
PARAMETERIZED APPROACHES FOR LARGE-SCALE OPTIMIZATION

PROBLEMS

A Dissertation

by

AUSTIN LOYD BUCHANAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sergiy Butenko
Committee Members, Jianer Chen

Kiavash Kianfar
Erick Moreno-Centeno

Head of Department, César O. Malavé

August 2015

Major Subject: Industrial and Systems Engineering

Copyright 2015 Austin Loyd Buchanan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/79651394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

In this dissertation, we study challenging discrete optimization problems from

the perspective of parameterized complexity. The usefulness of this type of analysis

is twofold. First, it can lead to efficient algorithms for large-scale problem instances.

Second, the analysis can provide a rigorous explanation for why challenging prob-

lems might appear relatively easy in practice. We illustrate the approach on several

different problems, including: the maximum clique problem in sparse graphs; 0-1

programs with many conflicts; and the node-weighted Steiner tree problem with few

terminal nodes. We also study polyhedral counterparts to fixed-parameter tractable

algorithms. Specifically, we provide fixed-parameter tractable extended formulations

for independent set in tree-like graphs and for cardinality-constrained vertex covers.

ii



DEDICATION

To my parents.

iii



ACKNOWLEDGEMENTS

First, I am extremely grateful to have Dr. Sergiy Butenko as my dissertation

advisor. Since day one, he has treated me with the utmost respect and made me

feel like a colleague instead of a student. He has always held a positive attitude

towards me. Many times I have knocked on his door asking—“Do you have a few

minutes?”—to which he responds—“For you, Austin, always.” He has always given

me the freedom to pick my own research topics, which, given my independent nature,

has been crucial to my happiness and success.

I have had much help from within Texas A&M. My committee members Drs.

Jianer Chen, Kiavash Kianfar, and Erick Moreno-Centeno have been very support-

ive. Drs. Chen and Kianfar have been some of the best teachers I have ever had.

(Unfortunately, I have not taken any of Dr. Moreno’s courses.) As department head,

Dr. Cesar Malave makes everyone feel welcome and is always smiling. I also want

to thank Dr. Guy Curry and Judy Meeks for helping to secure my Doctoral Merit

Fellowship, which was a significant financial boost and factored into my decision to

attend Texas A&M.

There are several faculty outside of Texas A&M that have been instrumental in

earning my Ph.D. I want to thank Dr. Tieming Liu at Oklahoma State University

for hiring me as an undergraduate researcher and for being my senior design project

advisor. Without his encouragement, I may have never pursued a Ph.D. Professors

Vladimir Boginski, Panos Pardalos, and Oleg Prokopyev have been great to work

with, and I thank all of them for writing reference letters for me over the years for

scholarships and faculty positions. Dr. Eduardo Pasiliao, my summer mentor at the

iv



AFRL MMOI, has also been extremely helpful.

There are many Ph.D. students, both inside and outside of Texas A&M, that

have helped me along. My collaborations with Je Sang Sung, Anurag Verma, Jose

Walteros, and Yiming Wang have been very fruitful and I thank all of them for

their friendship as well. My colleagues Nannan, Sasha, Su, Xin, Yu, Zimo, and

others have helped to make my time at Texas A&M more enjoyable. I also fondly

remember pastichio, poker, and/or white-sand beaches with Behdad, Chrys, Foad,

Gabe, Juan, Oleg S., Sasha, Serdar, Vika, and Vova and the rest of the MMOI crew.

I have been fortunate to have had my Ph.D. studies funded from a variety of

sources. This includes fellowships, scholarships, and instructor positions from Texas

A&M, the Dwight Look College of Engineering, and the Department of Industrial

and Systems Engineering. Other scholarships and travel funds have come from the

Institute of Industrial Engineers, the Material Handling Education Foundation, the

George Bush Presidential Library Foundation, and the Texas Engineering Founda-

tion. My summer research has been supported primarily by the AFRL Mathemati-

cal Modeling and Optimization Institute. Partial support by AFOSR under grants

FA9550-12-1-0103 and FA8651-12-2-0011 is also gratefully acknowledged.

Finally, I would like to thank my family for all of their support over the years.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Graph terminology . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Combinatorial optimization . . . . . . . . . . . . . . . . . . . 4
1.1.3 Integer programming . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Parameterized complexity . . . . . . . . . . . . . . . . . . . . 9

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 12

2. ALGORITHMS AND POLYHEDRA FOR CONNECTIVITY PROBLEMS 14

2.1 Node-Weighted Steiner Tree . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Maximum-Weight Connected Subgraph . . . . . . . . . . . . . . . . . 22

2.2.1 Polyhedral description for case of no 3-vertex independent set 22
2.2.2 Algorithm for case of few negative-weight vertices . . . . . . . 34
2.2.3 Algorithm for case of few positive-weight vertices . . . . . . . 36
2.2.4 Combining the approaches . . . . . . . . . . . . . . . . . . . . 38

3. ALGORITHMS FOR CLIQUE AND EXTENSIONS TO 0-1 PROGRAMS 39

3.1 Algorithms for Maximum Clique . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 Algorithm based on degeneracy . . . . . . . . . . . . . . . . . 41
3.1.2 Algorithm based on community degeneracy . . . . . . . . . . . 44
3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Algorithms for 0-1 Programs . . . . . . . . . . . . . . . . . . . . . . . 49

vi



3.2.1 The complexity of generating conflict edges . . . . . . . . . . . 52
3.2.2 Extending degeneracy for compatibility graphs . . . . . . . . . 55
3.2.3 Algorithms based on compatibility degeneracy . . . . . . . . . 57
3.2.4 Algorithms based on bicompatibility degeneracy . . . . . . . . 61
3.2.5 Preliminary computations . . . . . . . . . . . . . . . . . . . . 64

4. FIXED-PARAMETER TRACTABLE EXTENDED FORMULATIONS . . 66

4.1 Background on Extended Formulations and Independent Set Polytope 67
4.2 Formulation Based on Maximal Independent Sets . . . . . . . . . . . 71
4.3 Formulation Based on Treewidth . . . . . . . . . . . . . . . . . . . . 73
4.4 Formulation for Cardinality-Constrained Independence Systems . . . 85
4.5 Formulation for Cardinality-Constrained Vertex Covers . . . . . . . . 86
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 90

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



LIST OF FIGURES

FIGURE Page

1.1 The author’s Facebook friendship graph in 2011. . . . . . . . . . . . . 2

1.2 The extension F for P has 2 fewer facets. Original image by Thomas
Rothvoss, modified and used with permission. . . . . . . . . . . . . . 9

2.1 A graph G with α(G) = 2, but many minimal a, b-separators. Vertices
within a rectangle form a clique. . . . . . . . . . . . . . . . . . . . . . 24

4.1 A nicer tree decomposition of P3 (the path on 3 vertices) and the
proposed construction D. (This is also a nice path decomposition.)
There are no “join” nodes in the tree decomposition, so there is no
need for hyperarcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 A width-2 nicer tree decomposition of the cycle graph on five vertices
and the proposed construction D. (This is also a path decomposition.) 79

4.3 A tree (of pathwidth 2). . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 A nicer tree decomposition of width 1 that is rooted at the right. . . 80

4.5 The proposed directed acyclic hypergraph D. Since there is a “join”
node in the tree decomposition, D has hyperarcs. . . . . . . . . . . . 80

viii



LIST OF TABLES

TABLE Page

3.1 Parameters d and c on some real-life graphs from [5, 107]. . . . . . . . 41

3.2 Comparison of fastest known clique algorithms. . . . . . . . . . . . . 42

3.3 Degeneracy d of graphs (i.e., compatibility degeneracy for max-clique).
The left (right) table includes those graphs from the 2nd (10th) DI-
MACS Challenge [65] ([5]) that were considered by [4] ([26]). . . . . . 64

3.4 Compatibility-degeneracy d for some instances from MIPLIB 3.0 [13].
The parameter n refers to the number of 0-1 variables, |E| is the
number of conflict edges, and ρ is the density of the conflict graph as
a percentage (rounded to three significant digits). . . . . . . . . . . . 65

ix



1. INTRODUCTION

Consider the Facebook graph. Each Facebook account is represented by a vertex,

and two vertices are connected by an edge when the two people are friends. A clique

in the Facebook graph (a group of people where everyone knows everyone else in the

group) represents a tightly knit cluster. Or, consider a protein-protein interaction

network from the field of bioinformatics. Each vertex represents a protein, and when

two proteins are noticed to interact with each other, then the corresponding vertices

are connected by an edge. The detection of a large clique in this protein-protein

interaction network might lead to the discovery of a new protein complex [28]. Or,

consider the stock market graph [18]. Here, there is a vertex for each stock, and

two stocks’ vertices are connected by an edge if their prices over time are negatively

correlated. A large clique in this graph represents a diversified portfolio. These are

just some of the many applications of clique finding.

Unfortunately, the problem of finding a largest clique in an arbitrary graph is

challenging. Still, due to the numerous applications of clique-finding in social net-

work analysis, bioinformatics, finance, and elsewhere, one may want to solve the

problem anyway. Fortunately, for many real-life instances, the problem seems to be

relatively easy. Indeed, in [107], we were able to solve million-vertex instances of this

problem in just a few seconds. The computational results were nice, but we were

unable to prove any nontrivial bounds on the runtime of our approach. Later on,

we realized that there is a nice algorithm with a provable worst-case runtime for the

maximum clique problem [26]. Its runtime depends polynomially on the number of

vertices, but exponentially in the degeneracy of the graph—a common measure of a

graph’s sparsity. This is nice because many real-life graphs are sparse. In the case

1



Figure 1.1: The author’s Facebook friendship graph in 2011.

of Facebook-style graphs (where users are limited to 5000 friends), this results in an

efficient algorithm. See Figure 1.1 for a subgraph of the Facebook graph.

In the era of Big Data, there is an increased need to solve very large instances of

problems. However, it has been noted that “most interesting problems are NP-hard.”

This leads many people to give up on exact methods and instead rely upon heuristics

that often guarantee little in terms of solution quality, or, if we are lucky, approxi-

mation algorithms whose output can be several times optimal. As demonstrated by

our success with the maximum clique problem, this need not be the default reaction.

Many problems have natural associated parameters (such as degeneracy for clique),

such that when the parameter is relatively small, then the problem can be solved

2



quickly. This is the fixed-parameter tractable approach which has been spreading

throughout computer science. Due to the relative youth of the field of parameterized

complexity, this type of analysis has not been applied as frequently in the operations

research (OR) and mathematical programming (MP) communities. This new per-

spective raises many questions that have scarcely been studied. In this dissertation,

we answer some of these questions, but there is much left to do.

1.1 Preliminaries

In Section 1.2 we detail the contributions of this dissertation. However, we will

first need some terminology and notation. This section serves to introduce the reader

to basic concepts like graphs, computational complexity, and extended formulations.

More details will be given later in the dissertation as they are needed.

1.1.1 Graph terminology

Most of the problems discussed in this dissertation are defined with respect to

a simple graph. A simple graph G = (V,E) is a pair, where V is a finite set of

vertices, and E ⊆
(
V
2

)
is a collection of unordered pairs of vertices. Here,

(
V
2

)
:=

{{u, v} | u, v ∈ V, u 6= v}. An object {u, v} ∈ E is called an edge, and its endpoints

u and v are said to be neighbors or adjacent. The (open) neighborhood of a vertex

u in a graph G is denoted NG(u) := {v ∈ V | {u, v} ∈ E}. When the graph in

question is clear, we simply write N(u). The number |N(u)| of neighbors of a vertex

u is the degree of u. The closed neighborhood of u is denoted N [u] := N(u) ∪ {u}.

A graph G′ = (V ′, E ′) is said to be a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

The subgraph induced by a vertex subset S ⊆ V is denoted by G[S] := (S,E ∩
(
S
2

)
).

A sequence v1, . . . , vk of vertices is a path in G if each pair (vi, vi+1) of consecutive

vertices satisfies {vi, vi+1} ∈ E. If s is the first vertex and t is the last vertex in the

path, then the path is said to be an s-t path. A graph is said to be connected if

3



for every pair (s, t) of distinct vertices there is an s-t path. Otherwise, the graph

is said to be disconnected1. Other graph terminology (e.g., degeneracy, treewidth,

hypergraph) will be defined later. For more information about graphs, we refer the

reader to [40].

1.1.2 Combinatorial optimization

Most of the problems considered in this dissertation are combinatorial optimiza-

tion problems. As noted by Schrijver [101],

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a concise representation

(like a graph), while the number of objects is huge—more precisely, grows

exponentially in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting

the best one is not an option. More efficient methods should be found.

Sometimes it is not so clear as to what constitutes a combinatorial optimization

problem. For example, consider (bounded) linear programming—the problem of

optimizing a linear objective function over a feasible region that is bounded and

defined by a set of linear inequalities. This seems to be a continuous optimization

problem. However, it also fits into Schrijver’s framework. Here the finite collection

of objects is the set of extreme points of the feasible region, and we are tasked with

finding an extreme point with optimal objective value. Is linear programming a

combinatorial optimization problem, a continuous optimization problem, or both?

1By this definition of connectivity, the trivial graphs (∅, ∅) and ({v}, ∅) are connected. However,
it is sometimes convenient to define the trivial graphs as disconnected. As Diestel [40] notes,
“[s]ometimes, . . . , trivial graphs can be useful; at other times they form silly counterexamples and
become a nuisance. To avoid cluttering the text with non-triviality conditions, we shall mostly
treat the trivial graphs. . . with generous disregard.”

4



In the words of Lawler [71], “[p]erhaps the best way to convey the nature of

combinatorial optimization problems is to give some specific examples.” So, we

mention some problems considered in this dissertation below.

In Chapter 2, we consider the Maximum-Weight Connected Subgraph (MWCS)

and Node-Weighted Steiner Tree (NWST) problems.

Problem: Maximum-Weight Connected Subgraph (MWCS).

Input: a graph G = (V,E), a weight w(v) for each vertex v ∈ V .

Output: a maximum-weight subset S of vertices such that G[S] is connected.

In the MWCS problem, the weight of a subset of vertices is the sum of its vertices’

weights. In the NWST problem, the weight of a subgraph is the sum of its vertices’

and edges’ weights.

Problem: Node-Weighted Steiner Tree (NWST).

Input: a graph G = (V,E), a set D ⊆ V of terminal vertices, a nonnegative weight

w(i) for each vertex/edge i ∈ E ∪ V .

Output: a minimum weight subgraph that connects the terminals.

In Chapter 3, we consider the Maximum Clique problem. A subset S ⊆ V of

vertices is said to be a clique in a graph G = (V,E) if its induced subgraph G[S] has

all possible edges, i.e.,
(|S|

2

)
edges.

Problem: Maximum Clique.

Input: a graph G = (V,E).

Output: a largest clique of G.

In Chapter 4, we consider the Minimum Vertex Cover and Maximum Independent

Set problems. A subset S of vertices is said to be a vertex cover for a graphG = (V,E)

5



if each edge {u, v} ∈ E has an endpoint in S, i.e., |S ∩ {u, v}| ≥ 1. An independent

set is a subset S of vertices such that the induced subgraph G[S] has no edges.

Problem: Maximum Independent Set.

Input: a graph G = (V,E).

Output: a largest independent set of G.

It is easy to see that a subset S ⊆ V of vertices is an independent set of G = (V,E)

if and only if S is a clique in G, where G :=
(
V,
(
V
2

)
\ E
)

is the complement of G.

Problem: Minimum Vertex Cover.

Input: a graph G = (V,E).

Output: a smallest vertex cover of G.

Note that a subset S ⊆ V of vertices is a vertex cover for G if and only if V \ S

is an independent set of G. Hence, these two problems are equivalent with respect

to optimization.

1.1.3 Integer programming

Combinatorial optimization problems are often formulated as integer programs.

An integer program is an optimization problem in which the decision variables are

required to take integer values. We will only discuss integer linear programs, where

the objective function and constraints are linear.

(integer program) sup
x∈Zn

+

{
cTx

∣∣ Ax ≤ b
}
.

6



Here, n denotes the number of variables. Let m denote the number of rows of A.

Denote by

P := {x ∈ Rn
+ | Ax ≤ b}.

This polyhedron P is a commonly used relaxation for the integer program’s feasible

region. (A polyhedron is the intersection of a finite number of halfspaces.) The

actual feasible region for the integer program is

S := {x ∈ Zn+ | Ax ≤ b}.

One important observation is that we can solve the integer program by solving

sup
x

{
cTx

∣∣ x ∈ PI} ,
where PI = conv.hull(S) is the convex hull of S (or the integer hull of P ). If S is

finite or if the problem data is rational, then this is actually a linear program [81].

The converse does not hold in general, since PI may have an infinite number of facets.

This is possible even when n = 2 and m = 1 [98]. A facet of a polyhedron P is an

inclusion-wise maximal face of P that is distinct from P . The set F is a face of a

polyhedron P if F = {x ∈ P | πx = π0} for some valid inequality πx ≤ π0 of P . An

inequality πx ≤ π0 is said to be valid for a polyhedron P if every x∗ ∈ P satisfies

πx∗ ≤ π0.

For many combinatorial optimization problems, the variables represent yes/no

decisions, e.g., should a particular vertex be included in the solution? This leads to

the special class of integer programs called 0-1 programs. In this case, the supremum

7



is achieved (when feasible), so we can write max instead of sup.

(0-1 program) max
x∈{0,1}n

{
cTx

∣∣ Ax ≤ b
}
.

In this case, the sets

P ′ = {x ∈ [0, 1]n | Ax ≤ b}, and

P ′I = conv.hull{x ∈ {0, 1}n | Ax ≤ b}

are bounded polyhedra, a.k.a. polytopes, and the 0-1 program can be solved via the

linear program

max
x

{
cTx

∣∣ x ∈ P ′I} .
Of course, P ′I can have many more facets than P ′, so even though this is a linear

program, it is not clear if it can be solved quickly.

In some cases, a polyhedron that has many facets can be represented in a higher-

dimensional space by another polyhedron that has fewer facets. This is called an

extension and is illustrated in Figure 1.2. More formally, a polyhedron F = {(x, y) ∈

Rn+t | Cx + Dy ≤ d} is an extension for a polyhedron P = {x ∈ Rn | Ax ≤ b} if

P = projx F , where projx F := {x | ∃y : (x, y) ∈ F}. In this case, the inequalities

Cx + Dy ≤ d provide an extended formulation for P . The size of an extension

(resp. extended formulation) is the number of its facets (resp. inequalities). Often,

the hope is to find a polynomial-size extended formulation for a problem whose

representation in the original space of variables has exponential size. This is the case

for the spanning tree polytope on n vertices, which has Θ(2n) facets in the original

space of variables [45], but admits an extended formulation of size O(n3) [78].

8



Figure 1.2: The extension F for P has 2 fewer facets. Original image by Thomas
Rothvoss, modified and used with permission.

For more information on integer programming, consult (in order of increasing

mathematical maturity) [110, 86, 100]. For more information about extended formu-

lations, consult the surveys of [34, 66] or the text of [35].

1.1.4 Parameterized complexity

In computational complexity theory, the goal is to understand how efficiently a

class of problems can be solved. This may include an analysis of how quick algorithms

can be or how much space is necessary. In this dissertation, however, we are primarily

concerned with runtime.

It is reasonable to expect that the runtime should depend on the problem input,

with larger problems taking longer to solve. As such, we typically analyze the com-

plexity of a problem as a function of the problem instance size. A natural question

to ask is—How slow-growing must this function be for an algorithm to be practical?

Is there a systematic way to categorize which problems are solvable in a reasonable

amount of time on a computer? It is the Cobham-Edmonds thesis that this class of

9



reasonable problems coincides with those that can be solved in polynomial time [55].

This rule-of-thumb is imperfect (as Edmonds has noted [46]), but it has nevertheless

proven to be “a good place to start” [46].

A large number of important problems have evaded this type of analysis. For

example, no one has been able to solve the maximum clique problem in polynomial

time, but no one has proven that this cannot be done. However, there is a consensus

among researchers that no such algorithm exists. This is due to the fact that the

maximum clique problem is NP-hard, and the widely-believed conjecture that P 6=NP.

It is natural, then, to consider parameterized versions of the maximum clique

problem, say the k-clique problem2.

Problem: k-Clique.

Input: A simple graph G.

Parameter: A positive integer k.

Question: Does G have a clique of size k?

As far as the author knows, it is consistent with P 6=NP that k-clique can be

solved in time O(2kn). However, this is not suspected to be the case. Indeed, it is

conjectured that this problem is not fixed-parameter tractable [42].

Definition 1 (fpt). A problem, parameterized by an integer k, is said to be fixed-

parameter tractable (fpt) if it admits an algorithm running in time f(k)nO(1), where

f is a computable function that does not depend on the input size n.

Even worse, there are reasons [30] to think that k-clique cannot be solved in

time f(k)no(k). This follows either from the conjecture that not all SNP problems

2Often, researchers refer to a clique of k vertices as as a k-clique and the associated decision
problem as k-Clique. We will typically refer to both as k-clique, and it will be clear what we
mean based on the context. The same conventions will be used for k-coloring, k-vertex cover,
k-independent set, etc.

