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ABSTRACT 

 

Carcinomas, cancers that originate in the epithelium, account for more than 80% 

of all cancers. When detected early, the 5-year survival rate is greatly increased. Biopsy 

and histopathology is the current gold standard for diagnosis of epithelial carcinomas 

which is an invasive, time-intensive, and stressful procedure. In vivo confocal microscopy 

has the potential to non-invasively image epithelial tissue in near-real time. This 

dissertation describes the development of a confocal microscope for imaging epithelial 

tissues and an image processing algorithm for segmentation of epithelial nuclei.  

A rapid beam and stage scanning combination was used to acquire fluorescence 

confocal images of cellular and tissue features along the length of excised mouse colon. 

A single 1 × 60 mm2 field of view is acquired in 10 seconds. Disruption of crypt structure 

such as size, shape, and distribution is visualized in images of inflamed colon tissue, while 

the normal mouse colon exhibited uniform crypt structure and distribution.  

An automated pulse coupled neural network segmentation algorithm was 

developed for epithelial nuclei segmentation. An increase in nuclear size and the nuclear-

to-cytoplasmic ratio is a potential precursor to pre-cancer development. The spiking 

cortical model algorithm was evaluated using a developed confocal image model of 

epithelial tissues with varying contrast. It was further validated on reflectance confocal 

images of porcine and human oral tissue from two separate confocal imaging systems. 

Biopsies of human oral mucosa are used to determine the tissue and system effects on 

measurements of nuclear-to-cytoplasmic ratio.  
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NOMENCLATURE 

 

RCM Reflectance Confocal Microscopy 

PSF Point Spread Function 

FWHM Full Width Half Maximum 

FOV Field of View 

NA Numerical Aperture 

PMT Photomultiplier Tube 

NCR Nuclear-to-Cytoplasmic Ratio 

SCM Spiking Cortical Model 

PCNN Pulse Coupled Neural Network 

ANN Artificial Neural Network 

PBS Phosphate Buffered Solution 
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1. INTRODUCTION  

 

1.1 Motivation 

 Carcinomas, cancers of epithelial tissues that cover the external and internal 

surfaces of the body, account for more than 80% of all cancers [1]. Visual or endoscopic 

examination followed by invasive tissue biopsy and histopathology is the current standard 

of care for detection and diagnosis of carcinoma. The microscopic examination of fixed, 

sectioned, and stained tissue includes evaluation of morphologic and architectural 

alterations, including increased nuclear-to-cytoplasmic ratio (NCR), enlarged nuclei, 

cellular pleomorphism, and irregular epithelial stratification [2]. Many carcinomas are 

preceded by a premalignant stage, in which the development of cancer can be prevented 

if detected and treated successfully. However, the clinical presentation of these 

precancerous lesions, such as oral leukoplakia, Barrett’s esophagus, colon polyps, and 

actinic keratosis of the skin, can be widespread, multifocal, and/or diffuse. Furthermore, 

regions of premalignancy can be clinically indistinguishable from benign lesions, 

complicating selection of a representative site to biopsy for accurate diagnosis and staging.  

 In contrast to the physical sectioning of tissue required for histology, confocal 

microscopy achieves “optical sectioning” by spatially filtering light with a small aperture 

at the conjugate image plane of the microscope focus [3]. By detecting light from the focal 

plane and significantly rejecting out of focus light, confocal microscopy enables high 

resolution imaging in three dimensions of thick tissue. Recent advances in acquisition 

speed and miniaturization of confocal microscopes and endomicroscopes have enabled 
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minimally-invasive real-time imaging of cellular and tissue features in vivo [4-10]. These 

features provide information comparable to histologic characteristics of the mucosa and 

submucosa without the tissue excision and processing required for histology. Confocal 

endomicroscopes have been implemented through working channels of conventional 

endoscopes and as independent instruments [4]. Beyond the current clinical use of 

confocal microscopy to detect neoplasia in gastroenterology and dermatology, confocal 

imaging is currently under investigation to improve early detection of cancer and 

precancer in a number of other organs [11-21]. 

 The focus of this dissertation is the development of a reflectance and fluorescence 

confocal microscope and image processing algorithm for large area imaging and 

quantitative evaluation of epithelial tissues for preclinical studies. The fluorescence 

confocal microscope was used to evaluate the effects of induced inflammation in murine 

colon tissue. Using both custom and commercial reflectance confocal microscopes, tissue 

and system effects on the measured NCR were qualitatively and quantitatively recorded. 

A nuclear segmentation algorithm based on a pulse coupled neural network was developed 

for automated detection of nuclei in porcine buccal mucosa for fast reporting of the NCR, 

average nuclear area, and number of objects present in a single frame. 

1.2 Specific Aims 

 My research focused on the design and construction of a confocal microscope, 

development of a nuclear segmentation algorithm, and application of confocal imaging to 

epithelial tissues. My specific goals are: 
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 1. Design and construct a large field of view, dual-mode confocal reflectance and 

fluorescence microscope for imaging bulk epithelial tissues for preclinical studies. 

 2. Evaluate colon crypt structural changes due to inflammation along the length 

of the colon using large area confocal fluorescence microscopy. 

 3. Develop an automated segmentation algorithm to segment nuclear objects in 

low-contrast confocal images of epithelial tissue.  

 4. Determine the effects of tissue sample processing, autolysis, and system axial 

resolution on the measurement of nuclear to cytoplasmic ratio in confocal reflectance 

microscopy images of epithelial tissue. 

1.3 Dissertation Overview 

 In this dissertation, Chapter 2 gives background information on confocal 

microscopy, a review of literature on confocal imaging applications of epithelial tissues, 

and potential contrast agents for precancer or disease detection. Chapter 3 describes the 

custom designed dual-mode confocal microscope. Chapter 4 presents the results of the 

fluorescence confocal imaging of induced inflammation in the murine colon. Chapter 5 

describes an automated pulse coupled neural network segmentation algorithm for 

segmentation of cell nuclei. Chapter 6 presents results from imaging porcine buccal 

mucosa and the effect of system parameters and tissue processing on nuclear to 

cytoplasmic ratio measured by reflectance confocal microscopy and the automated nuclear 

segmentation algorithm. Lastly, Chapter 7 provides a summary of results and conclusions 

from this research. 
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2. BACKGROUND  

 

2.1 Introduction 

 The goal of this research is to design and construct a dual-mode confocal 

microscope to characterize induced inflammation in mouse colon tissue and evaluate 

system and tissue effects on the measured epithelial nuclear to cytoplasmic ratio. In this 

section, I will review the fundamental concepts of confocal microscopy, discuss the dual-

modality of the system based on fluorescence and reflectance imaging, and discuss how I 

tailored this custom confocal system to meet the needs of my tissue imaging studies. 

2.2 Confocal Microscopy 

Confocal microscopy can image bulk tissue in three dimensions with higher levels 

of resolution and contrast than widefield microscopy [22].  In contrast to the physical 

sectioning and two dimensional imaging of traditional histology, confocal imaging allows 

optical sectioning of bulk tissue, enabling acquisition of three dimensional images of intact 

tissue. 

Confocal microscopy uses a point source illumination that is focused onto a sample 

and a point detector for collection of signal. Fig 1 shows a simple schematic of confocal 

microscopy [23]. If imaging in reflectance mode, the light passes through a beam splitter 

since the entire signal coming back from the focal plane within the sample is collected. If 

                                                 

 Part of this section is reprinted with permission from Confocal Endomicroscopy: Instrumentation and 

Medical Applications by Joey M. Jabbour, Meagan A. Saldua, Joel N. Bixler, and Kristen C. Maitland, 2011. 

Annals of Biomedical Engineering, 40(2), 378-397, Copyright 2011 by Springer New York LLC. 
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imaging in fluorescence mode, the beam splitter is replaced with a dichroic mirror so only 

the fluorescence signal is detected, not the illumination source wavelength. The light is 

focused to a point within the sample, and the reflectance or fluorescence signal is collected 

by the same lens and reflects off of the beam splitter or dichroic mirror. 

 

 

Fig 1. Simple confocal schematic showing the light path of a confocal microscope [23]. 

 

 

High-resolution confocal reflectance and fluorescence images of tissue are 

collected by placing a pinhole in front of the detector in a conjugate image plane of the 

focus to reject light coming from out of focus planes within the sample. In order to create 

a two dimensional image, the point source is scanned across the sample using a scanning 

technique. Fast scanning allows images to be seen in near real-time. In contrast to wide-

field microscopy, the sample is illuminated a single point at a time. Moving the sample in 

the third axial dimension builds a three-dimensional tomographic image.  
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 The resolution of a confocal microscope indicates the microscope’s capability to 

separate two closely spaced points. The point spread function (PSF) of a system 

characterizes a system’s response to a point source of light. When light is focused to a 

point, an Airy pattern is formed by diffraction as light passes through the circular aperture 

of the lens. The lateral resolution, using the PSF in the lateral plane, is defined as the radius 

of the first dark ring around the Airy Disk and is given by Equation 1 [3],  

 
obj

Airy
NA

r
61.0

   (1) 

where λ represents the wavelength of the illumination source and NAobj is the numerical 

aperture of the microscope objective. Lateral resolution of a confocal microscope is 

improved by decreasing the size of the pinhole, but there is a tradeoff when choosing the 

optimal pinhole size. A smaller pinhole will provide better resolution, but decrease the 

amount of signal detected.  A larger pinhole sacrifices resolution in order to detect more 

signal.  

 The axial resolution is defined as the full width half maximum of the PSF in the 

axial direction and is given by Equation 2 [24], 

   2
4.1

obj

axial
NA

n
z





  (2) 

where n represents the index of refraction of the object medium used.  

A study was performed to determine the optimal pinhole size without having to 

sacrifice signal or resolution [23]. This method is applicable to many optical imaging 

systems by converting the axial resolution equation and pinhole radius to dimensionless 
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optical units. The optimal pinhole size can be determined based on the wavelength of light 

and numerical aperture of the objective used. Equation 3 represents the normalized pinhole 

radius, vp as a function of the pinhole diameter, dp, wavelength, λ, numerical aperture of 

the objective, NAobj, and the total system magnification, MT. 

  
p obj

p

T

d NA
v

M




  . (3) 

 Equation 4 represents the normalized axial position, u, as a function of the axial 

position, z, and the quarter angle of the NA instead of the half angle, 

  znu

2

2
sin

8























. (4) 

 Fig 2 demonstrates the half-width of the image, v1/2, as a function of the normalized 

detector pinhole radius, vp. This plot represents the lateral resolution of a system. For large 

vp, the lateral resolution is comparable to traditional microscopy. As vp is decreased below 

a value of 4, lateral resolution (v1/2) is improved. For vp = 0, no signal is permitted to the 

detector. 
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Fig 2. Half-width, v1/2, as a function of detector pinhole size, vp [23]. 

 

Fig 3 represents the axial resolution of an imaging system as a function of 

normalized pinhole radius. For vp less than 2.5, the half-width is fairly constant; therefore 

a larger pinhole up to vp = 2.5 will allow more signal to reach the detector without 

sacrificing axial resolution. Ideally, a pinhole size, vp, of less than or equal to 2.5 is chosen. 
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Fig 3. Half-width, u1/2, as a function of detector pinhole size, vp [23]. 

 

2.2.1 Medical Applications of Confocal Endomicroscopy 

  Early in vivo confocal imaging was first performed on the eye, mouth, and 

skin [25-28]. These accessible organs were used to demonstrate the in vivo cellular 

imaging capability of confocal imaging. However, standard microscope objective lenses, 

even on fiber coupled handheld probes, are incapable of imaging cavities within the body. 

With advancing technology endomicroscopic probes are sufficiently small in size to more 
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readily access areas within the body such as the gastrointestinal (GI) tract, bladder, cervix, 

ovary, oral cavity, and lung. Here, we present a selection of results from clinical studies 

of confocal endomicroscopy.  

  Confocal endomicroscopy has been most extensively applied to detection 

of diseases in the GI tract. The Optiscan/Pentax ISC-1000 has been used in numerous 

studies for in vivo imaging of cellular morphology of the mucosa in the upper and lower 

GI tract [29]. Cellular and subcellular structures, such as nuclei within the mucosa, colon 

crypts, stomach villi, and gastric pits are visible in the images. Squamous epithelium from 

the distal esophagus was also imaged. Fluorescent dyes are commonly used to provide 

contrast in fluorescence imaging of tissue. Acriflavine is administered topically to 

visualize nuclei, and fluorescein is administered intravenously to see the extracellular 

matrix and lamina propria. Fig 4 demonstrates the features visualized in the normal colon 

using these exogenous contrast agents. The Mauna Kea Cellvizio probe-based 

endomicroscopes have also been used in the upper and lower GI tract [11]. Olympus 

(Olympus Optical Co. Ltd., Tokyo, Japan) explored the development of a endomicroscope 

for use in the working channel of an endoscope to image mucosa in the GI tract [30]. 

Although exogenous contrast agents were not necessary to detect signal in reflectance 

confocal mode, the images had poor contrast and resolution, limiting resolution of nuclei 

within the tissue. Another confocal reflectance endomicroscopy study was performed on 

esophageal and stomach tissue using a prototype Mauna Kea reflectance confocal probe 

with improved contrast and resolution [31]. 
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Fig 4. In vivo endomicroscopic imaging of the normal colon using Optiscan/Pentax. (a) 
First prototype with 6 mm outer diameter and (b–d, f) second prototype with 5 mm outer 
diameter and integrated into the Pentax EC3870 K video-endoscope. Tissue stained with topical 
application of acriflavine (a, b) and intravenous fluorescein (c, d). (a) Rectal mucosa; (b) 
descending colon mucosa; (c) cecum; (d) deeper layers of the lamina propria showing 
microvasculature in the descending colon; (f) terminal ileum. (e) Hematoxylin and eosin stained 
tissue section cut parallel to the tissue surface for comparison to en face confocal images. 500 × 
500 µm field of view for all images [29].  
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  Patients with acid reflux may develop Barrett’s esophagus as a result of 

irritation of the epithelial lining of the esophagus from stomach acid. These patients are at 

a higher risk of incidence of adenocarcinoma in the esophagus. The first endomicroscopy 

study of Barrett’s esophagus was conducted with promising results [32]. A method for 

classification of confocal images based on vasculature and cellular architecture was 

developed and presented with example images for prediction of histopathology of normal 

gastric epithelium, Barrett’s epithelium, and neoplasia. Based on this classification 

system, Barrett’s esophagus was predicted with 98.1% sensitivity and 94.1% specificity. 

Furthermore, Barrett’s- associated neoplasia was predicted with 92.9% sensitivity and 

98.4% specificity. The current technique for monitoring neoplastic development in 

Barrett’s esophagus is four-quadrant biopsy, which is susceptible to sampling error. Using 

the Mauna Kea probe-based endomicroscope, a prospective study has shown that in vivo 

confocal imaging is ‘‘non-inferior’’ to the standard quadrant biopsy [33]. Although, the 

technique has potential to exclude neoplasia, it may not replace histology for surveillance 

of Barrett’s esophagus. However, endomicroscopy may improve diagnostic yield by 

guiding biopsy to the area with the highest risk of neoplasia. 

  Celiac disease causes damage to the villi of the small intestine prohibiting 

vital nutrients from being absorbed into the bloodstream. This disease causes the stomach 

to be intolerable to gluten, which is common in many foods. Confocal laser 

endomicroscopy has shown potential to diagnose celiac disease [34,35]. After imaging the 

duodenum in six patients followed with biopsies of the interrogated tissue, confocal laser 

endomicroscopy successfully aided a pathological diagnosis of four normal and two 
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positive for celiac disease [35]. Another study supports diagnosis of celiac disease with 

sensitivity of 94% and specificity of 92% using confocal endomicroscopy and suggests 

that abnormalities not seen in histology could possibly be detected [34].  

  Patients with inflammatory bowel disease, including ulcerative colitis and 

Crohn’s disease, have an increased risk of developing colorectal cancer and are 

recommended to begin colonoscopy screening at an earlier age. Random or step biopsy 

may be recommended for surveillance in ulcerative colitis, which is prone to sampling 

error. Confocal endomicroscopy is being evaluated as a tool to target regions suspicious 

for neoplasia to guide biopsy in patients with ulcerative colitis. Differences can be seen 

between endomicroscopic images of normal tissue and non-active or active ulcerative 

colitis [36]. Normal colon mucosa has crypts that are small and regularly arranged within 

the tissue. Non-active ulcerative colitis also displays small crypts, but in an irregular 

arrangement, while active ulcerative colitis has an unidentifiable structure with large crypt 

lumens. In future research, it will be important to determine whether low-grade dysplasia 

can be differentiated from benign lesions with inflammation. 

  The colon and rectum are in the top five sites for cancer incidence in the 

United States, with an age adjusted incidence approaching 50 per 100,000 people [37]. 

Additionally, colorectal cancer has a low 5-year relative survival rate of 64%. Patients 

with high risk for colorectal cancer based on personal or family history are recommended 

to have periodic colonoscopy screening. Colorectal cancers primarily originate in 

adenomatous polyps, which are typically removed during endoscopic evaluation, whether 

they are neoplastic or not. Some lesions develop from flat or depressed lesions that are 
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difficult to detect by traditional white light endoscopy, and would also be difficult to detect 

with confocal endomicroscopy based on the small field of view (FOV). Kiesslich et al. 

published the first results on the diagnostic capability of confocal endomicroscopy in 

colorectal intraepithelial neoplasia and cancer in 2004 [38]. The goal was to predict 

histology while patients were undergoing a colonoscopy screening for colorectal cancer. 

Neoplastic changes within the tissue were predicted with high accuracy, including a 

sensitivity of 97.4% and specificity of 99.4%. The classification of confocal images was 

based on patterns in the vessel and crypt architecture. As mentioned previously, normal 

crypts are regularly arranged in a hexagonal pattern, while neoplastic tissue is distorted 

and irregular. This method would allow for faster diagnosis of endoscopically observable 

neoplasia and would potentially limit the number of unnecessary biopsies. In contrast to 

intraepithelial neoplasia and cancer, hyperplastic polyps are considered to be 

nonneoplastic tissue and are not required to be removed. A recent prospective study from 

another group to differentiate adenomas from non-neoplastic polyps using a basic 

classification system reported a sensitivity of 93.9% and a specificity of 95.9% compared 

with histology [39]. Meining et al. reported similar results using the probe-based 

endomicroscopy with a sensitivity of 92.3% and specificity of 91.3% [11]. 

  Gastric cancer is speculated to be a multistep progression that is initially 

triggered by an infection of Helicobacter pylori (H. pylori), which progresses to intestinal 

metaplasia, chronic gastritis, intraepithelial neoplasia, and then cancer. With the aid of 

confocal endomicroscopy, H. pylori may be diagnosed in the gastric epithelium in vivo 

[40]. Confocal images of gastric mucosa demonstrate similarities with histology images 
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for fundic gland mucosa, pyloric gland mucosa, and adenocarcinoma of the stomach [41]. 

While confocal imaging in the GI tract has predominantly been performed in fluorescence 

mode using exogenous contrast agents, reflectance confocal endomicroscopy was also 

evaluated for the diagnosis of gastroesophageal cancer in its early stages [31]. Features of 

the normal esophagus show high reflectivity from nuclei and cellular honeycomb-like 

structure. Cancer in the esophagus appeared to have an increase in nuclear to cytoplasmic 

ratio, and the reflectivity from cell membranes was not seen. Normal gastric mucosa 

exhibits crypt cells arranged in a flower pattern around the gastric pit. Within 

differentiated adenocarcinoma, cell membranes were not apparent and glandular structures 

were disorganized. 

  Confocal laser endomicroscopy was performed using the Cellvizio 

instrument by Mauna Kea Technologies to image the human bladder in vivo [42]. 

Fluorescein was administered intravesically and/or intravenously following the standard 

white light cystoscopy procedure. Fluorescein provided contrast allowing for 

differentiation between normal bladder mucosa and low- and high-grade bladder tumors. 

Large umbrella cells near the surface with smaller cells nearing the lamina propria were 

visible in the bladder mucosa. Tumors classified as low grade had normal appearing small 

cells that were densely packed. In contrast, high-grade bladder tumors had an irregular 

architecture. A paper published from the same group sought to develop criteria for 

diagnosing benign and neoplastic mucosa along the urinary tract using confocal 

endomicroscopy [13]. Here, the Cellvizio system was used in conjunction with white light 

cytoscopy for faster diagnosis of urinary tract conditions such as bladder cancer. Confocal 
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images taken along the urinary tract are seen in Fig 5 with fluorescein as a contrast agent 

[13]. Regions located on the lower part of the urinary tract were taken in vivo, and those 

along the upper regions were acquired ex vivo. Comparable features, such as intermediate 

cells within the urothelium, were seen in the ureter and bladder. With the availability of 

smaller diameter probes, imaging of the upper urinary tract in vivo will likely be possible 

in the near future.  

 

Fig 5. Confocal laser endomicroscopy images of the normal urinary tract using the 
Cellvizio system (Mauna Kea Technologies). Images of the lower urinary tract were acquired 
in vivo: lamina propria, prostate, muscularis propria, urethra, bladder urothelium, and perivesical 
fat. Images of the upper urinary tract were acquired ex vivo: kidney and ureter. All scale bars: 20 
µm with exception of urethra, 50 µm [13].  



