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ABSTRACT 

 

 Popped sorghum (Sorghum bicolor, L. Moench) is becoming increasingly 

popular with niche consumers.  However, sorghum has not undergone the years of 

intensive selective breeding that popcorn has.  This study measured popping 

characteristics and grain traits to estimate heritability, the relative effect of environment 

and genotype x environment interactions on these traits and to identify quantitative trait 

loci (QTL) for popping quality.  Using a heated-air popping methodology, a recombinant 

inbred line population was phenotyped for popping characteristics in grain from three 

environments in Texas.  Entry-mean heritability of popping efficiency (PE) ranged from 

0.595 – 0.755 and the heritability of expansion ratio (ER) ranged from 0.617 – 0.769 

across environments.  ANOVA indicate that both environment and genotype x 

environment interactions were significant sources of variation.  Using genome sequence 

mapping technology, five QTL were identified for popping efficiency and four were 

identified for expansion ratio.  Additionally QTL for endosperm color, kernel diameter, 

kernel weight, and kernel hardness were found, and several of those were consistent 

across multiple production environments.  These results indicate that popping quality a 

complex quantitative trait in sorghum, but improvement of popping efficiency, 

expansion ratio, and other kernel characteristics via marker-assisted selection is possible. 
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NOMENCLATURE 

 

BLUP    Best Linear Unbiased Predictor 

CC    Corpus Christi, TX 

CIM    Composite Interval Mapping 

DG    Digital Genotyping 

ER    Expansion Ratio 

HW    Halfway, TX 

LOG    Log of Odds 

MAS    Marker Assisted Selection 

PCR    Polymerase Chain Reaction 

PE    Popping Efficiency 

QTL    Quantitative Trait Loci 

RIL    Recombinant Inbred Line 

SNP    Single Nucleotide Polymorphism 

WE    Weslaco, TX 
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1. INTRODUCTION  

 

1.1 Sorghum Background 

 

 As one of the most drought tolerant of all the cereal grain crops, sorghum 

(Sorghum bicolor L Moench) is a staple food crop for millions of people living in Africa 

and Asia, but is comparatively underutilized as a human food source in other regions 

(Taylor et al. 2006).  Traditionally used as animal feed in the United States, sorghum has 

become more popular as a food grain for several reasons. First, the identification of 

gluten intolerance has spurred an interest in gluten free grains.  Since sorghum is one 

such grain, it has gained market share where gluten-free foods are attractive to 

consumers (Taylor et al.  2006). Second, consumer demand for GMO food products has 

enhanced food sorghum because there are no GMO sorghums in production.  Finally, 

sorghum is an excellent source of many phenolic compounds, prized for its antioxidant 

content and usage in nutraceuticals and in functional foods (Dykes and Rooney 2006). 

Another potential niche market for the crop is popped sorghum, which is used primarily 

for the production of various confectionary treats. 

1.2 Popped Grains 

For as long as grain has been cultivated, a common method of processing has 

been popping.  The popcorn (Zea mays) we recognize today is the result of systematic 

selection and breeding which have been remarkably successful in improving popping 

quality traits in corn.  There are several of these quality traits that are critical to popcorn 

producers, including expansion ratio and popping efficiency (Song et al. 1991).  
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Commercial popcorn has a 95% or better popping efficiency as well as an excellent 

expansion ratio of 35:1 or more (Lyerly 1942; Pordesimo et al. 1991).   

Like corn, grain sorghum is known to pop as well.  While several studies have 

been conducted on the popping quality of sorghum, these studies have mostly evaluated 

varieties adapted and produced in Asia (Murty et al. 1982; Murty et al. 1988).  Reports 

of the popping quality of sorghums grown in the United States are very limited (Gaul 

and Rayas-Duarte 2008; Rooney and Rooney, 2013). The production and distribution of 

popped grain other than Zea mays is gaining increased interest with companies such as 

“Just Poppin®” and “Mini Pops®”, particularly those interested in appealing to niche 

consumers looking for something new to eat.  The primary focus for popped sorghum is 

now the production of treats in the form of cookies or bars; in fact, popped sorghum may 

even be superior for this purpose to popcorn due to its smaller size (Gaul and Rayas-

Duarte 2008). 

Reports on the popping ability of sorghum grain typically evaluate sorghum 

varieties and hybrids developed for other uses because there has not been any systematic 

breeding to improve the popping qualities of grain sorghum.  Popcorn has benefitted 

from years of careful selection for traits that improve popping quality, while studies 

focused on popped sorghum remain relatively scarce.   Rooney and Rooney (2013) 

reported that sorghum can have similar popping efficiency but a lower expansion ratio 

than popcorn and they also identified genotypes that have desirable popping 

characteristics (Rooney and Rooney 2013).  The ability to identify genotypes that are 

superior for the popping traits ensures that selection for those quality traits is possible; 
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however, it is also necessary that those traits be heritable.  Popping quality traits, such as 

expansion ratio, are strongly heritable in corn which serves as an excellent impetus to 

explore the same possibility in sorghum grain (Crumbaker et al. 1949).  Crumbaker et al. 

(1949) demonstrated that low popping volume was partially dominant over high popping 

volume and that there was a relationship between kernel starchiness and popping 

volume.   

1.3 Popping Mechanism 

There are numerous factors that may influence popping quality in grain and to 

understand these factors, it is important to understand the process itself.  Popping occurs 

when moisture in the center of the endosperm vaporizes and increases the pressure in the 

endosperm enough to rupture and burst the outer endosperm (Hoseney et al. 1983).   The 

composition of the endosperm is critical to the quality of the resulting popped grain 

(Pordesimo et al. 1991).  In corn, endosperm starch composition as well as pericarp 

thickness are both important factors; a thicker pericarp and thus greater kernel hardness 

is desirable (da Silva 1993).  Endosperm composed mostly of hard starch has superior 

popping efficiency to endosperm composed of softer starch in corn (Wilier 1927) and  

thicker pericarp was a strong predictor of expansion ratio in microwave popcorn 

(Mohamed et al. 1993).  Other physical characteristics that may affect popping quality 

include the type of endosperm and its structure and grain density.  Damage to individual 

kernels prior to popping can hinder the buildup of interior vapor pressure necessary to 

produce the rupture of the pericarp that would result in a desirable, fully popped kernel 
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(Singh et al. 1997).  As such, factors originating in the field such as grain weathering can 

also play a large role in the quality of the resulting popped grain. 

1.4 Heritability of Popping Quality 

Popcorn breeders have systematically improved popping quality over many 

years.  Improvement was possible because these traits were heritable to some extent 

(Crumbaker et al. 1949).  To improve sorghum for popping ability, it is important to 

assess the variation in popping efficiency and expansion ratio and determine if these 

traits are selectable. 

1.5 Quantitative Trait Loci 

If popping efficiency (PE) and expansion ratio (ER) are heritable in sorghum as 

they are in corn, a selective breeding approach for pop sorghum is needed that is similar 

to that used in popcorn.  In addition, breeding efficiency is increased when molecular 

tools are available; to that end, identifying QTL markers for PE and ER should improve 

the efficiency of a pop sorghum breeding program just as in maize (Collard et al. 2005; 

Lu 2003).  Previously, QTL have been identified for popping quality traits and related 

traits in maize (Lu 2003; Li 2007); and thus it is conceivable that a similar approach 

would be successful in sorghum.  Sorghum has a fully sequenced genome (Paterson et 

al. 2009), and sorghum improvement programs have benefitted greatly from advances in 

genotyping technology.  One of the newest and most effective techniques is that of 

digital genotyping (DG).  This technique can be used to quickly generate very accurate 

genotyping data which can then be used for a wide variety of analyses, including QTL 

mapping (Morishige et al. 2013).  This DG technology was used in conjunction with a 



 

5 

 

 

standard QTL mapping methodology in order to identify regions of the genome that 

affect PE and ER in sorghum. 

Rooney and Rooney (2013) identified two lines that differed for popping ability.  

These lines were similar in lineage to RTx430 and Sureño (Rooney, personal 

communication) for which an RIL population has been developed and used to map grain 

mold resistance in sorghum (Klein et al. 2001).  Due to the large differences between the 

two parents of this RIL population, which were Sureño (Meckenstock et al. 1993) and 

RTx430 (Miller 1984), progeny were expected to segregate for many traits of interest 

including PE and ER (Rodriguez-Herrera 2001).   

Within this context, the goal of this study was to investigate the genetic and 

environmental factors that affect and/or are associated with popping of grain sorghum.  

Specifically, the objectives of this study were: (1) to determine the relative genetic and 

environmental factors affecting the heritability of popping efficiency and expansion ratio 

and related traits in sorghum; and (2) to identify QTL associated with popping 

efficiency, expansion ratio and related traits in grain sorghum.  Information on the 

relative heritability of these traits and available QTL markers can be used to bolster the 

effectiveness of a popping quality improvement program (Collard et al. 2005). 
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2.  HERITABILITY OF POPPING CHARACTERISTICS IN SORGHUM GRAIN 

 

2.1 Introduction 

As one of the most drought-tolerant of all the cereal grain crops, sorghum 

(Sorghum bicolor L Moench) is a staple food crop for millions of people living in Africa 

and Asia, but is comparatively underutilized as a human food source in other production 

regions (Taylor 2006).  Traditionally used as animal feed grain in the United States, food 

grade sorghum is becoming more popular for several reasons. Sorghum is gluten free, 

making it desirable in the gluten-free food market (Taylor 2006). Second, consumer 

demand for GMO food products has enhanced food sorghum because there are no GMO 

sorghums in production.  Finally, sorghum is an excellent source of many phenolic 

compounds, prized for its antioxidant content and usage in nutraceuticals and in 

functional foods (Dykes and Rooney 2006).   

