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ABSTRACT

This thesis explores the use of small unmanned aerial systems (SUASs) for map-

ping of unknown disaster environments and investigates the impact of characteristics

of such challenging environments on simultaneous localization and mapping (SLAM)

algorithm. It provides a formal analysis of indoor disaster environments and identi-

fies four characteristics of a region of space: scale, degree of deconstruction, location

of obstacles, and tortuosity. The analysis compares the value of these characteris-

tics for Prop 133 at Disaster City and develops computer simulated environments.

Furthermore, a SLAM algorithm for SUAS flying in indoor disaster environments is

developed and the system is tested in these virtual environments. Three different

environments with increasing deconstruction are designed. For each type of envi-

ronment, 10 different maps with a common floor plan are simulated with randomly

placed obstacles. For each map, three trials with varying flight paths are run, thus

conducting 90 trials of experimentation. As verified from the statistical testing, there

is a convincing increase of 26.36% in the average value of RMSE as the deconstruction

changes from Group 1 to Group 3. But, the change in value of error is not statisti-

cally convincing when Group 1 and 2 and, Group 2 and 3 are respectively compared.

Hence, though the result suggest that the value of error increases between different

groups, it cannot be claimed that the RMSE in localization will always increase with

deconstruction. The tortuosity increases with deconstruction and this value is em-

pirically calculated. The average RMSE in localization does not change as the Agent

to Environment ratio changes. These results can help identify the remaining gaps in

the state of the art indoor SUAS for disasters.
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NOMENCLATURE

SUAS Small Unmanned Aerial System

SLAM Simultaneous Localization and Mapping

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

CD Characteristic Dimension

US&R Urban Search and Rescue

EM Expectation Maximization

DOF Degrees of Freedom

RMSE Root Mean Squared Error
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1. INTRODUCTION ∗

The possibility of using Small Unmanned Aerial Systems (SUASs) for surveying

damage inside buildings and structures affected by a disaster is increasing. The

successful flights by a University of Pennsylvania/Tohoku University team [41] in

a multi-story building damaged by the 2011 Great Eastern Japan Earthquake and

the multi-university NIFTi team’s inspection of cathedrals in Mirandola collapsed

by the Finale Emilia Earthquake [28] demonstrate the potential utility of SUAS for

multi-story buildings and processing facilities, such as Fukushima Daiichi. However,

the inability of SUAS to make progress in indoor flights inspecting buildings in Biloxi

damaged by Hurricane Katrina in 2005 [48] and the Christchurch Catholic Basilica

damaged by the 2011 Christchurch, New Zealand, Earthquake [45] act as reminders

of remaining challenges.

Small UAS for flying indoors is fortunately an active area of investigation [41,

38, 33, 66, 20, 61, 2, 25, 3, 37, 18, 59] SUASs are being used to explore obstacle-

filled indoor environments without relying on outside operators or sensors and GPS

waypoints. To do so, the agent must first accurately localize itself and simultane-

ously map the unknown environment for obstacle avoidance. Over the past decade,

researchers have made significant progress in solving this problem. However, ad-

vances in flying for normal, undamaged indoor environments may not be directly

transferable to disaster response. Kinetic events, such as earthquakes, tornadoes,

hurricanes, industrial accidents, or explosions often deconstruct interiors, while leav-

∗Part of this section is reprinted with permission from S. Agarwal, R.R. Murphy, and J.A. Adams.
Characteristics of indoor disaster environments for small UASs. In Safety, Security, and Rescue
Robotics (SSRR), 2014 IEEE International Symposium on, pages 1–6, Oct 2014. Copyright[2014]
by IEEE.
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ing the building compromised. A mild earthquake may rearrange office furniture,

knock over bookcases, and cause ceiling fixtures to hang loose, while leaving the

structural elements, such as walls, ceilings, floors, and pillars intact. A more severe

event will have a higher degree of deconstruction, collapsing walls and ceilings, de-

positing debris, and changing the overall layout of the building. Substantial issues

remain in practically realizing these solutions and efficiently building perceptually

rich maps of unstructured environments. Most of these compelling algorithms rely

on the assumptions of flying in a structured environment that is made up of vertical

walls and horizontal planes that are all piecewise constant. Though this assumption

is reasonable in most applications, it is easily violated in disaster environments. In-

door SUAS navigational algorithms for obstacle avoidance and SLAM depend upon

these assumptions and may fail in disaster conditions. Therefore, having an accurate

characterization of deconstructed indoor environments and understanding its impact

on these algorithms is essential to developing indoor SUAS that can fly in realistic

disaster conditions. Moreover, to our best knowledge, none of the existing systems

have been tested in as rigorous an environment as that of an average disaster[1].

We start this chapter by understanding the characteristics of indoor disaster en-

vironments and then discuss the SLAM problem.

1.1 Characteristics of Indoor Disaster Environment

This thesis uses the definitions from Disaster Robotics [45] to describe the char-

acteristics of Indoor Disaster Environment. While these definitions were originally

developed for unmanned ground vehicles, they can be extended to the three dimen-

sional environments SUAS operate within.

The operational envelope for a SUAS is defined as a collection of one or more

2



regions. For example, in a multi-story office building, a hallway is a distinct region

from an office and a stairway. The environmental characteristics influencing the

navigability of a region can be divided into three groups: the scale and degree of de-

construction, which captures the state of the structure; the severity of obstacles and

tortuosity, which captures the impact of the deconstructed structure and damaged

furnishings; and other characteristics that affect sensing.

1.1.1 Scale and Degree of Deconstruction

The scale of a region reflects the relationship of the size of the agent A to the

size of the environment E [45]. A large environment, such as high bay provides more

space for a SUAS than a narrow hallway. To quantify this, scale is given as the

relative size of characteristic dimension CD of the agent and environment. The Acd

is the largest single dimension affecting SUAS navigation. For example, in Fig. 1.1

a SUAS has a platform size with a diameter of 0.5m in the horizontal plane with

cameras and payloads protruding 0.2m, and a constraint that the SUAS is never

allowed closer than 0.3m to an obstacle. Therefore, the maximum dimension i.e. the

Acd = 1.1m. Note that the Acd is the equivalent of reducing a SUAS to a sphere.

Figure 1.1: Characteristic dimensions of a SUAS.
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The Ecd is the nominal minimum dimension of the environment affecting naviga-

tion. For a hallway, it is the average width, as obstacles intruding into the hallway

are rare. An office may have a smaller Ecd, where the furniture is arranged to allow

a human to walk through, but with less free space than in a hallway and a lower

ceiling.

The intrinsic navigability of a region based on scale can be categorized as one

of three indoor regimes in [45]. As shown in Fig. 1.2a, when Ecd > 2Acd, the agent

can move freely through the environment in the habitable regime. For a human,

this regime represents “normal” interior spaces designed for people to work and

live in that have not been altered by a kinetic disaster. For a SUAS with a Acd

about the width of a person, a human habitable space will be the same as a SUAS

habitable space. A SUAS may be deployed into a habitable environment if there

was a chemical, radiological, or biological incident where human movement was re-

stricted by safety procedures or personal protection gear, such as the use of UGVs at

the Fukushima Daiichi nuclear emergency. In the restricted maneuverability regime

shown in Fig. 1.2b, Ecd < 2Acd - the agent can still move in the environment, but

that movement is restricted by the much narrower spaces. The environment may be

naturally small, such as a sewer pipe; however, the more interesting case for disasters

are human habitable environments that have become deconstructed from normal di-

mensions. A partially collapsed building from a kinetic event, such as an earthquake

or explosion that a responder can walk through, though perhaps have to bend over

or squeeze through, is an example of a restricted maneuverability regime. Robots for

surface entry into mine disasters or parking garage collapses function in this regime.

In the third indoor regime, the agent is burrowing into the environment and

working at a granular level, Ecd < Acd. It is not possible for an SUAS to displace

material and create space for itself, so only the habitable and restricted maneuver-

4



(a)
(b)

Figure 1.2: Types of regimes. a) Habitable - Ecd > 2Acd and b) Restricted maneu-
verability - Ecd < 2Acd.

ability regimes are discussed.

The degree of deconstruction of an indoor region reflects the condition of the

structural elements, essentially are the walls and ceilings still orthogonal and in

place. More the damage to the structural elements, higher is the degree of decon-

struction. For example, an environment affected by a kinetic disaster has a high

degree of deconstruction while a normal environment has none.

