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ABSTRACT 

This dissertation investigates the evolution of Paleoindian adaptations during the 

Pleistocene to Holocene transition in the Midsouth United States. Evidence suggests that 

lithic technologies became more regionalized over time as territorial ranges constricted 

and people relied increasingly on locally available resources.  

Following a brief introduction to the issues related to Paleoindian adaptations in 

Chapter one, I evaluate the evidence for pre-Clovis occupation at the Coats-Hines-Litchy 

site, in Tennessee. I conclude that based on analyses of geochronology, site formation 

processes, and the lithic assemblage, the site likely predates human occupation of North 

America, the faunal assemblage is naturally produced, and the artifact assemblage has 

been redeposited from other nearby sites. I next present a lithic analysis charactering the 

range of variation and reduction sequence of Cumberland fluted bifaces from the 

Midsouth. I contend that standardization of basal elements reflect hafting requirements, 

and patterns of biface morphology, breakage, and resharpening reflect that Cumberland 

bifaces were designed specifically for piercing rather than to be multifunctional. I then 

compare Clovis, Cumberland, and Dalton biface technologies from Tennessee to 

investigate the evolution of Paleoindian adaptations during the Pleistocene to Holocene 

transition. I show that temporal changes in technological organization, landscape use, 

and toolstone selection reflect settling in processes associated with landscape learning 

rather than Younger Dryas-related environmental changes. 
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Ultimately, this dissertation presents new data related to the late Pleistocene 

occupation of the Midsouth and the evolution of regional Paleoindian adaptations. By 

recognizing temporal and spatial changes in late Pleistocene technologies, and 

considering those changes in relation to paleoecological records, we are better suited to 

understand Paleoindian adaptations. In turn, we are able to construct more robust and 

accurate settlement models to explain the peopling of the Americas. 
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CHAPTER I 

INTRODUCTION 

The process of familiarization with, and adaptation to, new environments is 

integral to human colonization and settlement of previously unknown areas (Rockman 

and Steele 2003). Most archaeologists agree that this process began in the Americas 

when people first migrated south out of Beringia and into what is now Canada and the 

continental United States. As the initial human migration pushed further into North 

America people encountered different ecosystems that required flexibility and adaptation 

to cope with the advantages and disadvantages of regionally specific resource structures. 

As people were becoming increasingly familiar with their environments, dynamic 

climate conditions during the terminal Pleistocene, at least in some regions, further 

exacerbated the challenges of landscape learning. 

Multiple settlement models have been constructed to understand the nature of 

human migration into and throughout the Americas (e.g., Anderson 1990, 1996; Kelly 

and Todd 1988; Meltzer 2004). The variation in these models highlights the ecological 

diversity that late Pleistocene foragers experienced, and the versatility required to 

successfully colonize new landscapes. Recently, Smallwood (2012) evaluated two 

alternative settlement models to understand the colonization of the southeast United 

States. Kelly and Todd’s (1988) high-technology forager model suggests that Clovis 

populations were highly mobile, “technologically-oriented” foragers who relied on 

predictable ungulate behavior to move rapidly through different environments. 
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Anderson’s (1990, 1996) staging-area model suggests that settlement occurred at a 

slower pace as “place-oriented” foragers habitually exploited resource-rich areas and 

regularly aggregated to share information and reaffirm social networks.  

It is unlikely that a single settlement model can explain the colonization of an 

area as large and ecologically diverse as North America. Rather, multiple models are 

needed to explain regionally specific adaptations required to successfully colonize the 

continent. Smallwood’s (2012) study of Clovis biface technology in the Southeast 

identified incipient regionalization in biface reduction methods, and offers support for 

the staging-area model. Habitually exploited resource-rich areas became centers for 

aggregating macroband populations and subsequently became demographic foundations 

for ensuing post-Clovis technologies (Smallwood 2012). Thulman (2006) found a 

similar pattern in northern Florida where Paleoindian biface designs appear to reflect a 

place-oriented settlement strategy. An increase in morphological variation of bifaces 

suggests that territorial ranges were becoming more constricted through time as 

Paleoindian populations were settling in to local landscapes (Thulman 2006). 

In spite of having some of the densest concentrations of Paleoindian artifacts in 

North America, the precise chronology of Paleoindian technologies in the Midsouth is 

not clear (Anderson et al. 2010, 2015). Securely dated Paleoindian components are 

exceptionally rare in the region (Miller and Gingerich 2013). Limited sedimentation, 

high humidity, and soil acidity have generally prevented the preservation of radiocarbon 

dateable materials (Dunnel 1990; Miller and Gingerich 2013). Therefore, based largely 

on dated chronologies of neighboring regions, most archaeologists in the Midsouth 
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generally accept a Paleoindian sequence of Clovis, post-Clovis fluted, and post-Clovis 

unfluted lanceolate forms (e.g., Anderson and Sassaman 1996; Anderson et al. 2010, 

2015; Bradley et al. 2008; Ellis and Deller 1997; Meltzer 2009). It should be noted, 

however, not everyone agrees with this sequence (Gramly 2013).  

Climate was a significant and compounding factor in the peopling of the 

Americas. Central to this was the onset of the Younger Dryas (YD), which brought 

abrupt cooling and drying throughout much of the Northern Hemisphere, returning some 

regions to tundra-like conditions (Alley 2000; Broecker et al. 2010). The relationships 

between YD-driven environmental changes and modifications in human adaptations 

during the Pleistocene to Holocene transition have recently received much debate (e.g., 

Anderson et al. 2011; Ellis et al. 2011; Eren 2012; Holliday and Meltzer 2010; Meeks 

and Anderson 2012; Meltzer and Holliday 2010; Smallwood et al. 2015; Straus and 

Goebel 2011). While much of North America experienced the reversal of a general 

warming trend, regional paleoenvironmental data show substantial variation in local 

conditions (Ellis et al. 1998; Eren 2012; Straus and Goebel 2011; Meltzer and Holliday 

2010). Modifications to Paleoindian adaptations were undoubtedly related to the local 

severity of the YD. 

The lack of a well-established regional chronology complicates interpretations of 

diachronic adaptations and potential affects of the YD on Paleoindian demographics. 

Anderson and colleagues (2011; Meeks and Anderson 2012) suggest that the onset of the 

YD caused a significant decline or reorganization to population structure in the 

Southeast. Their hypothesis is based on a reduction in the frequency of hafted bifaces, 
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modifications to lithic procurement strategies, and analysis of radiocarbon-dated 

archaeological sites. Other researchers, however, contend that the YD may have gone 

unnoticed by human populations in the region (Eren 2012; Meltzer and Holliday 2010; 

Straus and Goebel 2011). Rather, factors such as sampling biases, typological errors, and 

a radiocarbon plateau at the onset of the YD may influence interpretations of perceived 

human responses (Eren 2012; Meltzer and Holliday 2010; Straus and Goebel 2011).  

While there is a near absence of intact, buried sites in the Midsouth, there is an 

exceptionally robust record of Paleoindian artifacts from this region (Anderson et al. 

2010, 2015). The variation present in those artifacts highlights the flexibility required in 

technological adaptations to successfully colonize and settle into the Midsouth during 

the Pleistocene to Holocene transition. To understand the evolution of those adaptations, 

I take a landscape perspective and view the distributions of, and variations in, 

Paleoindian technologies as reflections of the “spatial manifestation of the relations 

between humans and their environment” (Marquardt and Crumley 1987:1).  

The overall objective of this research is to assess the evolution of Paleoindian 

adaptations in the Midsouth United States during the Pleistocene to Holocene transition. 

Did changes in environmental conditions at the onset of the YD drive the evolution of 

Paleoindian adaptations, or was there a gradual settling in through time as founding 

populations became increasingly familiar with local landscapes and resource 

availability? To understand the effects that the YD had on early human populations in 

the Midsouth, we must first establish a better understanding of cultural and technological 

adaptations before, during, and after the onset of the YD. Thus, I investigate a potential 
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pre-Clovis site in Tennessee (Coats-Hines-Litchy), and trace the evolution of biface 

technologies between Clovis, post-Clovis fluted (Cumberland), and post-Clovis unfluted 

(Dalton). 

In Chapter II I present an evaluation of a potential pre-Clovis occupation at the 

site Coats-Hines-Litchy site. Coats-Hines-Litchy is located in Williamson County, 

Tennessee, and reportedly has direct evidence of human predation of extinct Pleistocene 

megafauna (Breitburg et al. 1996; Deter-Wolf et al. 2011). Multiple excavations over the 

last three decades have produced an intriguing artifact assemblage reportedly associated 

with the potentially butchered remains of a mastodon. Lithic artifacts were also 

identified during the excavation and during the laboratory processing of bulk sediment 

samples. One mastodon vertebrae excavated in 1994 was noted as having cutmarks 

(Breitburg et al. 1996). In addition to collecting new faunal, radiocarbon, geochemical, 

and geoarchaeological data, I also re-analyzed the previously excavated artifact 

assemblage. This information allowed me to assess the stratigraphic context, 

geochronology, and site formation processes at the site. 

In Chapter III I present technological and morphological analyses of Cumberland 

fluted bifaces to characterize the range of variability present within this type. 

Cumberland fluted bifaces represent the instrument-assisted fluting horizon in the 

Midsouth, and are assumed to be generally contemporaneous with the beginning of the 

YD (e.g., Anderson et al. 2010, 2015; Broster et al. 2013; Ellis and Deller 1997; Fiedel 

1999; Goodyear 1999; Meltzer 2009; Tankersley 1990, 1996). While these bifaces are 

prevalent throughout the Midsouth, they have only been recovered from surface or 
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disturbed contexts (Anderson et al. 2010, 2015; Goodyear 1999). I studied over 900 

fluted Cumberland bifaces in public and private collections, as well as bifaces 

documented in the Paleoindian Database of the Americas (PIDBA). This enabled me to 

investigate patterns of biface production, use, and discard.  

In Chapter IV I compare Clovis, Cumberland, and Dalton biface technologies 

from Tennessee. I use Paleoindian biface data compiled in PIDBA to test for changes in 

behavioral adaptations, and consider these changes in relation to the regional 

paleoenvironmental record. I compare patterns in technological organization, landscape 

use, and toolstone selection to assess the potential effects of the YD on Paleoindian 

adaptations in the Midsouth. These comparisons provide new information on the general 

life histories of each biface type, which, in turn, informs on Paleoindian adaptations 

before, during, and after the onset of the YD in the region.  

Chapter V concludes the dissertation and with a brief summary of each chapter. I 

evaluate evidence for a potential pre-Clovis occupation at CHL, characterize variation 

within Cumberland bifaces from the Midsouth, and compare Clovis, Cumberland, and 

Dalton adaptations to assess the impact of the onset of the YD on regional populations. 

The research presented here will hopefully be a useful contribution to the field of 

archaeology, and further the understanding of Paleoindian adaptations in North America. 
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CHAPTER II  

SITE FORMATION AND CONTEXT AT THE COATS-HINES-LITCHY SITE, 

TENNESSEE: IMPLICATIONS FOR INTERPRETING PROPOSED PRE-LGM-AGE 

ARCHAEOLOGICAL SITES 

 

Introduction 

 

Context is key to the accurate interpretation of the archaeological record. 

Understanding the geologic context of archaeological sites enables the correlation of 

artifacts, dates, and stratigraphy with site formation processes. This is especially 

pertinent in Paleoindian research where sites have been subjected to geomorphic 

processes since the late Pleistocene. Frequently these processes create mixed 

assemblages containing multiple archaeological components, and at times the remains of 

extinct fauna, that may be exposed to the surface or deeply buried. The accurate 

interpretation of site context, and ultimately the acceptance of early sites, requires a 

thorough geoarchaeological investigation.  

The Coats-Hines-Litchy site (CHL), in Williamson County, Tennessee, has been 

previously proposed as a locale where people had direct interaction with extinct 

megafauna during the late Pleistocene (Breitburg et al. 1996; Deter-Wolf et al. 2011). 

Previous references refer to the site as “Coats-Hines,” but the site name has been 

updated here to reflect the generous support and stewardship of the current landowners. 

The site was first identified as a paleontological site in 1977 when the construction of a 
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golf course unearthed the disarticulated partial remains of a mastodon (Breitburg and 

Broster 1995). Subsequent excavations recovered the partial remains of additional 

disarticulated mastodons reported to be associated with stone tools and debitage. 