Another potential niche market for the crop is popped sorghum, which given its 

size has application in various confectionary treats. The production and distribution of 

popped grain other than Zea mays is gaining increased interest with companies such as 

“Just Poppin®” and “Mini Pops®”, particularly those interested in appealing to niche 

consumers looking for something new to eat.  The primary focus for popped sorghum is 

now the production of treats in the form of cookies or bars; in fact, popped sorghum may 

even be superior for this purpose to popcorn due to its smaller size (Gaul and Rayas-

Duarte 2008). 

  For as long as grain has been cultivated, a common method of processing has 

been popping.  The popcorn (Zea mays) we recognize today is the resulted for systematic 
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selection for popping efficiency and eventually expansion ratio.  Once breeding 

techniques were developed, these programs have been remarkably successful in 

improving popping quality traits in corn (Song et al., 1991).  Popcorn produced and 

processed today has at least a 95% or better popping efficiency (PE) as well as an 

excellent expansion ratio (ER) of at least 35:1 or greater (Lyerly 1942; Pordesimo et al. 

1991).   

Several studies have been conducted on the popping quality of sorghum, but 

these studies have mostly evaluated Asian varieties (Murty et al. 1982; Murty et al. 

1988).  In Murty et al. (1988), it was determined that ER was governed by both 

dominance and additive gene effects and that there were also significant dominance x 

dominance interaction effects involved.   Any reports of the popping quality of sorghums 

grown in the United States are very limited (Gaul and Rayas-Duarte 2008; Rooney and 

Rooney, 2013). Gaul and Rayas-Duarte (2008) demonstrated that sorghum with a thicker 

pericarp had a superior PE and ER.  Rooney and Rooney (2013) reported that sorghum 

can have similar PE but a lower ER than popcorn.  It was also possible to identify 

genotypes that have desirable popping characteristics (Rooney and Rooney 2013).   

There are numerous factors that may influence PE and ER in grain sorghum 

based on knowledge from popcorn studies (Karababa 2006).  To understand these 

factors, it is important to understand the process itself.  In any cereal grain, popping 

occurs when moisture in the center of the endosperm vaporizes and increases the 

pressure in the endosperm enough to rupture and burst the outer endosperm (Hoseney et 

al. 1983).   The composition of the endosperm is critical to the quality of the resulting 
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popped grain (Pordesimo et al. 1991).  Endosperm starch composition as well as pericarp 

thickness are both important factors; a thicker pericarp and thus greater kernel hardness 

is desirable (da Silva 1993).  Endosperm composed mostly of hard starch has superior 

popping capacity compared to endosperm composed of softer starch in corn (Wilier 

1927).  In addition, thicker pericarp has been a strong predictor of expansion ratio in 

microwave popcorn (Mohamed et al. 1993).  Other physical characteristics that may 

affect popping quality include the type of endosperm and its structure and grain density.  

Damage to individual kernels prior to popping can hinder the buildup of interior vapor 

pressure necessary to produce the rupture of the pericarp that would result in a desirable, 

fully popped kernel (Singh et al. 1997).  As such, factors originating in the field such as 

grain weathering can also play a large role in the quality of the resulting pop sorghum. 

Given the lack of market, breeding for popping sorghum has been limited.  Most 

research has evaluated sorghum varieties and hybrids developed for other uses. Popcorn 

has benefitted from years of careful selection for traits that improve popping quality, and 

it is logical to assume that the same would happen with sorghum.  The ability to identify 

genotypes that are superior for the popping traits ensures that selection for those quality 

traits is possible; however, it is also necessary that those traits be heritable.  Popping 

quality traits, such as expansion ratio, are strongly heritable in corn which serves as an 

excellent impetus to explore the same possibility in sorghum grain (Crumbaker et al. 

1949). 
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The objectives of this study are: (1) to assess the relative effects of genotype, 

environment and genotype x environment on the popping characteristics of sorghum 

and; (2) to determine the heritability of these popping characteristics.   

2.2 Materials and Methods 

2.2.1 Plant Germplasm 

 

A recombinant inbred line (RIL) population of 130 entries was derived from the 

cross of Sureño x RTx430 (Rodriguez-Herrera et al., 2000).  Sureño has a pedigree of 

[(SC423 x CS3541) x E35-1]-2 and was released for its superior grain quality and grain 

weathering characteristics (Meckenstock et al., 1993).  RTx430 has a pedigree of 

(Tx2536 x SC170-6-5-1)-10-4-4-1-4 and was released based on its excellent general 

combining ability in hybrids and disease resistance (Miller, 1984).  Previous work by 

Rooney and Rooney (2013) described differences in popping quality between derivatives 

of Sureño (Meckenstock et al. 1993) and Tx430 (Miller 1984); with Sureño and RTx430 

derivatives having good and poor popping characteristics respectively.   

The 130 RILs and the parents were planted in replicated trials in three locations 

(Weslaco, Corpus Christi, and Halfway, Texas) in 2012.  The test was planted in a 

randomized complete block design (RCBD) layout.  Plants grown in the Corpus Christi 

(CC) environment were grown in Orelia clay loam with the following rainfall: March = 

3.43 cm, April = 6.55 cm, May = 7.49 cm, June = 3.91 cm, and July = 3.40 cm.  Plants 

grown in the Halfway (HW) environment were grown in Pullman clay loam with the 

following rainfall: May = 2.69 cm, June = 8.53 cm, July = 1.22 cm, August = 2.18 cm).  

Plants grown in the Weslaco (WE) environment were grown in Hidalgo sandy clay with 

the following rainfall: February = 7.01 cm, March = 1.02 cm, April = 0.43 cm, May = 
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4.55 cm, June = 1.47 cm).  Standard agricultural practices for sorghum grain were used 

in each location.   

2.2.2 Phenotypic Trait Evaluation 

 

Data was collected in the field for several agronomic traits that could influence 

grain quality.  Days to flowering was recorded as the number of days from planting to 

when 50% of the plants reached mid-anthesis.  Plant height (cm) was measured as the 

distance from the tip of the panicle to the base of the plant and it was recorded just prior 

to harvest.  Grain weathering is a subjective visual rating of the damage caused to grain 

due to exposure to the environment (i.e., insects, pathogens, and climate) (Williams and 

Rao 1981; Rodriguez-Herrera et al. 2000; Klein et al. 2001).  This measurement was 

before the grain was harvested, with a rating of 1 corresponding to clean grain with no 

weathering and a 9 corresponding to grain that was completely weathered and/or 

destroyed. 

In each environment, grain was harvested soon after black layer (physiological 

maturity) to minimize the effect of post-maturity grain weathering.  From each plot a 

minimum of five panicles were harvested from each experimental unit and if the panicles 

were small, additional panicles were harvested to ensure large enough grain quantity.   

These panicles were then threshed in bulk using a single head thresher (Alamaco) that 

used AC/DC power.  To remove any remaining glumes or panicle residue, the grain was 

cleaned using a Wintersteiger LD180 (Wintersteiger Ag; Ried, Austria).  The threshed 

and cleaned grain was packaged and stored at 10° C. 
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The grain was evaluated for several traits.  To estimate starch, fat, ash, protein 

and fiber concentrations, unprocessed grain samples from each entry in each location 

were scanned using a FOSS XDS NIR system and the scans were converted to percent 

estimates of each compound using standards developed by the Texas A&M Agrilife 

Sorghum Improvement laboratory.    Since RTx430 (yellow) and Sureño (white) differed 

for endosperm color, a subjective visual rating (1, white to 9, yellow) for endosperm 

color was taken to accompany the results of the colorimetry process.  Kernel hardness 

was measured using a Single Kernel Hardness Tester, model 4100 (Perten Instruments) 

where 300 individual kernels were crushed separately, calculating a mean and standard 

deviation.   The machine also took measurements of individual kernel weight and 

diameter which were also used for correlation analyses.  

Popping quality for each entry was measured by estimating both PE and ER.  A 

set of modified heated air poppers (Presto 04821) were outfitted with steel wire mesh to 

keep the sorghum kernels from being ejected during the popping process.   Each 

experimental unit was popped twice using two different poppers and each replication 

was blocked according to their respective air poppers to partition the effect of the 

individual poppers into the replication effect.  While optimum moisture content for 

popping in Zea mays is about 14-16% moisture (Gökmen 2004) and Rooney and Rooney 

(2013) adjusted moisture content of their samples to 15%, it was not feasible to adjust 

moisture content due to the sample numbers and size of the popped sample.  Samples 

that were popped in this study averaged 11% moisture with a range from 10-12% 

moisture content.   
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For each test pop, 500 seed were counted using an OLD MILL electronic seed 

counter Model 850-3.  Prior to popping sample seed volume (mL) was measured using a 

graduated cylinder and the weight of the grain was measured in grams.  Each sample 

was placed in the popper which was run for 2 minutes and 15 seconds which was 

determined to be the optimum time for popping.  Immediately after popping, the sample 

was poured onto a 4.7 mm sieve and shaken.  Any kernels that fell through the sieve 

were considered un-popped kernels and any that remained on the sieve were considered 

popped kernels.  The volume of the popped fraction was measured in a graduated 

cylinder.  The un-popped kernels were collected and recounted using the OLD MILL 

electronic seed counter Model 850-3.   

Using information collected, popping efficiency (PE) was calculated as the 

percentage of popped kernels divided by the total kernels popped (500).  Popping 

efficiency was calculated using the formula: 
(500−𝑈𝑃𝐾)

500
= 𝑃𝐸 where UPK is the number of 

unpopped kernels remaining after popping.  Expansion Ratio is a ratio of the volume of 

the popped grain divided by the volume of the unpopped grain and was calculated using 

the original volume (mL) of 500 seed (UPV) and the popped volume (mL).  The formula 

for Expansion Ratio is  
(𝑃𝑉)

𝑃𝐸∗𝑈𝑃𝑉
= 𝐸𝑅.   