10



(defined by [90]) can be solved in subexponential time [30], or that the exponential

time hypothesis of Impagliazzo et al. [63] holds [76]. In contrast, the exhaustive

search algorithm solves k-clique in time O(f(k)nk). More complicated algorithms

based on matrix multiplication solve (3k)-clique in time O(nωk), where ω < 2.373 is

the exponent of matrix multiplication [87]. While faster than the exhaustive search

algorithm, this is still nΩ(k).

While the minimum vertex cover problem and the maximum clique problem are

equivalent, their parameterized versions seems to be much different. Indeed, k-

vertex cover is fixed-parameter tractable, as there is a simple bounded search tree

algorithm that runs in time O(2kn) [42]. Other algorithms improve this bound to

O(1.2738k + kn) [32].

Definition 2 (ETH). The exponential time hypothesis (ETH) asserts that there is a

constant s > 0 such that 3-CNF-SAT on n variables and m clauses cannot be solved

in time 2sn(n+m)O(1).

Thus, ETH states that 3-CNF-SAT requires time exponential in n (if the runtime

must be polynomial in m). It has been shown [63] that if ETH is true, then 3-CNF-

SAT also requires exponential time in the number m of clauses (if the runtime should

be polynomial in n). There is also a strong version of ETH.

Definition 3 (SETH). The strong ETH (SETH) asserts that for every ε > 0, there

is a k such that k-CNF-SAT cannot be solved in time (2− ε)n(n+m)O(1).

SETH would then imply that the exhaustive search algorithm is essentially best-

possible for SAT (and, consequently, for solving 0-1 programs).

While the belief in ETH and SETH is not as strong as that of P6=NP, they

have not been disproved over the past fifteen years. As the plausibility of these

11



conjectures has increased, others have used them to provide conditional lower bounds

for other problems [93, 76, 75, 38]. Even if ETH or SETH is false, these conditional

lower bounds can be useful, providing new ways to disprove ETH or SETH. Indeed,

Williams [109] states:

The author can’t help but confess his belief here that SETH is false. Many

of his papers were conceived by finding an approach to refute SETH which

ultimately failed, but was applicable to another problem instead (Max-2-

SAT, ACC-SAT, All-Pairs Shortest Paths, etc.)

Thus we are not here to argue that SETH is true. Rather, we will use it to

compare our results to the state of current knowledge. Paraphrasing Garey and

Johnson [54],

I can’t find a faster algorithm, but neither can all these famous people.

There is much background information about algorithm design, computational

complexity, parameterized complexity, and fixed-parameter tractable algorithms that

we simply cannot mention here. For more information, consult [36, 92, 91, 55, 42,

88, 50, 52, 43].

1.2 Summary of Contributions

In Chapter 2, we provide parameterized algorithms for the node-weighted Steiner

tree (NWST) problem and for the maximum-weight connected subgraph (MWCS)

problem. The NWST algorithm generalizes the well-known Dreyfus-Wagner algo-

rithm and runs in time O(n3) when the number of terminals is bounded. We then

show that the MWCS problem is polynomial-time solvable in graphs with no 3-vertex

independent set via polyhedral arguments and the machinery of the ellipsoid method.

12



Next, two combinatorial algorithms for MWCS are described, which run in polyno-

mial time for instances with few positive- or negative-weight vertices. Together, they

imply that MWCS can be solved in time O(1.5875n), which is the first improvement

in literature over the exhaustive search algorithm.

In Chapter 3, we provide parameterized algorithms for the maximum clique prob-

lem and show how they can be generalized to solve arbitrary 0-1 programs. One

challenge is that the natural parameter–the size of the clique–seemingly leads to a

dead end. This motivates the search for other parameters that are small on real-life

instances. One such parameter is the degeneracy of the graph, which is a measure

of the graph’s sparsity. It turns out that the maximum clique problem is fixed-

parameter tractable when parameterized by degeneracy. Then, we extend the ideas

to solve arbitrary 0-1 programs. The parameter in this case depends on properties of

an associated conflict graph. Conflict graphs are used to model pairwise dependen-

cies between the 0-1 variables. Roughly speaking, the algorithms that we develop

are quick when the conflict graph is dense.

In Chapter 4, we apply ideas from parameterized algorithms to the study of

extended formulations. When constructing an extended formulation for an opti-

mization problem, an important thing to keep in mind is its size. However, due to

the computational intractability of many problems, one cannot always expect to find

polynomial-size extended formulations. To deal with this, one approach is to intro-

duce a parameter, and look for extended formulations whose size grows polynomially

in the problem size, but exponentially (or worse) in the parameter. We illustrate this

approach on the independent set and vertex cover problems and consider parameters

such as the number of maximal independent sets (or minimal vertex covers), the

treewidth of the graph, and the size of the vertex cover.

Finally, we conclude and offer ideas for future research in Chapter 5.

13



2. ALGORITHMS AND POLYHEDRA FOR CONNECTIVITY PROBLEMS

This chapter is based on work with Yiming Wang and Sergiy Butenko [27, 108].

We provide parameterized algorithms for the node-weighted Steiner tree (NWST)

problem and for the maximum-weight connected subgraph (MWCS) problem. The

NWST algorithm generalizes the well-known Dreyfus-Wagner algorithm and runs

in time O(n3) when the number of terminals is bounded. We then show that the

MWCS problem is polynomial-time solvable in graphs with no 3-vertex independent

set via polyhedral arguments and the machinery of the ellipsoid method. Next, two

combinatorial algorithms for MWCS are described, which run in polynomial time for

instances with few positive- or negative-weight vertices. Together, they imply that

MWCS can be solved in time O(1.5875n), which is the first improvement in literature

over the exhaustive search algorithm.

The Steiner tree problem is well-studied in literature [60] and has applications in

the design of networks. Although it is NP-hard [68], it is fixed-parameter tractable

with respect to the number k of terminals, as demonstrated by the Dreyfus-Wagner

algorithm [44], which runs in time O(3kn+ 2kn2 + n3).

Problem: Steiner Tree.

Input: a graph G = (V,E), a set D ⊆ V of terminal vertices, a nonnegative weight

w(e) for each edge e ∈ E.

Output: a minimum weight subset of edges that connects the terminals.

The Steiner tree problem has weights associated only with the edges of the net-

work. In practice, however, there may be costs associated with the vertices as well.

This leads to the so-called node-weighted Steiner tree problem (NWST) [102], which

14



has weights associated with both vertices and edges.

Problem: Node-Weighted Steiner Tree (NWST).

Input: a graph G = (V,E), a set D ⊆ V of terminal vertices, a nonnegative weight

w(i) for each vertex/edge i ∈ E ∪ V .

Output: a minimum weight subgraph that connects the terminals.

While it is easy to transform an edge-weighted instance of the Steiner tree problem

into an instance with weights only on nodes (by subdividing edges, i.e., ‘placing’

nodes on edges), we are not aware of any nice reductions in the other direction.

It surprised us then, that we could find no attempts in literature to generalize the

Dreyfus-Wagner algorithm for the node-weighted case. In Section 2.1, we fill this

void by generalizing the Dreyfus-Wagner algorithm to handle both edge and vertex

weights at no extra cost in runtime.

We also consider the related maximum-weight connected subgraph (MWCS)

problem, which has applications in cluster detection in bioinformatics [41] and many

other areas [2]. This problem is also NP-hard, even when restricted [106, 64] to

planar graphs of maximum degree three with all weights either +1 or −1. The prob-

lem has no set of terminal vertices, but its difficulty arises due to the possibility for

negative-weight vertices.

Problem: Maximum-Weight Connected Subgraph (MWCS).

Input: a graph G = (V,E), a weight w(v) for each vertex v ∈ V .

Output: a maximum-weight subset S of vertices s.t. G[S] is connected.

We are aware of no previous algorithms for MWCS that achieve a nontrivial

worst-case runtime. However, in Section 2.1 we show that MWCS can be solved in

time O(1.5875n). This algorithm relies upon two different fixed-parameter tractable

15



subroutines. The first solves MWCS in time O(2q(m + n)), where q denotes the

number of negative-weight vertices. Surprisingly, we show that this is best-possible

under the strong exponential time hypothesis of [63]. The second, which uses the

NWST algorithm as a subroutine, runs in time O(4pn3) for instances of MWCS with

p positive-weight vertices.

We first discovered that MWCS is polytime solvable whenever the graph G has in-

dependence number α(G) at most two. When α(G) ≤ 2, we show that the connected

subgraph polytope is characterized by the following inequalities [108].

xa + xb −
∑
i∈C

xi ≤ 1, ∀a, b-separator C ⊆ V, ∀ nonadjacent a, b ∈ V (2.1)

0 ≤ xi ≤ 1, ∀i ∈ V. (2.2)

While this formulation has exponentially many constraints, the separation problem

for the separator inequalities (2.1) can be solved in polynomial time, so one can

optimize a linear function over this feasible region in polynomial time via the el-

lipsoid method [56]. We also found a polynomial-size extended formulation for this

separator-based LP relaxation (defined by constraints (2.1) and (2.2)), so one need

not rely on the ellipsoid method to prove polynomiality [108].

It has been noted that many problems transition from being easy at 2 to hard

at 3. This is the “mystical power of twoness” [73] exhibited by, for example, k-

dimensional matching, k-colorability, and k-SAT. A natural question is—Does the

same ‘twoness’ phenomenon occur with MWCS? If not, is there ever a sharp transi-

tion in the problem’s complexity as a function of the graph’s independence number

α(G)? We show that this is not the case, as MWCS is solvable in time O(4α(G)n3).

16



2.1 Node-Weighted Steiner Tree

Perhaps the most well-known algorithm to solve the Steiner tree problem is a

dynamic programming algorithm due to Dreyfus and Wagner [44]. It runs in time

O(3kn + 2kn2 + n3), where k denotes the number of terminals. We show that this

algorithm can be generalized to solve NWST in the same time.

To prove the correctness of the NWST algorithm, we will need some notation

and an optimal substructure lemma. The notation that we use largely follows [44].

Consider a tree T connecting a set S ⊆ V of terminals. Recall that NG(v) denotes

the neighborhood of vertex v in graph G. For a vertex x ∈ V (T ) and one of its

neighbors y ∈ NT (x) in T , let Sy(x) ⊆ S be the set of terminal vertices reachable

from x via a path in T that first crosses y. Further, define SY (x) := ∪y∈Y Sy(x) and

SY [x] := SY (x) ∪ {x}. Finally, let T Y (x) be the subtree of T that connects SY [x].

Note that Y is superscript for tree T Y (x), but is subscript for terminal subset SY (x).

Lemma 1 (Optimal substructure). Let T be a minimum NWST connecting termi-

nals S ⊆ V . Consider a vertex x ∈ V (T ) and a subset Y ⊆ NT (x) of its neighbors

in T . Then the subtree T Y (x) is a minimum NWST connecting SY [x].

Proof. By the contrapositive. Let T2 be the subgraph of T such that T2∪T Y (x) = T

and T2 ∩ T Y (x) = ({x}, ∅), Then,

∑
v∈V (T )

w(v) +
∑

e∈E(T )

w(e)

=
∑

v∈V (TY (x))

w(v) +
∑

e∈E(TY (x))

w(e) +
∑

v∈V (T2)

w(v) +
∑

e∈E(T2)

w(e)− w(x).

If T Y (x) is not a minimum NWST connecting SY [x], then there is a connected

17



subgraph T1 that connects SY [x] and

∑
v∈V (T1)

w(v) +
∑

e∈E(T1)

w(e) <
∑

v∈V (TY (x))

w(v) +
∑

e∈E(TY (x))

w(e).

Then, consider T ′ = T1 ∪ T2, which is connected and has weight

∑
v∈V (T ′)

w(v) +
∑

e∈E(T ′)

w(e)

≤
∑

v∈V (T1)

w(v) +
∑

e∈E(T1)

w(e) +
∑

v∈V (T2)

w(v) +
∑

e∈E(T2)

w(e)− w(x)

<
∑

v∈V (T )

w(v) +
∑

e∈E(T )

w(e).

This shows that if T Y (x) is not a minimum NWST connecting SY [x], then w(T ′) <

w(T ), implying that T cannot be a minimum NWST.

Theorem 1. Algorithm 1 is correct and solves the NWST problem in time O(3kn+

2kn2 + n3), where k denotes the number of terminals.

Proof. The proof of the algorithm’s correctness is based on the claim that, for each

vertex v and each nonempty vertex subset D, the term q(v,D) is the weight of a

minimum NWST connecting D ∪ {v}. Thus, the returned value q(s, C) will be the

weight of a minimum NWST connecting S = C ∪ {s}. The claim about q(·, ·) is

proven by induction on |D|.

If |D| = 1, then this is a shortest path problem and q(v,D) = dvu for some u,

so the statement is true. Now suppose the statement is true for |D| < i. When

|D| = i, consider a minimum NWST T0 connecting v and D. Denote the weight of a

subgraph H by w(H). We consider three cases regarding the neighborhood of vertex

v in T0.

18



Algorithm 1 An algorithm for NWST

1: If terminals are not reachable from each other, return ∞;
2: Compute length duv of shortest path between all u, v ∈ V , where we define
duu = w(u). A path’s length is the sum of weights of all of its edges and vertices
(including endpoint vertices);

3: For every pair u, v ∈ V of vertices, let q(u, {v}) = duv;
4: Select s ∈ S and let C = S \ {s};
5: for i← 2 to k − 1 do
6: for all D ⊆ C with |D| = i do
7: for all v ∈ V do
8: p(v,D) = min

A:0<|A|<|D|
{q(v,A) + q(v,D \ A)− w(v)};

9: end for
10: for all v ∈ V do
11: q(v,D) = min

u∈V
{dvu + p(u,D)− w(u)};

12: end for
13: end for
14: end for
15: return q(s, C);

1. |NT0(v)| ≥ 2, then there exist nonempty subsets Q ( NT0(v) and Q′ := NT0(v)\

Q. Since T0 is a minimum NWST connecting D, we can assume, without loss

of generality, that every leaf of T0 belongs to D. This implies that1 |DQ(v)| ≥ 1

and |DQ′(v)| ≥ 1. Also DQ(v) ∩ DQ′(v) = ∅ and DQ(v) ∪ DQ′(v) = D. By

Lemma 1, TQ(v) is a minimum NWST connecting DQ[v], and TQ
′
(v) is a

minimum NWST connecting DQ′ [v]. Since |DQ(v)| < |D| and |DQ′(v)| < |D|
1For the definition of DQ(v), recall the notation SY (x) introduced prior to Lemma 1.

19



(and by the induction assumption), the following holds:

w(T0) = w(TQ(v)) + w(TQ
′
(v))− w(v)

= q(v,DQ(v)) + q(v,DQ′(v))− w(v)

≥ p(v,D)

= p(v,D) + dvv − w(v)

≥ q(v,D).

Now we show that a contradiction arises if w(T0) > q(v,D), thus showing that

w(T0) = q(v,D). By the algorithm, there exists a vertex u and a nonempty

subset A ( D of vertices such that

p(u,D) = q(u,A) + q(u,D \ A)− w(u)

q(v,D) = dvu + p(u,D)− w(u).

Let H = T1 ∪ T2 ∪ Pvu where T1 is a minimum NWST connecting u and A, T2

is a minimum NWST connecting u and D \A, and Pvu is a shortest path from

v to u. This results in the contradiction that

q(v,D) = dvu + p(u,D)− w(u)

= dvu + q(u,A) + q(u,D \ A)− w(u)− w(u)

= w(H)

≥ w(T0)

> q(v,D).

20



2. |NT0(v)| = 1 and the branch of T0 touching v ‘divides’ before touching another

terminal. Let the dividing vertex be u. Then no terminal is an interior vertex

on the path Pvu from v to u in T0. Let T1 = T0 \ Pvu ∪ {u}, then |NT1(u)| ≥ 2.

By Lemma 1, T1 is a minimum NWST connecting u and D \ {v}, and Pvu is

the shortest path from v to u, so w(T1) = q(u,D \ {v}) = p(u,D \ {v}) as it is

in Case 1. Now,

w(T0) = dvu + w(T1)− w(u)

= dvu + q(u,D \ {v})− w(u)

= dvu + p(u,D \ {v})− w(u)

≥ q(v,D \ {v})

= q(v,D).

Then, w(T0) = q(v,D) holds by the same analysis as in Case 1.

3. |NT0(v)| = 1 and the branch of T0 touching v does not divide before touching

another terminal. Denote by u the first terminal reachable from v in T0. Again,

let T1 = T0\Pvu∪{u}. Then, by Lemma 1, T1 is a minimum NWST connecting

u and D \ {u, v}. By the induction assumption, w(T1) = q(u,D \ {u, v}), so

w(T0) = dvu + w(T1)− w(u)

= dvu + q(u,D \ {u, v})− w(u)

= dvu + (q(u, {u}) + q(u,D \ {u, v})− w(u))− w(u)

≥ dvu + p(u,D \ {v})− w(u)

≥ q(v,D \ {v})

= q(v,D).

21



Then, w(T0) = q(v,D) holds by the same analysis as in Case 1.

So, w(T0) = q(v,D) holds in all cases. This shows q(v,D) is the weight of a minimum

NWST connecting v and D and the statement is true for |D| = i. So, the statement

is true in general, and thus the returned value q(s, C) is the weight of a minimum

NWST connecting S.

The runtime of this algorithm is exactly the same as that of Dreyfus and Wagner,

which is O(3kn+ 2kn2 + n3).

2.2 Maximum-Weight Connected Subgraph

In this section, we describe algorithms for solving MWCS. First, we show that the

problem is polytime solvable if the graph G has independence number α(G) at most

two, i.e., there is no independent set of three vertices. This is shown via a polyhedral

study of an appropriate linear programming (LP) relaxation and the machinery of

the ellipsoid method. Then we describe two combinatorial algorithms for MWCS.

The runtime of the first is parameterized by the number of negative-weight vertices,

and the runtime of the second is parameterized by the number of positive-weight ver-

tices. As a consequence of the second combinatorial algorithm and a preprocessing

procedure, the MWCS problem is shown to be fixed-parameter tractable when pa-

rameterized by the graph’s independence number. The two combinatorial algorithms

imply a third algorithm that solves MWCS in time O(4n/3n3) = O(1.5875n).

2.2.1 Polyhedral description for case of no 3-vertex independent set

Here, we study the MWCS problem from a polyhedral perspective. The object

of study is the connected subgraph polytope of a graph, which is the convex hull of

subsets of vertices that induce a connected subgraph. This is essentially the feasible

region for the MWCS problem. For convenience, consider zero-vertex and one-vertex

graphs to be connected.

22



Definition 4. The connected subgraph polytope of a graph G = (V,E) is

P(G) := conv.hull
{
xS ∈ {0, 1}n | G[S] is connected

}
,

where xS denotes the characteristic vector of S ⊆ V .

A natural way to impose this type of induced connectivity constraint in an inte-

ger program is through the (exponentially-many) vertex separator inequalities, i.e.,

inequalities of the type

(a, b-separator inequality) xa + xb −
∑
i∈C

xi ≤ 1,

where a and b are nonadjacent vertices and C is an a, b-separator. Recall that an

a, b-separator C is a vertex subset (containing neither a nor b) such that nonadjacent

vertices a and b are disconnected in G[V \ C].

This leads to the following linear programming (LP) relaxation for P(G).

Q(G) := {x ∈ [0, 1]n | x satisfies all separator inequalities}

Note that Q(G) provides a tractable relaxation for P(G), as one can optimize a

linear objective function over Q(G) in polynomial time via the ellipsoid method [57].

This follows by the ability to separate over these inequalities in polytime. We will

not discuss the details here.

A natural question to ask is—When is this LP relaxation tight? Theorem 2 below

provides the answer, and the proof follows. Recall that the independence number

α(G) of a graph G is the size of its largest independent set.

Theorem 2. The equality P(G) = Q(G) holds if and only if α(G) ≤ 2.

23



As a consequence of Theorem 2 and the ability to optimize over Q(G) in polyno-

mial time, we have the following corollary.

Corollary 1. If α(G) ≤ 2, then MWCS is polynomial-time solvable.

The result of Theorem 2 is interesting, in part, because there can be exponentially

many inequalities defining Q(G) even when α(G) = 2. An example is shown in Figure

2.1, where the vertices within each rectangle form a clique. A minimal a, b-separator

can be created by choosing, for each i, one vertex from {ci, di}. The number of such

separators is 2n/2−1.

a b

c1

c2

c3

cn
2
−1

d1

d2

d3

dn
2
−1

Figure 2.1: A graph G with α(G) = 2, but many minimal a, b-separators. Vertices
within a rectangle form a clique.

One direction of the proof of Theorem 2 is easier and is shown first.

Lemma 2. If P(G) = Q(G), then α(G) ≤ 2.

Proof. By the contrapositive. Suppose that G has an independent set S of three

vertices. Then, it is easy to see that the inequality
∑

i∈S xi ≤ 1 induces a facet

of P(G[S]). Moreover, this inequality can be lifted to induce a facet of P(G).