A number of questions have remained outstanding regarding the geological 

context, age, and integrity of the site (Cannon and Meltzer 2004). What is the association 

between the faunal remains and lithic artifacts? What does the lithic assemblage look 

like? What is the geologic context of the site? What is the age of the site? As such, a 

large-scale, interdisciplinary investigation was initiated in 2012 to address these 

questions. In addition to collecting new faunal, radiocarbon, geochemical, and 

geoarchaeological data, the existing lithic assemblage was reanalyzed. This information 

is used to assess the human-mastodon association at CHL and provides a methodological 

and theoretical framework to evaluate other pre-Last Glacial Maximum (pre-LGM)-aged 

sites. 

Background and Site History 

Since 1977 investigations at CHL have identified three discrete locales (Areas A, 

B, and C) containing late Pleistocene faunal material eroding from an erosional channel 

(Figure 1; Deter-Wolf et al. 2011). Area A was first identified in 1977 when a salvage 

excavation, by the Tennessee Division of Archaeology (TDOA), was conducted to 

recover the partial remains of an American mastodon (Mammut americanum). While the 

largest bones were individually excavated, smaller fragmentary pieces were recovered in 
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Figure 1. Map of the Coats-Hines-Litchy site with excavation areas A, B, and C. 

bulk along with the sediment matrix encasing them. No artifacts were identified during 

the excavation; however, while processing bulk sediment samples from Area A lithic 

debitage was discovered (Deter-Wolf et al. 2011). 

Area B was identified in 1994 prior to the establishment of a residential 

development. Between 1994 and 1995 (Figure 2) the site was systematically excavated 

to expose a late Pleistocene bone bed containing the disarticulated partial remains of a 

mastodon in addition to numerous other mammalian and reptilian species. Lithic 

artifacts were also identified during the excavation and during the processing of bulk 

sediment samples. One of the vertebrae excavated from Area B was noted as possessing 

cutmarks (Breitburg et al. 1996). Breitburg and colleagues (1996) suggest that stone 
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tools created the repeated, linear incisions during the removal of dorsal muscles. Other 

researchers contend that the marks may simply be the results of natural taphonomic 

processes (Cannon and Meltzer 2004). 

Figure 2. Photograph of the Coats-Hines-Litchy site during excavation ca. March 1995 

(facing West). Image courtesy of the Tennessee Division of Archaeology. 

Area C was identified approximately 47 meters west of Area B during the 1994-

1995 excavations. The poorly preserved remains of a third mastodon were identified 

eroding from the south side of the channel. The lack of preservation in Area C as 

compared to Areas A and B deterred excavations there. While large faunal remains are 
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frequently observed eroding from the bank, to date no artifacts have been recovered 

from Area C (Deter-Wolf et al. 2011). 

In 2010 a small investigation trench was excavated over a period of four days. 

The primary objective of the 2010 investigation was to determine if Pleistocene-aged 

deposits remained intact at the site. To that end, the investigation was successful. The 

narrow, mechanically dug trench exposed Pleistocene sediments and bone fragments 

extending south from the 1994-1995 excavations. Undulations in the trench and ground 

surface limited the accuracy of vertical measurements, however, a generalized 

stratigraphic profile was recorded based on estimates below the ground surface (Deter-

Wolf et al. 2011). 

2012 Excavation 

The 2012 excavation was conducted in Area B and intentionally situated to 

directly link all previous excavations in Area B (Figure 3). This assured the 2012 

investigation was able to correlate all geologic deposits identified during previous 

excavations. The artifacts and faunal remains in previous excavations were identified as 

coming from a grey Pleistocene clay-rich deposit buried by approximately 2.5 meters of 

Holocene sediments and recent fill. To date, no cultural artifacts have been documented 

in situ in the upper 2.5 meters of sediment. As such, the upper approximately two meters 

of culturally sterile deposits were mechanically removed under close supervision prior to 

the 2012 excavation. After the culturally sterile Holocene sediments were removed, a 
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Figure 3. Coats-Hines-Litchy, Area B detail with correlations of 1994-1995, 2010, and 2012 stratigraphic profiles. 
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total of 43 square meters were excavated in 5 cm levels and all sediment water screened 

through 1/4-inch wire mesh. 

The 2012 excavation had three objectives. First, a geoarchaeological study 

(Schmalle 2013) was conducted to interpret the depositional history of the site and the 

association between the mastodon remains and the lithic artifacts. Earlier descriptions of 

the stratigraphy at CHL did not thoroughly explain the geologic setting of the bonebed. 

Second, to recover organic samples to radiometrically date the late Pleistocene deposits. 

Radiocarbon ages previously reported for the site were inconsistent and primarily from 

bulk sediments; thus, only represent minimum ages. Third, to expose, record, and 

recover additional faunal remains and artifacts. The faunal analysis supported a 

paleoecological study to better understand the local environmental conditions during the 

late Pleistocene. In addition to new fieldwork at CHL, all previously excavated artifacts 

were reanalyzed to study the technologies and behaviors reflected in the assemblage. 

Site Context 

The CHL site is located along an erosional channel in a small, gently east-to-west 

sloping basin surrounded by rolling hills to the north, east, and south (Figure 4). While 

the site is located at the head of the channel today, historic aerial photographs indicate 

that the channel began at least 200 meters to the east. Ordovician limestone containing 

nodules of fine-grained cherts outcrop in the hills surrounding the drainage basin 

(Wilson and Miller 1963). The sediments containing the late-Pleistocene faunal remains 
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consist of fine-grained clays and gravels that have been redeposited through colluvial 

and alluvial processes from higher elevations in the basin and hills (Schmalle 2013). 

Figure 4. Location of the Coats-Hines-Litchy site relative to local geology. 

Late Quaternary Stratigraphy 

Breitburg and colleagues (1996) first described the stratigraphy and reported that 

the late Pleistocene faunal remains were in an old stream channel filled with rounded 

chert cobbles, quartz, and weathered siliceous gravels. Approximately 170 centimeters 

of Holocene sediments covered the late Pleistocene deposits in 1994-1995 (Breitburg et 
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al. 1996). A similar profile was recorded during the 2010 investigation (Deter-Wolf et al. 

2011). However, between 1994-1995 and 2010 approximately 50-75 centimeters of fill 

was deposited on the site during the construction of a housing development (Deter-Wolf 

et al. 2011). Schmalle (2013) studied the late Quaternary stratigraphy and identified nine 

stratigraphic units exposed in the 2012 excavation block. Units 1 through 5 date to the 

late Pleistocene and are overlain by the Holocene sediments of Units 6 through 9. 

Unit 1 is a strong brown (7.5YR 4/6) gravely clay with secondary accumulations 

of illuvial clay, common redoximorphic features, and frequent accumulations of 

manganese and iron concretions with an abrupt, irregular boundary. Unit 2 is a gray 

(10YR 5/1) clay with secondary accumulations of illuvial clay, few redoximorphic 

features, and small manganese and iron concretions with an abrupt, irregular boundary. 

Unit 3 is a brown (7.5YR 4/2) silty clay with secondary accumulations of illuvial clay, 

common redoximorphic features, and manganese and iron concretions with an abrupt, 

irregular boundary. Small rodent borrows are present in the upper portion of Unit 3. Unit 

4 is a dark grayish brown (10YR 4/2) silty clay with secondary accumulations of illuvial 

clay, and is heavily reduced with common manganese and iron concretions with an 

abrupt, smooth boundary. Unit 5 is a very dark grayish brown (10YR 3/2) silty clay, 

secondary accumulations of illuvial clay, common redoximorphic features, and 

accumulations of iron and manganese concretions with an abrupt, smooth boundary 

(Schmalle 2013). 

Unit 6a-c was identified and defined near Area C, approximately 20 meters west 

of the 2012 excavation area, and stratigraphically post-dates Units 1-5. This unit consists 
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of poorly sorted, fining-upwards sands and gravels situated in an erosional channel. The 

lowest gravels of Unit 6 exhibit clast-supported imbrication, reflecting east-to-west 

stream flow. Unit 6 is not directly to the Area B excavations and is not discussed further 

(Schmalle 2013). 

Unit 7a-c marks a dramatic change in depositional history at the site. This unit 

consists of a silty clay loam with faint secondary accumulations of clay films, faint 

redoximorphic features, minimal gravels and a smooth boundary. Pedogenic features 

documented in Unit 7c indicate a period of stability and soil formation. Units 8 and 9 

represent relatively recent deposition over the last few hundred years. Unit 8 is a silty 

clay loam accumulated during historic agriculture practices, while Unit 9 consists of 

modern gravely-silt backfill deposited during recent land development (Schmalle 2013). 

A pattern of deposition, stability, and erosion is indicated by the abrupt 

boundaries between Units 1 through 5. The low chroma and reduction of Units 2 through 

4 indicate anaerobic conditions reflecting, at least intermittently, saturated sediments 

possibly in a swampy or ponded environment (which is also indicated by the following 

faunal analysis). Soft sediment deformation features are documented throughout Units 1 

through 3. In some instances these turbation features are truncated by Unit 4, indicating 

a period of significant erosion. The visually distinct Unit 5 marks the uppermost late 

Pleistocene deposits and a period of extended stability and soil formation. 

The gravely and silty clays of Units 1 through 5 consist of matrix supported, 

poorly sorted, colluvial gravels interfingered with alluvial silt and clay sediments. These 

colluvial sediments contain angular limestone and chert gravels lithologically similar to 
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the surrounding hills. Intermittent high-energy pulses of colluvial sediments containing 

gravel-size clasts were likely deposited during episodes of heavy rainfall. Plotting the 

vertical distribution of gravels indicates a visible spike in Units 2 and 3. The bone 

fragments are generally rounded and covered in scratches and gouges suggesting similar 

high-energy pulses also transported them. Heavily weathered and fragmented faunal 

remains occur throughout Units 1 through 3, while Unit 4 contains turtle carapace and 

plastron fragments. There is a very strong correlation between the vertical distribution of 

bone fragments and gravels (r = 0.955, p = <0.001) (Figure 5), further suggesting that 

similar, high-energy forces deposited both materials. 
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Figure 5. Vertical distribution of chert, gravel, and bone fragments from a sample of 12 units excavated in 2012. 
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Geochronology 

All radiocarbon ages reported from CHL come from the lower sediments (Units 

1-5) in Area B (Figure 6). Previous discussions of the radiocarbon record at CHL have 

included ages obtained from bulk sediment samples (Breitburg et al. 1996; Deter-Wolf et 

al. 2011). Organic sediments, however, are known to provide inaccurate ages and should 

not be taken to represent the actual age of the deposits (Bradley 2015). Only ages 

obtained from carbonized plant material are included here (Table 1). Such charcoal 

occurs as small pieces and dispersed throughout the sediments. 

Three charcoal-based ages were reported from the 1994-1995 and 2010 

excavations. Two ages of 27,050 ± 200 
14

C yr BP and 29,120 ± 150 
14

C yr BP are

reported from the bone-bearing sediments (ca. Units 2-4) (Breitburg et al. 1996; Deter-

Wolf et al. 2011). A third age of 12,300 ± 60 
14

C yr BP (Beta-288801) was obtained

from a charcoal fragment above the bone-bearing deposit in 2010; however, the precise 

stratigraphic context of this sample is unclear. 
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Figure 6. Generalized profiles from the Coats-Hines-Litchy site, Area B correlated with charcoal-based radiocarbon ages. 
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Table 1. All radiocarbon ages from the Coats-Hines-Litchy site. 

1994/1995 radiocarbon measurements from the Coats-Hines-Litchy site. 

Laboratory 

Number 

Northing/ 

Easting 
Elevation 

Material 

Dated 

Age 
14

C yr 

B.P. 

(± 1 sigma) 

Geologic Unit Remarks 

Beta-80169 Charcoal 27,050 ± 200 Base of 3 Base of 1994 

Beta-75403 
Organic 

Sediment 
6530 ± 70 Unit 3 

Within cusps of mastodon 

tooth 

Beta-125351 
Organic 

Sediment 
10,260 ± 240 Unit 3 

Above mastodon humerus 

Beta-125350 
Organic 

Sediment 
12,030 ± 40 Unit 3 

Below mastodon rib 

fragment 

Beta-125352 
Organic 

Sediment 
14,750 ± 220 Unit 3 

Below mastodon humerus 

2010 radiocarbon measurements from the Coats-Hines-Litchy site. 

Beta-288801 260 cmbs Charcoal *12,300 ± 60 Units 2-4 Estimated provenience 

Beta-288802 302 cmbs Charcoal 29,120 ± 150 Units 2-4 Estimated provenience 

Beta-290990 289 cmbs 
Organic 

Sediment 
1960 ± 30 Units 2-4 Estimated provenience 

Beta-290991 290 cmbs 
Organic 

Sediment 
23,490 ± 110 Units 2-4 Estimated provenience 

2012 radiocarbon measurements from the Coats-Hines-Litchy site. 