 

17 

 

  Cervical intraepithelial neoplasia (CIN) may progress to cervical cancer, 

the second leading cause of cancer in women in the world after breast cancer. 3–5% acetic 

acid is commonly used on the cervix during colposcopy to visualize regions with increased 

nuclear density suspected to be CIN. This effect, termed acetowhitening because of the 

whitening of the lesions, also provides contrast in reflectance confocal microscopy of 

epithelial tissue, so that nuclei throughout the epithelium can be visualized and nuclear to 

cytoplasmic ratio can be quantified [43]. Reflectance confocal endomicroscopy with 

colposcopic guidance has been explored to detect CIN [44]. In confocal images of normal 

epithelium, the nuclear to cytoplasmic ratio increases from the differentiated superficial 

epithelium to the dense basal epithelium; whereas, in high-grade CIN, the nuclear to 

cytoplasmic ratio is high near the surface and deeper in the epithelium [45]. Fluorescence 

confocal imaging of the cervix using the Optiscan F900e confocal system coupled with a 

rigid endomicroscope probe was performed to evaluate assessment of CIN quantitatively 

and qualitatively [46]. Normal and abnormal locations within the cervix were imaged after 

application of 5% acetic acid and topical application of acriflavine. Similar to reflectance 

imaging, CIN was characterized by an increase in nuclear density, size, and cellular 

disorganization. 

  Ovarian cancer has an exceptionally low 5-year relative survival rate, 

below 45% [37]. Screening is critical for high risk populations, but is complicated by 

limited access to the ovaries. A multispectral fluorescence confocal microlaparoscope 

using proximal line scanning was used in a study to evaluate in vivo confocal imaging of 

the ovary to potentially aid diagnosis of ovarian cancer [18]. Images are acquired 
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following staining the ovary with fluorescein sodium in vivo and acridine orange following 

ovary extraction. Imaging was performed on patients undergoing oophorectomy. The 

surgeon located an ovary and isolated it in an endobag to protect the patient from the 

imaging dye. The confocal images of the normal epithelial surface of the ovary have a 

homogenous pattern of cells with bright nuclei. Cancerous tissue appears irregular at the 

surface and heterogeneous. Acridine orange provided superior contrast; although it is not 

yet approved for in vivo imaging of the ovary, the safety is being evaluated for clinical 

use. 

  The oral cavity consists of a diverse range of epithelial tissue, including the 

lips, buccal mucosa, dorsal and ventral tongue, hard and soft palate, gingiva, salivary 

glands, and floor of the mouth. The site with the highest oral cancer incidence is the 

tongue. Most oral cancers are carcinomas, tumors occurring in the stratified squamous 

epithelium that develop from the uncontrolled growth of cells. In the United States, the 

age-adjusted incidence rate for cancers of the oral cavity and pharynx was over 10 per 

100,000 persons and the 5-year relative survival rate was 60% in the period from 2004 to 

2008 [37]. There are many detection and treatment methods that are being developed and 

improved to achieve more efficient detection and diagnosis of oral cancer, such as 

confocal endomicroscopy [47]. By optical sectioning and visualization of cellular 

structure, malignant lesions may be able to be differentiated from benign lesions and 

normal mucosa. In reflectance confocal endomicroscopy, contrast is provided by 

differences in refractive index. Addition of vinegar or acetic acid (3–6%) enhances 

backscattering from the nuclei in epithelial tissue, improving contrast in confocal imaging 
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[43]. A miniaturized fiber reflectance confocal endomicroscope was used to image 20 sites 

in the oral cavity on eight patients that were undergoing surgery for squamous cell 

carcinoma [16]. Nuclear morphology was distinctly different for normal, Fig 6a – 6b and 

abnormal oral tissue Fig 6(d, e). The normal tissue had an organized structure, while 

dysplastic tissue appeared disrupted with overlapping nuclei within the images. The 

cancerous tissue also exhibited severe disorganization. Nuclei were not always visible and 

if so, they were not distributed evenly. Acetic acid was used to enhance contrast within 

the confocal images. In vivo fluorescence confocal endomicroscopy of the human 

oropharynx after intravenous injection of fluorescein was recently reported as a novel 

means to differentiate various locations of the oropharyngeal mucosa [48]. Following 

injection of fluorescein, capillary networks and cell borders have fluorescence contrast. 

Cell nuclei are not visible because the cell membrane is not permeable to fluorescein. 

Confocal images of invasive carcinoma on the floor of the mouth show increased signal 

due to neoangiogenesis and leaky blood vessels. In vivo imaging of vocal cords is being 

explored by confocal endomicroscopy with potential to expand understanding of pediatric 

laryngeal development, currently limited by insufficient availability of pediatric laryngeal 

specimens [19]. Preliminary imaging results with spectrally encoded confocal microscopy 

in porcine tissue demonstrate the potential for endomicroscopic imaging of the vocal folds. 

Images portraying epithelial cells, the basement membrane, and the lamina propria were 

obtained down to 375 µm deep in the tissue. Imaging and characterization of lesions is 

another potential application of confocal endomicroscopy of the vocal fold, where 

unnecessary removal of tissue should be minimized for voice preservation [49]. 
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Fig 6. In vivo reflectance confocal endomicroscopy of normal oral mucosa. From the 
ventral tongue (a, b) and moderate dysplasia on the floor of the mouth (d, e) with corresponding 
histology images (c, f). Scale bars: (a, b, d, e) 50 µm, (c) 200 µm, (f) 100 µm [16].  

 

  A confocal fluorescence endomicroscope with spectral detection was used 

to image bronchial mucosa during a bronchoscopy procedure allowing a depth of focus of 

50 µm below the surface [50]. Twenty-nine high risk patients for lung cancer had in vivo 

imaging and spectral analysis. The tracheobronchial tree was imaged and distinct patterns 

of the subepithelial fiber network were visible. All specimens diagnosed as histologically 

normal exhibited a similar pattern. In precancerous tissue, a decrease in intensity was seen 

as well as a disorganized fiber network within the bronchial wall. Contained within the 

instrument channel of an endoscope, a confocal endomicroscope has the potential to 
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distinguish normal bronchial epithelium from pre-neoplastic lesions in vivo [51]. Cresyl 

violet was used as a contrast agent. Due to its acidic nature, which may be fatal to humans 

if administered in the lungs, the contrast agent was used with an altered pH for imaging of 

bronchial mucosa. Two bronchoscopes were used for the bronchoscopy and confocal 

endomicroscopy procedures, with the second one able to house a channel for the confocal 

endomicroscope. Normal epithelium exhibited uniformly distributed cells, while mild to 

moderate dysplasia displayed heterogeneous tissue architecture. Distal lung imaging is 

being explored via broncho-alveoscopy procedures [52]. This is the first technique capable 

of imaging lobular and alveolar structures within the human lung.  

2.2.2 Contrast Agents for Confocal Endomicroscopy 

  In order to achieve good imaging contrast within fluorescence confocal 

images, it is common to apply an exogenous contrast agent to the tissue. Currently, only a 

few contrast agents are frequently reported in the literature for in vivo use in humans for 

endomicroscopy: acetic acid, fluorescein sodium, acriflavine hydrocholoride, and cresyl 

violet [51,53]. Contrast agents approved for in vivo use for optical imaging by the United 

States Food and Drug Administration are acetic acid, fluorescein sodium, and indocyanine 

green [54,55]. 

  Intravenous fluorescein sodium is most commonly used in the colon, 

esophagus, and stomach. Twenty seconds after injection of fluorescein, the agent is 

distributed throughout the tissue and can last 30 min allowing for imaging of 250 µm 

below the surface. It provides contrast in the connective tissue and, due to its intravenous 

administration and binding to serum albumin, contrast of the local microvasculature. 
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Disruption to the vasculature, or leaky blood vessels, results in an increase in the overall 

fluorescence signal which may be indicative of disease. Fluorescein helps to visualize pit 

patterns in the colon, surface epithelial cells, connective tissue within the lamina propria, 

blood vessels, and red blood cells [56]. Acriflavine hydrochloride, which is topically 

applied, is most commonly used in the stomach and colon. Acriflavine provides contrast 

between the nuclei and cytoplasm in the superficial epithelium for imaging of surface 

mucosa up to 100 µm. The combination of imaging modalities is common as information 

garnered with one modality may compliment another. However, it is desirable to limit the 

number of contrast agents needed for multi-modal imaging. Cresyl violet has proven to 

predict histology as a single topically applied contrast agent for in vivo confocal laser 

endomicroscopy and chromoendoscopy of the lower GI tract [57]. 

  In addition to these non-specific contrast agents, targeted molecular 

specific contrast agents have recently been developed for potential use in vivo to target 

biomarkers associated with certain diseases, such as cancer. For example, tumors can 

express unique receptors at a high rate. By targeting these biomarkers with high affinity 

ligands, it is possible to locate areas where carcinogenesis, angiogenesis, or metastasis is 

taking place [58]. Both antibodies and peptides conjugated with exogenous dyes have been 

successfully used as specific binding contrast agents for optical imaging. Cyanine dyes 

conjugated to peptides have shown a three-fold increase in tumor contrast over normal 

tissue [59]. Fluorescent signal is enhanced at the plasma membrane of the cells with 

increased receptor expression. A study using a targeted heptapeptide for colonic dysplasia 

was performed in vivo on patients undergoing colonoscopy [60]. Confocal 
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microendoscopy of the colon using the Cellvizio system by Mauna Kea Technologies 

exhibits images showing significant contrast at borders between normal and dysplastic 

crypts, Fig 7. Areas with dysplastic colonocytes show a higher fluorescent signal due to 

peptide binding in contrast to normal colonocytes. 

 
Fig 7. In vivo confocal fluorescence images of the border between colonic adenoma and 
normal mucosa, showing peptide binding to dysplastic colonocytes. (a) Endoscopic view, 
(b) border, (c) dysplastic crypt, and (d) adjacent mucosa. Scale bars: 20 µm [60].  

 

  Antibodies have been used to target the epidermal growth factor receptor 

(EGFR), a cell surface receptor that is over-expressed in many cancers. To aid early 

detection of oral neoplasia, oral biopsies were exposed to a monoclonal antibody 

specifically targeting EGFR [61]. Abundant fluorescence signal was noted throughout 
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abnormal mucosa. EGFR has also been targeted for imaging colorectal cancer in a mouse 

model [62]. Two different human colorectal cancer cell lines were grown as tumors in 

mice. Using the Optiscan instrument by Pentax, the colon tumors were imaged in vivo 

after an injection of fluorescently labeled EGFR antibodies. Tumors with human cell lines 

expressing high levels of EGFR showed a distinctly higher signal when compared to 

tumors expressing low levels of EGFR. By targeting EGFR with fluorescently labeled 

antibodies, it was possible to differentiate between two types of human colorectal cancer 

tumors. To show the potential for in vivo use in humans, a similar study was performed 

on excised human tissue and the results indicated that it was possible to differentiate 

neoplastic from non-neoplastic tissues. 

2.3 Imaging Epithelial Tissues Using Confocal Microscopy 

2.3.1 Mouse Colon 

 Fluorescence confocal microscopy reveals morphological changes in 

colonic tissue by utilizing fluorescent stains. Acridine orange (AO) is a nucleic stain that 

is excited at 488 nm and emits at 530 nm. Studies have shown that this fluorophore 

sufficiently stains the nuclei surrounding colon crypts [63]. Colon crypts appear as black 

holes in confocal images. In normal rat colon tissue, epithelial cells surrounding colon 

crypts are clearly resolved, but after 3 days of DSS treatment, morphological changes in 

the colon crypts are seen. The crypts exhibit a wider spacing and there is epithelial cell 

loss at the surface of the tissue. After 5 days of DSS treatment, there is a loss in fluorescent 

signal as the number of epithelial cells at the surface is further reduced. At day 7 of 

treatment, crypt distortion is noted along with the loss of colon crypts in some areas. 
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Additionally, fluorescence confocal microscopy has the potential to image biochemical 

changes in the tissue using endogenous fluorophores such as collagen, elastin, flavin 

adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NADH) [64,65]. 

2.3.2 Porcine Buccal Mucosa 

  After applying 6% acetic acid for aceto-whitening of tissue, the nuclei 

appear much brighter in reflectance confocal imaging than autofluorescence imaging, and 

this method  provides enough contrast for a quantitative study of features within epithelial 

tissue [66]. Studies have shown that reflectance confocal microscopy is capable of 

differentiating normal and dysplastic cervical tissue ex vivo [67]. A quantitative review 

was performed by determining the nuclear to cytoplasmic ratio and a qualitative study 

done using untrained observers to diagnosis the biopsies. 
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3. DESIGN, CONSTRUCTION, AND CHARACTERIZATION OF THE DUAL-

MODE CONFOCAL MICROSCOPE* 

 

3.1 Introduction 

 I designed and constructed a fluorescence and reflectance confocal microscope for 

imaging epithelial tissues for preclinical studies. In addition to working in two imaging 

modes, the system also scans in two modes producing extended images in one axis. Design 

requirements were selected based on the application for each imaging mode. Imaging the 

full epithelial layer is important because, if precancer is detected in an early stage, the 

chance of developing cancer can be greatly reduced. One of the tradeoffs for having better 

resolution is typically a smaller field of view. By custom designing a benchtop confocal 

microscope with a large field of view, more information about the interrogated tissue is 

acquired at a much faster speed without the need for post-processing techniques such as 

mosaicing. 

3.2 System Design 

3.2.1 Fluorescence Mode 

  Fig 8 shows a schematic of the constructed confocal fluorescence 

microscope, Fig 8(a), and a photo of the setup, Fig 8(b). The upright confocal microscope 

has a 40 mW, 488 nm, continuous wave, externally doubled diode laser (PC14717 

                                                 

* Part of this section is reprinted with permission from Imaging inflammation in mouse colon using a rapid 

stage-scanning confocal fluorescence microscope by Saldua, Meagan A., Cory A. Olsovsky, Evelyn S. 

Callaway, Robert S. Chapkin, and Kristen C. Maitland, 2012. Journal of Biomedical Optics, 17(1), 

0160061-0160067, Copyright 2012 by SPIE. 
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Excelsior, Newport, Spectra-Physics, Santa Clara, CA) for fluorescence imaging. Power 

is controlled by passing the continuous wave laser through variable absorptive neutral 

density filters. This allows for varied incident power at the sample. The laser beam passes 

through a spatial filter, which also serves as a beam expander, and reflects off of a dichroic 

mirror (z488rdc, Chroma Technology Corporation, Rockingham, VT) to the fluorescence 

arm for imaging. A custom-designed polygon scanner (Lincoln Laser, Phoenix, AZ) with 

14 facets, a scan angle of 24°, and a maximum speed of 37,500 rotations per minute 

(RPM). The polygon has a variable line scan rate of 2.34 to 8.75 kHz. The illumination 

source is imaged onto the galvanometer scanner (6220H M40B, Cambridge Technology, 

Inc., Bedford, MA) by a Keplerian telescope system with 75 mm effective focal length 

(EFL) (49-389, Edmund Optics, Barrington, NJ). The galvanometer scanner provides the 

frame scan for image acquisition in traditional raster scanning mode, has a scan rate up to 

15 frames per second (fps), and produces "square" two dimensional images. The scanning 

mirrors are driven by a data acquisition (DAQ) board (NI PCI-6251, National Instruments, 

Austin, TX) controlled by LabVIEW software. A second Keplerian telescope system with 

75 mm and 100 mm EFL (49-389, 49-390, Edmund Optics, Barrington, NJ) expands the 

beam to fill the back aperture of a 40×, 0.8 numerical aperture (NA), 3.5 mm working 

distance, water immersion microscope objective lens (MRD07420, Nikon). The sample is 

positioned on an XYZ motorized stage with 0.05 micron resolution, 100 mm of travel in 

any axis, and 7 mm/sec maximum speed (KT-LSM100A, Zaber Technologies Inc, 

Vancouver, British Columbia, Canada). Fluorescence is excited in the sample, collected 

by the objective, passed back through the telescope system, and descanned by the scanning 
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mirrors. A long pass filter (FF662-FDi01-25x36, Semrock) deflects the fluorescence 

signal to its own detection arm. A removable emission filter (HHQ495LP, Chroma 

Technology Corporation, Rockingham, VT) is placed after the dichroic to prevent any 

unwanted laser light from reaching the detector. The signal is focused onto the confocal 

detection pinhole using a lens with 50 mm EFL (NT49-792, Edmund Optics, Barrington, 

NJ) and then refocused onto a photomultiplier tube (PMT) detector (H9433-03MOD, 

Hamamatsu, Bridgewater, NJ) with another lens with 50 mm EFL (NT49-792, Edmund 

Optics, Barrington, NJ). 

 

 

Fig 8. Confocal fluorescence and reflectance microscope system. (A) Schematic and (B) 
photograph of the system. LS: laser source, PH: pinhole, DM: dichroic mirror, BS: beam splitter, 
PSM: polygon scanning mirror, GM: galvanometer scanning mirror, MLS: motorized linear stage, 
PMT: photomultiplier tube. 

 

  A group of detector pinholes with varying diameters were selected from 

Thorlabs: 5, 10, 15, 25, 50, and 100 μm. To maximize signal throughput and maintain 

A             B 
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sufficient axial sectioning, the size of the detection pinhole was selected to be 

approximately equal to the projected Airy disk, 10 µm for fluorescence confocal 

microscopy imaging. The intensity distribution as a function of normalized radial optical 

coordinate, v, for a single fluorescent point object in focus is given by  
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where J1 is a first order Bessel function of the first kind and β is the ratio of the emission 

wavelength to excitation wavelength [68]. The first minimum of the lateral response in 

Equation 5 occurs at vo = 3.83. Using Equation 6,  
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the diameter of the projected central disk can be calculated to be 9.9 µm for our system 

with excitation wavelength λ = 488 nm, total system magnification MT = 13.33, and 

objective lens numerical aperture NAobj = 0.8. Therefore, a 10 µm diameter pinhole was 

used in the confocal detection spatial filter, corresponding to a normalized pinhole radius 

vp = 3.86, from Equation 3. The theoretical lateral resolution as defined by the Rayleigh 

criterion can be calculated by converting the normalized pinhole radius to real radial 

distance in the object, r = 0.4 µm. To evaluate the optical sectioning capability, we use the 

plot of the half width, u1/2, of the axial response of a planar fluorescent object translated 

through the focus as a function of vp and β [68]. For vp = 3.86 and β = 1.08, the normalized 

half-width of the axial point spread function is u1/2 = 5.6. Converting to the half width half 

maximum in spatial dimensions using 
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yields a full width half maximum (FWHM) axial resolution of 1.8 µm.  

  The scanning microscope can be operated in two modes: raster-scanning 

or stage-scanning. In either mode, the polygon scanner provides the fast axis scan, or line 

scan, at a scan rate of 8.33 kHz. In raster-scanning mode, the slow axis scan, or frame 

scan, is provided by the galvanometer scanning mirror, generating 1×1 mm2 FOV images 

at 8 frames per second.  

  To increase FOV and data acquisition speed, lateral resolution is sacrificed 

by under-sampling with a 1 µm pixel size, which is significantly larger than the 0.4 µm 

theoretical lateral resolution. The system lateral resolution was measured by capturing an 

image of a reflective Ronchi grating (Edmund Optics) with 40 line pairs/mm. A line profile 

was plotted across several grating edges. The distance between the 10% and 90% intensity 

values was recorded for five edges and then averaged. The measured lateral resolution is 

approximately 1 µm. To measure axial resolution, a reflective silver mirror was translated 

through the focal plane. Intensity values were recorded from the PMT and plotted. The 

measured full width half maximum axial resolution is less than 2 µm. Table 1 summarizes 

the imaging parameters for the fluorescence confocal microscope system in raster-

scanning and stage-scanning modes. 

3.2.2 Reflectance Mode 

  Similar to the fluorescence confocal microscope setup, Fig 8, the 

reflectance mode differs in the wavelength of the laser source, the requirement of a beam 
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splitter and half-wave plate combination, and a pinhole lens with a larger focal length. 

When imaging in reflectance mode, resolution is sacrificed for penetration depth due to 

the longer NIR wavelength. A 120 mW, 811 nm (DL808-120-O, CrystaLaser, Reno, NV) 

diode-pumped solid state laser was used for reflectance imaging. The laser beam passes 

through a spatial filter as and is expanded. A polarizing beam splitter (PBS252, Thorlabs, 

Newton, NJ) and half-wave plate (AHWP05M-980, Thorlabs, Newton, NJ) efficiently 

reflect the polarized 811 nm laser source to the scanning arm for reflectance imaging. To 

make up for this loss in resolution, a 60× 1 NA water immersion microscope objective 

(LUMPLFLN 60XW, Olympus) with 2 mm working distance is used to focus the beam 

on the sample. A faster stage with 29 mm/sec maximum speed replaced the stage in the 

third axis (KT-LSM100B, Zaber Technologies Inc, Vancouver, British Columbia, 

Canada). The reflectance signal is collected by the water immersion objective, passed back 

through the telescope system, and then descanned by the scanning mirror combination. A 

25 µm pinhole diameter was selected for optical resolution and signal throughput by 

matching it to the size of the projected Airy disk. The diffraction limited spot size, D, was 

calculated from Equation 8 to be 27 µm, 

 
f

D
r

 
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where λ is wavelength, f is the focal length of the pinhole lens, and r is the radius of the 

illumination beam at the back aperture of the microscope objective. Placing a 75 mm rather 

than 35 mm lens in front of the PMT as the pinhole lens produces an increased system 

magnification, MT = 33.33. A higher system magnification decreases the normalized 

pinhole radius value and also improves the theoretical lateral and axial resolutions to 



 

32 

 

account for the higher wavelength source. Using Equation 3, the normalized pinhole radius 

is vp = 2.91, corresponding to a theoretical lateral resolution of r = 0.4 µm from Equation 

9, 

 
2

p

obj

r
NA

 


    (9) 

where vp is the normalized pinhole radius, λ is the illumination wavelength, and NAobj is 

the numerical aperture of the microscope objective. The theoretical axial resolution, or 

FWHM, calculated from  Equation 7 is 1.3 µm. 

