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ABSTRACT

This work investigates three aspects of the theory of finitely constrained groups,

motivated by questions first asked by Rostislav Grigorchuk when he introduced the

subject in 2005. The first topic is Hausdorff dimension of finitely constrained groups

of p-adic tree automorphisms. The set of possible values of Hausdorff dimension for

such a group is known, and we are able to show that every value in this set actually

occurs. The second topic, related to the first, is topological finite generation of finitely

constrained groups of p-adic tree automorphisms. Relatively little is known about

which values of Hausdorff dimension occur for topologically finitely generated, finitely

constrained groups of p-adic tree automorphisms. We are able to show that certain

values can not occur as the Hausdorff dimension a topologically finitely generated,

finitely constrained group of p-adic automorphisms defined by patterns of size d. We

discuss finitely constrained groups of binary tree automorphisms with pattern size

d ≥ 5 and Hausdorff dimension 1− 2
2d−1 ; the issue of topological finite generation for

these groups is more challenging. We provide explicit constructions of new examples

of finitely constrained groups and calculate their Hausdorff dimension. Finally, we

study the portraits of self-similar groups using well-known ideas from the theory of

tree automata, with particular focus on examples which separate certain classes of

tree languages. These self-similar groups generalize the usual notion of self-similar

groups, and we show that some well-known results extend to this more general case.

From the tree language perspective, self-similar groups whose portraits form sofic

tree shifts are of particular interest. We conclude by posing many questions for

future study.
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1. INTRODUCTION

This work investigates aspects of finitely constrained groups, which are topolog-

ical groups defined via labeled trees corresponding to finite quotients of the group.

They are related to the theory of both finite and infinite groups, as well as sym-

bolic dynamics and the theory of computation. Like several other areas of interest

in contemporary group theory, their study is motivated by a property of the first

Grigorchuk group.

Finitely constrained groups of tree automorphisms were introduced by Grigorchuk

in 2005 [28]. This dissertation examines three topics, corresponding to three ques-

tions asked in that work. The first topic is determining the topological finite gen-

eration of a finitely constrained group, given its set of defining patterns (see [28,

Problem 7.3.i]). The second topic is determining the Hausdorff dimension of the clo-

sure of a finitely generated, self-similar group (see [28, Problem 7.1(iii)]); we address

this question in the special circumstance when the closure is finitely constrained.

The final question is the appropriate analog of sofic systems for self-similar groups

(see [28, Problem 7.4]). We should mention here that we are not the first to address

these questions, and previous work by others will be discussed and used throughout

to obtain new results. We should also mention at this point that some of the results

in this dissertation were obtained through collaborative work with Zoran Šunić, and

this will be acknowledged whenever it is the case.

An outline of the remainder of this dissertation is as follows. Section 2 gives

necessary background, establishing both definitions and notation, as well as giving

a review of relevant literature. We will establish connections between the different

perspectives on finitely constrained groups. We especially emphasize the connection
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between groups of tree automorphisms and symbolic dynamics on arbitrary semi-

groups. The definition of self-similar and finitely constrained groups that we give is

more general than that given for tree automorphisms, since we allow arbitrary groups

whose action on the tree may not be faithful. We give the details of the construction

explicitly.

Section 3 is dedicated to Hausdorff dimension and topological finite generation of

finitely constrained groups of p-adic tree automorphisms. We prove an upper bound

(as a function of pattern size) on the Hausdorff dimension of a topologically finitely

generated, finitely constrained group of p-adic tree automorphisms. While obtaining

this upper bound, we also provide an explicit description of the finite pattern groups

which can be used to define such a finitely constrained group. Next, we discuss finitely

constrained groups of binary tree automorphisms defined by pattern size d and having

Hausdorff dimension 1− 2
2d−1 . We are again able to completely characterize patterns

which define these finitely constrained groups. For pattern size d ≥ 5, the question of

topological finite generation for finitely constrained groups defined by patterns of size

d is more subtle. We discuss certain cases where topological finite generation can not

occur. We provide examples, both known and new, of topologically finitely generated,

finitely constrained groups. We also define two special classes of patterns which

together contain all examples of finitely constrained groups of which we are aware.

We conclude by exhibiting new examples, verified using the computer program GAP.

Section 4 discusses the computational aspects of finitely constrained groups. We

discuss some work done both classically and recently related to languages of tree

patterns, which motivates the study of self-similar groups as tree languages. We

generalize some known results about self-similar groups to the more general case

considered here. We give examples which separate distinct classes in a computational

hierarchy of tree languages. Finally, we discuss self-similar groups whose portraits

2



define sofic tree shifts. These groups give an answer to Grigorchuk’s question on

the analog of sofic systems for self-similar groups. We give a sufficient (though

not necessary) condition for which the sofic and finitely constrained class coincide.

Whether these classes always coincide is still open in general.

Section 5 discusses potential avenues of future work related to these topics. Our

work is still far from giving a complete answer to Grigorchuk’s questions, and even

in the special cases we investigate, some work remains to be done. The questions

we suggest are related to Grigorchuk’s questions, and give related questions whose

answers might provide insight into the larger ones. We believe that the many re-

maining open problems surrounding finitely constrained groups are intriguing and

deserve further study.
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2. BACKGROUND

This section has several purposes. The most important is to introduce the topics

which will be the focus of this work. Along the way, we review basic concepts,

introduce the notation we will use, and give an overview of known results in the

field. There is a vast overlap between between the areas of group theory, symbolic

dynamics, and the theory of computation, so we will restrict our attention to the

most relevant background. On the other hand, we do want to emphasize that there

are many different ways of thinking about finitely constrained groups, and there are

many connections between these complementary perspectives. Where appropriate,

we will also use the opportunity to generalize known results.

2.1 Trees, semigroups, and groups

2.1.1 Basic background on semigroups and groups

In general, we will assume that the reader is familiar with basic concepts of sets,

semigroups and groups (at least to the level of the first 3 chapters of [32]), as well as

some topology (at the level of Chapter 1 in [16]).

If X is a set, we write Xn for the set of all words of length n in X. If I is an

indexing set, {Xi}i∈I is a collection of sets, and
∏

i∈I Xi is the direct product of the

sets equipped with its standard projection maps πi, we write x(i) for πi(x), and we

call x(i) the label of x at i. Generally, if X and Y are sets, we use the notation Y X

to indicate the set of all functions from X to Y . We also define

X(n) =
n⋃
i=0

X i and X [n] =
n⋃
i=0

X i

If T is a semi-group and Q is a set, a left action of T on Q is a map T × Q →

4



Q : (t, q) 7→ t.q such that s.(t.q) = (st).q for all s, t ∈ T and q ∈ Q. A right action

of T on Q is a map Q × T → T.(q, t) → qt such that q(st) = (qs)t. We call a set Q

a left (respectively, right) T -set if T has a left (respectively, right) action on Q. In

particular, if G is a group, a left (respectively, right) G-set is a set on which G has

a left (respectively, right) action. A group H is called a G-group if G acts on H by

automorphisms. A frequently used group action is the action of a group G on itself

by conjugation, with hg = g−1hg for g, h ∈ G.

We now review the iterated wreath product, which is crucial for the construction

of finite patterns and finitely constrained groups. Let G and H be groups and let X

be a left G-set. The direct product HX =
∏

x∈X H is a group under componentwise

multiplication. The left action of G on X extends to a right action by automorphisms

on HX given by ((hx)x∈X)g =
(
hg(x)

)
x∈X .

Definition 2.1.1 (Semi-Direct Product). If a group G has a right action on a group

K by automorphisms, we can define the semi-direct product of K and G as the group

G nK with underlying set G ×K and binary operation given by (g1, k1)(g2, k2) =

(g1g2, k
g2
1 k2).

Definition 2.1.2 (Permutational Wreath Product). Let G and H be a groups and

X be a left G-set. The group GnHX is called the permutational wreath product of

G and H, and is denoted G oX H.

The elements of the permutational wreath product G n HX are ordered pairs

(g, (hx)x∈X), but it is often convenient to omit the outside parentheses and the refer-

ence to X, writing an element as g(hx). Then multiplication of two elements g1(hx)

and g2(h′x) in G oX H is then given as

g1(hx)g2(h′x) = g1(g2g
−1
2 )(hx)g2(h′x) = g1g2(hx)

g2(h′x) = g1g2(hg2(x)h
′
x)

5



This construction can be used repeatedly to obtain the iterated wreath product.

If X is a finite set and A is a finite group with some left action φ on X, the elements

of the permutational wreath product A oX A belong to the set AX
(2)

, and the group

A oX A acts on X2 . The action of A on X naturally induces an action of A on

(A oX A)X , leading to the permutational wreath product

A oX (A oX A),

which acts on X3 and whose elements correspond to those of the set AX
(3)

. The

groups (A oX A) oX A and A oX (A oX A) are canonically isomorphic, so we omit

parentheses.

If A is a finite group with a left action φ on a set X, we define the n-fold iterated

wreath product of A over X with action φ inductively, as follows. We set the group

W(φ,X)(A, 1) to be A, and for n > 1 we define W(φ,X)(A, n) = A o(φ,X) W(φ,X)A(n−1).

If X and φ are understood, we write W(φ,X)(A, n) as WA(n).

In the special case when p is a prime number and A is the cyclic group Cp with

its standard action on the set X = {0, 1, . . . , p−1}, we will write the W(φ,X)(A, n) as

Wp(n). These groups were originally studied by Kaloujnine [34] and are famous as

the Sylow p-subgroups of the symmetric group on pn letters. They are also important

subgroups of the automorphism groups of finite trees, which will be a major topic in

this work.

2.1.2 Trees

Nearly everything discussed in this work is related to trees. Trees are fundamental

to both theoretical and practical aspects of computation, and they are important in

many areas of mathematics. Trees are ubiquitious in graph theory, and they serve as

natural discrete models of negatively curved metric spaces. Groups acting on rooted
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trees have also spurred many important developments in group theory, as we will

discuss in this section.

We begin with necessary definitions. Let X be a non-empty finite set. For n ≥ 1,

we define Xn as the set of all words of length n in X. We write |w| = n to indicate

w ∈ Xn. We let

X∗ =
∞⋃
i=0

X i

be the set of all words in X of any length, including the empty word ε of length zero.

With the product of two words w and v defined to be their concatenation wv, the

set X∗ forms a semigroup, called the free semigroup on X.

For two words w,w′ in X∗, we say w′ is a descendant of w if w′ = wv for some

v ∈ X∗. In this case, we say w is a prefix of w′ and write w ≤ w′. We write w < w′

if w ≤ w′ and w 6= w′. If w′ = wx for some x ∈ X, we say that w′ is a child of w.

The elements of the set X∗ can be identified with the vertices of a regular |X|-ary

tree with the empty word ε as the root, where each vertex w ∈ X∗ is connected to

its children {wx | x ∈ X}. We typically identify X∗ with the tree representing it,

and call X∗ the infinite |X|-ary tree. When |X| = 2, X∗ is an infinite binary tree.

The set Xn is called level n of the tree X∗. For a word w, the infinite subtree rooted

at w is the set wX∗ = {wu | u ∈ X∗} consisting of w and all of its descendants.

The tree X∗ is self-similar in the sense that the graphs X∗ and wX∗ are isomorphic

for any word w.

We are also interested in finite trees. Recall that

X(n) =
n−1⋃
i=0

X i, X [n] =
n⋃
i=0

X i.

The members of the finite set X [(d)] correspond to the vertices of a regular |X|-ary

7



rooted tree having d levels, which we say has size d.

2.1.3 Groups of tree automorphisms

For our purposes, a tree automorphism is a graph automorphism of a rooted tree.

All the rooted trees we consider will be of the type defined in the previous subsection,

i.e. |X|-regular rooted trees representing the words of X∗ or X [d] for some finite set

X. These automorphisms give permutations of the elements of either X∗ or X [d]

which preserve word length, prefixes, and the empty word ε.

Certain groups of finite tree automorphisms are important in the the theory of

finite p-groups. When |X| is a prime number, we may assume that X = {0, 1, . . . , p−

1} and let γ denote the cyclic permutation (0 1 . . . p− 1). The groups Wp(n) were

studied by Kaloujnine [34] as the Sylow p-subgroups of the Symmetric group on

pn letters. These groups correspond to locally cyclic groups of tree automorphisms,

denoted Autp(X
[d]) i.e. groups where the action of the group element on the children

of each vertex is as a cyclic permutation. The structure of these groups plays an

important role in classification problems related to finite p-groups (see [39, Chapters

3 and 4]).

Infinite groups of tree automorphisms are also an important topic in contempo-

rary group theory. Interest in groups of tree automorphisms has been driven by the

discovery of intriguing examples, leading to the development of the general theory

of self-similar groups of tree automorphisms. One such example is the first Grig-

orchuk group, introduced by Grigorchuk as a solution to the Burnside Problem on

infinite torsion groups. The first Grigorchuk group has a fascinating structure and

has been used as a solution to many open problems in group theory. The interested

reader may consult [21, Chapter 8] and [28] for a more thorough overview of the first

Grigorchuk group. The Gupta-Sidki p-groups, also introduced as a solution to the

8



Burnside problem [31], provided other interesting examples and additional impetus

for the study of groups of rooted tree automorphisms. The monograph [44] provides

an overview of groups of automorphisms of infinite rooted trees.

Several classes of groups of tree automorphisms have been introduced and studied,

many of them based on or motivated by the first Grigorchuk group and the Gupta-

Sidki p-group. One particularly interesting class is that of self-similar groups, which

we now define. By the previously-discussed similarity of the infinite tree X∗, an

automorphism g of X∗ induces an automorphism of the tree g(w)X∗. For g ∈

Aut(X∗) and w ∈ X∗, we define the section gw as the unique element of Aut(X∗)

such that g(wv) = g(w)gw(v) for all v ∈ X∗. A subgroup G of Aut(X∗) is self-

similar if for any g ∈ G and w ∈ X∗, the section gw ∈ G as well. The group

Aut(X∗) can be viewed as the wreath product Sym(X) oX Aut(X), so an element

g ∈ Aut(X∗) decomposes as σ(gx1 , gx2 , . . . , gxn), where σ ∈ Sym(X), n = |X|, and

each gxi ∈ Aut(X∗).

There are many interesting classes of self-similar groups which have been studied.

We will discuss some of them in more detail when we survey known results on Haus-

dorff dimension and finitely constrained groups of tree automorphisms in Section

2.5.3.

2.1.4 Profinite groups

Many of the groups we are interested in are examples of profinite groups. The

general theory of profinite groups as presented in a standard reference like [50] is

more than we need, so we will give more specifialized definitions adapted to the

cases we consider. What is important for our purposes is that profinite groups have

a natural metric structure which agrees with the metric structure of the full shift in

symbolic dynamics. We should note that the Ph.D. thesis of Siegenthaler [53] offers

9



a very thorough and insightful discussion of the profinite theory of groups acting on

infinite rooted trees.

Let {G(i)}∞i=1 a collection of finite groups such that for each n ≥ 1, there is a

surjective homomorphism θn : G(n+ 1)→ G(n). We let π0 be the trivial homomor-

phism with domain G(1) and call the collection {(G(i), πi}∞i=1 a projective system of

finite groups. Let

G =
∞∏
i=1

G(i)

be the infinite direct product group. Define the inverse limit of the projective system

(Gi, πi) to be the subgroup of G defined as

G = {g ∈ G | θn(g(n+1)) = g(n)} for all n ≥ 1.

Definition 2.1.3. A profinite group G is the inverse limit of a projective system

{G(i), πi}∞i=1 of finite groups.

A profinite group is a metrizable compact Hausdorff space, and each projection

map πi : G → G(i) is a group homomorphism. The standard metric for the inverse

limit of the projective system (G(i), θi) is given by d(g, h) = 0 if g = h and for g 6= h,

d(g, h) =
1

|G(i)|
,

where i is the least value such that g(i) 6= h(i). Setting Gi = kerπi, we see that

G1 ⊇ G2 ⊇ G3 . . . is a descending sequence of normal subgroups of G.

Definition 2.1.4. Let G be a profinite group. A subgroup H ≤ G is topologically

finitely generated if H is the topological closure of a finitely generated subgroup of

G.

10



When X is a finite set, the infinite tree automorphism group Aut(X∗) is the

inverse limit of the projective system of finite groups {Aut(X [n]), θn} where θn is the

natural projection map from Aut(X [n+1] to Aut(X [n]). Again, the case when |X| = p

for some prime number p, we write Autp(X
∗) for the inverse limit of the groups

Wp(n), and we call Autp(X
∗) the group of p-adic automorphisms. Our purpose in

introducing profinite groups is to eventually generalize certain ideas of self-similar

groups of tree automorphisms to that of more general structures arising in the theory

of symbolic dynamics and computation on trees.

2.2 Computation and symbolic dynamics

In this section we review the necessary background for computation and symbolic

dynamics for general semigroups, and for free semigroups in particular. All of the

material we present is known, and in general our presentation gives a synthesis of

material which closely follows that of [20] and [18]. However, we will note a few

places where our conventions differ from the usual ones.

Traditionally, symbolic dynamics has dealt with shifts over the abelian semigroups

N, Z or Zt for t > 1. Such shifts are used both in applications to coding theory and

as discrete models for studying dynamical systems in general. The textbooks by

Kitchens [37] and Marcus and Lind [40] offer very readable introductions to this

classical viewpoint.

2.2.1 Symbolic dynamics on semigroups

A dynamical system is a pair (X,T ), where X is a compact space and T is a

semi-group acting on X by continuous transformations.

Let T be a finitely generated semigroup and A be a finite alphabet. The full

shift (over T with alphabet A) is AT , the set of all maps from T to A. The full shift

is a compact Hausdorff space which is homeomorphic to a Cantor set if |A| > 1.

11



Elements of the full shift are called configurations. The value of a configuration x at

a point t is called the label of x at t and is denoted x(t).

The shift action of T on AT is a continuous right semigroup action given by

[ρs(x)](t) = x(st) for all s, t ∈ T, x ∈ X. With this action, the pair (AT , T ) is a

dynamical system.

Remark 2.2.1. We have defined the shift action of T on AT as a right action. It

is common to define a left shift action λ of T on AT given by [λt(x)]s = x(st). This

distinction is meaningless in the classical case, when the underlying semigroup is

abelian, but it is very important here. Consider the following example. Let X be a

finite set and A be a finite alphabet. Let w, v ∈ X∗ and f be a configuration of AX
∗
.

The value of [λw(f)](v) is the value of f at vw, while the value of [ρw(f)](v) is f(wv).

Thus all of the labels in the right-shifted configuration come from the subtree wX∗.

Henceforth, when we refer to the shift action, we will always mean the right

shift action. We also use the notation xs for ρs(x). Note that with our notation,

(xs)(t) = x(st). A subset X ⊆ AT is shift-invariant if ρt(X) ⊆ X for all t ∈ T . A

subshift is a closed, shift-invariant subset of AT .

A pattern is a map p : Ω→ A for some finite Ω ⊆ T . We say a pattern p appears

in a configuration x if there exists t ∈ T such that the restriction of xt to Ω is equal

to p. If F is a set of patterns, we define

XF = {x ∈ AT | if p appears in x, then p ∈ F},

and say that F is the set of allowed patterns for XF . It is also possible - and in fact

more common traditionally - to define shifts in terms of forbidden patterns. Allowed

patterns are more natural for our purposes, but it is not difficult to translate between
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the two equivalent notions. It is a well-known fact that any subshift can be defined

in terms of allowed (or forbidden) patterns.

Proposition 2.2.2. Let T be a semigroup and A be a finite alphabet. A set Y ⊆ AT

is a subshift if and only if there exists a set F of patterns such that XF = Y

Definition 2.2.3. Let A be a finite alphabet, let T be a semi-group, and let Y be a

subshift of AT . If Y = XF for some finite set of patterns, we say that Y is a shift of

finite type.

Now that we know that we have defined shift spaces as the objects of study, it is

natural to consider the maps between them. These are given by cellular automata.

Definition 2.2.4. Given a semigroup T and two finite alphabets A and B, a map

τ : AT → BT is called a cellular automaton if there exists a finite subset M ⊂ T and

a map µ : AM → B such that

τ(f)(w) = µ((fw)|M ).

The set M is called the memory set for τ , and µ is called the local defining map for

τ .

