = (V,E). Therefore, many computational

approaches to one problem may be directly applied to the other problem. Although,

these problems are not polynomial time solvable in general case (unless P=NP), in

some special graphs like perfect graphs, maximum clique problem is shown to be

polynomially solvable [7, 9]. Pardalos and Xue [49] give a summary of the special

classes of graphs where the maximum clique and independent set problems have been

studied.

We study another related problem to these classical canonical problems that could

be stated as independent union of cliques in which cliques are independent. The in-

dependent union of cliques (IUC for short) model in a way combines maximum clique

and maximum independent set problems. Given a graph G, an IUC is a subset of

vertices inducing a subgraph with each connected component forming a clique. We

can define the maximum IUC problem as finding the maximum set of vertices that

forms an IUC. For the proposed problem, maximum clique and maximum indepen-

dent set solutions are both feasible, hence they both provide lower bounds for the

maximum IUC problem.

Definition 1 (Independent union of cliques (IUC for short)). Given a graph G, an

IUC is a subgraph such that each connected component in the subgraph forms a clique.

Definition 2 (Maximum IUC). The maximum IUC problem is to find the maximum

4



subset of vertices C ⊆ V such that induced G[C] is an IUC.

This problem is a special case of two general problems recently introduced in the

literature. First, it is a variation of the maximum α-cluster problem [25]. Specifically,

when α = 1 and no connectivity constraints are imposed, a maximum α-cluster

solution induces a set of cliques where the total cardinality is maximized, which is

also the optimal solution for IUC. Similarly, this problem is a variation of the s-plex

cluster vertex deletion problem when s is equal to 1 [15]. In this dissertation, we

develop exact and efficient approximate algorithms for this problem.

Jansen et. al., [36] introduce the maximum disjoint union of clique problem (max

DUC), in which for a given D, max DUC finds D disjoint cliques (a set of vertices

and a set of edges) where the total number of nodes in the solution is maximized.

They also provide polynomial time algorithms for special graphs like interval graphs,

bipartite graphs and directed path graphs. A similar study was conducted recently

by Ames and Vavasis [4]. These closely related papers introduce the union of cliques

in which the cliques in the solution may contain an edge between them in the original

graph. However in max IUC, cliques are independent from each other in the subgraph

induced by the solution.

1.3 Network Analysis of Large Scale Brain Networks

Neuroimaging data for brains have been used in many studies to understand com-

plex structure of a brain and its connectivity patterns. Neuroimaging data is usually

represented in two distinct ways in the literature. The first set of studies repre-

sents this data as a list of temporal vectors and use Euclidean distance to determine

the similarity between them [19, 39, 13, 12]. The second set of studies represents

this data as a graph by using temporal correlation to determine the relationships

between voxels. Recent developments in this direction include a large body of theo-
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retical and experimental research on the healthy and diseased brain networks such as

brains affected by epilepsy, schizophrenia, Parkinson’s disease, and traumatic brain

injuries [5, 14, 55, 18, 27]. A detailed analysis on graph theoretical modeling of brain

connectivity can be found in the survey paper [34].

There has been extensive empirical evidence in the literature that brain networks

are small-world networks [62, 63]. They have the properties like high clustering

coefficient and low length of the shortest paths between pairs of nodes. Our research

involves extensive graph theoretic analysis on animal brain networks created from a

unique and novel experimental data to explore the effect of concussion. To the best of

our knowledge, this study is unique in that it explicitly examines the relation between

concussion level and structural properties of animal brain networks. Specifically,

we perform two types of analysis. First, we analyze the changes in the structural

properties of these graphs before and after the concussion (referred to as treatment).

For this analysis, we focus on the comparison of basic graph structural properties such

as edge density, degree distribution and clustering coefficient. Second, we identify

the change in cohesive subgroups in these graphs before and after the treatment.
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2. DETECTING LARGE COHESIVE SUBGROUPS WITH A HIGH

CLUSTERING COEFFICIENT

This section focuses on novel clique relaxation models based on clustering coeffi-

cient. We utilized local clustering coefficient and global clustering coefficient metrics.

Since clustering coefficients are commonly used to asses small-world properties of net-

works, imposing a high lower bound α on the clustering coefficient (local or global)

within a cluster ensures that the corresponding subnetwork has strong small-world

properties. We develop mathematical models in order to find the largest α-clusters.

Furthermore, we introduce a novel clustering method based on local α-clusters.

The remainder of this section is organized as follows. In the next section, we

introduce the necessary definitions and study some basic structural properties of α-

clusters. Section 2.2 provides optimization models for finding the largest α-clusters

in a network. We present the cubic and the quadratic models in Section 2.2.1 and the

triangular model in Section 2.2.4. In Section 2.3, the proposed models are applied to

analyze several well-known social network instances. The proposed local α-clustering

algorithm is described and evaluated in Section 2.4. This section is based on the

submitted paper by Ertem et al. [25].

2.1 Definitions and Properties

This section presents basic graph-theoretic definitions and notations used through-

out this section. Let G = (V,E) be a simple graph with set V of n vertices (nodes)

and set E of edges (links), E ⊂ {{i, j} : i, j ∈ V }. If {i, j} ∈ E, we say that vertices

i and j are adjacent to each other; we also call i and j neighbors. We can represent

G using its adjacency matrix AG, whose elements aij, i, j = 1, . . . , n indicate whether

7



or not there is an edge between nodes i and j:

aij =

 1, {i, j} ∈ E,

0, otherwise.

Let NG(i) = {j : {i, j} ∈ E} be the neighborhood of i in G. The degree dG(i) of

vertex i is the number of neighbors of i in G. The edge density ρ(G) of G is the ratio

of the number of edges in G over the possible number of edges in the graph, that is

ρ(G) = |E|/
(
n
2

)
.

A path between vertices i and j in G is a subgraph of G defined by an alternating

sequence of distinct vertices and edges, with the first and the last elements of the

sequence given by i and j, respectively, and with the edges defined by pairs of

consecutive vertices in the sequence. The length of a path is given by the number

of edges in the corresponding sequence. Two vertices i and j are connected in G if

there exists a path between i and j in G. A graph is connected if all its vertices

are pairwise connected; the graph is disconnected otherwise. The distance dG(i, j)

between vertices i and j in G is the shortest path length between i and j in G;

dG(i, j) = ∞ if i and j are disconnected. The diameter of G, denoted as diam(G),

is the maximum distance between a pair of nodes in V . Given a subset V ′ ⊂ V , the

corresponding induced subgraph G[V ′] is defined as G[V ′] = (V ′, E ′), where E ′ is the

subset of edges of G connecting pairs of vertices from V ′.

Watts and Strogatz [63] define the local clustering coefficient for a node of degree

at least 2 as the proportion of links between the vertices within its neighborhood

divided by the number of links that could possibly exist between the nodes in the

neighborhood.

Definition 3 (Local clustering coefficient). The local clustering coefficient Ci of node

8



i of degree dG(i) ≥ 2 in G is given by

Ci =

∑
j,k∈NG(i),j<k

ajk(
dG(i)

2

) . (2.1)

The global clustering coefficient C of G can be thought of as the probability that

two randomly chosen neighbors of an arbitrary node of degree at least 2 are adjacent

to each other. It can be expressed mathematically as follows.

Definition 4 (Global clustering coefficient). The global clustering coefficient C of

graph G that has at least one connected component with more than 2 vertices is given

by

C =

∑
i∈V

∑
j,k∈NG(i),j<k

ajk∑
i∈V

(
dG(i)

2

) . (2.2)

Relatively unexpectedly, both local and global clustering coefficients of a graph

can decrease with an increase in edge density. Indeed, Figure 2.1 shows a graph

where adding an edge between nodes 3 and 5 decreases the clustering coefficients.

Before the dashed edge is added, local clustering coefficients of the corresponding

nodes are {1, 1
3
, 1, 1

3
, 1, 1}, and the global clustering coefficient is C = 6

10
. After

the addition, local clustering coefficients change to {1, 1
3
, 1

3
, 1

3
, 1

3
, 1}, and the global

clustering coefficient value is 6
14

.

We define a local α-cluster as a subset of vertices that induces a subgraph in

which each node’s local clustering coefficient is at least α.

Definition 5 (Local α-cluster). Given a graph G = (V,E), a subset of vertices

C ⊆ V is called a local α-cluster if G[C] is connected and every node in C has the
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4

5

2

3

1

Figure 2.1: Addition of an edge decreases global clustering coefficient.

local clustering coefficient at least α in G[C], that is,

∑
j,k∈NG[C](i)

ajk ≥ α

(
dG[C](i)

2

)
∀i ∈ C. (2.3)

Note that the definition of local clustering coefficient implies that for an α-cluster

C the degree of each node in G[C] is at least 2. Also, it is easy to see that the edge

density of the subgraph induced by any local α-cluster is at least α. However, the set

of vertices inducing a subgraph with the edge density α may not be a local α-cluster.

Similarly, we can define a global α-cluster as follows.

Definition 6 (Global α-cluster). Given a graph G = (V,E), a subset of vertices

C ⊆ V is called a global α-cluster if G[C] is connected and G[C] has the global

clustering coefficient at least α, that is,

∑
i∈C

∑
j,k∈NG[C](i)

ajk ≥ α
∑
i∈C

(
dG[C](i)

2

)
. (2.4)

It is easy to see that the edge density of the subgraph induced by a global α-

cluster can be less than α. For example, the graph in Figure 2.1 (before the edge

{3,5} is added) has the global clustering coefficient of 6/10 while its edge density is

10



7/15. Also, It is obvious that a local α-cluster is also a global α-cluster, whereas

the converse does not hold in general. Hence, the definition of a local α-cluster

guarantees stronger cohesiveness properties than those enforced by the definition of

a global α-cluster. This is also evident from the experiments with real-life networks

reported in Section 2.3, which led us to focus primarily on local α-clusters in this

study.

2.2 Mathematical Models

Next we formulate optimization models for detecting the largest local and global

α-clusters in a given graph G. Our objective is to find a maximum size subset of

nodes with the local (global) clustering coefficient above the given threshold value

α. We start by describing formulations for finding largest local α-clusters, which can

then be altered to address the maximum global α-cluster problem as discussed in

Section 2.2.5.

Decision variables: Let us define xi as a binary decision variable indicating whether

node i is in the set C sought, that is,

xi =

 1, if node i is in the local (global) α-cluster C;

0, otherwise.

The vector x consisting of xi defined as above is called the characteristic vector of

the subset C of vertices.

Objective function: Our objective is to maximize the number of vertices in the

α-cluster C:

maximize
∑
i∈V

xi. (2.5)

We consider three different approaches to modeling the local α-cluster constraints,
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which ensure that the set of nodes in C satisfies the local α-cluster definition. The

first two approaches, referred to as the cubic and quadratic model, respectively, are

based on alternative straightforward representations of Equation (2.3) in terms of

the decision variables (Section 2.2.1), whereas the third model, called the triangle

model, is based on somewhat more sophisticated arguments (Section 2.2.4). As we

will observe later, the triangle model outperforms the other two models in terms of

running times when used in conjunction with an optimization solver.

2.2.1 The Cubic and Quadratic Models

To ensure that the subset of vertices C induces a local α-cluster, we impose three

sets of constraints. The first set of constraints formalizes the requirement that each

node must have a degree value at least 2 in G[C]. This requirement can be expressed

as follows: ∑
j∈V

aijxj ≥ 2xi ∀i ∈ V. (2.6)

If xi = 1 (meaning that i ∈ C), this constraint guarantees that at least 2 neighbors

of i are included in C. We call the constraints in (2.6) the degree constraints.

The second set of constraints expresses equation (2.3) from the definition of a

local α-cluster in terms of the decision variables. Namely, for each node i in the

α-cluster, we need to make sure that

∑
j,k∈NG(i),j<k

aijaikakjxjxk ≥ α

(∑
k∈V aikxk

2

)
∀i ∈ C. (2.7)

These constraints are called the local clustering coefficient constraints. Since C is

unknown, we need to rewrite equation (2.7) to avoid using C explicitly. We consider

two alternative representations for equation (2.7), one (cubic) obtained by multiply-

ing both sides of (2.7) written for all i ∈ V by xi, and the other (quadratic) based on
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introducing a term in (2.7) that makes the constraint redundant when i /∈ C. The

corresponding equations are given by

xi
∑

j,k∈NG(i),j<k

aijaikakjxjxk ≥ α

(∑
k∈V aikxk

2

)
xi ∀i ∈ V (2.7a)

and

∑
j,k∈NG(i),j<k

aijaikakjxjxk ≥ α

(∑
k∈V aikxk

2

)
− α

(
dG(i)

2

)
(1− xi) ∀i ∈ V, (2.7b)

respectively. The term α
(
dG(i)

2

)
(1 − xi) vanishes if xi = 1 (that is, i ∈ C), in which

case (2.7) is satisfied, and makes the constraint (2.7b) redundant if xi = 0 (that is,

i /∈ C). Obviously, only one set of the local clustering coefficient constraints (2.7a),

(2.7b) needs to be used, leading to two alternative models, which we will refer to as

the cubic model and the quadratic model, respectively.

Finally, the third set of the local α-cluster constraints assures that the induced

subgraph G[C] is connected and is referred to as the connectivity constraints. While

there are several ways to describe connectivity mathematically, here we adopt a

compact model of [57] recently proposed to bound the diameter of a graph when

searching for k-clubs. A k-club is defined as a subset of vertices inducing a subgraph

of diameter at most k [44]. By simply setting k = n − 1, the model can be used to

enforce connectivity (see 2.2.2).

To make use of off-the-shelf binary linear optimization software for solving the

proposed models, we linearize the nonlinear constraints (2.7a) and (2.7b), respec-

tively. The resulting mixed integer programming (MIP) formulations are derived

in 2.2.3.

Note that if we drop the connectivity requirement from the definition of an α-
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cluster, a feasible solution to each of the considered optimization models corresponds

to a disjoint union of α-clusters. That is, the vertices corresponding to each connected

component of the subgraph corresponding to a feasible solution form an α-cluster.

In Section 3, we focus on a special case of α-cluster with no connectivity constraints

are imposed.

2.2.2 Connectivity Constraints

Let p
(`)
ij be the binary variable indicating that there is a path of length ` in between

the nodes i and j in the induced subgraph G[C]. Also, let L be an upper bound

on the desired diameter of G[C] (we can put L = n − 1 if we are only concerned

with connectivity). Then the following set of constraints ensures that the subset of

vertices C defined by the characteristic vector x induces a subgraph G[C] of diameter

at most L [57]:
L∑
l=2

p
(`)
ij ≥ xi + xj − 1 ∀{i, j} 6∈ E (2.8)

p
(2)
ij ≤ xi ∀i, j ∈ V (2.9)

p
(2)
ij ≤ xj ∀i, j ∈ V (2.10)

p
(2)
ij ≤

∑
k∈V

aikakjxk ∀i, j ∈ V (2.11)

p
(2)
ij ≥

1

n
(
∑
k∈V

aikakjxk) + xi + xj − 2 ∀i, j ∈ V (2.12)

p
(`)
ij ≤ xi ∀i, j ∈ V, ` ∈ {3, . . . , L} (2.13)

p
(`)
ij ≤

∑
k∈V

aikp
(`−1)
kj ∀i, j ∈ V, ` ∈ {3, . . . , L} (2.14)

p
(`)
ij ≥

1

n
(
∑
k∈V

aikp
(`−1)
kj ) + xi − 1 ∀i, j ∈ V, ` ∈ {3, . . . , L}. (2.15)

14



The reader is referred to [57] for a detailed explanation and derivation of these

constraints.

