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ABSTRACT

The optical properties of two types of two-dimensional (2D) semiconductor struc-

tures are studied. One of them is for structures based on quantum wells (QWs), and

the other is graphene.

We study the dynamics of optically excited electron-hole plasma or magneto-

plasma in uncoupled QW structure. Experimentally we have observed a delayed

burst of optical pulse, or superfluorescence (SF). Time and energy-resolved mea-

surement shows the center frequency of the pulse is red-shifting with time. We

explain this by developing the generalized semiconductor Bloch equations (SBEs),

where Coulomb interaction between electrons is taken into account. For electron-

hole plasma in quasi-equilibrium, the calculation shows the peak gain is near the

Fermi-edge. So, the red-shifting is because of the decreasing of Fermi energy with

time.

The effect of Coulomb interaction in intersubband transitions is also studied,

where we have developed equations similar to the SBEs, and show that the Coulomb

effect could enhance particular second-order nonlinear optical processes.

Quantum cascade lasers (QCLs) are well developed devices based on QWs. We

study the active modulation in mid-infrared (mid-IR) QCLs. We show that QCLs

with short gain recovery time can also generate short pulses by active modulation,

while it is previously thought active modulation can only be applied for QCLs with

long gain recovery time. Comparisons between the two cases show the performance

of QCLs with short gain recovery time is more robust for active modulation. Also,

mode-locking can be achieved by tuning the modulation period.

As a natural 2D material, graphene has linear energy dispersion near the Dirac
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points. This leads to interesting electronic and optical properties. Under Landau

quantization, we propose a scheme for achieving continuous-wave terahertz (THz)

gain by mid-IR pumping. In this scheme, scattering of surface-optical (SO) phonons

from the substrate is utilized to populate the upper laser state. All the important

scattering processes are calculated to justify the design.

We also study the properties of second-harmonic generation (SHG) in graphene

without magnetic field. The experimental measurement shows peculiar relations

between the polarizations of fundamental light and second-harmonic (SH) light. We

develop a quantum theory to explain the observations.
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NOMENCLATURE

2D Two-dimensional

QW Quantum Well

SF Superfluorescence

QCL Quantum Cascade Laser

SBEs Semiconductor Bloch Equations

IR Infrared

DFG Difference-Frequency Generation

THz Terahertz

SO Surface Optical

SH Second-harmonic

SHG Second-harmonic generation

LL Landau Level

AML Active Mode Locking

SHB Spatial Hole Burning

EM Electromagnetic
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1. INTRODUCTION

During the past few years, we have studied the optical properties of two types of

two-dimensional (2D) semiconductor structures. One of them is based on semicon-

ductor heterostructures, where semiconductors with different band gaps are grown

layer by layer, so quantum wells (QWs) are formed. And the other is the natural 2D

material, graphene. Here we give a brief introduction about them.

1.1 Semiconductor Quantum Wells

In a QW structure, the motion of electrons in the conduction band (or holes in the

valence band) is confined by the potential well in the growth direction, so the energy

is quantized. On the other hand, the electrons can move freely in the transverse

directions. So, energy subbands are formed. See Fig. 1.1 for an illustration. The

Figure 1.1: A potential well is resulted when a GaAs layer is grown between two
AlxGa1−xAs barrier layers, which have larger band gap. [2]
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energies of electrons in the conduction band can be expressed as

En~k = En0 +
h̄2k2

2m∗
, (1.1)

where n is the index of energy level due to quantization in the growth direction, ~k is

the in-plane wave vector, and m∗ is the effective mass. The expression for energies of

holes in the valence band is similar. For semiconductors with direct band-gap, optical

transitions can be either interband or intersubband, where electronic transitions are

between the valence band and conduction band in the former case, while they are

between the subbands of conduction band (or valence band), in the latter case. Both

types of optical transitions are schematically shown in Fig. 1.2. These are the basics

Figure 1.2: Optical transitions in direct band-gap semiconductors. The transitions
are vertical in K space, since the momentum of a photon is small compared to the
typical momentum of electrons, h̄k. The transitions are represented (a) in reciprocal
space and (b) in real space. [2]
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of our work on optical properties of QW structures. More details can be found in

the excellent review paper [1], and the textbook [2].

In a QW structure with high density of carriers, the electrons interact with each

other due to the Coulomb potential, and this can lead to collective phenomenons.

For example, superfluorescence (SF) from electron-hole plasma or magneto-plasma

in QW structures has been observed by Dr. Kono’s group in Rice university. As a

collaboration, we have conducted numerical simulation to explain the observations.

These will be presented in section 2.

While SF is due to optical recombination between electrons and holes, namely,

interband transitions are involved, the interaction between electrons in the subbands

of conduction band can also leads to collective excitations. We study the effect

of Coulomb interaction on the second-order nonlinear optical processes, and it is

presented in section 3.

Inter-subband lasing was proposed theoretically by Kazarinov and Suris [3], in

which pumping by resonant tunneling is utilized. And it was first demonstrated by

Faist et al. [4], which is called quantum cascade laser (QCL). The active region

of QCL consists many (∼50) periods of QWs. In each period, the electrons can

be injected to the upper laser states, and go to the lower laser states by emitting

photons, then they are scattered into a mini-band, and injected into the upper laser

states of the next period. The concept of a typical QCL is shown in Fig. 1.3. For

lasers, ultrashort pulses are usually generated by mode locking [6]. For passive mode

locking, it is usually achieved by a saturable absorber. However, passive mode locking

has not been achieved in QCLs, since a proper mechanism for introducing saturable

absorber has not been found yet. For active mode locking, it is argued that only

QCLs with long gain recovery time can be used [7]. Here we think this condition is

not necessary for a two-section QCL, and we developed a model to show that active
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Figure 1.3: Concept of a typical QCL. (a), Photograph of a laser bar with four QCLs
(left) and scanning electron microscopy image of the front facet of a QCL (right).
(b), High-resolution transmission electron microscopy image of a QCL, showing four
periods of active regions and injectors. (c), Simplified scheme of the conduction band
structure for a basic QCL, where the laser transition is between sub-bands 3 and 2.
[5]

mode locking can be achieved in normal mid-IR QCLs with short gain recovery time

(∼ 1 ps) can be achieved, and the performance is even more robust. These will be

presented in section 4.

1.2 Graphene

Graphene is a two dimensional allotrope of carbon atoms arranged in a honey-

comb lattice due to their sp2 hybridization [8], see Fig. 1.4 for details. The distance

between neighboring carbon atoms is a = 0.142 nm. The honeycomb lattice contains

two sublattices, marked A and B in Fig. 1.4. Both A and B sublattices are triangular

Bravais lattices, and the honeycomb lattice can be viewed as a triangular Bravais

lattice with a two-atom basis (A and B).

Using the tight-binding method, the electronic band of graphene can be calcu-

lated, which is shown in Fig. 1.5. We can see that the conduction and valence bands

touch at the Dirac points K (or K′). Near the Dirac point K, we can write k = K
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trino” billiards �Berry and Modragon, 1987; Miao et al.,
2007�. It has also been suggested that Coulomb interac-
tions are considerably enhanced in smaller geometries,
such as graphene quantum dots �Milton Pereira et al.,
2007�, leading to unusual Coulomb blockade effects
�Geim and Novoselov, 2007� and perhaps to magnetic
phenomena such as the Kondo effect. The transport
properties of graphene allow for their use in a plethora
of applications ranging from single molecule detection
�Schedin et al., 2007; Wehling et al., 2008� to spin injec-
tion �Cho et al., 2007; Hill et al., 2007; Ohishi et al., 2007;
Tombros et al., 2007�.

Because of its unusual structural and electronic flex-
ibility, graphene can be tailored chemically and/or struc-
turally in many different ways: deposition of metal at-
oms �Calandra and Mauri, 2007; Uchoa et al., 2008� or
molecules �Schedin et al., 2007; Leenaerts et al., 2008;
Wehling et al., 2008� on top; intercalation �as done in
graphite intercalated compounds �Dresselhaus et al.,
1983; Tanuma and Kamimura, 1985; Dresselhaus and
Dresselhaus, 2002��; incorporation of nitrogen and/or
boron in its structure �Martins et al., 2007; Peres,
Klironomos, Tsai, et al., 2007� �in analogy with what has
been done in nanotubes �Stephan et al., 1994��; and using
different substrates that modify the electronic structure
�Calizo et al., 2007; Giovannetti et al., 2007; Varchon et
al., 2007; Zhou et al., 2007; Das et al., 2008; Faugeras et
al., 2008�. The control of graphene properties can be
extended in new directions allowing for the creation of
graphene-based systems with magnetic and supercon-
ducting properties �Uchoa and Castro Neto, 2007� that
are unique in their 2D properties. Although the
graphene field is still in its infancy, the scientific and
technological possibilities of this new material seem to
be unlimited. The understanding and control of this ma-
terial’s properties can open doors for a new frontier in
electronics. As the current status of the experiment and
potential applications have recently been reviewed
�Geim and Novoselov, 2007�, in this paper we concen-
trate on the theory and more technical aspects of elec-
tronic properties with this exciting new material.

II. ELEMENTARY ELECTRONIC PROPERTIES OF
GRAPHENE

A. Single layer: Tight-binding approach

Graphene is made out of carbon atoms arranged in
hexagonal structure, as shown in Fig. 2. The structure
can be seen as a triangular lattice with a basis of two
atoms per unit cell. The lattice vectors can be written as

a1 =
a

2
�3,�3�, a2 =

a

2
�3,− �3� , �1�

where a�1.42 Å is the carbon-carbon distance. The
reciprocal-lattice vectors are given by

b1 =
2�

3a
�1,�3�, b2 =

2�

3a
�1,− �3� . �2�

Of particular importance for the physics of graphene are
the two points K and K� at the corners of the graphene
Brillouin zone �BZ�. These are named Dirac points for
reasons that will become clear later. Their positions in
momentum space are given by

K = �2�

3a
,

2�

3�3a
�, K� = �2�

3a
,−

2�

3�3a
� . �3�

The three nearest-neighbor vectors in real space are
given by

�1 =
a

2
�1,�3� �2 =

a

2
�1,− �3� �3 = − a�1,0� �4�

while the six second-nearest neighbors are located at
�1�= ±a1, �2�= ±a2, �3�= ± �a2−a1�.

The tight-binding Hamiltonian for electrons in
graphene considering that electrons can hop to both
nearest- and next-nearest-neighbor atoms has the form
�we use units such that �=1�

H = − t 	

i,j�,�

�a�,i
† b�,j + H.c.�

− t� 	


i,j��,�

�a�,i
† a�,j + b�,i

† b�,j + H.c.� , �5�

where ai,� �ai,�
† � annihilates �creates� an electron with

spin � ��= ↑ , ↓ � on site Ri on sublattice A �an equiva-
lent definition is used for sublattice B�, t��2.8 eV� is the
nearest-neighbor hopping energy �hopping between dif-
ferent sublattices�, and t� is the next nearest-neighbor
hopping energy1 �hopping in the same sublattice�. The
energy bands derived from this Hamiltonian have the
form �Wallace, 1947�

E±�k� = ± t�3 + f�k� − t�f�k� ,

1The value of t� is not well known but ab initio calculations
�Reich et al., 2002� find 0.02t� t��0.2t depending on the tight-
binding parametrization. These calculations also include the
effect of a third-nearest-neighbors hopping, which has a value
of around 0.07 eV. A tight-binding fit to cyclotron resonance
experiments �Deacon et al., 2007� finds t��0.1 eV.

a

a

1

2

b

b

1

2

K
Γ

k

k
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y

1

2

3

M

δ δ

δ

A B
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FIG. 2. �Color online� Honeycomb lattice and its Brillouin
zone. Left: lattice structure of graphene, made out of two in-
terpenetrating triangular lattices �a1 and a2 are the lattice unit
vectors, and �i, i=1,2 ,3 are the nearest-neighbor vectors�.
Right: corresponding Brillouin zone. The Dirac cones are lo-
cated at the K and K� points.
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Figure 1.4: Left: Lattice of graphene, which contains two triangular Bravais lattices,
A and B. a1 and a2 are the lattice unit vectors, and δi (i=1,2,3) are the nearest-
neighbor vectors. Right: The first Brillouin zone, b1 and b2 are the reciprocal lattices,
K and K ′ are the Dirac Points. [8]

+ q, then the energy dispersion has the form

E±(q) ≈ ±h̄vF |q|+O[(q/K)2], (1.2)

where + and - are for conduction and valence band respectively, and vF ≈ 108cm/s

is the Fermi velocity. The Fermi level of intrinsic graphene is located at the energy

of Dirac points, and it can be controlled by doping or applying a transverse electric

field. When the next-nearest-neighbor hopping is neglected, the Hamiltonian can be

written to the leading order of q as,

H = vF~σ · ~̂p = vF

 0 p̂x − ip̂y
p̂x + ip̂y 0

 , (1.3)

where the two by two matrix is a span of the two sublattices, and p̂ is the momen-

tum operator relative to K or K′. The eigenenergies are E±(q) = ±h̄vF |q|, and
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eigenstates are

ψs(~q, ~r) =
1√
2L

exp(i~q · ~r)

 s

eiθ(~q)

 , (1.4)

where s = 1 for conduction band, s = −1 for valence band, and θ(~q) is the angle

between the wave vector ~q and the x axis. Resonant optical transitions can occur

Figure 1.5: Electronic dispersion of graphene, with zoom in of the energy bands close
to one of the Dirac points. It is shown the energy dispersion near the Dirac points
is linear. [8]

between the conduction and valence bands of graphene.

When graphene is under a vertical magnetic field, its energy is quantized into

Landau levels (LLs). For conventional semiconductors with parabolic dispersion,

the energy separations between neighboring LLs are equal. However, the energy

separations between neighboring LLs in graphene are unequal. Also, the optical

selection-rules for graphene are different from conventional semiconductor materials.

These properties give us the possibility to effectively control the populations in the

LLs by optical field. We propose a scheme which can lead to Terahertz (THz) lasing

6



between graphene LLs. It is presented in section 5.

The nonlinear optical properties of graphene are also interesting. Second-harmonic

generation (SHG) in graphene has been studied experimentally by Dr. Heinz’s group

in Columbia University (not published yet). The observation shows a relation be-

tween the polarizations of fundamental and second-harmonic (SH) lights. As a col-

laboration, we conducted theoretical calculation to explain the observation. We also

have new predictions beyond the observed data. These are presented in section 6.

7



2. SUPERFLUORESCENCE FROM ELECTRON-HOLE PLASMA IN

QUANTUM WELL STRUCTURES ∗

2.1 Introduction

Superradiance is a cooperative decay of excited dipoles, which was predicted by

Dicke in 1954 [9]. For N excited dipoles confined in a small volume, if the distance

between dipoles is much smaller than the wavelength of light, then the dipoles can

interact with the light coherently. This will lead the dipoles to emit light with

intensity proportional to N2, instead of being proportional to N in the conventional

exponential decay. See Fig. 2.1 for a schematic description. Superradiance was

first observed in optically pumped HF gas in 1973 [10]. However, superradiance

in solids has not been observed before our work in collaboration with Dr. Kono’s

group, where superfluorescence (delayed superradiance) is observed in electron-hole

magneto-plasma [11]. The condition to have superradiance is that the cooperative

frequency ωc must exceed the dephasing rate of the optical polarization [12, 13],

ωc =

√
8π2d2nΓc

h̄ñ2λLQW
≥ 2

T2

, (2.1)

where d is the dipole moment, n is the 2D electron-hole density, Γ is the overlap

factor of the radiation field with the quantum well structure, λ is the wavelength, c

is the speed of light, LQW is the width of the quantum wells, and T2 is the dephasing

∗Part of the result reported in this section is reprinted with permission from “Giant superfluorescent
bursts from a semiconductor magneto-plasma” by G. Timothy Noe II, Ji-Hee Kim, Jinho Lee,
Yongrui Wang, Aleksander K. W ojcik, Stephen A. McGill, David H. Reitze, Alexey A. Belyanin
and Junichiro Kono, 2012, Nature Physics 8, 219-224, Copyright [2012] by Nature Publishing
Group; and “Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas” by Ji-
Hee Kim, G. Timothy Noe II, Stephen A. McGill, Yongrui Wang, Aleksander K. W ojcik, Alexey
A. Belyanin and Junichiro Kono, 2013, Scientific Reports 3, 3283, Copyright [2013] by Nature
Publishing Group.
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time. In solids, dephasing time is generally quite small due to the various scattering

processes. However, semiconductor quantum wells under magnetic field can have

increased d, n and T2, making the condition be satisfied. This is because the energy

of electrons is quantized in the growth direction, and the energy of the in-plane

motion is also quantized to Landau levels due to the magnetic field. And we can see

that both d and n increase with the magnetic field B. Furthermore, the scattering

channel is suppressed, so T2 also increases with B. This should be the main reason

why superradiance is observed from the magneto-plasma in quantum wells. We will

describe the experimental observation, and gives our theoretical explanations.

2.2 Experimental Observations

Before describing the experimental observations, we will give some basics related

to this work. For electrons and holes in a QW structure under a transverse magnetic

field, the energy is fully quantized. The energy of a Landau level is given by En =

(n+ 1/2)h̄ωc, with ωc = eB/m∗c, where m∗ is the effective mass of the electrons or

holes. Optical recombinations can only occur for electrons and holes with the same

subband level, and the same Landau level index. In our study, both electrons and

holes are in their lowest subbands, so we will only require them to have the same

Landau level index for recombination to happen.

2.2.1 Experimental Observation of Superfluorescence from a Semiconductor

Magneto-plasma

The sample used in this study was a stack of fifteen undoped quantum wells

consisting of 8 nm In0.2Ga0.8As wells and 15 nm GaAs barriers. The confinement of

the well resulted in quantized energy subbands for electrons in the conduction band

and holes in the valence band. The strain present in this sample resulted in a large

splitting of the heavy-hole (H1) and light-hole (L1) states (Fig. 2.2a), with only the
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Figure 2.1: Superfluorescence from a collection of dipoles (atoms, molecules, ions or
excitons). (a), Self-organization of dipoles and the resulting superfluorescent pulse.
(b), Characteristics of light emission dynamics after pulse excitation for weak (left)
and strong (right) excitation. When the number of dipoles, N , is smaller than a
critical value (Nc), the peak intensity is proportional to N and the intensity decays
exponentially with a lifetime T1. Under high excitation such that N > Nc, a delayed
superfluorescent pulse appears with intensity proportional to N2 and pulse width
∼ T1/N . (c), Population inversion and emitted light intensity (normalized to the
peak intensity) versus time (normalized to the pulse delay) for a superfluorescent
system, together with Bloch vector dynamics analogous to the dynamics of an over-
damped pendulum going from an unstable equilibrium position (θ = 0◦) to the stable
ground state (θ = 180◦) by releasing all its energy as a burst of superfluorescence.
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heavy-hole states being relevant to the present study. On optical excitation using a

Ti:sapphire laser with photon energy centered at 1.55 eV, carriers are excited above

the bandgap of the GaAs barriers. Both the electrons and holes then experience many

scattering events before relaxing into the quantum well to form two-dimensional

magneto-excitons. We employ the high-field Landau level notation, (NM), to specify

each magneto-exciton state, where N (M) is the electron (hole) Landau level index.

The three lowest-energy, dipole-allowed transitions that we primarily study in this

work are the (NM) = (00), (11) and (22) transitions, which correspond to the 1s, 2s

and 3s transitions using the low-field excitonic notation [14].

Pump-probe measurements were made in a transmission geometry in the Fara-

day configuration (Fig. 2.2b), where the pump and probe beams were parallel to the

magnetic field and incident normal to the quantum wells. The differential transmis-

sion, ∆T/T, when tuned to a particular transition, is proportional to the population

inversion for that transition, which is equal to the difference between the number

of occupied and unoccupied exciton states. Figure 2.2c,d demonstrates that at the

lowest temperature, 5 K, there is a sudden decrease in population inversion when the

magnetic field, B, is higher than 10 T. At lower B, the population dynamics of the

(11) transition exhibits a typical long exponential decay, as seen in Fig. 2.2c. With

increasing B, the exponential decay transforms into a sudden decrease that becomes

faster and occurs at a shorter time delay, ∼80 ps, for the (11) transition at 17.5 T.