Definition 2.2.5. Let T be a semi-group and let A and B be finite alphabets. A

subset Y ⊂ BT is sofic if there exists a cellular automaton τ and a shift of finite type

X ⊆ AT such that Y = τ(X ).

It is clear that any shift of finite type X ⊆ AT is sofic, since we can simply take

the cellular automaton τ in the definition to be the identity map on X .

Most of our attention in this work will be paid to the case when the semigroup

T is equal to the free semigroup X∗ for some finite set X, We consider subshifts
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of the full tree shift AX
∗

for some finite set X and finite alphabet A. In this case,

configurations correspond to infinite trees whose vertices are labeled with elements of

A. The shift AX
∗

is a metric space with distance d defined as follows. If f, g ∈ AX∗

and f = g, define d(f, g) = 0. If f 6= g, then there exists some w ∈ X∗ such that

fw) 6= g(w), and we define

d(f, g) =
1

|X [n]|
,

where n is taken to be the length of the shortest word w such that f(w) 6= g(w).

2.2.2 Symbolic dynamics and profinite groups

In the case that the alphabet A is a finite group, it is natural to consider group

structures on the full shift AT . Although there are different ways to do this, the

most obvious group structure is the direct product, with group operation given com-

ponentwise, i.e. (gh)(t) = g(t)h(t) for all g, h ∈ AT . Kitchens [36] studied group shifts

defined over Z, i.e. subshifts which are also subgroups of AZ, where A is a finite

group. Here we review his results and give a straightforward generalization from Z

to the case of an arbitrary semigroup.

Some additional background is necessary. Let (X,T ) and (Y, T ) be dynamical

systems. A conjugacy between X and Y is a homeomorphism π : X → Y such that

π(xt) = [π(x)]t for all x ∈ X.

If G is a topological group and (G, T ) is a dynamical system, we say that U ⊆ G

is expansively open if U is an open set and for any x, y ∈ G, there exists t ∈ T such

that t(x) 6∈ t(y)U . We say (G, T ) is expansive if there exists an expansively open set

U ⊆ G.

We will also utilize the following standard fact about topological groups (just as

Kitchens’ original proof does).
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Theorem 2.2.6. Let G be a zero-dimensional topological group. If U is an open

subset of G which contains eG, then U contains an open normal subgroup.

Kitchens proves the following theorem in the case that T is an infinite cyclic

subgroup. Our proof follows his and relies on Theorem 2.2.6. It is also related to

[20, Theorem 2.6].

Theorem 2.2.7 (Kitchens,1987). Let G be a profinite group and let T be a semigroup

with a right action by expansive endomorphisms of G. The dynamical system (G, T )

is conjugate to a subshift of AT , where A is a finite group.

Proof. Since T is expansive, there exists an open subset U with eG ∈ U such that

for any x, y ∈ G, there exists t ∈ T with t(x) 6∈ t(y)U . By Theorem 2.2.6, G has an

open normal subgroup N such that N ⊆ U , and obviously N is expansively open as

well. Note that N has finite index, since the cosets of N form an open cover of G and

G is compact. Let A = G/N . Define π : G→ AT by [π(g)](t) = (gt)N . Composition

of π with each of the projection maps AT → A is equal to the composition of

translation by t and projection onto G/N , each of which is continuous. Thus π is

continuous. It follows from the expansiveness of (G, T ) that π is injective, and thus

π is a homeomorphism onto its image. Also, π is T -equivariant since for t, s ∈ T and

g ∈ G,

[π(g)s](t) = [π(g)](st)

= (gst)N

= ((gs)t)N

= [π(gs)](t)
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In the same work, Kitchens also proved the following theorem characterizing

group shifts over Z.

Theorem 2.2.8 (Kitchens,1987). Let A be a finite group and let G be a subgroup

of the direct product group AZ such that G is also a shift over Z. Then G is a shift

of finite type.

This result is not true for groups which are shifts over arbtirary semigroups.

However, it does extend to N, which corresponds to the rooted tree X∗ when |X| = 1.

We will provide proofs of these facts in Section 4.

2.2.3 Symbolic dynamics and groups of tree automorphisms

As observed by Grigorchuk in [28, Section 7], each automorphism of the infinite

rooted tree X∗ corresponds to a portrait, i.e. a labeling of the vertices of X∗ by

elements of the finite alphabet Sym(X). Using the homomorphism π1 : Aut(X∗)→

Sym(X) and the section map in Aut(X∗), we define the portrait map α : Aut(X∗)→

(Sym(X))X
∗

to be [α(g)](w) = π1(gw).

The portrait map gives a correspondence between the elements in the group

Aut(X∗) and the portraits of the full tree shift AX
∗
. Under this correspondence,

the portraits of a topologically closed, self-similar subgroup of Aut(X∗) form a tree

subshifts, and elements of Aut(X [d]) correspond to patterns of size d.

The portrait makes it possible to easily visualize the action of a tree automor-

phism. Moreover, Grigorchuk noted in [28, Section 7] that the closure of the first

Grigorchuk group can be defined by a finite set of allowed patterns of size 4 cor-

responding to a subgroup of Aut(X [4]) (for |X| = 2). We call such groups finitely

constrained groups of tree automorphisms (Grigorchuk used the term groups of finite

type). A more precise definition and deeper discussion about these groups will be

given later in this section.
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Finite state automata are an important construct in computer science and in the

theory of self-similar groups. Many of the interesting constructions of self-similar

groups are given by groups generated by finite-state automata. Groups generated

by a finite state automata have been studied for at least five decades, with much of

the early development occurring in the former Soviet Union. The interested reader

should consult the Introduction to [14] for more information. The definition we give

is specialized to our purposes.

Definition 2.2.9. Let X be a finite set. A finite state automaton is a finite, self-

similar subset of Aut(X∗).

2.3 Hausdorff dimension

Hausdorff dimension and box-counting dimension are often associated to fractal

geometry, but they can be defined for any metric space. Our presentation of these

concepts is standard (though minimal). Additional background can be found in the

textbooks by Falconer [23] and Edgar [22].

Let (X, d) be a metric space and Y be a subset of X. An δ-cover of Y is a

countable collection of subsets {Ui}∞i=1 such that diam(Ui) ≤ δ for all i and Y ⊆⋃∞
i=1 Ui. For r ≥ 0, we define Hr

ε(X) to be the infimum over all ε-covers of the

quantity
∑∞

i=1(diam(Ui)
r, and we define the r-dimensional Hausdorff measure of Y

as

Hr(Y ) = lim
δ→0
Hr
δ(Y ).

Finally, the Hausdorff dimension of Y , written dimH(Y ), is given as

dimH(Y ) = sup{r ≥ 0 : Hr(Y ) = 0}.

Another dimension used in fractal geometry is the lower box-counting dimension.
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(There is also an upper box-counting dimension, which we will not need.) Let Nε(Y )

be the minimum of the cardinalities of all ε-covers of Y (Nε(Y ) is finite if and only

if Y is bounded). The lower box-counting dimension of Y is

dimB(Y ) = lim inf
ε→0

logNε(Y )

− log δ
.

Proposition 2.3.1 (see [23], p.46). Let (X, d) be a metric space. For any Y ⊆ X,

dimH(Y ) ≤ dimB(Y ).

The values of these dimensions take for a metric space depend strongly on the

metric, and topologically equivalent metrics on a space may lead to different Haus-

dorff or box-counting dimension functions.

2.4 Hausdorff dimension and entropy in symbolic dynamics

Entropy is an important notion for dynamical systems in general and shift spaces

in particular. If A is a finite alphabet and X is a subshift of the full shift AN, the

entropy of X is given by

ent(X ) = lim sup
n→∞

log |Bn(X )|
n

.

Furstenburg [25] showed that if A is a finite alphabet, then for a subshift X ⊆ AN,

dimH(X ) = dimB(X ) =
1

log |A|
ent(X ).

A similar result was proven for shifts over any finitely generated, free abelian semi-

group or group by Stephens [55].
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2.4.1 Hausdorff dimension for profinite groups

Abercrombie [1] initiated the general study of Hausdorff dimension in profinite

groups (with respect to the profinite metric discussed in Section 2.1.4). He showed

that if G is a profinite group and H is a closed subgroup of G, then

dimH(H) ≥ lim inf
n→∞

log[H : (H ∩Gn)]

log[G : Gn]
.

Barnea and Shalev [6] noted that in this situation,

dimB(H) = lim inf
n→∞

log[H : H ∩Gn]

log[G : Gn]
,

and so applying Proposition 2.3.1, the following theorem holds.

Theorem 2.4.1 (Abercrombie, 1994; Barnea and Shalev, 1997). Let G be a profinite

group with a filtration {Gn}∞n=0 and let H be a closed subgroup of G. Then

dimH(H) = dimB(H) = lim inf
n→∞

log |H : H ∩Gn|
log |G : Gn|

Barnea and Shalev [6] studied several aspects of the Hausdorff dimension of pro-p

groups. They defined the Hausdorff spectrum of a pro-p group G as the set of all

values of Hausdorff dimension for closed subgroups of G. They also showed that

the Hausdorff spectrum of a p-adic analytic group consists of a finite set of rational

numbers.

Several authors have examined aspects of the Hausdorff spectrum of the profinite

group Autp(X
∗). Grigorchuk [27] showed that the Hausdorff dimension of the closure

of the first Grigorchuk group is 5
8
. Abért and Virág [2] studied the Hausdorff spectrum

of the pro-p group Autp(X
∗) and showed that for any λ ∈ [0, 1], there exists a 3-
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generated subgroup of Autp(X
∗) whose closure has Hausdorff dimension equal to λ.

Abért and Virág used probabilistic methods on trees to prove this result, so it does

not give any explicit examples of Hausdorff dimension for subgroups of Autp(X
∗).

The Hausdorff dimension has been explicitly calculated for several classes of

groups of p-adic tree automorphisms. Many of these examples are regular branch

groups, and the calculations often make use of the group’s branching structure. We

will discuss Hausdorff dimension and finitely constrained groups of p-adic tree auto-

morphisms more later in this Section.

2.5 Self-similar and finitely constrained groups

The portrait map discussed in Subsection 2.2.3 associates to each tree automor-

phism g a labeled tree which encodes the action of g. These labeled trees naturally

correspond to elements of a full shift. In particular, the portraits of the group

Aut(X∗) correspond to the full shift (Sym(X))X
∗
, and the group of p-adic tree auto-

morphisms corresponds to the full shift (Cp)
X∗ . In the same way, an automorphism

of the finite tree X [d] corresponds to a pattern with domain X(d). These observations

were the key to Grigorchuk’s definition of groups of finite type (which we call finitely

constrained groups).

From the perspective of symbolic dynamics, the requirement that the finite al-

phabet A in the full tree shift AX
∗

be a subgroup of Sym(X) is needlessly restrictive.

Thus, in this section, we give a definition of finitely constrained group which gener-

alizes the definition in the case of tree automorphisms. The main difference here is

that we do not require the action of our group on the tree to be faithful. For any

finite set X and finite group A which acts on X, we explain how to give a natural

group structure to the full shift AX
∗
. This construction is related to both the study

of group shifts over N, Z or Z2, and to that of closed, self-similar subgroups of tree
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automorphisms.

2.5.1 The general definition of self-similar groups

Here we give a general definition of self-similar group as a profinite group whose

elements will be identified with those of a full tree shift. We will write out the

details of the construction carefully, although it it will be natural to those familiar

with self-similar groups of tree automorphisms.

Recall that if A is a finite group and X is a left A-set with left action φ, we

write W(X,φ)(A, n) for the n-fold iterated wreath product of A over X. We use the

recursion inherent in the construction to define finite sections and labels for elements

of WX,φ(A, n) and words of length less than n. We take the base case to be n = 1,

in which case gε = g.

Now assume that gw is defined whenever g ∈ WA(n − 1) and w ∈ X(n−1). An

element g ∈ W(φ,X)(A, n) can be written as (g(ε), (gx)x∈X), where g(ε) ∈ A and each

gx ∈ W (A, n − 1). For a word v ∈ X(n), we write v = xv′ for v′ ∈ X(n−1), and we

define gv = (gx)v′ .

There is an obvious homomorphism α : W(φ,X)(A, n) → A given by α(g) = g(ε).

We call α(g) the root portrait of g. For w ∈ A(n), we define the label of g at w to be

g(w) = α(gw).

Now, the use of the term pattern group is justified, since the map from WA(n)

to AX
(n)

which takes g to the pattern (g(w))w∈X(n) with domain X(n). In general,

we exploit this bijection and freely identify the elements of W(X,φ)(A, n) with their

corresponding patterns in AX
(n)

, though there are times where some care is needed

since this construction depends on the initial choice of the left action φ. For the

moment, we continue to assume that X and φ are understood and will continue with

writing WA(n) for the pattern group over A with pattern size n.
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For n ≥ 2, there is a surjective homomorphism

θn : WA(n+ 1)→ WA(n),

given by restriction of the pattern, i.e. [θn(g)](w) = g(w) for all w with |w| < n. Thus

we have a projective system of finite groups {(WA(n), θn)}∞n=1, and we define the full

tree shift group F(W,A, φ) to be the inverse limit of this system. It is not hard to see

that for each g ∈ F(W,A, φ), there is exactly one f ∈ AX∗ such that g(n) corresponds

to f|X(n) for all n ≥ 1. We call this f the portrait of g, and henceforth we will make

no distinction between g and its portrait, so that the label of g at w is defined to be

the label of its portrait at w, the section gw is the image of its portrait under the

shift ρw, etc.

Note in particular that the profinite metric on F(A,X, φ) is the same as the

metric on AX
∗

as a tree shift. Again, if there is no risk of confusion, we may identify

the group F(A,X, φ) with its set of portraits and refer to this group as AX
∗
.

We record some basic properties of these self-similar groups, which are well-known

for self-similar groups of tree automorphisms and not difficult to show in the more

general case.

Lemma 2.5.1. Let X be a finite set and A be a finite group acting on X via φ. Let

g, h ∈ F (A,X, φ), x ∈ X, and and u, v, w ∈ X∗. Then the following hold.

1. (gh)w = gh(w)hw

2. (gh)(w) = g(h(w))h(w)

3. (gu)v = guv

4. If g and h are supported on disjoint subtrees wX∗ and vX∗, then gh = hg.
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For u ∈ X∗ and a subgroup G ≤ AX
∗
, we define the stabilizer of u as

StabG(u) = {f ∈ AX∗ | f(u) = u}.

and the level n stabilizer (for n ≥ 0) is the subgroup defined as

StabG(n) = {f ∈ AX∗ | f(s) = s for all s ∈ Xn} =
⋂
u∈Xn

StabG(u).

The subgroup Triv(n) of AX
∗

is given by

Triv(n) = {f ∈ AX∗ | f(u) = eA whenever |u| < n}.

For a subgroup G ≤ AX
∗
, we define

TrivG(n) = Triv(n) ∩G.

For any G ≤ F(A,X, φ), TrivG(n) is a normal subgroup of G, corresponding to

the kernel of πn : G→ G(n) (given by the restriction of the map πn defined on AX
∗
).

The groups TrivG(n) and StabG(n) are the same if and only if the action of A on X

is faithful.

We also need the notion of a regular branch group. Regular branch groups are a

special class of branch groups, which are important in the study of self-similar groups

of tree automorphisms – see [10] for an introduction and overview of branch groups.

Definition 2.5.2. A self-similar group H acting on a tree X∗ with |X| = n is a

regular branch group over a group K if K is a finite index, normal subgroup of H

such that whenever k1, . . . , kn ∈ K, then (k1, k2, . . . , kn) ∈ K.
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2.5.2 Finitely constrained groups

We can now give a general definition of finitely constrained groups.

Definition 2.5.3. A finitely constrained group is a self-similar group whose portraits

form a tree shift of finite type.

Definition 2.5.4. Let X be a set and A be a finite group. A pattern group of size

d is a subgroup of WA(d) = AX
(d)

, d ≥ 1. A pattern group P is an essential pattern

group if for all g ∈ P and i = 0, 1, there exists hi ∈ P such that (hi)(w) = g(iw) for

all w ∈ X(d−1).

Remark 2.5.5. It is not hard to see that P is an essential pattern group with pattern

size n if and only if there exists a self-similar group A such that P = A(n). Indeed,

the patterns of any size for any self-similar group will have the essential pattern

property, while if P is an essential pattern group, the finitely constrained group GP

is a self-similar group such that GP (n) = P .

Let us give a basic example of a finitely constrained group defined by allowed

patterns, first given by Grigorchuk in [28, Section 7]. It is also discussed as Example

1 in [57] and Example 2.9 in [17]

Example 2.5.6 (“Monochrome Children”). Let P be the subgroup of W2(2) defined

by

p ∈ P ⇔ h(0) + h(1) = 0.

This is an essential pattern group. The patterns of this group are given in Figure

2.5.2, with w labeled by ◦ if g(wx) = g(w)x, and w labeled by • otherwise. A binary

tree automorphism g is in GP if and only if g(w0) + g(w1) = 0 for all w ∈ X∗.
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Figure 2.1: An illustration of the size two patterns of the monochrome children
group, a finitely constrained group of binary tree automorphisms originally defined
by Grigorchuk [28, page 174]

Remark 2.5.7. Let us illustrate one difference between classical symbolic dynamics

on N or Z and that on X∗ when |X| > 2. It is known that for a shift over N or Z,

Hausdorff dimension can only decrease under cellular automata (see [40, Proposition

4.1.9]. Let X = {0, 1}. There is a two-to-one cellular automaton φ from GP to

Aut(X∗) given by φ(g) = g(ε) + g(0). We will see in the next section (see Proposition

3.1.8) that the Hausdorff dimension of GP is 1
2
, and we know that the Hausdorff

dimension of Aut(X∗) is 1. Thus φ is a cellular automaton which increases the

Hausdorff dimension of its image.

The next example shows that there exist closed, self-similar groups which are not

finitely constrained. This example was suggested to us by Zoran Šunik.

Example 2.5.8. Let X = {0, 1}, A = Sym(X) = {id, σ}, and let A act faithfully on

X by permutations, so that the group AX
∗

= Aut(X∗). Let a = σ(1, a) ∈ Aut(X∗).

In terms of labels,

a(w) =


σ, if w = 1n for some n

id, otherwise .

.

Any section of a is either the identity or a, so the group generated by {1, a}

is self-similar. This group O is often called the odometer group, as it “rolls over”

any word consisting of all 1’s. We claim that O is not a finitely constrained group.

This follows immediately from the fact that O is abelian as the closure of an abelian
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group, any finitely constrained group is a regular branch group (Theorem 3.6) and

it is known that a branch group of tree automorphisms must have trivial center [27,

Theorem 2(c)]. However, we will present a different proof which relies only on the

structure of the portraits of O.

It follows from induction that

a2n = id(an, an)

and

a2n+1 = σ(an, an+1).

Also, we note that a2n
(ε) = id, while a2n+1

(ε) = σ. Finally, it is not hard to see that

a2n ∈ Triv(n) for all n ∈ N.

Since O is self-similar, the closure O is a tree shift group. We will show that O

is not finitely constrained.

Suppose that O is finitely constrained by some set F of allowed patterns of size

n + 1. Consider the element g ∈ AX∗ with root portrait gε = id and sections given

by g0 = 1G, g1 = a2n+1
. Each pattern in g is a pattern which appears in a, so g must

be in the shift space XF .

Since we assumed XF = O, there must be a sequence of elements in O which

converge to g. Since gε = id, this sequence must eventually consist of even powers of

a, so

a2ni → g.

Then (a2ni)0 → g0 and (a2ni)1 → g1. However, a2ni
0 = a2ni

1 , but g0 6= g1. Therefore

we have a contradiction, and O is not finitely constrained.

Finitely constrained groups of tree automorphisms are characterized in the follow-
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ing theorem. The direction (i.) → (ii.) was proven by Grigorchuk [28, Proposition

7.5], while the direction (ii.) → (i.) was proven by Šunić [56, Theorem 3].

Theorem 2.5.9 (Grigorchuk, 2005; Šunić, 2007). Let G be a group of tree automor-

phisms of X∗ and s ≥ 0. The following are equivalent.

(i) The group G is the closure of some self-similar, regular branch group H, branch-

ing over its level s stabilizer Hs.

(ii) The group G is a finitely constrained group defined by forbidden patterns of size

s+ 1.

The analog of this theorem holds for the more general finitely constrained groups

introduced in this section. We will prove this result in Section 4.