2.2.3 Linearization of the Cubic and Quadratic Models

We use the reformulation linearization technique (RLT) introduced by [54] for

linearization. RLT has two steps, reformulation and linearization by the constraint

generation technique. In the reformulation step, we introduce two new sets of decision

variables: ωij and yijk as follows:

ωij =

 1, if xi = xj = 1;

0, otherwise,
(2.16)

yijk =

 1, if xi = xj = xk = 1;

0, otherwise.
(2.17)

To apply the reformulation process, we multiply the bound constraints for binary

variables as follows. For two binary variables xj and xk, we have the bound con-

straints

xi ≥ 0, 1− xi ≥ 0, xj ≥ 0, 1− xj ≥ 0. (2.18)

We multiply each constraint involving xi with each constraint involving xj and then

replace xixj product term with a new variable ωij. We obtain the following set of

constraints:

ωij ≥ 0, ωij − xj − xi ≥ −1, ωij − xi ≥ 0, ωij − xj ≥ 0. (2.19)
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Similarly, for three binary variables xi, xj and xk, we add the bound constraints on

xk,

xk ≥ 0, 1− xk ≥ 0, (2.20)

to the constraints in (2.18) and consider products of triples of constraints from (2.18), (2.20)

involving each of the three variables. We replace each product xixjxk with a new

variable yijk. This will add 23 = 8 linear class of constraints:

yijk ≥ 0, ωij − yijk ≥ 0, ωik − yijk ≥ 0, ωjk − yijk ≥ 0, (2.21)

yijk + xi − ωik − ωij ≥ 0, yijk + xj − ωjk − ωij ≥ 0, (2.22)

yijk + xk − ωik − ωjk ≥ 0, yijk + xi − ωik − ωij − ωjk + xj + xk ≤ 1. (2.23)

The Cubic Model 

The cubic model consists of the objective function (2.5) and the constraints (2.6),

(2.7a), (2.8)–(2.15). A linearized version of first formulation after applying RLT is:

maximize
∑
i∈V

xi (2.24)

subject to ∑
j∈J

aijxj ≥ 2xi ∀i ∈ V (2.25)

∑
j∈NG(i)

∑
j<k∈NG(i)

aijaikakjyijk ≥ 2α
∑

k∈NG(i)

aijaikωkj ∀i ∈ V (2.26)

ωij − yijk ≥ 0, ωik − yijk ≥ 0, ωjk − yijk ≥ 0 ∀i, j, k ∈ V (2.27)

yijk + xi − ωik − ωij ≥ 0, yijk + xj − ωjk − ωij ≥ 0 ∀i, j, k ∈ V (2.28)

yijk + xk − ωik − ωkj ≥ 0 ∀i, j, k ∈ V (2.29)
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yijk + xi − ωik − ωij − ωjk + xj + xk ≤ 1 ∀i, j, k ∈ V (2.30)

L∑
l=2

p
(`)
ij ≥ xi + xj − 1 ∀{i, j} 6∈ E (2.31)

p
(2)
ij ≤ xi, p

(2)
ij ≤ xj, p

(2)
ij ≤

∑
k∈V

aikakjxk ∀i, j ∈ V (2.32)

p
(2)
ij ≥

1

n
(
∑
k∈V

aikakjxk) + xi + xj − 2 ∀i, j ∈ V (2.33)

p
(`)
ij ≤ xi, p

(`)
ij ≤

∑
k∈V

aikp
(`−1)
kj ∀i, j ∈ V ` ∈ {3, . . . , L} (2.34)

p
(`)
ij ≥

1

n
(
∑
k∈V

aikp
(`−1)
kj ) + xi − 1 ∀i, j ∈ V ` ∈ {3, . . . , L} (2.35)

xi, ωij, yijk, p
(`)
ij ∈ {0, 1},∀i, j, k ∈ V. (2.36)

The Quadratic Model

The quadratic model is composed of the objective function (2.5) and the con-

straints (2.6), (2.7b), (2.8)–(2.15). As mentioned earlier, the main difference between

the cubic and quadratic model is in the equations (2.7a) and (2.7b). Linearized ver-

sion of the quadratic model is:

maximize
∑
i∈V

xi (2.37)

subject to ∑
j∈J

aijxj ≥ 2xi ∀i ∈ V (2.38)

∑
aijaikakjωkj ≥ 2α

∑
k∈NG(i)

aijaikωkj −M(1− xi) (2.39)

ωij − xj − xi ≥ −1, ωij − xi ≥ 0, ωij − xj ≥ 0 (2.40)
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L∑
`=2

p
(`)
ij ≥ xi + xj − 1 ∀{i, j} 6∈ E (2.41)

p
(2)
ij ≤ xi, p

(2)
ij ≤ xj, p

(2)
ij ≤

∑
k∈V

aikakjxk ∀i, j ∈ V (2.42)

p
(2)
ij ≥

1

n
(
∑
k∈V

aikakjxk) + xi + xj − 2 ∀i, j ∈ V (2.43)

p
(`)
ij ≤ xi, p

(`)
ij ≤

∑
k∈V

aikp
(`−1)
kj ∀i, j ∈ V ` ∈ {3, . . . , L} (2.44)

p
(`)
ij ≥

1

n
(
∑
k∈V

aikp
(`−1)
kj ) + xi − 1 ∀i, j ∈ V ` ∈ {3, . . . , L} (2.45)

xi, ωkj ∈ {0, 1},∀i, j, k ∈ V. (2.46)

2.2.4 The Triangle Model

In this section we consider an alternative formulation for solving the considered

problem, referred to as the triangle model. In this formulation, we use a value-

disjunction technique to model the required number of triangles in the subgraph

induced by an α-cluster. Moreover, we use a slightly modified version of k-club

constraints [58] and show that we can relax the integrality requirements for almost

all variables in the corresponding formulation to enhance the performance of MIP

solvers.

For any i ∈ V , let

zid =


1, if

∑
j∈V

aijxj = d,

0, otherwise.

Namely, zid = 1 if and only if the degree of node i in the subgraph G[C] is d. This
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requirement can be enforced by the following constraints:

dG(i)∑
d=0

dzid =
∑
j∈V

aijxj,

dG(i)∑
d=0

zid = 1, ∀i ∈ V. (2.47)

Since we are only concerned with i ∈ C (i.e., xi = 1), we use constraints (2.47) in a

relaxed form:

dG(i)∑
d=1

dzid ≥
∑
j∈V

aijxj −M(1− xi),
dG(i)∑
d=1

zid = 1, ∀i ∈ V, (2.48)

where M is a sufficiently large constant, e.g., M = dG(i).

Next, for each edge {i, j} ∈ E, we introduce a variable ωij such that ωij = 1

if and only if xi = 1, xj = 1. Then, for any node i ∈ V the clustering coefficient

constraint can be written as

∑
{k,j}∈E,k<j

aikaijωkj ≥ α

dG(i)∑
d=2

d(d− 1)

2
zid. (2.49)

Observe that for any i ∈ V the number of variables zid is dG(i). Hence, we only

need 2|E| of variables zid and |E| of variables ωij.

Also, for every pair of nodes i and j define u
(`)
ij ∈ {0, 1} to be 1 if and only if both

nodes i and j are in local α-cluster C and there is a path of length at most ` between i

and j in G[C]. Note that in the formulations in 2.2.3, we use variables p
(`)
ij indicating

that there is a path of length (exactly) ` between i and j in G[C]. As it is can be seen

from the formulation below, using variables u
(`)
ij instead of p

(`)
ij allows for a simpler

modeling of recursive distance-based constrains. Then the triangle formulation can
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be stated as follows:

maximize
∑
i∈V

xi (2.50)

subject to
∑

(k,j)∈E,k<j

aikaijωkj ≥ α

dG(i)∑
d=2

d(d− 1)

2
zid, ∀i ∈ V (2.51)

ωij ≤ xi, ωij ≤ xj, ∀{i, j} ∈ E, i < j (2.52)

dG(i)∑
d=1

dzid ≥
∑
j∈V

aijxj −M(1− xi),
dG(i)∑
d=1

zid = 1, ∀i ∈ V (2.53)

u
(L)
ij ≥ xi + xj − 1, ∀i, j ∈ V, i 6= j (2.54)

u
(1)
ij = 0, ∀{i, j} /∈ E, i 6= j (2.55)

u
(`)
ij = u

(1)
ij , ∀{i, j} ∈ E, ` ∈ {2, . . . , L} (2.56)

u
(`)
ij ≤

∑
t: (i,t)∈E

u
(`−1)
tj , ∀{i, j} /∈ E, ` ∈ {2, . . . , L} (2.57)

u
(`)
ij ≤ xi, u

(`)
ij ≤ xj, u

(`)
ij = u

(`)
ji , ∀i, j ∈ V, ` ∈ {1, . . . , L} (2.58)

u
(`)
ij ∈ R+, ∀i, j ∈ V, ` ∈ {1, . . . , L} (2.59)

xi ∈ {0, 1} zid, ωij ∈ R+, ∀i, j ∈ V, d ∈ {1, . . . , dG(i)}. (2.60)

Note that we relaxed the integrality requirements for variables u
(`)
ij , ωij and zid. For

the variables u
(`)
ij and ωij this can be done without altering the optimal solutions due

to the maximization nature of the problem. We show that zid variables can also be

relaxed in Proposition 1.

Proposition 1. There exists an optimal solution of the triangle formulation denoted

by (x∗, y∗, u∗, z∗) such that z∗ has only binary components.
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Proof. Consider an instance of the triangle formulation with an optimal solution

given by (x∗, y∗, u∗, z̄), where z̄ may not have only 0–1 components. Define z∗ =

{z∗it|i ∈ V, t = 1, . . . , dG(i)} as follows.

z∗it =


1, if

∑
j∈V

x∗j = t, and xi = 1,

0, if
∑
j∈V

x∗j 6= t, and xi = 1.

(2.61)

and

z∗it =


1, if t = 1, and xi = 0,

0, if t > 1, and xi = 0.

(2.62)

Obviously, (x∗, z∗) satisfy (2.53). Moreover, for any node i ∈ V such that xi = 0,

(x∗, z∗) satisfy (2.50). Also, without loss of generality we can assume that
dG(i)∑
t=1

tz̄it =∑
j∈V

x∗j , for all i ∈ V such that xi = 1. Then, for any convex function f() and node

i ∈ V such that xi = 1, applying Jensen’s inequality we can conclude that

dG(i)∑
t=1

f(t)z̄it ≥ f

dG(i)∑
t=1

tz̄it

 = f

(∑
j∈V

x∗i

)
= f

dG(i)∑
t=1

tz∗it

 =

dG(i)∑
t=1

f(t)z∗it,

since
dG(i)∑
t=1

tz∗it =
dG(i)∑
t=1

tz̄it =
∑
j∈V

x∗j . Hence, for the function f(t) = α t(t−1)
2

∑
{k,j}∈E,k<j

aikaijy
∗
kj ≥ α

dG(i)∑
t=2

t(t− 1)

2
z̄it ≥ α

dG(i)∑
t=2

t(t− 1)

2
z∗it

Therefore, (y∗, z∗) satisfy (2.50), and since (x∗, y∗, u∗, z̄) is an optimal solution,

thus (x∗, y∗, u∗, z∗) is also an optimal solution of the triangle formulation.
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2.2.5 Finding Global α-Clusters

The cubic and triangle formulations for the maximum global α-cluster problem

can be easily obtained from the cubic and triangle models above. In the cubic model,

we can do so by replacing the constraints (2.26) with their surrogate constraints [32],

which are obtained by summing up the corresponding inequalities over all i ∈ V .

As for the triangle model, we first introduce nonnegative real variables yijk for any

triplet of nodes (i, j, k) that form a triangle in G, i.e., {i, j}, {i, k}, {k, j} ∈ E. Let

∆ = {(i, j, k) : i < j < k, {i, j}, {i, k}, {k, j} ∈ E}

be the set of all such triangles in G. Then we replace the constraints (2.51)–(2.52)

with

3
∑

(i,j,k)∈∆

yijk ≥ α
∑
i∈V

dG(i)∑
d=2

d(d− 1)

2
zid, (2.63)

yijk ≤ xi, yijk ≤ xj, yijk ≤ xk, ∀(i, j, k) ∈ ∆. (2.64)

2.3 Analysis of α-Clusters in Real-life Social Networks

We implemented the proposed formulations using FICO Xpress-IVE Version

1.24.04 solver. All computations were performed on a Dell Precision WorkStation

T7500 R© computer with eight 2.40 GHz Intel Xeon R© processors and 12 GB RAM.

In preliminary experiments, we verified that all three proposed models yield iden-

tical solutions and observed that the triangle model outperforms its competitors in

terms of running time on all instances. Hence, we use the triangle model in all

experiments discussed below.

We analyze four well-known social network instances by varying the clustering
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coefficient threshold level, as described in the following four subsections.

2.3.1 Zachary’s Karate Club

The first social network we analyze is the karate club example first studied by

Zachary [66]. The corresponding graph describes social relationships among 34 mem-

bers of a university karate club, where the nodes represent its members. If two mem-

bers are friends outside the club, then an edge is present between them. The graph

has the total of 78 edges. After a dispute between the instructor (Mr. Hi, a karate

instructor, node 1) and the club’s administrator (John A., the club president, node

34), the club split into two factions, with 16 and 18 members, respectively. Since the

members of each group are known, this example is often used as a benchmark for

network clustering algorithms.

We first study the effect the split had on local and global clustering coefficients.

As can be seen from Table 2.1, global clustering coefficient increases after the split.

For Mr. Hi’s group, the increase is quite significant. However, in the case of John’s

faction the increase in global clustering coefficient is rather small. This may suggest

that Mr. Hi’s faction is more cohesive than John’s. This hypothesis appears to

be especially reasonable if one analyzes the aspects that led to the divide: Mr. Hi

wished to raise the price of karate lessons, whereas John insisted on stabilizing prices.

According to [66],

“The supporters of Mr. Hi saw him as a fatherly figure who was their

spiritual and physical mentor, and who was only trying to meet his own

physical needs after seeing to theirs. The supporters of John A. and the

other officers saw Mr. Hi as a paid employee who was trying to coerce his

way into a higher salary.”

Based on this description, Mr. Hi’s supporters seemed to have formed a more ide-
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Table 2.1: Global and average local clustering coefficients of Zachary’s karate club
before and after the split.

Clustering coefficient Before split Mr. Hi’s faction John’s faction
Global 0.255682 0.418994 0.259615
Average local 0.570638 0.719712 0.651539

ologically united group than their opposition. Comparing the values of clustering

coefficients in Table 2.1 we may also hypothesize that the global clustering coeffi-

cient is more indicative of a group’s overall cohesiveness than t.

We computed all the largest global and local α-clusters in the karate club network

for α = 1, 0.9, 0.8, 0.7, and 0.6. The corresponding results are presented in Table 2.2.

For each considered value of α, this table reports the size of a largest α-cluster (‘Size’)

and lists the members of each largest α-cluster (‘Members’). We observe that for

α = 1, the largest α-clusters, both global and local, are given by two maximum

cliques of size 5, {1, 2, 3, 4, 8} and {1, 2, 3, 4, 14}, which have 4 out of 5 vertices in

common. The union of these two cliques gives the largest local and global α-cluster

for α = 0.9, see Figure 2.2 for an illustration. For α = 1 and 0.9, all the optimal

α-clusters consisted of members of Mr. Hi’s faction only. However, for α = 0.8 and

below, all the largest global α-clusters consist of a mix of members of both factions,

see Figure 2.3 for an illustration. As for maximum local α-clusters, there are only two

optimal α-clusters for α = 0.7 in Figure 2.4 and one – for α = 0.6 in Figure 2.5 that

contain an “outlier” node 9, representing a member of John’s faction. Interestingly,

[66] points out that “Person number 9 was a weak supporter of John but joined

Mr. Hi’s club after the split.” These results confirm our earlier observation that

local α-clusters provide a much better description of cohesive subgroups than global
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α-clusters.