UCIAMS-149780 215 cmbs Charcoal 33,220 ± 440 Base of Unit 5 From cutbank profile 

UCIAMS-149781 200 cmbs Charcoal 30,900 ± 180 Base of Unit 5 From cutbank profile 

UCIAMS-120329 N1000/E1010 98.000-97.950 Charcoal 22,490 ± 100 Unit 4 From 2012 excavation 

UCIAMS-120330 N998/E1008 97.900-97.850 Charcoal 26,290 ± 150 Unit 3 From 2012 excavation 

UCIAMS-120331 N1000/E1010 97.750-97.700 Charcoal 36,120 ± 480 Unit 3 From 2012 excavation 

UCIAMS-121950 N1000/E1010 97.750-97.700 Charcoal 36,590 ± 650 Unit 3 From 2012 excavation 

UCIAMS-120332 N999/E1005 97.650-97.600 Charcoal 31,140 ± 270 Base of Unit 3 From 2012 excavation 

(continued) 
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Table 1. (Continued) 

UCIAMS-121951 N999/E1005 97.650-97.600 Charcoal 30,910 ± 320 Base of Unit 3 From 2012 excavation 

UCIAMS-120333 N995/E1005 97.550-97.500 Charcoal 30,740 ± 240 Unit 2 From 2012 excavation 

UCIAMS-120334 N1000/E1006 97.550-97.500 Charcoal 26,310 ± 150 Unit 2 From 2012 excavation 

UCIAMS-120335 N1000/E1008 97.850-97.800 Charcoal 30,620 ± 240 Unit 1 From 2012 excavation 

UCIAMS-120336 N996/E1007 97.400-97.350 Charcoal >26,400 Unit 1 From 2012 excavation 

*Previously this age was reported without the delta 13C correction as 12,050 ± 60 (Deter-Wolf et al. 2011).
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In 2012 I obtained 12 new radiocarbon ages for the site. Two radiocarbon ages 

from Unit 1 date to 30,620 ± 240 
14

C yr BP (UCIAMS-120335) and >26,400 
14

C yr BP

(UCIAMS-120336). Two ages from Unit 2 dates are 30,740 ± 240 
14

C yr BP (UCIAMS-

120333) and 26,310 ± 150 
14

C yr BP (UCIAMS-120334). Ages of 31,140 ± 270 
14

C yr

BP (UCIAMS-120332) and 30,910 ± 320 
14

C yr BP (UCIAMS-121951) were obtained

from the base of Unit 3. Radiocarbon ages from Unit 3 are 26,290 ± 150 
14

C yr BP

(UCIAMS-120330), 36,120 ± 480 
14

C yr BP (UCIAMS-120331), and 36,590 ± 650 
14

C

yr BP (UCIAMS-121950). Unit 4 yielded a single age of 22,490 ± 100 
14

C yr BP

(UCIAMS-120329). Two samples from the base of the Unit 5 paleosol were dated to 

30,900 ± 180 
14

C yr BP (UCIAMS-149781) and 33,220 ± 440 
14

C yr BP (UCIAMS-

149780). The radiocarbon ages show that geologic Units 1-5 predate the LGM. These 

ages align well with those reported from 1994-1995 and 2010. 

The Oxidizable Carbon Ratio (OCR) method was previously used to determine 

the age of the deposits (Deter-Wolf et al. 2011). The OCR method is not a widely 

accepted dating technique and its veracity has been questioned (Killick et al. 1999). The 
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results of OCR dating remain equivocal and are not included here as reliable dates for 

the deposits. 

Faunal Assemblage 

The bonebed excavated in 1994-1995 was first recognized when fragments of 

mastodon vertebra, ribs, and tusks, and horse teeth were observed eroding out of the 

lower edge of the erosional channel. A series of excavations between May 1994 and 

March 1995 uncovered the partial remains of a disarticulated male mastodon (Mammut 

americanum). In addition to mastodon, the highly fragmented and partial remains of 

horse (Equus sp.), deer (Odocoileus sp.), muskrat (Ondatra zibethicus), canid (Canis 

sp.), turkey (Meleagris gallopavo), frog (Rana spp.), and painted turtle (Chrysemys cf. 

picta) were also recovered (Breitburg et al. 1996). While the specific locations of each 

specimen are unclear, horse teeth were recorded within and below the mastodon remains 

(Breitburg et al 1996; Deter-Wolf et al. 2011). Based on field records and photographic 

evidence, the mastodon remains recovered in 1994-1995 were in Unit 3 (Figure 7). 

Additional small bone fragments and turtle shell occur throughout Units 1-4. 
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Figure 7. Photograph of the mastodon bonebed in relation to the south and east profiles 

during the October 1994 excavation. Image courtesy of the Tennessee Division of 

Archaeology. 

The overall faunal assemblage represents a highly fragmented and co-mingled 

deposit of multiple species. The bonebed consisted of a mixture of large identifiable 

elements intermixed with numerous small identifiable fragments. While there is no 

statistically significant orientation of bones (X
2 

= 4.9; df = 6; p = 0.56), their fragmentary

nature suggests post-depositional disturbances. Rounding and battering of the bone 

fragments suggests alluvial transportation. 

Unlike the initial 1994-1995 excavations, excavations in 2010 and 2012 failed to 

identify any large, intact bones. During the 2010 excavation, 1,195 of the 1,582 bone 

fragments recovered were from 1/8 and 1/16 inch screens (Deter-Wolf et al. 2011). A 

total of 1122 bone fragments were recovered from excavation and 1/4 screening in 2012. 
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The remains recovered during the 2012 excavation were generally heavily weathered 

and highly fragmented, which prevented identification of most specimens.  Turtle 

fragments were the most abundant specimens (Chrysemus cf. picta), greater than 95% of 

all identifiable fossil fragments (Table 2).  However, fragmentary material was also 

collected from the American mastodon (Mammut americanum), including post-cranial 

elements and identifiable enamel fragments.  Enamel fragments of horse teeth (Equus 

sp.), and deer antler (Odocoileus sp.) were also recovered.  Most notably, the faunal list 

was expanded by one new taxon, a giant ground sloth (Paramylodon sp.) from the 

family Mylodontidae.  Presence of the giant ground sloth is based on several tooth 

fragments, including a nearly complete caniniform (i.e., canine-like) tooth.  While giant 

ground sloths have been found throughout Tennessee during the Pleistocene (Corgan and 

Breitburg, 1996), Paramylodon sp. (also known as Glossotherium) has only been 

documented from Guy Wilson Cave (Sullivan County, in eastern Tennessee) and Lock A 

(Davidson County, in central Tennessee). 

Table 2. List of all identified animals recovered from the Coats-Hines-Litchy site. 

Order Family Genus Common Name 

Proboscidea Mammutidae Mammut americanum American mastodon 

Xenarthra Mylodontidae Paramylodon sp. Giant ground sloth 

Perissodactula Equidae Equus sp. Horse 

Artiodactyla Cervidae Odocoileus sp. Deer 

Rodentia Cricetidae Ondatra zibethicus Muskrat 

Carnivora Canidae Canis sp. Canid 

Galilformes Phasianidae Meleagris gallopavo Turkey 

Anura Ranidae Rana spp. Frog 

Testudines Emydidae Chrysemys cf. picta Painted turtle 
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Of all the faunal material examined from the site, only the mastodon remains 

have been suggested to provide evidence of human interaction. Breitburg and colleagues 

(1996; Breitburg and Broster 1995) reported cutmarks on a thoracic vertebra based on an 

apparent V-shaped cross-section of the linear incision. Other researchers have 

questioned this interpretation (Cannon and Meltzer 2004; Grayson and Meltzer 2015; 

Haynes and Hutson 2014). It is unclear how the purported cutmarks were identified as 

such from the numerous scratches present on the specimen in question (Cannon and 

Meltzer 2004:1970). While a detailed study of the purported cutmarks has not been 

published, some information can be gleaned from photographic evidence. The marks in 

question consist of three incisions of varying depth, and from approximately one to four 

cm in length. Natural processes have been demonstrated to produce linear, V-shaped 

incisions on bones (Haynes and Krasinski 2010; Krasinski 2010). Trampling is known to 

produce linear incisions visually similar to the CHL specimen, specifically in coarse-

grained sediments (Haynes 2012:102, Figure 7). Thus, the presence of incisions alone 

does not unequivocally prove humans modified the bones. 

The CHL faunal assemblage most likely represents a secondary accumulation of 

disarticulated and fragmentary remains of many animals. The high-energy pulses likely 

further fragmented the bones in the process of redepositing them. As such, angular 

gravels frequently occurring in the bone-bearing sediments could have easily produced 

linear, V-shaped incisions on the bones. Furthermore, the fragmentary nature of the 

bonebed and presence of linear incisions also suggest post-depositional disturbance. 
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 The faunal assemblage provides information related to the local paleoecological 

setting and indicates a water-edge environment existed at or near CHL. Specifically, the 

presence of the painted turtle, various frog species, and muskrat reflect a well-watered, 

mesic woodland environment.  Painted turtles are widespread in North America; 

however, they rely on fresh water and often prefer densely vegetated waters with limited 

flow (Ernst and Lovich 2009). The presence of muskrat (Ondatra zibethicus) reflects the 

existence of a well-watered environment at or near CHL. Muskrats are a semi-aquatic 

mammal commonly found in relatively shallow, slow moving lentic environments with 

an abundance of hydrophytic vegetation (Nadeau et al. 1995). It is also significant to 

note that muskrats are large burrowing rodents (Messier et al. 1990), as this may relate to 

some post-depositional disturbances at CHL.  

 

Geochemical Analysis of Faunal Remains 

 

Geochemical analysis of the late Pleistocene faunal remains was conducted to 

further investigate the contextual association between the faunal remains excavated in 

1994-1995 and those in 2012. Bone from the mastodon excavated in 1994-1995 and 

mastodon and turtle excavated in 2012 was sampled for Rare Earth Element (REE) 

analysis. Approximately 5-10 mg of cortical bone or turtle carapace was removed using 

a Dremel
TM

 rotary drill with carbide burs. The sample powders were placed in clean 

Savillex™ vials, and dissolved overnight on a hot plate with 3ml of 8M HNO3. After 

dissolution, samples were opened and dried on the hotplate. Four ml of 0.8M HNO3, 
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spiked with 8 ppb Re, was added to the samples by weight to re-dissolve the dry residue. 

A small aliquot of the resultant solution was removed and diluted with additional 0.8M 

HNO3, spiked with 8 ppb Re, so that the final dilution was around 2,000x. The final 

dilution for trace element analyses was determined by weight for each sample. REE 

analyses were performed on a Thermo Finnigan ELEMENT2 Inductively Coupled 

Plasma Mass Spectrometer (ICP-MS) in the Department of Geological Sciences at the 

University of Florida. All measurements were performed in medium resolution with Re 

used as internal standards. Quantification of results was done by external calibration 

using a set of gravimetrically prepared REE standards. All REE concentrations were 

normalized to PAAS (Post-Archean Australian Shale; McLennan 1989). The REEs 

analyzed, range from La (Z = 57) to Lu (Z = 71) (Table 3). I excluded europium (Eu) 

Table 3. Rare Earth Element concentrations for faunal specimens used in geochemical 

analysis. (Values normalized to PAAS; McClellan 1989). 

Turtle 

(T416) 

Turtle 

(T676) 

Mastodon 

(M329) 

Mastodon 

(M625) 

Mastodon 

(M653) 

Mastodon 

(M1994) 

Mastodon 

(M382) 

La 0.16027 0.15988 0.11674 0.07142 0.08203 0.03359 0.03564 

Ce 0.31160 0.27535 0.14202 0.07938 0.08548 0.03056 0.03059 

Pr 0.54292 0.47212 0.28552 0.10354 0.12800 0.04314 0.03537 

Nd 1.00527 0.83452 0.44905 0.14745 0.17961 0.05422 0.03656 

Sm 1.94692 1.55609 0.83642 0.23891 0.28375 0.08440 0.04655 

Gd 4.54027 3.63612 1.73420 0.55093 0.54989 0.15672 0.07309 

Tb 4.53085 3.65774 1.77478 0.55311 0.53173 0.15884 0.07081 

Dy 5.62099 4.54613 2.23483 0.69014 0.62093 0.16667 0.06681 

Ho 6.03568 4.93664 2.50059 0.81056 0.68017 0.19200 0.08718 

Er 6.36066 5.21062 2.69280 0.88482 0.71718 0.19174 0.07717 

Tm 5.82522 4.76949 2.61999 0.85716 0.68537 0.19673 0.08991 

Yb 5.04259 4.11984 2.42742 0.75793 0.59391 0.15597 0.08310 

Lu 5.00032 4.12001 2.52471 0.80677 0.62617 0.16031 0.06826 
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from the analysis post hoc, due to anomalous Eu enrichment and depletion spikes (see 

DeSantis and Wallace 2008; Trueman et al. 2004). 