We record now some basic and useful facts about essential pattern groups and

finitely constrained groups.

Proposition 2.5.10. Let A be a finite group, X be a finite set, and let φ be a left

action of A on X. Let G = F(A,X, φ) be the full tree shift group of A over X

induced by φ, and let d be the standard metric on G. Let d > 1, let P be an essential

pattern subgroup of G(d), and let GP be the finitely constrained group defined by P .

Then the following hold.

(i.) Let n ∈ N and let g, g′ ∈ G. Then d(g, g′) < 1
|G(n)| if and only if πn(g) = πn(g′).

(ii.) If H is a subgroup of AX
∗
, then g ∈ H if and only if πn(g) ∈ H(n) for all

n ∈ N.

(iii.) For any g ∈ G, g ∈ GP if and only if πn(gw) ∈ P for all w ∈ X∗.

(iv.) If H is a self-similar subgroup of G, then H ≤ GH(n) for all n ∈ N.
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(v.) If H is a self-similar subgroup of G and m < n, then GH(m) ≥ GH(n).

(vi.) If H is a self-similar subgroup of G, then H =
⋂
n∈NGH(n).

Proof. (i.) This is clear from the definition of the standard metric on G.

(ii.) Let g ∈ G and suppose g ∈ H. For any n ∈ N, there exists hn such that

d(g, hn) < 1
|G(n)| , and thus πn(g) = πn(hn) ∈ H(n). Thus πn(g) ∈ H(n) for all

n ∈ N. Now suppose πn(g) ∈ H(n) for all n ∈ N. Then for each n ∈ N, there

exists hn such that π(g) = π(hn). These hn form a sequence which converges

to g, and so g ∈ H.

(iii.) This follows from the definition of GP and the observation that πd(gw) gives

the pattern of size d which appears at w ∈ g.

(iv.) Let h ∈ H and n ∈ N. Since H is self-similar, hw ∈ H for all w ∈ X∗, so

πn(hw) ∈ H(n) for all w ∈ X∗. Thus h ∈ GH(n) by (iii.)

(v.) If g ∈ GH(n), then πn(gw) ∈ H(n) for all w ∈ X∗, so πm(gw) ∈ H(m) for all

w ∈ X∗.

(vi.) First we show that H ⊆
⋂
n∈NGH(n). Each GH(n) is a closed set which contains

H by (iv.), so H ⊆ GH(n) for all n, and the result follows. For the other

direction, suppose g ∈
⋂
n∈NGH(n). Then πn(g) ∈ H(n) for all n, so g ∈ H by

(ii.)
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2.5.3 Hausdorff dimension and finitely constrained groups of tree automorphisms

In this section, we survey some known examples of self-similar groups of tree

automorphisms. We particularly focus on groups whose closures are finitely con-

strained, or whose closures have had their Hausdorff dimension calculated. The list

is intended to be as comprehensive as possible, without giving all details about the

groups being discussed.

The Hausdorff dimension of a finitely constrained group of p-adic automorphisms

defined by patterns of size d must be an element of the set

{0, 1

pd−1
, . . . , 1− 1

pd−1
, 1},

which follows from [7, Proposition 2.7] (it also follows independently from [56,

Proposition 6]). The value 0 occurs only for finite groups, and the value 1 occurs only

for the group of all p-adic automorphisms (which is finitely constrained by allowing

all patterns). Note that these facts will follow also independently from Proposition

3.1.8.

As noted earlier, Grigorchuk [28, Section 7] first discussed the notion of finitely

constrained groups of tree automorphisms and drew attention to the several questions

concerning the Hausdorff dimension of self-similar groups. He had previously showed,

using Theorem 2.4.1, that the closure of the first Grigorchuk group in Aut(X∗) has

Hausdorff dimension 5
8

[27].

Šunić [56] gave the first explicitly constructed (non-random) examples of finitely

generated groups with Hausdorff dimension approaching 1. Each example is defined

by a prime p and an integer m. He proved that these examples are finitely constrained

(defined by patterns of size m + 2). For p 6= 2 and d ≥ 4, the corresponding

example of pattern size d has Hausdorff dimension equal to 1 − p
pd−1 . For p = 2

29



and d ≥ 4, the corresponding example of pattern size d has Hausdorff dimension

equal to 1− 3
2d−1 . More generally, Šunić gave a formula for the Hausdorff dimension

of self-similar groups of p-adic tree automorphisms(see [57, Proposition 6]) and for

finitely constrained groups of p-adic tree automorphisms (see [57, Theorem 4]).

Bartholdi and Nekrashevych studied groups generated by finite state automata

whose structure is determined by either a word v ∈ X∗ or a pair of words v, w ∈ X∗.

These groups include the iterated monodromy groups of quadratic polynomials. We

denote such groups by R(v) and R(w, v). The Hausdorff dimension of these groups

was calculated by Pink [46]. His work shows that for d ≥ 5, there exist topologically

finitely generated, finitely constrained groups of binary tree automorphisms with

pattern size d and Hausdorff dimension 1− 2
2d−1 .

Spinal groups are studied by Bartholdi and Šunić in [12]. Siegenthaler [52] gave

a formula for the Hausdorff dimension of the closure of a spinal group and used

it to produce specific examples of finitely generated groups having transcendental

values of Hausdorff dimension. By embedding spinal groups of increasing Hausdorff

dimension into a larger group, Siegenthaler also constucted a concrete example of a

topologically finitely generated group with Hausdorff dimension equal to 1.

The GGS (Grigorchuk-Gupta-Sidki) groups (a term coined by Baumslag in [13,

Chapter 2])) are groups of p-adic tree automorphisms defined by a vector from the

vector space (Fp)p−1. Fernández-Alcober and Zugadi-Reizabal [24] calculated the

Hausdorff dimension of the closures of all GGS-groups, based on properties of the

vector used to define the group. They showed that any GGS-group with non-constant

defining vector is a regular branch group over its level two stabilizer. Although they

did not explicitly mention it, this result implies by Theorem 3.6 that each such

group is a finitely constrained group defined by patterns of size 3. Siegenthaler and

Zugadi-Reizabal [54] gave an explicit description of the defining patterns of the GGS-
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groups. They also made the observation that the portraits of these groups form an

abelian group under the operation of componentwise addition. We will consider new

examples of groups which satisfy this property in the next section.

Bondarenko and Samoilovych considered topological finite generation of finitely

constrained groups, proving two theorems which make it possible to determine this

property from some set of finite patterns which appear in the group. We will see

these theorems in the next section. Using these theorems and the computer algebra

system GAP [26],they showed that there are no topologically finitely generated, finitely

constrained groups defined by patterns of size d = 3, while there are 32 such groups

having pattern size d = 4 (including the closure of the first Grigorchuk group and the

closure of the Iterated Monodromy Group of the polynomial z2 + i). The Hausdorff

dimension of these 32 examples is not discussed in that work, but it can be deduced

from information which is given therein that each of these 32 groups has Hausdorff

dimension 5
8
.

Thus for a given d ≥ 5, there are only two values of the possible Hausdorff

dimension known in the literature to occur for some finitely constrained, topologically

finitely generated group of binary tree automorphisms with pattern size d. The

connection between Hausdorff dimension and topological finite generation of finitely

constrained groups will be the primary focus of the next section.
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3. TOPOLOGICAL FINITE GENERATION AND HAUSDORFF DIMENSION

OF FINITELY CONSTRAINED GROUPS ∗

This section investigates the structure of finitely constrained groups of p-adic tree

automorphisms. In general, given a positive integer d, we seek information about

the finitely constrained subgroups of p-adic tree automorphisms defined by patterns

of size d. This will obviously depend on what we can say about the essential pattern

groups with pattern size d. One goal is to then use this information to produce

examples of topologically finitely generated self-similar groups with known Hausdorff

dimension, since we will show that the Hausdorff dimension of a finitely constrained

group can be easily calculated.

For the same reason, Hausdorff dimension serves as a natural parameter in the

investigation of finitely constrained groups of pattern size d. The challenge in this

approach is to understand whether or not a given finitely constrained group is topo-

logically finitely generated, beginning only with a description of its patterns. This

problem is inherently combinatorial and seems very difficult in general, but we are

able to address certain cases. In particular, we can give some very definite results

about the two largest possible values of Hausdorff dimension for finitely constrained

groups of binary tree automorphisms with pattern size d.

We also seek specific examples of topologically finitely generated, finitely con-

strained groups, preferably ones with easily describable patterns. To this end, we

define two specific types of essential pattern groups, which we call full pattern groups

and linearly constrained groups. These classes are natural as first objects of study,

∗Some of the results in this section are based on material from the article “Finitely Constrained
Groups of Maximal Hausdorff Dimension”, by Andrew Penland and Zoran Šunić, 2015, To Ap-
pear In Journal of Australian Mathematical Society, Copyright 2015 by Australian Mathematical
Publishing Association Incorporated.
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since all essential pattern groups corresponding to the examples of finitely constrained

groups in the literature fall into at least one of these two classes.

3.1 Topological finite generation, Hausdorff dimension, and patterns for finitely

constrained groups of p-adic tree automorphisms

In this section we introduce some notation and review some known results related

to finitely constrained groups of p-adic tree automorphisms.

In the case of p-adic tree automorphisms, it is natural to identify the cyclic group

Cp with Fp, the finite field with p elements. Under this identification, the portraits

of a tree automorphism give a function X∗ → Fp. Also, a pattern of size d is a

function X(d) → Fp, which can be expressed as a polynomial whose variables are the

(evaluation at the labels of) words in X(d). Siegenthaler [53] used this fact to study

closed subgroups of Aut(X∗) and Autp(X
∗) via methods from algebraic geometry.

In particular, he defined the branching ideal of a self-similar subgroup, and used the

functions in this branching ideal to give both criteria for topological finite generation

(see Sections 1.8 and 2.2, especially Theorem 1.8.6 and Theorem 2.2.9 of [53]) and

a formula for Hausdorff dimension (see Theorem 5.3.5 and the following discussion

in [53]). Some of what we say in this work could also be said in this language, but

we avoid that perspective in order to emphasize the combinatorial properties of the

finite patterns, which Siegenthaler does not discuss.

If A is a self-similar group of p-adic tree automorphisms, then there is some first

level k such that A(k) 6= Wp(k). This is the first time that the patterns of A are

interesting to us, as this is the first time the patterns of A define a finitely constrained

group distinct from Autp(X
∗). The following class of pattern groups correspond to

this situation.

Definition 3.1.1. A subgroup P ≤ Wp(d) is a full pattern group of pattern size d if
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|P (d− 1)| = |Wp(d− 1)|, i.e. if for any pattern q ∈ Wp(d− 1), there exists a p ∈ P

such that πd−1(p) = q.

If the pattern size d is understood, we will simply use the term full pattern group

to refer to a full pattern group of pattern size d. Note that a full pattern group is

obviously an essential pattern group.

Now we introduce some important background and tools to use in this investi-

gation. Bondarenko and Samoilovych [15] studied finitely constrained groups of tree

automorphisms, and our investigation will utilize some of their results, as well as

straightforward corollaries.

Bondarenko and Samoilovych provided the following two criteria which are useful

in determining topological finite generation of a finitely constrained group. Recall

that if G is a group, [G,G] denotes the commutator subgroup of G, which is generated

by all elements of the form g−1h−1gh for g, h ∈ G.

Theorem 3.1.2 (Theorem 3, [15]). Let X be a finite set and let GP be a level-

transitive, finitely constrained subgroup of Aut(X∗) defined by an essential pattern

group P of pattern size d. Then GP is topologically finitely generated if and only if

there exists an n such that [TrivGP (n)(d−1),TrivGP (n)(d−1)] contains TrivGP (n)(n−1).

Proposition 3.1.3 (Proposition 4, [15]). Let X be a finite set and let GP be a

finitely constrained subgroup of Aut(X∗) defined by an essential pattern subgroup P

of pattern size d. If there exists an n ≥ d such that [GP (n), GP (n)] does not contain

TrivGP (n)(n− 1), then GP is not topologically finitely generated.

Recall that the Frattini subgroup of a group H, denoted Φ(H), is the intersection

of all maximal subgroups of H. If H is a p-group, then it is well known that Φ(H)

is the group generated by commutators and p’th powers in H, and that Φ(H) is the
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smallest normal subgroup such that the quotient H/Φ(H) is elementary abelian p-

group. (See Section 13 in [33]). We note the following corollary of Proposition 3.1.3,

which was also essentially given as a result by Siegenthaler [53, Theorem 2.2.9].

Corollary 3.1.4. Let p be a prime number, let X be a finite set with |X| = p,

and let GP be a finitely constrained subgroup of Autp(X
∗) defined by an essential

pattern subgroup P of pattern size d. If there exists an n ≥ d and a homomorphism

φ : GP (n)→ Cp such that TrivGP (n)(n− 1) is not contained in the kernel of φ, then

GP is not topologically finitely generated.

Proof. If there exists such an n and such a φ, then kerφ is a maximal subgroup of

GP (n) which does not contain TrivGP (n)(n − 1). It follows that Φ(GP (n)) does not

contain TrivGP (n)(n− 1), and thus [GP (n), GP (n)] does not contain TrivGP (n)(n− 1).

Applying Proposition 3.1.3, it follows that GP is not topologically finitely generated.

A homomorphism φ as described in Corollary 3.1.4 can be recognized by the fact

that there are two elements of TrivGP (n)(n−1) for which φ takes different values. We

also observe some other weaker, simpler corollaries of Proposition 3.1.3 which apply

to certain situations.

Corollary 3.1.5. Let p be a prime number and let P be an essential pattern group

contained in Wp(d). If the extension

1→ TrivP (d− 1)→ P → P/Pd−1 → 1

splits, then the finitely constrained group GP is not topologically finitely generated.

Proof. Since the extension splits, there is a subgroup K ≤ P such that K∩TrivP (d−

1) is trivial and K TrivP (d− 1) = P . Let M be a maximal subgroup of P such that
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K ≤ M . Note that it is not possible for M to contain TrivP (d − 1), since then we

would have that M contains K TrivP (d− 1) = P . Then [P : M ] = p, and the kernel

of the homomorphism φ : P → P/M ∼= Cp does not contain TrivP (d− 1). Applying

Corollary 3.1.4, we conclude that GP is not topologically finitely generated.

The following corollary is useful in telling us where not to look for topologically

finitely generated, finitely constrained groups.

Corollary 3.1.6. Let P be a full essential pattern subgroup of Wp(d). If P has a

maximal subgroup Q which is also a full essential pattern subgroup, then GP is not

topologically finitely generated.

Proof. Since Q is maximal, P/Q ∼= Cp, and since Q is a full group, it follows that

TrivQ(d−1) is a proper subgroup of TrivP (d−1). Thus the homomorphism φ : P →

Cp which has Q as kernel is a map from P = GP (d) to C2 which is not constant on

cosets of TrivP (d− 1), so GP is not topologically finitely generated.

The following formula for the number of size n patterns of a finitely constrained

group defined by patterns of size d is also due to Bondarenko and Samoilovych. Its

proof relies on recursively counting the size n patterns, using the fact that a finitely

constrained group is a regular branch group.

Proposition 3.1.7 (see Proposition 1, [15]). Let X be a finite set and let GP be a

finitely constrained subgroup of Aut(X∗) defined by an essential pattern subgroup P

with pattern size d. For n ≥ d, |GP (n)| = |P ||TrivP (d− 1)||X|+|X|2+...+|X|n−d
.

We now show how Proposition 3.1.7 simplifies the task of calculating the Haus-

dorff dimension of finitely constrained groups.

Proposition 3.1.8. Let p be a prime number, let X = {0, 1, . . . , p− 1}. If P is an

essential pattern subgroup of Wp(n), then dimH(GP ) =
logp |Pd−1|

pd−1 .
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Proof. Since GP is a profinite group, we know that the Hausdorff dimension of GP

is given by

dimH(GP ) = lim inf
n→∞

logp |GP (n)|
logp |Wp(n)|

.

Since |Wp(n)| = p
pn−1
p−1 , this becomes

dimH(GP ) = lim inf
n→∞

logp |GP (n)|

logp(p
pn−1
p−1 )

= lim inf
n→∞

logp |GP (n)| p− 1

pn − 1
.

We know from Proposition 3.1.7 that |GP (n)| = |P ||Pd−1|p+...+p
n−d

. Substituting

this in the previous expression, we can calculate that

dimH(GP ) = lim inf
n→∞

logp |P ||Pd−1|p+...+p
n−d p− 1

pn − 1

= lim inf
n→∞

(
logp |P |+ (p+ . . .+ pn−d) logp |Pd−1|

) p− 1

pn − 1

= lim inf
n→∞

logp |P |
pn − 1

+
(p− 1)(p+ . . .+ pn−d) logp |Pd−1|

pn − 1

= lim inf
n→∞

logp |P |
pn − 1

+
((pn−d+1 + . . .+ p)− (pn−d + . . .+ 1) logp(|Pd−1|)

pn − 1

We can cancel the telescoping sum in the numerator of the second term to yield

pn+d+1 − 1, and the terms whose numerators involve constants logp |P | go to zero as

n→∞, so this becomes
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dimH(GP ) = lim inf
n→∞

pn−d+1 logp |Pd−1|
pn − 1

= lim inf
n→∞

logp |Pd−1|
pd−1

=
logp |Pd−1|
pd−1

Before proving the main results of this section, we need some additional back-

ground about certain essential pattern groups of p-adic tree automorphisms. For the

remainder of this section we reserve the letter G for the group Autp(X
∗) of all p-adic

tree automorphisms, and we write G(d) for Autp(X
[d]), the d-fold iterated wreath

product of Cp. As usual, if A is either a group of infinite tree automorphisms or an

essential pattern group of finite tree automorphisms, we write A(n) for the patterns

of size n which appear in A.

We recall the following well-known facts about G(d). Proofs may be found in

[39, Section 3].

Proposition 3.1.9. Let G(d) be the group of p-adic tree automorphisms of depth d.

(i.) G(d) is generated by the set {a0, a1, a2, . . . , ad−1}, where ai is the element with

α(w)(ai) = γ if w = 0i, and trivial otherwise.

(ii.) With respect to this generating set, G(d) has a presentation

〈{ai}d−1
i=0 | {a

p
i }d−1
i=0 , {[a

aj
i , ak]}0≤j,k<i≤(d−1)〉.

(iii.) The Frattini subgroup of G(d) is equal to the commutator of G(d), and the

abelianization of G(d) is given by the surjective homomorphism G(d) →
∏d−1

i=0 Cp,

g 7→
[∑

w∈Xi g(w)

]d−1

i=0
.
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(iv.) TrivG(d)(d − 1), the level (d − 1) stabilizer of G(d), is naturally identified with∏
w∈Xd−1 Cp, a pd−1-dimensional vector space over Fp.

(v.) For any pattern group H ≤ G(d), the level (d − 1) stabilizer TrivH(d − 1) is a

normal elementary abelian subgroup.

Remark 3.1.10. Regarding item (iv.): The notion of uniseriality of a group acting

on a vector space has been examined in various contexts related to both finite and

infinite groups. Plesken [47] showed that the action of Wp(d) on the module Vp(d) =∏
w∈Xd Cp is uniserial. As a consequence, there exists a unique, properly descending

filtration of W (d)-invariant submodules

Vp(d) = V (0) ⊇ V (1) ⊇ V (2) ⊇ . . . ⊇ V (pd+1) = {0}

with |V i
p | = pp

d−i.

Uniseriality of the action of tree automorphism groups has also been discussed

by Ceccherini-Silberstein, Leonov, Scaraboti, and Tolli [19] and Bartholdi and Grig-

orchuk [9], as well as more recently by Grigorchuk, Leonov, Nekrashevych, and

Suschansky [29].

The uniserial filtration allows us to construct finitely constrained groups with any

desired Hausdorff dimension.

Proposition 3.1.11. Let p be a prime number, d be a positive integer, and let a be

a positive integer such that 1 ≤ a ≤ pd−1. If |X| = p, then there exists a finitely

constrained subgroup of Autp(X
∗) with pattern size d + 1 and Hausdorff dimension

a
pd

.