3.3 Image Formation 

3.3.1 Raster Scanning 

  To form a 2D image using a point-scanning confocal microscope, the beam 

must be scanned in two dimensions using scanning mirrors. Both of the scanning mirrors 

and the stage are controlled by LabVIEW software (National Instruments), and the mirrors 

are driven by a data acquisition (DAQ) board (NI PCI-6251, National Instruments). The 

PMT detector records a voltage signal from each point which is assigned to a certain 

intensity value. The gain was set to 10^4 and frequency bandwidth of 10 MHz. A 

framegrabber (NI PCI 1410, National Instruments, Austin, TX) digitizes the voltage signal 

with a 29 MHz pixel and a collection of these points creates a 2D image of the focal plane 

within the sample so that it may be displayed on a computer monitor in near-real time.  

  The framegrabber requires three inputs: the signal from the PMT, a 

horizontal synchronization (HSYNC) input, and a vertical synchronization (VSYNC) 

input. The HSYNC and VSYNC are synchronization signals that correspond to the 
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polygon and galvanometer scanning mirror positions. The synchronization signals are 

generated in LabVIEW using counter signals. 

3.3.2 Stage Scanning 

  Confocal mosaicing has recently been used to acquire a large field of view 

image by capturing individual small field images using scanning mirrors, stepping the 

sample using a translation stage to scan a larger area, and post-processing the images to 

reconstruct the large field image [69]. With advancing technology, motorized stages are 

able to move at faster speeds with high precision and accuracy. A faster way of acquiring 

an extended image is to use the motorized stage as the frame scan instead of the 

galvanometer scanning mirror. Combining this imaging method with an automated 

program to acquire multiple images will help achieve reconstruction of the entire mouse 

colon much faster than current methods as well as provide a high resolution confocal 

image with an extended wide-field of view. Images longer than 2 cm can be acquired, but 

are currently limited by our framegrabber.  

  In the custom confocal microscope system setup, the sample is positioned 

on an XYZ motorized stage (KT-LSM100A, Zaber Technologies Inc., Vancouver, British 

Columbia, Canada) with 0.05 µm resolution, 100 mm of travel in each axis, and 7 mm/sec 

maximum speed. The galvanometer scanning mirror is positioned in the center of its scan 

range (center of FOV), and the motorized linear stage translates the sample in the second 

axis. The image acquisition speed, FOV, and digital image size, are limited by the stage 

speed, stage travel range, and frame grabber memory, respectively. Acquisition of a single 

60 megapixel image of 1×60 mm2 FOV takes approximately 10 sec. Acquisition of a stack 



 

34 

 

of 60 frames with a 1×60 mm2 FOV and a 10 µm axial step interval between consecutive 

images over an axial range of 600 µm takes approximately 20 min. The 600 µm axial 

range was necessary to capture the topography of the sample and to accommodate a minor 

incline of the translation stage over the 100 mm of travel. The XYZ motorized translation 

stage has three independently mounted axes; re-positioning the stage may reduce the 

required axial range and, consequently, increase the three dimensional image acquisition 

rate. 

3.4 Measured Performance 

 A United States Air Force (AF) resolution target and Ronchi grating with 40 line 

pairs per mm were imaged in both fluorescence and reflectance mode using 488 nm and 

811 nm wavelengths, respectively. Fig 9 and Fig 10 below show the resulting images. The 

fluorescent AF target can be seen in Fig 9(A) and the reflective AF target in Fig 10(A). 

The reflective Ronchi grating is shown in Fig 9(B) and Fig 10(B), where the signal in Fig 

9(B) is from leakage through the dichroic mirror. The system and imaging theoretical and 

measured parameters for the dual-mode fluorescence and reflectance confocal microscope 

are shown in Table 1. 
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Fig 9. Lateral resolution and field of view at 488 nm. (A) Fluorescent AF target and (B) 
Reflective Ronchi grating.  

 

 

 
Fig 10. Lateral resolution and field of view at 811 nm. (A) Reflective AF target and (B) 
Reflective Ronchi grating.  
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 Fig 11 below shows the capability of image size with a FOV of 1 mm × 60 mm in 

stage-scanning mode. The object imaged is a reflective Ronchi grating with 40 line pairs 

per mm. The yellow box shows a zoomed in section, see in Fig 12. 

 

 
Fig 11. Extended field of view, 1 mm × 60 mm.  

 

 

Fig 12. Cropped section of Ronchi grating from Fig 10. The Ronchi grating has 40 line pairs 
per mm. 
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3.5 Comparison to Commercial System 

 The custom dual-mode fluorescence and reflectance confocal microscope is 

compared to the commercial Caliber Imaging and Diagnostics, Inc. VivaScope2500 in 

Table 1 below. 

 

Table 1. Custom and commercial confocal system comparison. 

 Custom Commercial 

Mode Fluorescence Reflectance Fluorescence Reflectance 

Illumination 
wavelength  

488 nm 811 nm 488, 658 nm 830 nm 

 Theoretical Measured Theoretical Measured Measured 

Lateral 
resolution  

0.4 µm 1 µm 0.3 µm 1 µm < 2 µm 

Axial 
resolution  

1.8 µm 2 µm 1.8 µm 2 µm < 5 µm 

Line scan 
speed 

2.34 – 8.75 kHz N/A 

Raster-scanning mode 

 Fluorescence Reflectance Measured 

Field of view  1 mm × 1 mm 750 × 750 µm 750 × 750 µm 

Frame scan 
speed  

3 - 15 frames per second 9 frames per second 

Stage-scanning mode 

 Fluorescence Reflectance  

Field of view  1 mm × ≤ 60 mm 750 µm × ≤ 60 mm N/A 

Frame scan 
speed  

2.3 – 7 mm/sec N/A 
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4. IMAGING INFLAMMATION IN MOUSE COLON USING A RAPID STAGE-

SCANNING CONFOCAL FLUORESCENCE MICROSCOPE*  

 

4.1 Introduction 

Large area confocal microscopy may provide fast, high resolution image 

acquisition for evaluation of tissue in preclinical studies with reduced tissue processing in 

comparison to histology. We present a rapid beam and stage scanning confocal 

fluorescence microscope to image cellular and tissue features along the length of the entire 

excised mouse colon. The beam is scanned at 8,333 lines/sec by a polygon scanning mirror 

while the specimen is scanned in the orthogonal axis by a motorized translation stage with 

a maximum speed of 7 mm/sec. A single 1×60 mm2 field of view image spanning the 

length of the mouse colon is acquired in 10 seconds. Z-projection images generated from 

axial image stacks allow high resolution imaging of the surface of non-flat specimens. In 

contrast to the uniform size, shape, and distribution of colon crypts in confocal images of 

normal colon, confocal images of chronic bowel inflammation exhibit heterogeneous 

tissue structure with localized severe crypt distortion. 

4.1.1 Bowel Inflammation 

 Autoimmune and chronic inflammatory diseases are a global health 

problem. With respect to the burden of inflammatory bowel diseases (IBD), approximately 

                                                 

* Reprinted with permission from Imaging inflammation in mouse colon using a rapid stage-scanning 

confocal fluorescence microscope by Saldua, Meagan A., Cory A. Olsovsky, Evelyn S. Callaway, Robert 

S. Chapkin, and Kristen C. Maitland, 2012. Journal of Biomedical Optics, 17(1), 0160061-0160067, 

Copyright 2012 by SPIE. 
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1.5 million Americans  exhibit chronic debilitating inflammatory conditions of the 

intestinal tract, leading to distressing symptoms and an impaired quality of life (estimated 

annual cost exceeding $2 billion) [70]. Patients experiencing IBD often report symptoms 

such as abdominal pain, diarrhea, rectal bleeding, weight loss, fever, and fatigue. 

Ulcerative colitis and Crohn’s disease are two distinct forms of IBD [71]. In ulcerative 

colitis, inflammation is typically restricted to the mucosa in the colon. In Crohn’s disease, 

any area within the entire gastrointestinal tract may be susceptible to inflammation.  

 One in 19 Americans are at risk of developing colorectal cancer in their 

lifetime. Detection and removal of precancerous polyps has reduced the incidence and 

mortality of this disease [72]. Patients with IBD have an increased risk for developing 

colorectal cancer; after seven years of inflammation, the risk of developing cancer 

increases by 0.5-1% every year [73]. Although studies have shown this direct relationship 

between inflammation and colon cancer, early cancer detection remains a challenge, even 

for this high risk population [74]. Currently, high risk patients are recommended to begin 

colonoscopy cancer screening at an earlier age than healthy adults [75]. 

 Epidemiologic studies have shown that diet is also a major risk factor for 

colorectal cancer [72]. For example, high consumption of red or processed meats increases 

the risk of colorectal cancer by 28% and 20%, respectively [72,76]. Recent studies indicate 

that bioactive food components containing n-3 polyunsaturated fatty acids (PUFA) may 

have antitumorigenic effects by reducing inflammation in an animal model of colitis-

associated cancer [77,78]. Data has revealed a “protective effect” of n-3 PUFA (fish oil) 

on colon cancer and in contrast, n-6 PUFA (vegetable oil) has been shown to amplify the 
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formation of colon tumors. This may suggest that IBD patients could moderate cancer 

development by modifying their diet [79]. 

 Colon crypt and tissue structural changes in preclinical studies are typically 

characterized using histopathology. Histology provides images of cellular and tissue 

structure after animal sacrifice, colon removal, washing and staining of the tissue. This is 

a time sensitive process that can introduce artifacts during tissue preparation. In 

histological images of normal colon tissue, the cylindrical crypt openings are aligned 

parallel to one another and exhibit a uniform hexagonal pattern when observed from an en 

face view [80]. This pattern is characteristic of normal colonic tissue with only slight 

variation in colon size and arrangement. Inflamed tissue varies in morphological structure 

compared to normal colon tissue. Crypt structure may be lost and tissue architecture is 

replaced by a disordered crypt arrangement with heterogeneous crypt size and shape, 

which can be seen both in histology and confocal endomicroscopy [81,82].  Due to the 

heterogeneity of inflamed tissue, examination of a small tissue sample by histology may 

not be indicative of the most severe disease state elsewhere in the colon. The ‘Swiss roll’ 

technique may be used to visualize histological features along the length of the colon, but 

provides only a thin section through the tissue [83]. With transition from inflammation to 

neoplasia, dysplasia or cancer can affect any part of the colon, with various magnitudes at 

different locations, complicating localization and characterization of disease by 

histopathology in preclinical studies [74].  

 Rapid imaging of bulk tissue along the length of freshly excised colon 

could provide sufficient information on crypt structure throughout the colon to 
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characterize tissue in preclinical studies. Reduced tissue processing, fast image 

acquisition, and evaluation over a larger field could increase throughput and quantification 

in preclinical studies of IBD. Our custom-designed confocal microscope can achieve a 

single 1×60 mm2 field of view image in 10 seconds. Compared to other confocal imaging 

systems, this system is capable of producing large area images in a short period of time. 

Here, we present stage scanning confocal microscopy as a technique to rapidly image the 

length of the colon with minimal tissue processing. 

4.1.2 Confocal Microscopy 

 Confocal microscopy can provide high resolution images of bulk tissue 

with minimal tissue processing and fast image acquisition. In contrast to the physical 

sectioning and two dimensional imaging of traditional histology, confocal imaging allows 

“optical sectioning” of bulk tissue, enabling acquisition of three dimensional images of 

intact tissue [3,84]. This technique has been translated to the clinical setting where in vivo 

confocal microendoscopy is currently being explored for guiding biopsy in the 

gastrointestinal tract [85]. However, even with mosaicing to expand the imaging field, 

FOV still remains limited. 

 The high resolution of confocal microscopy is achieved by placing a 

pinhole in front of the detector in a conjugate image plane of the focal spot in the sample. 

Out of focus light is significantly rejected by the pinhole. Two and three dimensional 

images can be generated by scanning the beam or the sample [86-88]. Although, 

historically, stage-scanning has been used quite extensively, [89] the speed of translation 

stages has limited the speed of image acquisition. Modern confocal microscopes typically 
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use some form of beam-scanning to maximize image acquisition speed, [90] but the FOV 

is typically limited to less than 500×500 μm2 [22]. A larger FOV can be achieved by 

stitching images together using a mosaicing technique [91].  

 FOV and image acquisition speed can be increased by combining beam and 

stage scanning. Recently, beam and stage scanning used with mosaicing has been 

implemented to increase acquisition speed of large FOV reflectance confocal images for 

dermatological applications [6]. A 10×10 mm2 strip mosaic was acquired in three minutes. 

Similarly, spectral encoding in one axis to scan 180 μm and stage scanning in both lateral 

axes with mosaicing has been used to image large esophageal biopsy specimens [92]. 

Axial scanning of the objective lens using a piezoelectric transducer allowed three 

dimensional images over a 120 to 150 μm depth range. Fields of view ranging from 2×1 

mm2 to 5×3.6 mm2 were acquired in 2.5 to 15 minutes. Large FOV fluorescence confocal 

imaging of the mouse colon and other organs in vivo through a gradient index (GRIN) 

side-viewing microprobe was recently achieved by versatile multidimensional scanning 

[93]. The 250×250 µm2 raster-scanned FOV is extended by mosaicing frames captured at 

30 frames per second while rotationally scanning the microprobe and/or translating the 

sample or animal to scan along the length of a lumen. The focal depth position in the 

sample is adjusted by altering the focal position at the proximal face of the GRIN relay 

lens. 60,000 frames acquired in over 30 minutes from a 12 mm length of mouse colon 

after intravenous injection of fluorescent dye are reconstructed into beautiful images of 

the vasculature in two and three dimensions and with multiple scales.  
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 We exploit a polygon mirror beam scanner and a fast motorized translation 

stage to rapidly acquire confocal images with an extended FOV in one axis. We have 

acquired a single high aspect ratio 60 megapixel 1×60 mm2 image in 10 seconds, 

extending image size in one axis and increasing acquisition speed over previously reported 

systems. Translation of the sample in the third dimension allows three dimensional 

imaging and two dimensional projections of tissue to accommodate specimens with an 

uneven surface. This high aspect ratio imaging is ideal for imaging tissue structure along 

the gastrointestinal tract. We present the use of combined beam and stage scanning in 

confocal microscopy to extend the FOV to image and evaluate freshly excised mouse 

colon to provide qualitative information on crypt structure along the length of the colon. 

4.2 Materials and Methods 

4.2.1 System Design 

  The fluorescence confocal microscopy system setup is described in detail 

in the previous chapter and shown in Fig 8. The measured lateral resolution is 1 µm. For 

this application, imaging tissue and crypt structure in the mouse colon, lateral resolution 

is less important than the field of view, speed of image acquisition, and file size. We can 

resolve 2 µm according to the Nyquist Theorem, therefore, the sampling is sufficient to 

resolve individual cell nuclei, which are approximately 5 to 10 µm in diameter, and crypt 

lumen, ranging from 40 to 70 µm in diameter in normal mouse colon tissue. Table 2 

summarizes the imaging parameters for the confocal fluorescence microscope system in 

raster-scanning and stage-scanning modes. 
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Table 2. System and imaging parameters. 

 

 

4.2.2 Sample Preparation and Imaging 

 Human colitis can be modeled in healthy rodents by treatment with dextran 

sulfate sodium (DSS) added to their drinking water [94]. An increase in disease duration 

results in an increased rate of neoplastic development. When used in conjunction with 

azoxymethane (a colon-specific carcinogen), the mice can develop colon cancer [95]. 

 Black C57BL/6 mice were used for this study. The animal protocol was 

reviewed and approved by the Texas A&M University Institutional Animal Care and Use 

Committee. To induce chronic inflammation, a mouse was treated with 2.5% DSS (MP 

Biomedicals) for five days followed by a 17 day recovery period. On day 22, the treatment 
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and recovery periods were repeated. Finally, the mouse was treated with 2% DSS for four 

days. Termination occurred on day 57. 

 Following colon resection, the normal and inflamed mouse colons were 

opened longitudinally along a fatty tissue line. The tissue was rinsed in two phosphate 

buffered solution (PBS) washes to remove any fecal matter. The colons were stained with 

1 mg/mL of acridine orange (Sigma-Aldrich) for two minutes and then rinsed in PBS for 

one minute. Each mouse colon was placed flat in a Petri dish with the inside of the colon 

facing up. A microscope slide was placed on top of the colon to flatten and immobilize 

the tissue during imaging. 

 When imaging a mouse colon, the tissue is positioned in the focal plane of 

the microscope using raster-scanning mode. In order to evaluate tissue features along the 

length of the colon, extended FOV confocal images are acquired using stage-scanning 

mode. The long axis of the FOV is specified based on the length of the mouse colon. The 

topography of a mouse colon varies along its length; therefore it was necessary to acquire 

vertical stacks of extended confocal images to capture information at different focal 

planes. The number of images in a stack or the depth of imaging is determined by the 

topography and the penetration of light into the tissue. The long stacks were used to build 

a Z-projection image that reconstructs the surface profile of the mouse colon tissue while 

maintaining high resolution features. For the images presented in this paper, 70 extended 

confocal images, approximately 1×56 mm2, of normal mouse colon tissue and 50 images, 

approximately 1×60 mm2, of chronic inflamed colon were acquired with a 10 µm step 

interval between consecutive frames in the axial direction. 
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 Following confocal imaging, tissue samples from proximal, middle, and 

distal regions of the colon were prepared for histological processing. In contrast to the 

standard transverse slicing, the tissue was oriented to generate tissue slices parallel to the 

surface of the tissue to enable a comparison to the en face confocal images. The tissue 

sections were stained with hematoxylin and eosin (H&E). 

4.2.3 Image Analysis 

 Images stacks were processed into two dimensional projections and videos 

using Photoshop (Adobe Systems Inc., San Jose, CA) and ImageJ (National Institutes of 

Health, http://rsbweb.nih.gov/ij). Each image stack was reduced to a two dimensional 

maximum intensity Z-projection image. The maximum intensity projection command in 

ImageJ selects the maximum pixel value for a single pixel location within a stack of 

images and generates an image using the maximum values for all pixel locations. Because 

the colon tissue topography varies significantly within this large field of view and confocal 

sectioning yields a thin optical slice through the tissue, the Z-projection allows 

visualization of the colon crypts near the surface along the length of the colon. It was 

determined that the image quality of Z-projections was improved by using every other 

image in the stack, resulting in 20 μm axial separation between images in the stack. Fig 

13 demonstrates the maximum intensity Z-projection and three dimensional 

reconstruction for a stack of confocal images. Fig 13a – 13d shows four confocal images 

of a 1×2 mm2 region separated by 20 μm in depth taken from the image stack. Fig 13(e) 

is a zoomed-in section depicted by the white box in Fig 13(a) exhibiting bright nuclei 

surrounding colon crypts. The corresponding maximum intensity Z-projection is shown 
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in Fig 13(f) to demonstrate the effect of the projection image, and the three dimensional 

reconstruction is shown in Fig 13(g) for comparison. Due to tissue absorption and 

scattering, the maximum imaging depth in colon tissue stained with acridine orange is 

approximately 60 μm.  

 

 

Fig 13. Selected confocal frames from an image stack for a single region, 1 × 2mm2 field 
of view. (a) Near the surface and (b) 20 μm, (c) 40 μm, and (d) 60 μm deep. (e) Zoomed-in 
section of (a) denoted by white box. (f) 2D maximum intensity Z-projection of the entire image 
stack with 20 μm between successive frames. (g) 3D reconstruction of image stack. Scale bars: 
(a)–(d), (f) 200 μm, (e) 100 μm. 

 

 Images were cropped to 1×42 mm2 to more easily visualize tissue features 

along the length of the colons, and 1×2 mm2 regions were selected and cropped to zoom 

in on the diverse crypt features in the colon tissue. Additionally, the images were resized 

to correct for non-square pixels. While the vertical pixel size is 1 μm, the horizontal pixel 

size is 0.78 μm when the stage is scanning at maximum speed. The images were skewed 
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to achieve 1 µm2 pixel size. The image contrast was enhanced and normalized for 

improved print viewing. To better illustrate the size of the extended FOV images and for 

comparison of crypt features in normal and inflamed colons, the Z-projection images of 

normal and inflamed tissue were combined in a video file (S1 Video). Adobe Premiere 

Pro CS5 software was used to generate the video. 