The resulting inequality has at least three positive coefficients, but the inequalities

24



defining Q(G) have at most two. Since Q(G) is full-dimensional, it has a unique half-

space representation (up to scalar multiples). Then, since P(G) has a facet-defining

inequality that is not facet-defining for Q(G), they cannot be equal.

The other direction of the proof is much more complicated and requires several

lemmata.

Lemma 3. Suppose that
∑

i∈V πixi ≤ π0 is valid for P(G). If vertices u and v are

adjacent and πv ≥ 0, then the following inequality is also valid.

(πu + πv)xu + 0xv +
∑

i∈V \{u,v}

πixi ≤ π0.

Proof. Suppose that G[S] is connected, and consider the following two cases.

• If u ∈ S, then S ′ = S ∪ {v} is also connected, so

(πu + πv)x
S
u + 0xSv +

∑
i∈V \{u,v}

πix
S
i

=(πu + πv)x
S′

u + 0xS
′

v +
∑

i∈V \{u,v}

πix
S′

i =
∑
i∈V

πix
S′

i ≤ π0.

• If u /∈ S, then since xSu = 0 and 0xSv ≤ πvx
S
v , we have

(πu + πv)x
S
u + 0xSv +

∑
i∈V \{u,v}

πix
S
i ≤

∑
i∈V

πix
S
i ≤ π0.

Thus, the inequality is valid in both cases, and is valid in general.

Lemma 4 (folklore). Let ax ≤ b and cx ≤ d be valid inequalities for a full-

dimensional polyhedron P such that (a, b) and (c, d) are not scalar multiples of each

other. Then, the aggregated inequality (a+ c)x ≤ (b+ d) cannot induce a facet of P .

25



Lemma 5. In a facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G), no pair of adja-

cent vertices can have positive coefficients.

Proof. Suppose that adjacent vertices u and v have positive coefficients. Then, by

Lemma 3, the following inequalities are valid.

(πu + πv)xu + 0xv +
∑

i∈V \{u,v}

πixi ≤ π0;

0xu + (πu + πv)xv +
∑

i∈V \{u,v}

πixi ≤ π0.

These inequalities imply
∑

i∈V πixi ≤ π0. To wit, multiply the first inequality by

β := πu/(πu + πv), multiply the second by 1 − β, and add these scaled inequalities

together. Moreover, the three inequalities are distinct. So, by Lemma 4,
∑

i∈V πixi ≤

π0 cannot induce a facet.

Lemma 6. Suppose that
∑

i∈V πixi ≤ π0 induces a facet of P(G). If πu and πv are

its only positive coefficients, then πu = πv = π0.

Proof. Since G[{u}] and G[{v}] are connected, this implies that πu ≤ π0 and πv ≤ π0.

If πu+πv ≤ π0, then any 0-1 solution x∗ ∈P(G) satisfying the inequality at equality

must have x∗u = x∗v = 1, implying that the face of P(G) where
∑

i∈V πixi = π0 has

dimension at most n− 2, meaning that the inequality cannot induce a facet. Thus,

we will assume that πu + πv > π0.

We claim that S := {i ∈ V | πi < 0} is a u, v-separator. Suppose not, then

there exists a path from u to v in G[V \ S]. Let P be the set vertices in the path.

This implies that
∑

i∈V πix
P
i = πu + πv > π0, which contradicts the validity of∑

i∈V πixi ≤ π0.

For contradiction purposes, suppose that at least one of πu and πv is less than

π0. Without loss of generality, suppose that πu < π0. Now, let S ′ ⊆ S be a minimal

26



u, v-separator, and define

πmax := max{πi | i ∈ S ′}

ε :=
1

2
min{−πmax, π0 − πu}.

Note that πmax < 0 and π0 − πu > 0, so ε > 0. Also, πu + ε < π0, and for every

i ∈ S ′, we have πi + ε < 0. Further, let

R = V \ (S ′ ∪ {u, v}).

Then consider the following inequalities.

(πu + ε)xu + πvxv +
∑
i∈S′

(πi − ε)xi +
∑
i∈R

πixi ≤ π0 (2.3)

(πu − ε)xu + πvxv +
∑
i∈S′

(πi + ε)xi +
∑
i∈R

πixi ≤ π0. (2.4)

If these inequalities were valid, then they would imply
∑

i∈V πixi ≤ π0, thus showing

(by Lemma 4) that
∑

i∈V πixi ≤ π0 cannot induce a facet, a contradiction. The rest

of the proof is devoted to showing that inequalities (2.3) and (2.4) are indeed valid

when πu < π0.

Consider D ⊆ V such that G[D] is connected. There are two cases. In the

first case, |D ∩ {u, v}| ≤ 1. Then, since πi ≤ 0 for any i ∈ R ⊆ V \ {u, v} and

27



πi − ε < πi + ε < 0 for any i ∈ S ′,

(πu + ε)xDu + πvx
D
v +

∑
i∈S′

(πi − ε)xDi +
∑
i∈R

πix
D
i

≤ (πu + ε)xDu + πvx
D
v

≤ max{πu + ε, πv} ≤ π0.

The same logic shows that inequality (2.4) is valid when |D ∩ {u, v}| ≤ 1.

In the second case, |D∩{u, v}| = 2. Since S ′ is a u, v-separator and both u and v

belong to D, there exists w ∈ D ∩ S ′. Then, since πi ≤ 0 for any i ∈ R ⊆ V \ {u, v},

we have

(πu + ε)xDu + πvx
D
v +

∑
i∈S′

(πi − ε)xDi +
∑
i∈R

πix
D
i

≤ (πu + ε)xDu + πvx
D
v + (πw − ε)xDw +

∑
i∈S′\{w}

πix
D
i +

∑
i∈R

πix
D
i

= πux
D
u + πvx

D
v +

∑
i∈V \{u,v}

πix
D
i

=
∑
i∈V

πix
D
i ≤ π0.

Thus, inequality (2.3) is valid when |D ∩ {u, v}| = 2.

Finally, we show that inequality (2.4) is valid when |D∩{u, v}| = 2. Since u and

v belong to D and G[D] is connected, there is a path from u to v in G[D]. Moreover,

at least one of these u-v paths crosses only one vertex, say w, from S ′ ∩ D. This

holds by minimality of S ′. Let P be the set of vertices in this particular u-v path.

28



Then, since πi ≤ 0 for any i ∈ R ⊆ V \ {u, v}, and πi + ε < 0 for any i ∈ S ′, we have

(πu − ε)xDu + πvx
D
v +

∑
i∈S′

(πi + ε)xDi +
∑
i∈R

πix
D
i

= (πu − ε)xDu + πvx
D
v + (πw + ε)xDw +

∑
i∈S′\{w}

(πi + ε)xDi +
∑
i∈R

πix
D
i

≤ (πu − ε)xDu + πvx
D
v + (πw + ε)xDw +

∑
i∈R∩P

πix
D
i

= πux
P
u + πvx

P
v + πwx

P
w +

∑
i∈R∩P

πix
P
i

=
∑
i∈V

πix
P
i ≤ π0.

Lemma 7. If facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G) has exactly two

positive coefficients, then it is a separator inequality.

Proof. Let the positive coefficients be πa and πb. By Lemma 6, πa = πb = π0. Define

C = {i ∈ V | πi = −π0}

S = {i ∈ V | − π0 < πi < 0}

R = {i ∈ V | πi < −π0}.

We claim that R = ∅. If not, there is a vertex v ∈ R, and the following inequality

is valid.

−π0xv +
∑

i∈V \{v}

πixi ≤ π0. (2.5)

29



Indeed, suppose that D ⊆ V induces a connected subgraph. If v ∈ D, then

−π0x
D
v +

∑
i∈V \{v}

πDi xi ≤ −π0 + πa + πb = π0;

and if v /∈ D, then

−π0x
D
v +

∑
i∈V \{v}

πix
D
i =

∑
i∈V

πix
D
i ≤ π0.

This shows that inequality (2.5) is valid. But, by Lemma 4, inequality (2.5) and the

valid inequality (πv + π0)xv ≤ 0 show that
∑

i∈V πixi ≤ π0 cannot induce a facet, a

contradiction. Hence R = ∅.

Thus, we can write the facet-defining inequality as

π0xa + π0xb −
∑
i∈C

π0xi +
∑
i∈S

πixi ≤ π0. (2.6)

Now see that C ∪S must be an a, b-separator. If not, then there is a path P from

a to b in G[V \ (C ∪ S)], yielding the contradiction that

2π0 = πa + πb =
∑
i∈V

πix
P
i ≤ π0.

If S = ∅, then inequality (2.6) is an a, b-separator inequality, as desired. So

30



suppose that S 6= ∅ and consider the following subsets of vertices.

A = {v ∈ V | v and a belong to the same component of G[V \ (C ∪ S)]}

B = {v ∈ V | v and b belong to the same component of G[V \ (C ∪ S)]}

SA = {s ∈ S | NG(s) ∩ A 6= ∅}

SB = {s ∈ S | NG(s) ∩B 6= ∅}.

We argue that SA ∩ SB = ∅. Otherwise, for any vertex v ∈ SA ∩ SB, the set

D := A ∪B ∪ {v} is connected, so

2π0 + πv =
∑
i∈V

πix
D
i ≤ π0.

This implies that πv ≤ −π0, which contradicts that v ∈ S. Thus, the three sets

SA, SB, and S \ (SA ∪ SB) partition S.

We claim that SA∪SB 6= ∅. For contradiction purposes, suppose that SA = SB =

∅. Then C is an a, b-separator, so π0xa + π0xb −
∑

i∈C π0xi ≤ π0 is valid, and, for

i ∈ S, the inequality πixi ≤ 0 is valid. Then, by Lemma 4, inequality (2.6) cannot

induce a facet. Thus SA ∪ SB 6= ∅.

Now, choose an ε > 0 such that πi + ε ≤ 0 for each i ∈ SA ∪ SB. We will show

that inequality (2.7) below is valid; the proof for inequality (2.8) is similar.

∑
i∈V \(SA∪SB)

πixi +
∑
i∈SA

(πi + ε)xi +
∑
i∈SB

(πi − ε)xi ≤ π0 (2.7)

∑
i∈V \(SA∪SB)

πixi +
∑
i∈SA

(πi − ε)xi +
∑
i∈SB

(πi + ε)xi ≤ π0. (2.8)

Suppose that D ⊆ V induces a connected subgraph. If a /∈ D or b /∈ D, then

31



inequality (2.7) obviously holds, so suppose a, b ∈ D. Now, if D ∩ C 6= ∅, then

∑
i∈V \(SA∪SB)

πix
D
i +

∑
i∈SA

(πi + ε)xDi +
∑
i∈SB

(πi − ε)xDi

≤ π0x
D
a + π0x

D
b −

∑
i∈C

π0x
D
i ≤ π0.

Now suppose D ∩C = ∅. Consider a shortest path from a to b in G[D] measured in

terms of the number of vertices used from S ∩ D. Let P be the vertices along this

path. Note that |P ∩ SA| = |P ∩ SB| = 1, so

∑
i∈V \(SA∪SB)

πix
D
i +

∑
i∈SA

(πi + ε)xDi +
∑
i∈SB

(πi − ε)xDi

≤
∑

i∈V \(SA∪SB)

πix
P
i +

∑
i∈SA

(πi + ε)xPi +
∑
i∈SB

(πi − ε)xPi

=
∑
i∈V

πix
P
i ≤ π0.

So, in both cases, inequality (2.7) is valid.

Thus inequalities (2.7) and (2.8) are valid. But, by Lemma 4, this contradicts

that inequality (2.6) induces a facet. So, S = ∅, and inequality (2.6) is (a scalar

multiple of) an a, b-separator inequality.

Lemma 8. Consider a facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G). Then

π0 ≥ 0. Further, the inequality is (a scalar multiple of) some nonnegativity bound

−xj ≤ 0 if and only if π0 = 0.

Proof. As the empty set is assumed to induce a connected subgraph, π0 ≥ 0. The

‘only if’ direction is trivial.

Now, suppose that π0 = 0. Then πi ≤ 0 for each vertex i ∈ V (since the trivial

graphs are connected). Further suppose that at least two coefficients are negative,

32



say πu and πv. Then
∑

i∈V πixi ≤ 0 is implied by the valid inequalities πuxu ≤ 0 and∑
i∈V \{u} πixi ≤ 0. These two new inequalities are distinct, so Lemma 4 shows that∑
i∈V πixi ≤ 0 cannot be facet-defining.

Lemma 9. If α(G) ≤ 2, then P(G) = Q(G).

Proof. Consider an arbitrary facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G). Let

S = {i ∈ V | πi > 0}. Suppose that S contains at least three vertices, say u, v, w ∈ S.

Then, by Lemma 5, {u, v, w} is independent, contradicting α(G) ≤ 2. Thus |S| ≤ 2.

Consider the following three cases. In each case, we show that the inequality (or a

scalar multiple thereof) is already in the description of Q(G).

In the first case, suppose |S| = 0. Recall that π0 ≥ 0 by Lemma 8. Then, since

no variable has a positive coefficient, π0 cannot be positive, since otherwise no point

in P(G) could satisfy the inequality at equality. Thus π0 = 0. Then, by Lemma 8,

the inequality is a (scalar multiple of a) nonnegativity bound.

In the second case, |S| = 1, and suppose S = {j}. Then, π0 ≥ πj > 0, sinceG[{j}]

is connected. Further, π0 = πj, since otherwise no point in P(G) satisfies the inequal-

ity at equality. Now, the inequality πjxj ≤ π0 is valid, and 0xj +
∑

i∈V \{j} πixi ≤ 0

is valid since πi ≤ 0 for every i ∈ V \ {j}. If πi = 0 for every i ∈ V \ {j}, then∑
i∈V πixi ≤ π0 is a scalar multiple of xj ≤ 1, as desired. Otherwise, there is vertex

k ∈ V \{j} with πk < 0. Then the inequality 0xj+
∑

i∈V \{j} πixi ≤ 0 discussed previ-

ously is not the 0x ≤ 0 inequality, and it, along with πjxj ≤ πj imply
∑

i∈V πixi ≤ π0,

so by Lemma 4, the inequality
∑

i∈V πixi ≤ π0 cannot induce a facet, a contradiction.

In the third and final case, |S| = 2. Then, by Lemma 7, the facet-defining

inequality is a separator inequality.

Thus, in every case, the facet-defining inequality
∑

i∈V πixi ≤ π0 of P(G) is

already part of the description of Q(G). Thus Q(G) ⊆P(G). The reverse inclusion

33



is easy to see, since Q(G) is a relaxation for P(G).

2.2.2 Algorithm for case of few negative-weight vertices

We describe a simple algorithm for the maximum-weight connected subgraph

problem. It is based on the insight that once one has determined which negative-

weight vertices belong to the solution, it is easy to optimally extend the solution.

The algorithm simply tests all possible subsets of the negative-weight vertices and

then extends these partial solutions to full solutions. Accordingly, its runtime is

exponential in the number of negative-weight vertices.

Interestingly, under the strong exponential time hypothesis (SETH) of [63], this

algorithm cannot be improved. SETH is an unproven complexity assumption that is

stronger than P 6=NP. It asserts that for every ε > 0, there is a k such that k-CNF-

SAT cannot be solved in time O((2− ε)n), where n denotes the number of variables.

If true, this would imply that CNF-SAT cannot be solved in time (2−ε)n(n+m)O(1),

where m denotes the number of clauses. While many doubt the verity of SETH, it is

consistent with the fastest known algorithms for SAT, and we argue that designing

a faster algorithm for the maximum-weight connected subgraph problem is as hard

as finding a faster algorithm for SAT. The reader is referred to the survey of [76] for

more information on lower bounds conditional on SETH and its weaker variant, the

exponential time hypothesis (ETH).

The lower bound (conditional on SETH) for MWCS is based on the hardness of

Hitting Set. Recall that Hitting Set is defined as follows.

Problem: Hitting Set.

Input: a family F ⊆ 2U of subsets of U and an integer t.

Question: does there exist X ⊆ U such that |X| ≤ t and X has nonempty inter-

section with each F ∈ F?

34



Algorithm 2 An algorithm for MWCS with few negative-weight vertices

1: Let S be the set of negative-weight vertices;
2: Find the connected components of G[V \ S];
3: Let z equal the weight of a maximum-weight component of G[V \ S];
4: for all D ⊆ S with D 6= ∅ do
5: Find the connected components of H := G[(V \ S) ∪D];
6: if all vertices from D belong to one component H ′ of H then
7: z ← max{z, w(H ′)};
8: end if
9: end for

10: return z;

Lemma 10 (Cygan et al. [38]). For every ε > 0, Hitting Set cannot be solved in time

(2− ε)|U|(|U|+ |F|)O(1), unless SETH fails.

For the following theorem, denote by q the number of negative-weight vertices, n

the total number of vertices, and m the number of edges.

Theorem 3. MWCS can be solved in time O(2q(m+ n)). For every ε > 0, MWCS

cannot be solved in time (2− ε)qnO(1), unless SETH fails.

Proof. That the MWCS problem can be solved in such a time bound follows by Al-

gorithm 2. The proof of the algorithm’s runtime and correctness are straightforward.

For the lower bound, we construct a reduction from Hitting Set and rely on

Lemma 10. Let the instance of Hitting Set be defined by a family F ⊆ 2U of subsets

of U with target-size t. We construct an instance of MWCS on a graph G = (V,E),

where V = U ∪F . Construct the edge set E so that G[U ] is complete, and for every

pair of vertices u ∈ U and F ∈ F such that u ∈ F , add the edge {u, F}. Give each

vertex from U weight −1 and each vertex from F weight t+ 1.

First we claim that G has a connected subgraph of weight W := |F|(t + 1) − t

if and only if the instance of Hitting Set is a yes-instance. If the instance of Hitting

35



Set has a solution X ⊆ U with |X| ≤ t, then F ∪X induces a connected subgraph

of weight at least |F|(t+ 1)− t = W . For the other direction, suppose that G has a

connected subgraph G[S ′] of weight at least W . Recognize that all vertices from F

must belong to S ′ since otherwise the weight of S ′ is at most

(|F| − 1)(t+ 1) = |F|t+ F − t− 1 < |F|t+ F − t = W. (2.9)

Then, by construction of the edge set of G, the set X ′ = S ′ \ F provides a solution

to the instance of Hitting Set. The inequality |X ′| ≤ t holds by a weight argument.

Now we consider the runtime. Suppose there is an ε > 0 such that MWCS can

be solved in time (2− ε)qnO(1). Then, by the reduction described herein, Hitting Set

can be solved in time (2− ε)|U|(|U|+ |F|)O(1), but Lemma 10 shows that this would

disprove SETH.

2.2.3 Algorithm for case of few positive-weight vertices

We now describe an algorithm for instances of MWCS that have few positive-

weight vertices. This leads to an efficient algorithm for solving instances with small

independence number. The most important insights in this section are described

below.

1. Preprocessing. For a pair of adjacent, nonnegative-weight vertices, the edge

between them can be contracted without altering the MWCS optimal objective.

2. Use of NWST subroutine. If one first decides which positive-weight vertices

to select, then the problem of optimally connecting them with nonpositive-

weight vertices is an instance of NWST.

For the following theorem, let p denote the number of positive-weight vertices,

and let Tn,k denote the time to solve an n-vertex instance of NWST with k terminals.

36



Algorithm 3 An algorithm for MWCS with few positive-weight vertices

1: Let U be the set of positive-weight vertices in G;
2: z ← max{w(u) | u ∈ U} or z ← 0 if |U | = 0;
3: for i = 2, . . . , |U | do
4: for all D ⊆ U with |D| = i do
5: Construct instance of NWST in G[(V \ U) ∪ D] with terminal set D and

weight function w′′, where w′′(u) = 0 for vertices u ∈ D, and w′′(v) = −w(v)
for vertices v ∈ V \ U .;

6: Solve NWST instance yielding optimal NWST cost zD;
7: z ← max{z, w(D)− zD};
8: end for
9: end for

10: return z;

Theorem 4. Algorithm 3 correctly solves MWCS in time O(n+
∑p

k=2

(
p
k

)
Tn,k).

Proof. The proofs of correctness and runtime are straightforward.

Corollary 2. MWCS can be solved in time O(4pn3), where p denotes the number of

positive-weight vertices.

Proof. This follows directly from Theorem 4 using Algorithm 1 as the NWST sub-

routine, since
∑p

k=2

(
p
k

)
O(3kn3) = O(4pn3).

Corollary 3. Instances of MWCS with independence number α(G) can be solved in

time O(4α(G)n3).

Proof. Given an instance of MWCS, perform a preprocessing procedure that itera-

tively contracts edges between positive-weight vertices. We show that the number of

remaining positive-weight vertices is at most α(G). Actually, this entire procedure

can be done in time O(n2) as follows.

Formally, denote by S the set of positive-weight vertices, and let the components

of G[S] be G[Si], i = 1, . . . , p. Construct the smaller graph G′ = (V ′, E ′) as below,

37



where vertex ui ∈ U = {u1, . . . , up} represents component G[Si] and

V ′ = (V \ S) ∪ U

E ′ = {{i, j} | {i, j} ∈ E and i, j ∈ V \ S}

∪ {{v, ui} | ∃s ∈ Si and v ∈ V \ S such that {v, s} ∈ E}.