2.2.3 Statistical Analysis 

Data analysis was conducted using SAS 9.2 software.  All dependent variables 

were analyzed by environment using an all random model of Ƴ = αi + β(α)ij + ƴk + αƴik + 

δ(β x α)lij,+ ε where α= environments (i = 1, 2, 3), β = repetitions (j = 1, 2),  ƴ = 
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genotypes (k = 1… 130), δ = poppers (l = 1, 2), and ε = error.  Variance components 

were estimated from this analysis to calculate Heritability (H2) on an entry mean basis 

using the formula  ℎ2 =
𝜎𝐺

2

𝜎𝑝
2 .  A Bartlett’s test of Homogeneity detected significant 

variation among error terms from the individual environments, but transformation failed 

to reveal a means of adjusting to the data to eliminate this problem and there was no 

phenotypic reason.  Variance components were estimated from these analyses to 

calculate broad-sense Heritability (H2) on an entry mean basis using the formulas    

 ℎ2 =
𝜎𝐺

2

𝜎𝑝
2  and H2 = 

𝜎𝑔
2

 𝜎𝑔
2 +  

𝜎𝑔𝑥𝑒
2

𝑒
 +  

𝜎𝑒
2

𝑟𝑒

.  Additionally, confidence intervals were calculated for 

these heritability estimates using the procedure described by Knapp et al. (1985).  As 

appropriate, PROC CORR was also used to determine the relationship between the traits 

and examine them for correlations to popping quality.   

2.3 Results and Discussion 

2.3.1 Population Means and Variation 

 

 The RIL population segregated for all traits evaluated as did RTx430 and Sureño 

(Table 1).   Interestingly, the mean PE for Sureño was actually lower in two of the 

locations (Corpus Christi and Halfway) than the RTx430 parental line.  This is contrary 

to prior reports of derivatives of Sureño that were superior to RTx430 derivatives for PE 

(Rooney and Rooney, 2013).  While Sureño exhibited worse PE in two locations than 

RTx430, it performed much better in the other location (Weslaco).  There are two 

possible explanations.  First, Rooney and Rooney (2013) reported on derivatives of 

Tx430 and Sureño so there may be inherent differences from those lines to the lines 
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tested herein.  Second, RTx430 has larger seed size and if the grain split during the 

popping process, the grain was large enough that these lightly popped kernels had 

expanded enough to stay above the sieve.  If this were the case, the ER would be reduced 

in RTx430 and this was observed as Sureño had consistently higher ER than RTx430 

across all environments (Table 1).   For both traits, there was a high degree of 

transgressive segregation in the progeny (Table 1).  For the agronomic, kernel and 

composition traits, differences as expected between the parents were detectable (ie, plant 

height, kernel diameter, and endosperm color) and the RIL population means were 

between the parents with transgressive segregation present for every measured trait with 

the exception of many of composition traits.  For several of these, the RIL means were 

actually higher than either parent although individual RILS were lower than the lowest 

parent in all cases (Table 1).  In many cases, there were no differences between the two 

parents indicating a minimal range which would allow the RIL progeny to differ from 

midparent values.     

2.3.2 Analyses of Variance 

Significant differences due to genotypes were detected for every measured trait 

in the combined analysis (Table 2).  In addition, environment and genotype x 

environment interactions were significant and had larger relative effects than genotype 

for all traits except moisture (Table 2).  Because grain samples were harvested and 

allowed to dry prior to analysis, the samples simply equilibrated to a standard moisture 

level for grain which is approximately 11%.  Thus, no differences in moisture were 

expected even though genotypes may have differed at harvest.  Overall, 
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Table 1: Summary of Population Means.  Summary of population means obtained from a population of 

RILs derived from a cross between Sureño x RTx430.  Three locations were recorded (CC, HW, and WE 

in Texas).  The mean for the two parents and their progeny are shown, as well as the range for the progeny 

from lowest to highest value.  Means followed by the same letter are not significantly different by Tukey’s 

test (p < 0.05). 

 

 

Trait Line CC HW WE

Popping Efficiency (%) Tx430 45.6 A 57.4 A 30.2 A

Sureño 39 A 29.9 B 49.4 B

RIL 44.9 (12.6 - 83.7) A 61.3  (24.7 - 87.9) A 48.5 (6.1 - 80.3) B

Expansion Ratio (x : 1) Tx430 4.8 A 5.7 A 3.9 A

Sureño 9.3 B 10.6 B 9.5 B

RIL 7.6 (4.8 - 13.2) B 8.3 (4.9 - 12.8) B 7.3 (2.9 - 12.2) C

Plant Height (cm) Tx430 100.3 A 103.6A 115.6 A

Sureño 151.1 B 139.7 B 195.1 B

RIL 128.5 (78.7 - 188.0) AB 122.2 (73.7 - 174.0) AB 160.5 (85.1 - 234.5) B

Test Weight (g / mL) Tx430 0.69 A 0.69 A 0.69 A

Sureño 0.78 B 0.77 B 0.82 B

RIL 0.76 (0.57 - 0.79) B 0.74 (0.67 - 0.79) B 0.78 (0.60 - 0.84) B

Flowering Date Tx430 67.3 AB 72.8 A 87.3 A

Sureño 76.5 A 90.5 B 86.5 A

RIL 68.3 (56.5 - 81.0) B 77.7 (70.5 - 90.5) C 83.5 (71.0 - 91.5) A

Grain Mold Tx430 4.0 AB Not Scored 5.8 AB

Sureño 2.5 A Not Scored 2.0 A

RIL 3.9 (2.5 - 6.0) B Not Scored 3.7 (2.0 - 6.5) B

Endosperm Color Tx430 7.5 A 8.5 A 6.0 A

Sureño 1.3 B 2 B 1.8 B

RIL 4.7 (1.0 - 9.0) C 4.0 (1.0 - 9.0) B 4.5 (1.0 - 8.0) C

Kernel Weight (mg) Tx430 34.1 A 35.3 A 27.06 A

Sureño 22.6 B 24.8 B 27.8 A

RIL 26.8 (20.6 - 35.2) B 29.9 (21.5 - 39.2) B 28.9 (18.8 - 40.4) A

Kernel Diameter (mm) Tx430 3.0 A 2.9 A 2.6 A

Sureño 2.4 B 2.4 B 2.6 A

RIL 2.6 (2.2 - 3.0) B 2.7 (2.4 -3.1) B 2.7 (2.3 - 3.2) A
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Table 1 continued. 

 

 

 

 

 

 

moisture equilibration was probably beneficial to the study as moisture is important in 

popping quality and was effectively removed as a confounding variable. 

Trait Line CC HW WE

Kernel Hardness Tx430 69.6 A 73.9 A 64.9 A

Sureño 97.2 A 96.8 B 95.3 B

RIL 78.1 (44.5 - 101.0) A 75.9 (27.3 - 98.7 ) A 78.5 (20.3 - 100.6) AB

Fat Tx430 2.19 A 2.34 AB 2.75 AB

Sureño 2.29 AB 1.89 A 2.56 B

RIL 2.37 (1.71 -2.84) B 2.28 (1.64 - 2.84) B 2.93 (1.85 - 3.69) A

Fiber Tx430 1.83 A 1.59 A 1.83 AB

Sureño 1.94 A 1.52 A 1.97 A

RIL 1.84 (1.54 -2.08) A 1.79 (1.65 - 2.00) A 1.85 (1.58 - 2.05) B

Ash Tx430 1.33 A 1.39 A 1.24 A

Sureño 1.40 A 1.69 A 1.32 A

RIL 1.36 (1.28 - 1.44) A 1.38 (1.29 - 1.45) A 1.29 (1.15 - 1.42) A

Starch Tx430 64.87 A 66.18 A 65.57 A

Sureño 64.59 A 66.31 A 65.21 A

RIL 65.08 (63.40 - 66.31) A 66.01 (64.42 - 67.64) A 66.03 (63.7 - 68.5) A

Protein Tx430 12.49 A 10.93 A 11.36 A

Sureño 13.66 A 11.71 A 12.52 A

RIL 12.87 (10.02 - 14.91) A 11.18 (9.85 - 12.42) A 11.19 (7.8 - 14.1) A

Moisture Tx430 12.11 A 11.87 A 10.89 A

Sureño 11.23 B 11.71 A 10.43 A

RIL 11.42 (9.55 - 12.41) B 11.85 (10.78 - 12.87) A 10.99 (8.7 - 12.2) A
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In popcorn, PE and ER are influenced by numerous factors such as kernel size, 

kernel weight, and other similar traits (Karababa 2006).  Each of these traits are 

influenced by environmental factors like those seen in this study.  Specifically, the HW 

environment was superior to the other two environments for both PE and ER in 

sorghum.  Thus, the production environment remains the largest single effect on grain 

sorghum popping traits.  In comparison of the relative magnitude of the genotype and 

genotype x environment effect, the genotype effect was roughly twice that of the GxE 

effect.  This is comparable to reports from other studies and indicates a trait that will 

likely be responsive to selection but with care to identify optimum environments for 

specific genotypes.   
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Table 2: Analysis of Variance.  Analysis of Variance (ANOVA) for various grain quality traits taken from a population of 

RILs derived from a cross between Sureño x RTx430.  These Mean Square (M.S.) values were calculated after combining the 

phenotypic data across three environments (CC, HW, and WE in Texas). 