The (22) transition under the same conditions shows similar results, except that the

sudden decrease in population occurs at an even shorter delay time, 60 ps, for the

highest B, as shown in Fig. 2.2d. Finally, Fig. 2.2e shows that decreasing the tem-

perature, T, and increasing B have a similar effect, that is, the change in population

becomes more sudden and occurs at a shorter time delay when T changes from 150 K

to 5 K.
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Figure 2.2: Observation of a sudden population drop through ultrafast pump-probe
spectroscopy. (a), Sample studied and schematic diagram of energy levels in the
system. (b), Experimental configuration of pump-probe measurements. (c), Pump-
probe data for the (11) level at different magnetic fields at 5 K. (d), Pump-probe
data for the (22) level at different magnetic fields at 5 K. (e), Pump-probe data for
the (22) level at 17.5 T at different temperatures.
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Spectrally and temporally resolved photoluminescence, collected in the geome-

try depicted in Fig. 2.3a, revealed superfluorescent pulses under various B, T and

pump conditions, as shown in Fig. 2.3b−g. Figure 2.3b shows time-resolved pho-

toluminescence data at 17.5 T and 5 K, spectrally selected for the (00) transition,

taken with pump pulse energies, 0.25 nJ and 10µJ, to be compared with Fig. 2.1b.

For weak excitation (0.25 nJ), the photoluminescence, measured from the centre fi-

bre, shows an initial slow increase due to exciton formation, followed by interband

relaxation with an exponential decay time of hundreds of picoseconds. The photo-

luminescence measured from the edge fibre provided a similar decay, but the signal

was ∼40 times lower, indicating that the emission under weak excitation is typical

spontaneous emission radiated in all directions with equal probability. In contrast,

for strong excitation (10µJ), we observe a giant, delayed pulse of radiation from the

edge fiber. The photoluminescence measured in the centre fibre showed no pulse of

radiation and the peak intensity was ∼100 times lower. Quantitatively, Fig. 2.3b

shows that an increase in pump pulse energy by roughly four orders of magnitude

results in a peak emission intensity that is roughly six orders of magnitude larger.

This is in agreement with the expected N3/2-dependence for superfluorescence in

extended samples14, where N is the number of excited dipoles (electron-hole pairs in

the present case). These results indicate that with increasing magnetic field strength,

increasing pump pulse energy and decreasing temperature, the regime of light emis-

sion undergoes a transition from ordinary spontaneous emission to superfluorescence

dominating the in-plane emission at high pump-pulse energy. Figure 3c overlays

pump-probe and time-resolved photoluminescence data taken under the same condi-

tions for the (22) transition, where we see that the appearance of the giant emission

pulse coincides in time with the abrupt population drop from its maximum value to

zero. This is in stark contrast with the dynamics of ordinary single-pass amplifiers,
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where a pulse of the amplified spontaneous emission would consume at most half of

the population.

Figure 2.3d shows a photoluminescence intensity map as a function of delay time

and photon energy at 17.5 T, 5 K and 5µJ. Pulses of superfluorescence coming from

the (00), (11) and (22) transitions are clearly resolved, both in time and energy.

For each transition, a large pulse of radiation appears after some delay time. The

highest-energy transition, (22), emits a pulse first, and each lower-energy transition

emits a pulse directly after the transition just above it. Figure 2.3e shows the effects

of lowering B to 15 T: (1) the separation between Landau levels decreases (compare

the left-hand panels of Fig. 2.3d,e), (2) the emission of superfluorescence occurs at

later delay times for a given transition (compare the right-hand panels of Fig. 2.3d,e),

and (3) the superfluorescent pulse intensity decreases (compare Fig. 2.3d,e). With

decreasing pump pulse energy, we see the emission decrease dramatically (compare

Fig. 2.3d,f). With increasing T, the emission from all transitions weakens signif-

icantly and moves to later delay times (Fig. 2.3g); the emission energies decrease

with increasing T owing to bandgap shrinkage.

The sudden drop of population inversion, together with the burst of a pulse,

indicate that superfluorescence is achieved in the electron-hole magneto-plasma.

2.2.2 Time-resolved Measurement of Superfluorescence from a

Quantum-degenerate Electron-hole Gas

Furthermore, time-resolved photoluminescence of the electron-hole plasma or

magneto-plasma is measured.

Figure 2.4a shows the experimental geometry used in this work. Photolumines-

cence (PL) travels in all directions, but some of the emission travels in the plane of

the quantum wells, which is reflected by the micro-prism towards our collection op-
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Figure 2.3: Observation of delayed bursts of radiation through time-resolved photo-
luminescence spectroscopy. (a), Set-up. (b), Time-resolved emission for weak (top)
and strong (bottom) excitation for the (00) transition at 17.5 T and 5 K. This should
be compared with Fig. 2.1b. (c), Comparison between pump-probe data and time-
resolved photoluminescence (PL) for the (22) level at 17.5 T and 5 K, demonstrating
the temporal coincidence between the population drop in pump-probe differential
transmission and emission of the giant pulse of radiation. This should be compared
with Fig. 2.1c. (d)−(g), Streak camera images of emission intensity as a function of
photon energy and delay time at 17.5 T, 5µJ pump pulse energy and 5 K (d), 15.0 T,
5µJ pump pulse energy and 5 K (e), 17.5 T, 2µJ pump pulse energy and 5 K (f) and
17.5 T, 5µJ pump pulse energy and 75 K (g). In d−g, the left hand panels show the
time-integrated emission spectra, with the (00) peak in red, (11) in blue and (22) in
black, while the right hand panels show time-resolved slices at the peak positions of
the (00), (11) and (22) transitions.
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tics. Figure 2.4b shows the result of time-resolved measurements of in-plane-emitted

PL taken at 15 K at zero magnetic field with a pump pulse energy of 5µJ. The dom-

inant feature is a line of emission starting from ∼1.45 eV and ending at ∼1.325 eV,

i.e., the emitted photon energy changes continuously with time. There is a kink in

the line at ∼1.42 eV, which corresponds to the E1L1 transition; the curvature of the

line also changes slightly at that kink. Figure 2.4c shows some vertical slices of the

data in Fig. 2.4b at various time delays. We see that for a given time delay there

is an emission peak with a spectral width of 5−10 meV, which dynamically shifts to

lower energy as time passes. Figure 2.4d shows some horizontal slices of the data

in Fig. 2.4b at various photon energies, demonstrating an ultrashort pulse of light

emitted at a given photon energy at a certain time delay after excitation.

We found that the spectral and temporal behavior of the emission line sensitively

depends on the excitation pulse energy and temperature. Figures 2.5a−c show time-

resolved PL maps taken with different excitation pulse energies at zero magnetic

field. The map constructed with 2.1µJ pulse energy looks very similar to the map

constructed with 5µJ (Fig. 1b). When the power is further decreased, there is a

non-monotonic temporal shift in the line of emission. For a given photon energy

close to the middle of the line, say 1.37 eV, we see that the line moves to earlier time

from 2.1 to 1µJ and then back to a later time at 0.5µJ excitation pulse energy with a

change in curvature. At the highest photon energy for strong emission in the line, at

∼1.45 eV, the emission moves to earlier time delays with decreasing power and then

stays there for the lowest power. For all excitation powers, the emission line ends at

1.325 eV, which corresponds to the E1H1 band-edge. We also varied the temperature

while fixing the excitation pulse energy at 5µJ, as shown in Figs. 2.5d−f. With

increasing temperature, there is a smearing of the emission line at the lowest photon

energies of the line, until all of the emission from the E1H1 contribution of the line
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Figure 2.4: Observation of intense ultrashort pulses of radiation from a photo-excited
InGaAs quantum well sample with photon energy and time delay continuously chang-
ing with time. (a), The experimental geometry. The in-plane emission is redirected
with a micro-prism towards the collection optics. The sample was kept at 15 K
and 0 T. The excitation photon energy, pulse width, and pulse energy were ∼1.6 eV,
∼150 fs, and 5µJ, respectively. (b), Photoluminescence intensity as a simultaneous
function of time delay and photon energy. The peak emission red-shifts as a function
of time. (c), Spectral slices of the map in (b) for various time delays. (d), Temporal
slices of the map in (b) for various photon energies, showing pulses of radiation whose
delay time with respect to the pump pulse becomes longer with decreasing photon
energy.

17



is ‘washed out’, and only the slightest signal at the E1L1 portion remains at 100 K.

It is clear that the emission burst moves to later times as it is ‘washed out’ at high

temperatures.

Figure 2.5: Excitation pulse energy and temperature dependence of the observed
pulsed radiation at zero magnetic field. Photoluminescence intensity versus time
delay and photon energy for excitation pulse energies of (a) 2.1µJ, (b) 1µJ, and (c)
0.5µJ at 15 K and 0 T. Photoluminescence intensity versus time delay and photon
energy at (d) 25 K, (c) 75 K, and (e) 100 K, with 5µJ excitation pulse energy at 0 T.
The intense pulsed emission of radiation becomes weaker with decreasing (increasing)
excitation power (temperature) and eventually disappears when the excitation power
(temperature) becomes too low (high).

The emission spectrum and dynamics drastically change when a magnetic field

perpendicular to the quantum well plane is applied. Figures 2.6a−e show streak

camera images of emission as a function of photon energy and time delay at different

magnetic fields. With increasing magnetic field, the number of peaks decreases, and

the energy separation between adjacent peaks increases due to increasing Landau

quantization energy (i.e., the cyclotron energy). Previously we demonstrated the
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superradiant nature of the individual emission peaks by streak-camera and pump-

probe measurements [11]. Here we observe that at a given magnetic field the delay

is longer for emission from lower Landau levels, and the (NN) = (00) SF emission

occurs only after the higher-energy SF emissions occur. This means that the relative

timing of the bursts coming from different Landau levels is not random. Rather,

these data clearly indicate that e-h pairs in the highest occupied energy states near

the quasi-Fermi edge at a given time always recombine first; e-h pairs in lower and

lower energy states then emit bursts sequentially. Figure 2.6f summarizes the peak

positions of the SF bursts as a function of photon energy and time.

2.3 Theoretical Explanation

At the linear stage of SF, when the fields grow exponentially, the field experiencing

the maximum gain will dominate over fields with other frequencies. So, we may

explain the red-shifting observed by calculating the dependence of gain spectrum

on the carrier density. Here we use the semiconductor Bloch equations (SBEs) to

study SF from a high-density electronhole (e-h) plasma. In this method the many-

body Coulomb interaction is included. The usual form of the SBEs [15] is for bulk

semiconductors or 2D electron gas, where the states can be labeled by 3D or 2D

wave vectors ~k. For QWs under transverse magnetic field, the eigen-states are not

plane waves. So, we rederive SBEs following the same basic approximations but

in a more general form, which accommodates the effects of a finite well width and

the quantization of motion in a strong magnetic field. We begin with a general
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Figure 2.6: Magnetic-field evolution of the observed pulsed coherent emission as a
function of photon energy and time delay. Time-resolved emission spectra at (a), 0 T,
(b), 6 T, (c), 10 T, (d), 14 T, and (e), 17.5 T with 2µJ of excitation pulse energy at 5
K. Each (N, N) recombination is observed as a delayed burst of superfluorescence (N:
Landau level index). With increasing magnetic field, the number of peaks decreases,
and the energy separation between adjacent peaks increases due to increasing Landau
quantization energy. At a fixed magnetic field, the delay is longer for smaller N. Note
that the N = 0 state is the last to burst. (f), Peak shift of emission as a function of
time at different magnetic fields.
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Hamiltonian in the two-band approximation and e-h representation,

H =
∑
α

[(
E0
g + Ee

α

)
a†αaα + Eh

αb
†
ᾱbᾱ

]
+

1

2

∑
αβγδ

(
V ee
αβγδa

†
αa
†
βaδaγ + V hh

ᾱβ̄γ̄δ̄b
†
ᾱb
†
β̄
bδ̄bγ̄ + 2V eh

αβ̄γδ̄a
†
αb
†
β̄
bδ̄aγ

)
− E(t)

∑
α

(
µαa

†
αb
†
ᾱ + µ∗αbᾱaα

)
, (2.2)

where E0
g is the unperturbed bandgap, a†α and b†ᾱ are the creation operators for

the electron state α and hole state ᾱ, respectively, E(t) is the optical field, µα

is the dipole matrix element, and Vαβγδ are Coulomb matrix elements, for exam-

ple, V ee
αβγδ =

∫
d~r1

∫
d~r2Ψe∗

α (~r1)Ψe∗
β (~r2) e2

ε|~r1−~r2|Ψ
e
γ(~r1)Ψe

δ(~r2). Here we denote the hole

state which can be recombined with a given electron state α optically by ᾱ, and

assume that there is a one-to-one correspondence between them. For the interband

Coulomb interaction, V eh
αβ̄γδ̄

a†αb
†
β̄
bδ̄aγ is the only non-zero matrix element due to the

orthogonality between the Bloch functions of the conduction and valence bands [16].

The electron and hole wave functions can be written as Ψe
α(~r) = ψeα(~r)uc0(~r) and

Ψh
ᾱ(~r) = ψhᾱ(~r)u∗v0(~r), respectively. In the problems we study, the conduction band

and valence band states connected by an optical transition always have the same

envelope wave function, so we take ψhᾱ(~r) = ψe∗α (~r)). Then the Coulomb matrix ele-

ments are related with each other through V hh
ᾱβ̄γ̄δ̄

= V ee
γδαβ and V eh

αβ̄γδ̄
= −V ee

αδγβ, and

we can drop the superscript by defining Vαβγδ ≡ V ee
αβγδ.

Using the above Hamiltonian, we can obtain the equations of motion for the dis-

tribution functions neα = 〈a†αaα〉 and nhα = 〈b†ᾱbᾱ〉, and the polarization Pα = 〈bᾱaα〉.

Using the Hartree-Fock approximation (HFA) and the random phase approximation
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(RPA), we arrive at the SBEs:

ih̄
d

dt
Pα =

(
E0
g + EeR

α + EhR
α

)
Pα

+
(
neα + nhα − 1

) [
µαE(t) +

∑
β

VαββαPβ

]
+ ih̄

d

dt
Pα

∣∣∣∣
scatt

, (2.3)

h̄
d

dt
neα = −2 Im

[(
µαE(t) +

∑
β

VαββαPβ

)
P ∗α

]
+ h̄

d

dt
neα

∣∣∣∣
scatt

, (2.4)

h̄
d

dt
nhα = −2 Im

[(
µαE(t) +

∑
β

VαββαPβ

)
P ∗α

]
+ h̄

d

dt
nhα

∣∣∣∣
scatt

, (2.5)

where EeR
α =

(
Ee
α −

∑
β Vαββαn

e
β

)
and EhR

α =
(
Eh
α −

∑
β Vαββαn

h
β

)
are the renor-

malized energies, and the scattering terms account for higher-order contributions

beyond the HFA and other scattering processes such as scattering with LO-phonons.

These equations, together with Maxwells equations for the electromagnetic field,

can be applied to study the full nonlinear dynamics of interaction between the e-h

plasma and radiation. Here we derive the gain for given carrier distributions neα

and nhα. Assuming a monochromatic and sinusoidal time dependence for the field

E(t) = E0e
−iωt and the polarization Pα = P0αe

−iωt, we can find Pα from Eq. 2.3 and

define the quantity χα(ω) = P0α/E0, which satisfies the equation below:

χα(ω) = χ0
α(ω)

[
1 +

1

µα

∑
β

Vαββαχβ(ω)

]
, (2.6)

where

χ0
α(ω) =

µα
(
neα + nhα − 1

)
h̄ω −

(
E0
g + EeR

α + EhR
α

)
+ ih̄γα

, (2.7)
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where V is the normalization volume. The gain spectrum is given by [15]

g(ω) =
4πω

nbc
Im[χ(ω)], (2.8)

where nb is the background refractive index, and c is the speed of light. We use the

above general results to analyze optical properties under different conditions.

In a quantum well of thickness Lw, the envelope functions for electrons and holes

are ψe,h
n,~k

(~r) = ϕn(z) exp
(
i~k · ~ρ

)
/
√
A, where ~ρ = (x, y), ϕn(z) is the envelope wave

function in the growth direction for the n-th subband, and A is the normalization

area. To calculate the Coulomb matrix element Vαββα, we define Ṽαβ ≡ Vαββα, and

put α =
{
n,~k, s

}
, β =

{
n′, ~k′, s′

}
, where s denotes the spin quantum index. Then

one gets

Ṽn,~k,s;n′,~k′,s′ = V 2D(q)Fnn′n′n(q)δss′ , (2.9)

where q = |~q| = |~k − ~k′|, V 2D(q) = 2πe2/ε0Aq, with ε0 the dielectric constant and A

the normalization area, and the form factor Fnn′n′n(q) is defined as

Fn1,n2,n3,n4(q) =

∫
dz1

∫
dz2ϕ

∗
n1(z1)ϕ∗n2(z2) exp (−q |z1 − z2|)ϕn3(z1)ϕn4(z2).(2.10)

Throughout the paper, we will assume that only the lowest subband for electrons and

holes is occupied. In this case, we can define Ṽ (q) = V 2D(q)F1111(q). The dielectric

function ε(~q, ω), which describes the screening of the Coulomb potential, is given by

the Lindhard formula for a pure 2D case [15]; it can be generalized to the quasi-2D

case as

ε(~q, ω) = 1 + Ṽ (q) (Πe(~q, ω) + Πh(~q, ω)) , (2.11)
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where Πe(h)(~q, ω) is the polarization function of an electron or hole, which is given

by

Π(~q, ω) = 2
∑
~k

n~k+~q − n~k
ω + i0+ − E~k+~q + E~k

. (2.12)

Here, we dropped the subscripts e or h, n~k is the distribution function, the factor

of 2 accounts for the summation over spin, and the spin index is suppressed. For

simplicity, we will choose the static limit, namely, ω = 0.

Given the dielectric function ε(q; 0), the screened Coulomb matrix element is

Ṽs(q) = Ṽ (q)/ε(q, 0). For simplicity, we will still write it as V (q). Applying Eq. 2.6

to the case above, we get the equation for χ~k(ω):

χ~k(ω) = χ0
~k
(ω)

1 +
1

µ~k

∑
~k′

Ṽ
(∣∣∣~k − ~k′∣∣∣)χ~k′(ω)

 , (2.13)

where χ0
~k
(ω) becomes

χ0
~k
(ω) =

µ~k

(
ne~k + nh~k − 1

)
h̄ω −

(
E0
g + EeR

~k
+ EhR

~k

)
+ ih̄γ~k

, (2.14)

To solve Eq. 2.13, we notice that χ0
~k
(ω) does not depend on the direction of ~k, so

χ~k(ω) will not depend on it, either. Then, after converting the summation in Eq. 2.13

into the integral, the integration over the azimuthal angle is acting on Ṽ
(∣∣∣~k − ~k′∣∣∣)

only. If we define

Ṽs (k, k′) =
1

2π

∫ 2π

0

dφṼs

(√
k2 + k′2 − 2kk′ cosφ

)
, (2.15)
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then Eq. 2.13 can be written as

χk(ω) = χ0
k(ω)

[
1 +

A

2πµk

∫ ∞
0

k′dk′Ṽs (k, k′)χ′k(ω)

]
. (2.16)

After discretizing the integral, we have a system of linear equations for χk(ω), which

can be solved by using LAPACK [17]. The band structure for our sample consisting

of undoped 8-nm In0.2Ga0.8As wells and 15-nm GaAs barriers on a GaAs substrate

is calculated using the parameters given by Vurgaftman et al. [18]. The strain effect

is included using the results of Sugawara et al. [19]. Examples of calculated gain

spectra are shown in Figs. 2.7a,b.

For a quantum well structure in a strong perpendicular magnetic field, the elec-

tronic states are fully quantized. Considering only the lowest subband in the quantum

well, the equation for the susceptibility is written as

χn,s = χ0
n,s

[
1 +

1

µn,s

∑
n′

Vn,n′χn′,s

]
, (2.17)

where n is the Landau level index, s is the spin index, and Vn,n′ is the Coulomb

matrix element given by

Vn,n′ =
e2

2πε0

∫ 2π

0

dθ

∫ ∞
0

dq

∣∣∣∣∫ dxeiqx cos θφn(x)φ∗n′(x+ qa2
H sin θ)

∣∣∣∣2 , (2.18)

where φn(x) is the x-dependent part of the wavefunction of the n-th Landau level

and a2
H = h̄c/eB. The renormalized electronic energies in the expression for χ0

n,s are

EeR
n,s = Ee

n,s −
∑
n′

Vn,n′nen′ , (2.19)
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Figure 2.7: Theoretical calculations of Coulomb-induced many-body enhancement
of gain at the Fermi energy at zero magnetic field and 17 T. (a), Gain spectrum for
the InGaAs sample without a magnetic field, calculated using Eq.2.6 (solid line), in
comparison with the spectrum obtained by replacing χα(ω)→ χ0

α(ω), i.e., neglecting
all Coulomb effects except band-gap renormalization (dashed line). Separate Fermi
distributions for electrons and holes of density 1 × 1012 cm2 and temperature 5 K
are assumed. A relaxation rate of 2 meV is assumed. (b), Peak gain (upper panel)
and peak gain energy (lower panel) as a function of e-h density at zero magnetic
field. Other parameters are the same as in (a). (c), Calculated gain spectrum
in a magnetic field of 17 T (solid line), in comparison with the spectrum obtained
by replacing χα(ω) → χ0

α(ω), i.e., neglecting all Coulomb effects except band-gap
renormalization (dashed line). A filling factor ν = 3 and a temperature of 5 K are
assumed. A relaxation rate of 3 meV is adopted. (d), Peak gain (upper panel) and
peak gain energy (lower panel) at 17 T as a function of filling factor, defined as the
number of filled Landau levels. Other parameters are the same as in (c).