1.1.2 Severity of Obstacles and Tortuosity

The severity of obstacles captures the number and size of obstacles that tem-

porarily reduce the Ecd and may require obstacle avoidance. If the environment is

essentially a path through nearly continuous obstacles, the free space between obsta-

cles becomes Ecd. A normal habitable space will have very few navigational obstacles,

as human spaces are designed for people to move and work in. A kinetic event may

deconstruct the habitable space by creating debris and hanging obstacles. However,

what is an obstacle for a human or a ground robot, may not be an obstacle for a

5



SUAS. Therefore, this research rates severity based on location:

• Obstacles on the ground, below the nominal flying zone (Fig. 1.3a).

• Obstacles on the ground, up to the nominal flying zone (Fig. 1.3b).

• Obstacles hanging from the ceiling, in the nominal flying zone (Fig. 1.3c).

• Obstacles hanging from the ceiling, above the nominal flying zone (Fig. 1.3d).

(a) (b)

(c) (d)

Figure 1.3: Severity of obstacles. a) Obstacles on the ground, below the nominal
flying zone, b) Obstacles on the ground, up to the nominal flying zone, c) Obstacles
hanging from the ceiling, in the nominal flying and d) Obstacles hanging from the
ceiling, above the nominal flying zone.
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The deconstruction and severity of obstacles in turn leads to the tortuosity of a

region. Tortuosity represents the meters between turns, including changes in altitude,

in the region for navigation; it does not include yawing to provide sensor views.

Tortuosity is calculated as the number of turns taken by the SUAS per unit distance.

For example in Fig. 1.4, if the SUAS takes 3 turns to avoid obstacles over a linear

distance of 6m, then the tortuosity is 3/6 = 0.5. The tortuosity at Prop 133 is

estimated to be 1.0, i.e., 1 turn per meter. A low tortuosity indicates that the

frequency of obstacle avoidance is low and the environment is comparatively easier

to navigate, as opposed to one with higher tortuosity.

Figure 1.4: Calculation of tortuosity.

1.1.3 Other Environmental Characteristics

In addition, the performance of an indoor SUAS will also be influenced by other

secondary components. Lighting conditions and surface properties are two charac-

teristics that have been observed at disasters [45]. Cameras do not work well in

dim lighting and may need an artificial light source, while the Kinect does not work

in high luminescent conditions, as shown in [60]. The building materials including

7



metal, glass and sharp edges may scatter active sensors, such as LIDAR and ul-

trasound. Carpets, cloth, soundproof tiles and partitions typically found in office

buildings may absorb sound signals. Furthermore, suspended dust due to debris and

loose building materials may affect the visibility and make sensors less effective or

even non-functional.

1.2 Average Indoor Disaster Environment

Since SUASs have been used only four times for surveying the interior of damaged

buildings [45], those data sets are too limited to project the broad set of regions for

indoor flight. However, Prop 133 at Disaster City® was designed to represent an av-

erage expected state of a damaged multi-story commercial building and is presented

as a pictorial example of these characteristics for an average case. While Prop 133

stages only one possible scenario, the partial collapse of a multi-story office build-

ing, it is a realistic representation used for training responders and thus is helpful in

visualizing the characteristics.

(a)

Room 1 Room 2 

Room 3 with Ceiling Lean-to 
Collapse  

(b)

Figure 1.5: Prop 133 at Disaster City®. a) View of the federal building component
and b) The floor plan for the first and second floors. Copyright [2014] IEEE [1].

8



Disaster City® is a complex of props designed by professional trainers, who are

themselves responders, to accurately represent physical conditions that urban search

and rescue (US&Rs) teams will experience for a range of disasters. It is owned by the

Texas A&M Engineering Extension Service and is used to train over 80,000 humans

and canines annually, including Federal Emergency Management Agency (FEMA)

US&R teams. None of the spaces are specifically designed for robots. Prop 133,

shown in Fig. 1.5 is an exemplar of realistic deconstructed human habitable or hu-

man restricted maneuverability indoor office building and thus is a projection of what

a SUAS will encounter. Portions of the prop follow the floor plan and room size of

a multi-story government office building, such as the standing portions of the Alfred

P. Murrah Federal Building destroyed at the Oklahoma City bombing in 1995. The

prop consists of six office-sized rooms on two floors, with four of the rooms struc-

turally intact and two rooms part of a lean-to collapse. It should be noted that Prop

133 does not have the carpets, wallpaper, acoustic tiles, or other organic materials

normally found in an office building, as those furnishings will mold in the outdoors;

therefore, Prop 133 may be less challenging for robotic navigation and sensing than

the partial collapse of an actual office building.

1.3 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) has been one of the most chal-

lenging problems in robotics. SLAM is the problem of constructing a map of an un-

known environment while simultaneously tracking the location of the agent within it.

SLAM was originally developed by Hugh Durrant-Whyte and John J. Leonard [31]

based on earlier work by Smith, Self and Cheeseman [56].
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Mapping deals with the problem of representing the world. It answers the ques-

tion “What does the environment of the agent look like?” It deals with the repre-

sentation of the environment and the interpreting sensor data. On the other hand,

localization involves estimating the pose of the robot with respect to the map. It

answers the question, “Where is the agent in the environment?” In practice, these

two problems are dependent on each other. To localize itself, the robot needs to

know the map and to map an unknown place, the robot needs to know its location.

Therefore, SLAM is often associated with the chicken and egg problem: An accurate

map is needed for localization of the agent while an accurate pose estimate is needed

for an agent to build a map.

There are several algorithms known for solving the SLAM problem. SLAM algo-

rithms are customized according to the availability of resources and, are not aimed

at perfection. Popular approaches are employed in self-driving cars, aerial vehicles,

underwater vehicles, planetary rovers, and even inside the animal body.

The process of solving the problem begins with the agent itself. The type of agent

used must have good odometry i.e. estimate of robot’s own position. However, there

is normally a significant margin of error with odometry readings and the agent might

be off in its measurements. Consequently, the robot is not where it thinks it is in

a given environment. This error is reduced by analyzing the observations from the

environment when the robot moves around. A range measurement device is often

used for observing the environment around the robot and create a map. The most

common form of sensors that are used are laser scanner, sonar and imaging devices.

A Kalman Filter is generally responsible for updating where the robot thinks it

is based on observed features. The Kalman Filter keeps track of an estimate of

the uncertainty in the robots position and the uncertainty in the observed features.

Thus, the robot simultaneously corrects errors in its pose and maps the environment.
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The SLAM problem can be mathematically represented as:

Given:

uk - Control Signal applied at k-1 to drive the agent from xk−1 to xk

zk - Feature Observation (Sensor Measurements) at instant k

Estimate:

mi - True location of ith feature

xk - Agent Pose at instant k

m - Set of all features

Therefore probabilistically, SLAM requires the distribution:

P (xk,m|Z0:k, U0:k, x0) to be computed for all instants k.

This distribution describes the joint posterior density of the feature position and

the agent’s state based on the recorded environmental observations and control inputs

up to and including the instant k together with the initial state of the vehicle [16]. A

number of approaches to solve the SLAM problem are discussed in the next chapter.

As for as mapping is concerned, there are two major techniques [44]. Regular

Grid based maps (Fig. 1.6a) are collection of discrete spaces/cells. If there is any

object in the cell, that cell is marked occupied. Hence, regular grids are often referred

to as occupancy grids. Their computational complexity depends on the grid size and

its resolution. A variant on regular grid is quadtrees. It avoids wasting space by

starting out with grid elements representing a large area. If an object falls into the

cell, but not all of it, the algorithm divides the cell into four smaller cells. If the

object does not fill a particular sub-cell, the algorithm does another recursive division

of that cell into four more sub-cells, and so on. A 3D quadtree is called an octree.

The second type technique is called Generalized voronoi graphs (Fig. 1.6b). They

form a relational graph of nodes where the entire area is mapped as a graph. The

voronoi graphs are sensitive to noise and require the robot to sense all boundaries.
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On the other hand, the occupancy grids suffer from digitization bias where left over

space is marked unoccupied.

(a) (b)

Figure 1.6: Mapping techniques. a) Regular grid map and b) Generalized voronoi
graph. Copyright [2000] MIT Press [44].
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2. LITERATURE REVIEW ∗

An extensive review of existing literature was carried out to understand the SLAM

problem for indoor environments and formulate our approach. This chapter first dis-

cusses the systems that were identified to develop an analysis of indoor disaster

environments and later describes the existing SLAM and Loop Closure approaches.