Then, create a new weight function w′ : V ′ → R, where:

• for each v ∈ V \ S, set w′(v) := w(v), and

• for each j = 1, . . . , p, set w′(uj) :=
∑

s∈Sj
w(s).

Now we show that the number p of positive-weight vertices in the instance de-

fined by graph G′ and weight function w′ has at most α(G) positive-weight vertices.

Indeed, for each component G[Si] of G[S], choose a vertex si ∈ Si. Then, the set

{s1, . . . , sp} is independent, so p ≤ α(G).

The new instance of MWCS on graph G′ with weight function w′ can be solved

in time O(4p|V ′|3) by Corollary 2. Then, since p ≤ α(G), the original instance of

MWCS can be solved in time O(|V |2 + 4p|V ′|3) = O(4α(G)|V |3).

2.2.4 Combining the approaches

Now we can combine Algorithms 2 and 3 to beat the timeO(2n(m+n)) exhaustive-

search algorithm. Letting p denote the number of positive-weight vertices, the algo-

rithm solves MWCS as follows.

1. If p ≤ n/3, run Algorithm 3;

2. Otherwise, run Algorithm 2.

Corollary 4. MWCS can be solved in time O(1.5875n).

38



3. ALGORITHMS FOR CLIQUE AND EXTENSIONS TO 0-1 PROGRAMS

This chapter is based on work with Jose Walteros, Sergiy Butenko, and Panos

Pardalos [26, 25]1. Here, we provide parameterized algorithms for the maximum

clique problem and show how they can be generalized to solve arbitrary 0-1 programs.

One challenge is that the natural parameter—the size of the clique—seemingly leads

to a dead end. This motivates the search for other parameters that are small on

real-life instances. One such parameter is the degeneracy of the graph, which is a

measure of the graph’s sparsity. It turns out that the maximum clique problem is

fixed-parameter tractable when parameterized by degeneracy.

Then, we extend the ideas to solve arbitrary 0-1 programs. The parameter in

this case depends on properties of an associated conflict graph. Conflict graphs are

used to model pairwise-dependencies between the 0-1 variables. Roughly speaking,

the algorithms that we develop are quick when the conflict graph is dense.

3.1 Algorithms for Maximum Clique

Recall that a clique C ⊆ V in a graph G = (V,E) is a subset of pairwise ad-

jacent vertices. The problem of finding a largest clique in a given graph is one of

the most well-known and well-studied NP-hard problems [68], and it has numerous

applications in bioinformatics, computer vision, and coding theory [19].

Unfortunately, the maximum clique problem can be very challenging to solve ex-

actly or even approximately, and most theoretical results are rather discouraging.

For example, for any ε > 0, the problem admits no polynomial-time O(n1−ε) approx-

imation algorithm, unless P=NP [59, 113]. However, picking a single vertex provides

1Reprinted with permission from “Solving maximum clique in sparse graphs: an O(nm+n2d/4)
algorithm for d-degenerate graphs” by A. Buchanan, J.L. Walteros, S. Butenko, and P.M. Pardalos,
2014. Optimization Letters, 8(5):1611-1617, Copyright 2014 by Springer.

39



an n-approximation.

One approach is to parameterize the maximum clique problem by the number k

of vertices in the clique. This k-Clique problem admits a trivial exhaustive-search

algorithm that checks every subset of k vertices. Since there are
(
n
k

)
such subsets,

the runtime is Ω(nk). More complicated algorithms based on matrix multiplication

solve 3k-clique in time O(nωk), where ω < 2.373 is the exponent of matrix multi-

plication [87]. So, it is possible to solve in time o(nk). However, no one has found

an algorithm running in time O(no(k)), and there is reason to believe that no such

algorithm exists [30].

Despite these depressing worst-case results, many real-life instances of the max-

imum clique problem are surprisingly easy to solve. For example, we show that

many million-node instances can be solved in a few seconds, and a 17-million-node

instance can be solved in 20 seconds [107]. A natural question to ask is—Why do

these instances appear to be easier? Is there a rigorous explanation? This has been

answered in the affirmative by Eppstein et al. [47], who showed how to list all maxi-

mal cliques in d-degenerate graphs in time O(dn3d/3). This shows that the maximum

clique problem is also fpt when parameterized by the graph’s degeneracy.

Definition 5 (degeneracy [74]). A graph is said to be d-degenerate if every (non-

empty) subgraph has a vertex of degree at most d. The degeneracy of a graph is the

smallest value of d such that it is d-degenerate.

The degeneracy d of a graph is a measure of its sparsity, and it has been ac-

knowledged that real-life graphs are sparse and have low degeneracy [33]. In fact,

the 17-million-node instance that we were able to solve so quickly has degeneracy

d = 20, which is many orders of magnitude smaller than n. Still, the implementation

of Eppstein and Löffler [48] had trouble with this instance; it did not finish within

40



10 hours. Since the maximum clique problem is easier than the problem of listing

all maximal cliques, it is an interesting question as to whether the dependence on

d in the Eppstein et al. algorithm can be improved, so that larger values of d can

be considered tractable. It may also be helpful to find algorithms that are based on

a different parameter that is smaller than degeneracy. In the following sections, we

proceed on both fronts, improving the dependence on d to O∗(2d/4) and then intro-

duce a different parameter called community degeneracy c (which is smaller than d)

that leads to an algorithm running in time O∗(2c/4).

Before proceeding with the algorithms, we remark that the parameters d and c

are indeed much smaller than n for many real-life graphs. This is shown to be the

case for several instances in Table 3.1.

Table 3.1: Parameters d and c on some real-life graphs from [5, 107].
Graph n m ω c d
as-22july06 22,963 48,436 17 15 25
kron g500-simple-logn16 65,536 2,456,071 136 283 432
citationCiteseer 268,495 1,156,647 13 11 15
ldoor 952,203 22,785,136 21 19 34
in-2004 1,382,908 13,591,473 489 487 488
cage15 5,154,859 47,022,346 6 4 25
rgg n 2 24 s0 16,777,216 132,557,200 21 19 20
uk-2002 18,520,486 261,787,258 944 942 943

3.1.1 Algorithm based on degeneracy

In this section, we describe an algorithm for the maximum clique problem whose

runtime is parameterized by the degeneracy d of the graph. Table 3.2 illustrates how

our contribution fits within the literature.

The runtime of our algorithm relies upon the following lemma.

41



Table 3.2: Comparison of fastest known clique algorithms.
arbitrary graphs d-degenerate graphs

list all maximal cliques O(3n/3) by [23] O∗(3d/3) by [47]
find a maximum clique O(2n/4) by [95] O∗(2d/4) this section [26]

Lemma 11 (Lick and White [74]). A graph is d-degenerate if and only if it admits an

ordering of its vertices (v1, . . . , vn) such that each vertex vi has at most d neighbors

after it in the ordering, i.e., |N(vi) ∩ {vi, . . . , vn}| ≤ d.

Such an ordering of the graph’s vertices is called a degeneracy ordering. We will

use the degeneracy ordering algorithm of Matula and Beck [80] as a subroutine in

our algorithm.

Lemma 12 (Matula and Beck [80]). A degeneracy ordering of a graph with n vertices

and m edges can be found in time O(n+m).

The following lemma shows how we can decompose the maximum clique problem

into smaller subproblems.

Lemma 13. Let (v1, . . . , vn) be a vertex ordering of an n-vertex graph G = (V,E).

Denote by ω(G) the clique number of G, and let Si = N(vi) ∩ {vi, . . . , vn}. Then,

ω(G) = 1 + max
1≤i≤n

ω(G[Si]). (3.1)

Proof. First see that ω(G) ≥ 1 + ω(G[Si]) for any vertex vi ∈ V ; take a maximum

clique in G[Si] and add vi. Now we show the reverse inequality. Let S be a maximum

clique in G and let vi∗ ∈ S be its earliest vertex in the vertex-ordering. Then

S ⊆ Si∗ ∪ {vi∗} and ω(G[Si∗ ]) ≥ ω(G)− 1.

If we use a degeneracy ordering, each of the G[Si] subproblems in Lemma 13 has

at most d vertices. This is the main insight to our approach.

42



Let Td denote the time to solve the maximum clique problem in an arbitrary

d-vertex graph. Note that Td = O(2d/4) by the well-cited but unpublished paper [95]

or Td = O(1.2114d) by the peer-reviewed [20]. Either of these algorithms, or any

other clique algorithm, can be used as MaxCliqueSubroutine(·).

Algorithm 4 A maximum clique algorithm parameterized by degeneracy.

Data: A graph G = (V,E)

Result: The clique number ω(G)

compute a degeneracy ordering (v1, . . . , vn) of G

for i = 1, . . . , n do

Si ← N(vi) ∩ {vi, . . . , vn}

ω(G[Si])← MaxCliqueSubroutine(G[Si])

end

return ω(G) = 1 + max1≤i≤n ω(G[Si])

Theorem 5. Algorithm 4 solves the maximum clique problem in d-degenerate graphs

in time O∗(Td) = O∗(2d/4).

Proof. The algorithm’s correctness follows by Lemma 13, so we only need to consider

the runtime. The degeneracy ordering (v1, . . . , vn) can be found in time O(m + n)

time by Lemma 12. By the degeneracy ordering, each of the G[Si] subgraphs has at

most d vertices, hence the maximum clique subroutine takes time O(Td) = O(2d/4)

by Robson [95]. The number of such subproblems and the time needed to set them

up is polynomial, and hence is ignored in the O∗(·) notation.

The most time-consuming step of Algorithm 4, namely, solving the n subproblems

of the for-loop, can be done in parallel. This may be helpful for very large graphs.

43



3.1.2 Algorithm based on community degeneracy

We now move on to the second maximum clique algorithm, which is parameterized

by the community degeneracy c of the graph. In one sense, this improves upon the

algorithm from the previous section, since its runtime is exponential in c instead of

d and since the inequality c < d holds for any graph. However, this comes at the

cost of a larger polynomial factor, since we solve m subproblems instead of n.

Definition 6 (community degeneracy). A graph is said to be c-community-degenerate

if every (non-edgeless) subgraph G′ has an edge {u, v} with |NG′(u) ∩ NG′(v)| ≤ c.

The community degeneracy of a graph is the smallest value of c such that it is c-

community-degenerate.

Just like degeneracy, the community degeneracy of a graph can equivalently be

defined based on an ordering.

Lemma 14. A graph G = (V,E) is c-community degenerate if and only if it admits

an ordering of its edges (e1, . . . , em) such that each edge ei = {ui, vi} has |NG[Ei](ui)∩

NG[Ei](vi)| ≤ c, where G[Ei] is the edge-induced subgraph of Ei = {ei, . . . , em}.

Proof. If G is c-community degenerate, then it contains an edge e1 = {u1, v1} satis-

fying |NG(u1) ∩NG(v1)| ≤ c. Place edge e1 first in the ordering. Then, in the graph

G2 := G− e1, there exists an edge e2 = {u2, v2} satisfying |NG2(u2) ∩NG2(v2)| ≤ c.

Place edge e2 second in the ordering. Clearly, this process can be repeated until all

edges of G have been placed into the ordering.

Now suppose G admits such an ordering (e1, . . . , em) of its edges. Consider an

arbitrary subgraph G′ = (V ′, E ′) of G. Consider the earliest edge ej = {uj, vj} in

the ordering that belongs to E ′ and let Gj denote the edge-induced subgraph of Ej.

44



Then,

|NGj
(uj) ∩NGj

(vj)| ≤ |NG′(uj) ∩NG′(vj)| ≤ c,

where the first inequality holds since Gj is a subgraph of G′ and the second inequality

holds by the edge ordering. Thus G is c-community degenerate.

Such an ordering of the graph’s edges is called a community degeneracy ordering.

We now give an efficient algorithm for computing community degeneracy, which

follows by the proof of Lemma 14.

Algorithm 5 An algorithm for finding a community degeneracy ordering.

Data: A graph G = (V,E)

Result: A community degeneracy ordering (e1, . . . , em) of E(G)

H ← G

for i = 1, . . . ,m do

find an edge e = {u, v} in H that minimizes |NH(u) ∩NH(v)|

ei ← e

H ← H − e
end

return (e1, . . . , em)

Lemma 15. Algorithm 5 finds a community degeneracy ordering and can be imple-

mented to run in time O(nm).

Proof. The correctness is clear, so we are left with devising data structures that

achieve O(nm) time. The idea is to mimic the data structures used in the degeneracy

45



algorithm [80], but instead of using an adjacency list of the neighbors for each vertex,

we have an intersection list for each edge e = {u, v} that lists the vertices from

N(u)∩N(v). Clearly, the intersection list of an edge contains at most n−2 vertices,

and since N(u) ∩N(v) can be obtained in O(n) time, generating all such lists takes

O(nm) time.

Let DH(e) = |NH(u) ∩ NH(v)|. To execute the steps in the for-loop, instead

of updating the intersection lists at each iteration, it is possible to keep track of

the edges that have not been removed using a bucket structure. This structure is

comprised of n−1 buckets (namely, {0, 1, . . . , n−2}) and an array of headers pointing

to one of the elements in each bucket. The buckets are stored as linked lists and are

initialized while creating the intersection lists. At each iteration of the for-loop, if

edge e is still in H, it is stored in bucket DH(e). Identifying the edge to be removed

can be done in O(n) time by searching for the first nonempty bucket. Furthermore,

whenever an edge e = {u, v} is removed from H, the algorithm scans the intersection

list of e checking if edges e′ = {u,w} and e′′ = {v, w} remain in H, for all w in the

list. If e′ or e′′ were not removed before, they are relocated to buckets DH(e′)−1 and

DH(e′′)−1, respectively. Scanning the intersection list takes O(n) time, and any edge

relocation in a linked list takes constant time. Thus, since the algorithm removes all

m edges and every iteration takes O(n) time, the algorithm runs in O(nm) time.

Lemma 16. Let (e1, . . . , em) be any edge ordering of an m-edge graph G = (V,E)

with m ≥ 1. Denote by ω(G) the size of a maximum clique in a graph G. Then,

ω(G) = 2 + max
1≤i≤m

ω(Gi), (3.2)

where ei = {ui, vi}, Ei = {ei, . . . , em}, Si = NG[Ei](ui) ∩ NG[Ei](vi), and Gi =(
Si, Ei ∩

(
Si

2

))
.

46



If we use a community degeneracy ordering, each of the Gi subproblems in Lemma

16 has at most c vertices. This is the main insight to our approach.

Proof. First see that ω(G) ≥ 2 + ω(Gi) for any edge ei = {ui, vi} ∈ E; take a

maximum clique in Gi and add vertices ui and vi. Now we show the reverse inequality.

Let S be a maximum clique in G and let ei∗ = {ui∗ , vi∗} be the earliest edge of G[S]

in the edge ordering. Then every vertex in S \ {ui∗ , vi∗} belongs to Gi∗ and every

pair of vertices in S \ {ui∗ , vi∗} is adjacent in Gi∗ , so ω(Gi∗) ≥ ω(G)− 2.

Algorithm 6 A maximum clique algorithm parameterized by community degener-

acy.

Data: A graph G = (V,E)

Result: The clique number ω(G)

compute a community degeneracy ordering (e1, . . . , em) of E(G)

for i = 1, . . . ,m do

{ui, vi} ← ei Ei ← {ei, . . . , em}

Si ← NG[Ei](ui) ∩NG[Ei](vi)

Gi ←
(
Si, Ei ∩

(
Si

2

))
ω(Gi)← MaxCliqueSubroutine(Gi)

end

return ω(G) = 2 + max1≤i≤m ω(Gi)

Theorem 6. Algorithm 6 solves the maximum clique problem in c-community de-

generate graphs in time O∗(Tc) = O∗(2c/4).

Proof. The community degeneracy ordering (e1, . . . , em) can be found in polynomial

time by Lemma 15. There are polynomially many iterations of the for-loop, and in

47



each we compute the maximum clique of a graph on at most c vertices. This proves

the runtime. Correctness of the algorithm follows by Lemma 16.

Again, the iterations of the for-loop can be run in parallel.

3.1.3 Discussion

In this section, we discuss the relationship between the parameters c, d, and n–and

hence the runtime of our algorithms.

We have mentioned that c < d, but have not proven it yet. However, this is not

hard to see, as any d-degenerate-ordering immediately gives a (d − 1)-community-

degenerate ordering: replace the vertex v1 in the vertex-ordering by the edges incident

to v1, replace the vertex v2 by the edges incident to v2 but not to v1, etc. In

general, the community degeneracy c is sandwiched between min{u,v}∈E |N(u)∩N(v)|

and max{u,v}∈E |N(u) ∩ N(v)|, whereas the degeneracy is sandwiched between the

minimum and maximum degrees of the graph.

While c < d, it is possible for them to be very close to each other. Indeed, the

n-vertex complete graph Kn has d = n− 1 and c = n− 2. However, there are classes

of graphs for which c � d � n. For example, the p-dimensional hypercube graph

Qp is triangle-free and hence has c = 0� d = p� n = 2p.

However, we are not so interested in these contrived classes of graphs. What

we really want to know is whether the parameters c and d are small compared to

n on real-life instances. This was demonstrated empirically in Table 3.1, but we

would also like some analytical evidence. It has been noted that the degrees of real-

life graphs often follow a power-law distribution [33], which leads to the notion of

power-law graphs. A graph is said to be power-law if the number of vertices with

degree q is proportional to q−α, where α ∈ (1, 3) is a constant. There are numerous

theoretical models of power-law graphs, including the Bianconi-Marsili and Barabási-

48



Albert models. It has been shown [10] that, in Bianconi-Marsili power-law random

graph model, d = O(n1/(2α)) whenever 1 < α ≤ 2 and d = O(n(3−α)/4) whenever

2 < α < 3. In this case, our algorithm that is parameterized by degeneracy runs in

2O(
√
n) time with high probability (α > 1). The time bound improves as α increases,

running in time 2O(n1/4) for α > 2. We also note that the Barabási-Albert model

creates graphs with bounded degeneracy [47], in which case our algorithms run in

polynomial time.

In both of these power-law models, our algorithms run in time 2o(n), whereas it

is believed that no such algorithm exists for arbitrary graphs [30]. This provides

theoretical support for the claim that the maximum clique problem is easier in real-

life graphs than it is in arbitrary graphs, just as empirical observations suggest [107].

3.2 Algorithms for 0-1 Programs

In this section, we consider the canonical 0-1 programming problem:

maximize cTx

subject to Ax ≤ b

x ∈ {0, 1}n.

Here, n denotes the number of 0-1 variables, and we will let m denote the number

of rows of A, i.e., the number of constraints.

Many combinatorial optimization problems can be formulated as a 0-1 programs.

This includes the maximum clique problem, the minimum dominating set problem,

and the maximum satisfiability problem. Consequently, the worst-case complexity

of optimizing or approximating 0-1 programs is just as dismal. Indeed, the problem

of determining whether a 0-1 program is even feasible cannot be solved in time

49



O((2 − ε)npoly(m)) for any constant ε > 0, unless the Strong Exponential Time

Hypothesis (SETH) is false [61, 29]. However, a 0-1 program can trivially be solved

in time O∗(2n) by exhaustive search, but it is doubtful that anyone would want to

actually do this in practice.

This suggests that we should look for parameters besides n. A natural parameter

is the number k of nonzeros in the solution vecor x. This leads to the problem

max
x∈{0,1}n

{
cTx

∣∣∣∣∣ Ax ≤ b and
n∑
i=1

xi ≤ k

}
.

However, even this problem cannot be solved in time O(no(k)) under reasonable

complexity assumptions since we can formulate the k-clique problem in this way.

Even worse, the k-dominating set problem cannot be solved in time O(nk−ε) for any

constant ε > 0, unless SETH fails [93]. This suggests that these types of 0-1 program

cannot be solved in time O(nk−1−εm).

The approach that we take here uses ideas from our clique algorithms. In the

degeneracy-based clique algorithm, we branched on the decision to include a par-

ticular vertex. In the branch where we choose to include the vertex, the resulting

subproblem has at most d vertices by the degeneracy ordering. To solve a 0-1 pro-

gram in a similar fashion, there should always be an unfixed variable such that when

we fix it, one of its subproblems has at most d unfixed variables. In the clique algo-

rithms, the graph’s topology determined how the vertices should be fixed; if a vertex

is included in the solution, then its nonneighbors are fixed out of the solution. To

solve a 0-1 program, we seek a similar way to represent these logical implications,

e.g., the implication xi = 1 =⇒ xj = 0.

A common approach in computer science is to use an implication graph. This

is a directed graph in which there are two vertices xi and xi for each variable xi,

50



and the directed edges denote logical implications between pairs of variables. For

example, there is a directed edge (xi, xj) to represent xi = 1 =⇒ xj = 0. By the

contrapositive, there will also be a directed edge (xj, xi). Using this representation,

one can solve 2SAT in linear time [3]. In this case, the 2SAT instance is infeasible if

and only if there is a variable xi and its negation xi that belong to the same strongly

connected component of the implication graph [3].

While implication graphs (and extensions thereof) are sometimes used in the

operations research literature [1], it is perhaps more common to see conflict graphs [4].