 

 * significant at p < 0.05    
** significant at p < 0.01     

*** significant at p < 0.00

Source D.F. Test Weight Seed Diameter Kernel Hardness Plant Height Flowering Date Endosperm Color

Rep (Environment) 3 17.705** 0.0409** 81.413 120.861*** 63.611*** 53.496***

Environment 2 592.347*** 0.8519*** 347.537*** 16424.422*** 14607.206*** 2.0366

Genotype 124 18.668*** 0.0818*** 361.440*** 593.228*** 75.693*** 8.9497***

Genotype*Environment247 4.810* 0.0132** 84.871*** 54.448*** 18.983*** 1.9739***

Error 353 3.935 0.0096 37.008 15.992 10.698 1.2913

R
2

0.775 0.854 0.872 0.953 0.917 0.792

C.V. (%) 3.355 3.667 7.859 7.401 4.274 25.314

Source D.F. Fat Fiber Ash Starch Protein Grain Mold

Rep (Environment) 3 0.0291 0.0155* 0.0155*** 0.8576 1.1476 0.3527

Environment 2 31.268*** 0.2128*** 0.4943*** 68.756*** 222.497*** 53.8245***

Genotype 124 0.2135*** 0.0216*** 0.0053*** 1.747*** 2.243*** 1.7789***

Genotype*Environment247 0.1019*** 0.0110*** 0.0029** 1.0192*** 1.297*** 1.1046*

Error 353 0.0508 0.0055 0.0021 0.5023 0.614 0.809

R
2

0.864 0.754 0.764 0.773 0.828 0.677

C.V. (%) 8.356 4.05 3.398 1.079 6.659 24.867
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Table 3: Analysis of Variance (Popping Traits).  Analysis of variance table containing mean 

squares (M.S.) for both popping quality traits.  These values were obtained via a combined 

analysis across all three locations used in the study (CC, HW, and WE in Texas).   

 

* significant at p < 0.05 

** significant at p < 0.01 

*** significant at p < 0.001 

 

 

 

2.3.3 Heritability Estimates 

 Heritability across all traits ranged from a low of 0.687 to a high of 0.908 (Table 

4).  As expected, heritability of plant height was very high.  For flowering date, H2 

estimates were moderately high but lower than plant height (Table 4).  The genetic basis 

for both traits are well established and these estimates are consistent with expectations.    

Broad-sense heritability estimates were moderate to high for both PE and ER (Table 4).  

Previous studies in maize have concluded that popping quality is highly heritable within 

popcorn (Crumbaker et al. 1949; Robbins and Ashman 198).  The actual popping quality 

of any given line can easily increase or decrease depending on the location in which it is 

Source D.F. Popping Efficiency Expansion Ratio

Rep (Environment) 3 0.4746*** 12.0105**

Popper(Rep*Environment) 6 0.0767*** 7.6766*

Environment 2 3.2656*** 110.1905***

Genotype 124 0.1549*** 20.6405***

Genotype*Environment 246 0.0472*** 6.5908***

Error 1003 0.01282 2.9701

R
2

0.755 0.602

C.V. (%) 21.951 22.068
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grown, and improvement can easily be more or less difficult for varying populations 

depending on the environment in which the improvement is attempted.  Despite these 

potential caveats, it is clear that the popping traits were heritable within this population.   

Heritabilities for kernel traits were relatively high, indicating selection for these traits 

should be effective.  Heritability estimates have been moderate to high for kernel 

characteristics such as hardness, seed size, and seed weight in other studies in sorghum 

grain (Voigt et al. 1966; Ibrahim et al. 1985). 

 

 

 

Table 4: Entry Mean Heritability Estimates. Entry-mean heritability (H2) estimates for various popping 

and popping-related traits.  Confidence intervals are provided in parenthesis (0.05 – 0.95).  These values 

were calculated using phenotypic traits taken from a population of RILs derived from a cross between 

Sureño x RTx430.  Heritability estimates were calculated across three environments (CC, HW, and WE in 

Texas). 

 

  

Heritability (H
2
)

Expansion Ratio 0.704 (0.617 - 0.769)

Popping Efficiency 0.687 (0.595 - 0.755)

Test Weight 0.765 (0.696 - 0.816)

Endosperm Color 0.807 (0.751 - 0.849)

Plant Height 0.908 (0.880 - 0.928)

Flowering Date 0.739 (0.662 - 0.796)

Kernel Hardness 0.766 (0.696 - 0.817)

Kernel Diameter 0.838 (0.789 - 0.874)

Kernel Weight 0.868 (0.829 - 0.897)
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2.3.4 Correlation Analysis 

 Significant correlations were detected between various grain quality traits and 

popping traits in this population, but no single correlation was completely predictive of 

popping quality (Table 5).  The correlation between ER and PE (r=.0.46) was significant, 

but not as strong as that reported by Rooney and Rooney (2013).  In comparison, this 

study evaluated a much larger set of germplasm.   Other traits involved in significant 

correlations included test weight, endosperm color, fat content, ash, starch, protein, 

kernel hardness, kernel diameter, and kernel weight.  Endosperm color was negatively 

correlated with both PE and ER meaning that genotypes with a more yellow endosperm 

tended to have lower PE and ER.  This is because higher color scores corresponded to 

yellower endosperm.  While this fits with the parental observations, it does not 

necessarily indicate that all yellow endosperm genotypes have low potential popping.   

A strong positive correlation between popping characteristics and both kernel 

weight and diameter, indicates that larger kernels have better popping characteristics.  

This is despite the fact that the parent with larger kernel diameter was Tx430 which is 

the poorer popping line.  In maize, the relationship between kernel diameter or kernel 

size and popping quality has been inconsistent with independent studies reporting 

positive and negative correlations as well as a lack of any correlations at all between the 

traits (Lin and Anantheswaran 1988; Pordesimo et al. 1991; Allred-Coyle et al. 2000; 

Tian et al. 2001; Ceylan and Karababa 2002; Karababa 2006).  Karababa (2006) 

reconcile this inconsistency in corn with the conclusion that there is middle range for 

kernel size that is most suitable for popping in corn.  It remains to be seen if the same is 
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observed in sorghum.   Kernel hardness had a positive correlation (Table 5) with both 

popping traits, but its correlation was not as strong as that reported in popcorn (da Silva 

1993).  This indicates that a line with both large seed size and high seed weight would be 

optimal, assuming that the phenotyping method effectively adjusts for seed size if 

screens are used to quantify PE.    Given the absence of a single correlation that is 

predictive, a series of correlative traits might aid in selection. 

 

 

 

Table 5: Pearson’s Correlation Coefficients.  Pearson’s correlation coefficients for various popping and 

popping related traits.  These values were calculated using measurements obtained from a RIL population 

derived from a cross between Sureño x RTx430.  Data was combined across three locations (CC, HW, and 

WE in Texas) 

 

* significant at p < 0.05 

** significant at p < 0.01 

*** significant at p < 0.001 

Popping Efficiency Expansion Ratio

Table 5

Popping Efficiency 1.0000 0.4584***

Expansion Ratio 0.4584*** 1.0000

Test Weight 0.1331** 0.1686***

Plant Height 0.0503 0.0779*

Grain Mold -0.1592** -0.1543**

Endosperm Color -0.2407** -0.2218***

Fat -0.1924*** -0.0753*

Fiber 0.0229 0.0324

Ash 0.1635*** 0.0098

Starch 0.1535*** -0.0119

Protein -0.2138*** 0.0461

Kernel Hardness 0.1152** 0.1759***

Kernel Diameter 0.4237*** 0.0328

Kernel Weight 0.3466*** -0.0587
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2.3.5 Top Performing RILS 

 Several of the RILs used for this heritability study demonstrated improved PE, 

ER and agronomic combinations and would be candidates for selection for popping 

(Table 1, Table 6).  For PE, RIL 065 was a consistently good performance in in every 

environment, and was the top performing line in HW (Table 6).  Other excellent RILs 

were RIL 107, RIL 139, RIL 121 and RIL 103 (Table 6).  For ER, RIL 065 was in the 

top 10% across environments, but was not the best in any environment (Table 6).  RIL 

017 also stands out as an excellent line that performed well in every environment, even 

performing the best in WE (Table 6).  Other notable lines include RIL 081, RIL 094, 

RIL 070, RIL 129, and RIL 075 (Table 6).   In the WE environment the Sureño parent 

performed better than many of the RILs, in contrast to the population’s otherwise large 

amount of transgressive segregation (Table 1, Table 6).   
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Table 6: Top Ten Performing RILs. Top ten performing RILs from a population 

derived from a cross between Sureño x RTx430.  Three environments are represented, 

CC = Corpus Christi, HW = Halfway, and WE = Weslaco in Texas. 

 

 

 

 

2.4 Conclusions 

 

 There have been relatively few reports on the popping quality of grain sorghum 

or potentially related kernel characteristics.  This study evaluated the heritability of the 

two main popping traits valued by popcorn breeders in sorghum.  Popping quality traits 

CC HW WE

Popping Efficiency RIL 103 (0.84) RIL 065 (0.88) RIL 129 (0.80)

RIL 139 (0.78) RIL 121 (0.87) RIL 065 (0.79)

RIL 107 (0.77) RIL 107 (0.86) RIL 019 (0.77)

RIL 027 (0.75) RIL 035 (0.84) RIL 139 (0.76)

RIL 065 (0.75) RIL 023 (0.81) RIL 103 (0.75)

RIL 069 (0.73) RIL 137 (0.81) RIL 031 (0.74)

RIL 035 (0.69) RIL 098 (0.81) RIL 117 (0.73)

RIL 074 (0.68) RIL 019 (0.80) RIL 124 (0.72)

RIL 091 (0.67) RIL 092 (0.79) RIL 028 (0.71)

RIL 050 (0.66) RIL 135 (0.79) RIL 121 (0.71)

Expansion Ratio RIL 081 (13.18) RIL 070 (12.77) RIL 017 (12.22)

RIL 094 (12.58) RIL 129 (12.51) RIL 075 (11.67)

RIL 065 (12.02) RIL 017 (11.92) RIL 010 (11.64)

RIL 042 (10.88) RIL 065 (11.73) RIL 119 (11.64)

RIL 103 (10.86) RIL 023 (11.06) RIL 086 (11.60)

RIL 129 (10.72) RIL 019 (11.01) RIL 093 (11.09)

RIL 017 (10.71) RIL 106 (10.97) RIL 065 (10.67)

RIL 139 (10.17) RIL 119 (10.65) RIL 135 (10.47)

RIL 053 (10.06) RIL 075 (10.59) RIL 139 (10.14)

RIL105 (9.86) RIL 032 (10.48) RIL 082 (9.97)
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in sorghum strongly are influenced heavily by genotype, environment and genotype x 

environment interactions.  Even so, these traits are moderately to highly heritable within 

this population, even across three diverse environments within Texas.   