2.1 Indoor Small Unmanned Aerial Systems

Twelve systems were identified that have experimented with indoor SUASs and

four systems were intended for application to search and rescue [33, 3, 41, 61]. The

twelve systems were evaluated in one or more of three testbeds: computer simulation

[3, 37, 18, 59, 25], physical - general indoor environments [33, 61, 38, 66, 20, 2, 37, 18,

59], or in a building that had experienced an actual disaster [41]. A summary of the

specifications of the twelve robots, the scale of the testbed, the type of testbed, the

type of regions represented in the testbed, and the nominal flight altitude is provided

in Table 2.1.

2.1.1 Computer Simulation

Five SUASs were evaluated using computer simulated testbeds. Two of the five

simulated environments emulated habitable scale open spaces. Jongho and Youdan

simulated open spaces contained parallelepipeds, with sides of 1m and 3m [25]. Stow-

∗Part of this section is reprinted with permission from S. Agarwal, R.R. Murphy, and J.A. Adams.
Characteristics of indoor disaster environments for small UASs. In Safety, Security, and Rescue
Robotics (SSRR), 2014 IEEE International Symposium on, pages 1–6, Oct 2014. Copyright[2014]
by IEEE.
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No. Author SUAS
Diameter
(m)

Scale Testbed Region Nominal
Altitude
(m)

1 Masanori et al., 2013 – Habitable Physical -
General Indoor
(Staged)

Open Space 0.7

2 Li et al., 2013 0.57 Habitable Physical -
General Indoor
(Staged)

Office –

3
MacAllister et al.,
2013

–
Restricted
Man.

Physical -
General Indoor
(Staged)

Collection
of hallways,
offices and
open space

0.7

Computer Office –

4
Jongho and Youdan,
2013

– Habitable Computer Open Space
7.0

2.0
5 Al Newaz et al., 2013 – Habitable Computer Office –

6 Fossel et al., 2013

0.73

Habitable

Physical -
General Indoor
(Natural)

Office –

– Computer
Collection of
lab and of-
fice

–

Open Space –
Lab –

7 Toratani et al., 2013 0.54 Habitable Physical -
General Indoor
(Staged)

Open Space 0.8

8 Grzonka et al., 2013 –
Habitable Physical -

General Indoor
(Natural)

Hallway 0.5

Office –
9 Michael et al., 2012 0.65 Restricted

Man.
Actual Disaster
Environment

Collection of
Offices and
Hallways

2.0

10 Stowers et al., 2011 – Habitable
Physical -
General Indoor
(Staged)

Lab 1.5

Computer Open Space –
11 Suzuki et al., 2010 1.0 Habitable Physical -

General Indoor
(Staged)

Open Space 1.5

12 Ahrens et al., 2009 0.54 Habitable Physical -
General Indoor
(Staged)

Open Space 0.5

Table 2.1: A summary of the reviewed systems, including SUAS size, environmental
scale, space classification and nominal altitude. Copyright [2014] IEEE [1].
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ers et al. used a large number of blocks with heights up to 3m [59], while Al Redwan

Newaz et al. simulated an office space containing multiple objects positioned on the

floor with varying heights [3]. Two others simulated a habitable scale office space.

Fossel et al. simulated an office space containing orthogonal walls, an open space

containing vertical pillars, and a collection of laboratory and office space with a tilted

wall [18]. The fifth system simulated a restricted maneuverability office space [37].

The environments represented randomly generated areas ranging in size from (25 x

25 x 3)m to (50 x 50 x 3)m. 20% of the environmental area contained floor to ceiling

walls and randomly placed obstacles, such as boxes projecting from the floor up to

a random height, and fixed width beams mounted at random heights.

2.1.2 Physical - General Indoor Environment

Nine systems were evaluated in a physical - general indoor testbed, with eight

systems flying in habitable scale spaces and only one in a restricted maneuverability.

Eight of the nine systems were evaluated in habitable scale environments [33,

61, 38, 66, 20, 2, 18, 59], while the remaining system was evaluated in a restricted

maneuverability scale environment. Four of the environments are classified as open

space [61, 38, 66, 2]. Masanori et al.’s open space environment contained three 1m

cylinders and a horizontal cross section that protruded from one cylinder at a height

of 0.8m from the ground [38].

Torantani et al. operated in a testbed with a rectangular obstacle 1m wide and

0.8m high, right at the nominal flight altitude [66]. Suzuki et al.’s SUAS flew at a

nominal altitude of 1.5m, while avoiding a white board of similar height [61]. Ahrens

et al.’s open space testbed contained a 1m long cylindrical pole and a cuboid, similar

to a bar stool [2]. The SUAS flew at a nominal altitude of 0.5m, as inferred from
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the paper, but flew up to 1.5m to avoid the obstacles. The second most common

habitable scale evaluation testbed was an office space [33, 20, 18]. Li et al.’s SUAS

planned paths to allow the vehicle to avoid tables by flying underneath them from one

side to the other [33], while Fossel et al.’s environment contained “low lying” tables,

cabinets, and benches [18]. Grzonka et al.’s SUAS flew at a maximum of 1.5m, while

avoiding 48cm high chairs and 77cm high tables with other obstacles [20]. Stowers et

al.’s laboratory environment contained two large benches with instruments on them,

for a total height of 3m above the floor [59]. Their SUAS flew at a nominal altitude

of 1.5m, as inferred from the paper. A 41m hallway provided a second environment

in which Grzonka et al.’s SUAS flew at a nominal altitude of 0.5m, as inferred from

the paper.

MacAllister et al.’s [37] SUAS was the only system evaluated for a restricted

maneuverability scale environment. Their environment was a collection of hallways,

offices and open spaces containing obstacles of random heights that were placed on

the floor and a horizontal bar placed at 0.7m above the ground.

2.1.3 Search and Rescue

Four systems explicitly discussed the search and rescue applications. Michael et

al. [41] conducted evaluations in a building on Tohoku University’s campus contain-

ing hallways and offices. The building had been damaged by an earthquake, but

was still accessible to humans and was at the habitable scale. Al Redwan Newaz et

al. [3] considered a surveillance and recovery mission after nuclear disasters or se-

vere accidents in industrial areas as an application, and tested a SUAS in computer

simulated habitable office space. Two systems [33, 61] were evaluated in physical -

general indoor staged office and open spaces, respectively.
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2.2 Simultaneous Localization and Mapping

Smith, Self, and Cheeseman [57, 58] introduced a statistical framework for si-

multaneously solving the problem of mapping the environment and simultaneously

localizing the agent relative to its growing map [63]. Since then, robotic mapping

has commonly been referred to as SLAM [13, 17].

The SLAM approach is dependent on the type of sensors available. There are

different sensors with each having its own advantages. At one end, laser scans and

vision provide detailed representation of an area via range based point clouds. At the

other end, tactile sensors are very sparse. Most SLAM approaches use a combination

of sensors.

SLAM algorithms can also be divided into landmark-based and raw-data ap-

proaches. Landmarks are uniquely identifiable objects in the agent’s environment.

Raw-data approaches make no assumption about existence of landmarks and ob-

serve each point in the environment as a function of location. For most outdoor

applications, SLAM algorithms usually rely on high precision differential GPS sen-

sors. These may be viewed as location sensors with very sharp likelihoods. However

GPS sensors may go down entirely due to shadowing from other objects, bad weather

conditions or jamming in military applications.

A number of approaches can be used to solve the SLAM problem:

2.2.1 Kalman Filters

One family of probabilistic approaches [7, 9, 14, 22, 32, 46, 68] use Kalman fil-

ters to represent the map and estimate the robot’s location. These maps generally

describe the location of landmarks, or features in the environment. In some cases,
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the environment is also represented through raw range sensor measurements [63].

These approaches describe the SLAM problem as:

Motion Model:

xk+1 = Fkxk +Gkuk + vk

Sensor Model:

yk = Hkxk + wk

where

xk is the n - dimensional state vector.

uk is the m - dimensional input vector.

yk is the output vector.

Fk, Gk and Hk are system matrices.

vk and wk are zero mean white gaussian noise.

The Kalman Filter is a recursion that provides the best estimate of the state vector

x. The advantage of this method is that its covariance matrix can converge strongly

and it provides optimal estimates of the state. However, the assumption that that

all noise processes are gaussian can restrict its use.