The vertex set in this case is the same as in the implication graph; however, the

edges are undirected and represent conflicts instead of implications. For example,

an edge {xi, xj} means that we cannot simultaneously set xi = 1 and xj = 0. One

important observation is that any feasible solution to our 0-1 program (and hence

to the conflict graph) corresponds to a subset of n vertices that is independent in

the conflict graph. This allows us to generate valid inequalities for the 0-1 program

based on known polyhedral results for the independent set polytope. For example,

the so-called clique inequalities [89] can be used to tighten the linear programming

relaxation of the 0-1 program [4]. In this case, for a clique C ⊆ V (G) of the conflict

graph G, the corresponding clique inequality is

∑
i:xi∈C

xi +
∑
i:xi∈C

(1− xi) ≤ 1.

So, the use of conflict graphs is not new in solving 0-1 programs. However, we know

of no previous research in which a conflict graph is used to develop an algorithm or

branching strategy with provable worst-case runtimes, which is our task.

It is often easier to work with the complement of the conflict graph. This graph,

which we will call a compatibility graph, will be sparse whenever the conflict graph

51



is dense. An optimal solution to the 0-1 program corresponds to a clique in the

compatibility graph. The converse is obviously not true.

In the following, we will consider the complexity of safely generating conflict

edges. Then, we extend the concepts of degeneracy and community degeneracy to

compatibility graphs. This results in compatibility degeneracy and bicompatibility

degeneracy. Informally, compatibility degeneracy d means that every subproblem

of the 0-1 program is clearly infeasible (via a 2SAT algorithm) or has an unfixed

variable xi and t ∈ {0, 1} such that when it is fixed to xi = t, at most d other

variables in the xi = t branch remain undetermined. Bicompatibility degeneracy d′

is defined analogously for pairs of unfixed variables. We show that these parameters

d and d′ can be efficiently computed. They lead to algorithms that list all feasible

solutions to 0-1 programs in time O∗(2d) or O∗(2d
′
). This shows that the problem

of solving 0-1 programs is fixed-parameter tractable when parameterized by d or d′.

Moreover, these algorithm are optimal in the sense that there are cases where the

number of solutions is Ω(2d) or Ω(2d
′
). We also include calculations of the parameter

d for instances from literature.

3.2.1 The complexity of generating conflict edges

We will assume that we are given the compatibility graph as part of the problem

input; we do not construct it in the course of our algorithms. In practice, conflict

graphs are created using simple preprocessing rules and probing [99, 4, 1]. While

these procedures can quickly find many conflict edges for real-life instances (typically

for problems with packing constraints
∑

i∈S xi ≤ 1), we show that this appears to be

extremely difficult in the worst-case.

Problem: Conflict Edge Creation.

Input: matrix A; vector b; variables xi and xj; values s, t ∈ {0, 1}.

52



Question: Is it true that no x ∈ {0, 1}n simultaneously satisfies xi = s, xj = t, and

Ax ≤ b?

Notice that the answer to the question above is ‘yes’ if and only if we can safely

generate the corresponding conflict edge.

Proposition 1. For any ε > 0, Conflict Edge Creation cannot be solved in time

O
(
(2− ε)nmO(1)

)
, unless SETH fails.

Proof. Suppose there is an ε > 0 such that we can solve Conflict Edge Creation in

time O
(
(2− ε)nmO(1)

)
. Consider the following instance of Conflict Edge Creation.

Formulate CNF-SAT as a 0-1 program in the usual way and add two additional

variables xn+1 and xn+2 that appear in no constraints. Let i = n+ 1, j = n+ 2, s =

t = 0. Clearly, the CNF formula is satisfiable if and only if this Conflict Edge

Creation instance is a ‘no’ instance. But this means we can solve CNF-SAT in time

O
(
(2− ε)nmO(1)

)
, which contradicts SETH.

It may be the case that we are willing to accept any conflict edge. This leads to

the following problem, where the variables and values are not specified in the input

as they were for Conflict Edge Creation.

Problem: Unspecified Conflict Edge Creation.

Input: matrix A; vector b.

Output: (If any exist) variables xi and xj, i 6= j, and values s, t ∈ {0, 1} such that

no solution x ∈ {0, 1}n to Ax ≤ b has (xi, xj) = (s, t).

Consider the following algorithm to determine feasibility of 0-1 programs. First

attempt to find a conflict edge, in time f(n,m). If none exist, then the 0-1 program

is feasible. Otherwise, there is a conflict edge that shows that no solution satisfies

xi = s and xj = t for some i, j, s, t with i 6= j. In this case, create two subproblems:

53



in the first fix xi = s and xj = 1 − t; in the second fix xi = 1 − s. This is a valid

disjunction by the conflict edge. Solve the two subproblems recursively using the

same procedure.

Lemma 17. The number of subproblems in the algorithm above is O(φn), where

φ = 1+
√

5
2

= 1.6180 . . . is the golden ratio.

Proof. The number g(n) of subproblems satisfies the recurrence g(n) ≤ g(n − 1) +

g(n − 2). By standard techniques (cf. Theorem 2.1 of [52]), the solution to this

recurrence is g(n) = O(φn).

Proposition 2. For any ε > 0, Unspecified Conflict Edge Creation cannot be solved

in time O∗
((

2
φ
− ε
)n)

, unless SETH fails.

Proof. Suppose Unspecified Conflict Edge Creation can be solved in timeO∗
((

2
φ
− ε
)n)

for some constant ε > 0. Then, consider the algorithm proposed for determining fea-

sibility of 0-1 programs that is described above. There are O(φn) subproblems by

Lemma 17. And, at each node in the computation tree, we solve an instance Un-

specified Conflict Edge Creation in time O∗
((

2
φ
− ε
)n)

. Thus, the total time to

determine feasibility a 0-1 program is

O∗
((

2

φ
− ε
)n

φn
)

= O∗ ((2− εφ)n) = O∗
(
(2− ε′)n

)
,

where ε′ = εφ > 0. But, this would show that SETH is false.

The exhaustive search algorithm solves Unspecified Conflict Edge Creation in

time O∗(2n), but we do not know how to do better. How can we close the gap

between the (conditional) lower bound of
(

2
φ

)n
and the upper bound of O∗(2n)?

54



3.2.2 Extending degeneracy for compatibility graphs

In this section, we extend the notion of degeneracy for conflict graphs. To make

the definitions similar to those before, we will work with the complement of the

conflict graph, which we will call a compatibility graph. It will also be convenient to

write the vertices xi and xi of the conflict graph as xi1 and xi0, respectively. Thus

the edge {xi, xj} can alternatively be written as {xi1, xj0}.

Given a compatibility graph one may ask if there is a binary assignment to the

variables that avoids all conflicts. This is an instance of 2SAT, which can be solved

in linear time [3] (possibly quadratic with respect to the number n of variables).

We will say that a compatibility graph is feasible if such an assignment exists. This

can be generalized for subgraphs of compatibility graphs, and feasibility can still be

determined in linear time.

Definition 7 (feasible subgraph). A subgraph G′ = (V ′, E ′) of a compatibility graph

G = (V,E) is said to be feasible if and only if there exists a mutually compatible

subset S ⊆ V ′ of n vertices, i.e., for every pair of distinct vertices u, v ∈ S, we have

{u, v} ∈ E ′. Otherwise, G′ is said to be infeasible.

We remark that the class of infeasible subgraphs of a compatibility graph is

closed under taking induced subgraphs. This is easy to see because the n “mutually

compatible” vertices are a clique. Note that a feasible 0-1 program implies a feasible

subgraph, but the converse may not be true.

For simple undirected graphs the open (closed) neighborhood of a vertex is de-

noted by N(·) (N [·]). A similar notion, specifically for compatibility graphs, is

denoted by the calligraphic N (·).

Definition 8 (compatibility-neighborhood). Given a feasible subgraph G′ = (V ′, E ′)

of a compatibility graph G, the compatibility-neighborhood of a vertex xit ∈ V ′ in G′

55



is denoted by NG′(xit) = {j | {xit, xj0} ∈ E ′ and {xit, xj1} ∈ E ′}, which is the set of

indices of variables that remain free when fixing xi = t.

Definition 9 (compatibility degeneracy). A compatibility graph is said to be d-

compatibility-degenerate if for every feasible subgraph G′ = (V ′, E ′) there exists a

vertex xit ∈ V ′ with compatibility degree |NG′(xit)| ≤ d. The compatibility degeneracy

is the smallest value of d such that the graph is d-compatibility-degenerate.

Just as a d-degenerate graph admits a degeneracy-ordering, a d-compatibility-

degenerate graph admits a compatibility-degeneracy ordering. We will see that a

compatibility-degeneracy ordering can also be computed in polynomial time.

Proposition 3. A compatibility graph G is d-compatibility-degenerate if and only if

it admits an ordering (xi1t1 , . . . , xi2nt2n) of its vertices such that for every vertex xijtj

either G[Sj] is infeasible or |NG[Sj ](xijtj)| ≤ d, where Sj = {xijtj , . . . , xi2nt2n}.

Proof. It is clear that a d-compatibility-degenerate graph admits such an ordering:

iteratively remove a vertex of minimum compatibility degree and append it to the

ordering (until the subgraph is infeasible). Once the subgraph is infeasible, append

the remaining vertices to the ordering arbitrarily. By definition of d-compatibility-

degeneracy, the subgraph obtained after removing each vertex in this way will have

minimum compatibility degree at most d, or the subgraph will be infeasible.

For the other direction, consider a satisfactory vertex ordering (xi1t1 , . . . , xi2nt2n).

We want to show that every feasible subgraph of G has a vertex of compatibility

degree at most d. We can assume, without loss of generality, that G′ is induced by

a vertex subset S and that G′ = G[S] is feasible. Let v ∈ S be the earliest vertex

(among vertices from S) in the ordering. By the assumption about the ordering,

|NG′(v)| ≤ d, and since G′ was chosen arbitrarily, G is d-compatibility-degenerate.

56



Thus, if we have fixed xij = tj, there are at most d variables whose vertices

occur later in the ordering, i.e., at most d variables remain undetermined. This is

the main idea that will be exploited in the algorithm that is based on compatibility

degeneracy.

Now we describe a different parameter related to the compatibility graph that

is based on pairs of adjacent vertices. This results in the notion of bicompatibility

degeneracy d′, which is a generalization of community degeneracy introduced in our

previous paper [26]. We will show that the bicompatibility degeneracy (and such an

ordering) can be found in polynomial time.

Definition 10 (bicompatibility degeneracy). A compatibility graph is said to be d-

bicompatibility-degenerate if for every feasible subgraph G′ = (V ′, E ′) there exists an

edge {xis, xjt} ∈ E ′ with |NG′(xis) ∩ NG′(xjt)| ≤ d. The bicompatibility degeneracy

d′ is the smallest value of d such that the graph is d-bicompatibility-degenerate.

Given a graphG = (V,E), the edge-induced subgraph of E ′ ⊆ E, denotedG[E ′] =

(V ′, E ′), includes those vertices V ′ that are an endpoint of an edge in E ′.

Proposition 4. A compatibility graph G is d-bicompatibility-degenerate if and only

if it admits an ordering (e1, . . . , em) of its edges such that for every edge ek = {u, v}

either G[Ek] is infeasible or |NG[Ek](u) ∩NG[Ek](v)| ≤ d, where Ek = {ek, . . . , em}.

Proof. The proof is very similar to that of Proposition 3 and is omitted.

3.2.3 Algorithms based on compatibility degeneracy

Before providing the main algorithm, we describe an efficient algorithm for finding

a compatibility-degeneracy ordering.

57



Algorithm 7 An algorithm for finding a compatibility-degeneracy ordering.

Data: a (2n)-vertex compatibility graph G = (V,E).

Result: a compatibility-degeneracy ordering (xi1t1 , . . . , xi2nt2n).

Initialize V ′ ← V

while V ′ 6= ∅ do

let v ∈ V ′ be a vertex with minimum compatibility degree |NG[V ′](v)|

append v to compatibility-degeneracy ordering

V ′ ← V ′ \ {v}

end

return compatibility-degeneracy ordering (xi1t1 , . . . , xi2nt2n)

Lemma 18. Algorithm 7 finds a compatibility-degeneracy ordering of a (2n)-vertex

graph and can be implemented to run in time and space O(n2).

Proof. The algorithm mimics the degeneracy algorithm [80], as described in the proof

of Proposition 3, and is clearly correct. In each iteration of the while-loop, the algo-

rithm finds a vertex of minimum compatibility degree and updates the compatibility

degrees in O(n) time. There are O(n) iterations for a total runtime of O(n2).

We note that after Algorithm 7 has been executed, the actual value of the compat-

ibility degeneracy d can be calculated in time O(n2 log n). Namely, perform binary

search across the subgraphs G[Sj] for j = 1, . . . , 2n, where Sj = {xijtj , . . . , xi2nt2n} to

find the last subgraph G[Sq] that is feasible. Then, let d = maxj∈[q]{|NG[Sj ](xijtj)|}.

58



Algorithm 8 An algorithm for solving 0-1 programs, parameterized by compatibility

degeneracy.

Data: m-vector b; n-vector c; m× n matrix A;

an associated (2n)-vertex compatibility graph G = (V,E),

where for every variable xi we have

vertices xi0 (xi1) representing xi = 0 (xi = 1).

Result: z∗ = max{cTx : Ax ≤ b, x ∈ {0, 1}n}. (z∗ = −∞ when infeasible).

compute a compatibility-degeneracy ordering (xi1t1 , . . . , xi2nt2n) of G

let Sj = {xijtj , . . . , xi2nt2n}, j = 1, . . . , 2n

find last feasible subgraph, i.e., q = maxj∈[2n]{j | G[Sj] is feasible}, via binary search

for j = 1, . . . , q do

Fj = {x ∈ {0, 1}n | xik = 1− tk ∀xiktk /∈ NG[Sj ][xijtj ]}; // fix vars

zj ← maxx{cTx | Ax ≤ b, x ∈ Fj}; // −∞ if infeasible

end

return z∗ = max{zj : 1 ≤ j ≤ q}

For the following theorem, let Td,m denote the time to solve a 0-1 program with d

variables and m constraints. In general, the best known bound for Td,m is achieved

by a simple recursive algorithm that runs in time O(m2d). Unfortunately, this is

essentially best-possible if the Strong Exponential Time Hypothesis holds [61, 29],

but it can be improved when restricted to 0-1 programs for which m = O(d) [62].

Theorem 7. Algorithm 8 solves 0-1 programs with d-compatibility-degenerate graphs

in time O(n2 log n+ n2m+ nTd,m) = O∗(2d).

Proof. First we examine the runtime. The degeneracy ordering can be found in time

O(n2) by Lemma 18. The value of q can be found in time O(n2 log n): check feasibil-

59



ity of G[Sj] in time O(n2) using a 2SAT algorithm [3] and perform O(log n) iterations

using binary search. Before solving the subproblem for zj, fix the appropriate vari-

ables and update the right-hand-sides. The process of updating the right-hand-sides

takes O(nm) time. Solving for zi takes time Td,m = O(m2d) since the subproblem

has at most d non-fixed variables by the compatibility-degeneracy ordering. This

proves the runtime.

Now we show correctness, claiming that z∗ = maxj∈[q]{zj}. Clearly z∗ ≥ maxj∈[q]{zj},

since zj is the optimal objective over a smaller feasible region. To establish the re-

verse inequality, consider an optimal solution x∗ ∈ {0, 1}n to the original problem

(assuming it is feasible). Consider the n corresponding vertices V ∗ = {xi,ti | x∗i =

ti, i = 1, . . . , n} and the earliest vertex v ∈ V ∗ in the ordering among vertices from

V ∗. Let its position in the ordering be k ≤ q. Then the point x∗ is feasible to

subproblem k, so maxj∈[q]{zj} ≥ zk ≥ z∗.

We note that Algorithm 8 can be modified to slightly improve the runtime to

O (n2 log n+ (n− d)(nm+ Td,m)). When q ≤ n − d, the algorithm is the same.

However, when q > n− d, solve the first n− d subproblems as usual, and solve one

last subproblem where we fix xik = 1− tk ∀k ≤ n−d and all other variables are free.

The same idea slightly improves the runtime in Theorem 8 below as well.

Theorem 8. All feasible solutions of d-compatibility-degenerate 0-1 programs can be

listed in time O(n2(log n+m2d)) = O∗(2d). Any such algorithm requires Ω(n(n−d)2d)

time, so the approach is optimal to within a polynomial factor.

Proof. The approach is similar to Algorithm 8. Instead of solving for zj, check all

possible solutions (by exhaustive search) of the at most d unfixed variables, and list

the feasible points. For the second claim, it is sufficient to find an infinite class of

60



d-degenerate graphs with (n− d+ 1)2d cliques. By [111], for all n ≥ d there exists a

d-degenerate n-vertex graph with (n− d+ 1)2d cliques.

This is not the only algorithm that can be shown to list all solutions in time

O∗(2d). In another approach, one could rely on a 2SAT enumeration algorithm that

runs with polynomial delay, e.g., [37]. In this case, list all of the O(n2d) possible

solutions and check each to see if it is feasible for the 0-1 program. Such an algorithm

would run in time O((D+nm)n2d), where D denotes the delay of the 2SAT enumer-

ation algorithm. Note that there exist 2SAT enumeration algorithms for which D is

linear in the size of the 2SAT instance [96]. Thus, D = Ω(n2) when the formula has

many clauses, but it could be that D = O(n). Either approach might be preferred

depending on the values of d,D, and n.

3.2.4 Algorithms based on bicompatibility degeneracy

We first provide an efficient algorithm for computing a bicompatibility-degeneracy

edge ordering. The algorithm mimics the community degeneracy algorithm [26], and

its runtime is derived with similar arguments.

Algorithm 9 An algorithm for finding a bicompatibility-degeneracy edge ordering.

Data: a (2n)-vertex compatibility graph G = (V,E).
Result: a bicompatibility-degeneracy edge ordering (e1, . . . , e|E|).
Initialize E ′ ← E
while E ′ 6= ∅ do

let e = {u, v} ∈ E ′ be an edge with minimum |NG[E′](u) ∩NG[E′](v)|
append e to bicompatibility-degeneracy ordering
E ′ ← E ′ \ {e}

end
return bicompatibility-degeneracy edge ordering (e1, . . . , e|E|)

61



Lemma 19. Algorithm 9 finds a bicompatibility-degeneracy edge ordering of a (2n)-

vertex |E|-edge compatibility graph and can be implemented to run in time O(n|E|2).

We note that after Algorithm 9 has been executed, the actual value of the bi-

compatibility degeneracy d′ can be calculated in time O(n2 log n). Namely, perform

binary search across the subgraphs G[Ej] for j = 1, . . . , |E|, where Ej = {ej, . . . , e|E|}

to find the last subgraph G[Eq] that is feasible. Then let d′ = maxj∈[q]{|NG[Ej ](uj)∩

NG[Ej ](vj)|}.

Algorithm 10 An algorithm for solving 0-1 programs, parameterized by bicompat-

ibility degeneracy.

Data: m-vector b; n-vector c; m× n matrix A;

an associated (2n)-vertex compatibility graph G = (V,E),

where for every variable xi we have

vertices xi0 (xi1) representing xi = 0 (xi = 1).

Result: z∗ = max{cTx : Ax ≤ b, x ∈ {0, 1}n}. (z∗ = −∞ when infeasible).

compute a bicompatibility-degeneracy edge ordering (e1, . . . , e|E|) of G

let Ek = {ek, . . . , e|E|}, k = 1, . . . , |E|

find last feasible subgraph, i.e., q = maxk∈[|E|]{k | G[Ek] is feasible} via binary search

for k = 1, . . . , q do

{u, v} ← ek

Fk = {x ∈ {0, 1}n : xik = 1− tk ∀xiktk /∈ NG[Ek][u] ∩NG[Ek][v]}

zk ← maxx{cTx : Ax ≤ b, x ∈ Fk}; // −∞ if infeasible

end

return z∗ = max{zk : 1 ≤ k ≤ q}

62



Theorem 9. Algorithm 10 solves 0-1 programs with d′-bicompatibility-degenerate

graphs G = (V,E) in time O (n2 log n+ |E|(n|E|+ nm+ Td′,m)) = O∗(2d
′
). Using

q processors (where q = O(|E|), as defined in Algorithm 10), this reduces to time

O (n|E|2 + n2 log n+ nm+ Td′,m)).

Proof. The proof is similar to that of Theorem 5 and is omitted. The key point is that

the subproblems have at most d′ unfixed variables by the bicompatibility-degeneracy

ordering.

Lemma 20. For any d′ ≤ n, with n−d′ even, there exists a d′-community-degenerate

graph with [1
4
(n− d′)2 + (n− d′) + 1]2d

′
cliques.

Proof. Recall that, by definition of [26], every non-edgeless subgraph G′ of a d′-

community-degenerate graph has an edge {u, v} with |NG′(u)∩NG′(v)| ≤ d′. For all

d′ and n ≥ d′ such that n−d′ is even, we construct such a graph G = (U∪V1∪V2, E).