Next, we compute the largest local α-clusters that contain node 34 (John, the

leader of one of the two factions). The corresponding results are reported in Table 2.3.

For α = 1, 0.9, 0.8, and 0.7, we obtain the same pair of alternative solutions given by

cliques of size 4. For α = 0.6, there is a unique maximum local α-cluster containing

node 34. This solution consists of 6 nodes and is nothing else but the union of the two

cliques obtained for higher values of α. Note that all the nodes listed in the optimal

solutions in Table 2.3 are members of John’s faction, which once again illustrates

strong cohesiveness properties of local α-clusters.

Table 2: Description of all the largest α-clusters in Zachary’s karate club network.

Global Local
α Size Members Size Members
1 5 1,2,3,4,8 5 1,2,3,4,8

1,2,3,4,14 1,2,3,4,14
0.9 6 1,2,3,4,8,14 6 1,2,3,4,8,14
0.8 10 1,2,3,4,8,14,23,24,26,34 6 1,2,3,4,8,14

1,2,3,4,8,14,24,26,30,32
2,3,4,5,9,15,25,28,29,31

0.7 13 1,2,3,4,8,14,23,24,25,26,27,30,33 6 1,2,3,4,8,9
1,2,3,4,8,14,16,19,24,25,26,30,33 1,2,3,4,8,13
1,2,3,4,8,14,15,21,24,25,26,30,33 1,2,3,4,8,14
2,3,4,5,9,15,16,22,25,26,27,31,34 1,2,3,4,8,18

1,2,3,4,8,20
1,2,3,4,8,22
1,2,3,4,9,14
1,2,3,4,13,14
1,2,3,4,14,18
1,2,3,4,14,20
1,2,3,4,14,22

0.6 16 1,2,3,4,8,10,14,15,19,21,24,25,26,27,30,33 7 1,2,3,4,8,9,14
1,2,3,4,8,14,15,19,21,24,25,26,27,29,30,33 1,2,3,4,8,13,14

1,2,3,4,5,6,7,8,14,17,21,23,24,27,30,34 1,2,3,4,8,14,18
2,3,4,5,9,11,15,17,20,22,25,26,27,28,31,34 1,2,3,4,8,14,20

1,2,3,4,8,14,22
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Figure 2: Zachary’s karate club network with John’s and Mr. Hi’s faction members
represented by circles and rectangles, respectively. The rectangles with a solid border
show the members of the largest global and local α-cluster for α = 0.9.
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The set of constraints based on node degree values restricts the solution to
include nodes when most of their corresponding neighbors are also included
in the solution. In contrast, such set of constraints excludes nodes when most
of their corresponding neighbors are also excluded from the solution. More
formally, for each node i in the α−cluster solution, we make sure that

14

Figure 2.2: Zachary’s karate club network with Mr. Hi’s and John’s faction members
shown on the left and on the right, respectively. The nodes with a solid border show
the members of the largest global and local α-cluster for α = 0.9.

The CPU time used to compute each maximum local and global α-cluster has not

exceeded 6 seconds, with local α-clusters computed slightly faster than the global

ones. Taking into account that local α-clusters are also superior to the global ones in

terms of their cohesiveness properties, we do not find global α-clusters to be of much

25



Figure 2.3: Zachary’s karate club network with Mr. Hi’s and John’s faction members
shown on the right and on the left, respectively. The nodes with a solid border show
the members of the largest global α-cluster for α = 0.8.

interest in studying cohesive subgroups and focus on computing local α-clusters in

the remaining experiments.

2.3.2 Football Graph

Second, we analyze the football graph due to [31], which represents American

college football games in year 2000. Nodes represent 115 teams that played in that

season and 613 edges represent games played between them. These 115 teams are

subdivided in 11 conferences. Usually, each team plays most of its games with the

teams in the same conference. Table 2.4 presents clustering coefficient information

for each conference. In addition, there were 5 teams that did not belong to any

conference, referred to as independents.

We compute the largest local α-clusters in the football network for α = 1, 0.9, 0.8,

and 0.75. The corresponding results are presented in Table 2.5. Visually, Figure 2.6

shows the solution with respect to the whole graph when α is equal to 1. Figure 2.7

presents an alternative solution. for the same α value. As pointed out in Table 2.5,

we find the same solution for α values 1 and 0.9. For each considered value of α,
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Table 2.2: Description of all the largest α-clusters in Zachary’s karate club network.
The members of John’s faction are shown in bold.

Global Local
α Size Members Size Members
1 5 1,2,3,4,8 5 1,2,3,4,8

1,2,3,4,14 1,2,3,4,14
0.9 6 1,2,3,4,8,14 6 1,2,3,4,8,14
0.8 10 1,2,3,4,8,14,23,24,26,34 6 1,2,3,4,8,14

1,2,3,4,8,14,24,26,30,32
1,2,3,4,8,14,24,27,28,30
1,2,3,4,8,14,15,24,26,34
1,2,3,4,8,,24,26,30,33,34
1,2,3,4,8,14,,24,25,26,33
1,2,3,4,8,14,,24,26,27,34
1,2,3,4,8,,24,27,30,33,34
1,2,3,4,8,14,19,24,26,34
1,2,3,4,8,14,24,26,30,34
1,2,3,4,8,14,24,27,30,34
1,2,3,4,8,14,16,24,26,34
1,2,3,4,8,14,21,24,26,34
2,3,4,5,9,15,25,28,29,31

0.7 13 1,2,3,4,6,7,8,14,17,24,27,30,34 6 1,2,3,4,13,14
1,2,3,4,8,20
1,2,3,4,14,22
1,2,3,4,14,18
1,2,3,4,8,13
1,2,3,4,8,14
1,2,3,4,8,9
1,2,3,4,8,18
1,2,3,4,8,22
1,2,3,4,9,14
1,2,3,4,14,20

0.6 15 1,2,3,4,5,6,7,8,14, 23,24,27,30,33,34 7 1,2,3,4,8,9,14
1,2,3,4,5,6,7,8,11,17,23,24,30,33,34 1,2,3,4,8,13,14

1,2,3,4,6,7,8,14,17,25,26,27,30,32,34 1,2,3,4,8,14,18
1,2,3,4,6,7,8,11,13,14,17,24,27,30,34 1,2,3,4,8,14,20

and 184 more solutions 1,2,3,4,8,14,22
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Table 2.3: Description of the largest local α-clusters containing node 34 in Zachary’s
karate club network.

α Size Members
1, 0.9, 0.8, 0.7 4 9, 31, 33, 34

24, 30, 33, 34
0.6 6 9, 24, 30, 31, 33, 34

Figure 2.4: Zachary’s karate club network with Mr. Hi’s and John’s faction members
shown on the right and on the left, respectively. The nodes with a solid border show
the members of the largest global α-cluster for α = 0.7.

this table reports the size of a largest α-cluster (‘Size’) and lists the nodes of each

optimal α-cluster (‘Solutions’). We observe that for α = 1 and 0.9, the largest α-

clusters are given by two maximum cliques of size 9. The first maximum clique

corresponds to Atlantic Coast Conference (ACC), and the second maximum clique

corresponds to Western Athletic Conference (WAC). As we decrease α to 0.8, we

obtain a unique optimal solution, which consists of 9 teams from WAC and three

teams from other conferences, namely Conference USA (Houston), Mountain West

(New Mexico State), and Sunbelt (Nevada Las Vegas).

For a slightly smaller value of α = 0.75, we obtain 10 optimal solutions, each
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Figure 2.5: Zachary’s karate club network with Mr. Hi’s and John’s faction members
shown on the right and on the left, respectively. The nodes with a solid border show
the members of the largest global α-cluster for α = 0.6.

Table 2.4: College football conference sizes, global, average local and minimum local
clustering coefficients.

Clustering coefficient
Conference Size Global Average local Minimum local

Atlantic Coast 9 1.00 1.00 1.00
Mid American 13 0.643 0.641 0.57

Big East 8 1.00 1.00 1.00
Conference USA 10 0.82 0.74 0.00

SEC 12 0.68 0.68 0.68
PAC10 10 0.86 0.86 0.86

Mountain West 8 1.00 1.00 1.00
Big 10 11 0.75 0.75 0.75
Big 12 12 0.68 0.68 0.68

Western Athletic 10 0.93 0.86 0.00
Sunbelt 7 0.75 0.83 0.33

consisting of 25 teams. The solutions roughly correspond to 3 conferences in their

size and consist of 3 large clusters corresponding to different conferences and a couple

additional teams outside. Most of the solutions reported in Table 2.5 for α = 0.75

consist of 8 teams from ACC, 8 teams from WAC, 8 teams from Mountain West
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Figure 2.6: Football network with local α-cluster when α is 1 and 0.9.

Conference, and 1 more team that plays two teams from one of these three conferences

(e.g., Vanderbilt, Oklahoma, and Arizona, respectively, in the first three reported

solutions). Figure 2.8 shows an example solution with respect to the whole graph.

Again, we observe that local α-clusters with high values of α consistently describe

tightly knit groups of actors. However, as α is decreased from 0.8 to 0.75, we see

a dramatic increase in the size of α-clusters, which for α = 0.75 consist of several

tightly knit clusters. This can be explained by the clearly-defined modular structure

of the football network, where teams from the same conference are clustered together

in a supervised fashion due to the conference schedule requirements. The same is not

expected to be the case in social networks where actors are free to decide on their
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Figure 2.7: Football network with local α-cluster when α is 1 and 0.9, alternative
solution.

local interactions.

2.3.3 Santa Fe Institute (SFI) Collaboration Network

The third considered network is the largest connected component of SFI collabo-

ration network [31]. There are 118 scientists and an edge is drawn if they coauthored

one or more articles between 1999 and 2000. There are 200 collaborations between

the scientists.

We compute the largest local α-clusters in the SFI collaboration network for

α = 1, 0.9, 0.8, 0.7, and 0.6. The corresponding results are presented in Table 2.6.

We observe that for α = 1, the largest α-clusters are given by five maximum cliques
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Table 2.5: Description of the largest local α-clusters in the football network.

α Size Solutions
1, 0.9 9 2,26,34,38,46,90,104,106,110

47,50,54,68,74,84,89,111,115
0.8 12 47,49,50,54,68,70,74,84,89,105,111,115
0.75 25 {1,2,5,10,17,24,26,38,42,46,47,50,54,

63,74,84,89,90,94,104,105,106,110,111,115}
{1,2,5,10,17,24,26,38,42,46,47,50,54,

74,84,85,89,90,94,104,105,106,110,111,115}
{1,2,5,10,17,23,24,26,38,42,46,47,50,54,74,

84,89,90,94,104,105,106,110,111,115}
{1,5,10,17,24,26,34,38,42,46,47,50,54,74,
84,89,90,94,104,105,106,109,110,111,115}
{1,2,5,10,17,24,26,38,42,46,47,50,54,74,84,

89,90,94,104,105,106,109,110,111,115}
{1,5,10,17,24,26,34,38,42,46,47,50,54,74,84

85,89,90,94,104,105,106,110,111,115}
{1,5,9,10,17,24,26,34,38,42,46,47,50,54,74,

84,89,90,94,104,105,106,110,111,115}
{1,5,10,17,23,24,26,34,38,42,46,47,50,54,74,

84,89,90,94,104,105,106,110,111,115}
{1,5,10,17,24,26,34,38,42,46,47,50,54,63,74,

84,89,90,94,104,105,106,110,111,115}
{1,2,5,9,10,17,24,26,38,42,46,47,50,54,74,

84,89,90,94,104,105,106,110,111,115}

of size 5. The first two of them correspond to researchers in statistical physics, the

third one is a cohesive subset of RNA structure group, and the last two correspond

to mathematical ecologists. For α = 0.8, we find a unique optimal solution which

corresponds to scientists working on RNA structure. For a smaller value of α = 0.6,

we obtain two similar optimal solutions (differing by just one member), both of which

correspond to RNA structure scientists. In each case, we observe that α-clusters

correspond to groups of researchers with similar interests.
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Figure 2.8: Football network with local α-cluster when α is 0.75.

2.3.4 Dolphins Network

Another social network we analyze is dolphins network constructed by [43]. In

the corresponding study, interactions of 62 dolphins were traced, with the edges

describing the pairs of dolphins with higher than expected level of interaction between

them. The total of 159 such pairs were recorded. In the literature, it is repeatedly

mentioned that there are two main groups consisting of 20 and 42 members, referred

to as group 1 and group 2, respectively. We computed the largest local α-clusters in

the dolphins network for α = 1, 0.9, 0.8, 0.7, and 0.6. The corresponding results are

presented in Table 2.7. For α = 1, the largest α-clusters are given by three maximum

cliques of size 5, one of which corresponds to group 1, and the other two – to group
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Table 2.6: Description of the largest local α-clusters in Newman’s SFI collaboration
network.

α Size Solution
1 5 6,17,18,28,74

18,44,49,52,74
27,37,64,93,117

42,100,102,107,111
55,68,94,100,105

0.8 6 3,27,37,64,93,117
0.6 8 3,27,37,48,56,64,93,117

3,27,37,48,57,64,93,117

2. For α = 0.9, there is a unique optimal solution of size 6, which is the union of the

two maximum cliques corresponding to group 2. We note that each of the optimal

α-clusters reported in Table 2.7 consists of nodes representing dolphins from one of

the two groups only. This, once again, indicates that local α-clusters tend to describe

strong cohesive subgroups in real-life social networks.

2.3.5 Terrorist Network Compiled by Krebs

Finally, we consider the terrorist interaction network compiled by [38] using the

information available about the tragic events of September 11, 2001. This network

consists of 62 nodes representing terrorists connected to the attacks (see Table 2.8

for the list of names), and the edges correspond to pairs of persons that were known

to interact the past. In total there were 153 interactions observed.

We compute the largest α-clusters for α = 1, 0.9, 0.8, 0.7 and 0.6. The results are

reported in Table 2.9. There are three maximum cliques of size 6 for α = 1, each of

them shows the close relationships between hijackers. All members of the first two

groups were among the hijackers involved in the World Trade Center attacks, and all

nodes in the third group were members of the Hamburg terror cell [38]. For α = 0.9,
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Table 2.7: Description of the largest local α-clusters in dolphins network. An asterisk
(∗) indicates the members of group 1; unmarked nodes represent group 2.

α Size Solution
1 5 7∗,10∗,14∗,18∗,58∗

19,25,30,46,52
19,22,30,46,52

0.9 6 19,22,25,30,46,52
0.8 6 6∗,7∗,10∗,14∗,18∗,58∗

7∗,10∗,14∗,18∗,42∗,58∗

7∗,10∗,14∗,18∗,55∗,58∗

7∗,10∗,14∗,42∗,55∗,58∗

15,17,34,38,39,44
16,19,25,30,46,52
19,22,25,30,46,52

0.7 7 7∗,10∗,14∗,18∗,42∗,55∗,58∗

16,19,22,25,30,46,52
0.6 8 2∗,6∗,7∗,10∗,14∗,42∗,55∗,58∗

2∗,7∗,10∗,14∗,,33∗,42∗,55∗,58∗

6∗,7∗,10∗,14∗,18∗,42∗,55∗,58∗

15,17,21,22,34,38,39,44
15,17,21,34,35,38,39,41
15,17,21,34,35,38,39,44
15,17,21,34,35,38,39,51
15,17,21,34,35,38,41,51
15,17,21,34,35,38,44,51
15,17,21,34,38,39,41,44
15,17,21,34,38,39,41,51
15,17,21,34,38,39,44,51
15,17,21,34,38,41,44,51
15,17,22,34,38,39,44,53
15,17,34,37,38,39,41,51

node 23 is added to one of the cliques, which also corresponds to a terrorist that

took part in the WTC North attack. Likewise, for α = 0.8 node 10 is added to the

largest 0.9-cluster, an alleged organizer and financier of the 9/11 attacks. For α = 0.7

there are two optimal solutions of size 9 differing by just one node; namely, node 21

35



Table 2.8: Description of the nodes in the terrorist network.