2.2.2 Particle Filters

Some methods use particle filters [15, 10, 43, 42, 55] that are inherently Bayes

filter that efficiently represent non-Gaussian distributions. Their basic principle is to

start with a set of particles and test the survival of the fittest as time passes. Thus,

particle filters are models representing probability distribution as a set of particles

which occupy the state space. Such SLAM techniques decouples the feature-map

from pose. Each particle represents the robot’s pose and correlated feature measure-

ments. In the update step a new particle distribution, for a given motion model and
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controls is generated. For each particle, the prediction of measurements are com-

pared with actual measurements. Particles with higher prediction match are given a

high weight. These methods can handle non-gaussian noise and non linearities but

the complexity grows as new features are detected.

2.2.3 Expectation Maximization

Another family of algorithms [11, 51, 62] is based on the expectation maximiza-

tion algorithm [12, 39]. Expectation Maximization (EM) estimation is a statistical

algorithm which was developed in the context of maximum likelihood (ML) esti-

mation and it offers an optimal solution. EM iterates in two steps: the first step

is an expectation step, where the posterior over robot poses is calculated, and the

second step is maximization step, in which the most likely map is calculated given

these pose estimates. [64]. It is generally used for building maps when the poses are

known. But the estimation cost grows exponentially with the map and the error is

not restricted [63].

2.2.4 Recent Approaches

More recently, Grzonka et al.[20] developed a navigation system for indoor flying

vehicles. Their system includes state estimation modules for localization, altitude

estimation, and SLAM.

Shen et al.[52] improved upon this approach by addressing the problem of multi-

floor mapping with loop closure, localization, planning, and autonomous control. To

ensure that the robot is fully autonomous, they did all computation on the robot

without any external communication, or human interaction beyond high-level com-

mands.
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New SLAM algorithms are an active research area, and are often driven by dif-

fering requirements and assumptions about the environment, sensors and models.

2.3 Loop Closure

Loop closure is deemed as one of the main challenges in developing, a real-time,

large-scale SLAM system [23, 35]. During the SLAM process, the robot may come

to a place that it has visited before. This problem of recognizing previously-visited

locations and updating the poses accordingly is called Loop Closure. In both topo-

logical and metrical SLAM algorithms, loop closure is the key to building consistent

maps. A successful loop closing prevents re-mapping of the same location and allows

errors in a map to be corrected.

The problem has been approached in multiple ways:

2.3.1 Feature Matching

Geometric Features in the environment can be matched to detect loop closures.

In [4, 19, 67], bag of words methods are used to perform loop-closure detection. Bag

of words methods represent the acquired images as a set of elementary features taken

from a dictionary. This dictionary is built by clustering similar visual descriptors

extracted from the images. Using a given dictionary, classification of image is based

on the frequencies of the words. A major problem with this technique is perceptual

aliasing i.e. physically distinct locations may appear similar to robot sensors.

Liu and Zhang [34] proposed a method for visual loop closure detection in ap-

pearance based SLAM. Unlike the bag of words approach, their method uses direct

feature matching to detect loop closures and avoids the perceptual aliasing problem.
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Shen et al. [52] correct the global inconsistency by employing vision-based tech-

niques to enable loop closure. The loop closure detection that does not depend on

the error in pose estimation. A fixed size vocabulary is constructed by clustering a

large number of SURF features. These features are converted into the vocabulary

and matched with previously obtained images. This matching is accomplished via

histogram voting. If any matches are found, the matched candidates are verified by

using scan matching. They only close the new loops. Although the proposed method

maintains a globally consistent map, it is an approximation.

Wu et al. [69] presents a novel method for loop closure detection with low resolu-

tion binary that has been shown to be suitable to handle an appearance map with as

many as 20 million images in slightly over two seconds. The proposed method does

not require off-line visual vocabulary construction, as do the popular approaches in

visual loop-closure detection based on visual Bag of Words.

Lynen et al. [36] have presented a method for batch placeless place recognition

using projected binary descriptors and a kNN voting scheme with a loop-candidate

segmentation using statistical-tests . Instead of scoring individual images spaced by

time, they formulate place recognition as a continuous 2D probability density esti-

mate in the space of matches along path distance. This allows us them to handle

different sizes of places, indoor and outdoor environments as well as perceptual alias-

ing in a continuous and placeless way.

2.3.2 Sensor Data Matching

Raw data from sensors such as Laser scanners can be used to recognize loops by

finding the similarity between two readings (scan matching) [23]. The latest sensor

data is matched to some previously acquired data.
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Grzonka et al. [21] used scan matching to detect loop closures. the method worked

by identifying all previous poses that were within the bounds of the pose uncertainty.

This uncertainty is obtained by a Dijkstra projection of the node covariances. If a

good match is found, the obtained graph was augmented by adding a new edge. But

this method needs good guess of initial poses and may not work well with all kinds

of sensors. Other difficulties occur in data association - the process of making this

decision for each sensor observation. Some different parts of the world may appear

the same to the sensor and the measurements could be noisy.

2.3.3 Hybrid Feature-Sensor Matching

Newman et al. [47] illustrated how visual features, used in conjunction with scan-

ning laser data, can be used to a great advantage for loop closured. Their paper

presented initial results concerning the use of salient image features in detecting

possible loop closure events that are independent of estimated pose.

Latif et al. [29] developed an incremental algorithm for loop closure. The algo-

rithm was used to detect if the recognition system has generated any false constraints

and was responsible for removing them if required. This approach is based on the

observation that correct loop closure and odometry measurements can help in the

detection of false loop closures. The estimation process differentiates between correct

and incorrect loop closures.

Kerl et al. [26] proposed a dense SLAM method for RGB-D cameras that uses

keyframes and an entropy-based loop closure detection to eliminate drift. To reduce

the search space, they use metrical nearest neighbor search and look for loop closure

candidates in a sphere with predefined radius around the keyframe position.
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2.3.4 Expectation Maximization

The Expectation Maximization algorithm can also be used to tackle the problem

of loop closures. In a recent approach [30], the loop-closure problem was modeled as

a Bayesian network and solved with the EM algorithm. The robot poses and con-

straints were latent and observed variables and, an additional set of latent variables

were introduced as weights for the loop-constraints.
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3. ANALYSIS AND DESIGN ∗

The novelty of our approach is that we identify the key characterization of indoor

disaster environments to develop a realistic computer simulated test-bed. This will

help us test our SLAM algorithm in conditions that are representative of an actual

disaster. Such testing is essential to developing indoor SUAS that can fly in disaster

conditions. We first present an analysis of indoor disaster environments that impact

the design of SUASs and their navigational algorithms. We then develop the algo-

rithms required for simultaneous localization and mapping. With the help of our

analysis, we design indoor cluttered environments in computer simulation that can

best represent an indoor space affected by a disaster. Finally, we test our algorithms

in this virtual environment to understand the impact of the characteristics of indoor

disaster environment on our system.

3.1 Environmental Characteristics

The environmental characteristics influencing the navigability of a region can be

divided into three groups: the scale and degree of deconstruction, which captures

the state of the structure; the severity of obstacles and tortuosity, which captures

the impact of the deconstructed structure and damaged furnishings; and other char-

acteristics that affect sensing. Table 2.1 provides an overview of the 12 surveyed

SUASs and the environmental characteristics for which they were evaluated.

∗Part of this section is reprinted with permission from S. Agarwal, R.R. Murphy, and J.A. Adams.
Characteristics of indoor disaster environments for small UASs. In Safety, Security, and Rescue
Robotics (SSRR), 2014 IEEE International Symposium on, pages 1–6, Oct 2014. Copyright[2014]
by IEEE.
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No. Author Testbed
Severity: Obstacle Location Tort-

Ground
to be-
low
nominal

Ground
up to
nomi-
nal

Ceiling
into
nomi-
nal

Ceiling
to
above
nominal

uosity

1 Masanori et al.,
2013

Physical - Gen-
eral Indoor
(Staged)

X 0.5

2 Li et al., 2013 Physical - Gen-
eral Indoor
(Staged)

X –

3
MacAllister et al.,
2013

Physical - Gen-
eral Indoor
(Staged)

X X X 0.18

Computer X X X X 0.4

4
Jongho and
Youdan, 2013

Computer
X 0.14

X 0.2

5
Al Newaz et al.,
2013 Computer

X X –

X X –
X X –

6 Fossel et al., 2013

Physical - Gen-
eral Indoor (Nat-
ural)

X X –

Computer
X X –

X –
X X –

7 Toratani et al.,
2013

Physical - Gen-
eral Indoor
(Staged)

X 0.3

8
Grzonka et al.,
2013

Physical - Gen-
eral Indoor (Nat-
ural)

X X 0.1

X X –
9 Michael et al.,

2012
Actual Disaster
Environment

X X X 0.6

10
Stowers et al.,
2010

Physical - Gen-
eral Indoor
(Staged)

X X –

Computer X X 0.57
11 Suzuki et al.,

2010
Physical - Gen-
eral Indoor
(Staged)

X –

12 Ahrens et al.,
2009

Physical - Gen-
eral Indoor
(Staged)

X 0.5

Table 3.1: Summary of severity of obstacles and tortuosity. Copyright [2014] IEEE
[1].
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3.1.1 Scale and Degree of Deconstruction

The scale of the average size of the twelve SUASs, with respect to the interior

of Prop 133 is in the restricted maneuverability range. If the floor plan in 4.2a is

used to compute the Ecd, the scale represents the habitable range, as Ecd > 2Acd,

where the room is 6m and if the SUAS is 0.6m, thus 6 > 2(0.6). However, Fig. 3.2a

and Fig. 3.2b show that the damage to fixtures and furnishings reduce the actual

free space to Ecdapproximately1.5Acd, which falls into the restricted maneuverability

range of Ecd < 2Acd.