While is it apparent that many traits influence popping characteristics, there is no 

single trait that that effectively predicts PE or ER in a given line.  While some 

characteristics found to correlate with popping quality in popcorn correlate comparatively 

in sorghum others do not.  Regardless, the results herein indicate that sorghum lines with 

improved popping quality can be developed via selective breeding.  In fact, several of the 

RILs used for this study would serve as excellent candidates toward improvement of the 

trait.  RIL065 is one such candidate as it had very high PE and ER when compared to the 

rest of the population and, in addition, had excellent stability as it performed well in all 

three environments.   
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3. QUANTITATIVE TRAIT LOCI FOR POPPING CHARACTERISTICS AND 

KERNEL CHARACTERISTICS IN SORGHUM GRAIN 

 

3.1 Introduction 

As one of the most drought-tolerant cereal grain crops, sorghum (Sorghum 

bicolor L Moench) is one of the staple food crops for millions of people in Africa and 

Asia.  In other regions of the world, it is utilized primarily as a feed grain and forage 

with food grain as a niche market (Taylor 2006).  In the US, it is becoming more 

common in human diets for several reasons.  First, sorghum is high in antioxidant 

content and can be used as a functional ingredient in many foods (Dykes and Rooney 

2006).  Second, the absence of gluten in sorghum has increased its use in gluten-free 

products and diets (Taylor 2006).  Finally, the absence of commercial GMO sorghums is 

appealing to those consumers who wish to avoid consumption of GMO products.     

Another potential niche market for sorghum is as a popped grain, particularly 

when used in the production of confectionary foods.  Modern breeding programs have 

been incredibly successful in improving popping traits in maize (Zea mays).  While 

popcorn now has a 95% or better popping efficiency, or PE, and an excellent expansion 

ratio, or ER (Lyerly 1942; Pordesimo et al. 1991), very few studies have been conducted 

on popping quality in sorghum grown within the United States (Gaul and Rayas-Duarte 

2008;  Rooney and Rooney 2013).   Rooney and Rooney (2013) demonstrated that it is 

possible to identify those genotypes of sorghum which have desirable popping 

characteristics.   
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There are multiple key factors that influence popping quality in sorghum grain.  

An understanding of the popping process itself is vital if these factors are to be put into 

perspective.  Popping occurs when moisture in the center of the endosperm vaporizes 

and increases the pressure in the endosperm enough to rupture and burst the outer 

endosperm (Hoseney et al. 1983).  The starch composition of the endosperm as well as 

the thickness of the pericarp are both integral to popping quality.  Thicker endosperms, 

and thus greater kernel hardness, are most desirable for popcorn producers (da Silva 

1993).  

To improve popping quality in sorghum, a selective breeding approach similar to that 

used in popcorn is necessary.  Breeding efficiency is increased when molecular tools are 

available; to that end, identifying QTL markers for PE and ER will improve the 

efficiency of a pop sorghum breeding program (Lu 2003; Collard 2005).  QTL have been 

identified for popping quality traits and related traits in maize (Lu et al. 2003).  Li et al. 

(2007) detected six QTL accounting for 54.0% of the total phenotypic variance in 

popping volume; five QTL accounting for 39.1% of the total phenotypic variance were 

found for popping rate.  Lu et al. (2003) identified four QTL explaining 45.0% of the 

phenotypic variation for expansion volume in a popcorn x dent cross, analogous to 

expansion ratio in this study.  Both of these studies demonstrate it is possible to find 

QTL for popping traits in corn and, thus, it is conceivable that a similar approach may be 

successful in sorghum. 

Sorghum has a fully sequenced genome (Paterson et al. 2009), and sorghum 

improvement programs have benefitted greatly from advances in genotyping technology.  
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One of the newest and most effective techniques is that of digital genotyping.  This 

technique can be used to quickly generate very accurate genotyping data which can then 

be used for a wide variety of analyses, including QTL mapping (Morishige et al. 2013).  

This DG technology was used in tandem with a standard QTL mapping methodology in 

order to identify regions of the genome that affect PE and ER in sorghum. Within this 

context, the objective of this study is to identify QTL for popping characteristics and 

kernel composition traits that might be associated with popping quality.  Once identified, 

these QTL markers can be evaluated to determine if they enhance selection in a sorghum 

popping quality improvement program (Collard et al. 2005). 

3.2 Materials and Methods 

3.2.1 Experimental Design and Germplasm 

 

A recombinant inbred line (RIL) population of 127 entries was derived from the 

cross of Sureño x RTx430 (Rodriguez-Herrera et al., 2000) and was the germplasm used 

for this study.  Sureño has a pedigree of [(SC423 x CS3541) x E35-1]-2 and was 

released for its superb grain quality properties (Meckenstock et al., 1993).  RTx430 has a 

pedigree of (Tx2536 x SC0170-6-5-1)-10-4-4-1-4 and was released based on its high 

levels of disease resistance and excellent general combining ability (Miller, 1984).  

Rooney and Rooney (2013) described differences in popping quality between derivatives 

of Sureño and Tx430; with Sureño derivatives popping very well and and RTx430 

derivatives having poor popping characteristics.  As such, RILs produced from a cross 

between these two parental lines were expected to segregate for popping quality traits.  

The RIL population was grown in multiple environments to produce grain for 

evaluation.  The test was planted in a randomized complete block design (RCBD) layout 
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with two replications in three Texas locations; Weslaco, Corpus Christi, and Halfway. 

Plants grown in the Corpus Christi (CC) environment were grown in Orelia clay loam 

with the following rainfall: March = 3.43 cm, April = 6.55 cm, May = 7.49 cm, June = 

3.91 cm, and July = 3.40 cm.  Plants grown in the Halfway (HW) environment were 

grown in Pullman clay loam with the following rainfall: May = 2.69 cm, June = 8.53 cm, 

July = 1.22 cm, August = 2.18 cm).  Plants grown in the Weslaco (WE) environment 

were grown in Hidalgo sandy clay with the following rainfall: February = 7.01 cm, 

March = 1.02 cm, April = 0.43 cm, May = 4.55 cm, June = 1.47 cm).  Standard 

agricultural practices for sorghum grain were used in each location. 

Grain was harvested just after black layer (physiological maturity) to minimize 

the effect of post-maturity grain weathering.  A minimum of five panicles were 

harvested from each experimental unit; more if the size of the panicle was small to 

ensure sufficient quantities of grain for testing.  These panicles were bulk threshed using 

a single head thresher (Alamaco) and to remove any remaining glumes or panicle residue 

the grain was then cleaned using a Wintersteiger LD180 (Wintersteiger Ag; Ried, 

Austria).  Once threshed and cleaned, grain was packaged and stored at 10° C until 

further analyses. 

3.2.2 Genotyping 

 The genotyping by sequencing approach, known as Digital Genotyping (DG), 

specifically developed for C4 grasses (Morishige et al., 2013) was used in this study.  

Seed of each recombinant line was germinated and grown for 14 days in Sunshine MVP 

growing media (Sun Gro Horticulture) in a greenhouse using sunlight as well as sodium 
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halide lighting.  The FastPrep FP120 instrument (Bio 101, Savant) was used to extract 

total genomic DNA from the leaf tissue of each of the seedlings according to the 

manufacturer’s protocol.  Sequence-quality DNA was obtained via the FastDNA Spin 

Kit (MP Biomedicals).  Purified genomic DNA was quantitated using a Qubit 

Fluorometer (Invitogrogen).   

 DG libraries were prepared for each sample using the restriction enzyme FseI 

(New England Biolabs) according to the protocol described in Morishige et al. (2013).  

Briefly, 250 ng of each DNA was digested with FseI and after digestion, 12 bp in-line 

barcodes were ligated to the fragments.  Following ligation, all 127 progeny plus the two 

parental DNA samples were pooled.  After randomly shearing the pool to a target size of 

250 bp, it was size-selected on a 2% agarose gel for a size range of 250 +/- 50 bp.  The 

size-selected sample was subjected to overhang fill-in, blunting and adenylation 

followed by ligation to an Illumina-specific adaptor and then purified using magnetic 

beads (Agencourt AMPure XP, Beckman Coulter).  PCR was then performed on the 

pool using Phusion high-fidelity polymerase (Finnzymes).  Dynabeads (Life 

Technologies) were used to obtain single-stranded products, and these products were 

amplified via PCR in order to incorporate the Illumina bridge amplification sequence.  

Following purification, products of the PCR were then quantified using PicoGreen 

fluorescent dye (Quant-iT dsDNA Broad Range [BR] kit, Life Technologies).  The 

products of the PCR were then diluted to a concentration of 10 nM.  The Agilent 2100 

Bioanalyzer (Agilent Technologies) was used to assess the quality of the products.  