Proof. Let V (d) =
∏

w∈Xd Cp, viewed as a vector space over the finite field with p
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elements, and,consider the descending chain of W (d)-invariant submodules

(d) = V (0) ⊇ V (1) ⊇ V (2) ⊇ . . . ⊇ V (pd+1) = {0}

with |V i| = pp
d−i. Note that for each i with 0 ≤ i ≤ pd, the group G(d)nV i

p naturally

embeds in Wp(d + 1) as the subgroup P
(i)
d , defined as follows. The patterns which

appear in P
(i)
d consist of all patterns appear up to level d−2, and the patterns which

appear on level d−1 of elements in P
(i)
d are precisely those of V (i). The group P

(i)
d is

a full pattern subgroup of pattern size d with |Triv
(P

(i)
d

(d)| = |Vi|, and thus we have

dimH(G
P

(i)
d

) = pd−i
pd

.

Remark 3.1.12. It is clear from the description of the groups in the previous proof

that P
(i)
d is a split extension of Wp(d) by V

(i)
p . Thus, by Corollary 3.1.5, none of

these groups are topologically finitely generated.

This leads to the subject of the possible values of Hausdorff dimension for topo-

logically finitely generated, finitely constrained groups, which we address in the next

section.

3.2 Finitely constrained groups of p-adic tree automorphisms having maximal

Hausdorff dimension

For the remainder of this section, we will consider only finitely constrained groups

of binary tree automorphisms. This corresponds to finitely constrained groups where

the tree alphabet is X = {0, 1} and the label alphabet is C2, with C2 acting faithfully

on X. For the remainder of this section we reserve the letter G for the group Aut(X∗)

of all infinite binary tree automorphisms. Throughout the remainder of this section,

we write W (d) for W2(d) = Aut(X [d]).

In this section, we work with finitely constrained subgroups of Autp(X
∗), where p
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is an arbitrary prime. For a given positive integer d, we consider finitely constrained

groups with pattern size d and having Hausdorff dimension 1 − 1
pd−1 , which is the

largest possible for such a group. We show that these finitely constrained groups can

not be topologically finitely generated. Note that this result was shown for p = 2

and d = 2 by Šunić [57], and for p = 2 and d = 3 and d = 4 by Bondarenko and

Samoilovych [15]. This result is also known for arbitrary p in the case of pattern

size d = 2, due to Bondarenko and Samoilovych, and our proof consists of reducing

arbitrary pattern size to that case.

As a key step in obtaining this result, we also characterize the essential pattern

subgroups with pattern size d which define such finitely constrained groups. Many

of the key results in this section are generalizations of those for the case p = 2, which

were obtained as a joint work with Zoran Šunić [45]. Thus the outline of this section

is very similar to that of [45], though some of the avenues of proof are different.

Using items (iii.) and (iv.) in Proposition 3.1.9 and some basic linear algebra,

we describe all maximal subgroups of G(d). Since G(d) is a p-group, the commutator

of G(d) is contained in every maximal subgroup of G(d). Thus there is a one-to-one

correspondence between maximal subgroups of G(d) and maximal subspaces of the

Fp vector space
∏d−1

i=0 Cp. Recall that a maximal subspace V ≤
∏d−1

i=0 Cp can be

defined by giving a nonzero vector c ∈
∏d−1

i=0 Cp which is orthogonal to all v ∈ V

under the usual inner product 〈c,v〉 =
∑d−1

i=0 c(i)v(i). The vector c is unique only

up to scalar multiplication. However, if we require that c be normalized so that the

last nonzero entry of c is equal to 1, then we can make a one-to-one correspondence

between a maximal subspace M and a vector c which is orthogonal to all v ∈ M .

Accordingly, we call a vector c ∈
∏d−1

i=0 Cp a defining vector if its last nonzero entry

is equal to 1.

This correspondence leads to a one-to-one correspondence between defining vec-

41



tors and maximal subgroups of G(d), as follows. Given a defining vector c ∈
∏d−1

i=0 Cp,

let αc be the homomorphism given by

αc(g) =
d−1∑
i=0

∑
w∈Xi

c(i)g(w).

We write Pc for kerαc.

We also need the following result, which summarizes results known in the litera-

ture.

Proposition 3.2.1. Let GP be a finitely constrained subgroup of p-adic tree auto-

morphisms. The following are equivalent.

1. GP is infinite.

2. For each j ≥ 0, GP acts transitively on Xj.

3. The Hausdorff dimension of GP is positive.

Proof. The argument given in [14, Lemma 3] proves the equivalence of (i) and (ii)

for any self-similar group of p-adic tree automorphisms (this equivalence does not

hold for self-similar groups of tree automorphisms in general) . The equivalence of

(i) and (iii) is shown in [56, Theorem 4(a)].

Lemma 3.2.2. Let P be an essential pattern subgroup of G(d) such that [TrivG(d)(d−

1) : TrivP (d− 1)] = p. Then

TrivP (d− 1) = {p ∈ G(d) |
∑

w∈Xd−1

p(w) = 0 and p(w) = 0 whenever |w| < d− 1}

Proof. The fact that p(w) = 0 whenever |w| < d − 1 follows from the definition of

TrivP (d− 1). Since TrivP (d− 1) is nontrivial, GP has positive Hausdorff dimension
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by Proposition 3.2.1, and thus P acts transitively on Xd−1. Since [TrivG(d)(d − 1) :

TrivP (d − 1)] = p, there exists a nonzero vector v ∈ TrivG(d)(d − 1) such that∑
w∈Xd−1 v(w)p(w) = 0. This is true for pg for any g ∈ G(d), so it follows that each

vi must be nonzero, else we could conjugate p by an element which moves an index

i with a zero coefficient to an index j with a nonzero coefficient, changing the sum.

We must also have v is a constant vector, since otherwise we could conjugate p by

an element which changes the value of the sum. We can normalize v to have the

value 1 in each index. Thus
∑

w∈Xd−1 p(w) = 0.

Theorem 3.2.3. Let X = {0, 1, . . . , p − 1} and let GP be a finitely constrained

subgroup of Autp(X
∗) defined by an essential pattern group P of pattern size d,

d ≥ 2. The following conditions are equivalent.

1. GP has Hausdorff dimension equal to 1− 1
pd−1 .

2. P is a maximal subgroup of G(d) that does not contain the generator ad−1.

3. P = Pc = kerαc for some defining vector c ∈
∏d−1

i=0 Cp such that c(d−1) = 1.

4. P is a proper subgroup of the group G(d), the group of p-adic automorphisms

of X [d], such that P contains the commutator of G(d).

5. P is a maximal subgroup of G(d) that does not contain TrivG(d)(d − 1), the

stabilizer of level d− 1 in G(d).

Proof. (i.) → (ii.) If GP has Hausdorff dimension equal to 1 − 1
pd−1 = pd−1−1

pd−1 ,

then it follows by Proposition 3.1.8 that TrivP (d− 1) = pp
d−1−1. Thus TrivP (d− 1)

is a maximal subspace of TrivG(d)(d − 1), and we apply Lemma 3.2.2. We claim

now that |P (d − 1)| = |G(d − 1)|. To see this, note that p ∈ TrivP (d − 1) if and

only if
∑

w∈Xd−1 p(w) = 0 and p(w) = 0 whenever |w| < d − 1.We claim that for any
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0 ≤ j < d − 1 and any pattern r with support on the level Xj, we can produce an

element q ∈ P (d− 1) such that the restriction of q to Xj is precisely r. To do this,

we define an element q′ ∈ TrivP (d− 1) defined as follows.

q′ =


r(w), w ∈ 0jXd−1−j

p−
∑

w∈Xj r(w), w = (p− 1)d−1

0, otherwise

Since P is an essential pattern group, for each i with 0 ≤ i ≤ d− 1, there exists

an element q′0i ∈ P such that (q′0i)(w) = q′(0iw) for each w ∈ Xd−1−i. Thus, we can

now obtain any pattern on levels 0 through d− 2 as a product of elements obtained

using the process just described. It follows that P is a maximal subgroup of G(d).

To see that P does not contain ad−1, note that if ad−1 ∈ P , then TrivP (d −

1) = TrivG(d)(d − 1), from which it would follow that |TrivP (d − 1)| = pp
d−1

, and

this contradicts our assumption that GP has Hausdorff dimension 1 − 1
pd−1 . Thus

ad−1 6∈ P .

(ii.) ⇔ (iii.) Let P be a maximal subgroup of G(d) with defining vector c. Note

that by the definition of defining vector, the last nonzero entry of c is 1. If this last

nonzero entry is in position d− 1, we have c(d−1) = 1, and otherwise we have either

c(d−1) = 0 . Since the only nonzero label of ad−1 is the label 1 on 0d−1, it follows that

ad−1 ∈ kerαc = Pc if and only if cd−1 = 0.

(iii.) =⇒ (iv.) This follows from the fact that any maximal subgroup of a

p-group contains the commutator subgroup.

(ii.) ⇔ (v.) Since a maximal subgroup of G(d) has index p, each maximal

subgroup is a normal. Since TrivG(d)(d − 1) is the normal closure in G(d) of the

group generated by ad−1, a normal subgroup of G(d) contains ad−1 if and only if it
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contains TrivG(d)(d− 1).

(iv.) =⇒ (i.) Let P be an essential pattern group which is a proper subgroup

of G(d) such that P contains [G(d), G(d)]. Then [a0, ad−1] ∈ Pd−1. Since the action

of P on Xd−1 is transitive, it follows that Pd−1 contains the unique G(d)-invariant

maximal subspace of TrivG(d)(d− 1) described in Lemma 3.2.2. If Pd−1 = G(d)d−1,

then by Proposition 3.1.8, we have dimH(GP ) = 1, which contradicts the assumption

that P was a proper subgroup of G(d). Thus Pd−1 is a maximal subspace of G(d)d−1,

from which it follows that P is a maximal subgroup of G(d).

Remark 3.2.4. Note that for a positive integer d ≥ 2, there are p
pd−1
p−1 maximal

subgroups of G(d). Note also that if c is a defining vector with cd−1 = 1, then

there are p choices for each of the entries c(0),c(1), . . ., c(d−2), and thus there are pd−1

defining vectors of this type. Thus, according to Theorem 3.2.3, only pd−1 of the

maximal subgroups of G(d) give essential pattern subgroups which can be used to

define a finitely constrained subgroup of Autp(X
∗).

Now our goal is to prove the following theorem, which puts a bound on the

Hausdorff dimension of a topologically finitely generated, finitely constrained group

(as a function of pattern size).

Theorem 3.2.5. Let p be a prime number, and let GP be a finitely constrained

subgroup of Autp(X
∗) defined by an essential pattern group P of pattern size d. If GP

has Hausdorff dimension 1− 1
p(d−1) (the largest possible for such a finitely constrained

group), then GP is not topologically finitely generated.

Now we quote a result of Bondarenko and Samoilovych which applies to pattern

size d = 2. It clearly applies in our situation, since we are dealing only with p-groups

and every p-group is nilpotent.
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Proposition 3.2.6 (see [15], Corollary 5). Let X be a finite set and let C be a cyclic

subgroup of Sym(X). Consider the group C oXC as a subgroup of Sym(X)oXSym(X).

For any nilpotent pattern group P ≤ C oXC, the commutator [P, P ] contains TrivP (1)

if and only if TrivP (1) is trivial.

Let d > 2 and P be a maximal subgroup of Wp(d). From our previous discussion,

P has some defining vector c with cd−1 = 1. We define a map αc : WP (d−1)→ WP (2)

given by

α
′

c :
d−2∑
k=0

∑
w∈Xk

ck+1g(w).

Recall that for any g ∈ Wp(d), we write g as (g(ε), (gi)
p−1
i=0 ), where g(ε) ∈ Cp and

each gi ∈ Wp(d− 1). Then we define βc : Wp(d)→ Wp(2) by

[βc(g)](ε) = g(ε) [βc(g)](i) = α
′

c(gi).

We remark that α
′
c is the defining map of a cellular automaton, though that

observation will not be needed again. The following properties of βc are essential to

what follows, so we provide verification even though they are routine.

Proposition 3.2.7. Let d > 2. For a maximal subgroup Pc of Wp(d) with defining

vector c, the map βc : Wp(d)→ Wp(2) defined above has the following properties.

(i.) βc is a well-defined homomorphism from Wp(d) to Wp(2).

(ii.) The kernel of βc is contained in Pc.

(iii.) The image of the level (d− 1) stabilizer of Pc under the map βc is contained in

the level 2 stabilizer of the image, i.e. we have βc((Pc)d−1) ≤ (βc(P ))2.

(iv.) We have βc([Pc, Pc]) = [βc(Pc), βc(Pc)].
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Proof. (i.) For g, h ∈ Wp(d), we write g = σj(gi) and h = σk(hi), where gi, hi ∈

Wp(d− 1) for i = 0 to p− 1. Then we calculate

βc(gh) = βc(σ
j+k(gσj(i)hi)

= σj+k(α
′

c(gσk(i)hi))

= σjσk(α
′

c)(gσk(i)α
′

c(hi))

= σjσk(α
′

c(gi)
σk

(α
′
(hi))

= σj(α
′

c(gi))σ
k(α

′

c(hi))

(ii.) Suppose g ∈ ker βc. Then g(ε) = 0 and α
′
c(gi) = 0 for all i between 0 and d− 2.

But

αc(g) =

p−1∑
i=0

α
′

c(gi) + c0g(ε)

and thus if g ∈ ker βc, it follows that g ∈ kerαc = Pc.

(iii.) Recall that if g ∈ (Pc)d−1, then
∑

w∈Xd−1 g(w) = 0 and g(w) = 0 for |w| < d− 1.

Therefore for g ∈ TrivPc(d− 1), we have

d−1∑
i=0

[βc(g)](i) =
d−1∑
i=0

α
′

c(gi)

=
∑

w∈Xd−1

g(w)

= 0.

Thus βc(g) ∈ [βc(P )]2, and the result follows.

(iv.) This is true for any homomorphism.
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Now we prove Theorem 3.2.5.

Proof of Theorem 3.2.5. By Proposition 3.2.7, the group Pc is above ker βc, so the

image βc(Pc) is a maximal subgroup of Wp(2). If Triv(Pc)(d− 1) ⊆ [Pc, Pc], then we

would have Trivβc(Pc)(2) ⊆ [βc(Pc), βc(Pc)]. However, Proposition 3.2.6 tells us that

this can not occur, so Pc(d − 1) is not contained in [Pc, Pc], and the desired result

follows.

3.3 Saturation of some finitely constrained groups of binary tree automorphisms

We begin with some background and notation necessary for this section only. We

define a self-isomorphism of a group G as an isomorphism from G to itself. Self-

isomorphisms are usually called automorphisms in group theory, but we will avoid

that term because of the great potential for confusion between group automorphisms

and tree automorphisms. The set of self-isomorphisms of a group form a group under

the operation of composition, which we denote by Iso(G). Recall that if G is a group

and H is a subgroup of G, the normalizer of H in G is given by

NG(H) = {g ∈ G|hg ∈ H for all h ∈ H}.

Conjugation by an element of G is obviously a self-isomorphism of H. Thus for

any g ∈ G there is a self-isomorphism φg : H → H given by φg(h) = hg (though

it is possible for conjugation by distinct elements of G to induce the same self-

isomorphism). In this case we say that g induces the self-isomorphism φg.

The objective of this section is to prove that in certain cases, the self-isomorphism

group of a finitely constrained group GP coincides with the normalizer of GP in

Aut(X∗). Our approach is to use the sufficient condition given by Lavreniuk and

Nekrashevych [38].
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Stating their result will require some additional definitions. If v ∈ t∗ and G ≤

Aut(t∗), the rigid vertet stabilizer in v of G is denoted RiStv(G) and is equal to the

set

{g ∈ G| if w 6∈ vX∗, then g(w) = w}.

The rigid stabilizer of level n is the subgroup RiStG(n) generated by all elements

of RiStv(G) for all v ∈ Xn. A subgroup G ≤ Aut(X∗) is called weakly branch if

for any v ∈ X∗, RiStG(n) is infinite. Any infinite, finitely constrained group GP

is weakly branch, since in this case GP is a regular branch group over an infinite

subgroup.

We say that a group G ≤ Aut(X∗) is saturated if for every n ≥ 0, there exists

a characteristic subgroup Hn ≤ TrivG(n) such that Hn such that for each w ∈ tn,

Hn acts transitively on wt∗. Note that if H ≤ K and H is saturated, then K is

saturated, as well, since any characteristic subgroup of H is also a characteristic

subgroup of K.

The following theorem, proven in [30], will be crucial for the following discussion.

Theorem 3.3.1 (Theorem 7.5, [38]). Let G ≤ Aut(X∗) be saturated and weakly

branch. Then for any φ ∈ Iso(G), there exists an element h ∈ NAut(X∗)(G) such that

φh = φ for all g ∈ G.

To apply Theorem 3.3.1 to a finitely constrained group GP of binary tree au-

tomorphisms of matimal Hausdorff dimension discussed in the previous section, it

suffices to prove that GP contains a saturated subgroup.

Throughout the remainder of the section, we fix a pattern size d and let J be a

subset of {0, . . . , d− 1}. For each such J , there is a corresponding essential pattern

subgroup of PJ and finitely constrained group GPJ
≤ Aut(X∗).

First, we consider the case when |J | is even.
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Let O denote the odometer group defined in Example 2.5.8.

Lemma 3.3.2. Let PJ be an essential pattern group of pattern size d such that GPJ

has Hausdorff dimension 1− 1
2d−1 . If |J | is even, then GPJ

contains O.

Proof. If |J | is even, then we have αJ(a) = 0, since supp(a) = {1n|n ≥ 0} and thus

a has odd total activity on each level. Thus O(d) ≤ PJ and O ≤ GPJ
by *some

reference*.

Proposition 3.3.3. The group O is saturated.

Proof. It is not hard to see that the action of O on X∗ is level-transitive, since for

each d the finite group O(d) acts as a cyclic permutation on all elements of Xd.

Moreover, for each n ≥ 0, the group O2n = 〈g2n | g ∈ O〉 is characteristic and

contained in the level n stabilizer. Let g = a2n . Applying the calculations done in

Example 2.5.8, we see that for any n ≥ 0 and any w ∈ Xn, gw = a. Since a acts

transitively on X∗, it follows that gw acts transitively on wX∗ for all w ∈ Xn, and

thus the group is saturated.

Proposition 3.3.4. Let d ≥ 1, let J ⊂ {0, . . . , d − 1} such that d − 1 ∈ J and

|J | is even, and let PJ be the maximal subgroup of W (d) given by kerαJ . For any

φ ∈ Iso(GPJ
), there exists h ∈ NAut(X∗)(GPJ

such that φ = φh.

Proof. This follows from Lemma 3.3.2, Proposition 3.3.3, and Theorem 3.3.1.

The previous proposition covers half of the possible cases for J and leaves the cases

when |J | is odd. We consider one subcase. Suppose that |J | is odd, and |J ∩ {0, 1}|

is even. We will show that in this case, the group PJ is saturated by showing that

PJ contains a saturated subgroup. This subgroup is a well-known example called the

Lamplighter.
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Let L be the self-similar group generated by the finite state automaton

a = σ(a, b), b = (a, b).

This is a well-known group in geometric group theory (see Section 8 in [42])

and the automaton we consider here is discussed in Section 4 of [30]. Although its

structure is well-understood, we will prove some facts about it from scratch.

Lemma 3.3.5. Let d ≥ 1, let J ⊂ {0, . . . , d− 1} such that d− 1 ∈ J , |J | is odd and

|J ∩ {0, 1} is even. Let PJ be the maximal subgroup of W (d) given by kerαJ . Then

L ≤ GPJ
.

Proof. If w ∈ X∗ ends in 0, then aw = bw = a, and if w ∈ X∗ ends in 1, then

aw = bw = b. Thus a(w) = b(w) for all w of positive length, and a(w) = b(w) is trivial

if and only if w ends in 0. From these observations, it is clear that a is active at the

root, and both a and b have odd activity on level 1. It is also clear that a and b both

have even total activity on level n for n ≥ 2.

Proposition 3.3.6. The group L is saturated.

In order to prove Proposition 3.3.6, we need to review some known facts and

prove some preliminary results. We will write 〈X〉 for the group generated by X,

and write < X >G for the normal closure of 〈X〉 in G.

We recall the standard notion of the lower central series of a group. Recall that

if H and K are subgroups of a group G, the group [H,K] = 〈[h, k] | h ∈ H, k ∈ K〉.