Node Name Node Name

1 Wail Alshehri 32 Agus Budiman
2 Satam Suqami 33 Ahmed K. I. Samir Al-Ani
3 Nabil alMarabh 34 Majed Moqed
4 Raed Hijazi 35 Rayed Mohammed Abdullah
5 Waleed Alshehri 36 Faisal Al Salmi
6 Ahmed Alghamdi 37 Bandar Alhazmi
7 Mohand Alshehri 38 Abdelghani Mzoudi
8 Saeed Alghamdi 39 Abu Qatada
9 Fayez Ahmed 40 Abu Walid
10 Mustafa Ahmed al-Hisawi 41 Abu Zubeida
11 Abdul Aziz Al-Omari 42 Ahmed Ressam
12 Hamza Alghamdi 43 David Courtaillier
13 Ahmed Alnami 44 Djamal Beghal
14 Ahmed Alhaznawi 45 Essid Sami Ben Khemais
15 Mamoun Darkazanli 46 Essoussi Laaroussi
16 Mohamed Abdi 47 Fahid al Shakri
17 Marwan Al-Shehhi 48 Haydar Abu Doha
18 Zakariya Essabar 49 Imad Eddin Barakat Yarkas
19 Salem Alhazmi 50 Jean-Marc Grandvisir
20 Nawaf Alhazmi 51 Jerome Courtaillier
21 Said Bahaji 52 Kamel Daoudi
22 Ziad Jarrah 53 Lased Ben Heni
23 Mohamed Atta 54 Madjid Sahoune
24 Abdussattar Shaikh 55 Mamduh Mahmud Salim
25 Mounir El Motassadeq 56 Mehdi Khammoun
26 Khalid Al-Mihdhar 57 Mohamed Bensakhria
27 Zacarias Moussaoui 58 Mohammed Belfas
28 Ramzi Bin al-Shibh 59 Nizar Trabelsi
29 Lofti Raissi 60 Samir Kishk
30 Hani Hanjour 61 Seifallah ben Hassine
31 Osama Awadallah 62 Tarek Maaroufi

from the first solution is replaced by node 32 in the second solution. Most of the

nodes included in the solutions were linked to the Hamburg terror cell. For α = 0.6,

we have a unique optimal solution of size 13 (see Figure 2.9 for an illustration).

Interestingly, 11 of the 13 nodes correspond to actual hijackers involved in the WTC
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Table 2.9: Description of the largest local α-clusters in Krebs’s terrorist network.
The hijackers that participated in the WTC North, WTC South, Pentagon, and
Pennsylvania attacks are indicated by the upper bar (¯) lower bar ( ), asterisk (∗),
and hat sign (̂ ), respectively. In addition, the members of the Hamburg terror cell
are marked with a dagger (†).

α Size Solution

1 6 1̄,2̄,5̄,9,1̄1,17†

1̄,2̄,5̄,9,1̄1,2̄3†

17†,18†,21†,2̂2†,2̄3†,28†

0.9 7 1̄,2̄,5̄,9,1̄1,17†,2̄3†

0.8 8 1̄,2̄,5̄,9,10,1̄1,17†,2̄3†

0.7 9 17†,18†,21†,2̂2†,2̄3†,28†,29,30∗,35

17†,18†,2̂2†,2̄3†,28†,29,30∗,32,35

0.6 13 1̄,2̄,5̄,9,1̄1,17†,19∗,20∗,24,26∗,30∗,31,34∗

South, WTC North, and Pentagon attacks. The two remaining nodes (24 and 31)

were linked to two of the hijackers involved in the Pentagon attack. In particular,

node 24 represents an FBI informant, whose “contacts with the hijackers, had they

been capitalized on, would have given the San Diego FBI field office perhaps the

Intelligence Community’s best chance to unravel the September 11 plot” according

to Joint Inquiry into Intelligence Community Activities before and after the Terrorist

Attacks of September 11, 2001.

2.3.6 Other Social Network Instances

To asses the scalability of the proposed method, we conducted numerical experi-

ments for the maximum local α-cluster problem on other benchmark social network

instances obtained from Trick’s graph coloring page (http://mat.gsia.cmu.edu/COLOR03/)

and Pajek dataset (http://vlado.fmf.uni-lj.si/pub/networks/data/), as well as Barabási-

Albert [11] and Erdös-Rényi [23] random graphs.
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Figure 2.9: The largest local α-cluster for α = 0.6 in the terrorist network. Nodes 1,
2, 11 were involved in the WTC North attack, 9,17 participated in the WTC South
attack, 19,20,26,30,34 were involved in the Pentagon attack.

We use connected graphs for all computational experiments. If the original graph

is disconnected, then the largest connected component is considered. Moreover, we

make the network undirected if the original one is directed. The test instances contain

22 various social networks which include

• monkey5: The graph of interactions among a troop of monkeys, observed in

the wild by Linda Wolfe as they sported by a river in Ocala, Florida. Two

nodes are connected by an edge if a corresponding pair of monkeys were jointly
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Table 2.10: Optimal solution and their number for real-life network instances used
in the experiments.

Optimal solutions, α = . . . Number of solutions, α = . . .
Graph |V | |E| 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1
monkeys5 19 60 11 9 8 8 6 3 11 3 1 4
taro 22 39 6 4 3 3 3 4 10 10 10 10
strike 24 38 4 4 4 4 4 4 1 1 1 1
dining 26 42 4 3 3 3 3 2 5 5 5 5
high-tech 33 91 11 8 7 6 6 8 14 4 3 1
korea1 33 68 9 7 7 6 5 1 9 3 1 2
korea2 35 84 9 7 6 5 5 6 9 9 2 2
mexican 35 117 13 7 6 5 5 1 12 5 2 2
sawmill 36 62 3 3 3 3 3 18 18 18 18 18
tailorT1 39 158 13 10 9 8 6 26 16 1 1 7
tailorT2 39 223 21 15 12 8 7 1 4 2 46 4
flying 48 170 10 8 8 6 6 11 5 1 6 6
attiro 59 128 5 4 4 4 4 3 2 2 2 2
prison 67 142 6 5 5 5 5 3 5 5 1 1
huck 69 297 28 19 12 11 11 14 14 26 1 1
sanjuansur 74 144 5 4 4 4 4 5 3 3 3 3
jean 77 254 28 25 13 12 10 1 1 9 1 2
david 87 406 24 18 15 12 11 405 26 2 19 1
anna 138 493 29 19 15 12 11 ≥ 984 10 340 8 1
lindenstrasse 232 303 4 3 3 3 3 5 12 12 12 12
dolphins 62 159 8 7 6 6 5 15 2 7 1 3
santa fe 118 200 8 6 6 5 5 2 14 1 5 5

present at the river at least 5 times during the observation period.

• taro: The graph represents the relation of gift-giving (taro exchange) among

22 households in a Papuan village.

• dining: Dining-table partners in a dormitory at a New York State Training

School.

• flying: The graph represents 48 cadet pilots participated in a sociometric test

at an US Army Air Forces flying school by 1943, administered by Leslie D.

Zeleny. Two cadets are connected by an edge if one of them name the other as

the person with whom he would like to fly.

• mexican: The network contains the core of the political elite in Mexico: the
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Table 2.11: Computational time for the real-life instances used.

Computational time (sec), α = . . .
Graph |V | |E| 0.6 0.7 0.8 0.9 1
monkeys5 19 60 1.24 1.34 1.68 1.59 1.92
taro 22 39 1.12 0.77 0.90 0.82 1.09
strike 24 38 0.71 0.52 0.56 0.84 0.70
dining 26 42 0.14 0.16 0.16 0.18 0.17
high-tech 33 91 4.50 5.30 5.84 6.20 4.98
korea1 33 68 2.24 2.12 1.88 1.97 1.87
korea2 35 84 5.15 5.85 8.25 9.09 5.55
mexican 35 117 8.58 9.13 8.93 8.66 8.46
sawmill 36 62 2.47 2.49 2.59 2.52 2.41
tailorT1 39 158 17.40 17.34 18.30 18.50 17.49
tailorT2 39 223 20.17 29.49 35.17 33.01 21.19
flying 48 170 87.71 45.03 37.75 34.49 17.23
attiro 59 128 47.40 52.95 46.68 49.73 30.51
prison 67 142 24.21 22.13 28.35 17.14 21.73
huck 69 297 13.32 19.48 41.42 31.23 28.01
sanjuansur 74 144 95.68 59.76 67.62 57.48 52.87
jean 77 254 19.59 16.07 53.49 48.04 34.43
david 87 406 150.67 112.40 107.24 98.83 74.91
anna 138 493 952.76 7911.46 560.98 1094.70 495.33
lindenstrasse 232 303 21.03 23.67 24.01 23.70 23.64
dolphins 62 159 99.22 68.65 78.17 73.76 43.46
santa fe 118 200 59.46 67.73 61.72 59.52 382.06

presidents and their closest collaborators. In this network, edges represent

significant political, kinship, friendship, or business ties.

• prison: The graph represents 67 prison inmates and is compiled by John

Gagnon in 1950s. Two prisoners are connected by an edge if one of them name

the other as his closest friend.

• korea1, korea2: The graphs are based on family planning discussions in Korea

among 39 women. An edge between two women represents a family planning

discussion among them.

• attire, sanjualsur: The graphs represent visiting ties among families in Attiro

and San Juan Sur villages in Turrialba, Costa Rica, 1948. Each edge represents

“frequent visits” from one family to another.
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• strike, sawmill, hi-tech, tailorT1, tailorT2: Employee communication

(strike, sawmill), friendships (hi-tech) and interactions (tailorT1, tailorT2) in

various firms.

• anna, david, huck, jean: Graphs, where each node represents a book char-

acter and two nodes are connected by an edge if the corresponding characters

encounter each other in the book (http://mat.gsia.cmu.edu/COLOR03/). The

graphs for four classic works are considered: Tolstoy’s Anna Karenina, Dicken’s

David Copperfield, Twain’s Huckleberry Finn, and Hugo’s Les Misérables.

• lindenstrasse: The data corresponds to a graph of the characters and their

relations in the long-running German soap opera called ‘Lindenstrasse’.

• dolphins: Dolphins network constructed by [43]. In the corresponding study,

interactions of 62 dolphins were traced, with the edges describing the pairs of

dolphins with higher than expected level of interaction between them.

• santa fe: The largest connected component of Santa Fe Institute (SFI) col-

laboration network [31]. There are 118 scientists and an edge is drawn if they

coauthored one or more articles between 1999 and 2000.

The results are summarized in Table 2.10 and the corresponding computational

times are displayed in Table 2.11. If there are multiple solutions for a given network

and parameter α, we report the time required to obtain the first solution. The

alternative solutions take much less time to compute since optimality is easy to

verify and does not need to be proved any more (and proving optimality typically

takes much longer than finding an optimal solution).

We can observe that for some of the larger instances, such as ‘anna’, the running

time increases to several thousands of seconds. However, the relatively small number
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Table 2.12: Optimal solutions and their number for the random network instances
used.

Optimal solutions, α = . . . Number of solutions, α = . . .
Graph |V | |E| 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1
BA 50 2 50 97 4 3 3 3 3 23 20 20 20 20
BA 50 3 50 144 8 6 5 4 4 13 6 6 6 6
BA 50 4 50 190 11 8 7 6 5 8 5 5 2 3
BA 50 5 50 235 15 11 8 7 6 9 1 27 5 6
BA 100 2 100 197 4 3 3 3 3 46 24 24 24 24
BA 100 3 100 294 8 6 5 4 4 12 11 9 9 9
BA 100 4 100 390 12 8 7 6 5 5 10 7 4 4
BA 100 5 100 485 15 11 8 7 6 137 2 21 4 4

ER 50 100 50 100 4 3 3 3 3 5 14 14 14 14
ER 50 150 50 150 4 3 3 3 3 25 31 31 31 31
ER 50 200 50 200 7 5 5 4 4 10 1 1 4 4
ER 50 250 50 250 8 6 5 4 4 5 6 9 15 15
ER 100 200 100 200 3 3 3 3 3 6 6 6 6 6
ER 100 300 100 300 4 3 3 3 3 7 29 29 29 29
ER 100 400 100 400 6 4 4 4 4 2 1 1 1 1
ER 100 500 100 500 6 4 4 4 4 8 5 5 5 5

Table 2.13: Computational time for random instances.

Computational time (sec), α = . . .
Graph |V | |E| 0.6 0.7 0.8 0.9 1
BA 50 2 50 97 1.27 1.06 1.03 1.05 1.11
BA 50 3 50 144 9.99 9.48 11.94 11.24 6.57
BA 50 4 50 190 26.32 26.06 13.43 11.74 11.39
BA 50 5 50 235 93.10 55.01 32.60 36.05 38.05
BA 100 2 100 197 3.27 3.28 3.40 4.21 4.15
BA 100 3 100 294 111.50 96.11 216.26 78.68 112.66
BA 100 4 100 390 1540.01 1289.11 548.11 767.2 309.22
BA 100 5 100 485 14736.16 4371.98 2741.46 1985.02 871.53

ER 50 100 50 100 3.06 3.70 3.46 3.28 4.01
ER 50 150 50 150 10.08 13.68 11.84 5.46 6.93
ER 50 200 50 200 98.87 45.10 37.88 39.25 16.18
ER 50 250 50 250 401.78 225.93 197.84 120.68 48.73
ER 100 200 100 200 32.12 33.15 30.45 28.38 33.87
ER 100 300 100 300 118.78 97.16 86.90 90.34 98.85
ER 100 400 100 400 4212.58 1874.37 999.23 568.40 305.87
ER 100 500 100 500 6978.11 2751.40 1753.21 1242.32 805.18

of vertices and edge density allow us to solve these instances to optimality within a

reasonable amount of time.

To explore the dependence of the running time on the instance size in a more
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Figure 2.10: Graphical illustration of the dependence between the running time and
edge density for the random graphs described in Tables 2.10-2.13.

systematic fashion, we conduct experiments with Barabási-Albert [11] and Erdös-

Rényi [23] random graphs. Barabási-Albert model produces power-law random

graphs, where the probability that a node has a degree k is proportional to k−β

with β ≈ 3. Power law structure has been observed in many real life complex

systems, including social networks [46]. Erdös-Rényi model is given by a uniform

random graph G(n,m), where n is the number of vertices and m is the number of

edges. The model assumes that any graph having n vertices and m edges has the

same probability to occur.

The corresponding results are presented in Tables 2.12-2.13 and Figure 2.10.

In these tables, ‘BA n s’ represents a Barabási-Albert random graph on n vertices
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(n = 50 and 100) for several values of the parameter s (s=2,3,4, and 5), where s is

the number of edges added per node in a graph generating process, and ‘ER n m’

stands for a uniform random graph with n vertices and m edges. Figure 2.10 shows a

significant increase in the running time with the increase in edge density for different

values of α.