4.3 Results 

Fig 14(a) shows 1×42 mm2 of a Z-projection extended FOV image of normal 

mouse colon. The image is oriented with the proximal end, or ascending colon, to the left 

and the distal end, or sigmoid colon, to the right. Sample regions of interest from the length 

of the colon were selected, cropped to 1×2 mm2, and enlarged to more clearly show 

cellular and crypt features in the image. These regions are depicted by white rectangles in 

Fig 14(a). Fig 14(b) and Fig 14(c) are cropped regions of Fig 14(a) from the proximal 

region of the mouse colon. Fig 14(d) is a 5× microscope image of a histology slide 

prepared from a section of tissue at the proximal end of the colon. In the histological 

process, the tissue was oriented parallel to the mucosal surface such that the histology 

image would emulate the en face confocal image, to provide a direct comparison to 

confocal images. Similarly, confocal and histology images are shown for middle, Fig 14e 

– 14g, and distal, Fig 14h – 14j, regions of the colon. The 1×2 mm2 confocal images and 

the 1×1.8 mm2 histology images are shown on the same scale to enable comparison of 

crypt features. The extended FOV confocal image, Fig 14(a) is 1000×42,000 pixels. Fig 

14(b), 14(c), 14(e), 14(f), 14(h), and 14(i) are 1,000×2,000 pixels.  
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 The crypts shown in the confocal images of normal colon are uniform in size and 

distribution along the length of the colon, Fig 14(b), 14(c), 14(e), 14(f), 14(h), and 14(i). 

The lumen size within the histology images, Fig 14(d), 14(g), and 14(j), correlate with the 

confocal images and confirm the homogeneity of the colon. There is not a significant 

change in lumen size, shape, or distribution along the mouse colon tissue surface.   

 

 

Fig 14. Extended confocal microscopy and histology images of normal mouse colon. (a) 1 
× 42 mm2 Z-projection (S1 Video, MPG4, 7.42 MB). Proximal side of colon is on the left. Scale 
bar: 1 mm. Fig 14(b), 14(c), 14(e), 14(f), 14(h), and 14(i) are sequential regions, 1 × 2 mm2, of 
(a) designated by white boxes, from proximal [(b) and (c)], middle [(e) and (f)], and distal [(h) and 
(i)] regions. Scale bars: 200 μm. Fig 14(d), 14(g), and 14(j) are histology images, 1 × 1.8 mm2, 
from proximal, middle, and distal regions, respectively. Scale bar: 200 μm. 
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 Fig 15(a) is a 1×42 mm2 section of a Z-projection extended FOV image of chronic 

inflammation in the mouse colon. The white rectangles indicate the positions of Fig 15(b) 

and Fig 15(c) in the proximal region, Fig 15(e) and Fig 15 (f) in the middle region, and 

Fig 15(h) and Fig 15 (i) in the distal region, moving left to right in the image. Fig 15(d), 

Fig 15(g), and Fig 15(j) are the corresponding en face histology images from the proximal, 

middle, and distal regions, respectively. The 1×2 mm2 image locations were selected to 

highlight the diversity of tissue structure along the length of the inflamed colon.  

In some areas within the confocal images of inflamed colon, the crypts appear 

uniform in size and shape, for example in Fig 15(b), Fig 15(c), and parts of Fig 15(f). 

While in other locations, such as Fig 15(e), parts of Fig 15(f), Fig 15(h), and Fig 15(i), the 

crypts are spaced further apart or exhibit large lumen that are not circular in shape. As 

compared to the normal mouse colon, the inflamed tissue has a loss of architecture with 

non-uniform crypts that are not evenly distributed across the tissue surface. The histology 

images of the mouse colon tissue with chronic inflammation show heterogeneity of the 

tissue as the lumen size varies from one location to another, Fig 15(d), Fig 15(g), and Fig 

15(j). 

 



 

51 

 

 

Fig 15. Extended confocal microscopy and histology images of mouse colon with chronic 
inflammation. (a) 1 × 42 mm2 Z-projection (S1 Video, MPG4, 7.42 MB). Proximal side of colon 
is on the left. Scale bar: 1 mm. Fig 15(b), 15(c), 15(e), 15(f), 15(h), and 15(i) are sequential 
regions, 1 × 2 mm2, of (a) designated by white boxes from proximal [(b) and (c)], middle [(e) and 
(f)], and distal [(h) and (i)] locations of mouse colon. Scale bars: 200 μm. Figures 15(d), 15(g), 
and 15(j) are histology images, 1 × 1.8 mm2, from proximal, middle, and distal regions, 
respectively. Scale bar: 200 μm. 
 

4.4 Discussion 

We have constructed a confocal microscope combining beam scanning and rapid 

stage scanning at 7 mm/sec to rapidly acquire high aspect ratio images. We demonstrate 

this technique on excised mouse colon to enable evaluation of tissue features along the 

length of the colon. Extended FOV images of normal mouse colon show the homogeneous 

distribution of colon crypts along the entire length of the colon. In contrast, the extended 

FOV images of inflamed tissue show a wide range of crypt size, shape, and distribution. 

Some regions appear quite normal; whereas, other regions show extremely distorted crypt 

structure. For example, if we compare the confocal image with the most severe crypt 

distortion in the inflamed colon, Fig 15(e), to an image taken near the same location in the 
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normal colon, Fig 14(f), the average area and standard deviation of the crypts defined by 

the bright ring of colonocyte nuclei is 4231 ± 2226 µm2 for the inflamed tissue and 1076 

± 332 µm2 for the normal tissue. Furthermore, the average eccentricity and standard 

deviation decreases from 0.80 ± 0.14 to 0.73 ± 0.13 from inflamed to normal tissue, where 

a circle has an eccentricity of 0 and a line has an eccentricity of 1. Rapid confocal imaging 

and image processing could provide a quantitative map of crypt area and eccentricity to 

measure severity of tissue distortion with inflammation. It may also be used for fast 

identification of focal changes such as aberrant crypt foci, which are small groups of crypts 

with altered size and shape thought to be precursor lesions to colon cancer [96].  

 We have presented confocal images that show potential for classifying an 

inflammatory region within the colon based on crypt lumen size, shape, and distribution. 

The homogeneity of normal mouse colon tissue compared to the heterogeneous nature of 

tissue exhibiting chronic inflammation is clearly evident within regions of the colon. Some 

regions within the inflamed colon, Fig 15(b) and 15(c) for example, may be considered 

"normal"; therefore, a rapid stage scanning image technique to evaluate the entire organ 

to identify regions of interest may be valuable. We are able to acquire data along the entire 

length of the mouse colon in a relatively short period of time. 
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5. PULSE COUPLE NEURAL NETWORK ALGORITHM FOR QUANTITATIVE 

ANALYSIS OF EPITHELIAL NUCLEI* 

 

 

5.1 Introduction  

 There is a need for automated cell nuclei segmentation to provide rapid image 

analysis of reflectance confocal microscopy and endomicroscopy images of epithelial 

tissue; however, the low contrast, non-uniform images confound the development of 

accurate segmentation algorithms [97,98]. Quantitative data may be obtained by tedious 

manual segmentation of nuclei. Although this method introduces inter- and intra-

observer variability, it remains the gold standard for evaluation of segmentation 

accuracy. 

5.1.1 Challenges of Automated Nuclear Segmentation 

  Both fluorescence and reflectance confocal microscopy and 

endomicroscopy have been developed for tissue imaging [4]. While fluorescence confocal 

microscopy can provide high contrast images of cellular features, it requires 

administration of exogenous fluorescent dyes either topically or systemically to provide 

contrast. Reflectance confocal microscopy (RCM) exploits endogenous reflectance 

contrast produced by natural variations in the refractive index of cellular and tissue 

components [28,99]. Low concentration acetic acid (vinegar) may be applied to enhance 

                                                 

* Reprinted with permission from A Pulse Coupled Neural Network Segmentation Algorithm for 

Reflectance Confocal Images of Epithelial Tissue by Harris, Meagan A., Andrew N. Van, Bilal H. Malik, 

Joey M. Jabbour, and Kristen C. Maitland, 2015. PloS One, 10(3), 1 – 20, Copyright 2015 by Harris, et al. 
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contrast of cell nuclei and is already approved and routinely used in humans [43,66]. Use 

of near-infrared illumination in RCM allows deeper tissue penetration over one-photon 

fluorescence confocal, extending through the full thickness of the epithelium [28].  

  Segmentation of cell nuclei and quantification of NCR and nuclear size in 

RCM images of epithelial tissue can enable objective evaluation of tissue features for 

precancer detection [67,100]. If this data were provided rapidly or in real-time, the 

technique could be used to guide biopsy site selection and improve diagnostic yield. 

However, nuclear to background contrast can be low in RCM images, particularly in 

comparison to fluorescence confocal imaging with dye-based contrast agents. 

Furthermore, reflectance signal from the epithelium is not specific to cell nuclei. Cell 

borders, intracellular organelles such as the endoplasmic reticulum and mitochondria, 

melanin, and keratin all contribute to detected backscattered signal [28].  

5.1.2 Automated Nuclear Segmentation Methods 

  Thresholding, a simple and commonly used segmentation algorithm, has 

proven to be useful in medical image processing [101]. This method relies on the pixel 

intensity of a region of interest and isolates the region based on whether a pixel is above 

a certain threshold value. Variations in region intensity are compensated for by calculating 

the optimal threshold for each individual image, known as Otsu’s method [102]. Otsu’s 

method is an algorithm that determines the threshold that minimizes the intra-class 

variance in an image, assuming that the image contains only two classes of pixels. 

However, the technique suffers when trying to segment regions of non-uniform intensity, 

a factor prevalent in confocal reflectance images. For instance, a free open-source software 
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package, CellProfiler.org, is available for object segmentation using Otsu’s method; 

however, manual control of threshold values complicates rapid evaluation of images with 

varying contrast across a single image or images at multiple depths. 

  Other common segmentation techniques include the edge detection and 

watershed algorithms. Edge detection is a technique that attempts to identify features in 

the image through differentiation [103]. These features are identified through different 

filtering methods such as those by Canny, Sobel, or Prewitt [104-106]. However, attempts 

to identify and separate features are often confounded by image noise and regions of non-

uniform intensity. The watershed segmentation algorithm has been successfully used in 

some confocal images [107], and is based on modeling the image as a topographical relief. 

The algorithm requires the use of markers to prevent over-segmentation of the image, 

which can be difficult to obtain automatically and may require manual methods. 

  Most segmentation algorithms reported in the literature were designed to 

segment higher contrast confocal images with fluorescently stained tissue [107-111]. 

Previous work done by Luck et al. introduced a segmentation algorithm by use of Gaussian 

Markov random fields (GMRF) for reflectance confocal endomicroscopy images of 

epithelial tissue [112]. The GMRF technique utilizes local pixels to estimate the actual 

grayscale value of a pixel. This generates regions of uniform intensity that can be 

segmented by morphological features such as size and eccentricity. The algorithm has 

been shown to be successful, detecting 90% of nuclei in a frame at a 14% error rate [112]. 

However, the algorithm suffers from over-segmentation in some images, resulting in a 
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number of false-positives. Additionally, it is difficult to determine the number of fields 

required to make a good segmentation of each image.  

  Pulse coupled neural networks (PCNN) are derived from research on the 

mammalian visual cortex done by Eckhorn [113]. The network provides a useful 

biologically inspired tool for image processing. Each neuron represents a pixel on the 

image and is affected by the initial state of the pixel in the image, and the states of the 

surrounding neurons. The output of the network generates a series of temporal pulses, 

which can be used in many different image processing applications such as image 

segmentation or image fusion [114]. While the original PCNN model is strictly based on 

the neuron model created by Eckhorn, there are other networks specifically designed for 

image processing methods such as the intersecting cortical model or spiking cortical model 

(SCM) [115].  

  The algorithm introduced below utilizes a PCNN, specifically the SCM, to 

fully automate the segmentation process. The algorithm is able to efficiently segment 

epithelial nuclei over varying depth below the tissue surface and output valuable 

quantitative information such as the nuclear-to-cytoplasmic ratio, number of objects 

segmented, average nuclear area, and standard deviations where appropriate. 

5.2 Materials and Methods 

5.2.1 Sample Preparation and Image Acquisition 

5.2.1.1 Imaging of Porcine Oral Mucosa 

   Normal porcine cheek tissue was acquired through the tissue 

sharing program at Texas A&M University (TAMU) which is designed to reduce the 
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number of animals needed to accomplish research goals. Because the tissue was 

transferred from another study approved by the TAMU Institutional Animal Care and Use 

Committee (IACUC) after the animal was terminated, review of this work by the TAMU 

IACUC is not required. Following excision from the oral cavity, the buccal tissue was 

transported to the lab for imaging. Prior to confocal reflectance imaging, the sample was 

submerged in acetic acid for 1 minute to enhance nuclear contrast. The bulk sample was 

rinsed in a phosphate buffered solution and then placed on the inverted confocal imaging 

system with the buccal mucosal surface facing down towards the microscope objective.  

   Confocal reflectance images of the porcine buccal mucosa were 

acquired with 830 nm illumination using the VivaScope 2500 (Caliber I.D., Rochester, 

NY). This instrument is an inverted RCM designed to image unsectioned excised surgical 

specimens. Individual frame size provides a FOV of 750 × 750 μm2 at a rate of 9 frames 

per second. Optical resolutions are 1.5 μm and 5 μm for lateral and axial planes, 

respectively. Images were acquired down to approximately 160 µm below the tissue 

surface using an infinity corrected, 0.85 NA, water immersion objective lens. At this 

depth, reflectance signal is still detectable and the bases of rete ridges are prevalent; 

however, nuclei are no longer resolvable due to tissue scattering. A 3 × 3 array of images 

was captured at each depth to increase the total area imaged. To evaluate segmentation 

capability in images of different contrast and tissue features, images at four depths, 

approximately 8, 24, 40, and 64 μm below the surface, were analyzed. Images were 

cropped to a circular region with a diameter of 450 µm in order to reduce the range of 

focal plane depth due to field curvature. Nuclear objects were manually segmented by a 



 

58 

 

single observer via visual recognition by applying nuclear masks to nuclei in a given 

frame. This manual segmentation was used as the gold standard in evaluation of the 

automatic segmentation algorithm. The objects’ size, distribution, and contrast were also 

used to create an image model. 

5.2.1.2 Imaging of Human Oral Mucosa 

   In order to demonstrate that the applicability of our approach is 

relatively independent of imaging system characteristics and epithelial tissue type, we 

applied the segmentation algorithm to images of excised human oral tissue acquired using 

a different RCM system [116]. Briefly, the illumination light, emitting at 811 nm, was 

raster scanned and focused through a water immersion microscope objective (40, 0.8 

NA). Light backscattered from the tissue was focused onto a pinhole before being detected 

by a photomultiplier tube detector. The field of view was measured to be ~625 µm 

diameter at the sample, with lateral and axial resolutions of 0.65 µm and 5 µm, 

respectively. Oral tissue collection and imaging protocols were approved by the 

Institutional Review Boards at Texas A&M University and TAMU – Baylor College of 

Dentistry, and written consent was obtained from study participants. The images presented 

here were obtained from a human tissue biopsy that was clinically diagnosed as 

inflammation and histopathologically diagnosed as gingival hyperplasia. RCM imaging 

was performed within 30 minutes following biopsy. Gauze soaked in acetic acid was 

applied for 1 minute prior to imaging. In comparison to porcine mucosa, we were able to 

image and observe discernable features relatively deeper (>300 µm) within the human oral 

tissue. 
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5.2.2 Image Model of Epithelial Tissue 

  An image model was created in MATLAB to closely represent confocal 

images of epithelial tissue. Parameters such as nuclear size, density, and contrast were 

obtained directly from manually segmented confocal reflectance images of porcine buccal 

mucosa at various locations and depths. 750 circular objects with an area of 90 px2 

(corresponding to ~8 µm diameter nuclei) are randomly distributed without overlap in a 

set of six 1000 × 1000 px2 images. The ratio of average nuclear intensity to average 

background intensity (nuclear to background contrast ratio) was varied from 2.6 to 1.6 by 

decreasing the signal from the nuclear objects and increasing the signal from the 

background to simulate the loss of contrast with increasing imaging depth in tissue. Each 

object is modeled with a Gaussian spatial distribution of pixel intensity to adequately 

represent the nuclear appearance. Each object’s peak signal was determined using a 

histogram of intensities of manually segmented nuclei from depths with comparable 

nuclear to background contrast ratio. The background signal was modeled as Gaussian 

white noise with mean and variance based on intensity variation in cytoplasmic signal 

bordering nuclei in manually segmented images at depths with comparable nuclear to 

background contrast ratio. The background of the image model did not include tissue 

features such as cell borders and areas of high keratinization. 

5.2.3 Spiking Cortical Model Algorithm 

  The automated PCNN based algorithm was written in MATLAB (The 

MathWorks, Inc., Natick, Massachusetts, United States) and is available at the online 
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Zenodo database (https://zenodo.org/record/12804) [117]. The nuclear-to-cytoplasmic 

ratio, area of segmented nuclei, and the total number of objects segmented were recorded 

and compared to manual segmentation. Object- and pixel-based sensitivity and pixel-

based specificity were calculated using the manually segmented images as the gold 

standard. For object-based sensitivity, an object was considered a true positive if any of 

the pixels within an object were correctly classified. All other missed objects were 

considered false negatives. For pixel-based specificity, the number of true negative pixels 

was counted as the active FOV less the total number of true positive, false positive, and 

false negative pixels. The flow chart for the SCM algorithm can be seen in Fig 16. The 

main steps shown in the chart are described in detail below. Fig 17 illustrates various steps 

in the algorithm during the segmentation process of an example confocal image Fig 17(A). 

The SCM algorithm takes approximately 20 seconds to process a single confocal image, 

performed on a laptop computer with 2.3 GHz processing speed and 16 GB of RAM. 

 

 

 

Fig 16. Flowchart of main steps of the automated SCM segmentation algorithm for 
segmenting nuclei in RCM images of epithelial tissue. 

 

https://zenodo.org/record/12804
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Fig 17. Image steps of SCM segmentation algorithm. (A) Original confocal image of porcine 
buccal mucosa showing range of nuclear to background contrast. (B) SCM segmentation of (A). 
(C) Output of final SCM filter showing time matrix of pulse outputs. (D) Segmentation mask 
obtained from the time matrix. (E) Output of the ANN classifier defining the segmented objects in 
(B). 

 

5.2.3.1 Background Removal 

   Occasionally, the tissue may not fill the entire imaging FOV. If the 

active FOV is not well-defined, NCR calculations using the entire FOV may be 

erroneously low. A threshold algorithm is utilized to remove the background of the image 
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leaving the active FOV. This was accomplished by assuming the background is composed 

of a large contiguous area of dark pixels distinct from the foreground (i.e. the tissue). A 

scaled threshold for the background was calculated using Otsu’s method [102], which 

provides an optimal division between the foreground and background of each image. 

Subsequently, an area filter was applied to remove the background from the image. After 

removal of the background pixels, the area of the foreground was calculated for use in the 

NCR calculation.  

5.2.3.2 Pulse Couple Neural Network 

   Image filtering and segmentation is carried out by the SCM 

developed by Zhan, et al [118], which models pixels in an image as neurons in an 

interconnected neural network. The SCM is a biomimetic algorithm and a simplified 

variant of the original PCNN visual cortex model. The model itself is composed of three 

equations: an internal activity function, a neural output function, and a dynamic threshold 

function. The matrix created by the output function is the only result that is examined. The 

threshold and internal activity functions are hidden and only used to calculate the output. 

Finally, a time matrix is a single composite image created by these outputs that records 

the pulse time of each neuron run through the SCM. The functions compose an abstract 

representation of a biological visual model that separates various “features” of an image 

into different outputs separated temporally. Here, we define a feature as a set of pixels of 

similar intensity grouped spatially. Image filtering is done by reducing the amount of 

features present within the image, while the features of interest (i.e. nuclei) are isolated in 
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segmentation. The extracted features depend on a number of parameters, f, g, W, and h, as 

described below and in Chen, et al. [119]. 

   A neuron in the SCM model is defined as these three equations 

applied to a single pixel within the image. The variables i and j denote the position of the 

neuron of interest in the image, while k and l define the positions of the neighboring 

neurons relative to the current neuron. The internal activity function takes an input image 

and forwards it into the neuron layer:  

      1 1ij ij ij ijkl kl ij

kl

U n fU n S W Y n S      (10) 

where Sij is the input image, Uij is the internal activity of the neuron, Ykl is the neuronal 

output of the neighboring neuron, and n defines the current iteration of the network. The 

parameter f is the decay coefficient for the internal activity function, which affects the 

temporal spacing of features. The parameter Wijkl is the weight matrix determines the 

connections between neurons, or the association strength of neighboring pixels within a 

feature [119].  

   The neural output function compares the internal activity of the 

neuron to its current threshold: 
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where Yij is the neuronal output and Eij is the dynamic threshold of the neuron as defined 

in Equation 12. The threshold function is calculated by addition of the previous 

threshold with the neuronal output: 
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 )()1()( nhYngEnE ijijij   
(12)

 

   The parameters g and h are defined as the decay coefficient and 

amplitude for the threshold function, respectively. Both parameters determine the 

precision of intensities for each feature [119]. 