Note that if H and K are characteristic subgroups of G, then so is [H,K]. For a

group G, we inductively define γ1(G = L and γi+1(G) = [γi(G), G]. The lower central

series is the decreasing sequence of subgroups G = γ1(G) ≤ γ2(G) ≤ γ3(G) . . ..

51



Further, if X is a set, we define a simple commutator in X to be an element of

the form [g, h] for g, h ∈ X, and for i > 1 we define a simple i-fold commutator in X

to be an element of the form [g, h], where g is a simple (i − 1)-fold commutator in

X and h ∈ X. The following proposition is a well-known fact in group theory (see

Section 5 of [41]).

Proposition 3.3.7. Let G be a finitely generated group and X be a generating set

for X. The group γn+1(G) is equal to the normal closure of the group generated by

all simiple n-fold commutators in X.

Our objective now is to describe the lower central series of the Lamplighter defined

above. We prove a few results which will simplify this task.

To faciliate our arguments, we introduce a new element t = ab−1 = σ(a, b)(a−1, b−1) =

σ(1, 1). Any two elements of the set {a, b, t} can serve as a generating set for L, and

we will often make arguments using the generating set {b, t}. Note that t has order

2, so t = t−1 and thus (ab−1) = (ab−1)−1 = ba−1.

Lemma 3.3.8. For any g ∈ L, (gt)b = b−1ga and (tg)b = a−1gb.

Proof.

(gt)b = b−1(gt)b = b−1gab−1b = b−1ga

and

(tg)b = b−1tgb = b−1ba−1gb = a−1gb

Lemma 3.3.9. For any n ≥ 0, tb
n

= σ(tb
n
tb

n−1
. . . tb

2
tb, tbtb

2
. . . tb

n−1
tb

n
).

Proof. The proof is by induction on n. We compute first that tb = (a−1, b−1)σ(1, 1)(a, b) =

σ(b−1a, a−1b) = σ(tb, tb). Now assume that the result is true for n = k ≥ 1, we cal-
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culate that

tb
k+1

= b−1(tb
k

)b

= (a−1, b−1)tb
k

(a, b)

= (a−1, b−1)σ(tb
k

tb
k−1

. . . tb
2

tb,

tbtb
2

. . . tb
k−1

tb
k

)(a, b)

= (b−1(tb
k

tb
k−1

. . . tb
2

tb)a,

a−1(tbtb
2

. . . tb
k−1

tb
k

)b)

Applying Lemma 3.3.8, we rewrite this as

(tb
k

tb
k−1

. . . tb
2

tbt)b, (ttbtb
2

. . . tb
k−1

tb
k

)b)

which is equivalent to the desired result.

Corollary 3.3.10. The group 〈t〉G is abelian.

Proof. Follows from the fact that Z oZ C2 is an abelian group and the proof of [30,

Proposition 4.1], which shows that < t >G is the base group of Z oZ C2.

Corollary 3.3.11. If g ∈ G′, then t commutes with g.

Proof. By Proposition 3.3.7, G′ = 〈[t, b]〉G, and we simply note that

〈[t, b]〉G ≤ 〈{tbk}∞k=0〉G = 〈t〉G.

In the next proposition, we describe the structure of the lower central series of

this group.
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Proposition 3.3.12. Let X = {b−1, t}. Define sequences of elements {yn}∞n=0 and

{zn}∞n=0 as follows: y0 = z0 = t, and for any i ≥ 1, yi+1 = [a−1, t] and zi+1 = [b−1, t].

Then the following properties hold for all n ≥ 1.

1. zn = yn

2. zn = (zn−1, zn−1)

3. zn is the only nontrivial simple n-fold commutator in X

4. 〈zn〉L = γn(L)

5. (zn)w =


eL, if |w| < n

t, if |w| = n

6. γn(L) ≤ Trivn(G)

Proof. We will write t as σ rather than σ(1, 1).

1. (By induction on n) This is cearly true for n = 0. Assume the statement is

true for some k ≥ 0. Then for k + 1, we note that zk, yk ∈ G′ and thus by

Corollary 3.3.11 and the induction hypothesis,

zk+1 = [a−1, zk] = [tb−1, zk] = btz−1
k

= tb−1zk = bty−1
k tb−1yk = by−1

k t2b−1yk

= by−1
k b−1yk

= yk+1

2. (By induction on n) For n = 1, we have

[b−1, t] = (a, b)σ(a−1, b−1)σ = σ2(ab−1, ba−1)σ = (ba−1, ab−1 = (t, t).
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Assume there is some k such that the statement holds for all k ≥ n ≥ 1. Then

for k + 1, we have

zk+1 = [b−1, zk] = (a, b)(zk−1, zk−1)(a−1, b−1)(z−1
k−1, z

−1
k−1)

= ([a, zk−1], [b, zk−1]) = (yk, zk) = (zk, zk)

3. This follows immediately by induction using Corollary 3.3.11

4. This follows from the previous observation and Proposition 3.3.7.

5. (By induction on n) For n = 1, we have z1 = (t, t) by the calculation in in (ii.).

Assume there is some k it is true whenever k ≥ |w| ≥ 1. Assume k+1 ≤ |w| ≤ 1

and write w = xw′ for x ∈ {0, 1} and w′ ∈ X |w|−1. Then since (zk+1)x = zk,

we have

(zk+1)w = ((zk+1)x)w = (zk)w =


eL, if |w| < k

t, if |w| = k

.

This completes the proof.

Now we are ready to prove Proposition 3.3.6

Proof of Proposition 3.3.6. By Proposition 3.3.12, for each n ≥ 0 we have that

γn(L) is a characteristic subgroup of G contained in TrivG(n). Suppose w ∈ Xn.

the element zn ∈ γn(G) and zn acts transitively on wX since (zn)w = t and t acts

transitively on X. Thus for each k ≥ n, γk(G) contains an element which acts

transitively on wXk, and it follows that γn(G) acts transitively on wX. Thus L is

saturated.
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Theorem 3.3.13. Let d ≥ 1, let J ⊂ {0, . . . , d − 1} such that d − 1 ∈ J and both

J is odd and |J ∩ {0, 1}| is even. Let PJ be the maximal subgroup of W (d) given by

kerαJ . For any φ ∈ Iso(GPJ
), there exists h ∈ NAut(X∗)(GPJ

such that φ = φh.

Proof. Follows immediately from Theorem 3.3.1 since we have shown that GP is a

weakly branch group which contains the saturated subgroup L.

3.4 Finitely constrained groups of binary tree automorphisms with

Hausdorff dimension 1− 2
2d−1

Our primary objective in this section is to investigate finitely constrained groups

of binary tree automorphisms with Hausdorff dimension equal to 1− 2
2d−1 . We note

first that for the case p = 2, our previous discussion of maximal subgroups of G(d)

can be simplified somewhat by associating to a maximal subgroup M a defining

subset J ⊆ {0, 1, . . . , d− 1} such that d− 1 ∈ J , (instead of a defining vector in the

arbitrary p case). For each such subset J , we define a homomorphism φJ : G(d)→ C2

by

αJ(g) =
∑
j∈J

∑
w∈Xj

g(w).

and let PJ = kerαJ .

Remark 3.4.1. Let J ⊆ {0, 1, . . . , d− 1} such that d− 1 ∈ J . From the definition

of PJ we see that the generator aj ∈ PJ if and only if j 6∈ J and ajad−1 ∈ PJ if and

only if j ∈ J .

Remark 3.4.2. Ceccherini-Silberstein, Leonov, Scaraboti, and Tolli give a very clear

description of the patterns of the subspaces in the uniserial filtration. In particular,

they show that V (1) is generated by the closure of [a0, ad−1] under the action of Wp(d),

and that for p = 2, V (2) is generated by the closure of [a1, ad−1] under this action. .
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Proposition 3.4.3. Let GP be a finitely constrained group of binary tree automor-

phisms defined by an essential pattern subgroup P with pattern size d. If GP has

Hausdorff dimension 1− 2
2d−1 , then P must be full.

Proof. Assume that there is some P such that GP has Hausdorff dimension 1− 2
2d−1 ,

but P is not full, and assume that d is the smallest pattern size such that there is such

a P . Observe first that we must have |TrivP (d − 1)| = 22d−1−2. Let Q = P (d − 1),

and consider TrivQ(d− 2). Since P is an essential pattern group, so is the group Q.

By assumption, TrivQ(d− 2) 6= TrivG(d−1)(d− 2), and so we have

|TrivQ(d− 2)| ≤ 22d−1−1.

Since P ≤ GQ(d) by Proposition 2.5.10, it follows that

|TrivP (d− 1) ≤ |TrivGQ
(d− 1)|.

But from the fact that GQ is regular branch over TrivQ(d − 1), it follows that

|TrivGQ
(d− 1)|. = |TrivGQ

(d− 2)|2, so we have

|TrivGQ(d)
(d− 1)| = |TrivQ(d− 2)|2

≤ 2(2d−2−1)2

= 22(2d−2−1)

= 22d−1−2

= |TrivP (d− 1)|

Thus, since TrivP (d− 1) ≤ TrivGQ
(d− 1) and |TrivP (d− 1)| ≥ |TrivGQ

(d− 1)|,

these two finite groups are actually equal.
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But then, for all n ≥ d, we have

|GP (n)| = |P ||Pd−1|2+4+...+2n−d

= |Q||Qd−2|2|Pd−1|2+4+...+2n−d

= |Q||Qd−2|2|P (d− 1)d−2|4+8+...+2n−d+1

= |Q||Qd−2|2+4+8+...+2n−(d−1)

= |GQ(n)|

Since GP (n) ≤ GP (d−1)(n) for all n by Proposition 2.5.10 and the finite groups GP (n)

and GQ(n) have the same size, it follows that GP (n) = GP (d−1)(n) for all n. Thus

GP = GQ, since both groups are closed. This means that GP is actually defined

by patterns of size (d − 1), contradicting our assumption that GP was defined by

patterns of size d. Thus P is full.

It follows that if GP is defined by an essential pattern subgroup P of pattern size

d such that Hausdorff dimension equal to 1− 2
2d−1 , then P has index 4 in G(d). Our

goal is to describe and count these essential pattern subgroups.

Remark 3.4.4. From uniseriality, specifically the description of patterns in the

invariant subspaces of V2(d) under the action of W2(d) given in [19, Section 2], it

follows that TrivP (d−1) must have the following form. An element p ∈ TrivP (d−1)

and the sum of all labels on the last level of each subtree (i.e. words of the form

0Xd−2 and 1Xd−2) is equal to 0. Equivalently, TrivP (d− 1) is the normal closure in

G(d) of the element [a1, ad−1].

Lemma 3.4.5. Let P be an essential pattern subgroup of G(d) such that [G(d) :

P ] = 4. If M is a maximal subgroup of G(d) such that P ≤ M , then we must have

a0ad−1 6∈ P , ad−1a0 6∈ P , and a0 ∈M .
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Proof. Since P has index 2 in M , there is a homomorphism M → C2 such that

P = kerφ, and since φ is a map onto an elementary abelian p-group, it follows that

Φ(M) ⊆ P . Note that M = MJ = kerαJ for some J ⊆ {0, . . . , d− 1}. Note that if

a0ad−1 ∈ P , then would have (a0ad−1)2 = [a0, ad−1] ∈ P since the Frattini subgroup

contains all squares of elements in M . But P can not contain [a0, ad−1], since then

TrivP (d− 1) would contain the normal closure of < [a0, ad−1] >, which is a maximal

subspace of TrivG(d)(d− 1). If a0 6∈M , then, following Remark 3.4.1, we must have

a0ad−1 ∈M .

Proposition 3.4.6. Let d > 1. There are at most 22d−3 essential pattern subgroups

of index 4 in G(d).

Proof. Algebraically, P is an extension of Pd−1 by P/Pd−1, so a generating set for

P is given by a generating set for Pd−1 and a transversal for P (d − 1) in P which

satisfies certain conditions imposed by the presentation of P/Pd−1 (see [33], Section

11). Translated into the language of patterns, this corresponds to decomposing each

pattern of a generator p ∈ P into subpatterns p|
X(d−1)

and p|
Xd−1

, and so to each

ai ∈ G(d− 1), there is some coset of TrivP (d− 1).

There are 4 cosets for TrivP (d − 1) in TrivG(d)(d − 1). Note that a0ad−1 6∈ P

and a0a
a0
d−1 = ad−1a0 6∈ P by the previous Lemma. So there are at most 2 choices

of pattern on the last level corresponding to a0, and at most 4 choices of coset

representative for each ai, 1 ≤ i ≤ d − 2. Thus there are at most (2)4d−2 = 22d−3

such groups.

Remark 3.4.7. We may take the following standard representatives for each coset:

1. the identity, 2. ad−1 (corresponding to odd total activity on 0Xd−2 and even total

activity on 1Xd−2), 3. aa0d−1 (corresponding to even total activity on 0Xd−2 and odd

total activity on 1Xd−2), and 4. [a0, ad−1] (corresponding to odd total activity on
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both 0Xd−2 and 1Xd−2).

Our goal is now to prove that this upper bound is also a lower bound. In order

to do so, we describe combinatorially the patterns of the index 4 essential pattern

subgroups. For this purpose, it is important to note that the action of G(d) on X(d)

extends to an action by bijections on the power set of X(d). The fixed points of

this action are precisely the sets of the form XJ =
⋃
j∈J X

j. We let ∆ denote the

symmetric difference operation on two subsets of X(d). Given a set J which contains

d− 1, suppose there exist sets S1, S2 ⊂ X(d) which satisfy the following properties:

1. S1∆S2 = XJ

2. for all p ∈ PJ and i ∈ {1, 2}, we have p(Si) ∈ {S1, S2}.

The second condition says that PJ acts by permutations on the set {S1, S2},

which forces S1 and S2 to have the same cardinality. Given such sets, we define the

set

H(S1,S2) = {p ∈ PJ |
∑
w∈S1

g(w) =
∑
w∈S2

g(w) = 0}.

Proposition 3.4.8. For S1, S2 given above, H(S1,S2) is an index 4 subgroup of G(d).
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htp. First, we show that H(S1,S2) ⊆ PJ . Note that

0 =
∑
v∈S1

g(v) +
∑
w∈S2

g(w)

=
∑

v∈S1\(S1∩S2)

g(v) +
∑

v∈S1∩S2)

g(v) +
∑

w∈S2\(S1∩S2)

g(w) +
∑

w∈S1∩S2

g(w)

=
∑

v∈S1\(S1∩S2)

g(v) +
∑

w∈S2\(S1∩S2)

g(w)

=
∑

w∈S1∆S2

g(w)

=
∑
w∈XJ

g(w)

Thus H(S1,S2) ⊆ PJ .

Note that the above implies that

∑
w∈S1

g(w) +
∑
w∈S2

g(w) =
∑
w∈XJ

g(w) = 0

for all g ∈ PJ . Thus, for any g ∈ PJ ,
∑

w∈S1
g(w) =

∑
v∈S2

g(v). It follows that for

any h ∈ PJ , ∑
w∈Si

gh(w) =
∑

v∈h(Si)

gv =
∑
w∈Si

g(w).

Now we define a map φ : PJ → C2 by φ(g) =
∑

w∈S1
g(w). We claim that φ is a

homomorphism and that H(S1,S2) = kerφ.
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To see that φ is a homomorphism, we use the above properties to calculate that

φ(gh) =
∑
w∈S1

(gh)(w)

=
∑
w∈S1

g(h(w)) + h(w)

=
∑
w∈S1

g(h(w)) +
∑
w∈S1

h(w)

=
∑
w∈S1

g(w) +
∑
w∈S1

h(w)

= φ(g) + φ(h)

It is immediate from the definition that H(S1,S2) ⊆ kerφ.

On the other hand, since we showed above that
∑

v∈S1
g(v) =

∑
w∈S2

g(w), it

follows that kerφ ⊆ H(S1,S2). Thus H(S1,S2) has index 2 in PJ , and so it has index 4

in G(d).

Proposition 3.4.9. Let d > 1. There are at least 22d−3 essential pattern subgroups

of index 4 in G(d).

Proof. We count subgroups of the form H(S1,S2) discussed in the previous Proposition.

To define such a group, we choose a subset J of {1, . . . , d− 1} such that (d− 1) ∈ J ,

(this is the same as choosing an arbitrary subset of {1, 2, . . . , d − 2}, There are

clearly 2d−2 distinct choices for J . In choosing S1, note that we must choose for each

j ∈ J , whether to put 0Xj−1 or 1Xj−1 in S1, and for each k in the complement of

J , choosing whether or not to include Xk in S1 (so there are 2d−1−|J | such choices).

This S1 determines S2, and thus determines the subgroup H(S1,S2) uniquely. Thus, for

each subset J of {1, . . . , d−2, d−1} such that d−1 ∈ J , there are 2|J |2d−1−|J | = 2d−1

subgroups of PJ , and in total 2d−22d−1 = 22d−3 such subgroups.
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From the results and discussion in this section, particularly Proposition 3.4.6

and Proposition 3.4.9, we have the following theorem.

Theorem 3.4.10. For a given d ≥ 2, there are exactly 22d−3 finitely constrained

groups of binary tree automorphisms defined by patterns of size d and having Haus-

dorff dimension 1− 2
2d−1 .

3.5 Known examples

Now we discuss examples of linearly constrained groups with index 4 which define

topologically finitely generated, finitely constrained groups. These examples come

from the patterns of certain groups considered by Bartholdi and Nekrashevych in

[11].

Fix a pattern size d ≥ 5. We now define a particular finitely generated subgroup

of G. Define the tree automorphism r0 = (01)(1G, 1G), which is active only at the

root. For 1 ≤ j ≤ d − 3, recursively define automorphisms rj = (rj−1, 1G). Let q

be the tree automorphism satisfying q = (rd−3, q). The subgroup R ≤ G generated

by the set {r0, r1, . . . , rd−3, q} is precisely the group R(0d−3, 1) defined by Bartholdi

and Nekrashevych in [11, Section 4]. (The generators r0, r1, . . . , rd−3 correspond to

what they call the pre-periodic generators b1, b2, . . . , bd−2, and the element we call q

corresponds to the periodic generator a1 in their notation.) For 0 ≤ j ≤ d − 3, we

have supp(rj) = {0j}, and one can show that supp(q) = {1n0d−3 | n ≥ 0}.

The following theorem summarizes facts that are consequences of results proven

in [11, Section 4].

Theorem 3.5.1. The self-similar group R has the following properties.

1. The commutator subgroup [R,R] is the kernel of the map φ : R →
∏d−2

i=0 C2

given by [φ(g)]i =
∑
w∈Xi

g(w).
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2. R is a regular branch group over its commutator [R,R].

3. The commutator [R,R] contains the level d− 1 stabilizer Rd−1.

Proof.

1. See [11, Proposition 4.2].

2. See [11, Theorem 4.10].

3. Clear, since any element in Rd−1 is annihilated by the map φ given in (i).

The previous two theorems and Theorem 3.6 imply that the topological closure of

the finitely generated group R is equal to the finitely constrained group GR(d). The

Hausdorff dimension of GR(d) was calculated by Pink (see Section 2.5.3) To calculate

the Hausdorff dimension of GR(d), we will describe the patterns of R(d). First, we

define a homomorphism from a maximal subgroup of G(d), and then we show that

the kernel of this homomorphism coincides with R(d).

For the remainder of this section, let A = Xd−2 ∪Xd−1. We define subsets

A0 = 0Xd−3 ∪ 1Xd−2 and A1 = 1Xd−3 ∪ 0Xd−2

which form a partition of A. (This partition splits the last two levels of X [d−1] in a

“crossing” manner, giving those of the top left and bottom right to A0 and those of

the top right and bottom left to A1).

The map θ0 : PJ → C2 given by θ0(g) =
∑

w∈A0
g(w) is a homomorphism, by

Proposition 3.4.8.
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Remark 3.5.2. Let PA0 = ker θ. A generating set for PA0 consists of all elements of

one of the following four types.

(Type 1.) g ∈ PJ such that supp(g) ⊆ X [d−3]

(Type 2.) g ∈ PJ having exactly two nontrivial labels, both contained in 0Xd−3.

(Type 3.) g ∈ PJ having exactly two nontrivial labels, both contained in 1Xd−2

(Type 4.) g ∈ PJ for which supp(g) ⊆ A0 and
∑

w∈0Xd−3 g(w) =
∑

w∈1Xd−3 = 1.