26



and a similar equation holds for holes. The gain is calculated as

g(ω) =
4πω

nbc

1

πa2
H

Im

[∑
n

µ∗n,sχn,s

]
. (2.20)

An example of the calculated gain for B = 17 T is shown in Figs. 2.7c,d.

It is seen that Coulomb interactions lead to an enhancement of gain just below

the energy that corresponds to the difference between the quasi-Fermi levels of elec-

trons and heavy holes. Previously, a related effect of “Fermi-edge singularity” has

been observed in the spontaneous PL spectra of n-doped quantum wells in a steady

state [20]. In the present case, the many-body gain enhancement is completely due

to a nonequilibrium photo-excited e-h plasma. Stimulated emission occurs in the

quantum well plane, and the light intensity grows exponentially, both in space and

time. As a result, the rather broad many-body enhancement in the gain spectrum

around Fermi energy translates into a sharp peak in the instantaneous intensity

spectrum. The subsequent time evolution of the spectrum is dominated by an ul-

trafast collective recombination process: the peak continuously follows the red-shift

of the quasi-Fermi level as the carriers at the Fermi edge are consumed by the SF.

This behavior, observed in our samples according to Fig. 2.5, is in agreement with

Fig. 2.7b, which shows the calculated evolution of the peak gain and peak gain energy

as a function of e-h pair density. Furthermore, the highest gain, which leads to the

fastest decay, is seen to be achieved at some intermediate density, which explains the

observed non-monotonic temporal shift as a function of pump power (Figs. 2.5a-c).

In a strong magnetic field, the gain spectrum exhibits strong peaks when the

Landau level filling factor is an integer, and for a given filling factor, the gain is

largest for the highest filled Landau level (Figs. 2.7c,d). A snapshot of the gain for

a fixed filling factor ν = 3, corresponding to three filled Landau levels, is shown in
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Fig. 2.7c for a magnetic field of 17 T. A relaxation time of 3 meV is adopted. It can

be seen that the peak gain for e-h pairs at the N = 3 Landau level is much higher

than that for completely filled, lower Landau levels. Note that the peak gain value

is strongly enhanced compared to quantum wells without a magnetic field due to

an increase in the transition matrix element and density of states. This provides

a natural explanation for the trend observed in Fig. 2.6f, i.e., SF develops faster

in a stronger magnetic field. Figure 2.7d shows the calculated peak gain and peak

gain energy as a function of filling factor at a fixed magnetic field of 17 T. The

peculiar many-body dynamics of the peak gain lead to isolated SF bursts that are

fired consecutively from higher to lower Landau levels, as observed in Fig. 2.6.

2.4 Summary

In summary, the results of this study not only provide new insight into the

nonequilibrium dynamics of Coulomb-correlated e-h pairs in semiconductors but also

open up new possibilities of controlling, and enhancing, collective emission proper-

ties of many-body states. Specifically, we showed that superfluorescence, a well-

known phenomenon in quantum optics of atoms based on photon exchange between

inverted atomic dipoles, takes a new turn when it occurs in a condensed matter

system, where Coulomb correlations (i.e., virtual-photon exchange) create enormous

gain concentrated at the Fermi edge, which becomes better defined at lower temper-

atures (Figs. 2.5d−f). Thus, this work demonstrates a unique method of producing

ultrashort pulses of radiation from a semiconductor, based on the existence of Fermi-

degenerate, nonequilibrium electrons and holes.
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3. ENHANCEMENT OF SECOND-ORDER NONLINEAR OPTICAL

PROCESSES FOR INTERSUBBAND TRANSITIONS BY COULOMB

EFFECT

3.1 Introduction

Intersuband optical transitions are usually described in a single-particle picture.

However, the carriers inside a QW interact with each other due to the Coulomb

potential from electrons, which can lead to collective excitations. For example, in

a QW with high density of electrons, the response to the optical field is modified

from the single-particle picture, because the electrons are affected by the induced

field of the excited electrons, which is called the depolarization field [1, 16]. The

collective mode is given the name of intersubband plasmon [21]. It was found that

the absorption has a blue shift when the effect of intersubband plasmon is included

[22]; see Figs. 3.1 and 3.2 for details. In the work by the same group, the intersubband

plasmon effects are calculated in the picture of dipole-dipole interaction [23]. Here

we use density matrix equations to calculate the Coulomb effect on intersubband

optical transitions, and find that it can enhance the second-order nonlinear optical

processes.

3.2 Hamiltonian

In second quantization, the Hamiltonian can be written as

H = H0 +Hee +Hei +Hii, (3.1)

29



Figure 3.1: The single particle picture of optical absorption in a highly doped quan-
tum well system. [22]

Figure 3.2: Absorption spectra of the doped quantum well measured at 77 K (con-
tinuous line) and 300 K (dashed line). The inset presents the 77 K (continuous line)
and 300 K (dashed line) spectra measured on the same sample at Brewster angle.
The blue line in the main panel represents the simulated absorption spectrum, result-
ing from a single particle description and Lorentzian line broadening of the allowed
transitions. [22]
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with

H0 =

∫
d3~rΨ†e(~r)

(
~p2

2m∗
+ Ve(z)

)
Ψe(~r), (3.2)

Hee =
1

2

∫
d3~r

∫
d3~r′Ψ†e(~r)Ψ

†
e(~r
′)V (|~r − ~r′|)Ψe(~r

′)Ψ(~r), (3.3)

Hei = −
∫
d3~r

∫
d3~r′Ψ†e(~r)Ψe(~r)V (|~r − ~r′|)ρi(~r′), (3.4)

Hii =
1

2

∫
d3~r

∫
d3~r′ρi(~r)V (|~r − ~r′|)ρi(~r′), (3.5)

where Ve(z) is the confinement potential, V (|~r − ~r′|) = e2/κ0|~r − ~r′| is the Coulomb

interaction, and ρi(~r) is the density of ions, which is only a function of z. Ψe(~r) can

be expanded using the wave functions which diagonalize H0,

Ψe(~r) =
∑
n~k

ϕn(z)
ei
~k·~ρ
√
A
an~k. (3.6)

Then we get

H0 =
∑
n~k

εn~ka
†
n~k
an~k, (3.7)

Hee =
1

2

∑
n1n2n3n4

∑
~k3~k4~q

V ee
n1n2n3n4

(q)a†
n1,~k3−~q

a†
n2,~k4+~q

an4,~k4
an3,~k3

, (3.8)

Hei = −A
∑
n1n2

∑
~k2

V ei
n1n2

(q)
∣∣
q=0

a†
n1
~k2
an2

~k2
, (3.9)

Hii =
1

2
A2 V ii(q)

∣∣
q=0

, (3.10)
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where

V ee
n1n2n3n4

(q) =

∫
dz

∫
dz′ϕ∗n1

(z)ϕ∗n2
(z′)

2πe2

κ0Aq
e−q|z−z

′|ϕn3(z)ϕn4(z
′), (3.11)

V ei
n1n2

(q) =

∫
dz

∫
dz′ϕ∗n1

(z)ϕn2(z)
2πe2

κ0Aq
e−q|z−z

′|ρi(z
′), (3.12)

V ii(q) =

∫
dz

∫
dz′ρi(z)

2πe2

κ0Aq
e−q|z−z

′|ρi(z
′). (3.13)

The q = 0 terms should be interpreted as

2πe2

κ0Aq
e−q|z−z

′|
∣∣∣∣
q=0

= lim
q→0

2πe2

κ0Aq
e−q|z−z

′|

= V 2D(q)
∣∣
q=0
− 2πe2

κ0

|z − z′|, (3.14)

where V 2D(q) = 2πe2/κ0Aq is the two dimensional Fourier transform of the Coulomb

potential. So, we can divide the Coulomb interaction Hamiltonian into several terms,

Hee = H(1)
ee +H(2)

ee +H(3)
ee ,

Hei = H
(1)
ei +H

(2)
ei ,

Hii = H
(1)
ii +H

(2)
ii , (3.15)
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where the terms are given below,

H(1)
ee =

1

2
V 2D(q)

∣∣
q=0

∑
n1n2

∑
~k1~k2

×a†
n1,~k1

a†
n2,~k2

an2,~k2
an1,~k1

, (3.16)

H(2)
ee = −1

2

∑
n1n2n3n4

∑
~k3~k4

Ṽ ee
n1n2n3n4

a†
n1,~k3

a†
n2,~k4

an4,~k4
an3,~k3

, (3.17)

H(3)
ee =

1

2

∑
n1n2n3n4

q 6=0∑
~k3~k4~q

V ee
n1n2n3n4

(q)a†
n1,~k3−~q

a†
n2,~k4+~q

an4,~k4
an3,~k3

, (3.18)

H
(1)
ei = −Nd V

2D(q)
∣∣
q=0

∑
n1
~k1

a†
n1
~k1
an1

~k1
, (3.19)

H
(2)
ei = A

∑
n1n2

∑
~k2

Ṽ ei
n1n2

a†
n1
~k2
an2

~k2
, (3.20)

H
(1)
ii =

1

2
N2
d V

2D(q)
∣∣
q=0

, (3.21)

H
(2)
ii = −1

2
A2Ṽ ii, (3.22)

where

Ṽ ee
n1n2n3n4

=

∫
dz

∫
dz′ϕ∗n1

(z)ϕ∗n2
(z′)

2πe2

κ0A
|z − z′|ϕn3(z)ϕn4(z

′),

Ṽ ei
n1n2

=

∫
dz

∫
dz′ϕ∗n1

(z)ϕn2(z)
2πe2

κ0A
|z − z′|ρi(z′),

Ṽ ii =

∫
dz

∫
dz′ρi(z)

2πe2

κ0A
|z − z′|ρi(z′), (3.23)

and Nd = A
∫
dzρi(z) is the total number of ions, which it is equal to the total

number of electrons: Nd =
∑

n~k nn~k, where nn~k = 〈a†
n~k
an~k〉. We can see that if we

want to find the total energy of the system, the summation of H
(1)
ee , H

(1)
ei and H

(1)
ii

vanishes.
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In the presence of optical field E(t), the Hamiltonian contains another term

He−ph = −E(t)

n1 6=n2∑
n1n2

∑
~k

µn1n2(
~k)a†

n1
~k
an2

~k, (3.24)

where µn1n2(
~k) is the dipole matrix element.

3.3 Dynamics of Optical Polarization

In order to get the optical response, we need to calculate the dynamics of the

polarization Pmn(~k) ≡ 〈a†
m~k
an~k〉. This is given by the Heisenberg equation

ih̄
d

dt
〈a†
m~k
an~k〉 =

〈[
a†
m~k
an~k, H0 +He−ph +HC

]〉
, (3.25)

where HC contains all the Coulomb interaction terms. The commutation with H0 +

He−ph gives

〈[
a†
m~k
an~k, H0 +He−ph

]〉
= Pmn(~k)

(
εn(~k)− εm(~k

)
− E(t)µnm(~k)

(
nm(~k)− nn(~k

)
− E(t)

l 6=m,n∑
l

(
µnl(~k)Pml(~k)− µlm(~k)Pln(~k)

)
. (3.26)

It shows the intersubband optical polarizations are coupled with each other nonlin-

early.

For the commutation with HC , it can be shown the terms corresponding to H
(1)
ee ,
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H
(1)
ei , H

(1)
ii and H

(2)
ii are zero. The commutation with H

(2)
ee to be

〈[
a†
m~k
an~k, H

(2)
ee

]〉
= −

∑
n1n2n3n4

∑
~k3~k4

Ṽ ee
n1n2n3n4

(
δn~k,n1

~k3
〈a†
m~k
a†
n2,~k4

an4,~k4
an3,~k3

〉+ δm~k,n4
~k4
〈a†
n1
~k3
a†
n2,~k4

an3,~k3
an,~k〉

)
= −

∑
n2n3n4

Ṽ ee
nn2n3n4

〈a†
m~k
an3

~k〉
∑
~k4

〈a†
n2,~k4

an4,~k4
〉+

∑
n1n2n3

Ṽ ee
n1n2n3m

〈a†
n2
~k
an~k〉

∑
~k3

〈a†
n1,~k3

an3,~k3
〉

=
(
nn(~k)− nm(~k)

)∑
n2

Ṽ ee
nn2mn2

Nn2 +
(
nn(~k)− nm(~k)

) n2 6=n4∑
n2n4

Ṽ ee
nn2mn4

Pn2n4

+ Pmn(~k)

(∑
n1

Ṽ ee
n1mn1m

Nn1 −
∑
n2

Ṽ ee
nn2nn2

Nn2

)

+
∑

n2 6=m,n

Pn2n(~k)
∑
n1

Ṽ ee
n1n2n1m

Nn1 −
∑

n3 6=m,n

Pmn3(
~k)
∑
n2

Ṽ ee
nn2n3n2

Nn2

+
∑
n1n2n3

Ṽ ee
n1n2n3m

Pn2n(~k)Pn1n3 −
∑
n2n3n4

Ṽ ee
nn2n3n4

Pmn3(
~k)Pn2n4 , (3.27)

where Pn2n4 =
∑

~k4
Pn2n4(

~k4), and Nn1 =
∑

~k1
nn1(

~k1). And the commutation with

H
(2)
ei is

〈[
a†
m~k
an~k, H

(2)
ei

]〉
= APmn(~k)

(
Ṽ ei
nn − Ṽ ei

mm

)
+ A

∑
n2 6=m,n

Ṽ ei
nn2
Pmn2(

~k)− A
∑

n1 6=m,n

Ṽ ei
n1m

Pn1n(~k)

+ Ṽ ei
nm

(
nm(~k)− nn(~k)

)
. (3.28)
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The commutation with exchange interaction H
(3)
ee is

〈[
a†
m~k
an~k, H

(3)
ee

]〉
=
(
nn(~k)− nm(~k)

)∑
n2

∑
~q 6=0

V ee
nn2n2m

(q)nn2(
~k + ~q)

+
(
nn(~k)− nm(~k)

) n2 6=n3∑
n2n3

∑
~q 6=0

V ee
nn2n3m

(q)Pn2n3(
~k + ~q)

+ Pmn(~k)
∑
n2

∑
~q 6=0

(
V ee
mn2n2m

(q)− V ee
nn2n2n

(q)
)
nn2(

~k + ~q)

+
∑
n2

∑
~q 6=0

(
n1 6=m,n∑
n1

V ee
n1n2n2m

(q)Pn1n(~k)−
n4 6=m,n∑
n4

V ee
nn2n2n4

(q)Pmn4(
~k)

)
nn2(

~k + ~q)

+
∑
n1n2n3

∑
~q 6=0

V ee
n1n2n3m

(q)Pn1n(~k)Pn2n3(
~k + ~q)

−
∑
n2n3n4

∑
~q 6=0

V ee
nn2n3n4

(q)Pmn4(
~k)Pn2n3(

~k + ~q). (3.29)

Group all the terms together, and drop those terms which do not contribute to

the optical polarization, we get the equation for intersubband polarization as

ih̄
d

dt
Pmn(~k)

= (ε̃n(~k)− ε̃m(~k))Pmn(~k) +
(
nn(~k)− nm(~k

)Ṽ ee
nmmnPmn +

∑
~q 6=0

V ee
nmnm(q)Pmn(~k + ~q)


− E(t)µnm(~k)

(
nm(~k)− nn(~k

)
− E(t)

l 6=m,n∑
l

(
µnl(~k)Pml(~k)− µlm(~k)Pln(~k)

)
+
∑
n2

Ṽ ee
mn2n2m

Pn2n(~k)Pmn2 −
∑
n2

Ṽ ee
nn2n2n

Pmn2(
~k)Pn2n

+
∑
n1

∑
~q 6=0

V ee
n1mn1m

(q)Pn1n(~k)Pmn1(
~k + ~q)−

∑
n2

∑
~q 6=0

V ee
nn2nn2

(q)Pmn2(
~k)Pn2n(~k + ~q),

(3.30)
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where

ε̃n(~k) = εn(~k)−
∑
n2

Ṽ ee
nn2nn2

Nn2 + AṼ ei
nn −

∑
n2

∑
~q 6=0

V ee
nn2n2n

(q)nn2(
~k + ~q). (3.31)

If we neglect the terms corresponding to exchange interaction, namely those ~q 6= 0

terms, and assume parabolic dispersion in each subband with the same effective mass,

then we can sum over ~k, and get the dynamics of polarization like below

ih̄
d

dt
Pmn

=
(
ε̃n − ε̃m + (Nn −Nm) Ṽ ee

nmmn

)
Pmn

− E(t)µnm (Nm −Nn)− E(t)

l 6=m,n∑
l

(µnlPml − µlmPln)

+
∑
n2

(
Ṽ ee
mn2n2m

− Ṽ ee
nn2n2n

)
Pmn2Pn2n. (3.32)

The last term in the above equation corresponds to the Coulomb contribution to

second-order nonlinear optical processes. We will analyze it in the next section.

3.4 Three-wave Mixing

In second-order nonlinear optical processes, optical fields with new frequency are

generated when lights interact with the matter. We will develop the general case

where two optical fields interact with a three-subband system. The three subband

are labeled as |m〉, |p〉 and |n〉, and the optical fields are written as

E(t) = Empeiωmpt + Epneiωpnt, (3.33)
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then we have the linear polarization to be

Pmp =
µpm(Nm −Np)Empeiωmpt
h̄ωmp − ε̃mp − ih̄γmp

, Ppn =
µnp(Np −Nn)Epneiωpnt
h̄ωpn − ε̃pn − ih̄γpn

. (3.34)

So, the nonlinear polarization at frequency ωmp + ωpn is

Pmn =
µnpµpmEmpEpnei(ωmp+ωpn)t

h̄ωmp + h̄ωpn − ε̃mn − ih̄γmn
×
[

Nm −Np

h̄ωmp − ε̃mp − ih̄γmp
− Np −Nn

h̄ωpn − ε̃pn − ih̄γpn
−
(
Ṽ ee
mppm − Ṽ ee

nppn

) (Nm −Np)

h̄ωmp − ε̃mp − ih̄γmp
(Np −Nn)

h̄ωpn − ε̃pn − ih̄γpn

]
. (3.35)

Here the first two terms correspond to the conventional nonlinear polarization, while

the third term is for the nonlinearity from the intersubband plasmon. An interesting

feature is that the three optical fields cannot be in resonant with the transitions

simultaneously, this is because the transition energy ε̃mn = ε̃m−ε̃n+(Nm −Nn) Ṽ ee
mnnm

cannot be expressed as the difference between two definite energy levels. So, we have

ε̃mn − (ε̃mp + ε̃pn)

= (Nm −Nn) Ṽ ee
mnnm − (Nm −Np) Ṽ

ee
mppm − (Np −Nn) Ṽ ee

pnnp, (3.36)

which is usually nonzero. The nonlinear dipole moment is just µmnPmn/Lp, where Lp

is the length of one period of the QW system. So, we get the nonlinear susceptibility
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χ(2) given below,

χ(2) =
µmnµnpµpmEmpEpn

h̄ωmp + h̄ωpn − ε̃mn − ih̄γmn
×
[

Nm −Np

h̄ωmp − ε̃mp − ih̄γmp
− Np −Nn

h̄ωpn − ε̃pn − ih̄γpn
−
(
Ṽ ee
mppm − Ṽ ee

nppn

) (Nm −Np)

h̄ωmp − ε̃mp − ih̄γmp
(Np −Nn)

h̄ωpn − ε̃pn − ih̄γpn

]
. (3.37)

Now we analyze the effect of intersubband plasmon on the difference-frequency

generation (DFG) in a QW structure. The structure was designed by Yong-Hee

Cho, and it consists two QWs, with barrier material Al0.48In0.52As, well material

Ga0.47In0.53As, and substrate InP. The energy levels and wave functions for this

structure is shown in Fig. 3.3. In Fig. 3.4, we show the dependence of χ(2) on the

doping densities, and contributions from the conventional nonlinear coupling and

intersubband plasmon are separated for comparison. As we can see, the χ(2) increases

with doping density for both contributions. So, intersubband plasmon can enhance

the DFG efficiency in a QW structure when the doping density is high.