Sequencing of the template was performed on an Illumina HiSeq2500 (Illumina) using 
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standard Illumina protocols by Texas A&M AgriLife Genomic and Bioinformatics 

Services.  Single-end sequencing was carried out for 125 bp. 

 FASTQ sequences were obtained from Texas A&M AgriLife Genomic and 

Bioinformatics Services and processed using a series of custom perl and python scripts.  

This process included the removal of sequences that did not contain the partial FseI 

restriction site in addition to the 12 bp barcode identifier, the sorting of bar-coded 

sequences corresponding to each RIL or parent into separate files, and the compression 

of any duplicate reads.  Removal of any sequences that matched more than one region of 

the Sbicolor_79 reference sorghum genome (www.phytozone.net/sorghum), accessed 2 

Nov. 2014) was performed in order to prevent possible complications in the placement 

and order of markers in the genetic map.  Polymorphisms between the two parents, 

RTx430 and Sureño, were identified and scored in the progeny lines as described by 

Morishige et al. (2013).  JoinMap 4.0 software was utilized in order to construct a 

genetic map (van Ooijen and Voorrips, 2001). 

3.2.3 Phenotyping of Material 

Data was also collected for the following agronomic traits.  Days to flowering 

was recorded as the number of days from planting to mid-anthesis of the panicle.  Just 

prior to harvest, plant height was recorded as the distance from the tip of the panicle to 

the base of the plant.  Grain from RIL population segregated for endosperm color 

(yellow to white), and this trait was measured using a subjective visual rating for grain 

color.  These were taken as a numerical score, with 1 indicating a lighter, whiter sample 

and 9 indicating a darker, yellow endosperm.  Kernel hardness was measured using a 
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Single Kernel Hardness Tester, model 4100 (Perten Instruments) where 300 individual 

kernels were crushed separately, calculating a mean and standard deviation.   At the 

same time, measurements of individual kernel weight (mg) and diameter (mm) were 

recorded. 

 Popping quality for each entry was measured by estimating both popping 

efficiency (PE) and expansion ratio (ER).  Because of the number of samples to pop in 

this study, methodology had to be developed.  A set of modified heated air poppers 

(Presto 04821) was outfitted with steel wire mesh to keep the sorghum kernels from 

being blown out during the popping process.   Each experimental unit was popped twice, 

in two different machines and each replication was blocked so that variation in poppers 

was partitioned into the replication effect.  While optimum moisture content for popping 

in Zea mays is about 14-16% moisture (Gökmen 2004) and Rooney and Rooney (2013) 

adjusted moisture content of their samples to 15%, it was not feasible to adjust moisture 

content due to the sample numbers and size of the popped sample.  Consequently, 

samples, which averaged 11% moisture with a range from 10-12% moisture content, 

were popped at their ambient moisture content.   

For each sample, 500 seed were counted using an OLD MILL electronic seed 

counter Model 850-3.  Prior to popping, seed volume (ml) of the sample was measured 

using a graduated cylinder and the weight of the sample was measured in grams.  Each 

sample was placed in the popper which was turned on and run for 2 minutes and 15 

seconds.  This time duration was based on testing to identify optimum popping time.  

After popping, the sample was poured onto a 4.7 mm sieve and shaken.  Any kernels that 
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fell through the sieve were considered un-popped, and any that remained above were 

considered popped.  The volume of the popped fraction was measured in a graduated 

cylinder.  The un-popped kernels were collected and recounted using the OLD MILL 

electronic seed counter Model 850-3.   

Popping Efficiency is defined as the percentage of popped kernels divided by the 

total kernels popped (500) and it was calculated using the formula: 
(500−𝑈𝑃𝐾)

500
= 𝑃𝐸 

where UPK is the number of unpopped kernels remaining after popping.  Expansion 

Ratio is the volume of the popped grain divided by the volume of the unpopped grain 

and was calculated using the original volume (mL) of 500 kernels (UPV) and the popped 

volume (mL).  The formula for Expansion Ratio is  
(𝑃𝑉)

𝑃𝐸∗𝑈𝑃𝑉
= 𝐸𝑅.   

3.2.4 QTL Analysis 

A genetic map was constructed using Joinmap 4.0 software (van Ooijen and 

Voorrips 2001).  Markers that were determined to be too close to one another (<10000 

bp) were then assessed for their amount of missing data, and the markers with a 

significant amount of missing data were removed.  Mapping was conducted using the 

Kosambi mapping function (Kosambi 1943). Phenotypic means for QTL analysis were 

calculated using Microsoft Excel software.   Each of the phenotypic traits measured for 

the study was used to conduct composite interval mapping (CIM) QTL analysis.  A total 

of 1000 permutations at 0.05 significance level were performed using Windows QTL 

Cartographer 2.5 software (Wang et al., 2012).  The log of odds, or LOD, threshold was 

calculated using the method described by van Ooijen (1999).  QTL were reported by 
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chromosome and environment, with chromosomes designated using the same 

methodology as in Kim et al. (2005). 

3.3 Results and Discussion 

3.3.1 Genetic Map 

 

A dense map composed of 828 SNP distributed over all ten chromosomes was 

generated and used to conduct QTL analysis (Figure 1, Table 7).  This map has a few 

large gaps (Figure 1) with the largest gap on chromosome 1 between 1.40 cM and 83.3 

cM presumably due to a large amount of segregation distortion in that region (Figure 1).  

Other instances of segregation distortion are common in similar studies (Liu et al. 2010; 

Pereira et al. 1994). Other smaller gaps were found on chromosome 1 from 83.3 cM – 

95.5 cM, chromosome 3 from 16.4 cM – 41.0 cM, chromosome 6 from 15.5 cM – 23.2 

cM and 36.0 cM – 52.1 cM, chromosome 7 from 37.0 cM – 48.0 cM, and chromosome 8 

from 4.5 cM – 29.8 cM.  The overall average distance between markers was 2.0 cM 

across all chromosomes, while the total length of all of the mapped portions of the 

chromosomes combined was 1526.9 cM (Table 7).  In Klein et al. (2001) which 

describes mapping this same population with AFLPs and
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Figure 1:  Genetic Linkage Map.  Genetic linkage map.  Genetic map was developed 

for a RIL population derived from a cross between R.Tx430 and Sureño.  Chromosomes 

are arranged in order from left to right, with C1 = Chromosome 1, C2 = Chromosome 2, 

etc. 



 

36 

 

 

 

 

 

 

Figure 1 continued. 
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Figure 1 continued. 
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Table 7: Length of Coverage of the SNP Markers.   Length of coverage of the SNP 

markers for each chromosome, the number of markers per chromosome, and the average 

distance between markers in the genetic linkage map of RIL from a cross of Sureño x 

RTx430.   

 

 

 

 

SSRs, the linkage map developed was composed of 130 markers on all ten chromosomes 

with a total length of 970 cM.  The average distance between markers was 7.0 cM as 

opposed to 2.0 cM in the current study (Klein et al. 2001).  Thus, not only did the map 

constructed for this study encompass a much larger area of the genome, it was also much 

denser and accounted for greater genetic recombination.   

cM

151.3 58

107.9 82

233.4 102

248.9 102

150.5 97

134.2 72

102.4 65

125.1 76

133.3 83

139.9 91

1526.9 828

Marker 

number

Avg. distance 

between markers

2.4

1.6

1.9

1.6

1.6

Total 2.0

1.6

7

8

9

10 1.5

LengthChromosome

1

2

3

4

5

6

cM

2.6

1.3

2.3
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3.3.2 QTL for Agronomic Traits 

 For plant height, a total of five different QTL were detected for plant height 

across all three locations; three of these were consistently detected across all 

environments. (Table 8).  Four QTL were found in CC, with two of these QTL having a 

large additive effect at 55.2 Mbp and 58.6 Mbp on chromosome 7 (Table 8).  These QTL 

had high confidence at LOD scores of 14.25 and 16.18, respectively (Table 8).  Four 

QTL were detected in the HW environment.  Two of these, located at 55.2 and 58.6 Mbp 

on chromosome 7, had large effects of 4.1526 and -5.0621 respectively. (Table 8).  Four 

QTL were identified in the WE environment for height; two of these were identified on 

chromosome 7 (Table 8).  The additive effects of these two QTL were much higher in 

this location, with values of 8.9219 and -11.3103 and LOD scores of 14.95 and 23.01 

(Table 8).  For the majority of the QTL, increases in height were associated with the 

alleles from Sureño which is logical as Sureño is significantly taller than RTx430.  

However, the presence of taller alleles in RTx430 (which QTL) provides some 

explanation for the significant transgressive segregation that was reported in Chapter 2.   

The height QTL on chromosome 7, which were detected across all environments, 

align with the known location of Dw3 (Chittenden et al. 1994; Lin et al. 1995; Pereira 

and Lee 1995; Austin and Lee 1996; Peng et al. 1999).  This population is segregating 

for the Dw3 locus (Klein et al. 2001; Rodriguez et al. 1999).  The high LOD score of 

these loci associated with Dw3 confirms the accuracy of this genetic linkage map 

(Rodriguez et al. 1999; Burrell et al. 2014).  Another QTL at 4.4 Mbp was detected in all 

three locations on Chromosome 9 (Table 8).  This QTL was not identified in the prior 
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study by Klein et al. (2001); most likely because the current map has substantially 

greater marker density than the original map (Beavis et al. 1995; Klein et al. 2001).   

 

 

 

Table 8: QTL Identified for Height and Flowering Date.  QTL identified for height 

and flowering date within RILs derived from a cross between Sureño x RTx430.  

Environments include Corpus Christi (CC), Halfway (HW), and Weslaco (WE) in Texas.  