REEs occur in very low concentrations (ppb or less) in bones of living animals, 

however after death, the REEs are rapidly taken up from the local burial environment in 

the skeletal material (e.g., Trueman et al. 2004). Therefore, the REE patterns of fossil 

bones reflect their diagenetic environments and studies have shown that bones fossilized 

in different geochemical environments can be distinguished based on their REE patterns 

(e.g. MacFadden et al. 2007; Trueman 1999). The REE analysis of the samples allowed 

for a comparison of patterns of REEs obtained post-mortem. Normalized REE patterns 

from the mastodon humerus collected in 1994-1995 are similar to, and closely parallel, 

those of turtle shell and mastodon bones collected in 2012, despite differences in 

concentrations of REEs (Figure 8). Similar REE patterns reflect comparable depositional 

environments (Trueman 1999; MacFadden et al. 2007). While the sediments and faunal 

materials at CHL are in secondary fluvial/colluvial deposits, the similar REE patterns 

indicate that the animals died and were buried in close proximity to one another or 

exposed to pore water with similar chemistry. The similar REE patterns of the faunal 

samples, therefore, reaffirm the stratigraphic correlations between the excavations. 

In addition to REE analysis, stable isotope analyses were conducted to assess the diets of 

fauna from CHL.  Specifically, ~1-2 mg of enamel powder was sampled from tooth 

enamel and tooth dentin (from ivory) of Mammut americanum, Equus sp., and tooth 

dentin was sampled from Paramylodon sp.  One bulk sample, parallel to the growth axis 

of the tooth, was sampled on all teeth.  Five serial samples were also drilled of Mammut 
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Figure 8. Rare earth element (REE – normalized to post-Archean Australian Shale; McClellan 1989) data for Mammut 

americanum and Chrysemys cf. picta from the Coats-Hines-Litchy site.  
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americanum, each were sequentially located along the tooth’s growth axis (with 

individual samples drilled perpendicular to the growth axis of the tooth).  All samples 

were chemically treated with 30% hydrogen peroxide for 24 hours and 0.1 N acetic acid 

for 18 hours to remove organics and secondary carbonates, respectively (Koch et al. 

1997; similar to DeSantis et al. 2009). Approximately 1 mg of these samples were then 

run on a Finnigan-MAT 252 isotope ratio mass spectrometer coupled with a Kiel III 

carbonate preparation device in the Department of Geological Sciences at the University 

of Florida. The analytical precision is ±0.1‰, based on replicate analyses of samples and 

standards (NBS-19). Stable isotope data were normalized to NBS-19 and are reported in 

conventional delta (δ) notation for carbon (δ
13

C), where δ
13

C (parts per mil, ‰) = 

((Rsample/Rstandard)-1)*1000, and R = 
13

C/
12

C; and the standard is VPDB (Pee Dee 

Belemnite, Vienna Convention; Coplen 1994). All stable isotopes are from the carbonate 

portion of enamel, dentin, or bone hydroxyapatite. 

All isotopic results are reported in and Table 4.  Taking into account the 
13

C 

enrichment from food to tooth enamel and dentin (~14‰), as well as the decline in δ
13

C 

values (~1.5‰) of atmospheric CO2 due to fossil fuel burning over the past two 

centuries (Cerling and Harris 1999; DeNiro and Epstein 1978; Friedli et al. 1986), 

carbon isotope values less than ~8‰ indicate a diet consisting of primarily C3 vegetation 

whereas δ
13

C values of greater than −2‰ indicate a diet of predominantly C4 vegetation 

(Cerling and Harris 1999; Cerling et al. 1997).   Lower δ
13

C values can also indicate the 

consumption of browse in denser canopied C3 forests (Cerling et al. 2004; DeSantis and 

Wallace 2008; van der Merwe and Medina 1989, 1991).  All δ
13

C values from all 
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mammals sampled are consistent with the consumption of C3 vegetation.  The mean δ
13

C

enamel value for the morphologically inferred browser M. americanum (Haynes 1991; n 

Table 4. Bulk carbon isotopes mammalian taxa from the Coats-Hines-Litchy site. 

Taxon Element δ
13

C 

Mammut americanum tooth fragment - sample A -10.9 

Mammut americanum tooth fragment - sample A -9.9 

Mammut americanum tooth fragment - sample A -10.6 

Mammut americanum tooth fragment - sample A -12.1 

Mammut americanum tooth fragment - sample A -10.9 

Mammut americanum tooth fragment - sample A -11.7 

Mammut americanum tooth dentin (ivory) -9.2 

Equus sp. tooth fragment -9.4 

Paramylodon sp. caniform tooth -10.1 

Paramylodon sp. tooth fragment -10.2 

Paramylodon sp. tooth fragment -7.0 

Paramylodon sp. tooth fragment -8.4 

= 5, from one tooth fragment) is -11.0‰ (+/- 0.8 standard deviation; n = 5) is consistent 

with C3 vegetation within a forest or woodland environment.  Further, these values are 

highly consistent and range from -12.1 to -9.9‰, a total range of 2.2‰.  Similarly, 

Equus sp. has a δ
13

C enamel values of -9.4‰, also indicative of a predominately C3 diet;

however, these resources may have been C3 grasses as Equus is largely interpreted as a 

grazer throughout much of its range during the Pleistocene (MacFadden 2005).  

Paramylodon sp. has a mean δ
13

C dentin value of -8.9‰ (+/- 1.5 standard deviation;

total range of 3.2‰, between -10.2 and -7‰; n = 4 tooth fragments).  While all of these 

tooth fragments may have come from one individual, they may represent different times 

in the individual’s life during which the teeth were mineralizing.  While further work is 
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needed to assess if these teeth have been diagenetically altered, as dentin is more prone 

to diagenesis than enamel (Wang et al. 1994), preliminary analysis of the REEs of sloth 

dentin from the Pleistocene suggest that carbon isotope values from apatite may yield 

biologically meaningful results (MacFadden et al. 2010).  

Artifact Assemblage and Context 

The CHL assemblage consists of 145 specimens, including 38 from the 1994-

1995 excavation and 11 from the 2010 excavation (Figures 9 and 10). The 1995-1995 

assemblage includes 42 flakes and flake fragments, two gravers, one fire-cracked chert 

fragment, one blocky scraper, one biface fragment, and two osseous artifacts. An 

additional 13 flakes and 83 pieces of angular chert shatter were recovered in 2012 

(Figure 11). Breitburg and colleagues (1996) documented 12 lithic specimens in situ 

within the bonebed deposit. The remaining specimens were recovered out of context or 

during subsequent processing of bulk sediment samples. All lithic specimens from CHL 

are either Fort Payne or Bigby-Cannon chert, which is readily available throughout the 

region and outcrops immediately above the site. Additional lithic artifacts and faunal 

material has been occasionally recovered from the erosional channel, including a large 

biface fragment, unidirectional core, and a mineralized antler fragment (Deter-Wolf et 

al. 2011). Extensive lithic assemblages have also been recovered from three Archaic and 

Woodland surface sites within 200 m upslope of CHL. Only lithics directly related to 

Area B of CHL are discussed in detail here. 
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Figure 9. All lithic specimens recovered during the 1994-1995 excavations at the Coats-

Hines-Litchy site. 
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Figure 10. Selected lithic specimens recovered from the 2010 excavation at the Coats-

Hines-Litchy site.  

Figure 11. Selected lithic specimens recovered from the 2012 excavation at the Coats-

Hines-Litchy site. 
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Upon reanalysis, the two reported osseous specimens do not appear to be 

culturally-produced artifacts. The specimen previously described as a pressure flaker is a 

15.1 mm long fragment of antler (Figure 9v). The specimen is heavily worn, but lacks 

visible evidence of usewear. The potential bone point is a splintered fragment of bone 

with three flat, angular sides (Figure 9w). Like the antler fragment, there is no 

unequivocal evidence of intentional modification. Furthermore, this specimen does not 

possess any morphological similarities to known osseous points from other 

archaeological contexts. As such, both specimens appear to be naturally-produced.  

The thermally fractured angular shatter from 1994-1995 (Figure 9ai) has one 

patinated and two cortical surfaces, while the remaining two surfaces are covered in 

distinctive potlid fractures. Two pieces of small fragments (< 20 mm) of angular shatter 

recovered in 2012 also exhibit potlid fractures from heating. Because natural fires can 

produce potlid fractures in cryptocrystalline material, in the absence of additional 

evidence, these specimens are all interpreted as naturally-produced. The remaining 79 

pieces of angular shatter from 2012 are unpatinated, angular fragments ranging from 

37.5 to 3.32 mm in size. None of the additional shatter exhibits any evidence of cultural 

modification. 

The large, angular scraper (Figure 9aj) has two cortical surfaces, one unpatinated 

flat surface, and one surface with a series of erratic angular fractures. There is a series of 

systematic, unifacial flake removals along one margin. The unpatinated fractures and 

systematic flake scars appear to be culturally-produced. However, this specimen was 
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recovered after it had eroded out into the drainage; thus, direct association with the 

bonebed cannot be verified. 

Upon reanalysis, the two specimens reported to be gravers are actually naturally-

produced chert fragments. While one specimen (Figure 9ad) has three large flat facets on 

the dorsal surface, there is no systematic pattern to the flaking that may indicate 

intentional shaping. The other specimen (Figure 9ae) does not possess any facets from 

flake removals and both faces are covered in weathered, bumpy natural cortex. What 

would be the bit portions of both specimens lack any evidence of micro chipping or 

usewear that would have occurred through use. 

Arguably the most significant artifact from CHL is the biface fragment (Figure 

9ag). While there is no question that this is a culturally-produce artifact, its provenience 

is questionable. The biface was recovered from the area of the bonebed initially 

excavated in May 1994 (Figure 12). However, the biface was not actually discovered 

until the third stage of excavation in March 1995. At that time the area where it was 

discovered had already been excavated and the bones removed. As such, the location 

where the biface was recovered was exposed for approximately 10 months in the bottom 

of the erosional drainage before its discovery. That being said, the association of the 

biface to the bone-bearing deposits cannot be unequivocally determined. 
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Figure 12. Planview of Area B bonebed from 1994-1995 excavations with locations of lithic specimens. A) Lithic specimens 

previously reported in situ. B) Lithic specimens with unequivocal provenience. Image adapted from Breitburg et al. 1996, 

Figure 1.  
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Fifty-two flakes and flake fragments have been recovered from CHL, including 

19 pieces of microdebitage (smaller than 1.25 cm), 9 flake fragments lacking striking 

platforms, and 24 flakes with striking platforms. One flake fragment has systematic, 

unifacial flaking suggestive of intentional cultural modification (Figure 9ah). However, 

it must be noted that while this specimen has previously been attributed to the bone-

bearing deposits at CHL, the artifact was actually recovered from a different 

archaeological site. Sequential accession numbers associated with the two sites, and the 

fact that they were both excavated at the same time, likely contributed to the error. 

Additionally, 13 flakes lack unequivocal association with the bone-bearing deposits and 

were either recovered after they eroded out into the drainage, or were recovered in 

general bulk sediment samples. Thus, only 17 macrodebitage specimens, 12 flakes and 5 

flake fragments, have verifiable provenience from all excavations at CHL. 

All flakes smaller than 1.25 cm (microflakes) were deemed as too small to 

conclusively discern specific attributes (King 2012; Lubinski et al. 2014; Waters et al. 

2011a). As such, only macro-flakes are described here based on morphological and 

technological attributes.  The macrodebitage has overall similar morphology (Table 5). 

All specimens have relatively small average width (14.21 mm) and length (14.18 mm), 

with a width:length ratio of 1.02. The average thickness (4.35 mm) and weight (0.96 g) 

are slightly skewed because of to two outliers (specimens 491-2 and 94-24-81). 