3.5 Conclusion

In conclusion, the carriers in a QW structure interact with each other via Coulomb

interaction, and it leads to intersubband plasmons. We developed a theory in

Hartree-Fock approximation to study the effect of intersubband plasmon on sec-

ond order nonlinear optical processes. We show that intersubband plasmonic effect

can enhance the DFG efficiency, and its contribution increases with doping density.
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Figure 3.3: The energy levels and wave functions of the QW structure. The device
consists Al0.48In0.52As barrier, Ga0.47In0.53As well, and InP substrate. Starting from
the barrier, the layer thicknesses of one period is 50/35/31/92, in unit Å. Two optical
fields with frequency in resonant with 1 ↔ 3 and 2 ↔ 3 are used to generate optical
field with the difference-frequency.
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Figure 3.4: The nonlinear susceptibility χ(2) for the DFG process. Dotted line:
conventional nonlinear contribution. Dashed line: intersubband plasmonic con-
tribution. Solid line: Both contributions. The broadening h̄γ is set to be 5
meV. When n2D = 2.8 × 1012cm−2, n = 2 subband becomes occupied, and when
n2D = 3.6× 1012cm−2, n = 3 subband becomes occupied.
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4. ACTIVE MODE-LOCKING OF MID-INFRARED QUANTUM CASCADE

LASERS WITH SHORT GAIN RECOVERY TIME ∗

4.1 Introduction

Generation of ultrashort pulses in mid-infrared (mid-IR) QCLs is one of the last

remaining fundamental challenges in QCL physics and laser physics in general. The

gain recovery time of a typical QCL is of the order of 1 ps, which is much shorter

than the cavity round-trip time of order 50 ps. This effectively prohibits passive

mode locking with a saturable absorber of any kind. Indeed, any initial intensity

fluctuation in a cavity will quickly get damped if the gain recovers to its small-signal

value immediately after the passage of the pulse, leading to preferential amplification

of the tails of the pulse.

The situation with active mode locking (AML) is not so obvious, although there

is a widespread belief that a long gain recovery time is essential in this case as

well. AML has been observed in terahertz QCLs where the gain recovery time

is believed to be significantly longer than in the mid-IR QCLs; see e.g. [24, 25].

AML was also observed in two-section mid-IR QCLs of a ”super-diagonal” design in

which the laser transition is diagonal in real space so that the upper-state lifetime

can be as long as 40-50 ps [26, 7]. The latter papers also pointed out that active

mode locking in monolithic Fabry-Perot lasers appears to be limited by the spatial

hole burning (SHB), i.e. a transient population grating created by a standing wave

pattern inside the cavity. Scattering of the laser field off the population grating leads

to the proliferation of modes with uncorrelated phases, which destroys single-pulse

∗Part of the result reported in this section is reprinted with permission from “Active mode-locking
of mid-infrared quantum cascade lasers with short gain recovery time” by Yongrui Wang and
Alexey Belyanin, 2015, Optics Express 23, 4173-4185, Copyright [2015] by the Optical Society of
America (OSA).
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operation and leads to a chaotic output [26, 7, 27]. To avoid the detrimental effects

of the SHB, [28] proposed active modulation of an external ring cavity QCL where

the field propagates in only one direction and the population grating is not formed.

The active device modeled in [28] was assumed to have a vertical laser transition and

a short gain recovery time. Simulations in [28] showed a stable and robust generation

of mode-locked pulses, but the pulse duration was very long for modulation at the

round-trip period. Reaching the output pulse duration of ∼ 5 ps required the gain

modulation with ultrashort current pulses of 20-30 ps, which would be difficult to

synthesize.

The studies in [28] revealed that short gain recovery does not prevent mode lock-

ing as long as the net gain window is opened for a short time as compared to the

cavity round-trip time. To achieve this, the modulation of only a small part of the

laser cavity seems to be crucial. Indeed if the gain responds to modulation instan-

taneously, modulation of the whole cavity will destroy an isolated pulse as it will

experience both gain and loss during each roundtrip. According to our simulations

below, in this case the steady-state output is either intensity modulated or simply

dies out.

Opening a short gain window is straightforward in an external cavity. However,

for many applications a compact monolithic design is preferable. Here we show that

generation of mode-locked pulses of a few ps duration is feasible in a monolithic

Fabry-Perot cavity even for QCLs with a short gain recovery time, as long as only

a short section of the cavity is modulated at the cavity round-trip time. The cavity

design is similar to the one employed in [26, 7]. However in contrast to those works

we focus on a high-performance active region design with a vertical laser transition

and a short gain recovery time. We compare the performance of lasers with long and

short gain recovery times and find that standard QCLs with gain relaxation times
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of the order of 1 ps are in fact preferable for the AML. Indeed, in super-diagonal

lasers electrons accumulate in the upper laser state and the modulation of injection

is rather weak. The gain modulation could possibly be achieved by varying bias,

which leads to variation of the oscillator strength. However, the DC bias modulation

in the active region of a super-diagonal laser is reduced by a strong space charge

effect and is accompanied by the modulation of the upper state lifetime and the

shift of the intersubband transition energy. These effects can reduce the resulting

gain modulation and are not easy to control and utilize. In vertical transition lasers

the density of upper-state electrons is much smaller than the electron density in the

injector. The dominant effect of the bias modulation is the modulation of injection

current and gain.

We use a more realistic model of the QCL active region and transport which

includes resonant tunneling injection, electron distribution over in-plane k-vectors,

and space charge. We also perform time-domain and space-domain simulations of the

propagating field, in which we can directly follow the pulse formation and the pulse

instabilities in time. Note that all previous studies cited above used the frequency-

domain modal approach and a two- or three-level laser model without current in-

jection. We find the single-pulse operation to be quite robust to the variation of

parameters such as the DC bias, bias modulation, and the length of the modulated

section. At the same time the phase coherence and pulse duration are sensitive to

even slight variations the modulation period: at the level of 0.3%. Moreover the

optimal modulation period values for the shortest pulse and longest phase coherence

time do not coincide.
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4.2 The Model of the Active Region and Main Equations

We use a four-subband model to describe the QCL active region. It includes the

injector/extractor states (hereafter the ground state), upper laser state, and lower

laser state, denoted as g, u and l, respectively. A schematic diagram of the model

and the two-section cavity are shown in Fig. 4.1.

g

u
J

𝛿

l

g

Δ

Δ = 𝑒𝐸𝑒𝑥𝑡𝛿

(a) (b)

Figure 4.1: (a) A schematic of the active region model. The current J (thick hori-
zontal line) is due to resonant tunneling between aligned k‖ states of injector g and
the upper laser subband u. The distance δ is the separation between the centroids
of electron states in g and u, and ∆ is the detuning between the bottoms of these
two subbands. The bias electric field is defined to be zero when g and u are aligned.
Dashed arrows denote the non-radiative transitions, mostly due to LO phonons. (b)
A schematic of a two-section cavity with an RF modulation at the cavity round-trip
time applied to a shorter section.

The system dynamics is described by coupled density matrix and Maxwell equa-

45



tions:

∂tng =
nu
Tug

+
nl
Tlg
− J +D

∂2ng
∂z2

,

∂tnu = J − nu
Tul
− nu
Tug
− idE

h̄
(ρul − ρ∗ul) +D

∂2nu
∂z2

,

∂tnl =
nu
Tul
− nl
Tlg

+ i
dE

h̄
(ρul − ρ∗ul) +D

∂2nl
∂z2

,

∂tρul = −
(
iω +

1

T2

)
ρul − i

dE

h̄
(nu − nl) ,

∂2
zE −

n2

c2
∂2
tE =

Γd

ε0c2Lp
∂2
t (ρul + ρ∗ul) , (4.1)

where ng, nu and nl are the sheet densities of the corresponding states, ρul is the

off-diagonal density matrix element for a laser transition, d is the dipole moment, E

is the electric field of the laser mode, n is the refractive index, Lp is the thickness of

one period, Γ is the overlap factor, h̄ω is the resonance energy of optical transition,

and D is the diffusion coefficient, which we will take to be zero in simulations in

order to consider the most unfavorable for AML case of a strong SHB. The injection

current J is given by [29]

J =
eΩ2γ

h̄(∆2 + γ2)

{
θ(∆)

(
ng − nue−|∆|/kBT

)
+ θ(−∆)

(
nge

−|∆|/kBT − nu
)}

. (4.2)

Here Ω and γ are the coupling energy and the broadening of the states across the

injection barrier, θ(x) is the Heaviside function, and ∆ is the energy detuning from

alignment. If we define the bias at alignment to be 0, then ∆ = eEextδ, where Eext is

the bias electric field, and δ is the separation between the centroids of states g and

u.
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Next, we generalize the ansatzes made in [27]:

E(z, t) =
1

2

[
E+(z, t)e−i(ωt−kz) + E∗+(z, t)ei(ωt−kz)

]
+

1

2

[
E−(z, t)e−i(ωt+kz) + E∗+(z, t)ei(ωt+kz)

]
,

ρul(z, t) = η+e
−i(ωt−kz) + η−e

−i(ωt+kz) ,

ng(z, t) = ng0 + ng2e
2ikz + n∗g2e

−2ikz ,

nu(z, t) = nu0 + nu2e
2ikz + n∗u2e

−2ikz ,

nl(z, t) = nl0 + nl2e
2ikz + n∗l2e

−2ikz , (4.3)

where k = nω/c. E+ and E− are amplitudes of the fields traveling in right and left

directions respectively. All populations contain the slowly varying average part and

the grating part, denoted by subscripts 0 and 2. The injection current J is a linear

combination of ng and nu when the space charge effect is not included. So, J(z, t)

should have the same form as electron populations:

J(z, t) = J0 + J2e
2ikz + J∗2e

−2ikz . (4.4)

Although we include the space charge in our work, if we ignore the effect of the popu-

lation grating on energy detuning ∆ as the first order approximation, the conclusion

above still holds.

Substituting these expressions into the density matrix equations, and making

the slowly varying envelope approximation, we get the following equations for the
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envelope functions,

∂tng0 =
nu0

Tug
+
nl0
Tlg
− J0 , (4.5)

∂tng2 =
nu2

Tug
+
nl2
Tlg
− J2 − 4k2Dng2 , (4.6)

∂tnu0 = J0 −
nu0

Tul
− nu0

Tug
+ i

d

2h̄

[
E+η

∗
+ + E−η

∗
− − c.c.

]
, (4.7)

∂tnu2 = J2 −
nu2

Tul
− nu2

Tug
− 4k2Dnu2 + i

d

2h̄

[
E+η

∗
− − E∗−η+

]
, (4.8)

∂tnl0 =
nu0

Tul
− nl0
Tlg
− i d

2h̄

[
E+η

∗
+ + E−η

∗
− − c.c.

]
, (4.9)

∂tnl2 =
nu2

Tul
− nl2
Tug
− 4k2Dnl2 − i

d

2h̄

[
E+η

∗
− − E∗−η+

]
, (4.10)

∂tη+ = −i d
2h̄

[(nu0 − nl0)E+ + (nu2 − nl2)E−]− η+

T2

, (4.11)

∂tη− = −i d
2h̄

[(nu0 − nl0)E− + (n∗u2 − n∗l2)E+]− η−
T2

, (4.12)(n
c
∂t + ∂z

)
E+ = i

Γdω

nε0cLp
η+ − lwE+ , (4.13)(n

c
∂t − ∂z

)
E− = i

Γdω

nε0cLp
η− − lwE− . (4.14)

Here the waveguide loss lw is added in the equations for the fields. These are the

partial differential equations we solve numerically. The derivatives are approximated

by the 2nd order expression, e.g. a quantity f(t) is updated at each step as

f((n+ 1)∆t) = f(n∆t) + ∆tḟ(n∆t) +
1

2
(∆t)2f̈(n∆t) . (4.15)

In experiment the laser oscillations in a cavity grow starting from the spontaneous

noise, i.e. quantum fluctuations of the field and polarization. To include them in

our modeling in a rigorous way we would have to perform second quantization of

the field and electrons which would make the problem intractable. To adequately

simulate the spontaneous noise we add a complex random source term to the right-

48



hand side of the polarization equations Eqs. (4.11) and (4.12) which has zero average

and is delta-correlated in space and time within the accuracy of the space-time

numerical grid. The maximum magnitude of the random source is βnu0/Trad where

Trad ' 10−7 s is the spontaneous radiative lifetime of the laser transition and β is

the small geometric factor measuring the fraction of spontaneous emission coupled

to the transverse laser mode. We also added a random delta-correlated electric field

along the cavity at the initial moment of time to model initial fluctuations of the

field. We performed numerous simulations with different values of the β parameter

and initial noise. Figure 4.5 below shows one example of simulations for β = 10−4

and the initial random field of magnitude 10−3 V/cm. We found that the magnitude

of fluctuations only affects the field dynamics during the initial transient stage of the

laser field formation. The resulting pulses are not sensitive to the spontaneous noise

level. We start observing noticeable changes to the shape of the pulses only when β

approaches 1.

4.3 Base Set of Parameters

For QCLs with a short gain recovery time, the parameters used in our simulation

are: (1) Resonant tunneling: Ω = 1.5 meV, γ = 6.58 meV, δ = 10 nm; (2) Lifetimes:

Tul = 1 ps, Tug = 3 ps, Tlg = 0.1 ps, T2 = 0.05 ps, D = 0; (3) Optical parameters:

n = 3.3, lw = 10 cm−1, Γ = 1, d = e × 2 nm, λ0 = 6.2 µm; (4) QCL structure

parameters: Lp = 580 Å, ndoping = 8.0 × 1010 cm−2, Te = 300 K, cavity length

Lact = 3 mm, facet reflection coefficients Rl = 0.5 and Rr = 0.5. Those parameters

are typical for mid-IR QCLs. The threshold bias field obtained is 8.31 kV/cm below

the alignment bias. In this paper, we use the bias at alignment as a reference, defined

to be 0, then the threshold bias field is Vth = −8.31 kV/cm. For a laser with a long

gain recovery time Tul = 50 ps, three parameters in the active region are different
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from the short gain recovery time design, namely Ω = 0.15× 1.5 meV, Tul = 50 ps,

and Tug = 100 ps. The corresponding threshold bias is Vth = −9.31 kV/cm, which

is close to the threshold in the Tul = 1 ps case.

We choose the modulated section near the left facet, so that the modulation needs

to be applied at the cavity round-trip time. The modulated section length is denoted

by lmod, in units of Lact. The DC bias VDC is applied to the remaining part of the

cavity. The bias on the modulated section is written as

VMod = VMod,DC + VMod,Amp sin (2πt/Tmod) . (4.16)

All biases are normalized to the threshold bias Vth. The modulation period Tmod

and all times on the plots are normalized to the phase roundtrip time Tround =

2nrLact/c = 66 ps. In order to study the dependence of the QCL performance on

modulation parameters, we choose the following base set of parameters: lmod = 0.1,

VDC = 1.0, VMod,DC = 1.0, VMod,Amp = 0.5, and Tmod = 1.0. We will change only one

parameter at a time. Note that the threshold bias Vth is negative, so V > 1 (V < 1)

means below (above) threshold.

4.4 The Effects of Injection Pumping and Spatial Hole Burning

First, we analyze the effect of resonant tunneling. In previous works [26, 7],

the current or gain were assumed to be uniform in each section of the cavity and

sinusoidally modulated. This assumption looks reasonable at small modulation am-

plitudes but becomes problematic with deeper modulation. In particular a large

modulation amplitude as compared to the DC pumping level in [7] would create

large negative swings in the current and gain, which is unrealistic for QCLs. Here we

adopt a more realistic point of view that the injection current to the upper laser state

results from electron transport under the applied bias and cannot be directly con-
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trolled. We assume that the input parameter that we can control and modulate is an

applied bias whereas the current is calculated from Eqs. (4.2) and (5)-(14) assuming

the Fermi-Dirac distribution of electrons in the injector with a given temperature Te.

In this case a large modulation amplitude would move the injector out of resonance

with the upper laser state, thus decreasing the gain but not flipping its sign and not

reversing the current.

Figure 4.2 shows the spectrum of the bias, injection current, and gain (c) near the

left facet assuming a sinusoidal modulation of the bias at a relatively large amplitude

VMod,Amp = 0.9. The zero frequency part has been subtracted, since it only contains

information about the average of the corresponding quantities. From this picture

we can see that the response of the current to the sinusoidal modulation of the bias

is noticeably nonlinear as it contains a number of higher harmonics. For a smaller

modulation amplitude VMod,Amp = 0.5 only the second harmonic remains in the

spectrum at a magnitude smaller than -10 dB; therefore a sinusoidal modulation of

the current would be a reasonable approximation.

The effect of the spatial hole burning (SHB) described by the population and

injection current gratings at the half-wavelength period in Eqs. (4.3) and (4.4) is

significant, although in contrast to statements in previous studies, we do not find

SHB in a monolithic Fabry-Perot cavity to be the main obstacle for the AML. The

effect of SHB is more nuanced as illustrated in Figs. 4.3 and 4.4 which show the

dependence of the pulse shape on the DC bias for lasers with short and long relaxation

time. Here we keep the DC part of the bias in the modulation section Vmod,DC equal

to the bias in the DC section VDC , to minimize the number of free parameters. For

a laser with Tul = 1 ps, both the intensity and pulse duration increase when the DC

bias is increased. Also, rapid oscillations within the pulse envelope are developed

at high enough bias. Comparison with simulations carried out in the absence of the
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Figure 4.2: The spectrum of the modulated bias (a), injection current (b), and gain
(c) at the point adjacent to the left facet. All parameters are taken at base values
except for a higher modulation amplitude VMod,Amp = 0.9. Although the modulation
of the bias is at a single frequency, the injection current and gain contain higher
harmonics.
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Figure 4.3: The output field amplitude over one roundtrip time taken close to the end
of the simulation time for different values of the DC bias VDC in units of threshold
bias for lasers with (a) Tul = 1 ps and (b) Tul = 50 ps. The DC biases in the
modulated section and DC section are set to be equal.
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Figure 4.4: Same as Fig. 4.3, but without population grating.

populations grating, n(u,l,g)2 = 0 and J2 = 0 (Fig. 4.4) show that the substructure is

due to the SHB instability because it is not present in the absence of SHB. The same

conclusion is true for the case of Tul = 50 ps, where the multiple pulsations disappear

when n(u,l,g)2 = 0. At the same time, an overall increase in the pulse duration is

due to an increase in the net gain window and resulting amplification of the tails of

the pulse. We again notice that in a laser with a short gain recovery time the single

pulse regime is more robust.

4.5 The Effect of the Modulation Period on the Pulse Duration and Phase

Coherence

An apparent optimal choice of the modulation period is the phase round-trip

time, i.e. normalized Tmod = 1 in Eq. (4.16). However, this turns out to be not

the best choice for the long-time stability of the output. In Fig. 4.5 we plot the

output field at the left facet for the whole simulation range of 10,000 roundtrips .

As one can see, it takes a long time before the output intensity eventually stabilizes,
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Figure 4.5: (a) The output field amplitude and (b) real part of the field at the
left facet for the whole simulation range of 10,000 roundtrips and the base set of
parameters. After the output is stable, there are still some small oscillations in the
pulse amplitude. The real part of the field is not periodic in the modulation period,
indicating that the phase is not locked.
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although there is still a slight long-term variation in the magnitude of the pulses.

Furthermore, although the amplitude of the output field is nearly periodic, the real

(Fig. 4.5(b)) and imaginary (not shown) parts of the field are not. This means that

the spectrum of the output field is not phase locked. The autocorrelation function

for the real part of the field, defined as

RE(τ) =

∫ t2

t1

Re[E(t)]Re[E(t+ τ)]dt

/∫ t2

t1

(Re[E(t)])2 dt , (4.17)

experiences oscillations between 1 and 0 with a period of about 200 round-trips.
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Figure 4.6: (a) The amplitude of the output laser field on the left facet. (b) The
injection current at the point adjacent to the left facet. (c) The difference between
the gain and waveguide loss g − lw at the point adjacent to the left facet. The gain
follows the injection current almost instantaneously, due to the short gain recovery
time. The peak of the pulse has a delay with respect to the maximum of the gain.
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Figure 4.7: (a) The output field amplitude and (b) real part of the field at the left
facet over 1,000 roundtrips in a laser with a short gain recovery time for the base set
of parameters but a slightly longer modulation period Tmod = 1.003, which matches
the group roundtrip time of the pulse. Both the field amplitude and the real part of
the field become strictly periodic after about 200 roundtrips.