Proposition 3.5.3. Let R(d) be the patterns of size d which appear in R, and let

PA0 be the subgroup of G(d) defined by ker θ0. Then R(d) = PA0.

Proof. The projection πd : R→ R/Rd gives the patterns of R(d), with the image of

the generators of R given in terms of the standard generators of G(d) by πd(ri) = ai

for 0 ≤ i ≤ d − 3 and πd(q) = ad−2(ad−1)a0 . Setting b = πd(q) for convenience,

we observe that supp(b) = {0d−2, 10d−1}. It follows that all generators of R(d) are

contained in PJ and annihilated by φ, so R(d) ⊆ PA0 .

To show that PA0 ⊆ R(d), it suffices to prove that R(d) contains each of the four

types of patterns listed in Remark 3.5.2.

(Type 1.) Since R(d) contains the elements a0, a1, . . . , ad−3, it contains all ele-

ments of Type 1.

(Type 2.) We first obtain elements which have supp(p) = {0d−2, w}, where

w ∈ Xd−2 and w 6= 0d−2. Let T be the subgroup of R(d) consisting of Type 1

elements whose support is in 0X [d−2] (i.e., the group is generated by a1, a2, . . . , ad−3).

It is clear that T acts transitively on the set 0Xd−3, so we can take t ∈ T such that

t−1(w) = 0d−2. Then, by the wreath product group multiplication, we have

(bt)(w) = bt(w) = b0d−2 = 1,

so supp(btb) = {0d−2, w}. If w1, w2 are distinct words in 0Xd−3 and p1, p2 ∈ R(d) such
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that supp(p1) = {0d−2, w1} and supp(p2) = {0d−2, w2}, then supp(p1p2) = {w1, w2}.

Thus all Type 2 generators of PA0 are in R(d).

(Type 3) Let S1 be the subgroup of R(d) consisting of Type 1 elements whose

support is in 1X [d−2] (i.e. the group generated by aa01 , a
a0
2 , . . . , a

a0
d−1), and let S2

consist of elements of the form ha0 , where h is a Type 2 element. Let S be the

group generated by S1 ∪ S2. Then S consists of all patterns which are supported on

1X [d−3] and have even total activity on 1Xd−3. The patterns of size (d− 2) which on

the subtree 1X [d−2] in the elements of S correspond to those of a certain maximal

subgroup M of G(d − 2) such that M has total activity even on the last level. By

Proposition 3.2.1, it follows that the action of S on 1Xd−2 is transitive. Thus, we

can apply the same reasoning as for Type 2 to see that R(d) contains all elements

supported on a set {10d−1, v}, and therefore all Type 3 elements are in R(d).

(Type 4) Taking nontrivial elements t ∈ T and s ∈ S, we have that supp(b(ts)) =

{t(0d−2), s(10d−2)}. Elements of this form can be used to produce all Type 4 elements.

Thus R(d) contains a generating set for PA0 , and the two subgroups are equal.

Corollary 3.5.4. The group GR(d) is a topologically finitely generated, finitely con-

strained group defined by patterns of size d with Hausdorff dimension 1− 2
2d−1 .

Proof. By Proposition 3.1.8, it suffices to calculate the size of R(d)d−1. Since R(d)

is a maximal subgroup of PJ , we have that [G(d) : R(d)] = 4. It is not hard to see

from the patterns that R(d − 1) = G(d − 1). Thus [G(d)d−1 : R(d)d−1] = 4 and

|R(d)d−1| = 22d−3
. The result follows immediately.

The argument of Bartholdi and Nekrashevych used in Theorem 3.5.1 to show that

R(0d−3, 0) is finitely constrained can be applied to the closure of any group R(w, v)

when |w| ≥ 2 and |v| ≥ 2, or |w| ≥ 3 and |v| ≥ 1. Moreover, if w, v ∈ X∗ with

|w| ≥ 3, |v| = 1, then similar arguments to those used in Proposition 3.5.3 show that
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the patterns of size d in R(w, v) are the same as those of R(0d−3, 1), so R(w, v) and

R(0d−3, 1) have the same topological closure in Aut(X∗).

3.6 New examples

In this section we discuss a family of self-similar groups inspired by the first

Grigorchuk group. For each d ≥ 5, this family contains an example of a topologi-

cally finitely generated, finitely constrained group defined by patterns of size d and

which has Hausdorff dimension 1− 2
2d−1 . We will also explicitly describe the defining

patterns of these groups and show that they are distinct from those of the groups

discussed in the previous section.

Fix k a positive integer, and define A to be the self-similar group generated by

the finite-state automaton

X = {r0 = σ(1, 1), ri = (ri−1, 1)( for 1 ≤ i ≤ k), b = (rk, c), c = (rk, d), d = (1, b)}.

We will first establish some basic facts about A. Most (but not all) of these facts

and their proofs parallel known results for the Grigorchuk group.

Lemma 3.6.1. Every element in X has order 2.

Proof. It is clear that r2
0 is trivial. Thus r2

1 = (r2
0, 1) = (1, 1), and it follows recursively

that r2
i = (r2

i−1, 1) = (1, 1) for all 0 ≤ i ≤ k. Thus b2 = (ak, c
2) = (1, c2), c2 =

(ak, d
2) = (1, d2), and d2 = (1, b2). Since b2 is in TrivA(1), d2 is in TrivA(2), and c2 is

in TrivA(3). Inductively, It follows that b2, c2, d2 are in TrivA(n) for all n, and thus

they are all equal to the identity.

Remark 3.6.2. It follows that x−1 = x and [x, y] = (xy)2 for any x, y ∈ X.

Remark 3.6.3. The portraits of the generators of A can be described as follows:
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supp(ri) = 0i for 0 ≤ i ≤ k, supp(b) = {1t0k+1 | t ≡ 0, 1 mod 3}, supp(c) =

{1t0k+1 | t ≡ 0, 2 mod 3}, supp(d) = {1t0k+1 | t ≡ 1, 2 mod 3}.

Lemma 3.6.4. Let h = (h0, 1) ∈ A. Then, for any g ∈ A, there exists h′ such that

h′ = (hg0, 1).

Proof. First, we show that this holds for the generating set of A. Let y ∈ X. From

the definition of X, there exists x ∈ X and i ∈ {0, 1} such that xi = y.

If i = 0, then we take

hx
a0 = (y, x0)(h0, 1)(y, x0) = (hy0, x

2
0) = (hy0, 1)

If i = 1, we take

hx = (y, x1)(h0, 1)(y, x1) = (hy0, x
2
1) = (hy0, 1).

For the case of an arbitrary group element, we simply note that conjugation is

an action of A on itself, so we can obtain (hg0, 1) through repeated conjugation by

generators.

Proposition 3.6.5. A is a regular branch group, branching over the commutator.

Proof. Let K be the commutator subgroup of A.

First, we show that K has finite index. Since each element of X has order two,

each element in the generator of the abelianization of A has order at most two. We

know that an abelian group generated by a finite set of elements with finite order is

finite. Thus A is a regular branch group branching over K.

It is well-known that K is equal to the normal closure of the group generated by

commutators [x, y], for x, y ∈ X. Thus, we need to show that for any x, y ∈ X, the

element ([x, y], 1) ∈ K. We make the following observations.
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• d = bc, so we do not have to consider commutators involving d.

• b and c commute, so we do not need to consider [b, c].

• For 1 ≤ i ≤ k, [ai, b] = [ai, c], since

[ai, b] = (ai−1, 1)(ak, c)((ai−1, 1)(ak, c) = ([ai−1, ak), 1)

• If 0 ≤ i, j ≤ k − 1, then

[ai+1, aj+1] = (ai, 1)(aj, 1)(ai, 1)(aj, 1) = ([ai, aj], 1)

and

[ai+1, b] = (ai, 1)(ak, c)(ai, 1)(ak, c) = ([ai, ak], c
2) = ([ai, ak], 1).

• It remains to show that for any 0 ≤ i ≤ k, the element ([ai, b], 1) ∈ K. For

0 ≤ i ≤ k − 1, we have

[ai+1, d
a] = (ai, 1)(b, 1)(ai, 1)(b, 1) = ([ai−1, b], 1)

and for i = k

[b, da] = (ak, c)(b, 1)(ak, c)(b, 1) = ([ak, b], 1).

It follows from Lemma that ([x, y]g, 1) ∈ K for any x, y ∈ X and g ∈ A. This

completes the proof.
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Proposition 3.6.6. The groups G(k + 3) = W (k + 3) are the same.

Proof. To show that G(k + 3) = W (k + 3), it suffices to show that each of the

standard generators {a0, . . . , ak+2} of W (k + 3) is contained in A(k + 3). Note that

supp(πj(g)) = supp(g) ∩ X(j) for any g ∈ A and any j ≥ 0. It is obvious that

πk+3(ri) = ai for each i = 0, . . . , k, while πk+3(b) = ak+1a
a0
k+2, πk+3(c) = ak+1. Thus

each ai for 0 ≤ i ≤ k + 1 ∈ A(k + 3). Since πk+3(cb) = aa0k+2 and a0 ∈ G(k + 3), we

conclude that ak+2 ∈ A(k + 3) and that G(k + 3) = W (k + 3).

Proposition 3.6.7. As above, let K denote the commutator subgroup of A. K

contains TrivG(k + 3).

Proof. Since A projects onto the group W (k + 3) and A is generated by elements

of order 2, the abelianization of A is isomorphic to
∏k+2

j=0 C2. Let πab be the map

from A to
∏k+2

j=0 C2 given by [πab(g)](i) =
∑

w∈Xi g(w). This map is surjective, and

thus K must be equal to the kernel of πab. It is also clear that elements of the group

TrivA(k + 3) are annihilated by πab.

Corollary 3.6.8. The group A is a finitely constrained group defined by patterns of

size k + 3.

Proof. This follows immediately from Theorem and the previous 3 propositions.

Proposition 3.6.9. Let d = k + 4. The Hausdorff dimension of GA(d) is 1− 2
2d−1 .

Proof. Again, we take W (d) to be generated by the set {a0, a1, . . . , ad−1 given in

Proposition 3.1.9 , and let πd be the homomorphism A → A(d). ISince HA(d) is a

finitely constrained, topologically finitely generated group, it follows that A(d) can

not be a maximal subgroup of A(d), and thus [W (d) : A(d)] > 2. We want to show

that [W (d) : A(d)] = 4. From Remark 3.4.4, it suffices to show that [a1, ad−1] ∈ A(d).
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Note that πd(c) = aa0d−2a
a1a0
d−1 , and thus πd([r1, c

r0 ]) = [a1, (ad−2)a0aa1d−1]. Since aa0d−2

has support contained in a disjoint subtree from a1 and aa1d−1, it follows that aa0d−2

commutes with a1 and aa1d−1, Thus we calculate

[a1, (a2)a0aa1d−1] = a1a
a0
d−2a

a1
d−1a1a

a0
d−2a

a1
d−1

= (aa0d−2)2[a1, a
a1
d−1]

= a1a1ad−1a1a1a1ad−1a1

= ad−1a1ad−1a1

= [ad−1, a1]

= [a1, ad−1]

It follows that [W (d) : A(d)] ≥ 4, and hence [W (d) : A(d)] = 4. This completes

the proof.

Remark 3.6.10. We now describe he allowed patterns of the finitely constrained

group A, which are given by the finite group A(d). Let J = {k + 1, k + 2, k + 3},

and let XJ =
⋃
j∈J X

j. By inspecting patterns, we see that A(k + 4) is contained in

the maximal subgroup PJ of W (d) which is equal to the kernel of the homorphism

φJ : W (d)→ C2, g 7→
∑

w∈XJ g(w).

Next, we take S0 = 0Xk ∪ 1Xk+1 ∪ 1Xk+2 and S1 = 1Xk ∪ 0Xk+1 ∪ 0Xk+2. By

Proposition 3.4.8, the subgroup H(S0,S1) is an index 4, essential pattern subgroup of

W (d). Again, it is clear that for each x ∈ X, supp(x) ∩ S0 is even, so A(k + 3) ≤

H(S0,S1). However, we have already shown that [W (k+3) : A(k+3)] = 4, so we must

have that A(k + 3) = H(S0,S1). Thus a binary tree automorphism g is contained in
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GA(k+3) if and only if for all w ∈ X∗,

∑
v∈w0Xk∪w1Xk+1∪w1Xk+2

g(w) =
∑

v∈w1Xk∪w0Xk+1∪w0Xk+2

g(w) = 0

All of the groups discussed so far in this section have been defined using the sum

of labels on certain invariant subsets of the tree. We now turn our attention to such

groups.

3.7 Linearly constrained groups of binary tree automorphisms

We say that an essential pattern subgroup P ≤ W2(d) of finite binary tree au-

tomorphisms is linearly constrained if there exist subsets S1, S2, . . . , Sn ⊆ X(d) such

that

p ∈ P ⇔
∑
w∈Si

p(w) = 0

for all 1 ≤ i ≤ n.

We call the sets {Si}ni=1 the linear constraints of P.

We say that a set of portraits X contained in AX
∗

is additive if it is closed under

the operation of pointwise addition, i.e. if it forms a subgroup of AX
∗

when we endow

the full shift AX
∗

with the group structure of a direct product. We write ⊕ for the

pointwise addition of configurations in this group.

We are interested in groups whose portraits are additive because the patterns

defining such groups can be described succinctly, and some important examples in

the literature have this property. Recall (from Section 2.5.3) that Siegenthaler and

Zugadi-Reizabal proved that certain GGS groups have additive portraits. There is

also a connection between these shifts and the subject of linear cellular automata as

discussed in [18, Section 8]

Proposition 3.7.1. Let GP be a finitely constrained group defined by an essential
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pattern subgroup P . If P is linearly constrained, then GP is additive.

Proof. Suppose P is linearly constrained with constraints S1, S2, . . . , Sn. Then, by

definition, g ∈ GP if and only if
∑

v∈Si
(gw) = 0 for all v ∈ X∗. Then for g, h ∈ GP

and all v ∈ X∗, we have

(g ⊕ h)(v) = g(v) ⊕ h(v)

so that ∑
w∈Si

(g ⊕ h)vw =
∑
w∈Si

g(vw) ⊕
∑
w∈Si

h(vw) = 0,

so g ⊕ h ∈ GP .

The following theorem follows immediately from the results in the previous two

sections.

Theorem 3.7.2. Let GP be a finitely constrained group of binary tree automorphisms

defined by an essential pattern subgroup P with pattern size d. If dimH(GP ) ≥

1− 2
2d−1 , then the portraits of GP are additive.

Remark 3.7.3. The portraits of the first Grigorchuk group are not additive, as is

shown in the description of the defining patterns given in [3] .

Proposition 3.7.4. Let P be an essential pattern subgroup of index 4 and pattern

size d ≥ 4 such that GP has Hausdorff dimension 1− 2
2d−1 . Let S be a constraint of

P which is neither XJ for some J ⊆ {0, . . . , d− 1} nor empty. If there exists y ∈ X

such that S ⊆ yX(d−3), then GP is not topologically finitely generated.

Proof. Let S0 be the constraint such that S0 ⊆ 0X(d−3) and S1 be the constraint
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such that S1 ( 1X(d−3). Define

T1 = S0 ∩ 00X(d−2)

T2 = S0 ∩ 01X(d−2)

T3 = S1 ∩ 10X(d−2)

T4 = S1 ∩ 11X(d−2)

Now define a homomorphism φ : P → C2 by

φ(g) =
∑
w∈T1

g(w) +
∑
w∈T3

g(w)

We claim that φ is a homomorphism which is not constant on the cosets of TrivP (d−

1). Since

∑
w∈T1

g(w) +
∑
w∈T2

g(w) =
∑
w∈S1

= 0 and
∑
w∈T3

g(w) +
∑
w∈T4

g(w) =
∑
w∈S2

= 0,

it follows that the value of φ is constant under any permutations of {T1, T2, T3, T4},

so φ is a homomorphism. To see that φ is not constant on cosets of TrivG(d)(d−1), let

g to be an element of Pd−1 with exactly one nontrivial label on T1∩Xd−1 and exactly

one nontrivial label on T2 ∩Xd−2, and let h be the element of Pd−1 with exactly two

nontrivial labels in T1 and all other labels trivial. These two elements take different

values on φ even though they are the same pattern up to level (d− 2) and thus are

in the same coset of TrivP (d− 1). By Corollary 3.1.4, GP is not topologically finitely

generated.

Remark 3.7.5. For d ≥ 4, there are 2d−3 essential pattern subgroups of index 4

covered by the preceding proposition - one for each of the maximal subgroups PJ
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with J ⊆ {2, 3, . . . , d− 1}. Thus for d ≥ 4, we can say that at least 2d−3 of the 22d−3

finitely constrained groups with pattern size d and Hausdorff dimension 1− 2
2d−1 are

not topologically finitely generated.

3.8 Computation for examples of topologically finitely generated, finitely

constrained groups of binary tree automorphisms

It is clear that there are still large gaps in our knowledge about the actual values

which occur as the Hausdorff dimension of some topologically finitely generated,

finitely constrained group of binary tree automorphisms. As discussed in Section 2,

the values which are known to occur come from explicit families of examples. In

this section, we discuss a strategy for finding new examples, with the aim towards

extending single examples to new families of examples. The groups discussed in the

previous sections were discovered using this strategy.

This approach exploits the fact that in some instances, Theorem 3.1.2 and Propo-

sition 3.1.8 can be used to verify topological finite generation and Hausdorff dimen-

sion from the finite quotients of a finitely constrained group. These finite quotients

can be determined using the computational group theory program GAP [26]. There

are two GAP packages specifically designed for calculating with self-similar groups,

the FR package of Bartholdi [8] and the AutomGrp package developed by Muntyan

and Savcychuk [43]. For a given n, these packages can produce the patterns of size

n which appear in a self-similar group (up to limitations on computer hardware).

For a finite group, GAP can give the relevant subgroups such as level stabilizers and

commutators.

Thus, the following heuristic computational approach can be used to produce

new examples of Hausdorff dimension .

1. Begin with a self-similar group A, such that A is conjectured to be finitely
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constrained defined by patterns of size d. Define A as a self-similar group in GAP.

2. Calculate A(d) and |TrivA(d)(d−1)| in GAP, using one of the packages listed above.

3. Choose some value of n ≥ d, and test if |A(n)| (which is calculated in GAP) is

equal to |GA(d)(n)| (calculated using Proposition 3.1.7).

4. If the |A(n)| < |GA(d)(n)|, then A can not be a finitely constrained group defined

by patterns of size d.

5. If |A(n)| = |GA(d)(n)|, then note that A(n) = GA(d)(n) as a finite group. Test if

[TrivA(n)(d− 1),TrivA(n)(d− 1)] contains TrivA(n)(n− 1). If this containment holds,

then TrivGA(d)
(d− 1),TrivGA(d)

(d− 1)] contains TrivGA(d)
(n− 1) and it follows from

Theorem 3.1.2 that GA(d) is a topologically finitely generated, finitely constrained

group defined by the size d patterns in A(d).

6. If containment holds in Step 5, then note that the Hausdorff dimension of GA(d)

is
log2 |TrivA(d)(d−1)|

2d−1 .

7. If |A(n)| = |GA(d)(n)|, but [TrivA(n)(d − 1),TrivA(n)(d − 1)] does not contain

TrivA(n)(n− 1), try a larger value of n. If n becomes too large for GAP to work with,

try the procedure with a different self-similar group A.

Now we discuss some examples found using this heuristic process. Unfortunately,

none of the following examples have computer-independent proofs. We let σ be the

nontrivial element of Sym({0, 1}), and we recall that a tree automorphism g can

be written in the form of a wreath recursion σ(g0, g1) (if g(0) = 1) or (g0, g1) (if

g(0) = 0).

Example 3.8.1.

Let H be the group generated by the following finite-state automaton.

b = (f, 1), c = σ(d, d), d = (b, 1), f = (c, f)
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Using the procedure just discussed, it can be verified that GH(5) is a finitely con-

strained group defined by patterns of size 5, and that H has Hausdorff dimension 9
16

.

This is smaller than the previously known examples of Hausdorff dimension for topo-

logically finitely generated, finitely constrained groups of binary tree automorphisms.

We should note also that this example is not a spinal group, since by examining the

patterns of size 5, it can be seen that the root permutation σ(1, 1) is not part of the

group H.