Technological attributes were studied by scoring each flake based on the presence or 

absence of specific attributes (Lubinksi et al. 2014; Peacock 1991; Staley 2006; 

Wisniewski et al. 2014). The assemblage is dominated by flat, non-cortical platforms; 



 

 41 

however, two specimens exhibit faceted platforms (Table 6). Half of the specimens have 

eraillure scars, but only four exhibit distinct bulbs of percussion. Four specimens have 

more than three dorsal scars, but only one has flake scars demonstrating directional 

orientation. Two specimens appear to have negative bulbs of percussion on their dorsal 

sides, and three complete lack dorsal cortex. 

 

Table 5. Metric attribute data of macroflakes and macroflake fragments from the Coats-

Hines-Litchy site. 

 

Specimen Type 

Length  

(mm) 

Width  

(mm) 

Thickness  

(mm) 

Weight  

(g) W:L 

652 flake 16.5 17.1 5.8 1.31 1.04 

630 flake 10.4 13.2 2.5 0.30 1.27 

530 flake 15.0 18.1 3.4 0.67 1.21 

424 flake 11.7 13.5 2.5 0.40 1.15 

491-2 flake 18.0 23.7 10.5 2.96 1.32 

203 flake 11.8 10.0 5.2 0.49 0.85 

459 flake 10.5 13.7 2.9 0.32 1.30 

514 flake 12.2 7.4 2.8 0.24 0.61 

357 flake 9.6 13.0 4.7 0.38 1.35 

182 flake 13.6 12.5 2.0 0.31 0.92 

538 flake 11.8 10.2 2.1 0.28 0.86 

94-24-81 flake 24.3 27.4 5.9 4.51 1.13 

415 fragment 23.1 15.7 7.5 1.99 0.68 

510 fragment 11.5 12.7 4.7 0.63 1.10 

248 fragment 10.7 13.1 2.7 0.34 1.22 

94-24-150 fragment 15.9 10.7 4.0 0.68 0.67 

94-24-151 fragment 14.5 9.5 4.7 0.48 0.66 

Average  14.18 14.21 4.35 0.96 1.02 

Max.  24.30 27.40 10.50 4.51 1.35 

Min.  9.60 7.40 2.00 0.24 0.61 
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Table 6. Lithic attribute scores for macroflakes from the Coats-Hines-Litchy site (1 = attribute present, 0 = attribute absent). 

Specimen 

Number 

Faceted 

Platform 

Non-

Cortical 

Platform 

Bulb of 

Percussion 

Eraillure 

Scar 

3+ Dorsal 

Flake 

Scars 

Flake Scar 

Orientation 

Negative 

Dorsal 

Bulb 

Absence 

of Dorsal 

Cortex Total 

94-24-81 0 0 1 1 1 0 1 0 4 

FS#530 0 1 0 0 0 0 0 0 1 

FS#652 0 0 1 0 0 0 0 0 1 

FS#357 0 1 0 0 0 0 0 0 1 

FS#203 0 1 1 0 0 0 0 0 2 

FS#630 1 1 0 0 0 0 0 0 2 

FS#491-2 0 1 0 0 1 0 1 0 3 

FS#424 0 1 0 1 0 0 0 1 3 

FS#538 0 1 0 1 0 0 0 1 3 

FS#182 0 1 0 1 0 0 0 1 3 

FS#459 0 1 1 1 1 0 0 0 4 

FS#514 1 1 0 1 1 1 0 0 5 

Total 

Attribute 

Score (%) 

2 

(16.67%) 

10 

(83.33%) 4 (33.33%) 

6 

(50.00%) 

4 

(33.33%) 

1      

(8.33%) 

2 

(16.67%) 

3 

(25.00%) 
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There appears to be no discernable pattern to the distribution of flakes and flake 

fragments recovered from the site. The 2012 assemblage was dispersed vertically 

throughout geologic Units 2, and 3, which generally correspond to excavation levels 52-

61 (Figure 5). While the sample of flakes and flake fragments is exceptionally small and 

generally evenly distributed, the highest frequency (n = 7) of specimens occurs in levels 

57-59. 

Experimental studies have demonstrated that the composition and coarseness of 

the sediment matrix is directly associated with site formation processes related to 

fragmentation of lithic assemblages (Andrefsky 2013; Pevny 2012; Rasic 2004). A 

sample of 12 excavation units from the 2012 excavation was used to study the coarse 

sediment matrix in geologic Units 2 and 3. A total of 351.89 kg of angular limestone 

gravel was recovered from the 12 excavation units. The 12 excavation units contained a 

total of 346 pieces of chert weighing 4.78 kg. Of that, 81 pieces are unweathered angular 

debris that are classified as chert shatter. While the distribution of chert and gravel 

indicates higher energy transport of sediments, it also reflects important site formation 

issues related to sediment composition. 

Lithologically, all of the chert found in the sediment matrix is comparable to the 

immediately local geology surrounding CHL. All chert in the sediment matrix is either 

Fort Payne or Bigby-Cannon. Likewise, all of the specimens in both lithic assemblages 

are either Fort Payne or Bigby-Cannon. The bedrock formation at CHL is comprised of 

Bigby-Cannon Limestone Formation, which is a medium to coarse-grained limestone 

with cryptocrystalline chert nodules (Wilson and Miller 1963). The hills forming an 
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upland environment immediately surrounding the site consist of Fort Payne Limestone 

(Wilson and Miller 1963), which is well-known as a chert-rich formation (Amick 1987; 

Parish 2013). 

The lack of formal tools associated with the bonebed, absence of intentional 

modification to flakes, and no discernable occupation surface lead us to interpret the 

lithic assemblage contextually associated with the bonebed is naturally-produced. The 

few specimens that could be interpreted as culturally-produced flakes are inconsistent 

with flake distributions found at archaeological sites. All specimens exhibit 

exceptionally similar morphology. It appears that all specimens were produced through 

uniform force and hard-hammer percussion. This interpretation is further supported by 

the composition of the sediment matrix, geomorphic setting, and energy regime. The 

high-energy depositional environment containing an abundant chert gravel fraction led 

to the creation of an intriguing geofact assemblage in association with redeposited faunal 

remains. While unequivocal formal tools and lithic debitage were found in close 

proximity to the bonebed, an evaluation of excavation records and photographs indicates 

these materials were redeposited from surrounding archaeological sites.  

Patterns in Pre-LGM-age Sites 

Similar patterns are beginning to emerge at proposed pre-LGM-age sites 

throughout North America. Discerning culturally-produced artifacts from naturally 

fractured stone is straightforward when large, diverse lithic assemblages exist. However, 
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small assemblages of informal or unmodified flakes are problematic, such as at 

Burnham, Oklahoma (Wyckoff et al. 2003), the Wenas Creek Mammoth site, 

Washington (Lubinski et al. 2014), and Coats-Hines-Litchy. Fluvial settings where 

periodic high-energy pulses move significant amounts of chert-rich sediments are 

especially prone to redepositing cultural and natural materials of various ages. The 

Burnham site, Oklahoma, provides particularly relevant comparison to CHL. At 

Burnham the partial remains of extinct bison and other late Pleistocene animals were 

recovered in general association with lithic flakes and chert shatter from a ca. 35,000-

36,000 cal yr BP deposit. In addition to flakes and flake fragments, a crude bifacially 

flaked specimen and chert cobble were also recovered. However, a close inspection of 

flake scars along the unbroken margin of the biface “seem to suggest post-breakage 

damage and the possibility that some of the other flakes scars are fortuitous or natural, 

and that the fragment is not really a man-made biface at all” Buehler 2003:223). 

Likewise, the cobble does not exhibit unequivocal evidence of intentional flaking 

(Buehler 2003:225). 

Extensive research indicates that the majority of lithic material was recovered 

from pond sediments (Wyckoff and Carter 2003). However, as at CHL, there is a 

significant spike in gravel frequency that directly corresponds to the vertical distribution 

lithic flakes (Buehler 2003, Figure 16.59). While coarse-grain sediments and gravel 

clasts reflect high-energy events, they also provide abundant lithic materials that can 

naturally produce flakes. As such, geomorphic processes must be considered when 

interpreting the taphonomy of small lithic flake assemblages. 
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In addition to distribution, patterns in flake morphology are also evident in the 

CHL and Burnham assemblages (Figure 13). Of the 51 flakes and flake fragments at 

Burnham, 4 (8%) are macrodebitage, while 47 (92%) are microdebitage. All of the 

macro-flakes are either distal or medial fragments. Macrodebitage averages 15.26 mm in 

width and 14.66 mm in length, with a width:length ratio of 1.8. While the flakes at 

Burnham are predominately microdebitage, the overall assemblage size and morphology 

is exceptionally comparable to CHL. 

Figure 13. Comparison of macroflakes from the Coats-Hines-Litchy (Tennessee) and 

Burnham (Oklahoma) sites.  

Artifact-like geofact assemblages are also known from locations where 

cryptocrystalline materials and high-energy regimes coexist. Examples include chert 
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outcrops eroding along steep gradients (e.g., Topper, SC), or mass wasting colluvial 

deposits containing toolstone quality materials (e.g., Wenas Creek, WA). During high-

energy colluvial events in such environments, collisions between lithic materials can 

conceivably create natural flakes with artifact-like attributes.  

 

Discussion 

 

Context and site formation are critical factors when interpreting archaeological 

sites, especially Pleistocene-aged lithic assemblages (Andrefsky 2013; Waters 2004). 

Depositional factors influencing the creation of naturally-produced lithic assemblages 

have been documented at numerous Pleistocene-age sites (Gillespie et al. 2004; King 

2012; Lubinski et al. 2014; Waters et al. 2009; Wisniewski et al. 2014). Experiential 

studies of artifact taphonomy demonstrate the effects of sediment composition on lithic 

assemblages (e.g., Andrefsky 2013; Eren et al. 2011; Pevny 2012; Rasic 2004).  

Many of the earliest sites in the Americas are located on, or adjacent to, sources 

of chert-bearing deposits (Andrefsky 2013). As such, the ability of high-energy 

environments to naturally produce lithic assemblages, reminiscent of culturally-produced 

artifacts, should be carefully considered when interpreting archaeological sites. Because 

toolstone is typically chosen based on its ability to fracture predicatively, the same 

fracture patterns can occur by natural or cultural processes (Andrefsky 2013). 

Essentially, due to fracture mechanics, cryptocrystalline material will break in similar 

ways whether influenced by humans or by nature (Cotterell and Kamminga 1987). As 
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such, I must rely on overall patterns of assemblages to effectively interpret them as being 

naturally or culturally produced (Patterson 1983). This issue is paramount when 

addressing contentious pre-Clovis sites that hinge upon a relatively small lithic 

assemblage comprised of flakes and flake fragments. The lithic assemblages from CHL 

and Burnham exemplify this issue.  

Increased research into, and scrutiny of, late Pleistocene sites has driven both 

field research and theory alike. Part of the theoretical advancement of the field has come 

in the form of increased understanding of site formation processes (e.g., Schiffer 1983; 

Stein 2001). Geoarchaeology has been at the forefront of this advancement due in large 

part to the unique problems associated with late Pleistocene-age sites (Waters 1992, 

2004). This growing body of research has identified multiple geomorphic settings 

capable of producing sites with certain archeological characteristics, albeit lacking 

contextual integrity or culturally-produced artifact assemblages. When CHL is compared 

to other proposed pre-LGM-age sites, a pattern begins to emerge. Environments with 

sufficient geomorphological energy regimes and naturally occurring cryptocrystalline 

materials warrant extra caution when evaluating the archaeological integrity of sites.  

 

Conclusion 

 

To address outstanding questions regarding the association of lithic artifacts and 

extinct megafauna, as well as the context and age of the deposits, at the Coats-Hines-

Litchy site, I conducted a comprehensive, multidisciplinary investigation. Our evaluation 
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of the site is based on a large-scale excavation and analyses of new and existing data 

sets. A suite of 14 radiocarbon ages obtained on charcoal, demonstrate the late 

Pleistocene sediments containing the faunal and lithic assemblages are at least 22,000 

14
C yr BP (26,000 cal yr BP). 

The highly fragmentary and battered nature of the faunal assemblage, in addition 

to the geoarchaeological study of the sediments, indicate that the materials were 

redeposited in an erosional channel composed of course-grained colluvial and alluvial 

sediments. The sediment matrix containing the partial remains of numerous late 

Pleistocene fauna also contains substantial quantities of locally abundant cherts and 

limestone. The high-energy geomorphic environment, in conjunction with the natural 

sediment matrix, further fragmented the faunal remains, while also producing patterns of 

linear groves on the bones.  