To understand the reason for these long-time variations, in Fig. 4.6 we show

the output laser field from the left facet for the base set of parameters over the

time interval of 5 periods, taken close to the end of the simulation time. Along

with the laser field we show the injection current and net waveguide gain g − lw

(excluding mirror losses) near the left facet. The duration of intensity pulses is

about 10% of the round-trip time, which is around 7 ps. Although the injection

current and gain are shown for a point near the left facet, this point can represent the
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whole modulated section since the gain saturation effect is small at these intensities.

From Fig. 4.6(a) we can see that the gain follows the injection current, while the

peak of the pulse is delayed with respect to the gain maximum, namely the pulse

is experiencing the tailing edge of the gain. This can be explained by the fact that

the group velocity of the pulse is smaller than the phase velocity and therefore the

gain modulation is slightly out of phase with the circulating pulse. Therefore, the

gain modulation is slightly out of resonance with the circulating pulse which causes

long-period oscillations in the output.

0 0.2 0.4 0.6 0.8 1
0
5 0.970

time [T
mod

]

0
5 0.980
0
5 0.990
0
5 0.995
0
5 1.000

|E
L| [

kV
/c

m
]

0
5 1.003
0
5 1.005
0
5 1.010
0
5 1.020
0
5

10
1.030

(a)

0 0.2 0.4 0.6 0.8 1
0
2 0.970

time [T
mod

]

0
2 0.980
0
2 0.990
0
2 0.995
0
2 1.000

|E
L| [

kV
/c

m
]

0
2 1.003
0
2 1.005
0
2 1.010
0
2 1.020
0
2
4

1.030

(b)

Figure 4.8: The output field amplitude over one roundtrip time taken close to the end
of the simulation time for different values of the modulation period Tmod measured
in units of phase roundtrip time for lasers with (a) Tul = 1 ps and (b) Tul = 50 ps
and the base set of parameters.

To eliminate the phase mismatch we slightly increase the modulation period to

Tmod = 1.003 to compensate for the group delay of the pulses. As shown in Fig. 4.7,

this leads to the stable output after the laser field build-up time of about 200 round-
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trips. Moreover, the real and imaginary parts of the field are also exactly periodic

as can be verified by the autocorrelation function which has a constant value equal

to 1. At the same time, the pulse duration is longer in this case as illustrated in

Fig. 4.8 which shows the pulse shape as a function of the modulation period Tmod.

When Tmod = 1, the pulses generated by a laser with a short gain recovery time

have the shortest duration. When Tmod = 1.003, the intensity of the pulse increases

significantly as it has the best overlap with the maximum of the gain in a modulated

section. At the same time, the time window of the net gain is increased in this case,

leading to a longer pulse duration.

4.6 The Output Dependence on the Modulation Amplitude and Length of the

Modulated Section

Two other parameters that strongly affect the output pulses are the modulation

amplitude and length of the modulated section. Figure 4.9 shows the effect of varying

modulation amplitude. As expected, for both Tul = 1 ps and Tul = 50 ps cases, the

peak intensity of the pulse increases with the modulation amplitude. At the same

time, the pulse becomes more asymmetric in the Tul = 1 ps case, which is the result

of the phase mismatch between the modulation period and group round-trip time.

For a laser with a long gain recovery time, the Tmod = 1 modulation period is closer

to resonance with the group round trip time and the pulses are more symmetric. Also

the gain saturation effect is stronger, so the tailing edge of pulse is not amplified.

With increasing length of the modulated section, the pulse experiences a stronger

round-trip gain but at the same time the window of the net gain becomes wider which

leads to the pulse broadening. Fig. 4.10 shows the dependence of the output on the

length of a modulated section. In the Tul = 1 ps case, when lmod increases from 0.1

to 0.5, the intensity and duration of the pulse increase at the same time. For longer
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Figure 4.9: The output field amplitude over one roundtrip time taken close to the
end of the simulation time for different values of the modulation amplitude VMod,Amp

in Eq. (4.16), measured in units of threshold bias for lasers with (a) Tul = 1 ps and
(b) Tul = 50 ps and the base set of parameters. No significant output is generated
when VMod,Amp ≤ 0.1.

lmod the pulse eventually broadens to the whole cavity and its peak intensity drops.

However, the pulsation still exists even when the modulated section is 90% of the

whole chip. In the Tul = 50 ps case, one only gets a good pulse around lmod = 0.3, and

this pulse is shorter as compared to the Tul = 1 ps design. However, with increasing

lmod the output quickly turns into multiple chaotic pulsations. It is indeed expected

that a laser with a long population relaxation time comparable to the round-trip

time is more prone to instabilities than the laser with a short recovery time in which

the pulsations of the population inversion are strongly damped.

When the whole QCL cavity is modulated, no isolated pulses are obtained in both

cases, and only the intensity is modulated. We checked that this conclusion remains

true for the parameters typical for THz QCLs. The observation of isolated pulses in

[24, 25] could be the result of the nonuniform injection of modulated pumping along
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the cavity. Indeed the THz waveguide forms a microstrip transmission line for the

microwave modulation which forms a standing wave along the cavity.
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Figure 4.10: The output field amplitude over one roundtrip time taken close to
the end of the simulation time for different lengths of the modulated section lmod
measured in units of the total cavity length Lact for lasers with (a) Tul = 1 ps and
(b) Tul = 50 ps and the base set of parameters.

4.7 Conclusion

In conclusion, we showed that standard high-performance mid-IR QCLs with a

short gain recovery time can be actively modulated to generate mode-locked pulses

of a few ps duration when the modulation is applied only to a short section of a

monolithic Fabry-Perot cavity to create a net gain window for a circulating pulse.

The performance of QCL with a short gain recovery time is more robust to varying

parameters as compared to QCLs with a long gain recovery time. By fine tuning the

modulation period to the group round-trip time of the pulse, one can phase lock the
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electric field of the pulse and use its spectrum as a frequency comb.

The peak power of the generated pulses grows with increasing modulation am-

plitude and DC bias, but is limited by the concomitant pulse broadening due to

widening gain window, as is seen in Figs. 4.9 and 4.3. For a base set of parameters

the peak power of the pulses is about 16 times higher than the CW output power

for the DC bias equal to the time-averaged modulated bias of Eq. (4.16).
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5. CONTINUOUS-WAVE LASING BETWEEN LANDAU LEVELS IN

GRAPHENE ∗

5.1 Introduction

Free nonrelativistic electrons in a magnetic field behave as a system of harmonic

oscillators, with selection rules allowing only the transitions between neighboring

states with equal probabilities. Therefore they cannot be used as an active medium

for lasers and masers. One way to get around this limitation is to accelerate electrons

to high enough speeds that the relativistic effects become important. This leads to

an anharmonicity in the electron spectrum and possibility of the maser action by

accelerated electron beams, which has been so impressively implemented in vacuum

electronic devices such as gyrotrons [30]. Free carriers in semiconductors seem to offer

a similar opportunity as the electron dispersion can show significant nonparabolicity

above the bottom of the conduction band. Moreover, semiconductors offer a flexibil-

ity to grow heterostructures with different cyclotron transition energies which could

be used for carrier injection into a given LL; see the proposal for a LL laser in the

quantum Hall regime [31]. In practice, however, ultrafast energy and momentum re-

laxation in semiconductors would quickly destroy population inversion between the

Landau levels (LLs). Although Landau level quantization does help with reducing

scattering rate and improving performance of quantum cascade lasers [32] that op-

erate through population inversion between quantum well subbands, the only ”solid

state gyrotrons” so far are p-Ge lasers operating between light-hole LLs at liquid

helium temperatures in strong electric and magnetic fields [33, 34].

∗Part of the result reported in this section is reprinted with permission from “Continuous-wave lasing
between Landau levels in graphene” by Yongrui Wang, Mikhail Tokman, and Alexey Belyanin,
2015, Phys. Rev. A 91, 033821, Copyright [2015] by the American Physical Society (APS).
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Graphene seems to be an ideal material for the realization of LL lasers. Low

energy excitations near the Dirac points in graphene have a linear conical spectrum

which is obviously extremely nonparabolic. In a transverse magnetic field the 2D

conical spectrum splits into a series of non-equidistant LLs with energies scaling

as a square root of the magnetic field and the principal quantum number. It was

suggested in [35] that the optical pumping to an arbitrary excited state n ≥ 1 will lead

to electrons cascading down the LLs preferentially emitting photons, which would

potentially lead to the EM field amplification on any of these downward transitions.

Unfortunately, the proposal [35] assumed that the radiative transitions are the fastest

ones in graphene. It did not include most important nonradiative relaxation channels

and did not attempt to calculate actual LL populations. In particular, it turns out

that the Auger relaxation is a very powerful relaxation mechanism for Dirac electrons

in a magnetized graphene that proceeds much faster than radiative transitions and

washes out any population inversion over the time scale of few ps; see below and also

recent theoretical calculations of the Auger relaxation rate [36] and experimental

measurements in [37]. A recently proposed, more sophisticated pumping scheme

[38] takes into account Auger relaxation processes and still leads to only a transient

population inversion existing over a ps timescale.

Here we propose what we believe is a viable LL laser scheme for graphene that

takes into account all relevant relaxation processes and in fact utilizes them to reach

a steady-state population inversion, vital for any viable laser. Our scheme is trans-

ferable to thin (λ � ∆z ≥ 5 nm) films of 3D topological insulators such as Bi2Se3

where the Landau levels associated with massless metallic surface states [39, 40]

should demonstrate similar coupling to the EM field despite different chirality [41].

Note that our scheme provides the population inversion in a steady state, i.e. under

a continuous-wave pumping, in contrast to previous proposals, with or without the
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magnetic field, that could provide only a transient gain during a picosecond time

interval [35, 42, 38].

We solve kinetic and density matrix equations coupled with Maxwell’s equations

to calculate populations, gain and laser threshold conditions as a function of the

optical pumping power. The calculation details are in the sections below. Here

we present a general idea of the laser scheme. It is illustrated in Fig. 1. It shows

one specific implementation of the scheme with an optical pumping originated from

level n = −2 to obtain maximum population inversion between levels −1 and −2.

However, the scheme can be implemented for any pair of LLs (−n,−n − 1) as long

as level −n stays deep enough below the Fermi level. The lasing wavelength can be

from sub-THz to the mid-infrared range, depending on the value of n, the magnetic

field, and the substrate used.

The general idea is as follows. In the equilibrium (without pumping) levels n =

−1 and −2 are fully occupied to degeneracy surface density Ns = gsgv/2πlc
2, where

spin and valley degeneracy factors are gs = 2 and gv = 2 for graphene, and lc =√
ch̄/eB is the magnetic length. The Fermi level is placed at the Dirac point in

the figure, assuming intrinsic graphene. However, this can be changed, as long as

level n = −1 is fully occupied in equilibrium. An optical pumping resonant to the

transition −2 → 1 moves part of the carriers up from level n = −2 creating a

population inversion between a fully occupied level n = −1 and level −2. In order

for this population inversion to exist in a steady state, i.e. under a continuous-

wave optical pumping, the relaxation of carriers back to lower laser state −2 should

be slower than the relaxation rate to the upper laser state −1. Unfortunately, the

Auger mechanism does not satisfy this criterion. Our simulations show that there

is no population inversion in the steady state, no matter how strong the optical

pumping power is. This is because an increase in the depopulation rate of level −2
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Figure 5.1: The scheme to obtain population inversion between the electron states
below the Fermi level by using a continuous-wave optical pumping. Electrons excited
by a pump preferentially relax to the upper laser state −1 due to resonant emission
of surface optical phonons at the graphene-substrate interface.

65



by an optical pumping is compensated by an increase in the Auger scattering rate

to level 2, primarily through the scattering of electrons from states in levels 1 and

−1 to states in levels 2 and −2, respectively. In order to overcome this obstacle,

the magnetic field needs to be tuned in order to bring the transitions 1 → 0 and

0 → −1 (of the same energy) in resonance with an LO phonon energy. This will

greatly increase the rate of electron relaxation from excited states to the upper laser

state n = −1 through LO phonon emission, whereas the transitions to state −2 will

be out of resonance and not affected much.

The LO phonon energy in graphene is close to 200 meV, which would require a

magnetic field of almost 30 T to bring the transition frequency ω10 close to ωLO. In

order to reduce the required magnetic field one can utilize the scattering on bulk,

surface, or interface optical phonons of the substrate, and choose the substrate with

a lower optical phonon energy, for example a polar semiconductor such as GaAs

or InGaAs [43]. For definiteness, below we assume the substrate to be GaAs, which

leads to the surface optical (SO) phonon energy of h̄ωSO = 36 meV [44]. This is equal

to ω01 = ωc =
√

2vf/lc in a magnetic field of 1 T. The laser transition wavelength

would be then around 82 µm, i.e. around 3 THz, which is the range where there is

a shortage of laser sources. We will also assume the optical pumping between levels

−2 and 1, although the pumping resonant to the transition from −2 to 3 would be

equally efficient and lead to a similar value for the gain. Moreover, the transition

frequency for the latter transition in a magnetic field of 1 T would correspond to

a CO2 laser wavelength around 10 µm, which could be more convenient than the

14-µm wavelength corresponding to the transition −2 → 1. Of course all energies

can be changed as needed by choosing different substrates or different LLs for the

lower laser state, for example n = −3 instead of −2.

The scheme in Fig. 1 provides population inversion between hole states −1 and
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−2. Its ”mirror image” provides a similar population inversion between electron

states 1 and 2 when the optical pump is applied between states −1 and 2. In this

case the SO phonons depopulate the lower laser state instead of populating the upper

one.

5.2 Electron States and Optical Transitions between the Landau Levels in

Graphene

For completeness, we give a brief summary of the electron states and optical

transitions between the LLs in graphene, since this information is extensively used

below. They have been calculated many times before and observed both in monolayer

and multilayer samples [45].

Neglecting intervalley scattering, we will only need electron states in one of the

two equivalent K,K ′ valleys, for example the K valley. Without a magnetic field,

the low-energy Hamiltonian in the vicinity of the ~K Dirac point is given by [46]

H = vF~σ · ~̂p = vF

 0 p̂x − ip̂y
p̂x + ip̂y 0

 , (5.1)

where vF = 108 cm/s. In the presence of a transverse magnetic field or any EM field

described by the vector-potential A, we replace ~̂p with ~̂Π = ~̂p+e ~A/c. For a magnetic

field in the +z direction, we can write ~A = (0, Bx, 0) in the Landau gauge, then

the eigenfunctions are expressed as [47]

FK
nk(~r) =

1√
L
eikyΦn(k, x), (5.2)
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with

Φn(k, x) = Cn

sgn(n)i|n|−1φ|n|−1(x+ l2ck)

i|n|φ|n|(x+ l2ck)

 , (5.3)

where Cn = 1 when n = 0, and Cn = 1/
√

2 when n 6= 0; sgn(x) = 1, 0, −1 for x > 0, x

= 0, x < 0 respectively. The function φ|n|(x) has the same form as the eigenfunction

in the massive electron case:

φ|n|(x) =
1√

2|n||n|!√πlc
exp

[
−1

2

(
x

lc

)2
]
H|n|

(
x

lc

)
, (5.4)

where H|n|(x) is the Hermite polynomial. The corresponding eigenenergy is εn =

sgn(n)h̄ωc
√
|n|, with ωc =

√
2vf/lc.

In this manuscript, an electron state will be labeled by |n, k, s, ξ〉, where s =

{↑, ↓} denotes spin, ξ = {K, K ′} denotes valley; k, s, ξ are degenerate quantum

numbers, and the total degeneracy density of a Landau level n is 2/πl2c .

The interaction Hamiltonian for an optical field with an in-plane polarization can

be written as

Ĥop
int = vF

e

c
~σ · ~Aop, (5.5)

where ~Aop is the vector potential of the optical field, which is related to the electric

field by ~Eop = (−1/c)∂ ~Aop/∂t. If we define two circular polarization vectors, l̂⊕ =

(x̂+ iŷ)/
√

2 and l̂	 = (x̂− iŷ)/
√

2, the vector potential of a single frequency optical

field can be written as

~Aop =
1

2

(
A⊕l̂⊕ + A	l̂	

)
e−iωt + c.c. . (5.6)
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Plugging this expression into the Schrödinger equation and using the rotating wave

approximation, we get the same selection rules as in [48]: Transitions between n1

and n2 (n2 > n1) are coupled by photons with l̂⊕ polarization if |n2| = |n1|+ 1, and

with l̂	 polarization if |n2| = |n1| − 1.

By expressing ~Aop through ~Eop in Ĥop
int, we can get the magnitude of the dipole

moment for a resonant transition between Landau levels n1 and n2:

|µn1n2| =
√

2Cn1Cn2evF/ω . (5.7)

The two dimensional linear optical susceptibility near the resonance to the transition

between n1 and n2 (n1 < n2) is

χn1n2 =
2

πl2c

|µn1n2|2(fn2 − fn1)

h̄ω − (εn2 − εn1) + ih̄/T2

, (5.8)

where T2 is the phenomenological dephasing time, which we take to be equal to 100

fs. It is strongly affected by disorder. The gain at resonance scales ∝ T2 so it is

important to maximize this time. The factors f in the numerator are occupation

numbers of given Landau levels. The optical transition rate between n1 and n2

(n1 < n2) is

Γopn1n2
=

1

2

∣∣∣∣µn1n2E
op

h̄

∣∣∣∣2 1/T2

(1/T2)2 + ((εn2 − εn1)/h̄− ω)2
. (5.9)

5.3 Laser Threshold Condition

To determine the threshold condition for a LL graphene laser we consider the

simplest geometry resembling a quantum-well vertical cavity laser, in which an active

layer consisting of one or several graphene monolayers on a polar substrate is located
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between the two mirrors of given reflection factors r1,2; see Fig. 2. We will assume

that there are two media with dielectric constants κ1 and κ2 from both sides of the

active layer. We will also assume for simplicity that the thickness of an active layer is

much smaller than the wavelength of the THz laser field. For a field of amplitude Ei

incident on the graphene layer, the amplitudes of reflected and transmitted waves Er

and Et can be related using the Maxwell’s equations with proper boundary conditions

as

Figure 5.2: A vertical-cavity configuration of the graphene laser.

Et =
2

1 +
√

κ2
κ1
− 4πiω√

κ1c
χ
Ei,

Er =

 2

1 +
√

κ2
κ1
− 4πiω√

κ1c
χ
− 1

Ei . (5.10)

To make equations even simpler, we will take κ1 = κ2 =κ. It is straightforward to

include more complex cavity structures if needed for a particular design.
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The fields also need to satisfy the boundary conditions at the mirrors:

E1ie
−ikL1 = r1(E1r + E2t)e

ikL1 ,

E2ie
−ikL2 = r2(E1t + E2r)e

ikL2 . (5.11)

From the boundary conditions Eqs. (5.10) and (5.11), the condition to have stable

nonzero optical fields inside the cavity is

−2πiω√
κc
χ =

r1r2 − e−2ik(L1+L2)

r1r2 + r1e−2ikL2 + r2e−2ikL1 + e−2ik(L1+L2)
. (5.12)

To get the threshold, we assume that the optical fields are in resonance with respec-

tive transitions and the lengths L1 and L2 are adjusted so that every term in the

denominator has the same sign. Then the minimum required imaginary part of the

susceptibility in the active layer can be found from the real part of Eq. (5.12):

−2πω√
κc

Im[χ] =
1− |r1r2|

1 + |r1|+ |r2|+ |r1r2|
. (5.13)

We will discuss the feasibility of reaching the lasing threshold below, after calculating

the rates of scattering processes, the non-equilibrium populations of the LLs, and the

resulting graphene susceptibility at the laser transition in the presence of an optical

pumping.

The carriers excited by an optical pumping relax through a variety of scatter-

ing processes. The steady state populations are determined by a balance between

relaxation and the continuous wave pumping. In the next two sections we give a

detailed description of most important processes that determine the redistribution

of populations and the resulting steady-state gain.
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5.4 Auger processes

A strong magnetic field suppresses scattering processes due to energy quantization

and reduction in the phase space available for scattered carriers. However, Auger

processes remain very efficient: due to the symmetry between electron and hole LLs

there is always resonance for scattering of carriers from (0, 0) LLs into (1,−1) states

and for all other combinations allowed by the energy conservation: (1,−1)↔ (2,−2),

(0, 0) ↔ (2,−2), (−1, 1) ↔ (2,−2), etc.; see Fig. 3. Recently the Auger relaxation

rates were measured to be in a few ps range in pump-probe experiments [37], which

agrees with our simulations. Below we outline the general derivation of the Auger

scattering rate and then apply it to our problem.