As seen in the Fig. 3.1, only two of the twelve systems were deployed in a restricted

maneuverability (2Acd > Ecd > 1.5Acd) environment, comparable to Prop 133. The

remaining systems were evaluated or deployed in environments within the habitable

scale.

Figure 3.1: SUASs tested in habitable and restricted maneuverability regimes.
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(a)

(b)

(c) (d)

Figure 3.2: Interiors of Prop 133 at Disaster City®. a) Furniture up to heights of 1m
to 2.5m scattered around the floor, b) Wires, open ventilators, metal frames hanging
from the ceiling at 2m to 3m, c) Collapsed ceiling and wall, and d) Accumulated
debris due to breaking of loose material. Copyright [2014] IEEE [1].
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Prop 133 also illustrates different degrees of deconstruction to the structural el-

ements. Rooms 1 and 2 on both floors, as seen in Fig. 3.2b and Fig. 3.2d have

relatively minor deconstruction, given that the walls, ceiling, and floor are still or-

thogonal, though they exhibit holes or damage. Fig. 3.2c shows major deconstruc-

tion, where a ceiling has collapsed and the supporting pillars are clearly damaged

and no longer uniform.

As seen in Fig. 3.3, only one of the twelve SUASs was evaluated in a deconstructed

environment. Michael et al. deployed in a damaged building [41], but with only with

a minor degree of deconstruction compared to Prop 133. The other three systems

proposed for search and rescue missions [33, 3, 61] flew in regions with no visible

deconstruction. The remaining eight general indoor SUASs operated in regions with

no damage.

Figure 3.3: Degree of deconstruction for tested SUASs.
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3.1.2 Severity of Obstacles and Tortuosity

All four categories of obstacle severity/locations exist in the environment at Prop

133. Altitude does not necessarily reduce the obstacles. If a SUAS were to fly in

Prop 133 at an altitude of 1.17m (the average for flying in offices and hallways), it

will encounter the same categories of obstacles if it flew at 2.08m (the average for in

open spaces).

As seen in Fig. 3.4, only one surveyed system, MacAllister et al. [37], was eval-

uated in a testbed encompassing all four categories of obstacle severity/location as

found at Prop 133, but only in computer simulation. The actual disaster deployment,

Michael et al. [41], encountered three types of obstacles, but not those hanging from

the ceiling into nominal flying zone. Al Redwan Newaz et al. [3] simulated two cat-

egories of obstacles, while the other two systems [33, 61] only tested with obstacles

on the ground up to the nominal flying zone. This observation suggests that the

obstacle placement in testbeds is not a good predictor of whether a SUAS will be

able to fly indoors during a disaster.

As seen in Fig. 3.5, all three types of spaces in Table 3.1 have a tortuosity much

lower than the tortuosity of Prop 133. The maximum tortuosity in computer sim-

ulation (0.5), physical - general indoor staged testbeds (0.31), physical - general

indoor natural testbeds (0.1), and actual disasters (0.6), suggests that the evaluation

testbeds are not sufficiently representative of actual disasters. A SUAS that performs

well in these testbeds may not have the agility to make a higher frequency of turns

and altitude changes.

A paper on this analysis of indoor disaster environments that impact the design

of small unmanned aerial systems (SUASs) was recently published in IEEE SSRR

2014 [1].
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(a) (b)

(c) (d)

Figure 3.4: Severity of obstacles for twelve SUASs. a) Obstacles on the ground, below
the nominal flying zone, b) Obstacles on the ground, up to the nominal flying zone,
c) Obstacles hanging from the ceiling, in the nominal flying zone and d) Obstacles
hanging from the ceiling, above the nominal flying zone.

Figure 3.5: Comparison of tortuosity.
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3.2 Algorithms and System Design

Fig. 3.6 below outlines our system design, which is based on the work done by

Shen et al. [52, 53, 54, 41] and Grzonka et al. [20, 5].

Figure 3.6: System design.

All the required algorithms were developed in C++ with the Robot Operat-

ing System (ROS) [49] framework used as a middleware. ROS is an open source,

meta-operating system that can be modified as per requirement. It includes drivers,

libraries and visualizers. The user can choose between modules in order to set up

the required system. ROS provides visualization modes like RVIZ, a 3D visualization

environment where the robot and map can be displayed in real-time. The user can

control the robot manually or via path planners. ROS includes a runtime graph com-

munication system, a peer-to-peer network of processes. ROS also supports Gazebo,

a simulator that offers the ability to simulate robots in complex indoor and outdoor

environments. The ROS framework seeks to support code reuse in robotics research

and development [6].
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3.2.1 Notion

For a SUAS, the six degree of freedom in the world frame is represented as (x, y,

z, Φ, θ, Ψ), where Φ is the roll angle, θ is the pitch angle, and Ψ is the yaw angle as

shown in Fig. 3.7. Xb is the forward direction and Zb is the direction perpendicular

to the plane of the rotors , when they are pointing vertically up. Translating from

body frame to world frame requires:

• rotating about the Zb axis by the yaw angle, Ψ

• rotating about the y axis by the pitch angle, θ

• rotating about the Xb axis by the roll angle, Φ

Figure 3.7: Notion.

The rotation matrix to transform from body frame to the world frame is:

R = R(Zb, Ψ)R (y, θ) R(Xb, Φ)

where the Rs are elementary rotations with respect to the x, y, and z
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3.2.2 2.5D Projection

The first step of the algorithm is to compute the 2.5D projection, which uses the

laser scans and IMU readings assuming 2.5D environment models formed by vertical

walls and horizontal planes, all assumed to be piecewise constant [52]. As the 3D

orientation of the laser scanner is know, we can project the scans onto a 2D plane,

and then perform matching on sequences of projected scans instead of raw scans [24]

as shown in figure 3.8.

Figure 3.8: Projection of laser scans.

Suppose that the laser coordinates coincides with the body co-ordinates of the

vehicle. IMU measures the attitude between body coordinates and world coordi-

nates. The laser scanner measures a set of distances r and direction angles along the

x− y plane for each point. Each of these distances and angles α can be represented

in terms of sines and cosines. The transformation matrix can be represented as:
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T =

 cosθ 0

sinθsinφ cosφ


Thus, we can compute the real position of laser endpoint from the following equa-

tion:

zi = T

ricosαi

risinαi


The scans that hit the floor or ceiling are eliminated. This technique simplifies

the challenges of full 3D scan matching using only 2D laser scanners. But, the 2.5D

environment assumption could be easily violated in highly cluttered environments

such as one found at disasters.

Algorithm:

[xs, ys, zs]
T : The laser scan endpoints in the body frame.

[xg, yg, zg]
T : The 2.5 D laser scan projection to a horizontal plane.

zdflU : Deflected laser scan pointing up

zdflD : Deflected laser scan pointing down

If ((zg == zdflU)(zg == zdflD))

Eliminate the scan from consideration

Else

Calculate the projection for the scan to 2.5D space such that:

[xg, yg, zg]
T = RR[xs, ys, zs]

T

Return [xg, yg, zg]
T
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3.2.3 Pose Estimator

The pose estimator has two steps. Step one estimates (x, y, Ψ) using the ICP

algorithm [50] and the second step determines the altitude using a modified version

of Frieburgs algorithm [20].