   Through trial and error, f, g, and h were set to 0.928, 1.078, and 1.4, 

respectively. The parameter Wijkl was set to [0.0125, 0.025, 0.0125; 0.025, 0, 0.025; 

0.0125, 0.025, 0.0125]. Once these tunable parameters were optimized using training data 

from porcine buccal mucosa, they were kept constant for segmentation of all porcine and 

human tissue images. While automated methods exists for setting PCNN parameters 

[119], manually setting the parameter values for the network provided more desirable 

results, such as maximizing true positives while reducing false positives. The final values 

were chosen so that the algorithm was tuned to provide an optimized output for both 

sensitivity and specificity. The parameters could be modified to prioritize sensitivity over 

specificity, for example, if a specific application warranted it. However, all tunable 

parameters depend on each other and affect output results, complicating this parameter 

tuning. 

5.2.3.3 Time Matrix 

   The network was modified such that each neuron representing a 

pixel could only output once. Each successive neuronal output was labeled by iteration 

number, generating a time matrix as seen in Fig 17(C). The time matrix is a composite 

image that combines the pulse outputs of the SCM, and organizes the pixels in the image 
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based on similar intensity [118]. Since brighter elements of the image (e.g. bright pixels, 

nuclei, etc.) are stored in earlier iterations and darker elements (e.g. background, dim 

artifacts, out of focus objects etc.) are stored later, the time matrix can label the image 

according to the pulsing order. Here, we use the time matrix to 1) filter and 2) obtain the 

segmentation mask, Fig 17(D). 

   Since darker elements of the image are stored in later iterations of 

the network, only the first 6 output iterations of the network are analyzed. The size and 

eccentricity values were measured for each object within each output iteration. Using this 

information, the pixel intensity values in the original image were brightened or darkened 

with gamma corrections. For the earlier iterations, large areas were lowered in intensity to 

darken the intensity of large saturated areas. For later iterations, small, round areas were 

raised in intensity to brighten darker nucleus shaped objects. 

   Following successive PCNN filtering, a final time matrix was 

generated to produce a segmentation mask. An initial mask was first created by taking the 

regional minima of the time matrix. This process captures the central area of each nucleus, 

but leaves out the periphery. By “growing” the initial mask by adding successive 

iterations, a segmentation mask was obtained. Each iteration was added to the 

segmentation mask until the object passed a set area and eccentricity limit. 

5.2.3.4 Artificial Neural Network Classifier 

   Following the segmentation done by the PCNN, an artificial neural 

network (ANN) classifier was made using the built-in MATLAB Neural Network 

Toolbox™. By inputting a set of examples to this classifier, we train the classifier to 
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remove objects that are more likely to be false positive nuclei based on a set of features. 

Using a database of objects created by manual segmentation, the network was trained by 

an 8-dimensional feature vector which included area, eccentricity, extent, solidity, 

foreground intensity and standard deviation, and background intensity and standard 

deviation. Out of the 36 total images, two images were randomly selected at each depth 

with no overlapping lateral position for all depths. The database of approximately 1800 

objects in these 8 images was randomly divided into three sets: 70% as a training set, 15% 

to validate that the network is generalizing and to stop training before overfitting, and 15% 

as an independent set to test for network generalization. After creating the neural network 

classifier with these 8 images, it was applied to the remaining 28 images. All reported 

results and images in this paper are from the 28-image dataset and do not include the 8-

image training data. For the image in Fig 17(A), a finalized segmentation output of nuclear 

objects, Fig 17(B), was obtained after removal of the ANN classified objects from Fig 

17(E).  

5.2.3.5 MATLAB Output and User Interface 

   The MATLAB regionprops function to measure properties of 

image regions was applied to the image mask in order to generate information about 

nuclear area, NCR, and the number of objects detected in the image. The mean and 

standard deviation for nuclear area was calculated for the image. The NCR was calculated 

by taking the total area of the objects present in the image and dividing by the remaining 

area in the FOV. Fig 17(B) shows an image output generated by the SCM algorithm which 
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includes a blue border designating the segmented active FOV and red borders around each 

segmented object. 

   The MATLAB GUIDE tool was used to build a user interface for 

the algorithm. The interface enables the quick processing of multiple images, as well as 

preview and batch save capabilities. In addition, the interface enables the export of the 

information generated for each image as a Microsoft Excel spreadsheet file and lists the 

data accordingly for each analyzed image. 

5.3 Results 

5.3.1 Image Model 

  The SCM automated segmentation algorithm, including the ANN classifier 

trained on objects in confocal images of epithelium, was first applied to the image model 

of epithelial tissue to evaluate the limitations of the algorithm. The segmentation 

performance was assessed based on sensitivity (true positive rate) and specificity (true 

negative rate) for each contrast value or nuclear to background ratio. Sensitivity was 

calculated using both object and pixel based methods. Specificity was calculated by pixel 

based method only due to the inability to quantify true negative objects. SCM analysis of 

the image model is shown in Fig 18. Contrast decreases from 2.6 to 1.6 moving down each 

column. The original simulated images shown in the first column are 1000 × 1000 px2 

FOV containing 750 objects distributed randomly without overlap. The yellow box 

indicates the location of the zoomed in 250 × 250 px2 FOV regions featured in the second 

column. The third column shows the SCM segmentation of the zoom in area. The fourth 

column is a sensitivity map depicting the accuracy of the SCM algorithm to detect 
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simulated nuclear objects with varying contrast. Green pixels on the sensitivity map 

indicate true positives, blue pixels are false negatives, and red pixels are false positives. 

 

 

Fig 18. SCM segmentation of confocal image model with sensitivity evaluation. 750 × 750 
µm2 field of view confocal image model with nuclear to background contrast, (A) 2.6, (E) 2.4, (I) 
2.2, (M) 2.0, (Q) 1.8, and (U) 1.6. (B), (F), (J), (N), (R), (V) 190 × 190 µm2 field of view zoom in of 
yellow box from (A), (E), (I), (M), (Q), and (U), respectively, showing nuclear object detail. (C), 
(G), (K), (O), (S), and (W) SCM segmentation and sensitivity map comparison to objects in the 
original model images of (B), (F), (J), (N), (R), and (V), respectively. Green pixels (true 
positives), blue pixels (false negatives), and red pixels (false positives).  
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Fig 18. Continued. 

 

 

5.3.2 Porcine Buccal Mucosa Images 

  Automated segmentation analysis was performed on 28 confocal images of 

excised porcine buccal mucosa at four depths spanning the surface to 60 µm in depth. 

Example SCM segmentation results for two images are shown in Fig 19. The image in Fig 

19(A), obtained approximately 20 µm below the tissue surface, represents a high contrast, 

easily segmented image from the superficial layer in the epithelium. The image has 79 

manually segmented objects and an average object to background contrast of 2.26. The 

image in Fig 19(C), obtained approximately 60 µm below the surface, demonstrates 

relative difficulty in segmenting low contrast images. This image has 259 manually 

segmented objects and an average contrast of 1.51. SCM segmentation is shown in Fig 
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19(B) and 19(D). The high contrast image in Fig 19(A) had the highest SCM segmentation 

sensitivity, with an object based sensitivity of 94%, pixel based sensitivity of 84%, and 

pixel based specificity of 99%. For the low contrast image in Fig 19(C), SCM 

segmentation had object based sensitivity of 70%, pixel based sensitivity of 61%, and 

pixel based specificity of 98%.  

 

 

Fig 19. Comparison of SCM segmentation algorithms on confocal images of oral mucosa 
with high and low contrast. Original confocal images of porcine buccal mucosa with (A) high 
and (C) low nuclear to background contrast. (B) and (D) SCM segmentation of (A) and (C), 
respectively. 
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  The plot in Fig 20 illustrates the SCM segmentation results of the confocal 

image model and the porcine buccal mucosa tissues with respect to image contrast. With 

increasing image contrast, both object-based and pixel-based sensitivities improve. 

Because the image model simulates only nuclear objects and not other cellular features 

that scatter light, there were very few false positive pixels and numerous true negatives. 

Therefore, the specificity for all confocal image model figures is practically 100%. The 

highest object-based sensitivity measured for the confocal image model was 97% for a 

nuclear to background contrast of 2.6. Whereas, the highest object-based sensitivity 

measured for the porcine tissues was 89% with an image contrast of 2.06. Pixel-based 

sensitivity is less than object-based sensitivity primarily due to undersegmentation of 

objects yielding more misclassified pixels within detected objects. The specificity does 

not vary significantly due to the disproportionately large number of pixels in the active 

FOV in comparison to the false positive pixels. 
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Fig 20. Effect of nuclear to background contrast on accuracy of SCM segmentation. 
Object-based sensitivity (Object Sens.), pixel-based sensitivity (Pixel Sens.), and pixel-based 
specificity (Pixel Spec.) are plotted for SCM segmentation of the simulated image model and 
captured images of porcine buccal mucosa as a function of contrast. Increasing depth below the 
surface of mucosal tissue corresponds to decreased contrast.   

 

  Table 3 summarizes the performance of the SCM segmentation algorithm 

over 28 images of porcine tissue. A total of seven adjacent images were analyzed at each 

of four depths. The table includes image properties such as average object to background 

contrast and total number of manually segmented objects at each depth below the tissue 

surface. The number of true positive (TP) and false positive (FP) objects, and percent error 

are presented for SCM segmentation. A pixel-based F-measure value, where 𝐹1 =

2×𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)
, is also reported as a means to evaluate accuracy of the 

segmentation algorithm based on both sensitivity and specificity [120].  
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Table 3. SCM segmentation of confocal images of porcine tissue.  

Image Properties SCM 

Depth 
[µm] 

Contrast 
# 

Objects 
True 

Positives 
False 

Positives 

% Error 
Sensitivity 

(object) 

% Error 
Sensitivity 

(pixel) 

F-
Measure 

7.93 2.36 554 473 271 14.62% 19.14% 0.89 

23.78 2.06 749 669 193 10.68% 21.22% 0.87 

39.63 1.85 1167 889 63 23.82% 31.01% 0.81 

63.40 1.56 1479 902 42 39.01% 44.86% 0.71 

 

 

  To further compare segmentation by SCM to manual segmentation, 

normalized line profiles through two nuclei from the image in Fig 19(A) are shown in Fig 

21 as well as a line profile through an image model object. The original image of an object 

from an image model figure is shown in Fig 21(A). A line profile though the object is 

shown in Fig 21(D) where the green lines represent the SCM segmentation, Fig 21(C), 

which overlaps on the designated object border as seen in Fig 21(B). The original images 

of a bright, well-resolved nucleus and a dim nucleus that is not easily resolved are shown 

in Fig 21(E) and 21(I), respectively. Segmentation of the well-resolved nucleus, Fig 21(H), 

illustrates that SCM segmentation tends to have a tight fit around nuclei, similar to manual 

segmentation. The intensity plot for a nucleus that is not as well-resolved is shown in Fig 

21(L). Here, the green lines represent both SCM and manual segmentation, which overlap 

for this orientation of the line profile of the nucleus. As seen in these plots, manual 

segmentation and SCM segment nuclei around the half maximum point.  
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Fig 21. Line profile plots to compare SCM and manual segmentation. (A) Representative 
image model object, (B) SCM segmentation of selected object, and (C) actual object border. (D) 
Normalized line profile (LP) plot for line indicated by the yellow box in (A). (E) Bright and (I) dim 
nuclei, (F) and (J) SCM segmentation, and (G) and (K) manual segmentation. (H) and (L) 
Normalized LPs with segmentation borders identified for SCM and manual segmentation. Note in 
(L) that SCM and manual segmentation overlap. 
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Fig 21. Continued. 

 

  Table 4 summarizes SCM segmentation of confocal images of epithelial 

tissue in comparison to manual segmentation. The total number of objects segmented is 

listed per depth. The greater number of objects segmented near the surface by SCM may 

be attributed to false positives from non-nuclear image features. Average NCR, nuclear 

area, and nuclear diameters are also shown by depth below tissue surface. Because of the 

irregular shape of nuclear objects, average diameter is calculated from the average area. 

As expected for epithelial tissue, the number of segmented objects increases with image 

depth; however, the number of objects segmented with SCM does not increase at the same 

rate as manual segmentation. This reduced sensitivity, due to low nuclear to background 

contrast, results in underestimation of NCR with depth. 
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Table 4. Comparison of SCM to manual segmentation of objects. 

Image Properties SCM Manual 

Depth 
[µm] 

Contrast 
# 

Objects 
NCR 

Nuclear 
Area 
[µm2] 

Diameter 
[µm] 

# 
Objects 

NCR 
Nuclear 

Area 
[µm2] 

Diameter 
[µm] 

7.93 2.36 744 0.0345 49.11 7.91 554 0.0223 43.53 7.44 

23.78 2.06 862 0.0452 54.44 8.33 749 0.0354 49.07 7.90 

39.63 1.85 952 0.0556 60.06 8.74 1167 0.0597 52.11 8.15 

63.40 1.56 944 0.0623 68.28 9.32 1479 0.0912 61.03 8.82 

 

  To illustrate the performance of SCM segmentation of individual nuclei, 

Fig 22 depicts examples of various segmentation scenarios that affect quantitative output 

of the algorithm. The confocal image from Fig 19(A) is seen in Fig 22(A) with a sensitivity 

mask overlaid on top. Green areas indicate a true positive match to the manual 

segmentation. Blue indicates a false negative, a nuclear object that was not segmented by 

SCM but was manually segmented. Red areas are designated as false positive, or objects 

that SCM detected but were not segmented manually. Fig 22(A) is labeled with the 

locations of the nuclei detailed here and shown in Fig 22B – 22G. Fig 22H – 22M are the 

SCM segmentation corresponding to the sensitivity maps of Fig 22B – 22G, respectively.  
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Fig 22N – 22S are the corresponding manual segmentation. The sensitivity map, Fig 

22(B), shows an example of excellent segmentation by SCM as compared to manual 

segmentation. Fig 22(C) is an example of over-segmentation by SCM or excessive nuclei 

splitting due to low pixel intensities. The object was manually segmented as a single object 

because it is unlikely, but possible, that two nuclei would be positioned so close together 

within this superficial epithelial layer. Another example of over-segmentation also likely 

caused by low pixel intensities is shown in Fig 22(D), where the SCM algorithm 

segmented the object larger than the manual segmentation. It is possible that some nuclei 

may not be as well resolved due to their depth position relative to the focal plane, resulting 

in reduced intensity. Fig 22(E), a false negative, demonstrates this, showing the limitations 

of SCM segmentation. False positives can occur for many reasons such as tissue and image 

artifacts and, possibly, nuclei missed by manual segmentation. Fig 22(F) is an example of 

a false positive from a rete ridge or keratin pearl in the oral epithelial tissue. Fig 22(G) 

shows an object that was segmented by SCM, but not by manual segmentation. It appears 

to be the appropriate size of a nucleus, but was not manually segmented because of its 

location within the tissue. 
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Fig 22. Evaluation of SCM segmentation performance. (A) Sensitivity map demonstrating 
true positives (green), false negatives (blue), and false positives (red). Objects of interest are 
labeled (B-G). Zoom-in of example nuclei demonstrating (B) excellent segmentation, (C) and (D) 
oversegmentation, (E) false positive, (F) image artifact false positive, and (G) false positive 
potentially missed by manual segmentation. (H-M) SCM and (N-S) manual segmentation of (B-
G). 
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5.3.3 Human Oral Mucosa Images 

  To demonstrate the ease of applicability of the SCM nuclear segmentation 

algorithm to images acquired from other tissue types and using different RCM systems, 

human oral mucosal tissue was imaged with a different RCM system [116]. A total of 9 

confocal images spanning a range of depth from 60 µm to 300 µm within the human oral 

tissue were selected for validation of the SCM algorithm. These images were taken from 

a tissue biopsy suspected of inflammation and later classified by histopathology as 

gingival hyperplasia, a benign lesion. Fig 23 shows sections of the representative original 

and the corresponding segmented images from varying depths within the tissue. Note that 

in comparison to the porcine oral mucosa, overall slightly lower level of contrast was 

observed across the human oral epithelium. The object-based and pixel-based sensitivity 

values varied from ~50% to 73% and ~40% to 62%, respectively, and unlike images of 

porcine mucosa, without any correlation to the depth of imaging. The pixel-based 

specificity did not vary significantly and was over 98% in all instances. 
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Fig 23. SCM segmentation of confocal images of oral mucosa at various depths. Original 
confocal images and SCM segmented images of inflamed human buccal mucosa at 
approximately (A, B) 90, (D, E) 180, and (G, H) 270 µm below tissue surface. True positives 
(TP), false negatives (FN), and false positives (FP) quantified for these depths were (C) 54 TP, 
34 FN, 3 FP; (F) 72 TP, 26 FN, 7 FP; (I) 80 TP, 53 FN, 1 FP. Histology image (J) shows full 
epithelium. Images have been cropped from media file to restrict depth. 
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Fig 23. Continued. 

 

  It is worth noting that, in general, the values of sensitivity were lower in 

comparison to that of porcine tissue. This can be attributed to a number of reasons. The 

histology corresponding to the tissue biopsy was interpreted as hyperplasia which is 

typically marked by a benign proliferation of cells. This can be observed in the images 

throughout Fig 23 wherein the nuclear density is higher than that of Fig 19(A) and 

somewhat similar to that of Fig 19(C) (which is near the basement layer in porcine 

mucosa). Such nuclear crowding can result in a decrease in forward scattered light, as 

predicted by the theory of light scattering by densely packed structures [121]. A direct 

consequence of this is loss of contrast in the corresponding regions within the images. In 

addition, as can be seen in the histology section in Fig 23(J), the epithelial thickness varies 



 

82 

 

from less than 100 µm (in the areas of rete ridges) to over 300 µm, and islands of 

inflammatory cells are observed to penetrate into the epithelium. Both the interface of rete 

ridges and of these islands manifest as significant heterogeneities within the refractive 

index of the medium and may result in an increase in the backscattered light, as can be 

noticed in the lower left quadrant of Fig 23(E). Such variation in both contrast and levels 

of backscattered light across a single image presents a limitation of our SCM algorithm, 

and results in a decrease in the number of segmented objects and, consequently, more false 

negatives. 

  Another possible factor towards explanation of such behavior is that in 

order to image visibly at the depths of >300 µm within tissue, the optical power at the 

sample was kept relatively high and constant, and hence less optimal for more superficial 

layers of the tissue. This effect can be seen in the accompanying media file (S2 Video) 

wherein areas within the images from approximately the top one-third of the epithelium 

are saturated, the middle one-third exhibit better segmentation, and the lower one-third 

thickness shows loss of contrast simply due to imaging at greater depths within tissue. 

Accordingly, the sensitivity values in the images from the middle one-third of the tissue 

are the highest and monotonically drop off towards either side. 

  It is worth noting that although manual segmentation results were 

considered as a benchmark for quantifying SCM algorithm performance, such a 

benchmark itself is prone to both intra-observer and inter-observer variation. For instance, 

differences in display output settings (hue, contrast, brightness, etc.) vary between display 

screens (monitors and television) of different makes and models, and can potentially affect 
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the ability of a reader to segment the same image consistently. Inter-observer variation in 

manual image segmentation can have an even more profound impact since the training 

and understanding of the reader as to what area constitutes a cell nucleus is rather 

subjective. In order to quantify this effect, the pig tissue images were segmented by 

multiple readers. In comparison to the “expert” reader, the average area of segmented 

nuclei was underestimated by approximately 9% by one reader and overestimated by 

approximately 11% by another reader, highlighting the impact of inter-observer variation. 

Thus, such limitations should be kept under consideration when estimating the accuracy 

of any image segmentation algorithm. A potential alternative approach for establishing a 

gold standard would be to use a nuclear stain, such as DAPI, in fluorescence confocal 

microscopy to identify nuclei in ex vivo tissue samples. One-photon fluorescence has 

better resolution and reduced penetration depth in comparison to RCM; however, this 

would be an effective method for localization of nuclei in superficial epithelium. Although 

using exogenous contrast agents in humans is still limited for in vivo imaging, the use of 

fluorescent agents to enhance contrast in epithelial tissues has shown many benefits [4]. 

5.4 Discussion 

 Segmentation of nuclei in RCM images with low nuclear to background contrast 

is a challenge, particularly for fully automated algorithms. We have presented an 

automated PCNN nuclear segmentation algorithm based on the spiking cortical model. 

The segmentation accuracy was evaluated using an image model and confocal images of 

porcine oral epithelial tissue with varying nuclear to background contrast. The algorithm 

was further validated on RCM images obtained from human oral tissue using a custom-
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built imaging system. Although segmentation accuracy degrades with reduced contrast 

and increasing image depth in tissue, automated segmentation of nuclei is significantly 

faster than manual segmentation, enabling rapid evaluation of tissue properties such as 

NCR and nuclear size. 
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6. EFFECTS OF AXIAL RESOLUTION ON EPITHELIAL NUCLEAR-TO-

CYTOPLASMIC RATIO MEASURED WITH REFLECTANCE CONFOCAL 

MICROSCOPY 

 

6.1 Introduction 

Extensive cytological studies have been performed for characterization of 

morphological features of epithelial tissues, monitoring changes, and classification of 

tissue state. Many of these studies include quantitative data to assess nuclear and cellular 

diameters and areas. In some cases, the nuclear area is unchanging, and studies pursued 

cytoplasmic area, leading to a comparison of the NCR in various tissue states. It is 

common to compare NCR values when conducting similar studies, but in fact, there are 

many differences between the experiments and the state of the specimen in study.  