𝐸

n = 0

n = 1

n = -2

n = 2

n = -1

𝐸 = 𝑣𝐹|𝑝|
n = 3

n = -3

Figure 5.3: Examples of the Auger scattering processes between n = 0,±1,±2 LLs.
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5.4.1 General formulas

Auger processes are mediated by the Coulomb interaction between carriers. The

general Coulomb interaction Hamiltonian for electrons can be written as [49]

VC =
1

2

∑
αβγδ

Vαβγδa
†
αa
†
βaδaγ, (5.14)

where

Vαβγδ = 〈α(1)|〈β(2)|VCoul(~r1 − ~r2)|γ(1)〉|δ(2)〉 . (5.15)

In order to simplify this expression and include the effect of screening, we expand

VCoul(~r1 − ~r2) in Fourier series

VCoul(~r1 − ~r2) =
∑
~q

V~q e
i~q·(~r1−~r2), (5.16)

where V~q = 2πe2/κ0Aq for a 2-dimensional case. Using this expression, we get

Vαβγδ =
∑
~q

V~q〈α(1)|ei~q·~r1|γ(1)〉〈β(2)|e−i~q·~r2 |δ(2)〉 . (5.17)

To include screening by carriers in graphene, we replace V~q with Vs(~q, ω) =

V~q/ε(~q, ω), where the dielectric function ε(~q, ω) in the random phase approximation

is given by the Lindhard formula

ε(~q, ω) = 1− V~qΠ0(~q, ω), (5.18)
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and the polarizability Π0(~q, ω) is written as

Π0(~q, ω) =
∑
αβ

fα − fβ
εα − εβ + h̄ω + iγ

|Fαβ(~q)|2, (5.19)

with the form factor Fαβ(~q) = 〈α|ei~q·~r|β〉 and γ is the line broadening which can be

attributed to disorder [46]. We use the same value of the line broadening γ = 1013

s−1 here and in all other places where it is included. The value of ω is determined by

h̄ω = εγ − εα in Vαβγδ [50]. The occupation factors fα,β in Eq. (5.19) are determined

self-consistently from the steady-state solutions to the rate equations (5.36) with

screening included.

The rate of the Auger scattering from state |a, b〉 to state |c, d〉 is calculated from

the Fermi’s golden rule; it is symmetric with respect to the initial and final states:

Γab↔cd =
2π

h̄
|〈cd|VC |ab〉|2 δ(εc + εd − εa − εb), (5.20)

where the matrix element is

〈cd|VC |ab〉 =
1

2
(Vcdab − Vdcab + Vdcba − Vcdba) . (5.21)

So, there are essentially four terms because electrons are indistinguishable particles.

The state |a, b〉 in Eq. (5.21) only means that both |a〉 and |b〉 are occupied, instead

of specifying that electron 1 is in |a〉, and electron 2 is in |b〉. One can find mistakes

in the literature with some of the terms missing.

5.4.2 Auger Scattering between Landau Levels in Graphene

For graphene in a transverse magnetic field, an electron state can be written as |α〉

= |nα, kα, sα, ξα〉, with notations explained in Sec. II. We will address the screening
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effect first. The form factor in Eq. (5.19) can be evaluated to be

Fαβ(~q) = 〈α|ei~q·~r|β〉 = δsα,sβδξα,ξβδqy ,kα−kβe
−iqxl2ckβGnαnβ(qy, qx), (5.22)

where we have defined

Gnαnβ(qy, qx) ≡
∫
dxΦ†nα(qy, x)eiqxxΦnβ(0, x) . (5.23)

So the polarizability becomes

Π0(~q, ω) =
2A

πl2c

∑
nαnβ

fnα − fnβ
εnα − εnβ + h̄ω + iδ

|Gnαnβ(qy, qx)|2 . (5.24)

One can check that |Gnαnβ(qy, qx)| only depends on the magnitude of ~q, so Π0(~q, ω)

and Vs(~q, ω) are only functions of q = |~q|. We calculated the form factor numerically

and checked that it agreed with the analytical expression in [46].

Then, using Eq. (5.17) and Eq. (5.30), the Coulomb matrix element is

Vabcd = δsa,scδsb,sdδξa,ξcδξb,ξd

×
∑
~q

Vs(~q, ω)δqy ,ka−kce
−iqxl2ckcGnanc(qy, qx)δ−qy ,kb−kde

iqxl2ckdGnbnd(−qy,−qx)

= δsa,scδsb,sdδξa,ξcδξb,ξdδka+kb,kc+kd

×
∑
qx

Vs (~q, ω) e−iqxl
2
c(kc−kd)Gnanc(qy, qx)Gnbnd(−qy,−qx)

∣∣∣
qy=ka−kc

. (5.25)

For a fixed ka, this matrix element decays quickly when kc − ka is large, since

Gnanc(qy, qx)∝ exp(−(qlc)
2/4) when q is large [46]. If kc is bounded, then kb is

bounded too, otherwise the term e−iqxl
2
c(kc−kd) would oscillate too fast with qx, which

essentially makes the summation over qx to vanish.
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The Auger scattering rate between two pairs of Landau levels (na, nb) and (nc, nd)

is

Γnanb↔ncnd =
1

2A/πl2c

∑
ξa,ka,sa

∑
ξb,kb,sb

∑
ξc,kc,sc

∑
ξd,kd,sd

Γab↔cd(
×1

2
if na = nb or nc = nd

)
, (5.26)

where the factor 1/2 in the parenthesis is because of the double counting the initial

or final states. In Eq. (5.26), one of the summations can be dropped immediately,

since the result from the other three summations will be independent of the forth set

of quantum numbers. This summation will give exactly the degeneracy 2A/πl2c , so

it will cancel with the pre-factor. One summation of k can also be eliminated due to

the conservation of momentum ka + kb = kc + kd. As the energy is fully quantized,

we will replace the δ function in Eq. (5.20) with a Lorentzian of line width γ.

5.5 Phonon Scattering

5.5.1 General Formulas

The interaction Hamiltonian between phonons and electrons can generally be

written as

Hph
int =

∑
~k, ~q

F (q)c†~k+~q
c~k(b~q + b†−~q), (5.27)

where c and c† are annihilation and creation operators for electrons, b and b† are

annihilation and creation operators for phonons, and F (q) is defined below. Using

Fermi’s golden rule, the scattering rate from an initial electronic state |ϕi〉 to a final
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state |ϕf〉 is

Γphi→f =
2π

h̄

∑
~q

(nq + 1)|F (q)|2|Mfi(~q)|2δ(εf + εphq − εi)

+
2π

h̄

∑
~q

nq|F (q)|2|Mfi(~q)|2δ(εf − εphq − εi), (5.28)

where the first term is for the phonon emission, the second term is for the phonon

absorption, and the matrix element is given by

Mfi(~q) = 〈ϕf |
∑
~k

c†~k+~q
c~k|ϕi〉

=

∫
d~rϕ†f (~r)e

i~q·~rϕi(~r) (5.29)

Using the wave functions in Eq. (5.2), the matrix element Mfi(~q) for |i〉 = |ni, ki, s, ξ〉

and |f〉 = |nf , kf , s, ξ〉 is calculated to be

δqy ,kf−kie
−iqxl2ckiGnfni(qy, qx) . (5.30)

The averaged scattering rate from an initial Landau level ni to a a final Landau level

nf is

Γphni→nf =
∑
kf

Γphi→f

=
2π

h̄

∑
~q

(nq + 1)|F (q)|2|Gnfni(qy, qx)|2δ(εf + εphq − εi)

+
2π

h̄

∑
~q

nq|F (q)|2|Gnfni(qy, qx)|2δ(εf − εphq − εi) . (5.31)

We will only consider the case of low enough temperatures, when phonon absorp-
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tion is unimportant and only phonon emission processes contribute to the scattering

rate. At room temperature this is still a reasonable approximation; it can be easily

dropped if a greater accuracy is needed. We include the screening effect by carriers in

graphene in the phonon scattering processes. This can be done by replacing F (q) with

Fs(q, ω) = F (q)/ε(q, ω), where the dielectric function ε(q, ω) is given in Eq. (5.18)

and Eq. (5.24), where again the occupation factors are determined self-consistently

from the steady-state solutions to the rate equations (5.36) with screening included.

5.5.2 LA Phonon Scattering

For longitudinal acoustic (LA) phonon scattering, the expression for F (q) is [51]

FLA(q) = −
√

h̄

2ρAvs
D
√
q, (5.32)

where ρ = 7.6× 10−8 g/cm2 is the area mass density of graphene, vs = 2× 106 cm/s

is the sound velocity, and the deformation potential D is in the 10−50 eV range.

Also, the energy of a LA phonon is ELA
q = h̄vsq. Plugging these expressions into

Eq. (5.31), we get the scattering rate by LA phonons:

ΓLAni→nf =
D2q2

0

4πρh̄v2
s

∫ 2π

0

dθ|Gnfni(q0 sin θ, q0 cos θ)|2, (5.33)

where q0 = (εni − εnf )/h̄vs. The coefficient is of the order of 1014 s−1 for B ∼ 1 T.

However, the integrand in Eq. (5.33) is roughly of the order of exp[−(q0lc)
2/2], which

is extremely small, since q0lc ∼ ωclc/vs =
√

2vF/vs = 50
√

2. So, the LA phonon

scattering does not contribute significantly to electronic transitions between Landau

levels due to a large ratio vf/vs � 1.
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5.5.3 Surface Optical Phonon Scattering

Since we want to use phonon scattering to our advantage in order to facilitate

electron relaxation to the upper laser state, we consider graphene on a polar substrate

or sandwiched between two substrates. In this case, the electrons in graphene can

couple to the surface or interface modes of optical phonons [44, 52], which we will call

the surface optical (SO) phonons for brevity. If the two substrates on both sides of

the graphene layer are the same, the SO phonon energy is equal to the longitudinal

optical (LO) phonon energy of the substrate [52]. If there is vacuum on one side,

the SO phonon energy is slightly shifted from the LO phonon energy [44]. We will

assume the former case for definiteness, but note that it would be straightforward

to calculate interface optical phonon modes for an arbitrarily complex structure. If

we assume that the graphene layer does not affect the SO phonon modes, then the

expression of F (q) can be written as

FSO(q) =

[
2πe2h̄ωSO

A

(
1

κsub∞
− 1

κsub0

)]/√
2q , (5.34)

where A is the area of graphene, κsub0 (κsub∞ ) is the low (high) frequency dielectric

constant of the substrate, and h̄ωSO is the energy of the surface optical phonon.

Since it has a flat dispersion, we replace the δ functions with a Lorentzian Lγ(E)

= γ/π(E2 + γ2), where γ is the broadening of Landau levels, which can be again

attributed to disorder. Using again Eq. (5.31), we find the SO phonon scattering rate

to be

ΓSOni→nf =
1

2
e2ωSO

(
1

κsub∞
− 1

κsub0

)
Lγ(εni − εnf − h̄ωSO)

×
∫ ∞

0

dq
q2

(q − 2πe2

κ0A
Π0(q, ω))2

∫ 2π

0

dθ|Gnfni(q sin θ, q cos θ)|2, (5.35)
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where the screening effect is included, and ω = (εni − εnf )/h̄.

5.6 Landau Level Populations under Optical Pumping

After the expressions for the optical transition rates and the scattering rates

due to SO phonon emission and Auger processes have been found, we can write the

density matrix equations with adiabatically eliminated optical polarizations to arrive

at the set of rate equations for the filling factors of the Landau levels:

d

dt
fna =

d

dt
fna

∣∣∣∣op +
d

dt
fna

∣∣∣∣SO +
d

dt
fna

∣∣∣∣Auger , (5.36)

where

d

dt
fna

∣∣∣∣op = −
∑
nb

Γopnanb(fna − fnb), (5.37)

d

dt
fna

∣∣∣∣SO = −
∑
nb

ΓSOna→nbfna(1− fnb) +
∑
nb

ΓSOnb→nafnb(1− fna), (5.38)

and

d

dt
fna

∣∣∣∣Auger =
∑
nb

tna,nb

×
∑
nc

∑
nd≥nc

Γnanb↔ncnd (−fnafnb(1− fnc)(1− fnd) + fncfnd(1− fna)(1− fnb)) ,

(5.39)

where tna,nb = 2 if nb = na, and 1 otherwise. Here the subscript ”op” denotes the

optical transition rates.

Using these rate equations, we can simulate the dynamics of the graphene system

for an arbitrary optical excitation. Note that the system is highly nonlinear, firstly

because of the state filling and secondly, because the matrix elements depend on the
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dynamic screening, which depends in turn on the instantaneous distribution of elec-

trons in Landau levels. Therefore, time dependent simulations are time consuming.

Here we present the steady state results for the continuous-wave optical pumping.

5.7 Results and Discussion

For a GaAs substrate, the SO phonon energy is 36 meV, which requires the mag-

netic field to be around 1 T. In the simulations, broadenings of all transitions are

set to be 5 meV, and T2 is 0.1 ps. Also, we consider intrinsic (undoped) graphene as

an example, so without pumping the n = 0 LL is half-filled, all LLs below are fully

filled, and all LLs above are empty. We define the gain between n = −1 and −2

as the left-hand side of Eq. (5.13): g-1,-2 = −(2πω/
√
κc)Im[χ(ω-1,-2)]. To minimize

the absorption of the THz field by the polar substrate, we would like to reduce its

thickness to a few µm to be much smaller than the wavelength of the THz field but

at the same time, thick enough to be considered bulk for SO phonon scattering. The

gain is maximized when there is air outside the active layer so that κ = 1.

The dependence of the steady state filling factors and gain per graphene mono-

layer on the pump intensity are shown in Fig. 5.4 and Fig. 5.5.

As can be seen from the figures, one can achieve a significant steady-state popu-

lation inversion between states n = −1 and −2 and the gain value of about 0.05 per

monolayer of graphene. For comparison, the right-hand side of Eq. (5.13) which de-

scribes mirror losses is equal to 0.025 when the reflectivities r1 = r2 = 0.95, which is

easily achievable. The closest allowed transition at the l̂	 polarization is from n = −3

to n = −2 LLs. It is detuned from the laser transition frequency by about 4 meV in

a magnetic field of 1 T. Therefore its contribution to losses is lower than the gain.

Since the electron motion is quantized, there are no other losses in graphene associ-

ated with free carriers. The undoped GaAs is a popular material for the nonlinear
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Figure 5.4: Dependence of the steady state filling factors on the pumping intensity.
Landau level numbers are shown to the right of the curves.

82



0 1 2 3 4 5

x 10
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

pumping intensity (W/cm2)

ga
in

 b
et

w
ee

n 
n 

=
 −

1 
an

d 
−

2

Figure 5.5: Dependence of the gain between n = −1 and −2 LLs per graphene
monolayer on the pumping intensity.
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THz generation and its THz losses are rather low, especially since the polar substrate

can be thinned down to a few µm. Therefore, one can operate in the desirable regime

where the losses are dominated by mirror losses. Note that the gain of 0.05 is higher

than the maximum value of πα ' 0.023 in graphene without a magnetic field. This

is because energy quantization in a magnetic field condenses the continuous density

of states into discrete LLs, leading to the maximum gain enhancement scaling as the

ratio of the transition frequency to linewidth. One can further scale the gain up by

stacking several graphene-on-GaAs layers.

For surface states in 3D topological insulators such as Bi2Se3 or Bi2Te3, the Fermi

velocity has a similar value but there is no spin or valley degeneracy. Therefore, a

similar laser scheme with a thin film of Bi2Se3 (i.e. two surfaces) placed on a polar

substrate will give about two times smaller gain. Additional free-carrier THz losses

may exist in this case due to unintentional doping of the bulk Bi2Se3.

One can also see in Fig. 5.4 that the population inversion exists also between

states n = 2 and 1, albeit at a two times lower level. This seems unexpected, given

that the optical pumping brings carriers only to state 1. However, a closer look at

the rate equations shows that the population inversion between levels 1 and 2 is a

consequence of a strongly non-equilibrium carrier distribution below the Fermi level

created by the optical pumping, namely the population inversion between states −2

and −1. Indeed, when f−1 > f−2, the Auger scattering rate from states (1,−1)

to states (2,−2) is greater than the scattering rate in the opposite direction. This

creates the population inversion f2 > f1 and the gain for the l̂⊕ polarization, which

is about two times smaller than the l̂	 gain.

In conclusion, we show the feasibility of the Landau level THz laser in a mag-

netized graphene. Despite ultrafast Auger relaxation, steady-state operation of the

laser under continuous wave optical pumping is possible by utilizing surface or in-
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terface phonon relaxation. The scheme is scalable to thin films of 3D topological

insulators such as Bi2Se3 or Bi2Te3.
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6. SECOND-HARMONIC GENERATION FROM SINGLE-LAYER

GRAPHENE

6.1 Introduction

This work is inspired by the experimental observations. The experiment of

second-harmonic generation (SHG) in graphene was conducted in Dr. Heinz’s group

in Columbia University. The second-order nonlinear susceptibility is measured, and

the dependence on configurations of polarizations of the fundamental and SHG light

is obtained. The dependence cannot be understood intuitively, so we conduct a

calculation based on quantum mechanical model, and the results agree with the

observation. We first show the experimental results, and then the calculation.

6.2 Experimental Measurements

The basic setup of the experiment is shown in Fig. 6.1. Two layers of graphene are

fabricated in a graphene/hBN/graphene sandwich device on fused silica substrate.

The fundamental light with wavelength 800 nm is incident obliquely on the graphene

layer, and the generated second-harmonic (SH) light is collected in a reflection ge-

ometry. Figure 6.2 shows the SH signal measured for four different polarization

configurations. The electric field is parallel and perpendicular to the plane of inci-

dence for the P- and S-polarizations, respectively. Interestingly, the measurement

shows a clear SH signal for the S-in P-out polarization configuration. The SH signal

is diminishingly small for all three other polarization configurations. In order to ex-

plain the polarization dependence, we conduct a theoretical calculation for the SHG

in graphene.
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Figure 6.1: Illustration of the experimental configuration for the measurement of
second-order nonlinear response from graphene with (a) P-polarized excitation and
(b) S-polarized excitation. The inset in (b) shows our device structure for the doping
dependence measurement.
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Figure 6.2: Second-order nonlinear susceptibility of graphene measured for different
polarization configurations. The first letter in the polarization configuration denotes
the incidence polarization and the second letter denotes the collection polarization..

6.3 Basics about Optical Transition in Graphene

The Hamiltonian of graphene near the Dirac point ~K is

H = vF~σ · ~̂p = vF

 0 p̂x − ip̂y
p̂x + ip̂y 0

 , (6.1)

where p̂ is the momentum operator relative to ~K. The eigenenergies are E±(~k) =

±h̄vFk, and eigen-wavefunctions are

〈~ρ|s,~k〉 =
1√
2A

exp(i~k · ~ρ)

 s

eiθ(
~k)

 , (6.2)

where s = 1 for conduction band, s = −1 for valence band, A is the area of graphene,

and θ(~k) is the angle of wave vector ~k with respect to the x-axis.
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The interaction Hamiltonian between graphene and the optical field which has

an in-plane component of the electric field can be written directly as

Ĥop
int = vF

e

c
~σ · ~A =

e

c
~̂v · ~A, (6.3)

where ~̂v = vF~σ is the velocity operator, and ~A is the vector potential of the optical

field, which is related to electric field by ~Eop = (−1/c)∂ ~A/∂t. Using this Hamiltonian,

the equation for off-diagonal density matrix element is written as

ih̄
∂

∂t
ρmn = (εm − εn)ρmn +

e

c
(~̂v · ~A)mn(ρnn − ρmm)

+
e

c

∑
l 6=m,n

(
(~̂v · ~A)mlρln − ρml(~v · ~A)ln

)
, (6.4)

where both linear and nonlinear effects are included. We are going to calculate the

current in response of the optical field. The current operator is given by ~̂j = −evF~σ.