3.2.3.1 Iterative Closest Point

ICP finds the transformation between two sets of data points - A reference point

cloud and the new data point cloud, as shown in Fig. 3.9. It provides an estimate

of (x, y, Ψ). The results of the ICP are combined with the IMU data in order to

correct the error in the algorithm.

Figure 3.9: Iterative closest point.

The basic ICP algorithm proceeds in the following steps: Input: A reference point

cloud and the new data point cloud. An estimate of (x, y, Ψ) is obtained using the

following steps:

1. Preprocessing to clean the data.
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2. Matching the associated points from the reference to the data using the neigh-

bor search. It can use features to identify associated points.

3. Weighting changes the importance of some pairs.

4. Rejecting some of the pairs

5. Computing the error for each pair and where they should be located.

6. Finding the best transformation (minimization)

7. Loop back to step 2, unless there is convergence.

The results of the ICP steps prior to step 5 are combined with the IMU data in

order to correct the error in the ICP algorithm Step 5. The correction is done by

aligning the incoming scans with the map.

3.2.3.2 Altitude Estimation

The altitude sensing relies on the upward and downward deflected laser scans

and the pressure sensor. The downward facing laser scan is used to measure variance

in altitude and then uses this value to estimate the variance for the measurement

update in the Kalman Filter. The upward facing scans are used when the downward

facing scans contain too much variance. The pressure sensor is used when there is

too much variance from both the upward and downward deflected laser scans.

3.2.3.3 Roll and Pitch Estimation

The roll and pitch angles (Φ, θ) are estimated solely from the IMU data.
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3.2.4 SLAM

The goal of a SLAM algorithm is to estimate both the pose of the SUAS and

generate a map of the environment from sensor measurements. As discussed in

related work, we studied a number of approaches to solve the SLAM problem. Both

feature based and particle filter-based methods work well in practice. However, these

approaches are need high computational power. Because of the limited onboard

processing capacity in most SUAS, the use of complex SLAM algorithms is not

feasible. Furthermore, it is much more difficult to process 3D laser data than laser

data acquired from two-dimensions [24].Hence, we use Shen et al.’s approach to

address the problems of mapping and drift compensation via a simplified occupancy

grid-based incremental SLAM.

Since roll and pitch angles are measured by the IMU with tolerable error, we

directly use this information. This allows us to reduce the localization problem from

6 DOF to 4 DOF, consisting of the 3D position (x, y, z) and the yaw angle Ψ. Based

on known current attitude, the endpoints of laser scan are projected into the global

coordinate frame. Using these projection, estimates in (x, y, z, Ψ) are calculated.

To map and represent unknown environments, an occupancy grid map is used.

The SUAS platform will exhibit 6 DOF motion. To create a map in 3D using a 2D

laser scanner, the 2.5D projection is utilized and the scans are transformed into a

local frame using the current estimated attitude. Each scan is then converted into

a point cloud of endpoints that are used to estimate the occupancy of each cell in

the grid. The point clouds are projected in space to create a 3D visualization of the

map using RVIZ.
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SLAM algorithm is prone to errors that increase over time and loop closure is

often used to correct these errors. Loop closure is a huge area of study in itself

and out of the scope of this work. Hence, our system does not embed loop closure

functionality. The incremental motion of the SUAS is provided by scan matching and

the IMU. The algorithm corrects the error in x, y and yaw by aligning the current

laser scans against the previously obtained map. Thus the SLAM algorithm corrects

the accumulated errors in the laser based pose estimator. Comparing a new scan to

the global map provides more consistent pose estimation than comparing each scan

only to the scan from previous instant. If the pose estimated by scan matching is

fairly accurate, the posterior over the global map can be computed. However, there

are no guarantees of obtaining the accurate pose at every step [24]. Loop closure is

essential in correcting these errors with reasonable certainty.
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4. EXPERIMENTS AND RESULTS

To evaluate our system and analyze the impact of the characteristics of indoor

disaster environment on the SLAM algorithm, we tested our system in computer sim-

ulation. We used Gazebo [27], to develop rigorous computer simulated environments

that are representative of realistic disaster conditions. Gazebo is a simulator capa-

ble of simulating articulated robots in three dimensional environments. It generates

realistic sensor feedback and supports the required sensors.

The goals of our experiments are to test and quantify:

• The increase in localization error with increase in deconstruction in the envi-

ronment

• The empirical value of tortuosity

• The decrease in localization error as the Agent to Environment ratio decreases

4.1 Environment Design

To run the experiment, three groups of environments with increasing deconstruc-

tion were designed - Group 1, Group 2 and Group 3. The amount of deconstruc-

tion increases as we move from Group 1 to Group 3. An environment in Group 1

(Fig. 4.1a) represents a normal undamaged indoor space. A similar environment was

created in computer simulation by McAllister et al. Group 2 (Fig. 4.1b) will include

an environment that has been affected by a mild earthquake. Such an event may

rearrange office furniture, knock over bookcases, and cause ceiling fixtures to hang

loose, while leaving the structural elements, such as walls, ceilings, floors, and pillars
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intact. An environment in Group 3 (Fig. 4.1c) represents a space affected by a severe

earthquake, with collapsed ceilings and deposited debris, as seen in our observations

at Prop 133 and in Michael et al.’s work [41].

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Computer simulated environments. a) Environment in Group 1, b)
Environment in Group 2, c) Environment in Group 3, d) Hallway, e) Office space
and f) Open space.
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For each group, we simulate 10 different maps with a common floor plan as seen

in Fig. 4.2a. Each map has a dimension of 30m x 24m. Every map comprises of a

hallway (3m x 24m), an office space (27m x 14m) and an open space (27m x 14m) with

obstacles randomly placed in each space. Fig. 4.1d, Fig. 4.1e and Fig. 4.1f illustrate

a hallway, an office space and an open space with randomly placed obstacles.

For each map, we ran 3 trials with varying paths A,B and C. For each path we

have goal points that helps map the entire area as shown in figure 4.2. The paths

A.B and C will be random for each map according to the generated obstacles. Thus,

we conducted 90 trials of experimentation in total. The maximum velocity for all

trials was 1 m/s. Each trial is run only once to prevent the pilot from learning the

environment.

(a) (b)

(c) (d)

Figure 4.2: Floor plan and goal points. a) Floor plan, b) Goal points for path A, c)
Goal points for path B and d) Goal points for path C.
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4.2 Simulation of SUAS

To simulate an SUAS we used a custom UAV of 0.75 m diameter (average of

minimum and maximum diameters of SUAS in the 12 studies) from the Hector

Quadrotor stack [40]. The following sensors were added to provide input to the

SLAM system. Gaussian noise was added to each sensor to try and replicate real

world conditions:

• IMU

• Barometer

• Hokuyo UTM-30LX Laser Scanners

• Forward facing Camera

To reflect some of the laser scans upwards and downwards, we add two more laser

scanners in each respective direction, with reduced field of views (See Fig. 4.3).

Figure 4.3: Simulated SUAS.
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4.3 Results

The SLAM algorithm ran successfully and we were able to produce maps and

simultaneously localize the robot within them. Fig. 4.4 shows the maps generated

for environments with increasing deconstruction for one particular map.

(a)

(b)

(c)

Figure 4.4: Map generated for environments in different groups. a) Group 1, b)
Group 2 and c) Group 3.
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For each trial, the errors in position, x, y, z, Ψ, average altitude and tortuosity

are calculated. The error in localization can be calculated in a number of ways -

Average Error, Mean Absolute Error (MAE) or Root Mean Square Error (RMSE).

The average error is affected by the sign. In RMSE, since the values of error are

squared and later averaged. Hence, the RMSE gives a higher weight to larger errors

in comparison to MAE. This means the RMSE could be most useful when large

errors are particularly undesirable. Also, RMSE has been popularly used by Shen

et al.[52], Thrun et al. [65] and other researchers. Hence, the localization error is

calculated in terms of RMSE values. The RMSE in position is calculated by using

the euclidean distance between the ground truth and the actual pose of the SUAS

in (x, y, z) at each instant of time as shown in Fig. 4.5.

Figure 4.5: Actual SUAS position (x, y, z) vs ground truth.
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Before calculating the results, the videos and images taken during the 90 trials

were analyzed for any irregularities. It was found that 15 out of 90 trials were

unsuccessful because of Operator’s Error. The tele-operated SUAS either collided

with an obstacle or swerved i.e. took a sudden turn. As seen in Fig. 4.6, to confirm

this finding, the RMSE in localization for all the trials was plotted. The trials with

operator error had a huge deviation of the RMSE in localization. These 15 trials are

not included further in the calculations.