2.4 Local α-Clustering Algorithm

Dropping the connectivity requirement from the definition of an α-cluster may

result in solutions corresponding to disjoint unions of α-clusters. These disjoint α-

clusters can be used as seeds for clustering methods that partition the network into

clusters. In this section, we discuss such a clustering algorithm and evaluate its

performance on the four real-life networks used in the previous section.

Algorithm 1 Local α-clustering algorithm

1: Given a connected graph G = (V,E) and α.
2: Find a maximum local α-cluster of G without the connectivity requirements,

denote the corresponding induced subgraph by G′ = (V ′, E ′).
3: Let V ′1 , . . . V

′
k be the sets of nodes corresponding to the different connected com-

ponents of G′, where k is the number of connected components.
4: while V \(∪kj=1V

′
j ) 6= ∅ do

5: Find a node i ∈ I and a cluster V ′j with the largest size of NG(i) ∩ V ′j .
6: V ′j = V ′j ∪ {i}
7: end while
8: return clustering V ′1 , . . . , V

′
k

The proposed approach is outlined in Algorithm 1. We proceed by computing

a maximum local α-cluster with relaxed connectivity requirements, which typically

results in several α-clusters V ′1 , . . . , V
′
k corresponding to different connected compo-

nents in the induced subgraph. Each such α-cluster V ′j , j = 1, . . . , k forms an initial
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seed. At each iteration of the algorithm, we pick an unassigned node i that has the

largest number of neighbors in one of the clusters V ′j and assign i to V ′j . We apply

the procedure recursively until all nodes are assigned to a cluster. In the experiments

below we used α = 1.

We first apply the proposed local α-clustering algorithm to the Zachary’s karate

club network. We demonstrate the results in Figure 2.11. In the figure, black edges
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Figure 2.11: Local α-clustering for the karate example.

belong to the subgraph induced by the maximum relaxed α-cluster solution, and gray

edges are outside of the subgraph. Our clustering algorithm finds three clusters,

one of which coincides with the John’s faction (dark-gray nodes). The other two

clusters correspond to Mr. Hi’s faction (light-gray nodes), with one of the clusters

consisting of a group of 5 students that only interact with themselves and Mr. Hi (the

corresponding nodes are shown as dashed circles) and the other cluster containing

the remaining light-gray nodes (shown as solid-border circles). The clustering we

obtained can be viewed as an enhancement of the results reported in the literature,

since in addition to correctly identifying the two factions it singles out a clearly

defined subgroup within one of the factions.
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The second considered example deals with the football graph. The results are

illustrated in Figure 2.12. In this figure, colors of edges have the same interpretation
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Figure 2.12: Local α-clustering for the football graph.

as in the karate example above. Our clustering algorithm finds 11 clusters, nearly

coinciding with the actual conferences. The algorithm expectedly places the five

independent teams by assigning them to the “closest” conferences. In addition, it

misplaces four teams from Sunbelt Conference, which are assigned to the Western

Athletic Conference cluster and SEC. This can be explained by observing that the
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number of games the misplaced teams played against the other Sunbelt Conference

teams and Western Athletic Conference/SEC teams was similar. The results we

obtained are comparable with the results of [31].

Next, we apply our algorithm to the largest component of SFI collaboration

network. We show the results in Figure 2.13.
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Figure 2.13: Local α-clustering for Santa Fe Institute largest component.

In this figure, vertices with different colors correspond to different clusters that

algorithm identifies. At the coarse-level, our algorithm finds four clusters that group

authors by their research interests. At a finer-level, our algorithm identifies subgroups

of close collaborators within each research area.

The results of clustering the dolphins graph with our local α-clustering algorithm

are shown in Figure 2.14. At the loose-level, our algorithm finds two main closely

connected clusters. Only two dolphins, “Oscar” and “PL”, are misplaced compared

to the well-known clustering of the dolphins network [29]. At a more confined level,
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Figure 2.14: Local α-clustering for dolphins graph.

our algorithm recognizes more tightly-knit subgroups of dolphins within the larger

clusters.

Finally, we apply our clustering algorithm to the Krebs’s terrorist network, with

the resulting clusters shown in Figure 2.15. The algorithm finds six clusters, three of

which consist of the associates of the hijackers (with just one exception, hijacker node

22, included in one of the clusters), and the remaining three of which correspond to

the actual hijackers. The three groups roughly correspond to the WTC, Pentagon,

and Pennsylvania attacks, respectively.

2.5 Conclusion

To conclude, this section introduces novel clique relaxation models (i.e., α-clusters)

and methods for finding cohesive subgroups in networks. We use local and global

clustering coefficient metrics since these metrics are efficiently used to characterize

real world networks such as social and biological networks that have small-world
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Figure 2.15: Local α-clustering for terrorist network compiled by Krebs.

properties. We also introduce a novel clustering algorithm based on α-cluster solu-

tion which effectively identifies the clusters without the common assumption of fixing

the number of clusters a priori. We evaluate the correctness of this algorithm on the

well-known real world social graphs, and obtain very comparable results to the ones

reported in the literature. Additionally, to the best of our knowledge, we perform

the first reported clustering analysis of the Kreb’s terrorist network revealing the

cohesive subgroups within the network.
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3. INDEPENDENT UNION OF CLIQUES

In this section, we focus on a special case of α-cluster, namely Independent Union

of Cliques (IUC), in which α = 1 and no connectivity constraints are imposed.

We observe that solutions of two classical problems in combinatorial optimization,

maximum independent set and maximum clique, are feasible solutions for the IUC

problem. Moreover, the solutions of these classical problems are lower bounds to the

size of IUC solution. We show that the IUC problem is NP-Hard and we study the

complexity results of various special graph types. We also develop two algorithms to

find the exact solution based on integer programming and combinatorial branch and

bound, respectively. Furthermore, we develop several approximate algorithms based

on various heuristic techniques.

The remainder of this section is organized as follows. In the next section, we

introduce the necessary definitions and study some basic structural properties of

IUC. Section 3.2 reports complexity results on several graphs like planar graphs,

unit disk graphs, and claw-free graphs. Section 3.3 presents both exact as well as ap-

proximate algorithms, and their experimental results on benchmark graph instances.

This section is based on the working paper by Ertem et al. [26].

3.1 Definitions and Properties

This section presents basic graph-theoretic definitions and notations used through-

out the section. Let G = (V,E) be a simple graph with set V of n vertices (nodes)

and set E of edges (links), E ⊆ {{i, j} : i, j ∈ V }. If {i, j} ∈ E, vertices i and j

are adjacent to each other. We can represent G using its adjacency matrix, whose

elements aij, i, j = 1, . . . , n indicate whether there is an edge between nodes i and j.

The degree dG(i) of vertex i is the number of neighbors of i in G.
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A set of vertices I ⊆ V is called independent set if there is no edge between any

two vertices i, j, i.e. (i, j) /∈ E ∀i, j ∈ I. A clique C is a set of vertices such that every

pair of distinct vertices are adjacent in G. These two structures are closely related,

indeed C is a clique if and only if C is an independent set in the complementary

graph G = (V,E) where E = {(i, j)|i, j ∈ V, i 6= j, (i, j) /∈ E}. ∆(G[S]) denotes the

maximum degree value of a node in the induced subgraph.

The maximum cardinality of a clique in G is called clique number and is denoted

by ω(G). The maximum independent set size of a given graph G is called the

independence number of G, and denoted α(G). We define the size of the independent

union of cliques size of a graph G as ζ(G).

(a) Open Triangle (b) Closed triangle

Figure 3.1: Examples of an open triangle and a closed triangle.

An open triangle is an induced path of three vertices, where a direct edge is

missing between a pair of nodes in the induced graph, as it is shown in Figure 3.1a.

On the other hand, a closed triangle is a subgraph where all three pairs are adjacent

in the induced graph, see Figure 3.1b.

Assume that an induced subgraph G[C] is an IUC. Since it consists of connected

components forming a clique, there are no open triangles. Given a subgraph without

open triangles, each connected component of the subgraph must be a complete graph.

Thus, it is an IUC. This fact leads us to the following property.
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Property 1. A set C is an IUC if and only if there is no open triangle in the induced

subgraph G[C].

Proof. Let the set C be an IUC, so that it consists of union of independent cliques.

That is, the vertices are directly connected within the clique, but there is no con-

nection between the cliques. Therefore, there is no open triangle in the subgraph

G[C].

Conversely, let there be no open triangles in the induced graph G[C], that is 

either neighbors of a node are all pairwise adjacent, resulting in a clique, or there 

are nodes with no neighbors, resulting in members of independent set. From the 

definition of IUC, nodes inducing a clique or members of independent set, imply a 

solution for IUC. Therefore, a set C is an IUC if and only if there is no open triangles 

in the induced subgraph G[C].

In Figure 3.2, we show maximum clique, maximum independent set and maximum

IUC solutions for a given simple undirected graph G = (V,E). In Figure 3.2a, the

maximum clique in the graph G is shown. Note that this solution, consisting of

four nodes, is a feasible IUC solution. In Figure 3.2b, the maximum independent

set solution is shown, which also consists of four nodes and is a feasible solution for

IUC. Finally, in Figure 3.2c, the maximum IUC solution is presented. Note that this

is the optimal solution for IUC, which consists of five nodes, including nodes from

both the maximum clique solution and the maximum independent set solution.

The following two properties of IUCs are easy to see.

Property 2. Any independent set and any clique in G is a feasible solution to the

IUC problem.

Property 3. Independent union of cliques is a structure that is hereditary on induced
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(a) Max. clique (b) Max. ind. set (c) Max. IUC

Figure 3.2: Maximum clique, maximum independent set and maximum independent
union of cliques solutions of a given graph G.

subgraphs, i.e., any subset of a solution for independent union of cliques is also a

solution for independent union of cliques.

Theorem 1 (Yannakakis, 1978). The problem of finding the largest-order induced

subgraph not violating property π that is nontrivial, interesting and hereditary on

induced subgraphs is NP-hard.

The maximum independent union of cliques problem is a special case of minimum

node deletion problem, similar to the maximum clique and maximum independent set

problems. Minimum node deletion problem is aiming to find the minimum number of

deletions that still satisfies the desired property. The maximum independent union

of cliques problem seeks to find the largest order induced subgraph satisfying the

independent union of cliques. Independent union of cliques has hereditary property,

since the deletion of any subset of vertices in G[S] still results in a graph whose

set of vertices is an independent union of cliques. Independent union of cliques

is nontrivial, such that a single vertex graph is a feasible independent union of

cliques. It is an interesting problem because there are arbitrarily large graphs which

satisfy the independent union of cliques property. This brings us to the Yannakakis

complexity result, in Theorem 1 [64], and conclude that maximum independent union
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of cliques problem is NP-hard.

Lemma 1 (Degree). If S is an independent union of cliques solution of G, and ω(G)

is given as the size of maximum clique, ∆(G[S]) ≤ ω(G)− 1

Proof. Maximum degree of a node in an independent union of cliques solution would

be ω(G) − 1 if the maximum clique is part of the solution. Maximum degree of a

node in the solution would be less than that if a strict subset of maximum clique is

in the IUC solution.

Proposition 1. If the max IUC solution C, consists of a single clique only, then it

is i) a maximum clique and ii) a maximum dominating clique.

Proof. Let us assume that C is not a maximum clique. Then, adding another set

of nodes to convert this clique in to a maximum clique will provide a larger size of

IUC solution. Hence, this contradicts that C is the solution of max IUC. Given the

max IUC solution, C, is a single clique, we show that it is a maximum dominating

clique. Let us assume that it is not maximum dominating clique. This implies that,

there exists at least one node n, not directly connected to any node in the maximum

clique. Adding this node to the current IUC solution C, also forms a feasible IUC

solution. Hence, this contradicts that C is the solution for the max IUC.

Similarly, we can write a proposition for the independent set case.

Proposition 2. If the maximum IUC solution consists of an independent set only,

then it is a maximum independent set.

Lemma 2. If the maximum independent union of cliques solution is equal to k

disjoint union of cliques, then complement graph of the solution is a complete k-

partite graph.
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3.2 Complexity on Various Graphs

In this section, we analyze the computational complexity of IUC for several graph

classes like planar graphs, unit disk graphs and claw-free graphs.

3.2.1 Planar Graphs

Problem: Planar 3-SAT with at most 3 occurrence per variable (3-PSAT3̄).

Input: A set of variables U and a collection of clauses E = {E1, ..., Em} such

that each clause contains at most three literals, each variable occurs at most three

times, and the undirected graph G = (M,N) is planar, where M = U ∪ E and

N = {(ui, Ej)|ui ∈ Ej or ūi ∈ Ej}.

Output: A truth assignment for U satisfying E.

3-PSAT3̄ is shown to be NP-hard in [40]. We will show the problem to find ζ(G)

is NP-hard even when G is a planar graph or a unit disk graph by reduction from

3-PSAT3̄. First, we need two lemmata about ζ(G) in path graphs and cycle graphs.

Lemma 3. Given G = Pn a path graph, ζ(G) = d2
3
ne.

Proof. By definition of IUC, for any three consecutive vertices vi, vi+1, vi+2, i =

1, 2, ..., n − 2, at most two of them could be in an IUC, so ζ(G) ≤ d2
3
ne. Let

S = {vi|i 6≡ 2(mod 3)}, then obviously G[S] is an IUC and |S| = d2
3
ne, so ζ(G) =

d2
3
ne.

Lemma 4. Given G = Cn a cycle graph and n = 3m where m is an integer, then

ζ(G) = 2m and the maximum IUC consists of either S0, S1 or S2 where Sk = {vi|i ≡

k or k + 1(mod 3)}, k = 0, 1, 2.

Proof. By definition of IUC, for any three consecutive vertices vi, vi+1, vi+2 (Let v0 =

vn), at most two of them could be in an IUC, so ζ(G) ≤ 2m. Conversely, obviously
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each of G[S0], G[S1] and G[S2] is an IUC and |S0| = |S1| = |S2| = 2m, so ζ(G) = 2m.

Meanwhile, suppose S is a maximum IUC. If there exist two consecutive vertices

vi, vi+1 6∈ S, S is an IUC of Pn−2, so |S| ≤ d2
3
(n − 2)e = 2m − 1, which is a

contradiction. If for some vi ∈ S, vi−1, vi+1 6∈ S, S is an IUC of Pn−3 together with

an isolated vertex vi, so |S| ≤ d2
3
(n−3)e+ 1 = 2m−1, which is also a contradiction.

Thus, it is easy to show S is either S0, S1 or S2.

Theorem 2. The problem of finding ζ(G) for a planar graph G is NP-hard.

Proof. We use the reduction from 3-PSAT3̄. Suppose the number of variable is q

and number of clauses is m. In the reduction each variable ui will be represented by

a cycle graph Ci
ri

, where ri ≡ 0(mod 3). By lemma 4, ζ(Ci
ri

) = 2
3
ri and maximum

IUC is made up by either Si0, S
i
1 or Si2. Call Si0 null nodes, Si1 true nodes and Si2

false nodes. Each clause Ej including three literals is represented in the reduction

by a configuration of three vertices shown in Figure 3.3 (left). Let the three vertices

be vjx,v
j
y and vjz, corresponding to literals xj, yj and zj, respectively. vjx, for example,

connects to exactly two consecutive vertices vik and vik+1, where i is such that xj ∈

{ui, ūi}. Here if xj = ui, choose a suitable k such that k ≡ 1(mod 3); if xj = ūi,

choose a suitable k such that k ≡ 2(mod 3). Similarly, each clause Ej including two

literals is represented by a configuration of two vertices shown in Figure 3.3 (right).