Let |U | = d′ and |V1| = |V2| = (n−d′)/2. Let G have all edges, except that V1 and V2

should each be independent sets in G. The graph is d′-community-degenerate: find

an appropriate ordering by first removing all edges with both endpoints in V1 ∪ V2,

then all edges with one endpoint in V1 ∪ V2, then all edges with no endpoints in

V1 ∪ V2. There are 2d
′

cliques in G[U ]. Any such clique can be enlarged by adding

any one of the 1
4
(n−d′)2 pairs of adjacent vertices from V1∪V2 or any of the (n−d′)

vertices from V1 ∪ V2.

Theorem 10. All feasible solutions of d-compatibility-degenerate 0-1 programs can

be listed in time O∗(2d
′
). Any such algorithm requires Ω(n(n − d′)22d

′
) time, so the

approach is optimal to within a polynomial factor.

Proof. The proof of the first claim is similar to that of Theorem 8. The second claim

follows by Lemma 20.

63



3.2.5 Preliminary computations

For the proposed algorithms to be practically useful, there should exist real-life

0-1 programs for which compatibility degeneracy d or bicompatibility degeneracy d′

are small compared to the number n of 0-1 variables. Here, we calculate d for some

problems that were considered by [4] and [26].

To formulate the maximum clique problem, one typically uses a binary variable

xi for each vertex i, and for each pair of nonadjacent vertices i, j the constraint

xi + xj ≤ 1 is added. So, the conflict graph (based solely on feasibility conflicts)

closely resembles the complement of the input graph, and the compatibility graph

resembles the input graph. In fact, for clique, the values of compatibility degeneracy

(in the compatibility graph) and degeneracy (in the input graph) coincide.

Table 3.3: Degeneracy d of graphs (i.e., compatibility degeneracy for max-clique).
The left (right) table includes those graphs from the 2nd (10th) DIMACS Chal-
lenge [65] ([5]) that were considered by [4] ([26]).

Graph n d
brock200 2 200 84
c-fat200-1 200 14
c-fat200-2 200 32
p hat300-1 300 49
san200 0.7 2 200 125

Graph n d
as-22july06 22,963 25
kron g500-simple-logn16 65,536 432
citationCiteseer 268,495 15
ldoor 952,203 34
in-2004 1,382,908 488
cage15 5,154,859 25
uk-2002 18,520,486 943

We now turn to MIPLIB 3.0 [13] instances that were considered by [4]. The

instance air03 is also included as it had the largest difference between d and n. Note

that the value of d depends largely on the process used to generate the conflict graph.

Here, the conflict graph is generated using built-in functions of GLPK [77]. Denser

64



conflict graphs could be generated with more computational effort. However, since

the MIPLIB instances are known to be challenging, one should expect that the values

of d and n will be close to each other. The instance vpm2 illustrates the worst-case

example. Its conflict graph has only the trivial edges; for each variable xi, the edge

{xi0, xi1} appears.

Table 3.4: Compatibility-degeneracy d for some instances from MIPLIB 3.0 [13].
The parameter n refers to the number of 0-1 variables, |E| is the number of conflict
edges, and ρ is the density of the conflict graph as a percentage (rounded to three
significant digits).

Instance n d |E| ρ
air03 10,757 3,301 32,095,418 13.9%
air04 8,904 7,899 2,121,648 1.34%
air05 7,195 5,857 2,527,253 2.44%
dcmulti 75 72 107 0.957%
mitre 10,724 10,696 155,498 0.0676%
vpm2 168 167 168 0.299%

65



4. FIXED-PARAMETER TRACTABLE EXTENDED FORMULATIONS

This chapter is based on work with Sergiy Butenko [24]. Here, we apply ideas from

parameterized complexity to the study of extended formulations. When constructing

an extended formulation for an optimization problem, an important thing to keep in

mind is its size. However, due to the computational intractability of many problems,

one cannot always expect to find polynomial-size extended formulations. To deal with

this, one approach is to introduce a parameter, and look for extended formulations

whose size grows polynomially in the problem size, but exponentially (or worse) in

the parameter. We illustrate this approach on the independent set and vertex cover

problems and consider parameters such as the number µ of maximal independent

sets (or minimal vertex covers), the treewidth tw of the graph, and the size k of the

vertex cover.

The first formulation is for arbitrary independence systems and has size O(n+µ),

which implies size O(1.4423n) for the independent set polytope of graphs.

The second formulation, of size O(2twn), applies to both independent set and

vertex cover and relies on a framework for generating extended formulations from

dynamic programs due to Martin et al. [79]. This improves upon the size O(ntw+1)

extended formulations implied by the Sherali-Adams reformulation procedure [103]

(as shown by Bienstock and Ozbay [12]). This leads to small formulations for par-

ticular classes of graphs: size O(n) extended formulations for outerplanar, series-

parallel, and Halin graphs; size 2O(
√
n) extended formulations for planar graphs; and

size O(1.2247n) extended formulations for graphs of maximum degree three.

The third and fourth extended formulations are for the cardinality-constrained

variants. The third has size O(nµk) where µk denotes the number of maximal in-

66



dependent sets that have size at least k (or minimal vertex covers that have size

at most k). This implies size O(2kn) extended formulations for the k-vertex cover

polytope, which significantly improves upon the naive O(nk) extended formulation.

A more complicated approach yields an extended formulation for k-vertex covers of

size O(1.466kn2) using insights of Chen et al. [31].

4.1 Background on Extended Formulations and Independent Set Polytope

Frequently, when one wants to solve a discrete optimization problem, an inte-

ger programming (IP) formulation is created. However, it is generally difficult to

solve, partially because the linear programming relaxation does not do a good job

of approximating the integer hull. In some cases, the formulation can be modified

(by adding variables and constraints), so that the resulting linear programming re-

laxation is tight. In this case, one can drop the integrality constraints and solve

a linear program. This modified formulation is called an extended formulation. In

this chapter, the polyhedron in the following definition is typically the integer hull

for a particular combinatorial optimization problem (and not its linear programming

relaxation).

Definition 11. Let P = {x | Ax ≤ b} ⊆ Rn be a polyhedron. A polyhedron Q ⊆ Rd

is an extension for P if projx(Q) = P , where projx(Q) := {x | ∃y : (x, y) ∈ Q(G)}.

The size of an extension is the number of its facets.

Extended formulations for numerous combinatorial optimization problems can

be found in literature; consult the surveys of Conforti et al. [34] and Kaibel [66]

for some notable cases. We mention two important “meta” extended formulations

that will be useful later. Balas [6, 7] creates polysize extended formulations for the

union of polyhedra. Martin et al. [79] craft extended formulations for a broad class

of dynamic programs.

67



Only recently have researchers shown that many important combinatorial opti-

mization problems have high extension complexity, that is, if one wants to drop the

integrality constraints, a very large number of constraints must be added in the worst

case.

Definition 12. The extension complexity of a polyhedron P is

xc(P ) := min{size(Q) | Q is an extension for P}.

Since the pioneering work of Yannakakis [112], there have been numerous ad-

vances showing that certain polytopes have high extension complexity. For example,

it has been shown that polytopes associated with NP-hard problems such as the trav-

eling salesman problem and the 0-1 knapsack problem admit no polysize extended

formulation [49, 94]—irrespective of whether P=NP. There are even polytime solvable

problems, such as matching, that do not admit polysize extended formulations [97].

Research into extended formulations often mimics the trajectory of algorithm

design after the theory of NP-completeness was introduced. Under widely-held be-

liefs in complexity theory, “no algorithm exactly solves all instances in polynomial

time.” Relaxing the words in this statement leads, roughly, to the fields of approxi-

mation algorithms, parameterized algorithms, and exponential algorithms. Each has

a polyhedral counterpart.

The independent set and vertex cover problems have both been studied from the

perspective of approximate extended formulations. It has been shown that indepen-

dent set admits no polynomial-size uniform extended formulation1 that achieves an

O(n1−ε) approximation for any constant ε > 0 [22], which matches the inapproxima-

1This notion of extended formulation is different than that of Definition 11 as it refers to the
optimal objective value of the LP relaxation, not necessarily a polyhedral approximation.

68



bility of the maximum independent set problem [59, 113]. If we allow for non-uniform

extended formulations, that is, the inequalities defining the feasible region need not

be the same for every n-vertex graph, O(1)-approximate formulations still require

superpolynomial size [9]. Somewhat surprisingly, however, a O(
√
n)-approximation

can be achieved with size O(n) extended formulations [9]. For the vertex cover prob-

lem, no polysize extended formulation achieves a (2− ε)-approximation [9], and the

naive linear programming relaxation provides a matching upper bound of 2.

Prior to our work, little was known about parameterized and exponential-size

extended formulations for independent set and vertex cover. It was even men-

tioned [21] as an open question whether it was possible to beat 2n. We show a

size O(1.4423n) bound. Perhaps the most interesting previous work was that of Bi-

enstock and Ozbay [12], who showed that tw levels of Sherali-Adams reformulation

procedure [103], when applied to the traditional edge formulation, are enough to

recover the independent set polytope of the graph. This shows that there are size

O(ntw+1) extended formulations. Our formulation significantly improves this bound

to O(2twn). After we posted this work online [24], the results were generalized to

0-1 programs by Bienstock and Munoz [11] and to Constraint Satisfaction Problems

by Kolman and Kouteckỳ [70].

There are also some small extended formulations for independent set and vertex

cover for particular classes of graphs. Barahona and Mahjoub [8] showed that, in the

case of series-parallel graphs, there are linear-size extended formulations for indepen-

dent set. (Series-parallel graphs have treewidth at most 2, so our formulation is also

of linear-size.) In the case of bipartite graphs, there are linear-size formulations (with

no need for extra variables) using the 0-1 bounds and edge inequalities [57]. Perfect

graphs admit size nO(logn) extended formulations [112]. There are also polynomial-

size formulations for comparability graphs and chordal graphs, which are subclasses

69



of perfect graphs [112].

In the following definitions, the characteristic vector xS of S ⊆ V is an n-

dimensional 0-1 vector that has xSi = 1 if and only if i ∈ S.

Definition 13. The independent set polytope of a graph G = (V,E) is

P (G) = conv.hull{xS ∈ {0, 1}n | S is an independent set of G}

= conv.hull{x ∈ {0, 1}n | xi + xj ≤ 1 for every {i, j} ∈ E}.

Definition 14. The vertex cover polytope of a graph G = (V,E) is

Q(G) = conv.hull{xS ∈ {0, 1}n | S is a vertex cover for G}

= conv.hull{x ∈ {0, 1}n | xi + xj ≥ 1 for every {i, j} ∈ E}.

Before proceeding, we make the following simple, but important, connection be-

tween the independent set polytope P (G) of a graph G and its vertex cover polytope

Q(G).

Lemma 21 (folklore). The equality P (G) = 1 − Q(G) holds, that is, x ∈ P (G) if

and only if 1− x ∈ Q(G).

Proof. ( =⇒ ) Let x∗ ∈ P (G). Without loss of generality, suppose that x∗ is an

extreme point and is hence the characteristic vector of an independent set S of G. It

is easy to see that V \S is a vertex cover for G. Hence, 1−x∗ = 1−xS = xV \S ∈ Q(G).

(⇐= ) Similarly.

Proposition 5. For any graph G, xc(P (G)) = xc(Q(G)).

Proof. This follows from Lemma 21 by a change of variables. Namely, given an

extended formulation for P (G), we can construct an extended formulation for Q(G)

70



of the same size by replacing every instance of the variable xi by 1 − xi. Hence

xc(Q(G)) ≤ xc(P (G)). The reverse inequality holds by the same argument.

4.2 Formulation Based on Maximal Independent Sets

Our first extended formulation is fairly simple and is based on introducing a

variable for each maximal independent set of the graph. The number µ of maximal

independent sets of a graph is at most 3n/3, and this bound is tight on what we will

call the MM graphs, which are the disjoint union of n/3 triangles. Historically, MM

referred to Moon and Moser [84], but the same results were given several years ear-

lier by Miller and Muller [82]. Further, all maximal independent sets of an arbitrary

graph can be listed in time O(3n/3) [23, 104]. In fact, there are output-sensitive algo-

rithms that, for example, list all maximal independent sets in time O(nmµ), where

m denotes the number of edges and µ denotes the number of maximal independent

sets [105]. As a consequence, if a graph has polynomially many maximal indepen-

dent sets, not only does its independent set polytope admit a compact extended

formulation, but it can be constructed in polynomial time.

While the focus of this chapter is on the independent set polytope of graphs, we

will state the first extended formulation for the more general case of an arbitrary

independence system. An independence system is a pair (I, I), where I is a finite

ground set and I is a collection of subsets of I satisfying:

1. (non-emptiness) ∅ ∈ I, and

2. (down-monotonicity) S ⊆ S ′ ∈ I implies S ∈ I.

In the extended formulation below, x is the decision vector representing the chosen

independent set, and for every maximal independent set S, there is a variable yS.

Denote by IM the set of all inclusion-wise maximal independent sets.

71



Extended Formulation 1:

∑
S∈IM

yS = 1 (4.1)

xi ≤
∑

S∈IM :i∈S

yS, for every i ∈ I (4.2)

yS ≥ 0, for every maximal independent set S ∈ IM (4.3)

xi ≥ 0, for every i ∈ I. (4.4)

Note that the maximal independent set polytope admits an extended formulation

of the same size and can be obtained by changing every inequality xi ≤
∑

S∈IM :i∈S yS

to an equality. Such an extended formulation is clearly correct as it simply writes x

as a convex combination of maximal independent sets.

Lemma 22. For an independence system (I, I), let F1(I, I) be the set of all (x, y)

satisfying constraints (4.1)–(4.4). Then the projection of F1(I, I) onto the x variables

is precisely (I, I)’s independence system polytope P (I, I).

Proof. First see that P (I, I) ⊆ projx F1(I, I). Consider x′ ∈ P (I, I), which we can

assume, without loss of generality, is integer. Then x′ is the characteristic vector of

some independent set I which is a subset of a maximal independent set I ′. Then the

binary vector (x′, y′) belongs to F1(I, I), where y′S = 1 iff I ′ = S.

To show P (I, I) ⊇ projx F1(I, I), let (u, v) ∈ F1(I, I). Then also (x, v) ∈

F1(I, I), where, for each i ∈ I, xi :=
∑

S∈IM :i∈S vS. Note that x ∈ P (I, I), since it

belongs to the maximal independent set face of P (I, I). Then, since 0 ≤ u ≤ x, and

by down-monotonicity of P (I, I) (see, e.g., [58]), we have u ∈ P (I, I).

Theorem 11. An independence system with n ground elements and µ maximal in-

dependent sets admits an extended formulation of size 2n+ µ.

72



Corollary 5. The extension complexity of a graph’s independent set polytope is at

most 2n+ 3n/3 = O(1.4423n).

Proof. This follows directly from Theorem 11 and the fact that a graph has at most

3n/3 maximal independent sets [82, 84].

It is not too hard to see that similar results hold if, instead of down-monotonicity,

we enforce up-monotonicity, i.e., that S ⊇ S ′ ∈ I implies S ∈ I. This allows us to

write extended formulations for, say, the dominating set polytope of a graph with

O(1.7159n) variables and constraints [51]. The extended formulation also implies

that the dominating set polytope admits a compact extended formulation whenever

the graph has polynomially many minimal dominating sets. However, it is not yet

clear if such an extended formulation could be constructed in polynomial time, as, to

date, there is no known output-polynomial time algorithm for enumerating minimal

dominating sets [67]. This is to be expected for some independence systems, as it has

been shown that no algorithm lists all maximal independent sets of an independence

system in output-polynomial time, unless P=NP [72].

4.3 Formulation Based on Treewidth

The second extended formulation that we describe borrows ideas from a treewidth-

based dynamic programming algorithm for independent set. We will first represent

the problem as a network flow problem of sorts. The directed network that we

construct has hyperarcs, complicating the proof of the linear programming formula-

tion’s integrality. For clarity, we will refer to the input graph of the independent set

problem as a graph with vertices and edges; the directed graph that represents the

network flow problem will be called a network with nodes and (hyper)arcs.

If we based the extended formulation on a pathwidth-based dynamic program-

ming algorithm, then there would be no hyperarcs. In this case, it is pretty straight-

73



forward to achieve an extended formulation with O(2pwn) entities, where pw de-

notes pathwidth. It turns out that pw(G) = O(tw(G) log n) so this would yield

polynomial-size extended formulations for graphs of bounded treewidth. However,

if we construct the formulation from a treewidth-based dynamic programming algo-

rithm, then we can make a stronger claim—that graphs of bounded treewidth admit

linear-size extended formulations for their independent set polytopes.

Since there is the possibility for hyperarcs, the usual total unimodularity argu-

ment is not enough to show that the proposed formulation is integral. Fortunately

for us, Martin et al. [79] have shown how to craft extended formulations for these

types of dynamic programs. We will only need to construct the necessary directed

acyclic hypergraph and show that it fits into their paradigm. First, however, we

will need some background information about treewidth and the treewidth-based

dynamic programming algorithm.

Definition 15. A tree decomposition of a graph G = (V,E) is a pair (B, T ), where

T = (J, F ) is a tree and B = {Bj | j ∈ J} is a collection of subsets of V (each Bj is

called a bag) such that

•
⋃
j∈J Bj = V ;

• for every edge {u, v} ∈ E there is a bag that contains u and v; and

• for all i, j, k ∈ J : if j is on the path from i to k in T then Bi ∩Bk ⊆ Bj.

The width of the decomposition is maxi{|Bi|}−1. The treewidth of G, denoted tw(G),

is the minimum width among the tree decompositions of G.

The “−1” in the definition of width is merely a cosmetic detail done so that the

treewidth of a tree is one. A path decomposition is a tree decomposition, where T

is further required to be a path graph. Pathwidth is defined similarly.

74



While many problems are quickly solvable on graphs of small treewidth, actually

determining a graph’s treewidth is NP-hard. However, Bodlaender’s theorem states

that, for any fixed w, there is a linear-time algorithm that finds a tree decomposition

of width w (if one exists). Even though Bodlaender’s algorithm runs in linear time

for fixed w, its dependence on w is very large and the algorithm is notoriously

impractical. Still, there are practical, linear-time algorithms for small values of

treewidth, e.g., for tw = 1, 2, 3, 4. Consult the surveys of Bodlaender for these and

other facts about treewidth [15, 16].

It will be convenient to work with a nice tree decomposition, and from now on we

will assume, without loss of generality, that our tree decompositions will be nice and

will have O(n) bags. This follows by a standard linear-time algorithm that, when

given a tree decomposition, outputs a nice tree decomposition of the same width and

with at most 4n bags (see Lemma 13.1.2 of [69]).

Definition 16. A tree decomposition is nice if it is a rooted binary tree such that

each node j ∈ J is one of the following four types:

• Leaf nodes j are leaves of T and have |Bj| = 1.

• Introduce nodes j have one child c with Bj = Bc + v for some vertex v ∈ V .

• Forget nodes j have one child c with Bj = Bc − v for some vertex v ∈ V .

• Join nodes j have two children c1 and c2 with Bj = Bc1 = Bc2.

We will now describe the treewidth-based dynamic programming algorithm for

weighted independent set [17]. For each bag Bj ⊆ V and for every subset S ⊆ Bj

of the bag, let f(j, S) be the weight of a maximum weight independent set I of the

subgraph induced by Vj such that S = I ∩ Bj. Here, Vj is the union of Bj along

with all of its descendant bags (not necessarily direct descendants). Whenever S

75



is itself not independent, the subproblem is infeasible with the convention that its

objective is −∞. The formula for computing f(j, S) depends on the type of bag

Bj. The weight of a vertex v is denoted wv, and the weight of S ⊆ V is denoted by

w(S) :=
∑

v∈S wv.

• Leaf node, where Bj = {v}. Set f(j, ∅) = 0 and f(j, {v}) = wv.

• Introduce node, where Bj = Bc + v. For every S ⊆ Bc, set

f(j, S) = f(c, S), and

f(j, S + v) =

 wv + f(c, S) if S + v is independent

−∞ otherwise.

• Forget node, where Bj = Bc − v. For every S ⊆ Bj, set

f(j, S) = max{f(c, S), f(c, S + v)}.

• Join node, where Bj = Bc1 = Bc2 . For every S ⊆ Bj, set

f(j, S) = f(c1, S) + f(c2, S)− w(S).

The objective of the maximum independent set problem for the original graph

can be found by looking at the root bag Br and computing the maximum of f(r, S)

such that S ⊆ Br.

Notice that the algorithm does not depend on the graph’s structure, in the sense

that dependent subsets are penalized in the objective with a weight of −∞, instead of

being explicitly excluded during algorithm’s execution. For example, the complete

76



graph on n nodes and the empty graph on n nodes both admit the trivial tree

decomposition where a single bag contains all vertices. The algorithm’s execution on

these two graphs with the trivial decomposition is essentially the same, and hence, a

polyhedral representation of this dynamic programming algorithm will not describe

the graph’s independent set polytope. Hard constraints are necessary.

We are now ready to construct our directed acyclic hypergraph D = (N,A) that

will model the treewidth-based dynamic programming algorithm for the independent

set problem for a graph G = (V,E). The main idea is to disallow nodes that represent

infeasible solutions, i.e., dependent subsets of vertices. We can assume, without loss

of generality, that the given tree decomposition is nicer and has width w.