Figure 4.6: Operator error.

The results of the 90 trials along with the operator error are summarized in Table

4.1 and Table 4.2.
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No.
Decons-

Path
RMSE Average Tort- Operator

truction Pose x (m) y (m) z (m) Ψ (°) Altitude(m) uosity Error

1

Group 1
A 0.085 0.050 0.057 0.039 0.137 1.215 0.15 -
B 2.345 0.107 2.342 0.051 0.115 1.099 0.13 Swerve
C 0.076 0.055 0.052 0.010 0.077 0.955 0.13 -

Group 2
A 0.086 0.022 0.055 0.062 0.096 1.366 0.18 -
B 0.086 0.052 0.047 0.051 0.223 1.550 0.17 -
C 0.082 0.041 0.034 0.062 0.098 1.608 0.17 -

Group 3
A 0.088 0.036 0.055 0.057 0.178 1.314 0.25 -
B 0.096 0.052 0.052 0.062 0.146 1.530 0.25 -
C 0.085 0.046 0.043 0.057 0.211 1.354 0.23 -

2

Group 1
A 0.054 0.016 0.019 0.048 0.057 1.008 0.15 -
B 0.086 0.053 0.048 0.047 0.067 1.332 0.12 -
C 0.117 0.102 0.027 0.049 0.066 1.233 0.13 -

Group 2
A 2.032 0.051 2.031 0.048 0.221 1.289 0.18 Collision
B 2.304 0.029 2.304 0.051 0.194 1.269 0.18 Swerve
C 0.070 0.027 0.041 0.049 0.161 1.264 0.17 -

Group 3
A 0.085 0.028 0.041 0.069 0.163 1.279 0.25 -
B 0.105 0.061 0.050 0.069 0.107 1.332 0.27 -
C 0.081 0.016 0.032 0.072 0.111 1.445 0.25 -

3

Group 1
A 0.096 0.058 0.062 0.045 0.200 1.410 0.15 -
B 3.455 0.019 3.455 0.054 0.169 1.244 0.13 Swerve
C 0.057 0.028 0.022 0.045 0.120 1.132 0.12 -

Group 2
A 0.749 0.741 0.091 0.063 0.160 1.215 0.18 Swerve
B 0.089 0.057 0.039 0.056 0.078 1.102 0.20 -
C 4.189 2.930 2.994 0.063 4.141 1.522 0.17 Swerve

Group 3
A 0.118 0.062 0.067 0.075 0.161 1.368 0.27 -
B 0.776 0.279 0.721 0.072 0.825 1.414 0.27 Swerve
C 0.090 0.042 0.025 0.075 0.201 1.373 0.25 -

4

Group 1
A 0.100 0.049 0.072 0.050 0.134 1.242 0.13 -
B 0.447 0.310 0.318 0.051 0.735 1.401 0.13 Swerve
C 0.102 0.044 0.078 0.049 0.220 1.018 0.12 -

Group 2
A 4.282 0.089 4.280 0.061 0.121 1.292 0.17 Swerve
B 0.116 0.087 0.047 0.061 0.086 1.546 0.20 -
C 0.084 0.034 0.045 0.062 0.148 1.564 0.20 -

Group 3
A 0.103 0.049 0.056 0.071 0.078 1.566 0.25 -
B 0.170 0.131 0.092 0.058 0.986 1.436 0.27 -
C 0.200 0.105 0.159 0.060 0.265 1.466 0.25 -

5

Group 1
A 0.122 0.095 0.058 0.048 0.138 1.090 0.13 -
B 1.693 0.470 1.625 0.052 1.733 1.015 0.12 Swerve
C 0.067 0.023 0.035 0.052 0.140 1.183 0.13 -

Group 2
A 0.089 0.052 0.055 0.048 0.143 1.354 0.20 -
B 0.630 0.531 0.333 0.055 0.710 1.563 0.18 Swerve
C 0.091 0.050 0.054 0.054 0.521 1.507 0.18 -

Group 3
A 0.157 0.074 0.128 0.053 0.287 1.537 0.30 -
B 0.107 0.038 0.053 0.085 0.150 1.443 0.27 -
C 0.758 0.652 0.372 0.102 0.704 1.659 0.25 Collision

Table 4.1: Summary of results - environments 1 to 5.
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No.
Decons-

Path
RMSE Average Tort- Operator

truction Pose x (m) y (m) z (m) Ψ (°) Altitude(m) uosity Error

6

Group 1
A 0.113 0.091 0.056 0.035 0.109 1.359 0.13 -
B 0.082 0.039 0.051 0.051 0.121 1.077 0.13 -
C 0.125 0.050 0.103 0.050 0.891 1.014 0.12 -

Group 2
A 0.114 0.031 0.040 0.102 0.113 1.210 0.20 -
B 0.108 0.043 0.086 0.050 0.137 1.233 0.20 -
C 0.717 0.306 0.646 0.048 1.129 1.175 0.18 Swerve

Group 3
A 0.124 0.034 0.063 0.101 0.141 1.221 0.30 -
B 0.161 0.115 0.101 0.051 0.365 1.477 0.30 -
C 0.082 0.019 0.026 0.075 0.110 1.103 0.27 -

7

Group 1
A 0.126 0.099 0.056 0.054 0.085 1.311 0.15 -
B 0.104 0.016 0.021 0.101 0.074 1.282 0.13 -
C 0.101 0.080 0.034 0.052 0.540 1.414 0.12 -

Group 2
A 0.115 0.069 0.059 0.071 0.497 1.661 0.20 -
B 0.469 0.127 0.448 0.054 0.411 1.609 0.22 Collision
C 0.109 0.046 0.079 0.060 0.162 1.600 0.18 -

Group 3
A 0.682 0.602 0.317 0.044 0.626 1.775 0.27 Swerve
B 0.160 0.069 0.127 0.068 0.293 1.595 0.30 -
C 0.181 0.059 0.119 0.123 0.410 1.449 0.25 -

8

Group 1
A 0.082 0.054 0.053 0.032 0.071 1.169 0.15 -
B 0.086 0.051 0.041 0.055 0.093 1.264 0.13 -
C 0.074 0.020 0.015 0.070 0.068 1.239 0.12 -

Group 2
A 0.109 0.046 0.079 0.060 0.162 1.600 0.22 -
B 0.123 0.083 0.026 0.087 0.108 1.388 0.20 -
C 0.096 0.020 0.052 0.078 0.108 1.274 0.20 -

Group 3
A 0.197 0.052 0.173 0.079 0.093 1.369 0.27 -
B 0.084 0.035 0.035 0.069 0.528 1.417 0.30 -
C 0.085 0.047 0.017 0.069 0.490 1.386 0.25 -

9

Group 1
A 0.114 0.073 0.070 0.054 0.150 1.237 0.15 -
B 0.138 0.089 0.041 0.097 0.141 1.392 0.12 -
C 0.111 0.041 0.026 0.099 0.089 1.159 0.13 -

Group 2
A 0.150 0.131 0.038 0.061 0.188 1.199 0.18 -
B 0.116 0.031 0.035 0.106 0.182 1.510 0.20 -
C 0.124 0.061 0.076 0.077 0.841 1.543 0.18 -

Group 3
A 0.180 0.054 0.154 0.075 0.235 1.474 0.30 -
B 0.114 0.089 0.044 0.056 0.091 1.414 0.30 -
C 0.110 0.035 0.034 0.098 0.081 1.338 0.27 -

10

Group 1
A 0.093 0.048 0.053 0.059 0.125 1.295 0.15 -
B 0.095 0.059 0.044 0.059 0.192 1.408 0.13 -
C 0.141 0.041 0.024 0.133 0.089 1.254 0.12 -

Group 2
A 0.114 0.079 0.066 0.048 0.299 1.322 0.22 -
B 0.114 0.073 0.066 0.058 0.209 1.265 0.18 -
C 0.172 0.122 0.104 0.063 0.691 1.243 0.23 -

Group 3
A 0.125 0.024 0.057 0.108 0.084 1.340 0.27 -
B 0.112 0.047 0.042 0.093 0.079 1.181 0.30 -
C 0.187 0.131 0.035 0.128 0.329 1.507 0.30 -

Table 4.2: Summary of results - environments 6 to 10.
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4.3.1 RMSE in Localization vs Deconstruction

We compare the average RMSE in position (x, y, z) for all trials in Group 1,

Group 2 and Group 3 respectively. As shown in Fig. 4.7 and Table 4.3, we see that

the value of average RMSE increases with increase in the amount of deconstruction

in the environment from Group 1 to Group 3. The value of average RMSE changes

by 9.46% when the deconstruction increases from Group 1 to Group 2 and the value

increases further by 16.9% as the environment changes from Group 2 to Group

3. But this increase in value does not mean that the error always increases with

deconstruction. To check this result, we run a statistical test.