As the instance of 3-PSAT3̄ is planar, the resulting G is planar, and obviously the

reduction is polynomial. Let

p =

q∑
i=1

2

3
ri +m,

we claim that E is satisfiable if and only if ζ(G) = p.

First we show ζ(G) ≤ p. Let Z be a maximum IUC. If in configuration of some Ej,

more than one of vjx, v
j
y, v

j
z ∈ Z, w.l.o.g., assume vjx, v

j
y ∈ Z, where vjx connects to vi1k1

and vi1k1+1, vjy connects to vi2k2 and vi2k2+1. By definition of IUC, vi1k1 , v
i1
k1+1, v

i2
k2
, vi2k2+1 6∈ Z.
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Figure 3.3: Clause configuration of three literals (left) and two literals (right).

On the other side, we consider Ci
ri

for each variable ui. Let

Ji = {j|xj ∈ {ui, ūi}, xj ∈ Ej, vjx ∈ Z}.

As ui occurs at most three times in E, we have 0 ≤ |Ji| ≤ 3.

• If |Ji| = 0, |Z ∩ V (Ci
ri

)| ≤ 2
3
ri by lemma 4.

• If |Ji| = 1, as above, there exist vik1 , v
i
k1+1 6∈ Z, G[Z∩V (Ci

ri
)] is an IUC in path

graph G[V (Ci
ri

)\{vik1 , vik1+1}] = Pri−2, thus by lemma 3, |Z∩V (Ci
ri

)| ≤ 2
3
ri−1.

• If |Ji| = 2, there exist vik1 , v
i
k1+1, vik2 , v

i
k2+1 6∈ Z, so G[V (Ci

ri
) ∩ Z] is made up

of two path graphs Pk2−k1−2 and Pri+k1−k2−2. By lemma 3,

|Z ∩ V (Ci
ri

)| ≤ d2
3

(k2 − k1 − 2)e+ d2
3

(ri + k1 − k2 − 2)e =
2

3
ri − 2.
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The last equation is derived by enumeration of k2 − k1(mod 3).

• If |Ji| = 3, similarly, G[V (Ci
ri
∩ Z] is made up of three path graphs Pk2−k1−2,

Pk3−k2−2 and Pri+k1−k3−2. Note k1, k2, k3 ≡ 1 or 2 (mod 3) by construction of

G, by enumerating all eight possible combination of k1, k2 and k3, we derive

|Z ∩ V (Ci
ri

)| ≤ 2
3
ri − 3.

Therefore,

|Z ∩ V (Ci
ri

)| ≤ 2

3
ri − |Ji|

in general. Let A be the total number of vertices in Z from the set of configurations

of clauses that more than one vertex is included in Z and B be the total number of

vertices from the set of configurations of clauses that at most one vertex is included

in Z, then A ≤∑q
i=1 Ji, B ≤ m and B = m if and only if for a configuration of each

clause there is exactly one vertex included in Z. Thus,

|Z| =
q∑
i=1

|Z ∩ V (Ci
ri

)|+ A+B

≤
q∑
i=1

2

3
(ri − |Ji|) + A+B

≤
q∑
i=1

2

3
ri +B ≤ p.

and |Z| = p if and only if for each Ci
ri

either one of Si0, Si1 or Si2 is included in Z

and for each configuration of Ej exactly one of vjx, v
j
y and vjz is included in Z. So

ζ(G) ≤ p.

Now assume that E is satisfied by a truth assignment τ . Construct Z as follows.

For i = 1, 2, ..., q, if τ(ui) = True, include in Z all true nodes in Ci
ri

; otherwise,

include in Z all false nodes in Ci
ri

. For each Ej = xj ∨ yj ∨ zj, assume, for example,

τ(xj) = True, then the two vertices vik, v
i
k+1 connected to vjx are already included in
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Z while vik−1, v
i
k+2 6∈ Z, so vjx can also be included in Z so that Z is an IUC. Thus

|Z| = ∑q
i=1

2
3
ri +m = p. So ζ(G) = p.

To prove the converse, if ζ(G) = p, let Z be an IUC that |Z| = p. Then for each

Ci
ri

either one of Si0, Si1 or Si2 is included in Z and for each configuration of Ej exact

one of vjx, v
j
y and vjz is included in Z. Construct a truth assignment τ as follows.

For each ui, if corresponding Si1 ⊆ Z, τ(ui) = True; otherwise τ(ui) = False (In

fact, τ(ui) is arbitrary if Si0 is in Z). Note for each clause Ej and the corresponding

configuration, w.l.o.g, assume vjx ∈ Z, consider the two vertices vik, v
i
k+1 connected

to vjx. At least one of vik, v
i
k+1 belongs to Z no matter which one of Si0, Si1 or Si2 is

included, so vik, v
i
k+1 ∈ Z in order to keep Z an IUC. If xj = ui, k ≡ 1(mod 3) and

Si1 is included; if xj = ūi, k ≡ 2(mod 3) and Si2 is included. Therefore, τ(xj) = True.

So every Ej is satisfied and τ is really a truth assignment, E is satisfiable. This

completes the proof.

Remark 1. To prove Theorem 2, it is enough to make ri = 18 for each i = 1, ..., q.

3.2.2 Unit Disk Graphs

Corollary 1. The problem of finding ζ(G) on a unit disk graph G is NP-hard.

Proof. The reduction in Theorem 2 could be easily transformed to UDG context as

every Ci
ri

can obviously be represented by a set of unit disk graphs and configuration

of every clause can be represented by unit disk graphs shown in Figure 3.4. It is easy

to verify that the reduction is polynomial. So the statement is true.

3.2.3 Claw-Free Graphs

Corollary 2. The problem to find ζ(G) when G is a claw-free graph is NP-hard.

Proof. We still use the reduction from an instance of 3-PSAT3̄ to a graph G. Suppose

the number of variables is q while number of clauses is m (in fact, we can use 3-SAT3̄,

59



v j
y v j

z

v j
x

Ci1
ri1

Ci2
ri2

Ci3
ri3

1

Figure 3.4: Clause configuration represented by unit disk graphs.

which does not need the instance to be planar). In the reduction each variable ui

will be represented by a gadget Gi shown in Figure 3.5. Gi contains an inner cycle

and an outer cycle. Note that an IUC has hereditary property (Property 3), and

by Lemma 4 we know the maximum IUC restricted to either inner or outer cycle is

made of vertices labeled 1 and 2, or 2 and 3, or 1 and 3, thus, it is easy to know

the only maximum IUCs in Gi consists of vertices labeled 1 and 2, or 2 and 3, or

1 and 3. Call them Si0, Si1 and Si2, respectively, and call Si0 null nodes, Si1 true

nodes and Si2 false nodes. Each clause Ej including three literals is represented by a

configuration shown in Figure 3.6. Here vjx connects to exactly four vertices via,v
i
b,v

i
c

and vib that form a clique, where i is such that xj ∈ {ui, ūi}. Here, if xj = ui,

let via, v
i
b, v

i
c, v

i
d ∈ Si1; if xj = ūi, let via, v

i
b, v

i
c, v

i
d ∈ Si2. Similarly, each clause Ej

including two literals is represented by a configuration of two vertices. Obviously,

this reduction is polynomial and by checking every vertex, it is easy to show G is

claw-free.

Let p = 8q +m, we claim that E is satisfiable if and only if ζ(G) = p.

60



1 11 1

32

23

32

23

1

Figure 3.5: A variable gadget.

In fact, by the same arguments as in Theorem 2, we get ζ(G) ≤ p and ζ(G) = p

if and only if for each Gi either one of Si0, Si1 or Si2 is included in the maximum IUC

and for each configuration of Ej exactly one of vjx, v
j
y and vjz is included in that IUC.

If E is satisfied by a truth assignment τ , construct the maximum IUC for G[Z] as

follows. For i = 1, 2, ..., q, if τ(ui) = True, include in Z all true nodes in Gi; otherwise,

include in Z all false nodes in Gi. For each Ej = xj ∨ yj ∨ zj, assume, for example,

τ(xj) = True, then the four adjacent vertices via, v
i
b, v

i
c, v

i
d are already included in Z,

so vjx can also be included in Z, making Z an IUC. Thus, |Z| = ∑q
i=1 8 +m = p. So,

ζ(G) = p.

Conversely, if ζ(G) = p and Z is a maximum IUC, construct a truth assignment

τ as follows. For each ui, if corresponding Si1 ⊆ Z, τ(ui) = True; otherwise τ(ui) =

False. By the same argument as in Theorem 2, every Ej is satisfied and τ is really

a truth assignment, and thus E is satisfiable. This completes the proof.

Proposition 3. The problem of finding ζ(G) when G is a bipartite graph is also

NP-hard.
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Figure 3.6: A clause configuration.

Proof. As a clique in a bipartite graph is either a single vertex or a edge, an IUC in

a bipartite graph is exactly a 1-dependent set, that is a set of independent vertices

and edges. Thus, the problem of finding ζ(G) is the problem of finding the maximum

1-dependent set in a bipartite graph, which is shown to be NP-hard in [20].

3.3 Methodology

The maximum IUC problem consists of finding the largest set of nodes that

satisfies the independent union of cliques properties. This problem can be formulated

as a binary integer linear program.

3.3.1 Integer Programming Formulation

Decision variables: Let us define xi, i ∈ V as a binary decision variable to indicate

whether node i is in the independent union of cliques set C, that is,

xi =

 1, if node i is in the independent union of clique set C;

0, otherwise.
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Our objective is to maximize the number of vertices in the independent union of

clique set C, hence the objective is

maximize
∑
i∈V

xi. (3.1)

Independent union of cliques constraints: We formulate the so-called angle con-

straints as follows:

xi + xj + xk ≤ 2 ∀i, j, k ∈ V such that aij + ajk + aik = 2 (3.2)

Note that this constraint is used for all open triangles in the graph.

Then a binary integer programming formulation can be written as:

maximize
∑
i∈V

xi

subject to xi + xj + xk ≤ 2 ∀i, j, k ∈ V such that aij + ajk + aik = 2

xi ∈ {0, 1},∀i ∈ V.

Another alternative formulation is if we replace xi with yi = 1− xi, then our math-

ematical model can be represented as:

minimize
∑
i∈V

yi

subject to yi + yj + yk ≥ 1 ∀i, j, k ∈ V such that aij + ajk + aik = 2

yi ∈ {0, 1},∀i ∈ V.

This formulation is very similar to the set covering problem, where the sets to be

covered are given by all triples of vertices inducing paths of length 2 in the graph.

The proposed integer programming formulations allow us to use standard solvers
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to find the maximum IUC solutions on the moderate-size graphs. To work on the

larger graph instances, we introduce a new algorithm based on a combinatorial branch

and bound approach.

3.3.2 Branch and Bound Approach

With the realistic bounds provided by the static variable ordering in Russian Doll

Search (RDS) approach [59], the algorithmic framework provided by [56] serves as a

simple and effective tool to develop search algorithms to find exact solutions for prob-

lems with hereditary structures. Since the maximum IUC problem has hereditary

properties, we develop an exact algorithm by applying this framework.

Our algorithm proceeds as follows. First, we impose an order on vertices based

on their degree in ascending order. We start with an empty set solution, NewSet.

Then, we go through each vertex vi in the ordered list and compute a maximum

IUC in the candidate set given by {vi, . . . , vn}. When we go through all the vertices

in the ordered list, we find the maximum IUC in G. The procedure is outlined in

Algorithm 2. Here by w(S) for a subset of vertices S we mean the cardinality of

the set S. The verification procedure in Algorithm 3 verifies whether adding a new

vertex to a given solution results in an IUC or not.

Two pruning points in finding the maximum IUC solution speed up the algorithm.

First, we can prune when we know that the total size of the candidate set and the

new set is smaller than the size of the current solution (i.e., we are guaranteed that

even if we include all the nodes from the candidate set and the new set, the potential

solution would be less than the current best solution.) Second, given that µ(i) is the

maximum IUC of the induced graph G with nodes vn to vi in Vordered, we can prune

our search when we know that the best solution in G is less in cardinality than the

current best solution.
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Algorithm 2 IUC Algorithm.

1: Given G = (V,E)
2: Vordered =Order(V )
3: NewSet = ∅,max := 0
4: for i := n down to 1 do
5: CandidateSet := {vi, vi+1, . . . , vn}
6: max := Find IUC (CandidateSet,NewSet,G,max)
7: end for
8: return max

9: function Find IUC (CandidateSet,NewSet,G,max)
10: if CandidateSet = ∅ then
11: if w(NewSet) > max then
12: max:=w(NewSet)
13: end if
14: return
15: end if
16: while CandidateSet 6= ∅ do
17: if w(CandidateSet) + w(NewSet) < max then
18: return
19: end if
20: i := min{j : vj ∈ CandidateSet}
21: if µ(i) + w(NewSet) < max then
22: return
23: end if
24: CandidateSet := CandidateSet \ {vi}
25: NewSet′ := NewSet ∪ {vi}
26: CandidateSet′ := ∅
27: for v ∈ CandidateSet do
28: if Is IUC(NewSet′, v, G) then
29: CandidateSet′ := CandidateSet′ ∪ {v}
30: end if
31: end for
32: Find IUC(CandidateSet′, NewSet′, G,max)
33: end while
34: return max
35: end function
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Algorithm 3 IUC verification procedure.

1: function Is IUC (CandidateSet, new node,G)
2: Cliques = FindCliques(CandidateSet,G)
3: cliqueNum = 0
4: for C ∈ Cliques do
5: if G[C ∪ {new node}] is connected but not a clique then
6: return False
7: end if
8: if C ∪ {new node} is a clique then
9: cliqueNum = cliqueNum+ 1

10: end if
11: end for
12: if cliqueNum > 1 then
13: return False
14: else
15: return True
16: end if
17: end function

18: function FindCliques(CandidateSet,G)
19: CliqueList := ∅
20: for v ∈ CandidateSet do
21: for clique ∈ CliqueList do
22: if v is a neighbor of any vertex in clique then
23: clique := clique ∪ {v}
24: break
25: end if
26: end for
27: new clique = {v}
28: CliqueList := CliqueList ∪ new clique
29: end for
30: end function

3.3.3 Results of Computational Experiments

In this section, we present computational results of the two proposed approaches

for the maximum IUC problem on benchmark graph instances. All numerical com-

putations were performed on a Dell Precision WorkStation T7500 R© computer with
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Table 3.1: Computational results of solving the maximum IUC problem using branch
and bound algorithm and integer programming formulations on DIMACS instances.

Graph |V | |E| d ω(G) IUC size Solution time (sec)
B&B IP

johnson8-2-4 28 210 0.55 4 7 0.80 1.30
hamming6-2 64 1824 0.90 32 32 2.22 59.31
johnson8-4-4 70 1855 0.76 14 14 3.66 81.07
MANN a9 45 918 0.92 16 16 13.05 5.97
hamming6-4 64 704 0.35 4 16 884.74 80.15
johnson16-2-4 120 5460 0.76 8 15 10247.80 1714.56
keller4 171 9435 0.65 11 15 15054.90 49038.00
brock200 3 200 12048 0.61 15 15 53433.80 518413.40
brock200 4 200 13089 0.66 17 17 43236.90 Memory
brock200 1 200 14834 0.75 21 21 619853.00 Memory
brock200 2 200 9876 0.50 12 15 715634.00 Memory
c-fat200 1 200 1534 0.08 12 TiLim >1390873 Memory
c-fat200 2 200 3235 0.16 24 TiLim > 2667828 Memory
p hat300-1 300 10933 0.24 8 TiLim >5000000 Memory
MANN a27 378 70551 0.99 120 >117 >300000 Memory
hamming10-2 1024 518656 0.99 512 512 494260 Memory

eight 2.40 GHz Intel Xeon R© processors and 12 GB RAM.