Positive additive effects are associated with the RTx430 allele while negative additive 

effects are associated with the Sureño allele. 

 

 

 

Plant Height CC 4 84.5 - 91.3 90.5 54.3 3.62 0.051 -2.0181

7 37.8 - 40.4 39.0 55.2 14.25 0.288 5.2963

7 59.0 - 61.2 60.2 58.6 16.18 0.318 -5.6346

9 93.3 - 99.9 99.0 4.4 9.83 0.156 -3.5812

HW 7 32.8 - 42.6 37.1 55.2 8.81 0.194 4.1526

7 60.5 - 61.9 61.7 58.6 11.54 0.288 -5.0621

8 92.5 - 98.0 94.6 49.7 3.60 0.063 2.0855

9 96.2 - 101.1 99.2 4.4 7.82 0.151 -3.2220

WE 4 87.9 - 91.7 91.2 54.3 4.75 0.054 -3.5320

7 36.1 - 37.5 37.1 55.2 14.95 0.277 8.9219

7 61.1 - 61.8 61.7 58.6 23.01 0.435 -11.3103

9 95.8 - 98.9 97.0 4.4 16.69 0.237 -7.5416

Flowering Date CC 9 78.2 - 81.7 79.0 8.1 3.48 0.101 1.5867

HW 4 213.2 - 217.3 216.3 51.0 4.88 0.126 1.3411

8 94.6 - 98.6 97.3 50.1 3.72 0.096 1.1749

9 39.0 - 40.7 39.7 50.9 3.38 0.090 1.1473

WE 9 51.1 - 54.2 51.5 49.9 3.69 0.095 1.4196

10 19.8 - 24.2 21.0 1.9 3.56 0.102 1.5333

Plant Color All 6 122.8 - 124.2 123.1 ~ 58.0 8.51 0.302 0.2697

Trait Environment Chromosome

QTL Peak 

Position 

(Mbp) L.O.D. R
2

QTL Peak 

Position 

(cM)

QTL 1 LOD 

Interval (cM) Add. Effect
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Since Dw1 is not segregating in this population, this height QTL on Chromosome 9 does 

not correspond to Dw1.  In Brown et al. (2008), a QTL for plant height was found on 

chromosome 9, but it was in a completely different location the map used for that study.  

The identity of the QTL found here may be only significant within this particular genetic 

background though, notably, it isn’t as strong as that found at the Dw3 locus. 

 The effects of the height QTL were much stronger, comparatively, in the WE 

location (Table 8).  Plants grown in the WE environment have delayed flowering times 

when compared to HW and CC and the increased time in vegetative growth could result 

in taller plants. This change in phenotype is thus reflected in the additive effect of the 

associated QTL (Table 8).   

 Plant color is a simply inherited trait and one QTL was detected for plant color at 

~58.0 Mbp, or 123.1 cM on chromosome 6.  This QTL had an additive effect of 0.2697 

and a LOD score of 8.51 (Table 8).  In Klein et al. (2001) this QTL was mapped to 

chromosome 6 at about 86.0 cM.  The discrepancy in location between these two studies 

can likely be attributed to the difference in detection power in the two experiments, as 

stated in the case of plant height above (Beavis et al. 1995, Klein et al. 2001). 

 For flowering date, six QTL were identified in this population across all three 

environments (Table 8).  One QTL was found in CC at 8.1 Mbp on chromosome 9, three 

QTL were found in the HW environment on chromosomes 4, 8, and 9, and two qtl were 

detected in WE on chromosomes 9 and 10 (Table 8).  The QTL identified on 

chromosome 4 had both the highest LOD score and the highest additive effect.  All of 

these QTL were unique to their respective environments; none of them were common 
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between environments.  QTL for flowering date were not previously reported in Klein et 

al. (2001), but have been reported in numerous other studies in sorghum (Shiringani et 

al. 2010; Mannai et al. 2011; Reddy et al. 2013).  In Shiringani et al. (2010) four QTL 

and one putative QTL were detected on chromosomes 3, 4, 6, 7 and 8.  In Mannai et al. 

(2011), QTL for flowering time were found on chromosomes 1, 2, 3, 5, 6, and 10.  

Several of these chromosomes are in common with this study, though whether they are 

exactly the same can not be determined due to differences in the linkage map used. 

3.3.3 QTL for Kernel Characteristics 

For endosperm color, six QTL were identified (Table 9).  In CC two QTL were 

identified on chromosome 7 at 59.2 Mbp and 61.9 Mbp (Table 9).  A QTL at 59.1 Mbp 

was also found in HW and in both cases the allele contributing a yellow color was 

derived from RTx430 (Table 9).  Three QTL were detected for the WE environment.  

One of these was located on chromosome 6 at 46.6 Mbp and had an effect of 0.5679 and 

a LOD score of 7.24 which was the largest of any endosperm color QTL in this study 

(Table 9).  The other two QTL were on chromosomes 4 and 10 (Table 9).  In all cases 

the alleles for yellow color were derived from Tx430.  Previous studies have mapped 

QTL for endosperm color and carotenoid pigment content in sorghum but none of the 

QTL detected herein align with those reported in Fernandez et al. (2008).   The lack of 

consistency could be due to a number of factors, including differences in genetic 

background, population size and map and marker density (Beavis, et al. 1993). 

For kernel diameter, six different QTL were identified, with one of these QTL 

detected in all three environments (Table 9).  In CC, three QTL were found: one on 
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chromosome 2, one on chromosome 3, and one on chromosome 9 (Table 9).  Four QTL 

were found in the WE location on chromosomes 2, 8, and 9 (Table 9) and two QTL in 

HW on chromosomes 2 and 9. For the majority of these QTL, the allele that increases 

kernel diameter was contributed by RTx430.  The common QTL was the QTL on 

chromosome 9 which was consistent in both genomic location (4.2 Mbp) and effect 

(larger kernels with the RTx430 allele) (Table 9).   

Because there are no studies in sorghum for many of these traits, comparisons 

must be made with reports from other cereal grains.  Choe and Rocheford (2011) 

detected QTL for kernel length (a similar measure of kernel size) were identified on 

chromosomes 1, 3, 6, 8, 9, and 10.  In this QTL study, there were QTL identified on 

chromosomes 8 and 9, but they were not located in a similar point on the genome to the 

Choe and Rocheford (2011) study (Table 9).  In Sun et al. (2009), numerous QTL were 

identified for both kernel length and kernel width, which are both functions of kernel 

size in wheat.  QTL for length were identified on seven different chromosomes, but the 

locations changed depending on the environment with only the QTL on chromosome 4A 

being located in two environments.  QTL for width, similarly, were found on three 

chromosomes with only one QTL at 6A being located in two environments.  Those 

findings are similar to the ones found in this study, wherein many of the QTL for kernel  

diameter are not consistent across environments, with the exception of the one at 4.2 

Mbp  on chromosome 9 (Table 9). 

For kernel weight, a total of ten QTL were identified with four QTL detected in 

CC and WE and two detected in HW, and all of these QTL located on chromosomes 1, 
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2, 5, 7, 8 and 9 (Table 9).   The LOD scores for these QTL in all locations were 

comparatively high (Table 9).  There was some consistency across locations for the 

precise location and effects of the QTL.  For example, QTL on chromosome 7 were 

detected in CC and WE at similar genomic locations (58.4 Mbp) and effects (increased 

weight derived from Sureño) (Table 9).    The QTL on chromosome 9 was also detected 

in CC.  The QTL location in CC is a match for the location of the QTL for kernel 

diameter that was detected across all three environments, indicating that these traits may 

be influenced by some of the same loci or a series of linked loci (Table 9).       

As far as is known, QTL analysis for kernel weight has not been reported in 

sorghum.  In other grain crops, QTL for kernel weight have been reported.   (Sun et al. 

2009; Liu et al. 2014).  In Liu et al., (2014) a large number of QTL were found for 

kernel weight in maize, sixteen in total, across chromosomes 1, 2, 3, 4, 5, 6, and 9.  

Comparatively fewer QTL were found for sorghum in this study, however, all of the 

QTL identified were located in at least two environments (Table 9). 
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Table 9: QTL Identified for Kernel Characteristics. QTL identified for kernel 

characteristics found to correlate with popping quality in sorghum grain.  The population 

used for linkage mapping was a population of RILs in the F12 generation derived from a 

cross between Sureño x R.Tx430.      Environments include Corpus Christi (CC), Halfway 

(HW), and Weslaco (WE) in Texas.  Positive additive effects are associated with the 

R.Tx430 allele, while negative additive effects are associated with the Sureño allele. 