Among all statistical tests, z-test and t-test are popularly used but z-test requires

a prior value of deviation [8]. As the deviation itself needs to be estimated from the

data, we use t-test. From Table 4.4, we see that when we compare Group 1 and

2 and, Group 2 and 3 respectively, the t-stat value is not lesser than negative of

t-critical. Therefore, we do not reject the null hypothesis. The observed difference

between the value of average RMSE in localization for each group is not convincing

enough to claim if the error indeed increases from Group 1 to Group 2 and, Group

2 to Group 3 respectively. But the t-test result is considerable when comparing the

value of average RMSE of Group 1 and Group 3. The t-stat value is lesser than

negative of the t-critical value. Hence the observed difference is 95% convincing that

RMSE is localization increases as the environment changes directly from Group 1

to Group 3. Though the individual change in error from Group 1 to Group 2 and,

Group 2 to Group 3 is not significant, the total change in error from Group 1 to

Group 3 is considerable. Hence, though the result suggests that the value of error

increase between different groups, we cannot claim that the error will always increase

with deconstruction.
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Figure 4.7: Average RMSE in localization vs deconstruction - Comparison for all
trials

Group 1 Group 2 Group 3

All Trials

Average RMSE 0.0979 0.1072 0.1254

Standard Deviation 0.0226 0.0228 0.0394

95% Confidence 0.0087 0.0095 0.0149

Table 4.3: Summary of results - average RMSE in localization vs deconstruction. All
values are in meters.

Group 1 and 2 Group 2 and 3 Group 1 and 3
t-stat -1.382 -1.743 -3.042
t-critical 2.014 2.015 2.015

Table 4.4: Summary of t-test - average RMSE in localization vs deconstruction.
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4.3.2 Tortuosity

The number of turns per unit distance increases with increase in deconstruction.

The SUAS has to change direction in x, y and z planes to navigate through an

obstacle filled environment. Hence, more the deconstruction, higher is the average

tortuosity. We quantify the values of average tortuosity empirically for all trials in

each group as shown in Fig. 4.8. The calculations are summarized in Table 4.5. The

tortuosity of our computer simulated environments is at best 0.3 which is 30 % of

that estimated at Prop 133 (1.0) as shown in our analysis.

Figure 4.8: Average empirical tortuosity for all trials in each group.

Tortuosity Group 1 Group 2 Group 3

Average 0.133 0.194 0.271

Minimum 0.117 0.167 0.233

Maximum 0.15 0.233 0.3

Table 4.5: Summary of results - empirical tortuosity.
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4.3.3 RMSE in Localization vs Scale

The simulated environments are made up of three types of spaces - a hallway, an

office space and an open space. The SUAS used in these experiments has a diameter

of 0.75m. The operator flies the SUAS so that the nearest obstacle is approximately

0.5m away. Hence the characteristic dimension of the SUAS comes out to be 1.75m.

Paths A and C are divided into segments as seen in Fig. 4.9. As the error in SLAM

increases incrementally, we consider the segments that are similar in length and

connected to the starting point. Segment A1 for path A and segment C1 for path

C meet these requirements. The nominal characteristic dimension of environment

for Segment A1 and Segment C1 is 3m and 10m respectively. This space is further

reduced by random arrangement of obstacles. Hence the nominal scale i.e. Agent to

Environment ratio for segment A1 is 0.583 i.e. restricted maneuverability. Similarly,

the scale for segment C1 is 0.175 i.e. habitable.

(a) (b)

Figure 4.9: Segments for each path. a) Path A and c) Path C.
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As seen in Fig.4.10, the average RMSE for all trials hardly changes with scale.

It changes by 2.4 % for all trials. Similarly there is a minor change in the average

RMSE as the scale changes for each group. These value and their confidence intervals

are too close to make any claims. The table 4.6 summarizes this result.

(a)

(b)

Figure 4.10: Average RMSE in localization vs scale. a) Comparison for all trials and
b) Comparison for each group.
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A1 (0.583) C1 (0.175)

All Trials

Average RMSE 0.083 0.085

Standard Deviation 0.04 0.026

95% Confidence 0.016 0.01

Group 1

Average RMSE 0.067 0.078

Standard Deviation 0.019 0.03

95% Confidence 0.011 0.019

Group 2

Average RMSE 0.078 0.087

Standard Deviation 0.021 0.012

95% Confidence 0.016 0.009

Group 3

Average RMSE 0.105 0.091

Standard Deviation 0.056 0.028

95% Confidence 0.037 0.019

Table 4.6: Summary of results - average RMSE in localization vs scale.

4.3.4 Summary

Using 90 trials of experimentation in computer simulation, we test and quantify

the error in localization. Using statistical testing, we see that the average value of

RMSE in localization increases convincingly by 26.36% as the environment changes

from Group 1 to Group 3. But, the change in value of error is not statistically con-

vincing when we compare Group 1 and 2 and, Group 2 and 3 respectively. Hence,

though the result suggest that the value of error increases between different groups,

it cannot be claimed that the RMSE in localization will always increase with decon-

struction. We empirically quantify the values of tortuosity for all trials. The average

RMSE in localization does not change with the scale of the environment.
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5. CONCLUSION

The interest in using SUAS technology by urban search and rescue teams con-

tinues to grow; however, the unique situations in which SUASs will be considered

a valuable tool place constraints on the system and algorithm design. This work

focuses on identifying the key characteristics of indoor disaster environments and

understanding their impact on SUAS SLAM algorithms. This research is critical for

purposes of developing and evaluating SUAS technology for and within representa-

tive environments that will lead to transferring the technology to disaster response

personnel. The formal definitions characterize the environment’s scale, space type,

obstacle severity and tortuosity as well as the SUAS’ nominal flight altitude. These

definitions were used to analyze and classify twelve existing SUASs evaluated for

deployment in simulation or in actual indoor environments. These results were com-

pared to a representative environment used to train urban search and rescue teams,

Prop 133 at Disaster City®.

Using the lessons learned from analysis, computer simulated environments with

increasing deconstruction were designed with randomly placed obstacles. A SLAM

system was developed and tested in these environments using 90 trails. Using statis-

tical testing, we see a convincing increase of 26.36% in the value of average RMSE in

localization as the deconstruction in the environment changes from Group 1 to Group

3. But, the change in value of error is not statistically convincing when we compare

Group 1 and 2 and, Group 2 and 3 respectively. Hence, though the result suggest

that the value of error increases between different groups, it cannot be claimed that

the RMSE in localization will always increase with deconstruction. The tortuosity

increases with deconstruction and we empirically calculate this value for all trials.
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The average RMSE for all trials does not change as the Agent to Environment ratio

changes.

In spite of our best efforts, the computer simulated environments may not be

as challenging as an actual disaster. Researchers working in similar areas could

build upon our study to create better algorithms and test their systems using our

computer simulated disaster environment. From this work, we have gained a better

understanding of indoor disaster environments. Furthermore, we have developed the

SLAM algorithms that could be used to develop better SUAS for exploration and

mapping of such challenging environments in the future.
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6. FUTURE WORK

There are a number of possible extensions to this work:

6.1 Hardware Implementation

The SLAM system has been implemented and tested in computer simulation.

Something that works in simulation may not work well in the real world. In the next

step, we could implement these algorithms on a real SUAS and run trials at Disaster

City®. This will give us a chance to see if our results hold true in real world scenarios.

6.2 Loop Closure

Loop Closure is extremely important to correct errors in SLAM. Our system does

not include loop closure functionality. Implementing loop closure will help us reduce

the errors in localization. We could also test the effect of characteristics of indoor

disaster environments on loop closure.

6.3 Beyond SLAM

SLAM is not the only hurdle when it comes to flying in damaged buildings and

structures. One has to account for other factors like Human - Robot Interaction,

autonomy, number of agents, their formations and path planning. Better situational

awareness and improvement in controls could help the pilot tele-operate the robot

effectively.
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