Culturally and naturally-produced lithic materials were recovered from the CHL 

site. Culturally-produced lithic artifacts from nearby Holocene-aged archaeological sites 

were redeposited in an erosional channel where late Pleistocene faunal materials were 

exposed. The culturally-produced artifacts where subsequently recovered in close 

proximity to late Pleistocene faunal remains. Physical weathering resulting in rock 

fracture at the outcrop combined with high-energy colluvial and alluvial processes 

appear to have fractured naturally occurring chert resulting in flakes and angular shatter 

with artifact-like attributes. These geofacts where identified and excavated in direct 

association with the faunal materials. While these results may be unsettling for some, 
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this is an intellectually honest assessment of site formation and assemblage context at the 

CHL site. 

Other pre-LGM-age sites throughout North America have produced similar lithic 

assemblages (e.g., Burnham, OK, Wenas Mammoth Creek, WA, and Topper, SC). A 

comparison of the geomorphic environments of these sites based on published literature 

suggests a similar pattern of site formation processes. High-energy geomorphic settings 

are known to produce complex assemblages, often containing culturally and naturally-

produced lithic and faunal materials. These scenarios are exacerbated when 

cryptocrystalline material naturally occurs in abundance and constitutes significant 

portions of the sediment matrix. The implications associated with pre-LGM-age sites 

require a critical and cautious approach to be taken when interpreting assemblages, 

geochronology, and site context. 

Ultimately, individual archaeological sites do not exist in a vacuum. That is to 

say, as part of a larger structure of cultural systems, every site must inherently fit within 

known patterns of human occupation. Thus, pushing back the date of human arrival in 

the Western Hemisphere requires replicable evidence and a related framework of sites 

sharing technological and cultural similarities, not just a single site, or sporadic 

occurrence of unrelated sites.  
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CHAPTER III 

CHARACTERIZING CUMBERLAND FLUTED BIFACE MORPHOLOGY AND 

TECHNOLOGICAL ORGANIZATION 

 

Introduction 

 

Despite the importance of Cumberland fluted technology in the early human 

occupation of eastern North America, questions remain regarding its production, use, 

and timing. Cumberland technology is frequently referenced in discussions of 

Paleoindian chronologies (Anderson and Sassaman 2012; Anderson et al. 2010; 2015; 

Broster et al. 2013; Driskell et al. 2012; O’Brien et al. 2001, 2014) and potential YD 

human adaptations (Anderson et al. 2011; Meeks and Anderson 2012). Of all 

Paleoindian technologies in North America, however, Cumberland is one of the least 

understood. While there is an extensive body of literature devoted to understanding other 

fluted biface technologies (e.g., Amick 1999; Bradley et al. 2010; Gingerich 2013; 

Waters et al. 2011b), research related to Cumberland has been extremely limited. Nearly 

all previous studies of Cumberland technology were conducted on datasets of fewer than 

20 specimens. Thus, until there is a thorough understanding of what Cumberland is, 

discussions related to technological organization, chronological association with other 

biface types, and potential YD behavioral adaptations, remain speculative.  

Cumberland fluted bifaces represent the instrument-assisted fluted horizon in the 

North American Midsouth, and are assumed to be generally contemporaneous with the 
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beginning of the YD (Anderson 2004; Anderson and Sassaman 1996; Anderson et al. 

2010, 2015; Bradley et al. 2008; Broster et al. 2013; Ellis and Deller 1997; Fiedel 1999; 

Goodyear 1999; Meeks and Anderson 2012; Meltzer 2009; Tankersley 1990, 1996). 

While these bifaces are prevalent throughout the Midsouth, they have only been 

recovered from surface or disturbed contexts (Anderson et al. 2010; Anderson et al. 

2011; Goodyear 1999). Jolly’s (1972) study comparing Cumberland and Clovis fluted 

biface technology in the Middle Tennessee River Valley, though 30 years old, is still the 

most detailed discussion of the Cumberland biface production sequence. However, the 

small sample size (n = 14) provides limited support for his interpretation of Cumberland 

technology. Although Bell (1960) states the Cumberland toolkit consists of various 

unifacial tools, there are no known discrete Cumberland assemblages. 

The overall objective of this study is to identify, and offer potential explanations 

for, variability within Cumberland technology. The research presented here is the first to 

comprehensively address the question, “What is Cumberland?” from the perspective of 

technological organization, and incorporates previous studies of geographic distribution 

and chronology with new morphological and technological data. One way to link lithic 

artifacts to behavioral adaptations is to reconstruct how hunter-gatherers organized their 

lithic technologies (Binford 1979; Kuhn 1995; Shott 1986; Torrence 1983). Investigating 

how technologies were organized causes us to view technology as a set of behaviors 

related to human adaptation rather than a set of objects related to a production procedure 

(Nelson 1991). How bifaces were made, hafted, used, refurbished, and discarded offer 

valuable insight into how Cumberland technology was organized (Kuhn, 1995; Nelson, 



 53 

1991). The life histories, as it were, of Cumberland bifaces are used to support 

inferences about behavioral adaptations in the Midsouth during the late Pleistocene 

(Binford 1979; Nelson 1991).  

Geographic Distribution 

Unlike most other diagnostic point types, there is not a type-site for Cumberland 

fluted-bifaces. Rather, the genesis of Cumberland as a type is derived from the dense 

concentration of bifaces recovered along the Cumberland River in middle Tennessee 

during the early twentieth century. Lewis (1954) coined the name Cumberland to 

describe a large, thick lanceolate fluted-biface similar to Clovis found throughout the 

Cumberland River Valley. The core geographic distribution of Cumberland encompasses 

much of the area between the Tennessee and Ohio Rivers (Figure 14) (Anderson et al. 

2010; Justice 1987). The conflation of typological names may explain the identification 

of some Cumberland-like bifaces across a larger territory (see Bradley et al. 2010; 

Justice 1987; White 2006). Notably, the Midsouth is also characterized by an abundance 

of high-quality cherts (Amick 1987; Parish 2011, 2013). The Fort Payne and St. Louis 

formations range from northern Alabama to central Kentucky, and contain tabular and 

cobble forms of various chert varieties. 

Data available in PIDBA and state surveys suggest that people using Cumberland 

fluted bifaces had a predilection for major river valleys in the Midsouth, similar to 

Clovis (Anderson 2004; Anderson et al. 2010; Barker and Broster 1996; Breitburg and 
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Figure 14. Generalized core distribution of Cumberland fluted bifaces and sites 

discussed in text.  

Broster 1994; Broster and Norton 1996). Based on Clovis data, Miller (2011) suggests 

that rather than sampling or population biases, the distribution of fluted bifaces reflects a 

land-use strategy focused on the intersection of rivers, physiographic boundaries, and 

toolstone sources. It is reasonable to assume this pattern holds true for Cumberland as 

well. However, there is a conspicuous absence of Cumberland bifaces at most large 

quarry sites in the region, suggesting that a restructuring of technological organization 
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coincided with the development of Cumberland technology (Anderson et al. 2011). 

Precisely what that restructuring was, though, currently remains unknown.  

Though Cumberland bifaces are dispersed throughout most of the Midsouth, 

relatively high densities have been documented in specific areas that may represent 

aggregation or habitual-use locations. The Sandy Springs site, in southern Ohio, is near 

the northern extent of Cumberland distribution and is located in close proximity to a 

saline spring (Seeman et al. 1994; Tankersley 1994). At least 15 Cumberland bifaces 

have been documented from Sandy Springs, and may represent a regional aggregation 

location (Seeman and Prufer 1982; Seeman et al. 1994; Tankersley 1989). There is 

limited evidence for on-site biface reduction and a high percentage of finished bifaces 

made from non-local raw materials (Aagesen 2006; Seeman et al. 1994). 

 The Parris Collection and Heaven’s Half Acre represent important locations near 

the southern extent of Cumberland distribution. The Parris Collection primarily comes 

from multiple sites in Hardin County, in south-central Tennessee (Tune et al. 2015). 

Extensive research by avocational archaeologist Jim Parris identified a series of fluted 

biface sites concentrated on remnant levees of the Tennessee River. Heaven’s Half Acre 

represents a series of fluted biface sites near the Tennessee River in northern Alabama. 

Since the 1950s avocational archaeologists have recovered large numbers of 

Cumberland and other fluted biface forms from the margins of geomorphic depressions 

that may have been wet season ponds during the late Pleistocene (Futato 1996; King 

2007). The Parris Collection and Heaven’s Half Acre assemblage are characterized by 



 

 56 

impact damage and basal fragments made on locally available raw materials, and likely 

reflect discard behaviors and possibly toolkit maintenance activities. 

 

Chronological Considerations 

 

Buried and datable Paleoindian sites are notoriously rare in the Midsouth (e.g., 

Miller and Gingerich 2007). At this time Cumberland bifaces have been recovered from 

surface contexts and palimpsest components containing multiple biface types. This 

situation has prevented Cumberland from being directly dated. Technological 

similarities to other well-dated, and presumably coeval, biface forms in adjacent regions, 

and stratigraphic chronologies in the Midsouth support a post-Clovis chronology. Based 

on widely accepted technological chronology, the emergence of instrument-assisted 

fluted technologies post-date Clovis and generally corresponds to the beginning of the 

YD (Anderson et al. 2015; Anderson et al. 2010; Bradley et al. 2008; Ellis and Deller 

1997; Fiedel 1999; Goodyear 1999, 2010; Meltzer 2009; Tankersley 1990, 1996). 

Folsom fluted technology has been securely dated throughout the Plains and Southwest 

to 10,700-10,390 
14

C yr BP (12,680-12,260 cal yr BP) (Frison and Stanford 1982; Hill 

2001; Hill and Hofman 1997; Hofman 1995; Meltzer 2006), and corresponds well with 

the expected range of Cumberland in the Midsouth. 

Assuming Clovis immediately precedes instrument-assisted fluting in the 

Midsouth, as it does in other regions, then it is possible to establish a maximum age for 

Cumberland. Relying on charcoal-based radiocarbon ages, the age of Clovis in the 



 

 57 

greater Midsouth matches that of other regions and ranges from 10,980 ± 75 to 10,915 ± 

30 
14

C yr BP (12,860 ± 90 to 12,760 ± 30 cal yr BP) (Brose 1994; Goodyear 2013; 

McAvoy and McAvoy 1997; Waters et al. 2009). Therefore, Cumberland is assumed to 

occur after ca. 12,800 cal yr BP. 

Cumberland bifaces (as well as Quad, Beaver Lake, and Dalton) were recovered 

from the lowest cultural deposits of Dust Cave, northern Alabama (Driskell 1994, 1996; 

Sherwood et al. 2004). A heavily reworked Cumberland biface and a Cumberland-like 

distal biface fragment were recovered from the basal components (Driskell 1994, 1996; 

Hollenbach and Walker 2010; Sherwood et al. 2004). The precise stratigraphic sequence 

of the Paleoindian bifaces at Dust Cave is unclear, as multiple types co-occur within the 

same deposits. Dalton, however, generally occurs above other Paleoindian forms 

(Driskell et al. 2012; Sherwood et al. 2004), and thus, may provide a minimum age for 

Cumberland. Eight radiocarbon ages on dispersed charcoal in the lowest Quad/Beaver 

Lake/Dalton component (Zone U) range from 10,500 ± 60 to 10,310 ± 60 
14

C yr BP 

(12,430 ± 120 to 12,140 ± 140 cal yr BP) (Sherwood et al. 2004). As such, ca. 12,100 cal 

yr BP may represent the end of Cumberland. 

The Phil Stratton site, in Kentucky, has been presented as an intact Cumberland 

site dating older than 14,000 cal yr BP (Gramly 2008, 2009, 2012, 2013, 2015). 

However, reanalysis of the existing assemblage and new excavations have documented 

significant contextual problems with the assemblage and proposed dates (Tune and 

Melton 2013). Of the 42 identifiable bifaces, only six are Cumberland. The remaining 36 

are Archaic, Woodland, and Mississippian. Based on the diagnostic biface assemblage, 
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the Phil Stratton site does not represent a pure Cumberland site. Rather, the site appears 

to have been extensively re-occupied beginning in the late Pleistocene and continuing 

throughout the entire Holocene.  

In 2013 the site was excavated to study the stratigraphy and potentially recover 

additional artifacts (Figure 15). The 2013 excavation units were placed immediately  

 

 

Figure 15. Phil Stratton site excavation blocks and distribution of identifiable bifaces. 

Adapted from Gramly 2013. 

 

adjacent to the previous excavation blocks to correlate the geologic profiles and evaluate 

previous interpretations of the site. Two units were specifically placed adjacent to a 

“witness section that was set aside for future investigators” (Gramly 2013:143). The 
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2013 excavation documented shallow, deflated deposits that are extensively disturbed by 

tree roots, bioturbation, and agricultural processes. 