A monochromatic optical field with an in-plane component of the electric field

along η̂ can be expressed by the vector potential ~A = 1/2(η̂Aωe
i(~q·~ρ−ωt) +c.c.). When

the light is obliquely incident on the graphene surface with an incidence angle α,

we have q = (ω/c) sinα. Also, e−iωt corresponds to photon annihilation, and eiωt

corresponds to photon creation. With this expression, we can write down the matrix

elements of the interaction between optical field and graphene as below

(
(~̂v · η̂)ei~q·~ρ

)
mn

=
1

2
vF
[
(ηx − iηy)smeiθn + (ηx + iηy)sne

−iθm
]
δ~km,~kn+~q, (6.5)(

(~̂v · η̂∗)e−i~q·~ρ
)
mn

=
1

2
vF
[
(η∗x − iη∗y)smeiθn + (η∗x + iη∗y)sne

−iθm
]
δ~km,~kn−~q. (6.6)

Notice that there will be no plane wave factor in the density matrix, since the spa-

tial variation in the optical field has been absorbed into the matrix elements of
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interaction Hamiltonian. This approach includes higher-order terms beyond dipole

approximation.

6.4 Linear Response

For the linear response, we have

ρωmn =
e/(2c)

(
(~̂v · η̂)ei~q·~ρ

)
mn

(ρnn − ρmm)Aωe
−iωt

h̄ω − (εm − εn)

+
e/(2c)

(
(~̂v · η̂∗)e−i~q·~ρ

)
mn

(ρnn − ρmm)A∗ωe
iωt

−h̄ω − (εm − εn)
. (6.7)

We will only need the e−iωt term, since it contains all the information. According to

Falkovsky’s paper [53], the response of density matrix to the optical field should be

zero when ω = 0, and this condition is applied with ~q 6= 0 fixed. So, we subtract the

ω = 0 term from the above expression, namely

1

h̄ω − (εm − εn)
→ 1

h̄ω − (εm − εn)
− 1

−(εm − εn)

=
h̄ω

[h̄ω − (εm − εn)] [(εm − εn)]
. (6.8)

So, ρmn becomes

ρωmn =
e/(2c)

(
(~̂v · η̂)ei~q·~ρ

)
mn

(ρnn − ρmm)h̄ωAωe
−iωt

[h̄ω − (εm − εn)] [(εm − εn)]
. (6.9)

Let

~̂jω =
1

2
~̂Jωei(~q·~ρ−ωt) + c.c., (6.10)
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then ~Jω = −2eTr[ρ̂~̂ve−i(~q·~ρ−ωt)] = −2e
∑

mn ρmn(~̂ve−i~q·~ρ)nme
iωt. Since ~̂Jω varies with

time slowly, only the e−iωt term in the density matrix is relevant. We also replace

ω → ω + iγ to include dissipation. Then, we get

~Jω = −e
2

c

∑
mn

(~̂ve−i~q·~ρ)nm

(
(~̂v · η̂)ei~q·~ρ

)
mn

(ρnn − ρmm)h̄ωAω

[h̄ω − (εm − εn) + ih̄γ] [(εm − εn)]
, (6.11)

and it is evaluated to be

~Jω = −ge
2v2
F h̄ωAω

4ch̄2

1

(2π)2

×
∑
sm,sn

∫
d2~k

f(sn, |~k|)− f(sm, |~k + ~q|)(
ω − vF (sm|~k + ~q| − sn|~k|) + iγ

)(
vF (sm|~k + ~q| − sn|~k|)

)
[
(ηx − iηy)smeiθ(~k) + (ηx + iηy)sne

−iθ(~k+~q)
] [

(x̂+ iŷ)sme
−iθ(~k) + (x̂− iŷ)sne

iθ(~k+~q)
]
,

(6.12)

where g = 4 is the spin-valley degeneracy. We will discuss the case T → 0 in this

work. For interband transitions, the contribution of ~Jω is from k > kF . And for

intraband transition, the contribution is from k ∼ kF . Assuming the Fermi level is

far from the Dirac points, where ε = 0, or kF � q quantitatively, then we can make

the expansions like below

|~k + ~q| ' k + q cos θ +
1

2

sin2 θ

k
q2,

f(|~k + ~q|) ' f(k) +
∂f

∂kx
q +

1

2

∂2f

∂k2
x

q2 +
1

6

∂3f

∂k3
x

q3,

θ(~k + ~q) ' θ(~k)− q

k
sin θ(~k),

eiθ(
~k+~q) ' eiθ

(
1− i q

k
sin θ

)
, (6.13)
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where we have ~q = (q, 0), and θ ≡ θ(~k). The partial derivatives of f are given below

in polar coordinates:

∂f

∂kx
= cos θ

∂f

∂k
,

∂2f

∂k2
x

= cos2 θ
∂2f

∂k2
+

sin2 θ

k

∂f

∂k
,

∂3f

∂k3
x

= cos3 θ
∂3f

∂k3
+

3 cos θ sin2 θ

k

∂2f

∂k2
− 3 cos θ sin2 θ

k2

∂f

∂k
. (6.14)

6.4.1 Interband Transitions

For interband contribution, the dominant term is for sm = 1 and sn = −1, since

these transitions are in resonant with the optical field. We can evaluate ~Jω to the

zeroth order of q,

~Jω = −ge
2v2
F h̄ωAω

4ch̄2

1

(2π)2
4π(ηxx̂+ ηyŷ)

∫ ∞
kF

kdk
1

(ω − 2vFk + iγ)2vFk
. (6.15)

Using Eω = (iω/c)Aω, we get the optical conductivity to be

σ(1)(ω) =
e2vF
2πh̄

∫ ∞
kF

dk
i

ω − 2vFk + iγ
. (6.16)

The imaginary part of the integration diverges at large k, but one has to consider

the actual electron dispersion in graphene far from the Dirac point. The real part of

optical conductivity is calculated to be

σ(1)
r (ω) =

e2vF
2πh̄

∫ ∞
kF

dkπδ(ω − 2vFk) =
e2

4h̄
θ(ω − 2vFkF ), (6.17)

where θ(x) is the Heaviside function. This result is the well know constant absorbance

of graphene.
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6.4.2 Intraband Transitions

For intraband transitions, sm = sn. Expansion of numerator and denominator in

Eq. (6.12) starts from terms linear in q:

f(sn, |~k|)− f(sn, |~k + ~q|)(
|~k + ~q| − |~k|

) ' −
q cos θ ∂f

∂k
+ 1

2
q2
(

cos2 θ ∂
2f
∂k2

+ sin2 θ
k

∂f
∂k

)
q cos θ + 1

2
sin2 θ
k
q2

= −∂f
∂k
− 1

2

q cos2 θ

cos θ + q
2k

sin2 θ

∂2f

∂k2
, (6.18)

where f = f(sn, k). The second term is of the order of ∼ q2 when cos θ ∼ q/k, so we

can drop it. Finally, the intraband contribution to ~Jω to the zeroth order of q is

~Jω = −ge
2v2
F h̄ωAω

4ch̄2

1

(2π)2

∑
sn

∫
d2~k

−1

(ω + iγ) vF sn

∂f(sn, k)

∂k[
(ηx − iηy)smeiθ(~k) + (ηx + iηy)sne

−iθ(~k)
] [

(x̂+ iŷ)sme
−iθ(~k) + (x̂− iŷ)sne

iθ(~k)
]
.

(6.19)

The above equation can be integrated analytically,

~Jω = −ge
2v2
F h̄ωAω

4ch̄2

1

(2π)2

kF
(ω + iγ) vF s(εF )

4π(ηxx̂+ ηyŷ), (6.20)

where s(εF ) means the band index at the energy of Fermi level εF . Using Eω =

(iω/c)Aω, we get the optical conductivity to be

σ(1)(ω) =
e2vFkF s(εF )

πh̄

i

ω + iγ
. (6.21)

This result agrees with the Drude formula.
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6.5 Second Harmonic Generation

The second-harmonic response of the off-diagonal density matrix elements is cal-

culated to be

ρ2ω
mn =

( e
2c

)2 A2
ωe
−2iωt

2h̄ω − (εm − εn) + ih̄γ

∑
l 6=m,n

(
(~̂v · η̂)ei~q·~ρ

)
ml

(
(~̂v · η̂)ei~q·~ρ

)
ln

×
[

(ρnn − ρll)h̄ω
[h̄ω − (εl − εn) + ih̄γ] [(εl − εn)]

− (ρll − ρmm)h̄ω

[h̄ω − (εm − εl) + ih̄γ] [((εm − εl)]

]
. (6.22)

ρ2ω
mn is automatically zero when ω = 0, since the proper form of the linear response

density matrix has been used.

Let

~̂j2ω =
1

2
~̂J2ωei(2~q·~ρ−2ωt) + c.c., (6.23)

then ~J2ω = −2eTr[ρ̂~̂ve−i(2~q·~ρ−2ωt)] = −2e
∑

mn ρmn(~̂ve−2i~q·~ρ)nme
2iωt. Since ~̂J2ω varies

with time slowly, only the e−2iωt term in the density matrix is relevant. The result is

~J2ω = − e3

2c2
A2
ω

∑
mnl

(
~̂ve−2i~q·~ρ

)
nm

(
(~̂v · η̂)ei~q·~ρ

)
ml

(
(~̂v · η̂)ei~q·~ρ

)
ln

2h̄ω − (εm − εn) + ih̄γ

×
[

(ρnn − ρll)h̄ω
[h̄ω − (εl − εn) + ih̄γ] [(εl − εn)]

− (ρll − ρmm)h̄ω

[h̄ω − (εm − εl) + ih̄γ] [((εm − εl)]

]
. (6.24)
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It is evaluated to be

~J2ω = −g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

∑
sm,sn,sl

∫
d2~k

1

2ω − vF (sm|~k + 2~q| − sn|~k|) + iγ

×

 f(sn, |~k|)− f(sl, |~k + ~q|)(
ω − vF (sl|~k + ~q| − sn|~k|) + iγ

)(
vF (sl|~k + ~q| − sn|~k|)

)
− f(sl, |~k + ~q|)− f(sm, |~k + 2~q|)(

ω − vF (sm|~k + 2~q| − sl|~k + ~q|) + iγ
)(

vF (sm|~k + 2~q| − sl|~k + ~q|)
)


×
[
(ηx − iηy)smeiθ(~k+~q) + (ηx + iηy)sle

−iθ(~k+2~q)
] [

(ηx − iηy)sleiθ(~k) + (ηx + iηy)sne
−iθ(~k+~q)

]
×
[
(x̂+ iŷ)sme

−iθ(~k) + (x̂− iŷ)sne
iθ(~k+2~q)

]
. (6.25)

Due to the integration over θ, it is apparent that ~J2ω vanishes in the zeroth order

of q. There are two kinds of SHG processes, one of which only contains intraband

transitions, and the other contain both intraband and interband transitions. For the

latter, there are three types. All the SHG processes are illustrated in Fig. 6.3.

Figure 6.3: The various SHG processes. In each figure, the two orange arrows indi-
cate the fundamental transitions, and the blue arrow indicates the second-harmonic
transition. (a), Intraband processes. (b,c,d), Three types of processes which contain
both intraband and interband transitions.

95



6.5.1 Intraband Contribution

Intraband means sm = sl = sn, so we will just sum over sn. First, we will try to

calculate ~J2ω to the first order in q, so we need to expand each factor in the integrand

to order q. Let’s assume ω � vF q � γ, which seems reasonable for high frequencies,

non-plasmonic modes, and low temperatures. In this case, we can drop the term iγ.

For the terms in ”[...]” in Eq. 6.25, we expand them in powers of q:

1

snvF

[
− 1

ω − snvF
(
q cos θ + 1

2k
q2 sin2 θ

) ∂f
∂kx

+ 1
2
∂2f
∂k2x
q + 1

6
∂3f
∂k3x
q2

cos θ + 1
2

sin2 θ
k
q

+
1

ω − snvF
(
q cos θ + 3

2k
q2 sin2 θ

) ∂f
∂kx

+ 3
2
∂2f
∂k2x
q + 7

6
∂3f
∂k3x
q2

cos θ + 3
2

sin2 θ
k
q

]
. (6.26)

Notice we expand all the terms up to q2, because the denominators can be of order

q if cos θ = 0. If we further expand the denominators that contain ω, then the above

expression becomes

1

snvFω

[
−
(

1 +
snvF
ω

q cos θ +
vF
ω

( sn
2k

sin2 θ +
vF
ω

cos2 θ
)
q2
) ∂f

∂kx
+ 1

2
∂2f
∂k2x
q + 1

6
∂3f
∂k3x
q2

cos θ + 1
2

sin2 θ
k
q

+

(
1 +

snvF
ω

q cos θ +
vF
ω

(
3sn
2k

sin2 θ +
vF
ω

cos2 θ

)
q2

) ∂f
∂kx

+ 3
2
∂2f
∂k2x
q + 7

6
∂3f
∂k3x
q2

cos θ + 3
2

sin2 θ
k
q

]
.

(6.27)

Using the same argument as we did in the linear and intraband case, we get the

result of the above expression to be simply

1

snvFω

∂2f

∂k2
q cos θ. (6.28)
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As it is already of order q, we just need to keep the zeroth order of q in other factors,

as long as the result of integration is nonzero. So, to the first order in q, ~J2ω is

evaluated to be

~J2ω = −gq e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

1

2ω

1

snvFω

∑
sn

∫ ∞
0

kdk
∂2f

∂k2

∫ 2π

0

dθ cos θ

× s3
n

[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ] [(ηx − iηy)eiθ + (ηx + iηy)e
−iθ]

×
[
(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

]
= −A2

ω

e3v2
F q

32π2h̄2c2ω
s(εF )f(0)

×
∫ 2π

0

dθ cos θ
[
(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

]
×
[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ] [(ηx − iηy)eiθ + (ηx + iηy)e
−iθ] . (6.29)

And the SHG optical conductivity is

σ(2)(2ω) =
e3v2

F q

32π2h̄2ω3
s(εF )

×
∫ 2π

0

dθ cos θ
[
(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

]
×
[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ] [(ηx − iηy)eiθ + (ηx + iηy)e
−iθ]

=
e3v2

F q

16πh̄2ω3
s(εF )

[
(3η2

x + η2
y)x̂+ 2ηxηyŷ

]
(6.30)

So, without considering the effect of projection of the electric field onto the graphene

plane, the intraband optical conductivity of P → P is three times larger than the

S → P one. Using classical kinetic equations, our collaborator Dr. Tokman obtained

the same results.
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6.5.2 Interband Contribution

Interband contribution includes three types of combination of sm, sn, sl. They are

Type 1: sm = sn = −sl;

Type 2: sm = sl = −sn;

Type 3: sn = sl = −sm.

We will analyze them one by one. Again, we assume kF � q.

Type 1: sm = sn = −sl, so ~J2ω is given by

~J2ω = −g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

∑
sn

∫
d2~k

1

2ω − snvF (|~k + 2~q| − |~k|) + iγ

×

 f(sn, |~k|)− f(−sn, |~k + ~q|)(
ω + snvF (|~k + ~q|+ |~k|) + iγ

)(
−snvF (|~k + ~q|+ |~k|)

)
− f(−sn, |~k + ~q|)− f(sn, |~k + 2~q|)(

ω − snvF (|~k + 2~q|+ |~k + ~q|) + iγ
)(

snvF (|~k + 2~q|+ |~k + ~q|)
)


× sn
[
(ηx − iηy)eiθ(~k+~q) − (ηx + iηy)e

−iθ(~k+2~q)
] [
−(ηx − iηy)eiθ(~k) + (ηx + iηy)e

−iθ(~k+~q)
]

×
[
(x̂+ iŷ)e−iθ(

~k) + (x̂− iŷ)eiθ(
~k+2~q)

]
. (6.31)
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Expanding all the quantities to order q, this expression becomes

~J2ω = −g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

∑
sn

∫ ∞
0

kdk

∫ 2π

0

dθ
1

2ω

(
1 +

snvF q cos θ

ω

)

×
[

f(sn, k)− f(−sn, k)− q cos θ ∂f(−sn,k)
∂k

(ω + snvF (2k + q cos θ) + iγ) (−snvF (2k + q cos θ))

− f(−sn, k) + q cos θ ∂f(−sn,k)
∂k

− f(sn, k)− 2q cos θ ∂f(sn,k)
∂k

(ω − snvF (2k + 3q cos θ) + iγ) (snvF (2k + 3q cos θ))

]

× sn
[
(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.32)

There are linear in q terms in the denominators which may not be expanded, since

the other terms in the denominator can vanish. So, we will change the integration

variable k to treat this problem. Then, we need to integrate the two terms in [...]

separately. Let’s drop the coefficient and denote them as 1© and 2©. The first term

is

1© '
∫ 2π

0

dθ

∫ ∞
0

(k − 1

2
q cos θ)dk

1

2ω

(
1 +

snvF q cos θ

ω

)
× f(sn, k)− 1

2
q cos θ ∂f(sn,k)

∂k
− f(−sn, k)− 1

2
q cos θ ∂f(−sn,k)

∂k

(ω + 2snvFk + iγ) (−2snvFk)

× sn
[
(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.33)

Here we only keep the terms of order q, and we are safe to keep the integration limit

of k unchanged, since the main contribution is from either around or larger than kF .
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Similarly, we can get the second term as

2© ' −
∫ 2π

0

dθ

∫ ∞
0

(k − 3

2
q cos θ)dk

1

2ω

(
1 +

snvF q cos θ

ω

)
× f(−sn, k)− 1

2
q cos θ ∂f(−sn,k)

∂k
− f(sn, k)− 1

2
q cos θ ∂f(sn,k)

∂k

(ω − 2snvFk + iγ) (2snvFk)

× sn
[
(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.34)

Using Mathematica to integrate over θ, we can find the term 1© to order q:

1© ' πq

4vFω2

∫ ∞
0

dk
(ω + 2snvFk)(f(−sn, k)− f(sn, k)) + ωk

(
∂f(−sn,k)

∂k
+ ∂f(sn,k)

∂k

)
k(ω + 2snvFk + iγ)

×
[
(η2
x + 3η2

y)x̂− 2ηxηyŷ
]
. (6.35)

Similarly, the term 2© to order q is

2© ' πq

4vFω2

∫ ∞
0

dk
(ω − 2snvFk)(f(−sn, k)− f(sn, k)) + ωk

(
∂f(−sn,k)

∂k
+ ∂f(sn,k)

∂k

)
k(ω − 2snvFk + iγ)

×
[
(η2
x + 3η2

y)x̂− 2ηxηyŷ
]
. (6.36)

Then, we get

∑
sn

( 1©+ 2©) =
πq

vFω

[
(η2
x + 3η2

y)x̂− 2ηxηyŷ
]∑

sn

∫ ∞
0

dk

(
∂f(−1,k)

∂k
+ ∂f(+1,k)

∂k

)
(ω + 2snvFk + iγ)

=
πq

vFω

[
(η2
x + 3η2

y)x̂− 2ηxηyŷ
]∑

sn

∫ ∞
0

dk
−s(εF )δ(k − kF )

(ω + 2snvFk + iγ)

= −s(εF )
πq

vFω

[
(η2
x + 3η2

y)x̂− 2ηxηyŷ
] 2ω

(ω + iγ)2 − 4v2
Fk

2
F

. (6.37)
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Here T → 0,is assumed, so f(s, k) = θ(s(εF )kF − sk). It contains kF , but we will see

if other types of combination of sm, sn ans sl will cancel it.