Definition 17. A nicer tree decomposition is nice tree decomposition with O(n) bags

that is rooted at an empty bag.

The node set N is created as follows. For every bag Bj in the tree decomposition,

and for every subset S ⊆ Bj that is independent in G (including the empty set), create

a node Sj. This implies, by the nicer tree decomposition, a single node t = ∅r ∈ N

from the empty root bag Br that we will call the sink node. Finally, for every leaf

bag Bj, create a source node sj. The number of nodes is |N | = O(2wn), since there

are O(n) bags, and for each bag Bj there are at most 2|Bj | ≤ 2w+1 independent sets.

The arc set A will allow a partial solution to “grow” at introduce bags and

“shrink” at forget bags. Create A as follows depending on the type of bag Bj.

• Leaf node, where Bj = {v}. Add the arcs (∅, sj), (sj, ∅j), and (sj, {v}j). Note

that (∅, sj) is strange in that it has no tail and is called a boundary arc in

Theorem 12.

• Introduce node, where Bj = Bc + v. For every independent S ⊆ Bc, add the

arc (Sc, Sj) and if S + v is also independent, then add the arc (Sc, (S + v)j).

77



{1} {1, 2} {2} {2, 3} {3} ∅

s ∅

{1}

∅

{1}

{2}

∅

{2}

∅

{2}

{3}

∅

{3}

t

Figure 4.1: A nicer tree decomposition of P3 (the path on 3 vertices) and the proposed
construction D. (This is also a nice path decomposition.) There are no “join” nodes
in the tree decomposition, so there is no need for hyperarcs.

• Forget node, where Bj = Bc− v. For every independent S ⊆ Bj, add the arc

(Sc, Sj), and if S + v is also independent, then add the arc ((S + v)c, Sj).

• Join node, where Bj = Bc1 = Bc2 . For every independent subset S ⊆ Bj, add

the hyperarc ({Sc1 , Sc2}, Sj).

The c in Sc and (S + v)c refers to bag Bc and not to the set’s complement.

Examples of the constructed hypergraphs can be found in Figures 4.1, 4.2, and

4.5. Figure 4.1 illustrates the most basic case, where each node in the directed

network represents at most one vertex in the input graph and there are no ‘join’ bags

in the tree decomposition. Figure 4.2 shows an example where some bags contain

independent sets of size two. Figure 4.3 shows the smallest graph with tw = 1 and

pw = 2. A nicer tree decomposition and constructed hypergraph follow in Figures

4.4 and 4.5. Since the given tree decomposition has ‘join’ bags, there are hyperarcs

in the directed network.

We are now ready to provide the extended formulation. For each (hyper)arc

a ∈ A of D, there is a variable ya representing the amount of flow across it. As

78



{1} {1, 2}{1, 2, 5}{2, 5}{2, 3, 5}{3, 5}{3, 4, 5}{4, 5} {5} ∅

s ∅

{1}

∅

{1}

{2}

∅

{1}

{2}

{5}

{2, 5}

∅

{2}

{5}

{2, 5}

∅

{2}

{3}

{5}

{2, 5}

{3, 5}

∅

{3}

{5}

{3, 5}

∅

{3}

{4}

{5}

{3, 5}

∅

{4}

{5}

∅

{5}

t

Figure 4.2: A width-2 nicer tree decomposition of the cycle graph on five vertices
and the proposed construction D. (This is also a path decomposition.)

usual, x is the decision vector representing the chosen independent set of G. For a

node v ∈ N , δout(v) is the set of (hyper)arcs that have v as (one of) its tail(s). The

set δin(v) is defined similarly. The set FORGET(v) is the set of all arcs that “forget”

v ∈ N , i.e., arcs of the form ((S+ v)c, Sj). The polytope F2(G) is the set of all (x, y)

satisfying the following constraints.

Extended Formulation 2:

∑
a∈δin(t)

ya = 1, for sink node t (4.5)

∑
a∈δout(v)

ya −
∑

a∈δin(v)

ya = 0, for every node v ∈ N \ {t} (4.6)

xi −
∑

a∈FORGET(i)

ya = 0, for every vertex i ∈ V (4.7)

ya ≥ 0, for every (hyper)arc a. (4.8)

79



123

45

67

Figure 4.3: A tree (of pathwidth 2).

{7}

{5}

{6, 7}

{4, 5}

{6}

{4}

{3, 6}

{3, 4}

{3}

{3}

{3} {2, 3} {2} {1, 2} {1} ∅

Figure 4.4: A nicer tree decomposition of width 1 that is rooted at the right.

s1

s2

∅

{7}

∅

{5}

∅

{6}

{7}

∅

{4}

{5}

∅

{6}

∅

{4}

∅

{3}

{6}

∅

{3}

{4}

∅

{3}

∅

{3}

∅

{3}

∅

{2}

{3}

∅

{2}

∅

{1}

{2}

∅

{1}

t

Figure 4.5: The proposed directed acyclic hypergraph D. Since there is a “join”
node in the tree decomposition, D has hyperarcs.

80



Theorem 12 (Martin et al. [79]). Let H = (V ,A) be a directed hypergraph such that

1. each hyperarc has a single head, i.e., hyperarcs are of the form (J, i) where

J ⊆ V and i ∈ V;

2. H is acyclic; more specifically, there is a mapping σ : V → R such that for

every hyperarc (J, i) ∈ A and every j ∈ J , we have σ(j) < σ(i);

3. there is finite set Q and a mapping f : V → 2Q such that

(a) f is “consistent” with the acyclicity, namely, for every hyperarc (J, i) ∈ A

and for every j ∈ J , we have f(j) ⊆ f(i);

(b) for every hyperarc (J, i) ∈ A and for distinct “tails” j, j′ ∈ J of the

hyperarc, we have f(j) ∩ f(j′) = ∅;

(c) there is a single “sink” node t with f(t) = Q.

4. every i ∈ V has at least one incoming arc. Since the graph is acyclic this

implies that some arcs (called boundary arcs) will have no tail nodes, i.e., arcs

of the type (J, i) with J = ∅.

Then, the set of all z satisfying the following constraints is a 0-1 polytope.

∑
a=(J,t)∈A

za = 1 (4.9)

∑
a=(J,i)∈A

za −
∑

a=(J,j)∈A:i∈J

za = 0, for every node i ∈ V \ {t} (4.10)

za ≥ 0, ∀a ∈ A. (4.11)

Lemma 23. projy(F2(G)) is a 0-1 polytope.

81



Proof. Apply Theorem 12. The directed hypergraph that we constructed clearly

satisfies points 1, 2, and 4. For point 3, let Q be the set of source nodes, and for

v ∈ N , let f(v) be the set of source nodes from which there is a directed path to v

in D.

Lemma 24. In a nicer tree decomposition, each vertex is ‘forgotten’ once, i.e., for

each v ∈ V , there is one pair (Bj, Bc) of bags, where Bj is the parent of Bc, such

that Bj = Bc − v.

Proof. Each vertex is forgotten at least once, since each vertex belongs to at least

one bag and all vertices have been forgotten by the empty root bag. Now suppose

that a vertex is forgotten at least twice, so that there are distinct bags Bj1 = Bc1− v

and Bj2 = Bc2 − v that forget v. We consider two cases. In the first case, assume

that one of the bags that forgets v is a descendant of the other bag that forgets

v. Without loss of generality suppose that Bj2 is a descendant of Bj1 . Then, bags

Bc2 and Bc1 both contain v, but bag Bj2 does not, yet it lies between Bc1 and Bc2 ,

contradicting the tree decomposition. In the second case, Bj1 is neither a descendant

nor an ancestor of Bj2 . In this case, they lie in different branches of the tree and

both of Bj1 and Bj2 lie on the unique path between Bc1 and Bc2 , and the same

contradiction occurs.

Note that for a feasible solution (x, y) to F2(G) there will be one unit of flow

‘from’ bag Bc ‘to’ its parent Bj. For example, when Bj = Bc − v, we have

∑
a=(Sc,Sj)∈A

s.t. S⊆Bc is independent

ya +
∑

a=((S+v)c,Sj)∈A
s.t. S+v⊆Bj is independent

ya = 1. (4.12)

If this flow were greater (less) than one, then the flow into the sink node t would be

greater (less) than one, violating constraint (4.5).

82



Lemma 25. F2(G) is a 0-1 polytope.

Proof. First see that F2(G) is an integral polytope, since projy(F2(G)) is a 0-1 poly-

tope (by Lemma 23), and since there is a nonnegative integer matrix M such that

x = My. Now we must show that the x variables are bounded by zero and one. By

Lemma 24, for any vertex v ∈ V , there will be one bag Bj = Bc − v that forgets v.

Then, for any (x, y) ∈ F2(G), we have that

0 ≤ xv =
∑

a∈FORGET(v)

ya

≤
∑

a=(Sc,Sj)∈A
s.t. S⊆Bc is independent

ya +
∑

a∈FORGET(v)

ya

=
∑

a=(Sc,Sj)∈A
s.t. S⊆Bc is independent

ya +
∑

a=((S+v)c,Sj)∈A
s.t. S+v⊆Bj is independent

ya = 1.

Lemma 26. P (G) ⊆ projx(F2(G)).

Proof. Consider x ∈ P (G). Without loss of generality, suppose that x is an extreme

point of P (G), and is thus the characteristic vector of an independent set I. We

construct an integral feasible point of F2(G) as follows. For every non-boundary arc

a = (Sc1, S
j
2) ∈ A that is not a hyperarc, set

ya =

 1, if S1 = Bc ∩ I and S2 = Bj ∩ I

0, otherwise.

For each boundary arc, set the corresponding variable to one. Similarly, for every

hyperarc, say a = ({Sc1 , Sc2}, Sj) ∈ A, set ya = 1 iff S = Bj ∩ I. Then, for every

83



arc, say a = (sj, S
i), emanating from a source node sj, set ya = 1 iff S = Bi ∩ I. It

can be verified that (x, y) ∈ F2(G).

Lemma 27. projx(F2(G)) ⊆ P (G).

Proof. Consider (x′, y′) ∈ F2(G). Without loss of generality, suppose that (x′, y′) is

an extreme point of F2(G). By Lemma 25, this means that (x′, y′) is 0-1. We are

to show that x′ ∈ P (G). By the flow constraints of F2(G), the integrality of (x′, y′),

and equality (4.12), the set of all arcs with positive flow induce a directed tree of

D—a sort of reverse arborescence rooted at the sink ∅t with the boundary arcs at the

leaves. We claim that S ′ := {i ∈ V | x′i > 0} is an independent set in G. Suppose

not, then there exist adjacent u, v ∈ S ′. By the tree decomposition, there is a bag Bj1

that contains u and v. Further, there is a unique path (Sj11 , S
j2
2 , S

j3
3 , . . . , ∅t) leading

to the sink node ∅t crossing only arcs of nonzero flow. Notice that, by Lemma 24,

there is a single opportunity to “forget” u and a single opportunity to “forget” v

along this path, and both arcs must be taken to have xu > 0 and xv > 0. Moreover,

u and v cannot be re-introduced along this path, since this would contradict the tree

decomposition. This implies that Sj11 must contain both u and v, but this contradicts

the construction of N , since for every node Sj1 ∈ N , S is independent in G. Thus,

S ′ is independent, so x′ = xS
′ ∈ P (G).

Theorem 13. The extension complexity of a graph’s independent set polytope is

O(2twn), where tw denotes its treewidth.

Proof. Lemmata 26 and 27 show that projx(F2(G)) = P (G). Since F2(G) has size

O(2twn), the result follows.

84



4.4 Formulation for Cardinality-Constrained Independence Systems

In this section, we study extended formulations for cardinality-constrained in-

dependence systems. Given an independence system (I, I), define the following

cardinality-constrained polytope.

Pk(I, I) = conv.hull
{
xS ∈ {0, 1}|I|

∣∣ S ∈ I; |S| = k
}
. (4.13)

The extended formulation for Pk(I, I) that we propose is based on Balas’s ex-

tended formulation for the disjunction of polyhedra.

Theorem 14 (Balas [6, 7]). Consider q nonempty polytopes P i ⊆ Rn, i = 1, . . . , q

and let P = conv.hull (
⋃q
i=1 P

i). Then, xc(P ) = O(
∑q

i=1 xc(P i)).

We will refer to the set Imax of (inclusion-wise) maximal independent sets, and

a cardinality-constrained counterpart:

Imax,k = {S | S ∈ Imax; |S| ≥ k} .

Now, for each S ∈ Imax,k we will define a polytope:

Pk(I, I, S) =

{
x ∈ [0, 1]|I|

∣∣∣∣∣ ∑
i∈I

xi = k; xj = 0 ∀j ∈ I \ S

}
. (4.14)

Lemma 28. Pk(I, I) = conv.hull
(⋃

S∈Imax,k
Pk(I, I, S)

)
.

Proof. First we show the inclusion Pk(I, I) ⊆ conv.hull
(⋃

S∈Imax,k
Pk(I, I, S)

)
. Con-

sider a point xS of Pk(I, I), which we can assume, without loss of generality, is an

extreme point and is thus the characteristic vector of an independent set S. Then

S is a k-vertex subset of a maximal independent set S ′. Hence S ′ ∈ Imax,k and

85



xS ∈ Pk(I, I, S ′), as desired.

Now we show the inclusion Pk(I, I) ⊇ conv.hull
(⋃

S∈Imax,k
Pk(I, I, S)

)
. Consider

a point x′ of conv.hull
(⋃

S∈Imax,k
Pk(I, I, S)

)
, which we can assume, without loss of

generality, is an extreme point of polytope Pk(I, I, S) for some S ∈ Imax,k. If x′ is

integral, then x′ is the characteristic vector of a k-vertex subset of S, and any subset

of S is independent, so x′ ∈ Pk(I, I), as desired. Now, if x′ is not integral, then

at least one component x′j is fractional. Then there must be another component x′k

that is also fractional, since otherwise the sum of the x variables could not equal k.

This implies an ε > 0 such that

0 ≤ x′j − ε < x′j + ε ≤ 1

0 ≤ x′k − ε < x′k + ε ≤ 1.

Then x′ can be written as a convex combination of points from Pk(I, I, S), namely

x′ + ε(ej − ek) and x′ + ε(ek − ej). (The vector ei has zeros in all entries except for

a one in position i.) This contradicts that x′ is an extreme point, hence x′ must be

integral. This concludes the proof.

Theorem 15. xc(Pk(I, I)) = O(|I||Imax,k|).

Proof. Directly from Theorem 14 and Lemma 28, since xc(Pk(I, I, S)) = O(|I|).

4.5 Formulation for Cardinality-Constrained Vertex Covers

In this section we provide extended formulations for the k-vertex cover polytope,

based on Theorem 15 and from ideas of Chen et al. [31]. The former easily leads to

a size O(2kn) bound, while the latter improves the dependence on k to O(1.466kn2).

86



Definition 18. The k-vertex cover polytope of a graph G is

Qk(G) = conv.hull{xS ∈ {0, 1}n | |S| = k; S is a vertex cover for G}

= conv.hull

{
x ∈ {0, 1}n

∣∣∣∣∣ ∑
i∈V

xi = k; xi + xj ≥ 1 ∀{i, j} ∈ E

}
.

The following lemma is implied by the bounded-search tree algorithm for vertex

cover, c.f. [42], and has been explicitly noted by Damaschke [39]. The bound is sharp

on the graph comprised of k disjoint edges.

Lemma 29. The number of (inclusion-wise) minimal vertex covers that have cardi-

nality ≤ k is at most 2k.

An immediate consequence is as follows.

Corollary 6. The number of maximal independent sets of an n-vertex graph that

have cardinality ≥ n− k is at most 2k.

Corollary 7. xc(Qk(G)) = O(2kn).

Proof. Directly from Corollary 6, Theorem 15, and a change of variables.

Now we will improve the dependence on k. In the following theorem, we say that

a vertex cover C of G is consistent with a partition (F,D,R) of V (G) if F ⊆ C and

D ∩ C = ∅. The idea is that vertices from F are fixed in the cover, vertices from D

are fixed out of the cover, and the remaining vertices from R are undetermined.

Theorem 16 (Chen et al. [31]). There is an algorithm, running in time O(1.47kn),

that returns a collection L(G, k) of triples that satisfies:

1. |L(G, k)| ≤ 1.466k;

2. each (F,D,R) ∈ L(G, k) is a partition of V (G);

87



3. each k-vertex cover of G is consistent with exactly one triple in L(G, k);

4. for each (F,D,R) ∈ L(G, k), the degree of each vertex in G[R] is ≤ 2.

Note that a graph with maximum degree at most 2 is the disjoint union of path

and cycle graphs. Hence, tw(G[R]) ≤ 2.

Theorem 17. For any k, xc(Qk(G)) = O(2tw(G)n2).

Proof. The proof is long, so we provide a brief and informal sketch. The ideas are

similar to those used in Section 4.3 to show that the independent set polytope of a

graph has extension complexity O(2twn). The main change is to make n − k + 1

‘layers’ of the hypergraph’s vertex set, and anytime a vertex v is forgotten in the tree

decomposition, the corresponding edge that forgets v in the hypergraph should be

routed to the next layer. In the last layer, the forget edges should be removed. This

will ensure that the independent set has cardinality n − k, so the resulting vertex

cover has cardinality k. The number of vertices and edges in this directed acyclic

hypergraph is O(2twn(n − k)) = O(2twn2). Then, the machinery of [79] is used to

show that a flow-based extended formulation over this hypergraph is integral.

Lemma 30. For any (F,D,R) ∈ L(G, k), the convex hull of k-vertex covers that

are consistent with (F,D,R) has extension complexity O(n2).

Proof. We can also assume, without loss of generality, that S ⊆ V (G) is a vertex

cover for G if and only if S ∩ R is a vertex cover for G[R]. Thus, we only need a

polyhedral representation of the (k−|F |)-vertex cover polytope of G[R]. By Theorem

17 and the observation that tw(G[R]) ≤ 2, we have xc(Qk−|F |(G[R])) = O(|R|2) =

O(n2).

Theorem 18. xc(Qk(G)) = O(1.466kn2).

88



Proof. For each (F,D,R) ∈ L(G, k) create an extended formulation for k-vertex

covers that are consistent with (F,D,R). Each of these polytopes has extension

complexity O(n2) by Lemma 30. By Theorem 16, there are at most 1.466k of these

triples. It can then be shown that the convex hull of the union of these polytopes is

precisely Qk(G), so xc(Qk(G)) = O(1.466kn2) by Theorem 14.

4.6 Discussion

It should be noted that the size bounds of O(2twn) and O(n+µ) from Sections 4.2

and 4.3 are incomparable. For example, the number µ(Pn) of maximal independent

sets of the n-vertex path graph Pn satisfies the recurrence µ(Pn) = µ(Pn−2)+µ(Pn−3)

with initial values µ(P−1) = µ(P0) = µ(P1) = 1, and this sequence, the Padovan

sequence, grows as ρn, where ρ = 1.3247 . . . is the plastic number [53]. This implies

that the first extended formulation would use exponentially many variables, but

the treewidth-based formulation would have size O(n). In the other extreme, the

complete graph Kn on n vertices has tw(Kn) = n − 1, but Kn has n maximal

independent sets.

89



5. CONCLUSION AND FUTURE WORK

In this dissertation we study challenging combinatorial optimization problems

from the perspective of parameterized complexity. Below, we revisit our contribu-

tions and offer ideas for future work.

In Chapter 2, we provide fixed-parameter tractable (fpt) algorithms for the Node-

Weighted Steiner Tree (NWST) problem and the Maximum-Weight Connected Sub-

graph (MWCS) problem. The NWST algorithm is parameterized by the number of

terminals. The MWCS algorithms are parameterized by the number of positive- and

negative-weight vertices. Interestingly, a complexity assumption called the Strong

Exponential Time Hypothesis suggests that the MWCS algorithm parameterized by

the number of negative-weight vertices is essentially best-possible.

On the other hand, we strongly suspect that the other algorithms can be im-

proved. As noted previously, the Steiner tree algorithm due to Dreyfus and Wag-

ner [44] runs in time O∗(3k) for instances with k terminals. A more recent paper [83]

solves the Steiner tree problem in time O∗((2+δ)k) where δ is any positive constant1.

We suspect that their algorithm can be generalized to solve the NWST problem in

roughly the same time bound. However, the analysis is more involved, and the au-

thors state that the constants in their algorithm’s runtime “become very large even

for moderate δ.” For these reasons, we do not attempt to improve the dependence

on k for NWST here. This is a subject for future work which would improve upon

our runtimes for solving both NWST and MWCS.

It may also be interesting to study the connected subgraph polytope P(G) for

other small values of α(G). Our work implies that any facet-defining inequality of

1We can achieve a runtime of O∗(2k) using polynomial space if the edge weights are bounded [14,
85].

90



P(G) has at most α(G) positive coefficients. So, P(G) is, in some sense, relatively

tame when α(G) is small. Another research direction is to look for extended formu-

lations for P(G) whose size grows polynomially in n but exponentially in α(G).