To make a quantitative measurement like the NCR, the cell must exhibit contrast 

between the nucleus and cytoplasm. Contrast in reflectance confocal microscopy of 

epithelium is permitted from reflection and scattering from the nuclei, allowing for a 

quantitative comparison of normal and neoplastic changes in tissues by the NCR [122].  
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Addition of vinegar or acetic acid (3-6%) to the mucosal surface enhances backscattering 

from cell nuclei in reflectance confocal microscopy, which improves contrast [43].  

6.1.1 Nuclear-to-Cytoplasmic Ratio of Cervical Epithelium 

 Sung conducted a study that measured the average nuclear area and NCR 

of cervical squamous epithelium in vivo using a fiber optic confocal reflectance 

microscope [123]. Another study done previously by Collier using a non-fibered confocal 

reflectance microscope measured the NCR of cervical tissue ex vivo [67]. A quantitative 

comparison, shown in Fig 24, shows that the ex vivo results exhibit higher NCR. Greater 

average nuclear area from ex vivo results was attributed to possible shrinkage after biopsy. 

A third set of data obtained by Walker is also shown from a NCR study conducted on 

histology sections [124]. One possibility stated as a reason for differences in NCR between 

the in vivo and ex vivo confocal microscopy experiments is tissue shrinkage; however, this 

has not yet been validated. 

 



 

87 

 

Fig 24. A comparison of the (a) average nuclear diameter and (b) NCR for confocal images 
acquired in vivo [123] and ex vivo [67], and histology [124]. 

 

There are significant functional differences in the confocal system design of the 

two aforementioned NCR experiments. Some of the notable differences potentially 

affecting a valid comparison of NCR values include the illumination source used, which 
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directly affects the lateral and axial resolutions. Also, the experiment conducted by Sung 

was performed in vivo versus an ex vivo study performed by Collier. Sung's experimental 

system used a 1064 nm wavelength illumination source, a 30,000 optical element fiber 

bundle, with a lateral resolution of 1.6 µm and an axial resolution of 3-10 µm. Collier's 

setup had a 810 nm laser with a 25 0.8 NA water immersion objective. This system 

achieved a lateral resolution of 0.8 µm and an axial resolution of 2-3 µm. Additionally, 

the data acquired in Collier's ex vivo study was taken at least 6 hours after excision. Based 

on these differences, it may be complicated to directly compare the measured NCR from 

the experiments, particularly if the NCR results are used to identify a cutoff threshold for 

differentiating normal from precancerous tissue. In Chapter 6, I evaluate the effect of axial 

resolution on epithelial images and NCR measurements. In Chapter 7, I detail 

experimental results that investigate the effects of tissue sample size and tissue 

degradation on the NCR measurements. 

6.1.2 Nuclear-to-Cytoplasmic Ratio of Oral Epithelium 

 The epithelial NCR has a wide range of values depending on the study, the 

method of measurement, and the tissue site. Electron microscopy and stereological 

analysis were performed on normal buccal epithelial biopsies [125,126]. The epithelial 

thickness was reported as 0.48 mm, and stereological point counting techniques calculated 

a NCR of 0.03 for the granular layer or superficial area of the epithelium. Later, another 

study was done using punch biopsies, and similarly, the epithelial thickness was reported 

as 0.5 – 0.6 mm [126]. Another technique for measuring the NCR is to scrape the oral 

mucosa, smear the cells on a glass slide, and then stain the sample prior to imaging with 
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light microscopy [127]. The calculated NCR was reported as 0.023 in this study. These 

results along with results from other studies are summarized in Table 5, below. 

 
Table 5. Summary of quantitative results from oral epithelial measurements. 

Author 

(Ref) 

Sample 

(Location) 
Process 

Epithelium 

Thickness 

ND±

SD 

CD±

SD 

NA±

SD 

CA±

SD 

NCR 

±SD 

Landay 

[125] 

Human 

cheek 

(granular 

layer) 

Biopsies 0.48 mm     0.03 

Landay 

[126] 

Human 

buccal 

mucosa 

Punch 

biopsies 
0.5-0.6 mm      

Ogden 

[127] 

Human 

buccal 

mucosa 

Scrape, 

smear, 

stain 

   
72.28

±11.5 

3098

±766 
0.023* 

Jin [128] 

Human 

cheek 

(spinous 

cells) 
Histology 

sections 

   
29.2 

±5.3 
  

Human 

cheek (basal 

cells) 

   
23.0 

±3.4 
  

White 

[129] 

Human 

cheek 

(spinous 

cells) 
Histology 

sections 

     
0.12 

±0.02 

Human 

cheek (basal 

cells) 

     
0.67 

±0.10 

Ramaesh 

[130] 

Human 

buccal 

mucosa 

Scrape, 

smear, 

stain 

 
8.36 

±0.49 

51.78

±0.11 
54.89  0.026* 

White 

[28] 

Human lip 

(superficial 

layer) 

In vivo 

confocal 
242.9±30.2 µm     

0.031 

±0.01 

Human lip 
Histology 

sections 
226.6±42.1 µm     

0.049 

±0.021 

De 

Arruda 

[131] 

Human 

cheek 

Scrape, 

smear, 

stain 

     
0.03 

±0.01 

 

Although spinous and basal cells are larger than granular cells, which lie in the 

superficial epithelium, their values for nuclear area and NCR are useful for comparison 
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when imaging deeper into the epithelium [128,129]. Some of the data reported in Table 5 

is measured from histology slides. The extensive processing procedures for histology may 

alter the morphology of tissues, such as shrinkage, which may explain the higher measured 

values for NCR compared to in vivo measurements. In vivo confocal reflectance 

microscopy was performed on human oral lip mucosa [28]. A thorough table lists 

comparisons of NCR measured from confocal images versus histology sections. Measured 

from the superficial epithelium, the mean NCR and standard deviations from 25 readings 

are 0.031 ± 0.01 and 0.049 ± 0.021 for confocal and histology, respectively.  

6.2 Materials and Methods 

6.2.1 Custom System Design 

In order to evaluate the effect of axial resolution on NCR, a custom 

reflectance confocal microscope system with variable NA was used [116]. Samples are 

illuminated by an 811 nm continuous wave laser (DL808-120-0, CrystaLaser, Reno, NV). 

The illumination light was raster scanned across the sample and focused through a 40, 

0.8 NA water immersion microscope objective (MRD07420, Nikon). Backscattered signal 

from the tissue was focused onto a pinhole placed in the conjugate image plane before 

being detected by a photomultiplier tube detector. System specifications include an 

approximate 625 µm diameter field of view, and lateral and axial resolution ranges of 0.65 

– 2.2 µm and 4.5 - 17 µm, respectively. 

6.2.2 Sample Preparation and Imaging 

  To compare the system effects on the NCR, human oral mucosa biopsies 

were imaged using a custom reflectance confocal microscope with variable axial 
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resolution [116]. Oral tissue collection and imaging protocols were approved by the 

Institutional Review Boards at Texas A&M University and TAMU – Baylor College of 

Dentistry, and written consent was obtained from study participants. 

The axial resolution of the system was varied by changing the current 

setting to an electrically tunable lens. The current was set to a fixed value as vertical scans 

were performed for several current settings, 45, 50, 75, 90, 100, 113, 120, and 125 mA 

corresponding to 4.5, 5, 6, 8, 9, 9.5, 13, and 17 µm axial resolutions. Vertical image stacks 

of approximately 400 µm depth below the tissue surface were acquired with 

approximately a 2 - 4 µm step size from the same location for comparison of an increasing 

axial resolution, or thickening of the axial plane which may have an effect on the NCR. 

Four depths were selected (64 µm, 134 µm, 180 µm, and 232 µm) for NCR analysis at 5 

different axial resolutions (4.5 µm, 6 µm, 9 µm, 13 µm, and 17 µm). 

6.2.3 Image Analysis 

Confocal image analysis was performed by the automated SCM algorithm 

developed in MATLAB that is capable of segmenting epithelial cell nuclei [117,132]. The 

images were analyzed post acquisition without any pre-processing with the exception of 

cropping images around areas of high segmentation, as necessary, in order to measure a 

more accurate NCR value. After analysis, the segmentation algorithm outputs an NCR 

value per image, object area for each object segmented, and the number of objects 

segmented per image. Image contrast was measured by taking the average mean intensity 

value for all segmented objects and dividing by the average background intensity value 

which accounts for pixels located 2 to 3 pixels outside SCM segmentation borders. 
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6.3 Results 

 As the axial resolution of the confocal reflectance microscope is increased, the 

optical sectioning thickness also increases. Cell layers within the epithelium have varying 

morphology where some cells are flatter than others. A larger optical section thickness is 

expected to allow for more cell layers to show up in the focal plane and increase the 

number of detected nuclei within a single confocal frame. More cell layers in the focal 

plane could increase the NCR per image frame depending on cell size, shape, and 

distribution throughout the epithelial layer. Although it was expected that NCR values 

would increase, the results from automated SCM segmentation do not show significant 

change with increasing axial resolution. 

 For the 64 µm and 134 µm imaging depths, NCR values exhibit an increase in 

value, then drop off significantly with increasing axial resolution at 13 µm and 17 µm. 

Due to poor image contrast, NCR measurements for 13 µm and 17 µm are not included in 

further analysis. The images analyzed at an axial resolution of 9 µm are where a change 

in NCR is expected.  

 

 

 

 

 

 

 



 

93 

 

The segmented objects average 8 µm in diameter. An axial resolution of 9 µm would 

possibly allow for more cell layers to enter the focal plane. With increasing axial 

resolution, it appears that NCR decreases from lack of segmentation due to poor image 

contrast. Similarly for increasing depth (180 µm and 232 µm), automated segmentation is 

not accurate at any axial resolution. 

 Fig 25 shows selected images of human tissue imaged at five different axial 

resolutions, 4.5 µm, 6 µm, 9 µm, 13 µm, and 17 µm. Specific imaging depths (64 µm, 134 

µm, 180 µm, and 232 µm) were chosen to show how image quality degrades with 

increasing axial resolution and imaging depth. Fig 25(a), 25(b), 25(e), 25(f), 25(i), 25(j) 

have the most ideal contrast for automated nuclear segmentation with the SCM algorithm. 

Columns containing figures from 180 µm and 232 µm imaging depths did not provide any 

quantifiable information due to low contrast at increasing depths. The same is true for 

rows containing figures from 13 µm and 17 µm axial resolutions. 
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Fig 25. Comparison of selected image depths taken with varying axial resolution at the 
same location. Axial resolutions: (a – d) 4.5 µm, (e – h) 6 µm, (i – l) 9 µm, (m – p) 13 µm, and (q 
– t) 17 µm. 
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 As axial resolution increases, more cell layers seem to enter the FOV as tissue 

approaches and passes through the focal plane, but contrast degradation makes it difficult 

to discern object borders. The images acquired at an axial resolution of 13 μm and 17 µm 

show significant contrast degradation making it difficult to accurately segment nuclei with 

an automated segmentation algorithm. 

 Fig 26 below, contains images from Fig 25(a), 25(e), 25(i), and 25(m) to show how 

significantly contrast varies between axial resolutions. All images are from approximately 

64 µm below the tissue surface. 

 

 

Fig 26. Comparison of contrast variation at 64 μm for various axial resolutions. Axial 
resolutions: (a) 4.5 µm, (b) 6 µm, (c) 9 µm, and (d) 13 µm. 
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 Fig 26(a) and 26(b) look very similar and distinct features can be seen and 

correlated between both images, but Fig 26(b) shows an increased number of objects due 

to increased axial resolution. Fig 26(c) does appear brighter, but does not necessarily 

exhibit an increase in nuclear density. Although it is possible to visibly differentiate some 

nuclear objects in Fig 26(d), it is not possible to automatically segment this image due to 

poor contrast and loss of distinct object borders. 

 As shown in Table 6, as axial resolution increases, NCR increases at shallow 

depths (64µm and 134 µm). Contrast, measured for each area of segmented tissue, 

decreases as axial resolution increases. NCR was measured using an automated SCM 

algorithm with limitations in segmentation for images with contrast less than 1.85. 

Contrast values at axial resolutions of 9 µm and greater are significantly lower than the 

desired contrast for optical nuclear segmentation. Therefore, due to poor object 

segmentation at increased axial resolutions, NCR measurements do not effect quantitative 

results. Cell layers that are in focus are most likely segmented by the algorithm due to 

high contrast. Extra cell layers present due to increased axial resolution are not resolved 

and therefore are not segmented by the automated segmentation algorithm. 

Table 6. Quantitative analysis for images in Fig 25. 

Depth 
[μm] 

Axial Res 
[μm] 

Contrast 
# 

Obj 
NCR 

Avg Area 
[μm] 

Avg Diam 
[μm] 

64 

4.5 1.98 37 0.0574 47.51 7.78 

6 1.89 37 0.0629 48.08 7.82 

9 1.67 48 0.0595 43.79 7.47 

134 

4.5 2.06 58 0.0716 45.78 7.63 

6 1.87 85 0.0765 42.16 7.33 

9 1.71 23 0.0498 32.88 6.47 

180 

4.5 2.08 51 0.0048 36.88 6.85 

6 1.92 33 0.0032 37.17 6.88 

9 1.64 21 0.0015 28.22 5.99 
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6.4 Discussion 

Axial resolution does not appear to have a significant effect on measured NCR. 

Image contrast directly effects SCM segmentation, which leads to a significantly lower 

NCR approximation due to lack of automated object detection for increased imaging 

depths and increased axial resolution. The automated SCM segmentation algorithm 

outputs an area value reported in microns per object detected. Using the average area of 

all objects in a single image, average object diameter was calculated which was less than 

8 µm for all images. For an axial resolution of 9 µm, it is expected that this is where a 

change in NCR would most likely be observed. The measured NCR values remain fairly 

constant for axial resolutions of 4.5 µm, 6 µm, and 9 µm at 64 µm and 134 µm depths 

below the tissue surface.  
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7. EFFECTS OF TISSUE PROCESSING ON EPITHELIAL NUCLEAR-TO-

CYTOPLASMIC RATIO MEASUREMENTS WITH REFLECTANCE 

CONFOCAL MICROSCOPY 

 

7.1 Introduction 

As described in 6.1, variations in NCR measurements and average area of nuclei 

are possibly attributed to tissue shrinkage after biopsy [123]. In this chapter are results that 

investigate the effects of the physical size of tissue samples and tissue degradation on the 

NCR measurements. 

7.2 Materials and Methods 

7.2.1 Commercial System Setup 

  To evaluate the effects of biopsy excision and autolysis on NCR, a 

commercial VivaScope 2500 inverted confocal microscope (Caliber I.D., Rochester, NY) 

was used to acquire large area images. Individual frame size provides a field of view 

(FOV) of 750 × 750 μm2 at a rate of 9 frames per second, and automated image stacks and 

mosaicking allow easy expansion of the imaging area. With an 830 nm reflectance 

imaging wavelength, optical resolutions are 1.5 μm and 5 μm for lateral and axial planes, 

respectively. 

7.2.2 Sample Preparation and Imaging 

  To compare the NCR of bulk porcine oral tissue to biopsy samples, porcine 

buccal mucosa was acquired via a tissue sharing program at Texas A&M University. 

Because the tissue was transferred from another study approved by the TAMU IACUC 

after the animal was terminated, review of this work by the TAMU IACUC is not required. 
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The porcine cheek tissue was harvested from a 4 month old piglet weighing 15 kilograms. 

After the buccal mucosa was excised from the oral cavity, it was transported to our 

research lab for imaging preparation. Prior to confocal reflectance imaging, the sample 

was submerged in acetic acid for 1 minute. The bulk sample was rinsed in PBS and then 

placed on the inverted confocal imaging system with the buccal mucosal surface facing 

down towards the microscope objective. A 7.5 × 7.5 mm2 mosaic image was captured over 

a range of depth by imaging the bulk sample on the VivaScope 2500. The total imaging 

depth acquired was approximately 160 µm below the tissue surface with an 8 µm axial 

step size. A 0.5 × 0.5 mm2 vertical stack was also acquired that has a total imaging depth 

of approximately 180 µm with a 5 µm axial step size. After imaging the bulk sample, three 

3-mm biopsies were acquired from the oral tissue using a surgical punch. The biopsy 

locations cannot be correlated to the bulk tissue imaging location. The biopsies were 

imaged using manual laser power settings at each step on the VivaScope 2500 to avoid 

image saturation at biopsy edges. Square mosaics with areas of 4.5 × 4.5 mm2 were 

acquired in sequence with a step size of approximately 8 µm up to a depth of 165 µm. 

Vertical stacks were also acquired of the biopsies with a field of view of 0.5 × 0.5 mm2 up 

to approximately 180 µm below the tissue surface using a step size of 5 µm. A fourth 

biopsy was acquired using a scalpel and imaged with the same image acquisition 

parameters. In between biopsy excisions and imaging sessions, the bulk sample was stored 

in PBS in the fridge. 

  To study the effect of autolysis or cellular damage on NCR, buccal mucosa 

was acquired via another tissue sharing program at Texas A&M University. A previous 
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study was conducted to compare tissue preservation between PBS and Dulbecco's 

modified Eagle's medium (DMEM). Histopathological analysis determined that there was 

not a significant difference between the two types of media for short term tissue 

preservation. Edema was present in the first biopsies imaged with confocal microscopy, 

so it was determined that the next experiment would have a control sample and we would 

continue using PBS for sample preservation in between imaging sessions.  

  After euthanasia, the porcine buccal mucosa tissue was harvested. A large 

biopsy sample was removed from the cheek tissue and fixed immediately in formalin to 

serve as a control. This sample was not exposed to acetic acid or imaged using confocal 

microscopy. The remaining mucosal tissue was submerged in PBS and transported to the 

lab. Approximately 1.5 hours after euthanasia and 1 hour after tissue harvest, six porcine 

oral mucosa biopsies were removed from the bulk tissue sample and returned to the PBS 

solution to evaluate autolysis of biopsies over time. Prior to imaging, all samples were 

placed in 5% acetic acid for 30 seconds, followed by a PBS rinse. All samples were imaged 

using the VivaScope 2500 reflectance confocal microscope and then fixed in formalin for 

histology. The first biopsy sample taken in the lab is considered as Time 0. The other five 

samples were imaged consecutively every 30 minutes. Samples were stored in the fridge 

in between imaging sessions. Vertical stacks of each biopsy were acquired from 5 µm to 

300 µm with an approximate step size of 5 µm. All biopsies were immediately stored in 

formalin after confocal imaging for fixation before histopathology analysis. 
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7.2.3 Image Analysis 

  Prior to analysis, the confocal reflectance images acquired with the 

commercial VivaScope 2500 were cropped to a circular region with a diameter of 450 µm 

in order to remove optical reflections at shallow depths. Cropping the outer edges of the 

confocal images would also help in automated analysis by ensuring the area of tissue 

analyzed is from a similar depth or image plane. Due to the field of curvature of the 

objective on the VivaScope 2500, the difference in tissue depth could vary as much as 25 

µm from the center of the field of view to the corners of the image frame. 

7.3 Results 

7.3.1 Nuclear-to-Cytoplasmic Ratio Comparison of Bulk Tissue and Biopsy 

Measured with Reflectance Confocal Microscopy 

  Following automated nuclear segmentation using the SCM algorithm, all 

data from the imaged vertical stacks was organized into Table 7 below.  The NCR and 

number of objects segmented at each depth are recorded for all samples imaged using 

reflectance confocal microscopy. A decrease in segmented objects in the deep layers may 

indicate loss of the capability of the segmentation algorithm to segment nuclei with 

reduced signal or nuclear to cytoplasmic contrast. 
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Table 7. Bulk and biopsy NCR and number of objects from SCM. 