Type 2: sm = sl = −sn, so ~J2ω is given by

~J2ω = −g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

∑
sn

∫
d2~k

1

2ω + snvF (|~k + 2~q|+ |~k|) + iγ

×

 f(sn, |~k|)− f(−sn, |~k + ~q|)(
ω + snvF (|~k + ~q|+ |~k|) + iγ

)(
−snvF (|~k + ~q|+ |~k|)

)
− f(−sn, |~k + ~q|)− f(−sn, |~k + 2~q|)(

ω + snvF (|~k + 2~q| − |~k + ~q|) + iγ
)(
−snvF (|~k + 2~q| − |~k + ~q|)

)


× s3
n

[
−(ηx − iηy)eiθ(~k+~q) − (ηx + iηy)e

−iθ(~k+2~q)
] [
−(ηx − iηy)eiθ(~k) + (ηx + iηy)e

−iθ(~k+~q)
]

×
[
−(x̂+ iŷ)e−iθ(

~k) + (x̂− iŷ)eiθ(
~k+2~q)

]
. (6.38)

To the linear order in q, we first get

~J2ω = −g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

∑
sn

∫ ∞
0

kdk

∫ 2π

0

dθ
1

2ω + 2snvF (k + q cos θ) + iγ

×
[

f(sn, k)− f(−sn, k)− q cos θ ∂f(−sn,k)
∂k

(ω + snvF (2k + q cos θ) + iγ) (−snvF (2k + q cos θ))

+
∂f(−sn,k)

∂k
+ 3q

2
cos θ ∂

2f(−sn,k)
∂k2

(ω + snvF q cos θ + iγ) (−snvF )

]

× sn
[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.39)

As we did in type 1, the two terms are analyzed separately. Without the coefficient,

101



the first term is

1© =

∫ ∞
0

kdk

∫ 2π

0

dθ
1

2ω + 2snvF (k + q cos θ) + iγ

× f(sn, k)− f(−sn, k)− q cos θ ∂f(−sn,k)
∂k

(ω + snvF (2k + q cos θ) + iγ) (−snvF2k)

(
1− q

2k
cos θ

)
× sn

[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
=
−1

2snvF

∫ ∞
0

dk

∫ 2π

0

dθ

(
f(sn, k)− f(−sn, k)− q cos θ

∂f(−sn, k)

∂k

)(
1− q

2k
cos θ

)
× 1

ω + snvF q cos θ

(
1

ω + snvF (2k + q cos θ) + iγ
− 1

2ω + 2snvF (k + q cos θ) + iγ

)
× sn

[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.40)

In this form, we can change the integration variable k for each of the two terms. The

relevant factor becomes

(
f(sn, k)− 1

2
q cos θ

∂f(sn, k)

∂k
− f(−sn, k)− 1

2
q cos θ

∂f(−sn, k)

∂k

)
1

ω + 2snvFk + iγ

(6.41)

−
(
f(sn, k)− q cos θ

∂f(sn, k)

∂k
− f(−sn, k)

)
1

2ω + 2snvFk + iγ
. (6.42)
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Integrate over θ, the result to order q is

1©|twox =

∫ ∞
0

dk
πq

2vFkω(ω + 2snvFk + iγ)(2ω + 2snvFk + iγ)

×
[
−
(
η2
x(5ω − 2snvFk) + η2

y(3ω + 2snvFk)
)

(f(−sn, k)− f(sn, k))

+ (η2
x − η2

y)k

(
−2(ω + snvFk)

∂f(−sn, k)

∂k
+ 2snvFk

∂f(sn, k)

∂k

)]
,

1©|twoy =

∫ ∞
0

dk
ηxηyπq

vFkω(ω + 2snvFk + iγ)(2ω + 2snvFk + iγ)

× [− (ω − 2snvFk) (f(−sn, k)− f(sn, k))

+ k

(
−2(ω + snvFk)

∂f(−sn, k)

∂k
+ 2snvFk

∂f(sn, k)

∂k

)]
. (6.43)

We will not evaluate the integration over k at this time, we would like to see if some

of the terms can be canceled. The second term is

2© =

∫ ∞
0

kdk

∫ 2π

0

dθ
1

2ω + 2snvF (k + q cos θ) + iγ

× 1

(ω + snvF q cos θ + iγ) (−snvF )

(
∂f(−sn, k)

∂k
+

3q

2
cos θ

∂2f(−sn, k)

∂k2

)
× sn

[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
=
−1

snvF

∫ 2π

0

dθ
1

ω

(
1− snvF q

ω
cos θ

)∫ ∞
0

(k − q cos θ)dk

1

2ω + 2snvFk + iγ

(
∂f(−sn, k)

∂k
+
q

2
cos θ

∂2f(−sn, k)

∂k2

)
× sn

[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
− (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
−(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.44)
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Integrate over θ, and keep only terms to order q, we get

2©|twox =
πq

vFω2

∫ ∞
0

dk
1

2ω + 2snvFk + iγ

×
[(
−2(η2

x − η2
y)snvFk + 4(η2

x + η2
y)ω
) ∂f(−sn, k)

∂k
+ (η2

x − η2
y)kω

∂2f(−sn, k)

∂k2

]
,

2©|twoy =
2ηxηyπq

vFω2

∫ ∞
0

kdk
1

2ω + 2snvFk + iγ

[
−2snvF

∂f(−sn, k)

∂k
+ ω

∂2f(−sn, k)

∂k2

]
.

(6.45)

We will leave it like that at the moment.

Type 3: sn = sl = −sm, so ~J2ω is given by

~J2ω = −g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

∑
sn

∫
d2~k

1

2ω + snvF (|~k + 2~q|+ |~k|) + iγ

×

 f(sn, |~k|)− f(sn, |~k + ~q|)(
ω − snvF (|~k + ~q| − |~k|) + iγ

)(
snvF (|~k + ~q| − |~k|)

)
− f(sn, |~k + ~q|)− f(−sn, |~k + 2~q|)(

ω + snvF (|~k + 2~q|+ |~k + ~q|) + iγ
)(
−snvF (|~k + 2~q|+ |~k + ~q|)

)


× s3
n

[
−(ηx − iηy)eiθ(~k+~q) + (ηx + iηy)e

−iθ(~k+2~q)
] [

(ηx − iηy)eiθ(~k) + (ηx + iηy)e
−iθ(~k+~q)

]
×
[
−(x̂+ iŷ)e−iθ(

~k) + (x̂− iŷ)eiθ(
~k+2~q)

]
. (6.46)
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To linear order in q, we first get

~J2ω = −g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23

∑
sn

∫ ∞
0

kdk

∫ 2π

0

dθ
1

2ω + 2snvF (k + q cos θ) + iγ

×
[
−

∂f(sn,k)
∂k

+ 1
2
q cos θ ∂

2f(sn,k)
∂k2

(ω − snvF q cos θ + iγ) (snvF )

− f(sn, k) + q cos θ ∂f(sn,k)
∂k

− f(−sn, k)− 2q cos θ ∂f(−sn,k)
∂k

(ω + snvF (2k + 3q cos θ) + iγ) (−snvF (2k + 3q cos θ))

]

× sn
[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
+ (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.47)
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Following the same method,

1© =

∫ ∞
0

kdk

∫ 2π

0

dθ
1

2ω + 2snvF (k + q cos θ) + iγ

× f(sn, k) + q cos θ ∂f(sn,k)
∂k

− f(−sn, k)− 2q cos θ ∂f(−sn,k)
∂k

(ω + snvF (2k + 3q cos θ) + iγ) (snvF2k)

(
1− 3q

2k
cos θ

)
× sn

[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
+ (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
=

1

2snvF

∫ ∞
0

dk

∫ 2π

0

dθ

(
f(sn, k) + q cos θ

∂f(sn, k)

∂k
− f(−sn, k)− 2q cos θ

∂f(−sn, k)

∂k

)
×
(

1− 3q

2k
cos θ

)
1

ω − snvF q cos θ

×
(
− 1

2ω + 2snvF (k + q cos θ) + iγ
+

1

(ω + snvF (2k + 3q cos θ) + iγ)

)
× sn

[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
+ (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.48)

Some of the factors can be written as

−
(
f(sn, k)− f(−sn, k)− q cos θ

∂f(−sn, k)

∂k

)
1

2ω + 2snvFk + iγ

+

(
f(sn, k)− 1

2
q cos θ

∂f(sn, k)

∂k
− f(−sn, k)− 1

2
q cos θ

∂f(−sn, k)

∂k

)
1

ω + 2snvFk + iγ
.

(6.49)
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Integrating over θ and keeping the terms to order q, we obtain

1©|threex =

∫ ∞
0

dk
πq

2vFkω(ω + 2snvFk + iγ)(2ω + 2snvFk + iγ)

×
[(
η2
x(5ω − 2snvFk) + η2

y(3ω + 2snvFk)
)

(f(−sn, k)− f(sn, k))

+ (η2
x − η2

y)k

(
2snvFk

∂f(−sn, k)

∂k
− 2(ω + snvFk)

∂f(sn, k)

∂k

)]
,

1©|threey =

∫ ∞
0

dk
ηxηyπq

vFkω(ω + 2snvFk + iγ)(2ω + 2snvFk + iγ)

× [(ω − 2snvFk) (f(−sn, k)− f(sn, k))

+ k

(
2snvFk

∂f(−sn, k)

∂k
− 2(ω + snvFk)

∂f(sn, k)

∂k

)]
. (6.50)

The second term can be written as

2© = −
∫ ∞

0

kdk

∫ 2π

0

dθ
1

2ω + 2snvF (k + q cos θ) + iγ

×
∂f(sn,k)

∂k
+ 1

2
q cos θ ∂

2f(sn,k)
∂k2

(ω − snvF q cos θ + iγ) (snvF )

× sn
[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
+ (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
= − 1

snvF

∫ 2π

0

dθ

∫ ∞
0

(k − q cos θ)dk
1

ω

(
1 +

snvF q

ω
cos θ

)
×
(
∂f(sn, k)

∂k
− 1

2
q cos θ

∂2f(sn, k)

∂k2

)
1

2ω + 2snvFk + iγ

× sn
[
−(ηx − iηy)eiθ

(
1− i q

k
sin θ

)
+ (ηx + iηy)e

−iθ
(

1 + 2i
q

k
sin θ

)]
×
[
(ηx − iηy)eiθ + (ηx + iηy)e

−iθ
(

1 + i
q

k
sin θ

)]
×
[
−(x̂+ iŷ)e−iθ + (x̂− iŷ)eiθ

(
1− 2i

q

k
sin θ

)]
. (6.51)

107



Integrating over θ and keeping only the terms to order q, we get

2©|threex =
πq

vFω2

∫ ∞
0

dk
1

2ω + 2snvFk + iγ

×
[(
−2(η2

x − η2
y)snvFk + 4(η2

x + η2
y)ω
) ∂f(sn, k)

∂k
+ (η2

x − η2
y)kω

∂2f(sn, k)

∂k2

]
,

2©|threey =
2ηxηyπq

vFω2

∫ ∞
0

kdk
1

2ω + 2snvFk + iγ

[
−2snvF

∂f(sn, k)

∂k
+ ω

∂2f(sn, k)

∂k2

]
.

(6.52)

Sum over types 2 and 3. As we can see, the results from types 2 and 3 are

very similar. Summing them over, we get

∑
sn

(
1©two
x + 1©three

x

)
= (η2

x − η2
y)(−

πq

vF
)
∑
sn

∫ ∞
0

dk
1

(ω + 2snvFk + iγ)(2ω + 2snvFk + iγ)

×
(
∂f(−sn, k)

∂k
+
∂f(sn, k)

∂k

)
= (η2

x − η2
y)s(εF )

πq

vF

∑
sn

1

(ω + 2snvFkF + iγ)(2ω + 2snvFkF + iγ)
,

(6.53)

and

∑
sn

(
1©two
y + 1©three

y

)
= −2ηxηy

πq

vF

∑
sn

∫ ∞
0

dk
1

(ω + 2snvFk + iγ)(2ω + 2snvFk + iγ)

×
(
∂f(−sn, k)

∂k
+
∂f(sn, k)

∂k

)
= 2ηxηys(εF )

πq

vF

∑
sn

1

(ω + 2snvFkF + iγ)(2ω + 2snvFkF + iγ)
,

(6.54)
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and

∑
sn

(
2©two
x + 2©three

x

)
=

πq

vFω2

∑
sn

∫ ∞
0

dk
1

2ω + 2snvFk + iγ

×
[(
−2(η2

x − η2
y)snvFk + 4(η2

x + η2
y)ω
)(∂f(−sn, k)

∂k
+
∂f(sn, k)

∂k

)
+ (η2

x − η2
y)kω

(
∂2f(−sn, k)

∂k2
+
∂2f(sn, k)

∂k2

)]
= − πq

vFω2
s(εF )

∑
sn

[−2(η2
x − η2

y)snvFkF + 4(η2
x + η2

y)ω

2ω + 2snvFkF + iγ

− (η2
x − η2

y)ω
2ω

(2ω + 2snvFkF + iγ)2

]
, (6.55)

and

∑
sn

(
2©two
y + 2©three

y

)
=

2ηxηyπq

vFω2

∑
sn

∫ ∞
0

kdk
1

2ω + 2snvFk + iγ[
−2snvF

(
∂f(−sn, k)

∂k
+
∂f(sn, k)

∂k

)
+ ω

(
∂2f(−sn, k)

∂k2
+
∂2f(sn, k)

∂k2

)]
= −2ηxηyπq

vFω2
s(εF )

∑
sn

[
(−2snvF )

kF
2ω + 2snvFk + iγ

− ω
2ω

(2ω + 2snvFkF + iγ)2

]
. (6.56)

Now we have essentially everything to calculate the magnitude and polarization

dependence of the SH signal in graphene.

6.6 Theoretical Results and Discussion

For definiteness, we assume that the Fermi level is in the conduction band, and

ω � vFkF . Then the contribution of ~J2ω from interband processes is (the coefficient

−g e3

2c2h̄3A
2
ωh̄ω

1

(2π)2

v3
F

23
is dropped):
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Type 1:

πq

vFω2

(
−2η2

x − 6η2
y , 4ηxηy

)
. (6.57)

Type 2 and type 3:

πq

vFω2

(
−2η2

x − 6η2
y , 4ηxηy

)
. (6.58)

We recall that the intraband contribution is

πq

vFω2

(
3η2

x + η2
y, 2ηxηy

)
. (6.59)

So, the total is

πq

vFω2

(
−η2

x − 11η2
y, 10ηxηy

)
. (6.60)

Adding the coefficient, and using Eω = iωAω/c, we can get an equation like ~J2ω =

σ2ωE2
ω, where σ2ω is the SHG optical conductivity, and it is given by

σ(2)(2ω) =
e3v2

F q

16πh̄2ω3

[
(−η2

x − 11η2
y)x̂+ 10ηxηyŷ

]
. (6.61)

This result is consistent with the experiment as it shows that the S-polarized incident

field ηx = 0, ηy = 1 generates the SH signal which is more than 100 times stronger

than the P-polarized incident field ηx = 1, ηy = 0.

For completeness, we will get the relation between the intensities of fundamental

light and SH light. Since the graphene layers are put on a substrate, the fundamen-

tal light is reflected on the interface between air and substrate. The electric field
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contributing to the SHG process is the summation of the in-plane components of the

incident field and reflected field. This is shown in Fig. 6.4. On the other hand, the

current J2ω can radiate optical fields into both the air and the substrate, as shown

in Fig. 6.5. So, we also need to find the relation between the fields and the current.

Figure 6.4: The geometry of the incident fundamental light. The incident and refrac-
tive angles are labeled by φi and φt, respectively. The electric field at the graphene
layer can be related to the incident fundamental light by the boundary conditions
between two dielectric materials. Only the inplane electric field contributes to the
SHG processes.

Define some notations: n1: refractive index of the air; n2: refractive index of the

substrate; φi: incident angle; φt: refractive angle; E0
ω: amplitude of the fundamental

light; E1
2ω: amplitude of the SH light in the air; E2

2ω: amplitude of the SH light in

the substrate. If we ignore the effect of graphene on reflection and refraction, then

we have the relation n1 sinφi = n2 sinφt. Using the boundary conditions, we have
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Figure 6.5: The geometry of the radiated SHG light. φi and φt are the incident
and refractive angles for the fundamental light. The radiation goes into both the
air (E1

2ω) and the substrate (E2
2ω). They can be related to J2ω by the standard

boundary conditions. If we assume the refractive indices at the fundamental and
SH frequencies are the same, then the direction of radiated field is the same as the
reflected or refracted fundamental light.

the in-plane electric field of the fundamental light as

S-pol. : E0
ω

2n1 cosφi
n1 cosφi + n2 cosφt

,

P-pol. : E0
ω

2n1 cosφi cosφt
n1 cosφt + n2 cosφi

. (6.62)

Also, we can get the relations between J2ω and E2ω as

S-pol. : E1
2ω = − 1

n1 cosφi + n2 cosφt

4π

c
J2ω,

E2
2ω = E1

2ω,

P-pol. : E1
2ω = − cosφt

n1 cosφt + n2 cosφi

4π

c
J2ω,

E2
2ω = − cosφi

n1 cosφt + n2 cosφi

4π

c
J2ω. (6.63)

Here the the direction of the electric field is chosen in the way that it has a component
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in the direction of ~J2ω. These effects are considered in measuring the SHG optical

conductivity, so the experimental results are directly compared with Eq. 6.61.

The coefficient in Eq. 6.61 has a value of 3.12 × 10−18S · m/V , so the SHG

optical conductivity for S → P is 3.4 × 10−17S · m/V . The measured value is

1.4 × 10−17S ·m/V . So, the calculated value is about 2.4 times the measured one.

Considering some uncounted effects in the measurement, we think the agreement

between theory and experiment is acceptable. Most importantly, the polarization

dependence is explained by our theory. Also, our result shows that if the fundamental

light has polarization which is neither parallel nor perpendicular to the incident plane,

then S-polarized SH light can also be generated.

The reason SHG processes can happen in graphene is because the fundamental

light is incident on the graphene plane obliquely, so the q vector breaks the inversion

symmetry. We also see that only P-polarized SH light can be generated when the

fundamental field is either S- or P-polarized, this is because there is still a reflection

symmetry in the direction perpendicular to the incident plane. If the fundamental

light is neither S- nor P-polarized, then this reflection symmetry is also broken, and

S-polarized SH light can also be generated. Also, we see S-polarized fundamental

light can generate P-polarized SH light, this is due to the selection rules for circularly

polarized light.

The inversion symmetry in graphene can also be broken by other mechanisms.

For example, SHG in graphene is achieved by introducing a direct electric current

[54]. In these cases, the SHG processes can happen to the zeroth order of q.

6.7 Conclusion

The SHG susceptibility is measured by Dr. Heinz’s group. In the experiment,

fundamental light is incident on the graphene layer obliquely, and SHG light is col-
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lected in the reflected geometry. The SHG susceptibility is found to be dominant

when the fundamental light is S-polarized, and SH light is P-polarized. The theoreti-

cal calculation based on quantum mechanical model shows the SHG susceptibility for

S → P is 11 times the P → P one, while S-polarized SH light cannot be generated if

the fundamental light is either S- or P-polarized. These agree with the experimental

observations. When fundamental light it neither S- nor P-polarized, S-polarized SH

light can also be generated. The reason for SHG processes to happen in graphene

is because the inversion symmetry is broken due to the q vector of the obliquely

incident light. For SHG processes to happen at zeroth order of q, other mechanism

to break the inversion symmetry should be explored.
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7. SUMMARY

In this dissertation, the optical properties of QW structures and single-layer

graphene are studied. In QW structures, we specially investigated the effects of

Coulomb interaction between carriers. In optically excited electron-hole magneto-

plasma, delayed burst of optical pulses (Superfluorescence) has been observed. The

time and energy-resolved measurement shows that the center frequency of the pulse

decreases with time. In order to explain it, we developed a generalized semiconduc-

tor Bloch equations, and show that the maximum gain occurs at the Fermi edges

for electron-hole plasma in quasi-equilibrium. When the carriers are recombined

into photons, the Fermi energies of both electrons and holes decrease, so the photon

energy also decreases. This explains the red-shifting of the center frequency of pulse.

Coulomb interaction can also affects intersubband optical transitions. We devel-

oped a theoretical framework to study the effect of Coulomb interaction on second-

order nonlinear optical processes. We show that the DFG susceptibility is enhanced

by the intersubband plasmonic effect. This can help optimizing the design of devices

for second-order nonlinear processes.

QCLs are devices composed by many QWs, and they are an important kind of

mid-IR sources. We showed that pulse can be generated by active modulation in

mid-IR QCLs with vertical optical transition, where the lifetime of upper laser state

is ∼1 ps. We show that active modulation of QCLs with short gain recovery time

is more robust than long gain recovery time. By tuning the modulation period,

mode-locked pulses can be achieved too.

When single-layer graphene is under a transverse magnetic field, its linear band is

discretized into Landau levels, the energy separations between neighboring LLs are
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unequal, and the optical selection rules are unique. We utilized these properties to

propose a scheme for continuous-wave lasing between graphene LLs, where infrared

pumping can lead to THz gain. In the proposed scheme, coupling of electrons to the

SO phonons from the substrate is utilized to efficiently populate the upper laser state.

If a cavity is introduced, THz lasing can be achieved for mirrors with reflectivity that

can be easily fabricated.

We also studied the SHG in graphene, inspired by experimental observations.

The experiment shows the SHG susceptibility is dominant for fundamental light

with S-polarization, and second-harmonic light with P-polarization. We developed

a quantum theory which can explain this. We found that the contributions for SHG

are from two channels. In one of them only intraband transitions are involved, and

the other one contains both intraband and interband transitions. The amplitudes

from those two contributions are added, and this addition can be either constructive

or destructive, depending on the polarization configurations. The result shows that

the optical conductivity for S→ P is 11 times larger than P→ P, and S-polarized SH

light cannot be generated if fundamental light is either S or P-polarized. However,

S-polarized SH light can still be generated if the electric field of fundamental light is

neither parallel nor perpendicular to the incident plane.
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