Two geologic units were recorded in 2013 at the southern-most edge of the site 

where deposition is greatest (Figure 16). The upper Unit 2 (0-25 cm) is a brown (10YR 

Figure 16. Generalized profile of the Phil Stratton site with the relative depths of OSL 

ages reported by Gramly (2013) correlated with the stratigraphic profile documented in 

the 2013 excavation. 
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4/4) silty clay loam with subangular blocky structure, few small roots, abundant iron 

manganese accumulations, and an abrupt wavy boundary. Unit 2 is composed of eolian 

sediments redepositeded from the erosion of the upper hill slope. The lower Unit 1 (25+ 

cm) is an oxidized brown clay loam (7.5YR 4/6) with few iron manganese 

accumulations, common bioturbation features, and an abrupt (erosional), wavy 

boundary. Unit 1 represents a clay residuum formed from the weathering of the 

limestone bedrock and is commonly exposed throughout the surrounding area due to 

erosion by intensive agricultural practices. In some areas of the site Unit 2 is covered by 

up to 25 cm of recently redeposited fill consisting of a mixture of both Units 1 and 2. 

Artifacts are deposited throughout Unit 2, and occasionally intrude into Unit 1 through 

root molds and animal burrows. Artifacts are also present in the redeposited overburden. 

Gramly (2012) contends the Cumberland occupation at the Phil Stratton site 

predates 14,000 cal yr BP based on a series of optically stimulated luminescence (OSL) 

dates. A critical review of the published literature, however, clearly indicates that such 

early dates do not correlate with the artifact-bearing deposits (Figure 16). As such, a 

calibration curve was constructed to correlate the OSL ages with the artifact-bearing 

deposit (Gramly 2013, 2015). The OSL calibration curve is based on two unsupported 

assumptions. First, the modern ground surface at the Phil Stratton site is assumed to be 

equivalent in age to the end of Peoria Loess deposition, or 12,800 cal yr BP (Gramly 

2013, 2015). The end of Peoria Loess deposition has been well-studied throughout the 

Central Plains and Midwest and is dated to 16,000-12,000 cal yr BP (Bettis et al. 2003; 

Johnson and Willey 2000; May and Holen 2003; Muhs et al. 1999, 2001, 2008). Second, 
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such a calibration also assumes a constant rate of deposition has occurred without any 

erosional episodes. However, the Phil Stratton site is located on a highly eroded 

landform that has been subjected to intense agricultural plowing since the early 

nineteenth century (Phil Stratton personal communication). Moreover, a major 

unconformity representing another episode of erosion is clearly visible at the contact of 

geologic Units 1 and 2. Thus, the variable rate of deposition and erosion, as well as the 

unsupported age of the ground surface refute any interpretations drawn from the OSL 

calibration curve for the Phil Stratton site. 

Furthermore, the OSL ages likely represent pedogenesis rather than the timing of 

deposition because pedogenic processes mix grains of various ages (Bateman et al. 

2007a, 2007b). Pedogenesis is known to compromise the results of OSL dating, 

specifically in upland geomorphic settings with thick, weathered argillic horizons (Ahr 

et al. 2013), such as at Phil Stratton. Ahr and colleagues studied the effects of 

pedogenesis in sandy sediments of upland sites in Texas and found that “pedogenic 

mixing of particles of various apparent ages, and… changes in environmental dose rate 

due to weathering” skewed the ages of those samples (Ahr et al. 2013:221). As a result, 

the OSL ages represent “apparent age estimates rather than true depositional ages” (Ahr 

et al. 2013:14). Because Phil Stratton is in a similar geomorphic setting, and similar 

pedogenic processes have affected the sediments, the OSL ages there also likely reflect 

pedogenesis rather than deposition. Thus, at this time the OSL ages from Phil Stratton do 

not provide an accurate age of Cumberland occupation. 
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Datasets and Methods 

To identify and interpret variability in Cumberland technology, over 900 

Cumberland fluted bifaces were examined. While it is very likely that fluted and 

unfluted Cumberland bifaces were part of the same technological system, the lack of 

context and typological similarities to other late Pleistocene biface forms (e.g., Beaver 

Lake), preclude the analysis of unfluted specimens in this study. In time fluted and 

unfluted Cumberland bifaces may be recognized as part of the same technological 

system that also includes Beaver Lake, similar to Folsom and Midland bifaces (Amick 

1995; Hofman 1992; Jennings 2012; Meltzer 2006). Primary data collected from 

collections throughout the Tennessee and Ohio River Watersheds, as well as 

corresponding data from PIDBA, were analyzed to study quantitative and qualitative 

attributes of Cumberland biface morphology (Table 7). In turn, this was used to study 

technological elements related to artifact life histories. Assessing biface production, use, 

reuse, and discard, facilitates interpretations of technological organization and may help 

explain variability (Andrefsky 2010). Finally, inferences about settlement strategies were 

made based on the organization of technological elements. 

While intact and dateable late Pleistocene archaeological sites are rare in the 

Midsouth, exceptional fluted biface survey data has been compiled (Anderson 2004; 

Anderson et al. 2010; Goodyear 1999; Miller and Gingerich 2013). Potential biases and 

limitations are known for PIDBA datasets and include incomplete data, sample 

inconsistency, site formation processes, ground cover (see Anderson et al. 2010 and 
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Table 7. Cumberland collections included in analyses. 

Collection 

Number of 

Specimens Curation Location 

Collection 

Provenience 

Discovery Park of America 9 Union City, Tennessee Tennessee 

Guerri Collection 15 Terre Haute, Indiana 

Tennessee, Alabama, 

Kentucky, Ohio 

King Collection 88 Cullman, Alabama Alabama 

Parris Collection 39 Savannah, Tennessee Tennessee 

Indian Mound Museum 12 Florence, Alabama Alabama 

Tennessee Division of 

Archaeology 13 Pinson, Tennessee Tennessee 

Smithsonian National 

Museum of Natural History 21 Washington DC 

Tennessee, Alabama, 

Kentucky 

Stratton Collection 9 Adairville, Kentucky Kentucky 

Tennessee State Museum 9 Nashville, Tennessee Tennessee 

PIDBA, Tennessee 314 Tennessee 

PIDBA, Alabama 377 Alabama 

Prasciunas 2011 for a detailed discussion of biases). Given these limitations, PIDBA 

datasets are still widely accepted to model human behaviors (Anderson and Gillam 

2000; Anderson et al. 2011; Lanata et al. 2008; Meeks and Anderson 2012; Miller 2011; 

Shott 2013; Smallwood 2012; Smallwood et al. 2015). 

Methods for Characterizing Morphology 

Assessing biface morphology is a productive way to identify and document the 

range of variability within biface technologies. The morphological study presented here 

is based on primarily analysis of 216 finished Cumberland fluted bifaces (Table 8). An 

additional 695 finished Cumberland bifaces documented in PIDBA for the study area 
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were also studied. All maximum measurements and morphological ratios used in this 

study are documented only on complete specimens. Basal width, waist width, depth of 

basal concavity, and depth of basal concavity-to-basal width are documented from basal 

fragments and complete specimens. 

Table 8. Cumberland bifaces included in analyses. 

PIDBA 

Condition Primary Tennessee Alabama Total 

Complete 85 206 104 395 

Base 76 59 155 290 

Midsection/Distal 27 28 108 163 

Miscellaneous Fragments 0 16 6 22 

Preforms 28 5 4 37 

Total 216 314 377 907 

I characterize Cumberland biface morphology using a standard set of metric 

variables and morphological ratios (Eren et al. 2011; Jennings 2013; Morrow and 

Morrow 1999; Smallwood 2012; Thulman 2006). For each finished biface, I recorded 

the maximum length, maximum width, maximum thickness, basal width, waist width, 

face-angle, and flute length and width (when possible), inner flute thickness, depth of 

basal concavity, weight, presence/absence edge grinding, and blank form (when 

possible). I calculated morphological ratios such as length-to-width, width-to-thickness, 

depth of basal concavity-to-basal width, and lateral indentation index (LII) for each 

biface. Presumably the most standardized attributes reflect the elements most critical to 

the overall technological system. As such, I calculated a coefficient of variation (CV) for 

all attributes as a way to measure relative standardization (Eerkens and Bettinger 2001). 
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Coefficient of variation provides a statistical technique to assess standardization between 

samples by comparing standard deviation to the mean (Eerkens and Bettinger 2001). The 

smaller a CV value is, the more standardized a sample is. 

Methods for Studying Technological Organization 

To understand how Cumberland bifaces were made, used, reworked, and 

discarded I recorded flaking pattern, basal grinding, thermal alteration, fluting elements, 

and post-fluting reduction, as well as patterns in fracture types, reworking, and 

abandonment. These attributes reflect elements of provisioning strategies as they are 

related to organization (Pitblado 2003). I analyze 28 previously undocumented preforms, 

in addition to studying nine documented in PIDBA, and 15 described in previous studies 

(Boldurian and McKeel 2011; Cambron and Hulse 1961; Jolly 1972). 

While patterns in the nature and frequency of fracture types potentially reflect 

functional behaviors, patterns of reworking and repair also reflect provisioning 

strategies; thus, I documented type and frequency of reworking. I calculated 

technological ratios such as average grinding length-to-maximum length and average 

flute length-to-maximum length for complete bifaces. I documented the apparent reason 

for abandonment to understand why and when Cumberland bifaces were deemed no 

longer useful. 
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Methods for Interpreting Settlement Strategies 

 

While the interpretation of Cumberland settlement strategies presented here is 

framed in terms of provisioning strategies – provisioning places versus provisioning 

individuals – it is important to acknowledge that this is not a binary dichotomy, but 

rather represents a continual range of variation (Kuhn 1990). Furthermore, it should be 

noted that provisioning strategies are not static, but are flexible enough to be altered to 

meet seasonal or fluctuating demographic needs (Binford 1980). This is particularly 

relevant when one considers the evidence that late Pleistocene populations in the 

Southeast were regularly aggregating in macroband-level groups (Smallwood 2012).  

Residentially organized strategies are marked by frequent moves between short-

term residential camps with continual transport of tools in environments where resource 

distribution is unknown or unpredictable (Kuhn 1992). To ensure tools are available 

when they are needed, technology is structured around the concept of provisioning 

individuals with “personal gear” (Binford 1979). As such, bifaces are expected to be 

used to the point of exhaustion and exhibit extensive rejuventation when they are 

discarded (Table 9). In addition to a high ratio of complete to broken bifaces, Pitblado 

(2003) suggests informal (less standardized) hafting elements and a low incidence of 

basal grinding reflects residential organization. Conversely, a logistically organized 

strategy is structured around the provisioning of specific places on the landscape. 

Environments where resource distribution is known or predictable and future needs can 

be expected favors a logistical organization strategy (Kuhn 1992). As bifacial tools 
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become dull or break, they are replaced rather than reworked resulting in a relatively low 

complete to broken biface ratio (Pitblado 2003). Additionally, bifaces are expected to 

have highly standardized hafting elements. 

 

Table 9. Expected characteristics of provisioning strategies. 

 
Provisioning 

Individuals  

Provisioning 

Place 

Mobility Residentially Logistically 

Hafting Variable Standardized 

Intensity of use Intensive Non-intensive 

Rejuvenation High Low 

Reason for discard Exhausted Broken 

Complete:Broken High Low 

 

 

Characterizing Cumberland 

 

Cumberland Biface Morphology 

 

The least variable attributes of Cumberland biface morphology are maximum 

width (23.83 mm), basal width (20.95 mm), and inter flute thickness (5.43 mm) with 

CVs less than 20 percent (%) (Table 10). Maximum thickness (7.58 mm), and waist 

width (19.85 mm) are the next most standardized attributes, with CVs less than 25%. 

The average maximum length is 75.07 mm, with a CV of 33%. The average basal 

concavity depth is 3.17 mm with a CV of 51%, while the ratio of basal concavity depth-
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to-basal width has a CV of 67%.  Cumberland bifaces exhibit standardized basal 

elements and greater variation in length. 

Table 10. Morphological characteristics of Cumberland bifaces. 