In Table 3.1, we show the run time and solution size comparisons for integer

programming (IP) and branch and bound (B&B) methods for several DIMACS in-

stances. We denote the number of nodes by |V |, the edge number by |E|, the edge

density by d, and the clique number by ω(G). For the small-size instances both

IP and B&B methods work well in terms of the solution time. For large-size in-

stances, the IP approach requires more memory than B&B. Hence, B&B approach

can find solutions on the larger graph instances, whereas IP approach failed to do

so. Although better than IP, B&B approach hit time limits on certain benchmark

instances. Hence, we also develop faster heuristic algorithms that find approximate
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Table 3.2: Solutions of the maximum IUC problem on selected DIMACS instances.

Graph IUC size Solution
johnson8-2-4 7 {22} {23} {24} {25} {26} {27} {28}
hamming6-2 32 {2,3,5,8,9,12,14,15,17,20,22,23,26,27,29,32,33,

36,38,39,42,43,45,48,50,51,53,56,57,60,62,63}
johnson8-4-4 14 {5,6,13,17,21,31,33,38,40,50,54,58,65,66}
MANN a9 16 {4,5,6,7,9,10,17,19,22,25,28,31,34,37,40,43}
hamming6-4 16 {49,64} {50,63} {51,62} {52,61} {53,60} {54,59}

{55,58} {56,57}
johnson16-2-4 15 {2,3,119} {106} {107} {108} {109} {110} {111}

{112} {113} {114} {115} {116} {117} {118} {120}
keller4 15 {112} {113} {116} {117} {128} {129} {132} {133}

{158} {159} {162} {163} {168} {169} {171}
brock200 3 15 {12,29,36,38,58,84,97,98,104,118,130,144,158,173,178}
brock200 4 17 {12,19,28,29,38,54,65,71,79,93,117,127,139,

161,165,186,192}
brock200 1 21 {4,26,32,41,46,48,83,100,103,104,107,

120,122,132,137,138,144,175,180,191,199}
brock200 2 15 {22} {37,188} {42,100,110,180,185} {92}

{111,116} {140} {145,170} {193}
hamming10-2 512 clique of cardinality 512

solutions.

In Table 3.2, we present the actual solutions for the considered graphs. Vertices

belonging to the same clique are placed within the same braces (“{ }”). In instances

like hamming6-2, johnson8-4-4, MANN a9, brock200 1, brock200 3, brock200 4 and

hamming10-2, IUC solution consists of the maximum clique solution. In instances

like johnson8-2-4 and keller4, IUC solution consists of the maximum independent set

solution and for the rest of the instances IUC solution consists of several cliques.
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3.3.4 Heuristics

Since the maximum IUC problem is NP-hard even for graphs with seemingly

simple structure, we propose heuristic based approaches to find approximate solu-

tions. We develop two efficient greedy heuristic methods. In the first heuristic, we

start with finding a set of maximal cliques in G by using the approximate algorithm

provided in [17]. We include the largest maximal clique, C, with the smallest to-

tal degree in our current IUC solution. Here, we define total degree of a clique as

the sum of degrees (i.e., degree in G) of each node in the clique. Then, we remove

all nodes in C with their corresponding neighbors from G. Finally, we repeat this

process until there is no node left in G. Algorithm 4 shows the details of the first

heuristic approach.

Algorithm 4 Maximum IUC Heuristic Algorithm 1.

1: Initialization: Set S = ∅.
2: if G has no vertices then
3: return S.
4: end if
5: Find a set of maximal cliques C.
6: Find the largest clique c ∈ C with smallest total degree and add c to S.
7: Remove all nodes in c and their neighbors from G and return to Step 2.
8: return S.

In the second heuristic method, we first find a greedy independent set I in G. To

find such a set, we simply start with adding the minimum degree node in G to I; we

remove that node with all its neighbors from G. We continue until G has no nodes

left.

Then we find a set of maximal cliques C in G by using the algorithm provided

by [17] as in our first heuristic. We update our solution if any c ∈ C, improves our
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current solution. We go through these cliques in C in the order of largest to smallest.

Algorithm 5 shows the details of the second heuristic approach.

Algorithm 5 Maximum IUC Heuristic Algorithm 2.

1: Initialization: Set current solution S, Potential solution PS = ∅.
2: S = Find-app-independent-set(G)
3: Find a set of maximal cliques C.
4: For each c ∈ C, let Nc = {all neighbors of c ∈ G} and PS = {S ∪ c} \Nc

5: if |PS| > |S| then update S = PS
6: end if
7: return S.

8: function Find-app-independent-set(G)
9: Initialization: I = ∅

10: while G has vertices do
11: Find node n, that has the minimum degree in G
12: I = I ∪ {n}
13: Remove n and its neighbors from G
14: end while
15: return I
16: end function

In Table 3.3 and Table 3.4, we present the results of Heuristic 1 and Heuristic

2 along with the branch and bound results on several DIMACS graph instances

and social networks. As expected, heuristic approaches run much faster than IP

and B&B, however, they find approximate solutions as opposed to exact solutions.

With our heuristic approaches, we are able to approximately solve several DIMACS

instances where B&B algorithm hits the time limits, such as c-fat and p hat graphs.

We observe that for relatively low-density (e.g., less than 0.16 in our experiments)

instances Heuristic 1 provides much closer solutions to the optimal solution than

Heuristic 2, whereas in comparatively high-density instances Heuristic 2 provides

much closer solutions to the optimal solution.
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Table 3.3: Computational results of solving the maximum IUC problem using heuris-
tics on DIMACS instances.

Graph |V | |E| d IUC with B&B Heuristic 1 Heuristic 2
Size Time Size Time Size Time

johnson8-2-4 28 210 0.55 7 0.80 4 0.005 7* 0.007
MANN a9 45 918 0.92 16 13.05 16 0.015 16* 0.016
johnson16-2-4 120 5460 0.76 15 10247.80 8 0.097 15* 0.132
keller4 171 9435 0.65 15 15054.90 10 0.171 15* 0.253
hamming6-2 64 1824 0.90 32 2.22 22 0.027 22 0.036
johnson8-4-4 70 1855 0.76 14 3.66 8 0.029 8 0.042
brock200 3 200 12048 0.61 15 53433.80 11 0.245 11 0.320
brock200 4 200 13089 0.66 17 43236.90 11 0.238 11 0.326
brock200 1 200 14834 0.75 21 619853.00 13 0.262 13 0.334
hamming6-4 64 704 0.35 16 884.74 8 0.075 12 0.045
brock200 2 200 9876 0.50 15 715634.00 8 0.241 9 0.326
hamming10-2 1024 518656 0.99 512 494260 Memory 301 63.175
MANN a27 378 70551 0.99 TiLim 120 4.479 120 4.529
c-fat500 1 500 4459 0.04 TiLim 320 10.615 276 1.851
c-fat500 2 500 9139 0.07 TiLim 300 3.758 247 1.205
c-fat200 1 200 1534 0.08 TiLim 119 0.552 104 0.169
c-fat200 2 200 3235 0.16 TiLim 134 0.300 110 0.170
p hat300-1 300 10933 0.24 TiLim 24 0.816 37 0.950
p hat300-2 300 21928 0.49 TiLim 13 0.551 26 0.713
p hat1000-1 1000 122253 0.24 TiLim 26 20.752 70 22.314
p hat700-1 700 60999 0.25 TiLim 32 6.687 60 7.311

As a third heuristic, we can use both Heuristic 1 and Heuristic 2 and report the

the best solution of the two. Since both heuristics have relatively quick run time,

this hybrid approach would give the best of both approaches with a slight increase

in run time.

3.4 Conclusion

In this section, we introduce a novel mathematical model called independent

union of cliques which is similar in nature to two classical problems in combinatorial

optimization, the maximum clique and the maximum independent set problems. We
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Table 3.4: Computational results of the maximum IUC problem using heuristics on
social network instances.

Graph |V | |E| IUC with IP Heuristic 1 Heuristic 2
Size Time Size Time Size Time

Karate 34 78 23 0.37 18 0.021 21 0.011
Dolphins 62 159 36 0.39 26 0.095 34 0.038
Kreb’s 62 153 39 0.25 31 0.107 37 0.036
Les miserables 77 2148 61 0.11 53 0.350 54 0.100
SantaFe Collaboration 118 200 96 9.60 83 1.816 89 0.190
Football 115 613 47 7876.49 38 0.230 33 0.126

explore structural properties of this problem. We examine the complexity of finding

the exact solution and use integer programming and branch-and-bound methods, as

well as several heuristic approaches to solve the problem.
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4. NETWORK ANALYSIS OF LARGE SCALE BRAIN NETWORKS

In this section, we explore a unique and novel experimental data set about animal

brains provided by the Texas A&M Institute for Preclinical Studies (TIPS) in order

to understand the potential changes in animal brains after a certain trauma. In

particular, the available data includes fMRI measurements for several pig brains

before and after a concussion-inducing blast. We represent these fMRI measurements

as a network and perform graph theoretical analysis of these networks. Specifically,

using graph structural concepts such as clustering coefficient, centrality and degree

distribution; as well as clustering based on clique relaxations, we analyze the effect

of concussion on animal brains.

The remainder of this section is organized as follows. First, we introduce the

necessary graph structural definitions and background in Section 4.1. Second, we

describe the experimental design and the workflow to convert raw fMRI brain data

into a network in Section 4.2. We present the summary of our results in Section 4.3.

Finally, the section concludes with a summary of findings and suggestions for future

research in Section 4.4. This section is based on the working paper by Ertem et

al. [24].

4.1 Definitions and Background

In this section, we provide the definitions and the background for the graph

theoretic concepts that we utilize for the rest of this section. First, we describe

the graph structural concepts. Second, we explain clustering as an analysis tool to

identify a partition of the network into cohesive subgroups.
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4.1.1 Graph Structural Concepts

In this section, we provide definitions of the basic graph-theoretic concepts used.

We consider a simple graph G = (V,E), where V is the set of |V | = n nodes and E

is the set of |E| = m edges corresponding to pairs of nodes. The edge density ρ(G) of

G is defined as the ratio of the number of existing edges to the number of all possible

edges, that is ρ(G) = 2m/(n(n−1)). Nodes u and v connected by an edge are called

adjacent or neighbors, denoted by {u, v} ∈ E. The neighborhood NG(v) of v in G is

the set of all neighbors of v, i.e., NG(v) = {u ∈ V : {u, v} ∈ E}. The degree dG(v)

of a node v is the number of neighbors that v has in G, dG(v) = |NG(v)|.

A path of length r between nodes u and v in G is defined by an alternating

sequence of distinct nodes and edges u ≡ v0, e0, v1, e1, . . . , vr−1, er−1, vr ≡ v such that

ei = {vi, vi+1} ∈ E for all 1 ≤ i ≤ r − 1. Two nodes are connected in G if there

exists a path between them in G. A graph is connected if all its nodes are pairwise

connected; it is disconnected otherwise. The distance dG(u, v) between a pair of

connected nodes u and v in G is the shortest length of a path connecting them.

Clustering coefficient is a measure of how nodes in a graph are clustered together.

We distinguish between the global and local clustering coefficients. The global clus-

tering coefficient C of G can be thought of as the probability that two randomly

chosen neighbors of an arbitrary node of degree at least 2 are adjacent to each other.

In other words, it is the proportion of number of closed triplets to the number of

connected triplets of vertices. It can be expressed mathematically as follows:

C =

∑
i∈V

∑
j,k∈NG(i),j<k

ajk∑
i∈V

(
dG(i)

2

) . (4.1)

Local clustering coefficient is a metric defined for each vertex [62, 63]. It measures
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the degree to which neighbors of a node are close to a clique. More formally, the

local clustering coefficient Ci of node i of degree dG(i) ≥ 2 in G is given by

Ci =

∑
j,k∈NG(i),j<k

ajk(
dG(i)

2

) . (4.2)

Betweenness centrality cb(v) of a node v is a measure of a node’s centrality in a

network and is given by the sum, over all pairs of nodes s, t distinct from v, of the

fraction of the shortest paths between s and t that pass through v. More formally,

cb(v) =
∑

s,t∈V \{v}

σvst/σst, (4.3)

where σst is the number of shortest paths between s and t in G, and σvst is the

number of those of them that pass through v. Closeness centrality C(v) of a node v

is another measure of centrality of a node in a connected network. It is defined using

the pairwise distances between v and all other nodes in the network as follows:

C(v) =
∑

u∈V \{v}

1/dG(u, v). (4.4)

In the considered experimental data, we have measurements before and after the

blast, enabling us to identify changes in the structural properties of the networks

summarizing the available data. We compare various parameters, such as the degree

distribution, edge density, the local and global clustering coefficient, and other global

cohesiveness properties, before and after the treatment.

4.1.2 Network Clustering

Clustering is the task of grouping a set of objects in a way that objects in the

same group are more similar to each other according to some distance metric than to
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those in other groups. Clustering is one of the most common techniques in network

analysis, which is extensively applied to brain networks [19, 30, 21, 39, 13, 22]. Many

clustering methods have been developed with different features, like overlapping or

non-overlapping clusters, temporal vector or graph representations, with the num-

ber of clusters fixed a priori (supervised clustering), etc. In this work we focus on

unsupervised clustering (i.e., the number of clusters is not given in advance) with

non-overlapping clusters.

We aim to identify related regions of the brain by looking at voxels that are

found to be in the same cluster but are in different regions of the brain. Identifying

such regions can be important, since if a region is affected in a post-traumatic case,

related regions (voxels belonging to same clusters) may also be affected.

We use k-community clustering algorithm [60] which utilizes clique relaxation

models in order to partition a network into cohesive subgroups. Two of the clique

relaxation models employed in the clustering algorithm are k-core and k-community.

A k-core is a group of nodes such that each node in the group is adjacent to at least

k other members of the group, whereas a k-community is a connected subgraph such

that endpoints of every edge have at least k common neighbors within the subgraph.

This structure has been shown to be more effective than k-core in pruning the sparse

graphs. In the next section, we explain the experiment design and our methodology.

4.2 Experiment Design and Methodology

TIPS collects fMRI data to understand the effect of concussion on animal brains.

Blood oxygen level-dependent (BOLD) fMRI signal is used, which measures brain ac-

tivity by changes in the blood level. It is a non-invasive way to measure spontaneous

brain activity through the low frequency fluctuations in BOLD signals. Experiment

involves BOLD measurements for each subject at a resting state before and after
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a concussion-inducing blast. A total of 47 animals are exposed to varying degrees

of pressure levels. In Table 4.1, for selected subjects, we show their corresponding

experimental groups and blast characteristics.

In our analysis, we focus on five specific subjects. We choose two subjects from

the control group (i.e., no pressure is applied), and three subjects from the treat-

ment group (i.e., a certain pressure is applied). Control subjects are identified with

the following subject identification numbers: 6245 and 6152, and treatment group

subjects are 6161, 6239 and 6202.

Table 4.1: Subjects 6161, 6239 and 6202 are exposed to blast-treatment, and 6245
and 6152 are not exposed to any pressure, named as control group.