In Chapter 3, we provide fpt algorithms for the maximum clique problem (pa-

rameterized by the graph’s degeneracy and community degeneracy). Then we extend

the approach to solve arbitrary 0-1 programs based on properties of an associated

conflict graph. Roughly speaking, our algorithms are quick when the conflict graph

is dense. We also examine the complexity of generating conflict edges, and show that

this is difficult (conditioned on the hardness of SAT).

Our algorithms for solving 0-1 programs have runtimes that are O∗(Td,m), where

Td,m denotes the time to solve a subproblem of an m-constraint 0-1 program in

which all but at most d variables are unfixed. By the exhaustive search algorithm,

Td,m = O∗(2d), and SETH would imply that this cannot really be improved. How-

ever, we note that Td,m can be improved for special classes of 0-1 programs where the

subproblems admit nontrivial algorithms. For example, d-compatibility-degenerate

set packing problems can be solved in time O∗(2d/4) by our analysis and the inde-

pendent set algorithm of [95]. (Alternatively, this is implied by our maximum clique

algorithm.) The analysis provides additional theoretical evidence for the usefulness

of conflict graphs in solving integer programs; the running time is bounded by a

function that is exponential in the compatibility-degeneracy or the bicompatibility-

degeneracy instead of in the number of 0-1 variables. These results can provide

one explanation for the ability to solve problems in practice that are intractable in

general—provided the associated conflict graphs are suitably dense.

There is nothing particular about the approach that limits it to linear 0-1 pro-

grams. It is just as easily applied to other mathematical optimization problems that

have 0-1 variables. Similar worst-case runtimes can be achieved for mixed 0-1 linear

91



programs, for quadratic 0-1 programs, and even for tractable problems whose best-

known algorithms have high-polynomial runtimes. The only requirement is that the

subproblems have the same structure as the original problem, where subproblems

are defined as having some binary variables fixed to zero or one. It is an interesting

empirical question to see if our algorithms work well for these problems.

In Chapter 4, we study fpt extended formulations for various combinatorial op-

timization problems. Below, we summarize our contributions.

Theorem 19. The extension complexities of the independent set polytope P (G) and

of the vertex cover polytope Q(G) of a graph G satisfy:

1. xc(P (G)) = xc(Q(G));

2. xc(P (G)) = O(1.4423n);

3. xc(P (G)) = O(2twn).

Further, the k-vertex cover polytope Qk(G) satisfies

1. xc(Qk(G)) = O(2kn);

2. xc(Qk(G)) = O(1.466kn2).

This improves upon the previously best bounds of xc(P (G)) = O(ntw+1); xc(P (G)) =

O(2n); and xc(Qk(G)) = O(nk).

We suspect that several of our size bounds can be improved. The k-vertex cover

problem can be solved in time O∗(1.2738k) [32], which leads one to believe that

a similar size bound can be achieved. However, some of the techniques that are

used to achieve the O∗(1.2738k) runtime remove feasible solutions, and may not be

applicable when developing extended formulations. On the other hand, we think that

it is possible that our independent set formulations based on maximal independent

92



sets and treewidth are optimal. To disprove this, one should find a constant ε > 0

such that xc(P (G)) can be improved to size O∗((2− ε)tw) or to size O(( 3
√

3− ε)n).

We suspect that the following is true. Here, Pk(I, I) is the polytope corresponding

to the (cardinality constrained) independence system (I, I).

Conjecture 1. xc(Pk(I, I)) = O(|I|+ |Imax,k|).

The formulation below is our prime candidate to prove it. Introduce a variable

yS for each S ∈ Imax,k, where Imax,k is the set of inclusion-wise maximal independent

sets that have cardinality at least k. The formulation is the set of (x, y) ≥ 0 satisfying:

∑
i∈I

xi = k (5.1)

∑
S∈Imax,k

yS = 1 (5.2)

xi −
∑

S∈Imax,k:i∈S

yS ≤ 0, ∀i ∈ I. (5.3)

It would be interesting to find nontrivial lower bounds for xc(Qk(G)), specifically

to study its extension complexity as a function of k. It would also be interesting

to investigate lower and upper bounds for the cardinality-constrained independent

set polytope. Due to the widely held belief that the independent set problem is not

fpt with respect to solution size, this makes us think that fpt extended formulations

are unachievable. However, we know of no complexity-theoretic justification for the

belief that they do not exist (only that they cannot be constructed efficiently).

93



REFERENCES

[1] T. Achterberg. Conflict analysis in mixed integer programming. Discrete Op-

timization, 4(1):4–20, 2007.

[2] E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The maximum weight connected

subgraph problem. In M. Jünger and G. Reinelt, editors, Facets of Combina-

torial Optimization, pages 245–270. Springer, Berlin, 2013.

[3] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the

truth of certain quantified boolean formulas. Information Processing Letters,

8(3):121–123, 1979.

[4] A. Atamtürk, G.L. Nemhauser, and M.W.P. Savelsbergh. Conflict graphs in

solving integer programming problems. European Journal of Operational Re-

search, 121(1):40–55, 2000.

[5] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Graph

partitioning and graph clustering, volume 588 of Contemporary Mathematics.

American Mathematical Society, 2013.

[6] E. Balas. Disjunctive programming and a hierarchy of relaxations for dis-

crete optimization problems. SIAM Journal on Algebraic Discrete Methods,

6(3):466–486, 1985.

[7] E. Balas. Disjunctive programming: Properties of the convex hull of feasible

points. Discrete Applied Mathematics, 89(1):3–44, 1998.

[8] F. Barahona and A.R. Mahjoub. Compositions of graphs and polyhedra II:

stable sets. SIAM Journal on Discrete Mathematics, 7(3):359–371, 1994.

94



[9] A. Bazzi, S. Fiorini, S. Pokutta, and O. Svensson. No small linear program

approximates vertex cover with 2− ε. arXiv preprint arXiv:1503.00753, 2015.

[10] G. Bianconi and M. Marsili. Emergence of large cliques in random scale-free

networks. Europhysics Letters, 74(4):740, 2006.

[11] D. Bienstock and G. Munoz. On optimization problems with bounded tree-

width. arXiv preprint arXiv:1501.00288, 2015.

[12] D. Bienstock and N. Ozbay. Tree-width and the Sherali–Adams operator.

Discrete Optimization, 1(1):13–21, 2004.

[13] R. Bixby, S. Ceria, C. McZeal, and M. Savelsbergh. An updated mixed integer

programming library: MIPLIB 3.0, 1996.

[14] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius:

fast subset convolution. In Proceedings of the thirty-ninth annual ACM sym-

posium on Theory of computing, pages 67–74. ACM, 2007.

[15] H.L. Bodlaender. Treewidth: Algorithmic techniques and results. In Mathemat-

ical Foundations of Computer Science 1997: 22nd International Symposium,

MFCS’97, Bratislava, Slovakia, August 25-29, 1997, Proceedings, volume 22,

page 19. Springer, 1997.

[16] H.L. Bodlaender. A partial-k-arboretum of graphs with bounded treewidth.

Theoretical Computer Science, 209(1):1–45, 1998.

[17] H.L. Bodlaender and A.M.C.A. Koster. Combinatorial optimization on graphs

of bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

[18] V. Boginski, S. Butenko, and P.M. Pardalos. On structural properties of the

market graph. In A. Nagurney, editor, Innovations in financial and economic

networks, pages 29–45. Edward Elgar Publishing, 2003.

95



[19] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum clique

problem. In D.-Z. Du and P.M. Pardalos, editors, Handbook of combinatorial

optimization, pages 1–74. Springer, 1999.

[20] N. Bourgeois, B. Escoffier, V.T. Paschos, and J.M.M. van Rooij. Fast algo-

rithms for max independent set. Algorithmica, 62(1-2):382–415, 2012.

[21] G. Braun, S. Fiorini, and S. Pokutta. Average case polyhedral complexity of

the maximum stable set problem. In RANDOM 2014, volume 28 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 515–530, 2014.

[22] M. Braverman and A. Moitra. An information complexity approach to ex-

tended formulations. In Proceedings of the 45th Annual ACM Symposium on

Theory of Computing, pages 161–170. ACM, 2013.

[23] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected

graph. Communications of the ACM, 16(9):575–577, 1973.

[24] A. Buchanan and S. Butenko. Tight extended formulations for independent

set. 2014. Working paper available at http://www.optimization-online.

org/DB_FILE/2014/09/4540.pdf.

[25] A. Buchanan, J.L. Walteros, S. Butenko, and P.M. Pardalos. Solving integer

programs with dense conflict graphs. In L.G. Casado, I. Garćıa, and E.M.T.

Hendrix, editors, Proceedings of the XII Global Optimization Workshop, pages

125–128, 2014.

[26] A. Buchanan, J.L. Walteros, S. Butenko, and P.M. Pardalos. Solving maximum

clique in sparse graphs: an O(nm+ n2d/4) algorithm for d-degenerate graphs.

Optimization Letters, 8(5):1611–1617, 2014.

96



[27] A. Buchanan, Y. Wang, and S. Butenko. Exact algorithms for node-weighted

Steiner tree and maximum-weight connected subgraph. 2015. Manuscript.

[28] S. Butenko and W.E. Wilhelm. Clique-detection models in computational bio-

chemistry and genomics. European Journal of Operational Research, 173(1):1–

17, 2006.

[29] C. Calabro, R. Impagliazzo, and R. Paturi. The complexity of satisfiability of

small depth circuits. In J. Chen and F.V. Fomin, editors, Parameterized and

Exact Computation, pages 75–85. Springer, 2009.

[30] J. Chen, X. Huang, I.A. Kanj, and G. Xia. Strong computational lower bounds

via parameterized complexity. Journal of Computer and System Sciences,

72(8):1346–1367, 2006.

[31] J. Chen, I.A. Kanj, J. Meng, G. Xia, and F. Zhang. Parameterized top-K

algorithms. Theoretical Computer Science, 470:105–119, 2013.

[32] J. Chen, I.A. Kanj, and G. Xia. Improved upper bounds for vertex cover.

Theoretical Computer Science, 411(40):3736–3756, 2010.

[33] F. Chung. Graph theory in the information age. Notices of the AMS, 57(6):726–

732, 2010.

[34] M. Conforti, G. Cornuéjols, and G. Zambelli. Extended formulations in com-

binatorial optimization. Annals of Operations Research, 204(1):97–143, 2013.

[35] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming, volume 271

of Graduate Texts in Mathematics. Springer International Publishing, 2014.

[36] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algo-

rithms. The MIT Press, 3rd edition, 2009.

97



[37] N. Creignou and J.-J. Hébrard. On generating all solutions of generalized

satisfiability problems. Informatique théorique et applications, 31(6):499–511,

1997.

[38] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Pa-

turi, S. Saurabh, and M. Wahlstrom. On problems as hard as CNF-SAT. In

Computational Complexity (CCC), 2012 IEEE 27th Annual Conference on,

pages 74–84. IEEE, 2012.

[39] P. Damaschke. Parameterized enumeration, transversals, and imperfect phy-

logeny reconstruction. Theoretical Computer Science, 351(3):337–350, 2006.

[40] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.

Springer, Heidelberg, fourth edition, 2010.

[41] M.T. Dittrich, G.W. Klau, A. Rosenwald, T. Dandekar, and T. Müller. Identi-

fying functional modules in protein–protein interaction networks: an integrated

exact approach. Bioinformatics, 24(13):i223–i231, 2008.

[42] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.

[43] R.G. Downey and M.R. Fellows. Fundamentals of Parameterized complexity.

Springer, 2013.

[44] S.E. Dreyfus and R.A. Wagner. The Steiner problem in graphs. Networks,

1(3):195–207, 1971.

[45] J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming,

1(1):127–136, 1971.

[46] J. Edmonds. An interview with Jack Edmonds. Optima, 97:9–13, 2015. Inter-

view conducted by V. Kaibel, J. Lee, and J. Linderoth.

98



[47] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse

graphs in near-optimal time. In O. Cheong, K.-Y. Chwa, and K. Park, edi-

tors, Algorithms and Computation, volume 6506 of Lecture Notes in Computer

Science, pages 403–414. Springer, 2010.

[48] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-

world graphs. In P.M. Pardalos and S. Rebennack, editors, Experimental Al-

gorithms, volume 6630 of Lecture Notes in Computer Science, pages 364–375.

Springer, 2011.

[49] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, and R. de Wolf. Linear vs.

semidefinite extended formulations: exponential separation and strong lower

bounds. In Proceedings of the 44th Annual ACM Symposium on Theory of

Computing, pages 95–106. ACM, 2012.

[50] J. Flum and M. Grohe. Parameterized complexity theory. Texts in Theoretical

Computer Science. Springer-Verlag Berlin Heidelberg, 2006.

[51] F.V. Fomin, F. Grandoni, A.V. Pyatkin, and A.A. Stepanov. Combinatorial

bounds via measure and conquer: Bounding minimal dominating sets and

applications. ACM Transactions on Algorithms, 5(1):9, 2008.

[52] F.V. Fomin and D. Kratsch. Exact exponential algorithms. Springer, 2010.

[53] Z. Füredi. The number of maximal independent sets in connected graphs.

Journal of Graph Theory, 11(4):463–470, 1987.

[54] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.

[55] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-

bridge University Press, 2008.

99



[56] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its con-

sequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[57] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combi-

natorial Optimization, volume 2 of Algorithms and Combinatorics. Springer-

Verlag, Berlin, 2nd edition, 1993.

[58] P.L. Hammer, E.L. Johnson, and U.N. Peled. Facet of regular 0–1 polytopes.

Mathematical Programming, 8(1):179–206, 1975.

[59] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,

182(1):105–142, 1999.

[60] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem, vol-

ume 53 of Annals of Discrete Mathematics. Elsevier, 1992.

[61] R. Impagliazzo and R. Paturi. Complexity of k-SAT. In Proceedings of the

Fourteenth Annual IEEE Conference on Computational Complexity, pages 237–

240. IEEE, 1999.

[62] R. Impagliazzo, R. Paturi, and S. Schneider. A satisfiability algorithm for

sparse depth two threshold circuits. In Foundations of Computer Science

(FOCS), 2013 IEEE 54th Annual Symposium on, pages 479–488. IEEE, 2013.

[63] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly expo-

nential complexity? Journal of Computer and System Sciences, 63(4):512–530,

2001.

[64] D.S. Johnson. The NP-completeness column: an ongoing guide. Journal of

Algorithms, 6(1):145–159, 1985.

[65] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiability:

Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993,

100



volume 26 of Discrete Mathematics and Theoretical Computer Science. AMS,

1996.

[66] V. Kaibel. Extended formulations in combinatorial optimization. Optima,

85:2–7, 2011.

[67] M.M. Kanté, V. Limouzy, A. Mary, and L. Nourine. Enumeration of minimal

dominating sets and variants. In Fundamentals of Computation Theory, pages

298–309. Springer, 2011.

[68] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and

J.W. Thatcher, editors, Complexity of Computer Computations. Plenum Press,

1972.

[69] T. Kloks. Treewidth: Computations and approximations. Lecture Notes in

Computer Science, 842, 1994.

[70] P. Kolman and M. Kouteckỳ. Extended formulation for CSP that is compact

for instances of bounded treewidth. arXiv preprint arXiv:1502.05361, 2015.

[71] E.L. Lawler. Combinatorial optimization: networks and matroids. Courier

Corporation, 1976.

[72] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Generating all maxi-

mal independent sets: NP-hardness and polynomial-time algorithms. SIAM

Journal on Computing, 9(3):558–565, 1980.

[73] J.K. Lenstra. The mystical power of twoness: in memoriam Eugene L. Lawler.

Journal of Scheduling, 1(1):3–14, 1998.

[74] D.R. Lick and A.T. White. k-degenerate graphs. Canad. J. Math, 22:1082–

1096, 1970.

101



[75] D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of

bounded treewidth are probably optimal. In Proceedings of the 22nd Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 777–789. SIAM, 2011.

[76] D. Lokshtanov, D. Marx, S. Saurabh, et al. Lower bounds based on the expo-

nential time hypothesis. Bulletin of the EATCS, (105):41–72, 2011.

[77] A.O. Makhorin. GLPK (GNU linear programming kit) version 4.52, 2013.

http://www.gnu.org/software/glpk/.

[78] R.K. Martin. Using separation algorithms to generate mixed integer model

reformulations. Operations Research Letters, 10(3):119–128, 1991.

[79] R.K. Martin, R.L. Rardin, and B.A. Campbell. Polyhedral characterization of

discrete dynamic programming. Operations Research, 38(1):127–138, 1990.

[80] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph

coloring algorithms. Journal of the ACM, 30(3):417–427, 1983.

[81] R.R. Meyer. On the existence of optimal solutions to integer and mixed-integer

programming problems. Mathematical Programming, 7(1):223–235, 1974.

[82] R.E. Miller and D.E. Muller. A problem of maximum consistent subsets. IBM

Research Rep. RC-240, IBM Research Center, Yorktown Heights, New York,

USA, 1960.

[83] D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner

tree problem. In B. Durand and W. Thomas, editors, STACS 2006, volume

3884 of Lecture Notes in Computer Science, pages 561–570. Springer, 2006.

[84] J.W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics,

3(1):23–28, 1965.

102



[85] J. Nederlof. Fast polynomial-space algorithms using M obius inversion: Im-

proving on Steiner tree and related problems. In S. Albers, A. Marchetti-

Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas, editors, Automata,

Languages and Programming, volume 5555 of Lecture Notes in Computer Sci-

ence, pages 713–725. Springer Berlin Heidelberg, 2009.

[86] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization,

volume 18 of Wiley-Interscience Series in Discrete Mathematics and Optimiza-

tion. Wiley, New York, 1988.

[87] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Com-

mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

[88] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford

Lecture Series in Mathematics and Its Applications. Oxford University Press,

2006.

[89] M.W. Padberg. On the facial structure of set packing polyhedra. Mathematical

Programming, 5(1):199–215, 1973.

[90] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-

plexity classes. In Proceedings of the twentieth annual ACM symposium on

Theory of computing, pages 229–234. ACM, 1988.

[91] C.H. Papadimitriou. Computational complexity. Addison-Wesley Publishing

Company, 1995.

[92] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms

and Complexity. Dover Publications, Mineola, 1998.

[93] M. Pǎtraşcu and R. Williams. On the possibility of faster SAT algorithms. In

SODA, volume 10, pages 1065–1075. SIAM, 2010.

103



[94] S. Pokutta and M. Van Vyve. A note on the extension complexity of the

knapsack polytope. Operations Research Letters, 41(4):347–350, 2013.

[95] J. M. Robson. Finding a maximum independent set in time O(2n/4). 2001.

LaBRI, Université de Bordeaux I. Available online at https://www.labri.

fr/perso/robson/mis/techrep.html.

[96] M. Rospocher. On the computational complexity of enumerating certificates of

NP problems. PhD thesis, University of Trento, 2006.

[97] T. Rothvoß. The matching polytope has exponential extension complexity. In

Proceedings of the 46th Annual ACM Symposium on Theory of Computing,

pages 263–272. ACM, 2014.

[98] D.S. Rubin. On the unlimited number of faces in integer hulls of linear programs

with a single constraint. Operations Research, 18(5):940–946, 1970.

[99] M.W.P. Savelsbergh. Preprocessing and probing techniques for mixed integer

programming problems. ORSA Journal on Computing, 6(4):445–454, 1994.

[100] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience

Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1998.

[101] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24

of Algorithms and Combinatorics. Springer, 2003.

[102] A. Segev. The node-weighted Steiner tree problem. Networks, 17(1):1–17, 1987.

[103] H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the con-

tinuous and convex hull representations for zero-one programming problems.

SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

104



[104] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for

generating all maximal cliques and computational experiments. Theoretical

Computer Science, 363(1):28–42, 2006.

[105] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for

generating all the maximal independent sets. SIAM Journal on Computing,

6(3):505–517, 1977.

[106] A. Vergis. Manuscript, 1983.

[107] A. Verma, A. Buchanan, and S. Butenko. Solving the maximum clique and

vertex coloring problems on very large sparse networks. INFORMS Journal on

Computing, 27(1):164–177, 2015.

[108] Y. Wang, A. Buchanan, and S. Butenko. On imposing connectivity con-

straints in integer programs. Working paper available at http://www.

optimization-online.org/DB_FILE/2015/02/4768.pdf, 2015.

[109] R. Williams. Algorithms for circuits and circuits for algorithms. In 28th IEEE

Conference on Computational Complexity (CCC 2014), 2014.

[110] L.A. Wolsey. Integer programming, volume 42 of Wiley-Interscience Series in

Discrete Mathematics and Optimization. John Wiley & Sons, 1998.

[111] D.R. Wood. On the maximum number of cliques in a graph. Graphs and

Combinatorics, 23(3):337–352, 2007.

[112] M. Yannakakis. Expressing combinatorial optimization problems by linear pro-

grams. Journal of Computer and System Sciences, 43:441–466, 1991.

[113] D. Zuckerman. Linear degree extractors and the inapproximability of max

clique and chromatic number. In Proceedings of the 38th Annual ACM Sym-

posium on Theory of Computing, pages 681–690. ACM, 2006.

105