Example 3.8.2. Consider the group A generated by the following finite-state au-

tomaton.

a = σ(1, 1), b = (a, a), c = (b, d), d = (1, c)

Using the procedure outlined above, it can be shown computationally that GA(5)

is a topologically finitely generated, finitely constrained group defined by patterns

of size 5 such that A has Hausdorff dimension 5/16. We believe this is the smallest

known Hausdorff dimension for a topologically finitely generated, finitely constrained

group of binary tree automorphisms.

We will discuss the search for additional examples more in the final section of

this work.
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4. SELF-SIMILAR GROUPS AND TREE LANGUAGES

This section examines self-similar groups using languages accepted by tree au-

tomata. This hierarchy includes sofic tree shifts and tree shifts of finite type. We

give examples of self-similar groups whose portraits can be used to separate some of

the classes in this hierarchy. We also provide a criterion under which the classes of

finitely constrained groups and sofic tree shift groups coincide.

The results in this section were obtained as a joint work with Zoran Šunić.

4.1 Classes of tree automata

Recall that in Section 2, we defined tree shifts of finite type and sofic tree shifts,

and discussed the connection between tree shifts of finite type and profinite groups.

We should mention that there is continued interest in tree shifts from the perspective

of symbolic dynamics and theoretical computer science, apart from their connections

to group theory and Hausdorff dimension. In particular, Aubrun and Béal have

studied tree shifts of finite type [4] and sofic tree shifts [5]. Ceccherini-Silberstein,

Coornaert, Fiorenzi and Šunić also studied sofic tree shifts [17]. Groups of tree auto-

morphisms whose portraits form sofic tree shifts answer a question of Grigorchuk [28,

Problem 7.4].

In Section 2, we defined a sofic tree shift as one which was the image of a tree

shift of finite type under a cellular automaton. In the case when |X| = 1, a shift X

is called sofic if the blocks of X form a regular language (accepted by some finite

state automaton). Analogously, sofic tree shifts are exactly the class of those which

can be accepted by a particular type of tree automaton, as we now explain.

Definition 4.1.1. An unrestricted Rabin graph is a 4-tuple A = (S,X,A, T ) with

X and A non-empty finite sets, S a non-empty set, and T a subset of S × A× SX .
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X is called the tree alphabet, S is called the state set or vertex set, A is called the

label alphabet, and T is called the set of transition bundles.

Definition 4.1.2. An unrestricted Rabin automaton is an unrestricted Rabin graph

with a finite state set.

To any configuration f ∈ AX
∗
, we can associate an unrestricted Rabin graph

Af = (X∗, X,A, Tf ) with

Tf = {(w; f(w); (wx)x∈X) | w ∈ X∗}.

Given two unrestricted Rabin graphsA1 = (S1, X,A1, T1) andA2 = (S2, X,A2, T2),

a homomorphism from A1 to A2 is a map α : S1 → S2 such that (α(s); a; (α(sx))x∈X) ∈

T2 whenever (s; a; (sx)x∈X) ∈ T1. We may also say, in an overloading of notation,

that α is a homomorphism from A1 to A2.

Definition 4.1.3. Let A be an unrestricted Rabin automaton. An element f of AX
∗

is accepted by A if there exists a homomorphism αf : Af → A. The language A is

the set of all configurations accepted by A.

For any unrestricted Rabin automaton A, the language of A is a tree shift,

denoted by XA. This leads us to a characterization of sofic tree shfits in terms of

unrestricted Rabin automata.

Theorem 4.1.4. ( [17, Corollary 3.20]) Let A be a finite alphabet, and let X be a

finite set. A subset of X ⊆ AX
∗

is a sofic tree shift if and only if it is there exists an

unrestricted Rabin automaton A such that X = XA.

We now discuss two additional classes of tree automata, Büchi automata and

Rabin automata, whose acceptance conditions are defined using rays in the tree.
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Definition 4.1.5. Let X be a finite set. A ray π in X∗ is a subset of X∗ such that

ε ∈ π and such that each w ∈ π has exactly one child in π.

The set of all rays forms a compact topological space called the boundary of X∗,

which we denote ∂X∗.

Definition 4.1.6. Let A be a finite alphabet and X be a non-empty set. A Büchi

automaton B (over X with alphabet set A) is a 6-tuple B = (S,X,A, T , I,F) where

(S,X,A, T ) is an unrestricted Rabin automaton, I is a non-empty subset of S (called

the set of initial states) and F ⊂ S (called the set of accepting states).

Definition 4.1.7. Let A be a finite alphabet and X be a non-empty set. A Rabin

automaton R (over X with alphabet set A) is a 6-tuple R = (S,X,A, T , I,F),

where (S,X,A, T ) is an unrestricted Rabin automaton, I is a non-empty subset of

S (called the set of initial states) and F (the set of accepting sets) is a collection of

subsets of S.

Acceptance in these classes of automata is based on the notion of a successful

run.

Definition 4.1.8. Let f ∈ AX
∗

be a configuration and A = (S,X,A, T , I,F) be

either a Büchi or Rabin automaton over X with alphabet A. A run of A on f is a

map r : X∗ → S such that

• r is a homomorphism from the unrestricted Rabin automaton Af to the unre-

stricted Rabin automaton (S,X,A, T )

• r(ε) ∈ I

For a configuration f ∈ AX∗ , a ray π ∈ ∂X∗, and a run r of either a Büchi or

Rabin automaton, let r∞(π, f) = {s ∈ S | r−1(s) ∩ π is infinite }. A run r of a
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Büchi automaton B on a configuration f is successful if r∞(π, f) ∩ F 6= ∅, for all

π ∈ ∂X∗. For a Rabin automaton R, a run r is successful if for all π ∈ ∂X∗, there

exists F ∈ F (which may depend on π) such that r∞(π, f) = F . A configuration f

is accepted by a Rabin (or Büchi) automaton A if there exists a successful run r of

A on f .

For a Rabin (Büchi) automata A, the language of A is written as L(A) and

defined as

L(A) = {f ∈ AX∗ | there exists a successful run r of A on f}.

A set W ⊂ AX
∗

is Rabin (Büchi) recognizable if there exists a Rabin (Büchi) au-

tomaton A such that W = L(A).

It is routine (see [35, Sections 5.1 and 5.2]) to show that both Rabin and Büchi

languages are closed under taking finite unions, finite intersections, and projections.

It is well-known, but much more challenging to prove, that Rabin languages are

closed under taking complements, while Büchi languages are not (see [35, Section

5.12]).

Remark 4.1.9. We may view any Büchi tree automaton B = (S,X,A, T , I,F) as a

Rabin tree automaton R = (S,X,A, T , I,F ′) where F ′ = {F ⊆ S | F ∩F 6= ∅}, so

any Büchi recognizable set is Rabin recognizable. Similarly, any sofic shift is Büchi

recognizable, since we may consider an unrestricted Rabin automaton as a Büchi

automaton by taking all states to be both initial and final (initial and final states

are not needed to accept a closed, shift-invariant set – see [17, Section 9] for more

details). Also, as discussed in Section 2, any tree shift of finite type is a sofic tree

shift.

Remark 4.1.10. The automata given here for trees are generalizations of automata
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accepting right-infinite words. Their applications to trees were given by Rabin in [49]

and [48], respectively. What we call Büchi automata were called special automata

when introduced by Rabin. They are the generalization of a class of automaton

introduced by Büchi. Some authors use the term Muller automata for what we call

Rabin automata. The interested reader should consult [35, Section 3] for additional

historical background.

Recall that a finitely constrained group is a self-similar group whose portraits

form a tree shift of finite type, while a self-similar group whose portraits form a sofic

tree shift is called a sofic tree shift group. The reader should be warned that the

term sofic is used in group theory, as in [59]. However, we use the word sofic to

describe the tree shift, as in the older sense of symbolic dynamics.

For arbitrary trees, the different classes of configuration subspaces discussed so

far form a hierarchy as follows:

SFT ( SOFIC ( BÜCHI RECOGNIZABLE ( RABIN RECOGNIZABLE.

See the graph in Figure 4.1 for more details on these relationships.In addition,

it is shown in [17, Theorem 1.7] that the class of sofic tree shifts is exactly equal to

the class of topologically closed subsets of AX
∗

which are accepted by some Rabin

automaton.

We will discuss this hierarchy for self-similar groups shortly. First, we discuss

finitely constrained groups and the notion of branching, which is a concept utilized

in computer science (see [35, page 266])
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Figure 4.1: Classes of tree configuration spaces. In this graph, Class A is contained
in Class B if there is an edge between A and B and if B lies above A in the figure.
The dashed lines on the edges indicate strict containment.
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4.2 Branching and finitely constrained groups

The notion of grafting is well-known in computer science as a way of combining

parts of two labeled trees. We use it here to describe the concept of a regular branch

group and characterize finitely constrained groups.

Definition 4.2.1. Let a, b ∈ AX∗ . The grafting of b on a at v ∈ X∗ is the element

g[a,b,v] of AX
∗

given by

(
g[a,b,v]

)
(w)

=


b(u), v = wu ∈ wX∗

a(w), v 6∈ wX∗

Lemma 4.2.2 (Grafting Lemma). Let A be an unrestricted Rabin automaton and

suppose a, b ∈ L(A) and v ∈ X∗ such that

(i.) a(v) = b(ε)

(ii.) there exist homomorphisms αa : X∗ → S by which A accepts a and αb : X∗ → S

by which A accepts b such that αa(v) = αb(ε).

Then A accepts the grafting of b on a at v.

Proof. Define a map α[a,b,v] : X∗ → S by

α[a,b,v](w) =


αb(u), w ∈ vX∗ and w = vu

αa(w), otherwise

.

We claim that this is a homomorphism by which A accepts g[a,b,v]. We must show

that for any w ∈ X∗, the transition bundle
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(
α[a,b,v](w); g[a,b,v](w); (α[a,b,v](wx))x∈X

)
∈ T .

There are three cases. If w ∈ vX∗ and w = vu, then we have

(
α[a,b,v](w); (g[a,b,v])(w); (α[a,b,v](wx))x∈X

)
=
(
αb(u)); b(u); (αb(ux))x∈X

)
,

and (αb(u)); b(u); (αb(ux))x∈X) ∈ T since αb accepts b. If w 6∈ vX∗ and wx 6= v

for any x ∈ X, then α[a,b,v](w) = αa(w), and

(
α[a,b,v](w); g[a,b,v])(w); (α[a,b,v](wx))x∈X

)
=
(
αa(w); a(w); (α[a,b,v](wx))x∈X

)
where

(
αa(w); a(w); (α[a,b,v](wx))x∈X)

)
∈ T since αa accepts a. Finally, if v = wx

for some x ∈ X, then using the fact that α[a,b,v](wx) = αb(v) = αa(v) gives that

(
α[a,b,v](w); (g[a,b,v])(w); (α[a,b,v](wx))x∈X

)
=
(
αa(w); a(w); (αa(wx))x∈X

)
and, again,

(
αa(w); a(w); (αa(wx))x∈X

)
∈ T since αa accepts a. This completes

the proof.

Definition 4.2.3. For v ∈ X∗ and f ∈ AX∗ , we denote g[eG,f,v] by δv(f). Note that

from the definition, δv(g) is given by

(δv(g))(w) =


g(z), w = vz for some z ∈ X∗

eA, otherwise

The following useful properties of the δ operator can be easily verified.

Lemma 4.2.4. For all g, h ∈ AX∗ and v, w ∈ X∗, the following hold.
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(i.) If v ≤ w and w = vu, then [δw(g)]v = δu(g)

(ii.) δv(δw(g)) = δvw(g)

(iii.) If |w| = k and g ∈ TrivG(n), then δw(g) ∈ TrivG(n+ k).

(iv.) δv(gh) = δv(g)δv(h)

Definition 4.2.5. Let G be a subgroup of the full tree shift AX
∗
, and k ≥ 1. We

say G is a regular branch group over the subgroup TrivG(k) if δx(g) ∈ TrivG(k + 1)

for all g ∈ TrivG(k) and x ∈ X.

The following theorem generalizes Theorem 3.6 to the more general case of self-

similar groups which are considered here. The proofs given are essentially the same

as those found in [28] and [56].

Theorem 4.2.6 (after Theorem 3.6). Let G be a subgroup of the full tree shift AX
∗
.

G is a finitely constrained group defined by patterns of size n ≥ 2 if and only if G is

the closure in of a group H ≤ AX
∗

which is a regular branch group over TrivH(n−1).

Proof. Let A be a finite group and X = {x1, x2, . . . , xm} be a finite set on which

A acts. Assume that G = GP is a finitely constrained subgroup of AX
∗

which is

defined by an essential pattern group P with pattern size n. Let g ∈ TrivG(n − 1)

and x ∈ X. It is clear that that δx(g) ∈ Triv(n), so we must show that δx(g) is

also in G. All size n patterns which appear in δx(g) are either size n patterns which

appear in g, or equal to eP . Since g ∈ GP and eP ∈ P , it follows that δx(g) ∈ G, so

G is a regular branch group over its level (n− 1) stabilizer.

Suppose now that G = H, where H is a regular branch group, branching over

TrivH(n− 1). Let P = H(n) be the patterns of size n which appear in the quotient

group H/TrivH(n). Since G = H, these are exactly the same as the patterns of size
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n which appear in G(n) = G/TrivG(n). Let GP be the self-similar group defined by

P . We claim that G = GP .

The fact that G ≤ GP follows immediately from Proposition 2.5.10, (iv.)

Now we show that GP ⊆ G. To do this, we will show that for any g ∈ GP , there

exists a sequence {hn} of elements in H which converges to g, i.e. that for each j ≥ 0,

there exists an element hj ∈ H with πn+j(hj) = πn+j(g). The proof will proceed by

induction on j.

Suppose g ∈ GP . For the base case j = 0, note that since g ∈ GP , πn(g) ∈

P = H(n), so there exists an element h ∈ H such that πn(h) = πn(g). Now assume

that whenever k ≤ n + j, there exists an hk with h−1
k g ∈ Triv(k). Note that each

hk ∈ GP by Proposition 2.5.10, (iv.). Let m = n + (j + 1). By the previous

assumption, there exists hm−1 ∈ H with h−1
m−1g ∈ Triv(m − 1). We let f = h−1

m−1g.

Note that f is an element of GP since both hm−1 and g are. Thus, for each x ∈ X,

the section fx ∈ TrivGP
(m − 2), and we can write f =

∏
x∈X δx(fx). Applying

the induction hypothesis, we have that for each x ∈ X, there exists qx ∈ H such

that q−1
x fx ∈ Triv(m − 1). Note that this implies that each qx ∈ Triv(m − 1),

since fx is. Since H is a regular branch group over TrivH(m − 1), it follows that

δx(qx) ∈ TrivH(m− 1) for each x ∈ X. We set q =
∏

x∈X δx(qx), and it follows that

q−1f =
∏

x∈X δx((q
−1
x fx) is in Triv(m). Since q−1h−1

n−1g ∈ Triv(m), and we can define

hn to be hn−1q. This Completes the proof.

4.3 The special case when |X| = 1

When |X| = 1 and A is a finite alphabet, the full shift AX
∗

is naturally identified

with AN, the set of sequences with entries in A. When A is a finite group, AN is a

group with the direct product structure.

Definition 4.3.1. A group subshift is a topologically closed, shift invariant subset
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of AN.

Here we provide a proof that the result of Kitchens about group shifts over Z

extends to group shifts over N. Our proof uses the same ideas as that of Kitchens,

but is somewhat simplified by the fact that we can use Theorem .

Before giving the proof, we need a bit of notation specifically for this case. Let A

be a finite group. We write elements of An as [g0, g2, g3, . . . , gn−1], to avoid confusion

with products of elements in A, but we write [eA, eA, . . . , eA︸ ︷︷ ︸
ktimes

]as [en]. If G is a subgroup

ofA, we writeG(n) for elements of length n which appear inG. Since there is only one

x ∈ X, we write δx(g) as δ(g), and we note that δ([g0, . . . , gn−1]) = [eA, g0, . . . , gn−1].

Finally, for w ∈ G(n), we define the follower set of w in G to be

folG(w) = {a ∈ A | [w, a] ∈ G(n+ 1)}.

Proposition 4.3.2. Let A be a finite alphabet. If G is a group subshift of AN, then

G is a finitely constrained group.

Proof. First, we claim that for any k ≥ 0, the set fol([ek]) is a subgroup of A. First,

note that we must have [em] ∈ G(m) for all m ≥ 0 since G(m) is a subgroup of Am.

Thus e ∈ fol[ek] and the set is non-empty. Since A is a finite group, it suffices to show

closure under the binary operation of A. If a, b ∈ fol([ek]), then [ek, a] and [ek, b] are

in G(k + 1), and thus so is their product [ek, a][ek, b] = [ek, (ab)]. Thus gh ∈ fol[ek],

and fol[ek] is a subgroup of A for all k ≥ 0.

It follows that fol([e]) ⊇ fol([e2]) ⊇ fol([e3]) . . . is a descending chain of subgroups

of the finite group A. Thus there exists N such that fol([en]) = fol([eN ]) for all

n ≥ N . Now we claim that G is a regular branch group over TrivG(N). Indeed,

if [g] ∈ TrivN , then g = [eN , a] for some a ∈ fol(eN). But then a ∈ fol(eN+1, so
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δ(g) = [eN+1, a] = [e, eN , a] = δ(g) ∈ TrivG(n + 1). It is obvious that TrivG(N) has

finite index in G, since it is the kernel of the map G → G(N), which is a surjective

map onto a finite group. Thus G is regular branch over TrivG(n), and G is finitely

constrained.

4.4 Language hierarchy for subgroups of full tree shift groups

This section is dedicated to examples of self-similar groups lie in the various

classes given in Figure 4.1. Henceforth, whenever A is a finite group which has a

left action φ on a finite set X, we will write the infinite iterated wreath product

F (A,X, φ) as AX
∗

(suppressing reference to φ).

Our first example shows that there are Büchi-recognizable tree shift groups which

are not sofic tree shift groups.

Example 4.4.1 (A Büchi-recognizable self-similar group which is not a sofic tree

shift group). Let G = AX
∗

for some finite set X, some finite group A, and some left

action φ. Let B be a proper subgroup of A. We define the subset Hfin to be

Hfin = {h ∈ AX∗ | there exists an Nh such that |v| > Nh implies that h(v) ∈ B}.

Note that Hfin is self-similar. However, Hfin is not closed. In fact, Hfin is dense in G,

since for any g ∈ G, we can build a sequence of elements {hn} in Hfin which converge

to g by letting hn and g agree on X [n], and taking hn to be trivial everywhere else.

Since Hfin is not topologically closed, Hfin is not sofic.

We will show now that Hfin is a subgroup of G. If h1, h2 ∈ Hfin, then there

exists N1, N2 such that h1(v) ∈ B whenever |v| > N1, and there exists N2 such that

h−1
2 (v) ∈ B whenever |v| ∈ N2. Then, taking N = max{N1, N2}, it follows that
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whenever |v| > N , we have

h1h
−1
2 (v) = h1(h−1

2 (v))h2(v) ∈ B,

as |h−1
2 (v)| = |v|. Also, it is clear that Hfin is self-similar and self-replicating. More-

over, if the action of H on X is transitive, then Hfin is level-transitive, as well. We

will show that Hfin is Büchi. Consider the Büchi automaton B = (S,X,A, T , I,F),

where

• S = {s1, s2}

• T consists of transition bundles of the following forms:

for all a ∈ A, T1,a = (s1; a; (s1)x∈X) ∈ T ;

for all b ∈ B, T1,2,b = (s1; b; (s2)x∈X) ∈ T ;

for all b ∈ B, T2,b = (s2; b; (s2)x∈X) ∈ T

• I = {s1}

• F = {s2}

The computation of the Büchi automaton B is given as follows. The automaton

begins in the initial state s1, after which B can remain in s1 by reading any element

of A, or it can transition to s2 by reading any element of B. Once in s2, it will

remain at s2, at which point it can only read elements of B. Thus a configuration is

accepted by B if there exists a run which eventually reaches s2 and never leaves. We

show now that the set of elements accepted by B is the same as the subgroup Hfin.

If h ∈ Hfin, with Nh such that h(v) ∈ H whenever |v| > Nh, we can define a
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successful run rh : Af → B by

rh(v) =


s1, |v| ≤ Nh

s2, |v| > Nh

.