Subject ID Group Incident Pressure Duration Incident Impulse
(psi) (msec) (psi-msec)

6161 Treatment 68.9 4.73 90.8
6202 Treatment 70.6 5.61 102.0
6239 Treatment 70.7 4.63 75.8
6245 Control 0 0 0
6152 Control 0 0 0

Functional MRI data acquisition Each subject is scanned at 500 time points before

and after the blast with Siemens 3 Tesla MRI with C-arm machine. Experiment is

designed to collect data at a resting state of a healthy animal first before a concussion

and then after a concussion. Each measurement includes data about 102400 voxels,

which are the smallest brain units in fMRI data. For each voxel, measurements are

taken for 500 consecutive seconds (i.e., data for a voxel is a vector of size 500). To

the best of our knowledge, such fMRI measurements with 102400 voxels are some of

the most fine-grained and detailed measurements of animal brains. Table 4.2 shows
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number of non-isolated nodes and number of edges for all the subjects before and

after treatment (for the control group first and second screening).

Table 4.2: Number of non-isolated nodes, number of edges for subjects 6161, 6239
and 6202 are exposed to blast-treatment, and 6245 and 6152 are not exposed to any
pressure, total number of nodes is equal to 102400.

Subject ID Number of non-isolated nodes Number of edges
Before After Before After

6152 25597 12663 1304506 1311234
6245 23568 9465 4190831 396043
6239 19670 28498 4612100 19446111
6161 26916 11966 15966271 4347718
6202 29475 12394 14881718 5744303

In Figure 4.1, we summarize the steps to convert fMRI data into a graph. In step

1 we collect raw fMRI data from several subjects. In step 2, we extract temporal

BOLD measurements from the raw data, these include temporal vectors from each

voxel. In step 3, for each voxel pair, we calculate temporal cross-correlation values.

In step 4, we convert these correlation values into a binary adjacency matrix with

predetermined threshold values ranging between [0.7, 0.95]. If the value for a pair

is greater than the threshold, we put an edge between the nodes representing these

voxels. In step 5, we use the graphs given by the obtained adjacency matrices to

perform our graph-based analysis. In the following sections, we illustrate the results

using the graphs obtained with a threshold value 0.85. We observe similar results

for graphs with different threshold values. Voxels are represented as the nodes in a

graph, and relations between voxels are determined by temporal cross correlations.

78



Figure 4.1: A flowchart for the construction and analysis of brain networks from
the animal brain by fMRI. Step 1, collection of fMRI data from raw screening.
Step 2, extraction of time course data for each voxel. Step 3, creation of temporal
cross-correlation matrix. Step 4, creation of binary adjacency matrix with a given
threshold. Step 5, graph representation of the threshold-based matrix. Step 6a,
clustering analysis on the brain networks. Step 6b, graph theoretical analyses on the
brain networks.

4.3 Summary of Results

4.3.1 Analysis of Structural Properties

In this section, we report the results of the application of network analysis tech-

niques to the graphs representing the fMRI data as described above. We examine

the edge density, the degree distribution, the centrality and the clustering coefficient

in our control and treatment group. Specifically, we are interested in how a blast

affects these parameters for the treatment group.
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4.3.1.1 Edge Density

In Figure 4.2, we present the edge density for the graphs corresponding to the

subjects in the control group. We observe a decrease in their edge density in the

second period compared to the first, even though no blast is applied to the control

subjects. We suspect this decrease might be due to the subjects getting used to the

environment they are exposed to, or some other environmental factors (change in

the air temperature, etc.).

(a) Edge density for 6152. (b) Edge density for 6245

Figure 4.2: Edge density is decreasing on the control group examples.

Conversely, for the treatment group, we observe an increase in the edge density, as

we show in Figure 4.3. This might suggest that more and more voxels have correlated

BOLD measurements after a certain concussion to restore the functional ability of

the brain. However, more experiments are required to substantiate any conclusions.

(a) Edge density for 6161. (b) Edge density for 6239

Figure 4.3: Edge density is increasing on the treatment group subjects, whereas it is
decreasing on the control group subjects.
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4.3.1.2 Degree Distribution

In Figures 4.4 and 4.5, we show the degree distribution comparisons (shown in

log-log scale) of the corresponding graphs for control group subjects for their two

different measurements. We observe a slightly fewer number of nodes with high

degree values in the graphs that correspond to the second set of measurements than

the graphs that correspond to the first set.

In contrast, in Figures 4.6 and 4.7, we show the degree distribution comparisons

of the corresponding graphs for the treatment group subjects, measured before and

after treatment. We observe a considerable increase in the number of nodes with

high degree, suggesting that new connections are being made between voxels after

concussion.
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Figure 4.4: Degree distribution comparison for subject in the control group (6245)
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Figure 4.5: Degree distribution comparison for a control group subject (6152)

4.3.1.3 Clustering Coefficient

We calculate the average local clustering coefficient and global clustering coef-

ficient for each subject before and after concussion in Table 4.3; see Figures 4.10

and 4.11 for illustration. We show the average local clustering coefficient compar-

isons of the control and treatment groups. We observe a slight increase in the average

local clustering coefficient values for the treatment group subjects. At the same time,

we observe a decrease in the values for the control group subjects. These results sup-

port previous observations that new connections might have been made between

voxels after concussion to restore the brain functionality.

On the other hand, the global clustering coefficient increases in all cases. For

the control subjects this means that we have a change in the network structure

characterized by increase in the edge density and global clustering coefficient, but

decrease in the average local clustering coefficient. We would like to explain this

situation with two small examples. In Figures 4.8 and 4.9, the average local clustering

coefficient decreases while the global clustering coefficient increases.
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Figure 4.6: Degree distribution comparison for a treatment group subject (6161)

Table 4.3: Comparison of the average local and global clustering coefficients for the
selected subjects.

Average Local C. C. Global C. C.
Subject ID Group Pre-con. Post-con. Pre-con. Post-con.
6161 Treatment 0.729 0.736 0.608 0.694
6239 Treatment 0.682 0.726 0.574 0.626
6245 Control 0.654 0.542 0.552 0.669
6152 Control 0.704 0.676 0.605 0.647

4.3.1.4 Maximum Clique Size

In Figure 4.12, we show the change in the maximum clique size for the cor-

responding graphs of control and treatment group subjects. We used branch and

bound algorithm to find the maximum cliques for the corresponding graphs [10] .For

control group subjects, we observe a considerable decrease in the size of the max-

imum clique between the two consecutive measurements. On the contrary, for the

treatment group we observe an increase in the size of the maximum clique after the

concussion, which also aligns with the hypothesis that after concussion the brain
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Figure 4.7: Degree distribution comparison for a treatment group subject (6239)
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Figure 4.8: Small example with 6 nodes, global clustering coefficient is 3/5 and
average local clustering coefficient is 7/9.

might have more voxels with correlated BOLD signals.

4.3.1.5 Centrality

In Table 4.4, we show the change in average betweenness centrality and close-

ness centrality for the corresponding graphs for treatment and control subjects. For

control group subjects, we observe a considerable increase in average betweenness

centrality. On the other hand, for the treatment group subjects, average between-

ness centrality is decreasing or remaining almost the same. This conclusion also

supports the hypothesis that after concussion the brain has a more cohesive network

structure. Closeness centrality comparisons does not give any interesting insights
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Figure 4.9: Small example-2 with 6 nodes, global clustering coefficient is 3/4 and
average local clustering coefficient is 3/4.
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Figure 4.10: Average local clustering coefficients for the graphs before (pre) and after
(post) concussion for both control and treatment group.

since both groups behave similarly in terms of this criterion.

4.3.2 Clustering Analysis

The main idea behind k-community clustering [60] is finding k-communities for

large k and placing them in different clusters. One of the biggest advantages of this

clustering algorithm is, there is no need to specify the number of clusters or any

degree distribution a priori. We find the largest k′ such that the k′-community of G

is non-empty. We place all the k′-communities of G in distinct clusters. Then, we
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Figure 4.11: Global clustering coefficients for the graphs before (pre) and after (post)
concussion for the control and the treatment group.

Table 4.4: Comparison of the average betweenness centrality and closeness centrality
for the selected subjects.

Average betweenness centrality Closeness centrality
Subject ID Group Pre-con. Post-con. Pre-con. Post-con.
6202 Treatment 0.0011 0.0006 0.081 0.528
6161 Treatment 0.00069 0.0007 0.129 0.475
6239 Treatment 0.0022 0.0009 0.086 0.102
6245 Control 0.0018 0.0029 0.159 0.482
6152 Control 0.0011 0.0027 0.096 0.422

remove from G all the nodes that have been placed in a cluster. We repeat these

steps until all nodes are assigned to a cluster.

In k-community clustering algorithm, each data element can be a member of

only one cluster, and the number of clusters is flexible. The time complexity of the

clustering algorithm is O(M∆3) where M is the number of edges in the graph, and
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(a) Control group (b) Treatment group

Figure 4.12: Maximum clique size changes pre- and post-concussion for the control
and the treatment group.

∆ is the maximum degree of a vertex in the graph.

Table 4.5: Comparison of number of clusters and the cluster sizes for the selected
subjects.

ID Pre/Post NumClusters ClusterSizes
6161 Pre 2 [26418, 16]
6161 Post 15 [8473, 725, 176, 315, 867, 165, 266, 75, 55, 71, 69,

79, 54, 55, 99]
6152 5 [24034, 105, 324, 222, 342]
6152 Control 11 [6534, 3333, 300, 373, 509, 165, 143, 232, 170, 414, 129]
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Clusters of correlated activity in fMRI data can identify regions of interest and

indicate interacting brain areas. We compare the number of clusters and cluster sizes

in Table 4.5. The number of clusters for both the treatment group and the control

group increase in their second measurement.

After finding the clusters, mapping the regions back to the actual brain and

interpreting the correlations can yield interesting insights. Voxels in the same cluster

are highly correlated. We map the clusters back into the original fMRI image (See

Figures 4.13-4.16 for the images). Colored voxels indicate the voxels in the same

cluster. The results of these figures are inconclusive. The k-community clustering

algorithm does not aim to optimize any objective. As a future work we are planning

to find another clustering algorithm that better fits the clustering of brain networks.

Figure 4.13: Identified clusters on the brain fMRI image for a subject in the control
group (6152)
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Figure 4.14: Identified clusters on the brain fMRI image for a subject in the control
group (6245)

Figure 4.15: Identified clusters on the brain fMRI image for a subject in the treatment
group (6161)
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Figure 4.16: Identified clusters on the brain fMRI image for a subject in the treatment
group (6239)

Table 4.6: Summary of graph theoretical measures before and after the blast in
treatment and control groups

Graph theoretical measure Control Treatment
Edge density ⇓ ⇑
Degree distribution ⇓ ⇑
Average local clustering coefficient ⇓ ⇑
Maximum clique size ⇓ ⇑

In Table 4.6 we summarize the effect of blast in treatment and in control group.

These results suggests that new connections may have been formed after the blast.

4.4 Conclusion

This section presents basic structural analysis on the brain networks. We use a

very unique experimental data which involves fMRI measurements of animal subjects
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at two phases. In the first phase all of the animals have been screened at a resting

state. In the second phase, some animals are given a certain level of concussion and

others represent the control group and animals are screened again. We examine the

effect of concussion on animal brains by using graph mining tools such as edge density,

degree distribution, centrality, clustering coefficient and maximum clique sizes. We

observe that edge density values increase in the treatment group subjects after the

concussion. Degree distributions become more heavy-tailed, that is, more nodes have

higher degree values after concussion. Average betweenness centrality is decreasing

after the concussion. The average local clustering coefficient values increase after the

treatment suggesting the nodes become more clustered. These results suggest that

new connections might have been made between voxels after concussion to restore

the functional stability of the animal brain.
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5. CONCLUSION AND FUTURE WORK

In this dissertation, we present three main contributions. In the first part, we

introduce new clique relaxation models that are based on local and global clustering

coefficients, respectively. Since clustering coefficients are commonly used to asses

small-world properties of networks, imposing a high lower bound α on the clus-

tering coefficient (local or global) within a cluster ensures that the corresponding

subnetwork has strong small-world properties. We formulate optimization models

that allow to compute largest local and global α-clusters in a network and use them

to compute solutions for several real-world social networks from the literature. We

observe that local α-clusters better identify real-life cohesive subgroups than their

global counterparts. We also use local α-clusters to develop a network clustering ap-

proach, referred to as local α-clustering algorithm. The method first computes the

largest local α-cluster with relaxed connectivity constraints and then uses each con-

nected component of the solution as a seed cluster. Experiments on the well-known

graphs from literature with the proposed algorithm show very promising results.

Our work about α-clusters can be extended in several interesting directions. For

example, the proposed optimization approach could be enhanced by using scale re-

duction techniques and alternative formulations. Another direction, the inherent

computational intractability of the considered problems, which generalize the noto-

riously hard maximum clique problem, suggests that developing effective heuristic

algorithms could be practically useful, when one has to deal with networks consisting

of millions of nodes and edges.

Another important practical issue that needs to be addressed is the choice of

the values of α that would yield α-clusters of interest for a particular application.
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Intuitively, this choice should depend on the (local) clustering coefficients of the

network under investigation as well as other application-specific criteria. Perhaps

one could develop semi-automated rules for choosing appropriate values of α. Fur-

thermore, depending on the application, the proposed models could be enhanced by

enforcing additional constraints to model desired properties of cohesive subgroups.

Such modeling enhancements could also lead to computational advantages as they

could reduce the set of feasible solutions. Finally, this work can be extended to

directed [63], weighted [48], and two-mode networks [47].

In the second part of this dissertation, we introduce a novel mathematical model

called independent union of cliques which is closely related to two classical problems

in combinatorial optimization; maximum clique and maximum independent set prob-

lems. These two structures are closely related and many computational results may

be applied equally well to either problem. We introduce a new mathematical model

that in a way combines maximum clique and maximum independent set problems,

namely independent union of cliques (IUC for short). We explore structural proper-

ties as well as complexity results for different graph types. We use exact algorithms

like integer programming and branch-and-bound methods as well as the heuristic

approaches to find the largest set of vertices that satisfies the novel mathematical

model.

Our work related to IUC can be extended in several ways. It can be extended

to investigate the expected IUC size of random graphs. In our preliminary analysis,

we experimented with random graphs on 50 nodes with varying edge density. The

results are summarized in Figure 5.1. We observe that IUC solution size is minimum

when the edge density of a graph is close to 0.5. Moreover the maximum value is

observed when the density is either close to 1 or 0, the graph with all the edges

present and the graph with no edges.
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Figure 5.1: IUC solution sizes for random graphs with 50 nodes with varying density
level. Solution sizes are average of 40 random graphs in each density value.

One extension of this observation can be characterizing the expected size of an

IUC solution for Erdös-Rényi graphs as a function of p (i.e., the probability of ran-

domly choosiness two nodes being neighbors of each other). In addition, extensive

polyhedral studies of the maximum IUC problem can be performed. Also, more

effective heuristic and metaheuristic methods could be developed for the maximum

IUC problem.

Finally, this dissertation includes cohesive and robust clustering analysis of ani-

mal brain networks utilizing unique and novel experimental data. In collaboration

with TIPS, we analyze multiple pairs of fMRI data about animal brains that are

measured before and after a concussion. We utilize network analysis to first identify

the similar regions in animal brains, and then compare how these regions as well as

graph structural properties change before and after a concussion. To the best of our

knowledge, this study is unique in the literature in that it explicitly examines the

relation between concussion level and the functional unit interaction, with detailed

and fine-grained fMRI measurements. We observe that graphs correspond to animal
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brains after treatments have larger edge density, nodes with more neighbors and

larger average local clustering coefficient. These pieces of observed evidence suggest

that animal brains after concussion might have more voxels with correlated BOLD

measurements to restore the brain functionality before concussion.

We would like to extend our work by applying α-clustering algorithm to the brain

networks. To increase the scalability of α-cluster, we would like to introduce heuristic

approaches and revise our clustering algorithm to handle large graphs.
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