 

Endosperm Color CC 7 68.4 - 70.6 69.4 59.2 6.69 0.165 0.7890

7 88.6 - 91.3 89.1 61.9 4.06 0.093 -0.6024

HW 7 67.1 - 71.1 69.4 59.1 4.18 0.114 0.6170

WE 4 7.7 - 11.9 9.6 65.7 3.54 0.083 -0.3760

6 52.2 - 59.1 54.2 46.6 7.24 0.182 0.5679

10 84.8 - 86.7 85.6 51.3 6.65 0.169 0.5534

Kernel Diameter CC 2 77.6 - 87.8 85.5 70.7 3.34 0.087 0.0466

3 121.4 - 132.6 126.0 57.1 3.99 0.099 0.0490

9 98.1 - 104.2 99.9 4.2 8.67 0.235 -0.0789

HW 2 95.3 - 97.7 96.2 75.4 4.36 0.150 0.0490

9 99.2 - 108.9 101.3 3.9 3.77 0.118 -0.0458

WE 2 63.0 - 67.2 65.0 63.1 4.02 0.089 0.0501

8 93.5 - 99.4 97.3 50.1 3.96 0.089 0.0492

9 97.4 - 104.0 99.9 4.2 9.77 0.249 -0.0820

Kernel Weight CC 5 140.7 - 143.0 141.8 1.8 3.44 0.089 0.9636

7 33.5 - 36.4 34.3 54.9 6.24 0.185 1.6075

7 60.0 - 61.8 60.7 58.4 7.39 0.220 -1.7181

9 97.4 - 100.8 99.9 4.2 4.22 0.112 -1.0964

HW 1 78.6 - 85.9 83.3 55.0 3.49 0.104 -1.0200

8 100.3 - 105.7 102.6 50.9 3.45 0.101 1.0282

WE 2 68.2 - 71.6 69.2 65.7 4.82 0.104 1.3018

7 46.2 - 49.6 46.8 57.2 6.47 0.153 -1.9633

7 58.4 - 61.9 60.7 58.4 7.62 0.174 -1.8888

9 85.0 - 88.8 85.2 6.5 5.67 0.153 -1.7102

Kernel Hardness HW 1 61.4 - 64.0 62.3 53.4 3.42 0.093 3.0359

3 120.3 - 126.3 124.3 57.1 3.76 0.117 3.3912

3 137.6 - 143.2 141.8 58.3 3.04 0.091 3.0088

4 62.5 - 68.9 66.0 59.1 3.80 0.139 3.8042

4 190.2 - 195.7 191.9 7.6 4.84 0.135 -3.6297

WE 2 56.3 - 61.9 60.5 63.7 5.00 0.149 -4.1301

4 0.0 - 7.5 2.8 66.8 4.16 0.128 3.8748

4 7.7 - 16.0 11.7 65.6 4.62 0.128 3.8086

QTL Peak 

Position 

(cM)

QTL 1 LOD 

Interval (cM)     

QTL Peak 

Position 

(Mbp) L.O.D. R
2

Add. EffectTrait Environment Chromosome
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 For kernel hardness, a total of eight QTL were identified with five QTL in HW 

and three in WE.  No QTL for kernel hardness were detected in CC (Table 9).  Pairs of 

QTL were found on chromosome 4 in both environments, but the genomic location was 

shifted (Table 9).  A pair of QTL were also found on chromosome 3 in the HW 

environment, both with additive effects associated with Tx430 (Table 9).  In the study 

conducted by Klein et al. (2001) which used the same population, two QTL for kernel 

hardness were identified at 25.0 cM on chromosome 4 and at 8.0 cM on chromosome 2.    

QTL in the same regions did not align (Table 9), but it is reasonable to assume some of 

this may be partially due to limitations of the earlier map or production environments 

(Beavis et al. 1995; Klein et al. 2001). 

3.3.4 QTL for Popping Characteristics 

 For PE, a total of five QTL were identified across all three environments with 

one, two and two QTL detected in CC, HW and WE, respectively (Table 10).  Favorable 

effects were derived from both the Tx430 and Sureño alleles (Table 10).  The relative 

effect of these QTL was modest and there was no consistency in QTL detected across 

environments.  For ER, four QTL were identified with one, two and one QTL detected in 

CC, HW and WE, respectively (Table 10).  Favorable effects were all associated with 

the Sureño allele, which is consistent with the differences in ER between the parents 

(Table 10).  The relative effect of these QTL was variable and, like PE, there was no 

consistency in QTL detected across environments for ER.   

The inconsistency of these QTL across environments may be due to the relative 

importance of genotype, environment and genotype x environment interactions on 
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popping characteristics.  Pugh et al. (Chapter 2) demonstrated that PE and ER are highly 

heritable but there is a significant environment and genotype x environment interaction.  

In maize, popping characteristics are also highly heritable but QTL for popping quality 

indicate a very complex trait with significant environmental interactions (Lu et al. 2003; 

Li et al. 2007; Yongbin et al. 2012).  In Lu et al. (2002), QTL for popping expansion 

volume (ER) were detected on chromosomes 1, 3, 5 in maize, with the QTL on 5L being 

consistent across different populations and in different environments.  Li et al. (2007), 

detected six QTL for popping volume (ER) and five QTL for popping rate (PE) on 

chromosomes 1, 2, 5, 6, 7, and 8, with the QTL on chromosome 5 corresponding to the 

one seen in Lu et al. (2002).  In Yongbin et al. (2012), QTL for three different popping 

characteristics were found on chromosomes 1, 2, 4, 6, 7, and 10.  These studies have 

identified QTL for the popping characteristics in different locations of the genome which 

supports the notion that popping is a very complex quality in maize, with many of the 

QTL being unique to their study with the exception of a QTL on chromosome 5 (Lu et 

al. 2002, Li et al. 2007).  As seen in maize, the results of these studies suggest that 

popping in sorghum is a highly complex trait.  None of the QTL found for either PE or 

ER overlapped with any of the QTL found for kernel endosperm, diameter, weight, or 

hardness (Table 9, Table 10).  Pugh (Chapter 2) reported minimal correlations between 

these traits and either popping characteristic. This lack of association between these 

traits suggests that popping in sorghum is a highly complex trait that, while highly 

heritable, is controlled by many loci and is heavily contingent upon environmental 

factors. 
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Table 10: QTL Identified for Popping Quality Characteristics.  QTL identified for 

popping characteristics.  The population used for linkage mapping was a population of 

RILs in the F12 generation derived from a cross between Sureño x RTx430. Environments 

include Corpus Christi (CC), Halfway (HW), and Weslaco (WE) in Texas.  Positive 

additive effects are associated with the RTx430 allele, while negative additive effects are 

associated with the Sureño allele. 

 

 

 

 

None of the QTL found for either PE or ER overlapped with any of the QTL 

found for kernel endosperm, diameter, weight, or hardness (Table 9, Table 70).  Pugh 

(Chapter 2) reported minimal correlations between these traits and either popping 

characteristic. This lack of association between these traits suggests that popping in 

sorghum is a highly complex trait that, while highly heritable, is controlled by many loci 

and is heavily dependent on environmental factors just as in maize (Lu et al. 2003; Li et 

al. 2007; Yongbin et al. 2012; Pugh Chapter 2).   

Popping Efficiency CC 5 109.3 - 119.0 115.9 5.1 2.66 0.069 -0.0493

HW 1 128.7 - 130.5 129.3 63.8 3.59 0.110 0.0444

9 0.0 - 1.9 0.0 59.5 6.05 0.177 -0.0564

WE 2 7.0 - 11.7 7.9 8.2 3.57 0.106 0.0580

3 70.3 - 75.3 73.0 13.4 4.28 0.126 0.0845

Expansion Ratio CC 3 85.5 - 95.0 91.5 52.7 3.49 0.109 -0.5538

HW 5 66.1 - 68.4 67.0 49.7 5.23 0.153 -0.6390

10 49.1 - 51.0 49.9 6.4 4.25 0.134 -0.5577

WE 9 11.1 - 12.9 11.9 57.8 5.17 0.154 -0.7488

L.O.D. R
2

Add. EffectTrait Environment Chromosome

QTL 1 LOD 

Interval (cM)

QTL Peak 

Position 

(cM)

QTL Peak 

Position 

(Mbp)
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3.4 Conclusions 

 Herein are the first reports of QTL for kernel characteristics and popping 

characteristics in sorghum grain.  QTL for PE and ER were environmentally specific and 

none were co-located with other kernel characteristics that have been associated with 

popping capacity in corn.  This result indicates that popping in sorghum grain is a 

complex trait much like has been observed in corn (Lu et al. 2003; Li et al. 2007; 

Yongbin et al. 2012).    However, multiple QTL with moderate to high additive effects 

were identified in this study indicating that selection to improve popping characteristics 

should be effective. 

 Of significant interest was the consistency of some of the QTL detected for 

kernel diameter and weight.  The consistent detection of QTL for these traits implies that 

these loci are of significant importance in the genetic control of these traits.   These QTL 

for kernel characteristics could be useful for improvement of other traits besides simply 

PE or ER and could have profound impact for breeders. 
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4. CONCLUSIONS 

  

There have been relatively few reports on the popping quality of grain sorghum or 

potentially related kernel characteristics.  This study evaluated the heritability of the two 

main popping traits valued by popcorn breeders in sorghum.  Popping quality traits in 

sorghum strongly are influenced heavily by genotype, environment and genotype x 

environment interactions.  Even so, these traits are moderately to highly heritable within 

this population, even across three diverse environments within Texas.   

While is it apparent that many traits influence popping characteristics, there is no 

single trait that that effectively predicts PE or ER in a given line.  While some 

characteristics found to correlate with popping quality in popcorn correlate comparatively 

in sorghum others do not.  Regardless, the results herein indicate that sorghum lines with 

improved popping quality can be developed via selective breeding.  In fact, several of the 

RILs used for this study would serve as excellent candidates toward improvement of the 

trait.  RIL065 is one such candidate as it had very high PE and ER when compared to the 

rest of the population and, in addition, had excellent stability as it performed well in all 

three environments.   

QTL for PE and ER were environmentally specific and none were co-located 

with other kernel characteristics that have been associated with popping capacity in corn.  

This result indicates that popping in sorghum grain is a complex trait much like has been 

observed in corn (Lu et al. 2003; Li et al. 2007; Yongbin et al. 2012).    However, 
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multiple QTL with moderate to high additive effects were identified in this study 

indicating that selection to improve popping characteristics should be effective. 

 Of significant interest was the consistency of some of the QTL detected for 

kernel diameter and weight.  The consistent detection of QTL for these traits implies that 

these loci are of significant importance in the genetic control of these traits.   These QTL 

for kernel characteristics could be useful for improvement of other traits besides simply 

PE or ER and could have profound impact for breeders. 
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