Sample Bulk Biopsy #1 Biopsy #2 Biopsy #3 Biopsy #4 

Depth [µm] NCR #Ob NCR #Ob NCR #Ob NCR #Ob NCR #Ob 

0 0.0240 102 0.0179 57 0.0068 27 0.0031 14 0.0004 3 

5 0.0235 101 0.0104 50 0.0070 28 0.0152 54 0.0103 31 

10 0.0195 88 0.0128 58 0.0176 55 0.0238 72 0.0223 62 

14 0.0190 76 0.0214 83 0.0180 57 0.0305 79 0.0400 89 

19 0.0217 86 0.0203 65 0.0209 68 0.0281 82 0.0517 116 

24 0.0164 68 0.0209 79 0.0242 72 0.0296 90 0.0467 105 

29 0.0199 74 0.0206 77 0.0249 79 0.0395 108 0.0474 109 

33 0.0222 78 0.0224 79 0.0215 79 0.0463 106 0.0370 84 

38 0.0226 77 0.0247 81 0.0245 77 0.0383 97 0.0250 68 

43 0.0274 87 0.0249 85 0.0245 73 0.0432 98 0.0337 79 

48 0.0314 94 0.0313 95 0.0274 76 0.0454 100 0.0352 77 

52 0.0349 93 0.0335 95 0.0260 74 0.0450 107 0.0360 80 

57 0.0349 95 0.0377 109 0.0258 62 0.0429 89 0.0273 66 

62 0.0340 91 0.0350 111 0.0241 55 0.0401 78 0.0336 79 

65 0.0383 102 0.0363 106 0.0304 77 0.0336 72 0.0323 81 

70 0.0403 107 0.0399 112 0.0256 57 0.0285 66 0.0303 75 

75 0.0439 118 0.0451 124 0.0250 57 0.0326 66 0.0426 90 

79 0.0433 109 0.0501 132 0.0224 46 0.0367 73 0.0436 91 

82 0.0497 123 0.0516 138 0.0216 46 0.0302 60 0.0377 82 

87 0.0498 114 0.0545 128 0.0202 41 0.0298 60 0.0339 80 

92 0.0498 118 0.0547 133 0.0122 34 0.0236 50 0.0484 98 

95 0.0552 122 0.0598 131 0.0099 26 0.0236 49 0.0477 103 

100 0.0539 113 0.0682 142 0.0144 32 0.0229 45 0.0376 85 

105 0.0502 108 0.0693 145 0.0138 31 0.0238 50 0.0301 71 

108 0.0380 84 0.0660 132 0.0100 25 0.0217 44 0.0398 89 

113 0.0286 65 0.0599 123 0.0070 16 0.0236 49 0.0245 60 

117 0.0291 66 0.0599 118 0.0088 20 0.0184 42 0.0203 51 

120 0.0227 54 0.0536 107 0.0085 20 0.0228 44 0.0306 66 

125 0.0158 36 0.0420 90 0.0094 20 0.0219 45 0.0257 57 

130 0.0130 29 0.0425 86 0.0054 10 0.0185 38 0.0180 47 

135 0.0116 28 0.0339 69 0.0054 10 0.0185 39 0.0164 39 

139 0.0101 23 0.0288 63 0.0052 12 0.0163 35 0.0111 31 

144 0.0059 16 0.0212 43 0.0040 7 0.0136 27 0.0147 36 

149 0.0061 14 0.0226 47 0.0057 11 0.0101 22 0.0145 36 

154 0.0059 15 0.0167 36 0.0046 9 0.0104 22 0.0050 13 

159 0.0054 12 0.0142 31 0.0027 5 0.0116 25 0.0051 15 

163 0.0035 7 0.0104 21 0.0038 7 0.0048 11 0.0040 12 

168 0.0029 9 0.0135 26 0.0024 5 0.0060 13 0.0027 7 

173 0.0010 4 0.0081 17 0.0007 2 0.0092 18 0.0012 4 

178 0.0013 3 0.0061 15 0.0000 0 0.0055 13 0.0006 2 

182 0.0029 6 0.0052 13 0.0000 0 0.0021 5 0.0011 3 

 



 

103 

 

  In order to illustrate any effect of tissue biopsy, the measured NCR is 

plotted with increasing imaging depth in Fig 27 below. The bulk sample imaged shows a 

positive NCR trend, but begins to decrease around 100 µm below the tissue surface, 

possibly due to reduced nuclear segmentation. The biopsy that most closely follows the 

NCR trend for the bulk sample is biopsy #1. At approximately 100 µm, there is a peak in 

NCR value for biopsy #1, followed by a decreasing trend. As seen in the table and the 

plot, biopsy #2 has significantly lower NCR values than the other samples. This is evident 

in the images where low contrast and high scattering from artifacts make it difficult to 

automatically segment the epithelial nuclei. Both biopsy #3 and #4 exhibit an increase in 

NCR at more shallow depths than the other samples; however, this may be attributed to 

inaccurate identification or positioning of the tissue surface during imaging. Vertical stack 

images from biopsy #3 show a rete ridge, which is highly reflective, causing the SCM 

segmentation algorithm to detect false positives. As depth increases, the contrast worsens 

more quickly for this sample than the others. Biopsy #4 was removed from the bulk tissue 

sample using a scalpel, rather than a punch biopsy tool. This piece of tissue was slightly 

larger than the others, but was removed last from the bulk sample and therefore imaged 

last leaving more time for possible tissue degradation. The data shows a peak in NCR at 

shallow depths. The confocal images are highly reflective at lower depths, possibly 

causing false positives to be segmented and increasing the size of the object detected. 

Larger object sizes correlate with an increase in NCR. Like all the other samples, the NCR 

drops significantly with increasing imaging depth below the tissue surface. 
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Fig 27. Nuclear-to-cytoplasmic ratio measured by SCM segmentation of confocal images 
versus depth below tissue surface for bulk and biopsied epithelial tissue. 

 

  Table 8 below lists the average area and standard deviation for the bulk 

tissue sample and all four biopsies excised by either a 3 mm punch biopsy (biopsies #1 - 

#3) or a scalpel (biopsy #4).  

 

 

 

 

 

 



 

105 

 

Table 8. Bulk and biopsy average area and standard deviation from SCM. 

Sample Bulk Biopsy #1 Biopsy #2 Biopsy #3 Biopsy #4 

Depth 
[µm] 

Avg 
Area 

± SD 
Avg 
Area 

± SD 
Avg 
Area 

± SD 
Avg 
Area 

± SD 
Avg 
Area 

± SD 

0 35.14 23.72 49.13 31.69 39.85 22.73 32.67 13.63 20.44 6.87 

5 35.33 25.80 32.69 24.34 39.35 28.03 42.61 24.08 52.51 26.69 

10 33.88 23.37 34.46 25.72 49.85 33.04 50.41 28.33 55.85 26.62 

14 38.60 27.15 39.94 28.52 48.98 31.77 58.31 28.28 66.97 28.90 

19 39.06 28.25 48.69 31.85 47.74 27.56 52.15 28.11 66.86 29.63 

24 37.66 25.03 41.11 27.41 52.22 29.21 50.29 28.27 67.32 32.78 

29 41.85 26.40 41.71 26.32 48.89 29.57 55.55 32.16 65.84 30.05 

33 44.20 27.51 44.05 26.44 42.44 26.33 65.85 32.61 67.54 29.90 

38 45.59 26.43 47.27 24.94 49.31 29.15 60.13 31.03 56.99 30.54 

43 48.72 27.32 45.39 23.24 52.14 23.75 67.02 30.07 65.53 28.99 

48 51.43 25.55 50.76 28.65 55.72 25.28 68.84 31.01 70.29 27.63 

52 57.65 27.72 54.30 27.99 54.46 25.70 63.73 30.45 69.12 27.41 

57 56.37 24.03 53.02 26.78 64.43 29.18 73.48 31.33 64.06 26.21 

62 57.40 24.98 48.39 23.35 67.94 27.51 78.40 26.86 65.47 28.08 

65 57.38 26.79 52.54 26.68 60.91 27.00 71.72 28.45 61.33 27.93 

70 57.50 28.65 54.42 25.77 69.55 28.29 66.68 29.83 62.40 24.83 

75 56.59 28.50 55.34 27.19 68.07 27.25 76.07 27.40 72.16 24.99 

79 60.36 26.02 57.43 27.31 75.84 25.90 77.10 28.97 72.95 23.83 

82 61.00 26.46 56.56 28.31 73.08 27.85 77.67 25.92 70.40 24.07 

87 66.01 27.97 64.18 27.43 76.75 26.70 76.61 28.76 65.15 23.37 

92 63.81 30.86 61.94 27.91 56.30 25.83 73.45 25.86 74.94 23.34 

95 67.95 26.99 68.44 28.68 59.65 26.56 74.82 24.74 70.32 24.32 

100 71.74 26.94 71.52 26.22 70.33 24.11 78.95 25.54 67.75 21.53 

105 70.09 27.44 71.01 28.52 69.66 22.97 73.83 28.82 65.51 19.62 

108 69.14 26.49 74.57 26.98 62.82 24.95 76.69 24.42 68.31 22.43 

113 67.76 24.78 73.05 27.58 68.87 20.49 74.94 26.44 63.25 19.26 

117 67.90 28.79 76.19 24.47 68.93 29.29 68.45 30.95 62.05 19.41 

120 65.23 26.34 75.64 26.96 66.74 29.30 80.68 27.81 71.41 22.84 

125 68.73 25.79 71.22 26.78 73.97 28.77 75.68 24.02 69.81 18.70 

130 70.20 22.92 75.37 23.07 85.39 34.84 75.95 24.31 59.97 15.01 

135 64.95 23.01 75.55 23.24 84.88 35.22 74.19 25.38 65.80 22.72 

139 68.99 27.08 70.54 28.36 68.34 33.37 72.72 25.99 56.16 17.39 

144 57.87 21.16 76.68 23.64 90.40 22.06 79.21 22.08 63.88 19.16 

149 68.63 24.28 74.90 24.50 82.59 19.40 71.92 25.14 63.27 19.90 

154 61.95 28.41 72.34 18.62 80.63 35.09 74.74 27.42 60.53 18.29 

159 70.41 26.86 71.67 22.77 84.60 26.21 73.04 25.03 53.89 15.12 

163 78.11 30.61 78.16 22.09 86.46 24.37 69.29 16.00 52.83 20.73 

168 51.31 19.75 81.54 23.90 75.38 15.46 72.95 12.32 60.83 16.97 

173 39.80 12.69 75.44 19.41 55.13 3.98 80.91 21.00 47.39 8.12 

178 69.19 42.79 64.35 16.65 0 0 67.02 24.47 48.09 3.58 

182 76.22 31.73 63.04 18.05 0 0 66.60 30.42 56.81 19.97 
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  Fig 28 below illustrates the data listed in Table 8 above. As expected and 

seen with NCR, the bulk sample and biopsy #1 are similar in average area of detected 

objects per imaging depth. The spike in average area for biopsy #2 and lower measured 

NCR values could indicate that larger artifacts are detected by the SCM algorithm, but at 

a lesser rate. This is confirmed in Table 7 by comparing the lesser number of objects 

detected than the other samples. Biopsies #3 and #4 have consistently higher average areas 

than the other samples. Biopsy #3 remains fairly consistent in average area after 120 µm 

where biopsy #4 shows a decrease in value. 

 

 
 
Fig 28. Average nuclear area versus depth below tissue surface for bulk and biopsied 
epithelial tissue. 
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  In order to validate that a single vertical stack through the bulk sample was 

representative of the entire bulk sample, an area of 3 by 3 images or 2.25 mm × 2.25 mm 

was analyzed over multiple depths with SCM segmentation. Due to artifacts and a varying 

range of depth across the sample at a single image plane, a smaller localized mosaic is 

more accurate than averaging across the entire 7.5 mm × 7.5 mm area. In comparison to 

the single vertical stack, the averaged data has a similar shape and peak, indicating that 

the vertical stack is representative of the bulk sample. The difference between the two 

curves is that the averaged data is left shifted so the NCR peaks at a more shallow depth, 

likely due to variation from where the vertical stack was captured. All of the vertical stacks 

begin at an approximate depth of 0 µm relative to the tissue surface, ensuring a better 

comparison of data. 

7.3.2 Nuclear-to-Cytoplasmic Ratio Comparison of Autolysis in Porcine Oral 

Mucosa Stored in PBS Measured with Reflectance Confocal Microscopy 

  Following automated nuclear segmentation using the SCM algorithm, all 

data was organized into Table 9 below showing measured NCR and number of segmented 

objects for each time point from 0 to 2.5 hours after biopsy removal from bulk tissue.   
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Table 9. Biopsy NCR and number of objects compared over time.  

Time [Hrs] 0 0.5 1 1.5 2 2.5 

Depth [µm] NCR 
# 

Ob 
NCR 

# 
Ob 

NCR 
# 

Ob 
NCR 

# 
Ob 

NCR 
# 

Ob 
NCR 

# 
Ob 

5 0.0057 64 0.0011 17 0.0023 31 0.0018 27 0.0021 32 0.0039 62 

24 0.0030 50 0.0027 31 0.0035 43 0.0022 29 0.0055 60 0.0036 67 

43 0.0039 54 0.0025 35 0.0033 39 0.0028 34 0.0055 48 0.0025 44 

62 0.0029 41 0.0031 43 0.0042 49 0.0042 54 0.0035 26 0.0023 23 

81 0.0041 46 0.0035 39 0.0039 45 0.0042 45 0.0008 7 0.0014 15 

100 0.0046 54 0.0026 34 0.0041 45 0.0045 53 0.0014 9 0.0012 9 

119 0.0053 61 0.0031 37 0.0038 40 0.0040 46 0.0015 11 0.0003 3 

138 0.0042 44 0.0056 62 0.0044 47 0.0043 44 0.0009 10 0.0008 7 

157 0.0042 43 0.0061 60 0.0041 39 0.0039 43 0.0010 11 0.0005 4 

176 0.0055 48 0.0059 57 0.0045 42 0.0034 39 0.0006 7 0.0004 3 

195 0.0067 60 0.0065 61 0.0039 38 0.0033 36 0.0003 3 0.0005 4 

214 0.0077 67 0.0066 54 0.0051 52 0.0029 35 0.0000 2 0.0005 4 

233 0.0051 50 0.0081 66 0.0040 45 0.0024 28 0.0001 1 0.0002 2 

252 0.0052 55 0.0058 54 0.0019 22 0.0016 23 0.0000 0 0.0001 1 

271 0.0014 20 0.0052 52 0.0007 9 0.0013 18 0.0002 2 0.0000 0 

 

  Fig 29 shows the measured NCR values versus the approximate depth 

below the tissue surface for all time points. The first three data points in depth are excluded 

from the following charts due to inconsistencies in measurements caused by tissue artifacts 

near the surface. In Fig 29, samples imaged at time 0 hours and time 0.5 hours show an 

increasing trend in NCR with increasing depth before dropping off at depths greater than 

225 µm. Times 1 and 1.5 hours appear more consistent in measured NCR from 60 µm to 

175 µm where both exhibit decreasing NCR values as depth increases. At increased 
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periods of time in between imaging and biopsy excision, cellular and tissue features 

become more challenging to automatically segment with the SCM algorithm due to poor 

contrast and resolution. Times 2 and 2.5 hours have lower initial NCR values than times 

0 and 0.5 hours and both show a decreasing trend in NCR over increasing depth due to 

this loss of segmentation ability. 

 

Fig 29. Measured nuclear-to-cytoplasmic ratio with depth below tissue surface over 2.5 
hours from time of biopsy from bulk tissue. 

 

  The average nuclear area listed in Table 10 is calculated by adding up the 

area of all objects segmented in a single image and then dividing by the total number of 

objects segmented per frame. Figure 30 shows a plot of average nuclear area in square 

microns versus depth below the tissue surface in microns. Times 0, 0.5, 1, and 1.5 hours 
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all show consistent average areas of objects that gradually increase with increasing 

imaging depth. This correlates to the cellular structure of epithelial tissues. After 225 µm, 

the average nuclear area appears to decrease, likely due to decreasing image contrast, 

leading to fewer and smaller objects segmented as nuclear borders become more 

challenging to segment. Times 2 and 2.5 hours having initially higher average areas per 

object and exhibit a spike near the 100 µm depth below the tissue surface. Due to 

degradation of image contrast and tissue quality, this is likely attributed to artifacts 

detected by the automated segmentation algorithm which may appear similar to nuclei. 

 
Table 10. Biopsy average area and standard deviation from SCM segmentation over time. 

Time 
[Hrs] 

0 0.5 1 1.5 2 2.5 

Depth 
[µm] 

Avg 
Area 

± SD 
Avg 
Area 

± SD 
Avg 
Area 

± SD 
Avg 
Area 

± SD 
Avg 
Area 

± SD 
Avg 
Area 

± SD 

5 49.86 26.29 37.75 22.62 41.08 17.66 36.96 20.85 36.67 29.07 34.86 21.35 

24 33.57 18.63 49.48 27.70 46.24 25.12 41.76 20.47 51.01 31.69 30.10 21.11 

43 40.69 24.44 40.02 24.25 47.45 20.46 46.31 22.16 64.43 28.46 31.54 23.93 

62 40.02 25.90 40.24 21.60 48.05 25.43 43.65 21.13 76.35 31.97 55.08 32.51 

81 50.15 26.81 49.92 28.05 48.81 20.32 51.86 24.38 60.59 26.47 54.23 27.82 

100 47.73 22.26 42.67 21.85 51.50 22.38 47.54 26.21 87.44 24.13 72.63 28.41 

119 48.74 22.49 46.29 23.29 53.20 21.94 49.04 21.55 74.97 22.97 54.00 16.34 

138 53.18 16.30 50.33 25.25 52.60 19.53 54.86 21.41 53.38 21.04 63.80 23.86 

157 54.16 18.61 56.66 26.47 58.18 17.34 51.11 22.50 51.75 31.96 68.63 15.03 

176 64.21 19.97 57.80 24.29 60.51 18.91 48.27 17.25 50.87 23.85 74.81 30.25 

195 62.23 21.27 59.71 25.46 57.42 15.09 51.16 20.04 50.06 23.10 71.16 15.97 

214 63.86 22.48 68.81 21.62 54.71 21.48 45.87 20.53 13.78 1.99 76.78 21.98 

233 57.06 19.18 68.40 24.09 50.03 21.96 48.60 18.36 83.81 0.00 59.91 9.94 

252 53.29 16.79 59.64 24.40 48.32 16.59 38.30 13.65 0 0 50.63 0.00 

271 39.18 12.90 56.16 23.32 46.50 18.80 40.53 17.09 47.53 9.15 0 0 
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Fig 30. Average nuclear area with depth below tissue surface over 2.5 hours from biopsy. 

 

  After all samples were imaged and placed in formalin for fixation, they 

were mailed to Dr. Yi-Shing Lisa Cheng, dental pathologist at the Texas A&M University 

Health Science Center – Baylor College of Dentistry, for histopathological analysis. Her 

observations are noted in Table 11 below.  
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Table 11. Histopathology analysis of biopsies from autolysis experiment. 

Sample/Time [Hours] Histopathology Analysis 

Control – 1 The tissue looked well preserved. 

Control – 2 The tissue looked well preserved. 

Time 0 
Intra-cellular edema in the spinous cell layer, basal cell alterations 
and dissolution of the basement membrane noted. 

Time 0.5 
Intra-cellular edema and mild changes in the basal cells and 
basement membrane noted. 

Time 1.0 
Same as Time 0.5. Basal cell and basement membrane changes 
noted in focal areas. 

Time 1.5 Same as Time 0. 

Time 2.0 Same as Time 0. 

Time 2.5 Same as Time 0. 

 

  Two cuts were made in the control piece of tissue for histopathological 

analysis. The two samples, Control 1 and Control 2, were most well preserved out of all 

samples. The sample imaged at Time 0 hours exhibited intra-cellular edema and 

dissolution of the basement membrane. Similarly for Time 0.5 hours, intra-cellular edema 

was also noted as well as changes in the basal cells and basement membrane.  Time 1.0 

hour looked similar to Time 0.5 with noted basal cell and basement membrane changes. 

As seen in the confocal images both qualitatively and quantitatively, image degradation 

was most severe at times 2 and 2.5 hours. Dr. Cheng noted that the cellular changes were 

all subtle and it was inconclusive if these changes would interfere with the interpretation 

for dysplasia or not when dysplasia is present. The epithelium appeared normal for all 

samples. The tissue showed slight cellular alteration that potentially all pathologists would 

be able to tell were due to sub-optimal tissue preservation. 
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7.4 Discussion 

 Although there were only slight changes in average area between bulk and biopsied 

samples, the NCR values for all samples showed greater variability. The NCR values for 

the bulk sample showed a consistently increasing trend for a greater imaging depth than 

the biopsy samples. This may be attributed to the fact that the bulk sample was imaged 

first, and therefore had less time for autolysis to occur. However, the variation in localized 

tissue structure, such as rete ridges, appears to have the greatest effect on the measured 

NCR. Therefore, the difference in measured NCR of bulk tissue compared to tissue 

biopsies is not found to be substantial in this small sample size. Further experiments with 

mucosal tissue from multiple animals and multiple imaging locations are needed to test 

for significance.  

 If fixed immediately after biopsy excision, epithelial tissue seems to remain intact 

and appears normal for histopathological diagnosis. Increased tissue manipulation and a 

delay in fixation resulted in degradation of epithelial structure. This typically led to intra-

cellular edema with changes in the spinal cells, basal cells, and possible dissolution of the 

basement membrane. For reflectance confocal microscopy of epithelial cells, an increased 

delay in imaging post-biopsy resulted in decreased contrast and eventual inability to 

automatically segment cell nuclei using the SCM segmentation algorithm. Imaging within 

1.5 hours post-biopsy appeared to have no significant effect on segmentation and NCR 

measurement.   
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8. CONCLUSIONS 

 

A fluorescence and reflectance confocal microscope capable of imaging in beam 

scanning and rapid stage scanning modalities was designed and constructed for preclinical 

studies of epithelial tissues. Compared to other custom and commercial systems, the length 

of our images and speed of acquisition are significantly higher. The image acquisition 

speed is currently limited by the maximum speed of the translation stage. Use of a faster 

stage would further increase image acquisition speed to the point that the polygon 

scanning mirror, our fast axis line scanner, would be the limiting factor. The acquisition 

of image stacks is currently limited by data transfer and saving, and not limited by the 

translation stage. 

Large area microscopy is demonstrated on excised mouse colon for qualitative 

evaluation of induced inflammation along the length of the colon. Normal mouse colon 

structure exhibited homogeneous distribution of colon crypts along the entire length of the 

colon. Mouse colon tissue with induced inflammation exhibited loss of structure, and 

varying crypt size, shape, and distribution. Since regions of the inflamed mouse colon 

appeared as normal, a rapid stage scanning image technique to evaluate the entire organ 

to identify regions of interest may be valuable. 