Thus Hfin ⊂ L(B).

Now suppose h ∈ L(B). Let rh be a successful run of h on B. By the definition of

Büchi acceptance, each ray π must take the value s2 infinitely often. However, every

transition bundle in B which begins at s2 also ends at s2, so rh(w) = s2 implies that

rh(wx) = s2 for all x ∈ X. It follows from induction that for every ray π, there is a

w ∈ π such that rh only takes the value s2 on wX∗. Since each ray π is contained

in some such wX∗, and the sets wX∗ are open in the topology of ∂X∗, these sets

form an open cover of ∂X∗. Since ∂X∗ is compact, we can take a finite collection

{w1, w2, . . . , wn} such that each ray π is contained in at least one open set from the

finite collection {wiX∗}ni=1 and such that for each v ∈ wiX∗, rh(v) = s2. Taking

N = max{|w1|, |w2|, . . . , |wn|},

we have that rh(v) = s2 whenever |v| > N . However, the only transition bundles

from s2 to itself are labeled by elements of B, so we have that v(h) ∈ B whenever

|v| > N . Thus h ∈ Hfin.

In the case that A is a cyclic group of prime order with its usual action on

X = {0, 1, . . . , p− 1}, the previous example is exactly that of the finitary tree auto-

morphisms studied by Sidki in [51].

The next example utilizes the standard construction of a Rabin recognizable

subset which is not Büchi recognizable. The key observation is that this tree language
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describes the portraits of a self-similar group.

Example 4.4.2 (A Rabin-recognizable self-similar group which is not Büchi-recognizable).

Let X = {0, 1} be a finite set and A = C2 = {id, σ} be the cyclic group of order 2

acting transitively on X. Let

H = {g ∈ AX∗ | every ray in g has only finitely many vertices with nontrivial label}.

The set H is a well-known example of a tree language which is Rabin but not

Büchi (see [58]). It is clear that H is self-similar. First we show that H is a subgroup

of AX
∗
. Indeed, an element h ∈ AX

∗
is in H if and only if for every ray π, there

exists an N such that for all v ∈ π with |v| > N , h(v) = id. Let h1, h2 ∈ H, and

let π be a ray in h1h
−1
2 . Since h1 ∈ H and h−1

2 (π) is a ray in X∗, there exist an N1

such that (h1)(h−1
2 (v)) is the identity whenever |h−1

2 (v)| = |v| > N1. Since h2 ∈ H,

there exists an N2 such that (h2)(v) is the identity whenever |v| > N2. Taking

N = max{ N1, N2 }, it follows that whenever |v| > N

(h1h
−1
2 )(v) = h1(h−1

2 (v))h2(v) = id .

Thus H is a self-similar, self-replicating, level-transitive subgroup which is Rabin-

recognizable but is not Büchi-recognizable. Note that Hfin ≤ H, so H is dense in

AX
∗

as well.

At present, we do not know if all sofic tree shift groups are finitely constrained.

The remainder of this section will be dedicated to describing sufficient conditions to

ensure that a sofic tree shift group is finitely constrained.
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4.4.1 Branching structure and sofic tree shift groups

In this part, we examine the structure of certain elements and subgroups of sofic

tree shift groups.

For the remainder of this subsection, we assume A is a finite group with identity

element eA, and let X be a finite alphabet. We also fix an action φ of A on X,

and (as usual) identify the full tree shift group F(A,X, φ) with the full tree shift

AX
∗
. Also, we let G be a sofic tree shift group, i.e. a subgroup of F(A,X, φ) = AX

∗

such that the portraits of G form a sofic tree subshift of AX
∗
. The identity of G is

denoted by eG. We let A = (S,X,A, T ) be an unrestricted Rabin automaton so that

G = L(A), and assume that A has exactly N states.

Lemma 4.4.3. If g ∈ TrivG(N) and αg : X∗ → S be a homomorphism by which A

accepts g, then there exists an integer k = k(g) satisfying the following conditions:

(i.) for any w ∈ X [k], the restriction of α to the vertices in the path from ε to w is

not injective.

(ii.) |αg(X [k])| = |αg(X [k+1])|

(iii.) 0 ≤ k ≤ 2N − 1

Proof. Condition (i.) is satisfied for any n ≥ N − 1, by applying the Pigeonhole

Principle to the labels of the vertices in the path from ε to a vertex w ∈ X [n]. To see

(ii.), note that the map φ : n 7→ |α(X [n]| is a nondecreasing function, bounded above

by N , with φ(N − 1) ≥ 1. Thus, there must be a k ≤ 2N − 1 such that conditions

(i.) and (ii.) are satisfied.

Lemma 4.4.4. If g ∈ TrivG(2N − 1) via a homomorphism αg, then there exists a

homomorphism α
′
g and k with 1 ≤ k ≤ 2N − 1 such that α

′
g and αg agree on X [k].

In particular, α
′
g(ε) = s, so s accepts the identity.
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Proof. Assume that s accepts some g ∈ TrivG(2N − 1). By the previous lemma,

there exists k with 0 ≤ k ≤ 2N − 1 such that αg
(
X [k]

)
= αg

(
X [k+1]

)
. Note that for

all w ∈ X [k+1], the transition bundle (αg(w); eA; (αg(wx))x∈X) must be in T . Define

a function βg : S → X [k+1] such that α(βg(s)) = s. (One possibility is to order the

vertices of X [k+1] lexicographically, then let βg(s) be the least element v such that

α(v) = s.)

We now define a homomorphism α′e : X∗ → S by which A accepts eG. If w ∈ X [k],

set αe(w) = αg(w). For n ≥ k + 1, we recursively define αe on Xn by setting

αe(wx) = αg(βg(α(w))x). For w ∈ Xn, n ≥ k + 1, let w∗ denote βg(α(w)).

To see that αe is a homomorphism by which A accepts the identity, note that αg

and αe agree on X [k], and that for all v of length greater than k, we must have the

transition bundle (αe(v); eA; (αe(vx))x∈X) ∈ T , since by construction

(αe(v); eA; (αe(vx))x∈X)) = (αg(v
∗); eA; (αg(v

∗x))x∈X)

for some v∗ ∈ Xk. This completes the proof.

Remark 4.4.5. Note that for a given g ∈ Trivg(2N−1), the βg used to construct αg

involves a choice, and thus we can obtain a different α
′
g via a different choice of βg.

In particular, for any v ∈ X [k] and any u with |u| < |v| such that αg(u) = αg(v) = t,

we could define β(t) = u and still obtain an α′g with the desired properties.

Proposition 4.4.6. Assume g ∈ TrivG(2N − 1) and v ∈ Xk and u ≤ v. If there

exists a homomorphism αg : X∗ → S by which A accepts g such that αg(u) = αg(v),

then δv(gu) ∈ Triv(2N − 1 + |v| − |u|).

Proof. Assume αg(u) = αg(v) = t ∈ S. By the reasoning above, there exists α
′
g
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which accepts eG such that α
′
g and αg agree on X [k]. Since G is self-similar, there is

a homomorphism αgu by which A accepts gu such that αgu(ε) = αg(u). (The map

αgu given by αgu(w) = αg(vw) is easily seen to be such a homomorphism.) Now we

have that

αgu(ε) = α
′

g(u) = α
′

g(v)

and

(gu)(ε) = g(u) = eA = (eG)(v).

Applying the Grafting Lemma yields the desired result.

Corollary 4.4.7. Assume g ∈ TrivG(2N − 1) and u, v ∈ X [k] with u ≤ v and

|u| = j. If there exists a homomorphism αg : X∗ → S by which A accepts g such

that αg(u) = αg(v), then there exists u′ ∈ Xj+1 such that δu′(gu) ∈ Triv(2N)

Proof. By the previous proposition, we know that δv(gu) ∈ Triv(2N − 1 + |v| − |u|).

Since v > u, can write v = v1u
′ where v1 is some word (possibly empty) and |u′| =

|u|+ 1. Then we have that [δv (gu)]v1 = δu′(gu).

Recall that for any group, conjugation is a right action of the group on itself

given by gh = h−1gh. Given G ≤ AX
∗
, we let the normalizer of G NAX∗ (G) be the

elements of AX
∗

which leave G fixed under conjugation, i.e.

NAX∗ (G) = {h ∈ AX∗ | gh ∈ G for all g ∈ G}.

The following lemma is proven in [57] for self-similar groups of tree automor-

phisms. We will not reproduce the proof here, since it is a lengthy computation

which generalizes easily to our current setting.
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Lemma 4.4.8. Let g, h ∈ AX
∗

and u ∈ X∗. Then (δu(h))g = δv(h
(gv)), where

v = g−1(u).

Proposition 4.4.9. Let G be a subgroup of AX
∗

such that NAX∗ (G) contains a self-

similar, self-replicating, level-transitive subgroup. If δu(g) ∈ G for some g ∈ G and

u ∈ Xn, then δv(g) ∈ G for all v ∈ Xn.

Proof. Suppose δu(g) ∈ G for some u ∈ Xn and g ∈ G. Let v ∈ Xn be arbitrary. Let

N = NAX∗ (G) be the normalizer of G, and assume that N contains a self-similar,

self-replicating, level-transitive subgroup M . Since M is level-transitive, there exists

f ∈M such that f(v) = u. Since M is self-similar, (fv)
−1 ∈M , and since M is self-

replicating, there exists f ′ ∈ Stabv(M) such that f ′v = (fv)
−1. Then (δu(g))ff

′−1 ∈ G

sinceM normalizesG. Moreover, from these observations and Lemma 4.4.8, it follows

that

(δu(g))f(f ′) =
(
(δu(g))f

)(f ′)

=
(
δf−1(u)(g

fv))
)f ′

=
(
δv(g

fv)
)f ′

= δf ′−1(v)

(
gfvf

′
v

)
= δv

(
gfv(fv)−1

)
= δv(g)

4.4.2 Conditions for equivalence of sofic and finitely constrained tree shift groups

With the results of the previous subsection in hand, we can prove the following

theorem.
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Theorem 4.4.10. Let G be a subgroup of AX
∗
. If NAX∗ (G) contains a self-similar,

self-replicating, level-transitive subgroup, then G is a sofic tree shift group if and only

if G is a finitely constrained group.

Proof. Since every finitely constrained group is a sofic tree shift group, we only need

to prove one direction. Since G is a sofic tree shift group, there exists an unrestricted

Rabin automaton AG such that L (A) = G. Assume that AG has a state set S such

that |S| = N . We will prove that G is a regular branch group over the subgroup

TrivG(2N − 1). Let g ∈ TrivG(2N − 1) and αg : X∗ → S be a homomorphism by

which A accepts g. By the argument of Lemma 4.4.3, there exists a k ≤ 2N −1 such

that for any w ∈ Xk, some state used by A on the vertices in the path from ε to w

is repeated at least once.

For w ∈ X [k], let µ(w) be the least element such that µ(w) < w and the state

αg(µ(w)) is repeated in the path from ε to w. Let

Bg = {µ(w) | w ∈ Xk(g)},

and construct a set Cg from Bg as follows: if b, b′ ∈ Bg with b < b′, remove b′. It is

clear that after the inevitable termination of this procedure, C satisfies the following

conditions

(i.) for any u ∈ Xk(g), there is a prefix of u in C

(ii.) if u, v ∈ C such that u ≤ v, then u = v.

Then, for any g ∈ TrivG(2N − 1), we can write g =
∏

c∈C(g) δc(gc). For distinct

elements c, c′ ∈ C, the element δc(gc) and δc′(gc′) commute, as their supports are

subsets of disjoint subtrees. Let x ∈ X. By Proposition 4.4.9, the element δxc(gx) ∈
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TrivG(2N) for all c ∈ C. Since TrivG(2N) is a group, it also contains the product∏
c∈C δxc(gc). Further, we note that

∏
c∈C

δxc(gc) =
∏
c∈C

δx(δc(gc))

= δx

(∏
c∈C

δc(gc))

)

= δx(g)

Therefore G is a regular branch group over the subgroup TrivG(2N − 1), and G is

finitely constrained.

Theorem 4.4.10 allows us to give our first example of a self-similar group which

is not a sofic tree shift group.

Corollary 4.4.11. The closure of the odometer is not a sofic tree shift group.

Proof. Let O represent the odometer group. Since O is a self-similar, self-replicating,

level-transitive subgroup of O and we have shown that O is not finitely constrained,

this result follows immediately from Theorem 4.4.10.

We will discuss other potentially interesting questions related to the computa-

tional aspects of finitely constrained groups in the next section.
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5. CONCLUSIONS AND FUTURE WORK

In the previous three sections, we have presented various aspects of finitely con-

strained groups and related topics. In this sections, we present several aspects of

this subject which remain to be explored.

In particular, we focus on questions related to the four major topics addressed

in this work. The first is the Hausdorff spectrum of topologically finitely gener-

ated, finitely constrained groups. The second is an understanding of the essential

pattern groups used to define finitely constrained groups. The final topic is the the-

ory of self-similar groups from the computational and symbolic dynamics point of

view, especially the relationship between various types of self-similar groups and tree

automata.

5.1 The Hausdorff spectrum of topologically finitely generated, finitely

constrained groups

In Section 2, we discussed the examples in the litertaure of topologically finitely

generated, finitely constrained groups with known Hausdorff dimension. In particu-

lar, we saw that the values 1− 2
2d−1 and 1− 3

2d−1 occur as the Hausdorff dimension of

topologically finitely generated, finitely constrained groups of binary tree automor-

phisms. Section 3 was dedicated to expanding the knowledge in this area. We also

showed that for any prime p and any k with 1 ≤ k ≤ pd−1 − 1, there does exist a

finitely constrained group of p-adic automorphisms with Hausdorff dimension k
pd−1 .

The construction produced groups which are not topologically finitely generated,

which naturally leads to the question of which values of Hausdorff dimension can

occur for a topologically finitely generated, finitely constrained group.

We addressed this question in Section 3. In particular, we showed that for an
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arbitrary prime p and pattern size d, there does not exist any topologically finitely

generated, finitely constrained group with Hausdorff dimension 1 − 1
pd−1 . We then

turned our attention to the case p = 2 and the next largest Hausdorff dimension

for groups defined by pattern size d, 1− 2
2d−1 . We showed that there are 22d−3 such

groups, and that their portraits form an abelian group under pointwise addition. We

showed that 2d−3 of these groups are not topologically finitely generated. For d ≥ 5,

we discussed examples (due to Bartholdi and Nekrashevych) of topologically finitely

generated, finitely constrained binary tree automorphisms defined by patterns of

size d and having Hausdorff dimension 1 − 2
2d−1 . We introduced another family of

examples satisfying the same properties. We concluded the section by giving other

new examples, verified computationally, finitely generated group whose closures are

finitely constrained and have Hausdorff dimension 9
16

and 5
16

, respectively.

The possible values of Hausdorff dimension which are actually known to occur

for a topologically finitely generated, finitely constrained group of binary tree auto-

morphisms is still very limited. This leads to the following questions.

Question 5.1.1. Which values can occur as the Hausdorff dimension of a topologi-

cally finitely generated, finitely constrained group of binary tree automorphisms?

Question 5.1.2. Are there other values of k besides 2d−1 − 1 such that k
2d−1 can

not occur as the Hausdorff dimension of a topologically finitely generated, finitely

constrained group with Hausdorff dimension d?

One initial approach would be to use the procedure discussed at the end of Sec-

tion 3 for finding examples computationally. Using GAP, one can produce examples

of finitely generated self-similar groups, and in certain circumstances these examples

can be shown computationally to have finitely constrained closures. The finitely

constrained groups of binary tree automorphisms defined by pattern size d ≤ 4 are
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completely understood through the work of Bondarenko and Samoilovych using a

mixture of theoretical work and computation. so a natural next step would be to

classify the topological finite generation and Hausdorff dimension for finitely con-

strained groups of binary tree automorphisms defined by patterns of size 5. Since

enumerating all subgroups of Aut(X [5]) is not feasible at the present time, studying

these groups will require an approach besides exhaustive enumeration of the possi-

bilities.

5.2 Essential pattern groups and finitely constrained groups

Our study of finitely constrained groups of large Hausdorff dimension in Section 3

relied on a complete description of the essential pattern groups which could be used

to define them. As we discussed in Section 3, the patterns of these groups for the case

p = 2 are easily visualized. Moreover, we could use a certain pattern structure to

prove that some finitely constrained groups were not topologically finitely generated.

At this moment, we are not sure how approachable is the task of classifying

all finite essential pattern groups. What combinatorial properties do their patterns

exhibit, and what relationship, if any, do these combinatorial properties have to

algebraic properties of the finite groups and topological properties of the finitely

constrained groups they define? This is an exceedingly broad question, so it seems

natural to begin by examining a few specialized classes. We defined full pattern

groups of size d and linearly constrained groups in Section 3, and the investigation

of these classes seems somewhat approachable. The full pattern groups of size d can

be investigated algebraically as extensions of one finite group by another, where the

isomorphism class of each finitely constrained group is known. Linearly constrained

groups are simple to understood both visually and algebraically, and classifying the

groups in this class would shed light on the general case.
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There is a lot of work left to do in this area. Recall that although we understand

all essential pattern groups of binary tree automorphisms with pattern size d which

define finitely constrained groups with Hausdorff dimension 1 − 2
2d−1 , we can only

determine for some of them whether or not the finitely constrained group they define

is topologically finitely generated. This leads to the following questions.

Question 5.2.1. For a given d, how many of the 22d−3 finitely constrained groups

of binary tree automorphisms with Hausdorff dimension 1 − 2
2d−1 are topologically

finitely generated?

Question 5.2.2. For a given d and a given k with 1 ≤ k ≤ 2d−1−1, how many essen-

tial pattern groups of binary tree automorphisms with pattern size d define finitely

constrained groups with Hausdorff dimension k
2d−1 ? How many of these essential

pattern groups are full pattern groups of size d? How many are linearly constrained?

Question 5.2.3. For any finite 2-group H, is there an essential pattern group P

isomorphic to H?

Question 5.2.4. For a given d, can we give any quantititative information about the

number of essential pattern groups of pattern size d? How does it grow asymptotically

as a function of d? Are upper and lower bounds attainable?

Again, any solutions to these questions seem likely to require tools from both the

theory of finite p-groups and self-similar groups.

5.3 Computational aspects of self-similar groups

As we discussed in both Section 2 and Section 4, the theory of self-similar groups

naturally overlaps with symbolic dynamics and computation on trees. In Section 4,

we discussed a hierarchy of tree languages, and gave examples of self-similar groups
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whose portraits fell into the various classes. It is fairly clear, however, that the ex-

amples we gave are not topologically finitely generated. This motivates the following

question.

Question 5.3.1. Is there an example of a topologically finitely generated self-similar

group whose portraits form a Rabin-recognizable language but do not form a Büchi-

recognizable language? Is there an example of a topologically finitely generated self-

similar group whose portraits form a sofic tree shift group, but do not form a Buchi

recognizable language?

Recall also that in Section 4, we are not able to say whether or not the class

of finitely constrained groups and the class of sofic tree shift groups coincide. This

question is very interesting to us.

Question 5.3.2. Does there exist a self-similar group whose portraits form a sofic

tree shift, but do not form a tree shift of finite type?

On a somewhat more concrete level, we recall also that in Section 4, we showed

that a sofic tree shift accepted by an unrestricted Rabin automaton with N states is

a finitely constrained group with patterns of size 2N −1. This suggests a connection

between pattern size and the number of states in an unrestricted Rabin automaton,

and we are interested in exploring this connection.

Question 5.3.3. Let G be a finitely constrained group defined by patterns of size d.

What is the smallest number of states (as a function of d) in an unrestricted Rabin

automaton A which accepts the portraits of G?

5.4 Conclusion

In this work, we have discussed self-similar groups and finitely constrained groups

from many different perspectives. We have tried to emphasize the connections be-
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tween these areas, as in our view these groups are interesting not only as profinite

groups, but also for their overlap with topics in finite groups, symbolic dynamics,

and the theory of computation. Although we have been able to answer some ques-

tions, it is clear that there is much left to do, and many interesting avenues for future

exploration.
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Algebra, pages 989–1112. North-Holland, 2003.

[11] L. Bartholdi and V. Nekrashevych. Iterated monodromy groups of quadratic

polynomials, I. Group Geom Dynam, 2(3):309–336, 2008.
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