Automated segmentation of epithelial tissue nuclei is conducted by the developed 

SCM algorithm. The PCNN based algorithm was developed in MATLAB and outputs 

quantitative measurements such as area and eccentricity of each segmented object with 

standard deviations. The NCR, total number of objects segmented, averages for area and 
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eccentricity are also reported for each image in a separate file. The SCM code has a 

graphical user interface to make image processing fast and easy. Multiple images may be 

uploaded at once for continuous processing and optional automatic saving of the 

segmented images and raw data. The algorithm was validated on generated confocal 

images with epithelial tissue properties and then tested on porcine and human oral mucosa. 

Axial resolution does not appear to have a significant effect on NCR. Image 

contrast directly affects SCM segmentation, which leads to a significantly lower NCR 

approximation due to lack of automated object detection for increased imaging depths and 

increased axial resolution. The automated SCM segmentation algorithm outputs an area 

value reported in microns per object detected. Using the average area of all objects in a 

single image, average object diameter was calculated which was less than 8 µm for all 

images. For an axial resolution of 9 µm, it is expected that this is where a change in NCR 

would most likely be observed. The measured NCR values remain fairly constant for axial 

resolutions of 4.5 µm, 6 µm, and 9 µm at 64 µm and 134 µm depths below the tissue 

surface. Object size does not vary much with increasing axial resolution or with increasing 

depth. The average diameters are all less than 8 um, which could mean that at an axial 

resolution of 9 um, more cell layers are observed in the focal plane thickness. Since the 

NCR values remain relatively constant, it is concluded that optical imaging systems with 

increased axial resolution have comparable quantitative analysis measurements to other 

confocal imaging systems with lesser axial resolutions. 

Average nuclear area measurements of bulk tissue and biopsy samples were 

comparable. NCR measurements did not appear to be significantly affected by the physical 
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size of a tissue sample – 3 mm biopsy, shave biopsy, or bulk tissue. However, the small 

sample size and variation of tissue structure limit the strength of this finding.  

If fixed immediately after biopsy excision, epithelial tissue seems to remain intact 

and appears normal for histopathological diagnosis. Minor changes to tissue structure were 

observed in histopathology with increased tissue handling and time to fixation. With an 

increased time delay from biopsy to imaging, confocal imaging of epithelium had reduced 

nuclear to cytoplasmic contrast. This loss of contrast resulted in limited automatic 

segmentation and NCR measurement.   
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APPENDIX 

 

SCM Segmentation MATLAB Code: 

function varargout = SCM_seg(varargin) 
% SCM_SEG MATLAB code for SCM_seg.fig 
%      SCM_SEG, by itself, creates a new SCM_SEG or raises the existing 
%      singleton*. 
% 
%      H = SCM_SEG returns the handle to a new SCM_SEG or the handle to 
%      the existing singleton*. 
% 
%      SCM_SEG('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in SCM_SEG.M with the given input 

arguments. 
% 
%      SCM_SEG('Property','Value',...) creates a new SCM_SEG or raises 

the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before SCM_seg_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to SCM_seg_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help SCM_seg 

  
% Last Modified by GUIDE v2.5 19-Jun-2014 12:20:06 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @SCM_seg_OpeningFcn, ... 
                   'gui_OutputFcn',  @SCM_seg_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}1) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 



 

136 

 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  
% DEFINE INITIAL VARIABLES/PARAMETERS HERE 
% --- Executes just before SCM_seg is made visible. 
function SCM_seg_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to SCM_seg (see VARARGIN) 

  
% Choose default command line output for SCM_seg 
handles.output = ''; 

  
% Adjust settings 
clc; 
warning off all; 

  
% Initialize Variables 
handles.img{1} = 'null'; 
handles.seg = 0; 
handles.filename = 0; 
handles.pathname = 0; 
handles.num = 0; 
handles.B = 0; 

  
% Get String Value and convert to double 
handles.gsv =@(x) str2double(get(x,'String')); 

  
% Get centroid function 
handles.gcv=@(x,n) x(n).Centroid; 

  
% Clear Table 
set(handles.uitable1, 'Data', handles.B); 

  
% Command Window Read 
set(handles.listbox2, 'String', cmdwinout()); 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes SCM_seg wait for user response (see UIRESUME) 

  
% --- Executes during object creation, after setting all properties. 
function listbox1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Outputs from this function are returned to the command line. 
function varargout = SCM_seg_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
varargout{1} = handles.output; 

  
%%%%%%%%%%%%%%%%%%%%%% END COMPUTER GENERATED CODE 

%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% START USER GENERATED CODE 

%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Open Image 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
[handles.filename, handles.pathname, ~] = 

uigetfile({'*.bmp';'*.jpg';... 
    '*.png';'*.tif';'*.tiff';}, 'File Selector', 'MultiSelect', 'on'); 

  
if ~isequal(handles.filename, 0) 

     
    % If filename not cell array, make cell array 
    if ~iscell(handles.filename) 
        handles.filename = {handles.filename}; 
    end 

     
    % Find the number of files opened 
    handles.num = size(handles.filename ,2); 

     
    % Create cell array 
    handles.img = cell(1, handles.num); 
    name = cell(1, handles.num); 

     
    % Save each image/filename to memory 
    for n=1:handles.num 
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        handles.img{n} = imread([handles.pathname 

handles.filename{n}]); 
        [path, name{n}, ~] = fileparts(handles.filename{n}); 

%#ok<ASGLU> 
    end 

     
    % Output List of images to listbox 
    set(handles.listbox1, 'string', name); 
    imshow(handles.img{1}); 
    handles.B = cell(handles.num+1); 
    [handles.B{:}] = deal(0); 
    set(handles.uitable1, 'Data', 0); 
    handles.outputimg = handles.img; 

     
    disp('#Files Selected!'); 
    set(handles.listbox2, 'String', cmdwinout()); 
else 
    disp('#No Files Selected!'); 
    set(handles.listbox2, 'String', cmdwinout()); 
end 

  
% Update variables to figure 
set(handles.listbox2,'Value', length(cmdwinout())); 
guidata(hObject, handles); 

  
% Segment Image 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
if ~strcmp(handles.img{1}, 'null') && ~strcmp(handles.img{1}, 

'segmented') 

     
    % Initialize Varaibles 
    handles.centroid = cell(1, handles.num); 
    raw_area = cell(1, handles.num); 
    obj_intensity = cell(1, handles.num); 
    sd_obj_intensity = cell(1, handles.num); 
    bg_intensity = zeros(1, handles.num+1); 
    sd_bg_intensity = zeros(1, handles.num+1); 
    NCR = zeros(1, handles.num+1); 
    numberofobjects = zeros(1, handles.num+1); 
    mean_area = zeros(1, handles.num+1); 
    std_area = zeros(1, handles.num+1); 
    mean_eccentricity = zeros(1, handles.num+1); 
    std_eccentricity = zeros(1, handles.num+1); 
    nameoffiles = cell(1, handles.num+1); 

     
    % Choose Save Directory, if Save Image is TRUE 
    if get(handles.checkbox1,'Value') 
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        savedirectory = uigetdir(handles.pathname, 'Directory to 

Save'); 

     
        % Check if got directory successfully 
        if savedirectory(1) ~= 0 

         
        [xlssavename, xlspath, ~] = uiputfile({'*.xls';},... 
            'Name Excel File', savedirectory); 

         
            % Check if valid filename 
            if (xlssavename(1) ~= 0) && (xlspath(1) ~= 0) 
            % Excel Filename Failed 
            else 
                disp('#Invalid xls filename'); 
                set(handles.listbox2, 'String', cmdwinout()); 
                return; 
            end 

         
        % No Directory Chosen or Invalid Directory 
        else 
            disp('#Invalid or No Directory Chosen'); 
            set(handles.listbox2, 'String', cmdwinout()); 
            return; 
        end 
    end 

             
    % Create waitbar 
    h = waitbar(0, 'Segmenting Image(s)'); 

  
    % Create cells for segmented images 
    handles.seg = cell(1, handles.num); 

  
    % Get Parameters specified in options panel 
    handles.maxarea = handles.gsv(handles.edit6); 
    handles.minarea = handles.gsv(handles.edit8); 
    handles.eccentricity = handles.gsv(handles.edit9); 
    handles.solidity = handles.gsv(handles.edit11); 
    handles.rb = handles.gsv(handles.edit16); 
    handles.lateralres = (handles.gsv(handles.edit17)).^2; 
    handles.res = handles.gsv(handles.edit18); 

     
    for n=1:handles.num 
        % Segmentation 
        I = formatgrayscale(handles.img{n}, 'N'); 
        I = imcrop(double(I)/255,[1 1 999 999]); 
        [w, l] = size(I); 

         
        if ~get(handles.checkbox4,'Value') 
            bg_area = 1000000; 
            d_mask = ones(w,l); 
            cut_mask = d_mask; 
        else 
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            [~, bg_area, d_mask] = bg_remove(I, handles.listbox2); 
            se = strel('disk',handles.rb); 
            cut_mask = imerode(d_mask,se); 
        end 
        [filter_img, I_crop] = SCM(I, w, l,... 
            handles.maxarea, handles.minarea,... 
            handles.eccentricity, handles.solidity, 'Y',... 
            d_mask, cut_mask, handles.lateralres, handles.listbox2); 

                 
        % Update variables to figure 
        set(handles.listbox2,'Value', length(cmdwinout())); 
        guidata(hObject, handles); 

         
        % Outline Image 
        BWoutline = bwperim(filter_img); 
        Segout_R = I_crop; Segout_R(BWoutline) = 255; 
        Segout_G = I_crop; Segout_G(BWoutline) = 0; 
        Segout_B = I_crop; Segout_B(BWoutline) = 0; 
        if get(handles.checkbox4,'Value') 
            BGoutline = bwperim(d_mask); 
            % Subtract where border objects intersect 
            intersect = (double(BGoutline) - double(BWoutline)) == 1; 
            Segout_R(intersect) = 0; 
            Segout_G(BGoutline) = 0; 
            Segout_B(BGoutline) = 255; 
        end 
        handles.seg{n} = cat(3, Segout_R, Segout_G, Segout_B); 
        % imwrite(handles.seg{n}, '13_segmentedimage.png', 'png'); 

         
        % Get Image Info 
        prop = regionprops(bwconncomp(filter_img), I, 'All'); 

         
        % Get 2 - 5 pixels from objects for bg 
        se1 = strel('disk',5); 
        se2 = strel('disk',2); 
        bg = imdilate(filter_img,se1) - imdilate(filter_img,se2); 
        prop2 = regionprops(bwconncomp(bg), I, 'All'); 

         
        % Save prop to get centroid for each object 
        handles.centroid{n} = prop; 

         
        % Get area and sd area for each object 
        raw_area{n} = (handles.lateralres*[prop.Area])'; 

         
        % Get intensity and sd intensity for each object 
        obj_intensity{n} = ([prop.MeanIntensity])'; 
        sd_obj_intensity{n} = ([prop.MaxIntensity]-

[prop.MinIntensity])'/4; 

         
        % Get bg intensity and sd bg intensity 
        bg_intensity(n+1) = mean([prop2.MeanIntensity]); 
        sd_bg_intensity(n+1) = mean(([prop2.MaxIntensity]... 
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            -[prop2.MinIntensity])'/4); 

         
        % Get NCR, # of obj, mean area, sd area, mean eccen, sd eccen 
        NCR(n+1) = sum([prop.Area])/(bg_area - sum([prop.Area])); 
        numberofobjects(n+1) = length(prop); 
        mean_area(n+1) = handles.lateralres*mean([prop.Area]); 
        std_area(n+1) = handles.lateralres*std([prop.Area]); 
        mean_eccentricity(n+1) = mean([prop.Eccentricity]); 
        std_eccentricity(n+1) = std([prop.Eccentricity]); 

  
        % Save Image 
        [path, name, ~] = fileparts(handles.filename{n}); %#ok<ASGLU> 
        disp(['#Saving Image... ' name]); 
        set(handles.listbox2, 'String', cmdwinout()); 

         
        % Update variables to figure 
        set(handles.listbox2,'Value', length(cmdwinout())); 
        guidata(hObject, handles); 

         
        % Save Image to file 
        if get(handles.checkbox1,'Value') 
            if ispc() 
                imwrite(handles.seg{n}, [savedirectory '\seg_' name... 
                '.tif' ], 'tif', 'Resolution', [handles.res 

handles.res]); 
            else 
                imwrite(handles.seg{n}, [savedirectory '/seg_' name... 
                '.tif' ], 'tif', 'Resolution', [handles.res 

handles.res]); 
            end 
        end 

             
        % Index Filename 
        nameoffiles{n+1} = name; 

  
        % Update waitbar() 
        waitbar(n/handles.num); 
    end 

     
    % Create table from data 
    for i=2:handles.num+1 
            raw_area{i-1} = cellstr(num2str(raw_area{i-1}))'; 
            obj_intensity{i-1} = cellstr(num2str(obj_intensity{i-1}))'; 
            sd_obj_intensity{i-1} = cellstr(... 
                num2str(sd_obj_intensity{i-1}))'; 
    end 
    % Check if using PC 
    if ispc() 
        NCR = num2cell(NCR); 
        numberofobjects = num2cell(numberofobjects); 
        mean_area = num2cell(mean_area); 
        std_area = num2cell(std_area); 
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        mean_eccentricity = num2cell(mean_eccentricity); 
        std_eccentricity = num2cell(std_eccentricity); 
        bg_intensity = num2cell(bg_intensity); 
        sd_bg_intensity = num2cell(sd_bg_intensity); 
    else 
        NCR = cellstr(num2str(NCR'))'; 
        numberofobjects = cellstr(num2str(numberofobjects'))'; 
        mean_area = cellstr(num2str(mean_area'))'; 
        std_area = cellstr(num2str(std_area'))'; 
        mean_eccentricity = cellstr(num2str(mean_eccentricity'))'; 
        std_eccentricity = cellstr(num2str(std_eccentricity'))'; 
        bg_intensity = cellstr(num2str(bg_intensity'))'; 
        sd_bg_intensity = cellstr(num2str(sd_bg_intensity'))'; 
    end 

     
    % Set names for data table display 
    nameoffiles{1} = 'Image'; 
    NCR{1} = 'NCR'; 
    numberofobjects{1} = '# of Objects'; 
    mean_area{1} = 'Average Area'; 
    std_area{1} = 'SD Area'; 
    mean_eccentricity{1} = 'Average Eccentricity'; 
    std_eccentricity{1} = 'SD Eccentricity'; 
    bg_intensity{1} = 'Mean BG Intensity'; 
    sd_bg_intensity{1} = 'SD BG Intensity'; 

     
    % Data Table Display 
    handles.B = [(nameoffiles); (NCR);... 
        (numberofobjects); (mean_area); (std_area);... 
        (mean_eccentricity); (std_eccentricity);... 
        (bg_intensity); (sd_bg_intensity);]; 

  
    if get(handles.checkbox1,'Value') 
        % Excel Data Table 
        A = [(nameoffiles)', (NCR)',... 
            (numberofobjects)', (mean_area)', (std_area)',... 
            (mean_eccentricity)', (std_eccentricity)',... 
            (bg_intensity)', (sd_bg_intensity)']; 

         
        % Create Empty Cell 
        C = {}; 

         
        % Nuclei Area Data (Unaveraged) 
        for k = 2:((handles.num)+1) 
        C = [C; [cellstr(repmat(nameoffiles{k},... 
            length(raw_area{k-1}),1)),(raw_area{k-1})',... 
            (obj_intensity{k-1})',(sd_obj_intensity{k-1})',... 
            cellstr(num2str((1:length(raw_area{k-1}))'))]]; %#ok<AGROW> 
        end 

         
        % Write to spreadsheet 
        if ispc 
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            xlswrite([xlspath xlssavename], A); 

             
            % Nuclei Area Data (Unaveraged)     
            xlswrite([xlspath 'raw_data.xls'], C); 
        else 
            fid=fopen([xlspath strtok(xlssavename, '.') '.csv'],'wt'); 

  
            [rows, ~]=size(A); 

  
            for i=1:rows 
                fprintf(fid,'%s,',A{i,1:end-1}); 
                fprintf(fid,'%s\n',A{i,end}); 
            end 

  
            fclose(fid); 

             
            % Nuclei Area Data (Unaveraged) 
            fid=fopen([xlspath strtok('raw_data.xls', '.') 

'.csv'],'wt'); 

  
            [rows, ~]=size(C); 

  
            for i=1:rows 
                fprintf(fid,'%s,',C{i,1:end-1}); 
                fprintf(fid,'%s\n',C{i,end}); 
            end 

  
            fclose(fid);  
        end 
    end 

     
    % Show Image and close loading bar 
    disp('#DONE!'); 
    set(handles.listbox2, 'String', cmdwinout()); 
    close(h); 
    imshow(handles.seg{n}); 

     
    % Label Objects 
%     hold on; 
%     for k = 1:numel(handles.centroid{n}) 
%         x = handles.gcv(handles.centroid{n},k); 
%         text(x(1),x(2),sprintf('%d',k),... 
%             'HorizontalAlignment', 'center',... 
%             'VerticalAlignment', 'middle',... 
%             'Color', [1,0.6,0]); 
%     end 
%     hold off; 

     
    % Display table 
    set(handles.uitable1, 'Data', [handles.B(:,1) handles.B(:,n+1)]); 
    handles.outputimg = handles.seg; 
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    handles.img = {'segmented'}; 

  
elseif strcmp(handles.img{1}, 'segmented') 
    disp('#Image(s) already segmented, load new image(s) to segment'); 
    set(handles.listbox2, 'String', cmdwinout()); 
else 
    disp('#No Image Loaded, Open Image First!'); 
    set(handles.listbox2, 'String', cmdwinout()); 
end 

  
% Update variables to figure 
set(handles.listbox2,'Value', length(cmdwinout())); 
guidata(hObject, handles); 

  
% Open Settings Panel 
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
if strcmp(get(handles.uipanel3, 'Visible'),'off') 
    set(handles.uipanel3, 'Visible', 'on'); 
else 
    set(handles.uipanel3, 'Visible', 'off'); 
end 

     
% Selection Listbox 
% --- Executes on selection change in listbox1. 
function listbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: contents = cellstr(get(hObject,'String')) returns listbox1 

contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

listbox1 

  
% Get current selected image 
index = get(handles.listbox1,'value'); 

  
% Display current selected image 
imshow(handles.outputimg{index}); 

  
% % Label Objects 
% hold on; 
% for k = 1:numel(handles.centroid{index}) 
%     x = handles.gcv(handles.centroid{index},k); 
%     text(x(1),x(2),sprintf('%d',k),... 
%         'HorizontalAlignment', 'center',... 
%         'VerticalAlignment', 'middle',... 
%         'Color', [1,0.6,0]); 
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% end 
% hold off; 

  
% Set data table 
set(handles.uitable1, 'Data', [handles.B(:,1) handles.B(:,index+1)]); 

  
% update variables 
guidata(hObject, handles); 

     
% Exit Attempt 
% --- Executes when user attempts to close mainbox. 
function mainbox_CloseRequestFcn(hObject, eventdata, handles) 
% hObject    handle to mainbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
if isequal(get(hObject, 'waitstatus'), 'waiting') 
    % The GUI is still in UIWAIT, use UIRESUME 
    uiresume(hObject); 
    delete(hObject); 
else 
    % The GUI is no longer waiting, just close it 
    delete(hObject); 
end 

  
% Exit 
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
if isequal(get(handles.mainbox, 'waitstatus'), 'waiting') 
    % The GUI is still in UIWAIT, use UIRESUME 
    uiresume(handles.mainbox); 
    delete(handles.mainbox); 
else 
    % The GUI is no longer waiting, just close it 
    delete(handles.mainbox); 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NOT USED 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% --- Executes on button press in checkbox1. 
function checkbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of checkbox1 

  
% --- Executes on button press in checkbox4. 
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function checkbox4_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of checkbox4 

  
% --- Executes during object creation, after setting all properties. 
function edit6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit8_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit9_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit10_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit10 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit11_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit16_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function listbox2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit6_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 as 

a double 

  
function edit8_Callback(hObject, eventdata, handles) 
% hObject    handle to edit8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit8 as text 
%        str2double(get(hObject,'String')) returns contents of edit8 as 

a double 

  
function edit9_Callback(hObject, eventdata, handles) 
% hObject    handle to edit9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit9 as text 
%        str2double(get(hObject,'String')) returns contents of edit9 as 

a double 

  
function edit10_Callback(hObject, eventdata, handles) 
% hObject    handle to edit10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit10 as text 
%        str2double(get(hObject,'String')) returns contents of edit10 

as a double 

  
function edit11_Callback(hObject, eventdata, handles) 
% hObject    handle to edit11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit11 as text 
%        str2double(get(hObject,'String')) returns contents of edit11 

as a double 

  
function edit16_Callback(hObject, eventdata, handles) 
% hObject    handle to edit16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit16 as text 
%        str2double(get(hObject,'String')) returns contents of edit16 

as a double 

  
% --- Executes on selection change in listbox2. 
function listbox2_Callback(hObject, eventdata, handles) 
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% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: contents = cellstr(get(hObject,'String')) returns listbox2 

contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

listbox2 

  
function edit17_Callback(hObject, eventdata, handles) 
% hObject    handle to edit17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit17 as text 
%        str2double(get(hObject,'String')) returns contents of edit17 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit17_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit18_Callback(hObject, eventdata, handles) 
% hObject    handle to edit18 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit18 as text 
%        str2double(get(hObject,'String')) returns contents of edit18 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit18_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit18 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

 

 

  