Average Maximum Minimum CV 

Maximum Width 23.83 52.17 10.00 0.17 

Basal Width 20.95 35.61 10.00 0.18 

Maximum Length 75.07 167.88 24.91 0.33 

Waist Width 20.78 40.50 13.97 0.22 

Waist Width:Basal Width 0.85 1.23 0.00 0.24 

Waist Width:Maximum Width 0.74 1.14 0.00 0.31 

Length:Width 3.14 6.02 1.12 0.26 

Depth of Basal Concavity 3.17 11.02 0.00 0.51 

Depth of Basal Concavity:Basal 

Width 0.15 1.33 0.00 0.67 

Maximum Thickness 7.58 19.00 2.82 0.21 

Width:Thickness 3.23 7.40 1.16 0.22 

Lateral Indentation Index 0.07 0.10 0.02 0.26 

Inter Flute Thickness 5.43 8.16 3.45 0.18 

Face-angle 92.60 101.35 82.05 0.04 

Based on morphological ratios, Cumberland bifaces are over three times longer 

than it is wide; likewise, width-to-thickness is approximately 3.25:1. Waist width-to-

basal width and the lateral indentation index (LII) both have a CV less that 30%. Waist 

width-to-maximum width has a CV of 31%. These morphological ratios reflect the 

characteristically “waisted” shape of Cumberland bifaces, and reflect standardization in 

hafting methods. 

Face-angle was recorded for 80 complete and finished specimens. Face-angle 

quantifies the expansion of the lateral edges of bifaces by measuring the angle of the 

lateral edges to the base (Roosa and Ellis 2000). Essentially this measurement quantifies 
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the relationship between basal and maximum width. Therefore, laterally reworked 

bifaces should be more variable, while distally reworked bifaces should be more 

standardized. The average face-angle of Cumberland bifaces is 92.60 degree, and is the 

least variable attribute with a CV of only four percent. As such, Cumberland appears to 

be primarily reworked from the distal tip. 

Cumberland Biface Technology 

Technological-related attributes in the study are focused on basal treatment and 

flaking techniques. Cumberland bifaces, on average, are ground to 25.47 mm from the 

base, or 35% of the total length (Table 11). The average flute length is 46.32 mm, or 

60% of the total length. The average flute width is 11.49 mm. Average flute length, 

however, is considerably variable (CV = 45%), while flute widths are more standardized 

(CV = 29%). The variation documented in flute dimensions further suggests that 

Cumberland bifaces were distally reworked, with only minor modification to the lateral 

edges after completion. Basal beveling does not appear to be a significant attribute of 

Cumberland bifaces – 49% exhibit basal beveling, while 51% are not beveled. 

Collateral flaking is the dominant flaking pattern (81%) documented on 

complete, finished specimens. This is an important aspect of Cumberland technology 

due to the creation of a midline ridge typically running the length of the biface. 

Interestingly, five percent of Cumberlands studied exhibit occasionally overface flaking 

similar to Clovis bifaces. These overface flake scars are likely remnants of random 
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Table 11. Technological characteristics of Cumberland bifaces. 

Average Maximum Minimum CV 

Average Grind Length 25.47 69.85 0.00 0.44 

Average Grind Length: 

Maximum Length 0.35 0.80 0.00 0.39 

Average Flute Length 46.32 118.61 7.00 0.45 

Average Flute Length: 

Maximum Length 0.60 1.00 0.00 0.41 

Average Flute Width 11.49 27.58 4.00 0.29 

percussion flaking during initial bifacial reduction. Overface flaking does not appear to 

be an intentional reduction method for the production of Cumberland bifaces. 

Thermal alteration, identified by the presence of potlid fractures, occurs in low 

frequency (11%) and was likely not related to the production process. Only 22 

specimens exhibited signs of thermal alteration, including two preforms. Only broken 

fragments exhibit any evidence of being thermally altered. This suggests that heating 

occurred after they were discarded. Furthermore, many of the pot lid fractures are 

located along the margins of transverse breaks. Other specimens, such as one of the 

bifaces from the Phil Stratton site, explosively fractured into multiple fragments that 

have been refitted. Such fracture patterns further indicate the biface was exposed to high 

temperatures after discard. 
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Cumberland Biface Reduction Sequence 

Of the complete Cumberland bifaces available for analysis, 93% (n = 79) 

exhibited a biconvex transverse cross section. The remaining seven percent (n = 6) were 

plano-convex in cross section. This pattern appears to be related to initial blank form 

used for the production of bifaces. The overwhelming majority (89%; n = 76) of 

complete bifaces were made from bifacial blanks. Just 11% (n = 9) of the complete 

bifaces, including all plano-convex specimens, were made on flakes. Bifaces made on 

flake blanks were identified based on the remnants of the original ventral face of the 

flake or pronounced longitudinal curvature. Ninety-eight percent of Cumberland bifaces 

were made on either Fort Payne or St. Louis cherts. Cumberland preforms were 

identified by the presence of fully-fluted basal fragments, and differentiated from Clovis 

based on the presence of collateral flaking and a midline ridge (Cambron and Hulse 

1961; Jolly 1972).  

Preforms were initially shaped into a rowboat form with convex lateral edges and 

a straight to convex base. Initial reduction and shaping was completed with large, 

random precussion flake removals (Figure 17a, b). The convex lateral edges typically 

exhibit little or no waisting. Early in the reduction sequence flaking may extend across 

the midline, similar to Clovis overface flaking (Figure 17b); however, this is rarely 

present on finished Cumberland bifaces. Once the general shape is obtained, one face is 

selected for fluting. Typically, each face was individually prepared for fluting (Jolly 

1972). This likely represents a risk management strategy to minimize time and energy in 
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Figure 17. Examples of Cumberland preforms and a finished biface. A, Smithsonian 

National Museum of Natural History, Tennessee; B, Pinson State Archaeological Park 

(TDOA), Tennessee; and C, Parris Collection, Hardin County, Tennessee.   
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case the first fluting attempt catastrophically broke the preform. This was also 

recognized by Jolly (1972), and is exemplified in the example illustrated by Boldurian 

and McKeel (2011:110, Figure 4). Systematic collateral pressure flakes were removed to 

create a distinct midline ridge. The ridge serves to guide the removal of the channel flake 

and ensure that it travels the desired distance. Other researchers have noted the 

importance of the midline ridge and suggest that it is the most distinguishing feature of 

Cumberland preforms (Cambon and Hulse 1961; Jolly 1972). Immediately prior to 

fluting, the base is beveled and a prominent striking platform is created. Similar to 

Folsom (Sellet 2004), the distal ends of some Cumberland preforms are blunted 

suggesting the use of an anvil or brace during fluting. If the removal of the first flute is 

successful, then the second face is prepared for fluting following the same process. It 

should be noted that on roughly 20% of bifaces examined only one face is fluted. Once 

the channel flakes have been successfully removed, another episode of lateral pressure 

flaking is done to shape the final form (Figure 17c). During this final step the distinctive 

waisted shape is created through intensive lateral pressure flaking. 

The sample of preforms available for study is inherently fragmented because 

only broken preforms would have typically been discard prior to completion. The sample 

of 52 preforms analyzed consists of 41 basal fragments, 9 nearly complete specimens, 1 

midsection, and 1 distal tip fragment. The most common reason for abandonment was 

catastrophic breaks caused by plunging channel flakes. Because the preforms were 

discarded at various points in the reduction sequence, most measurements exhibit a high 

rate of variation. However, certain morphological characteristics may be distinguishing 
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features of Cumberland preforms (Table 12). The ratio of basal width-to-maximum 

width is 3:4 with a relatively low CV of 19%. 

Table 12. Morphological characteristics of Cumberland preforms. 

Average Maximum Minimum CV 

Maximum Width 35.15 57.29 26.29 0.21 

Basal Width 25.85 35.61 17.59 0.18 

Waist Width 28.10 37.60 20.28 0.22 

Maximum Thickness 8.14 11.14 4.89 0.18 

Waist Width:Basal Width 0.83 0.99 0.64 0.13 

Depth of Basal Concavity 2.71 6.47 0.60 0.73 

Depth of Basal 

Concavity:Basal Width 0.09 0.18 0.03 0.61 

Inter Flute Thickness 5.09 6.91 3.79 0.21 

Average Flute Width 17.92 28.82 11.97 0.26 
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Of the complete, finished Cumberland bifaces analyzed, 28% exhibited some 

type of rejuvenation (Figure 18). This does not include bifaces reworked into other tool 

types or temporally later biface types. Of reworked specimens, 18% retained evidence of 

impact damage near the distal tip, suggesting that Cumberland bifaces were frequently 

rejuvenated back into piercing tools (Figure 18a). Rejuvenation is not just restricted to 

the tip and lateral margins, but occasionally occurs through rebasing broken bifaces. 

Rebased specimens lack the characteristic waisting and flaring ears, and have a 7% 

thicker inter flute thickness at the base than non-rebased specimens (Figure 18c). 

Patterns in Cumberland Breakage and Rejuvenation 

Just over half (54%) of all finished Cumberland bifaces analyzed are fractured in 

some way. The majority of these (n = 290, 61%) are basal fragments, while distal tips, 

midsections, and miscellaneous fragments account for the remaining 39%. On specimens 

where data were available, 25% of bifaces were missing at least one ear – excluding 

specimens with recent damage. Thirteen percent exhibit impact damage to the tip based 

on the presence of “reverse flute scars,” burination to the distal lateral edge, or crushing. 

The majority (70%) of Cumberland basal fragments were transversely broken. Heating 

accounts for almost 10% of the fractures. 
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Figure 18. Cumberland bifaces in various stages of rejuvenation. A, Trinity site, Lewis 

County, Kentucky; B, Smithsonian National Museum of Natural History, Alabama; C, 

King Collection, Colbert County, Alabama; D, Parris Collection, Hardin County, 

Tennessee. 
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Cumberland Technological Organization and Behavioral Inferences 

The Cumberland Technological System 

The two attributes most directly related to hafting are fluting and lateral grinding. 

Surprisingly, flute length (CV = 45%) and the lateral grinding length (CV = 45%) are 

two of the most variable attributes of Cumberland bifaces. Thus, the length of flutes and 

grinding initially do not appear be significant. However, if the technological ratios of 

flute length-to-maximum length and length of grinding-to-maximum length are 

considered, then these two attributes become more informative. The proportions of these 

measures are more standardized than the specific lengths of individual attributes. 

Furthermore, the technological ratios of flute length-to-maximum length and lateral 

grinding length-to-maximum length remain constant even after rejuvenation. 

Morphological ratios such as maximum length-to-width change significantly after 

bifaces are refurbished. Thus, it appears that technological ratios are informative and 

may reflect aspects of hafting and artifact use-lives. Cumberland bifaces have a 

relatively small width-to-thickness ratio compared to other late Pleistocene fluted bifaces 

(Bever and Meltzer 2007; Smallwood 2012), resulting in a more robust morphology. 

The majority of complete Cumberland bifaces (80%) are over 55 mm long, while the 

majority of Cumberland basal fragments (82%) are less than 60 mm long. As such, it 

appears that the minimum threshold related to discard is 55-60 mm. Bifaces above that 
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range are expected to be resharpened if possible, while below that length they are 

expected to be discarded (Figure 19). Catastrophic transverse fractures typically occur 

Figure 19. Frequencies in the lengths of complete Cumberland bifaces and basal 

fragments.  

below 55 mm (80%). Based on technological ratios and assuming that lateral grinding 

reflects hafting, there is only a slight correlation between hafting and maximum length (r 

= 0.54, r
2
 = 0.30), suggesting that longer bifaces did not necessarily have longer hafts.

Using the ratio of grinding length-to-maximum length is one way to infer the functional 

blade length. The typical Cumberland biface was hafted 35% of its total length, with the 

remaining 65% serving as the functional blade. If the threshold for complete 

Cumberland biface length is 55-60 mm, then the minimum functional blade length was 
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37.75-39.00 mm. Once this threshold was reached either because of breakage or 

exhaustion, the biface was likely replaced. 

Biface Morphology 

Based on CVs for maximum measurements and morphological ratios, the most 

standardized attributes of Cumberland bifaces are related to the basal element. This is 

not unexpected given that the haft element is subject to morphological constraints 

imposed by specific hafting techniques (Keeley 1982; White 2013). While lateral and 

distal resharpening of the blade element changes the overall morphology, the hafted 

basal element is less frequently modified (Bever and Meltzer 2007; Meltzer and Bever 

1995). 

In spite of overall basal morphology being generally standardized, basal 

concavity is highly variable. This pattern of variability in basal concavity may be related 

to several factors including being tailored to individual foreshafts, stylistic elements of 

haft construction, and rebasing of broken bifaces (Ellis 2004; Smallwood 2012; Taylor-

Montoya 2007; White 2013). Daniel and Goodyear (2006; Goodyear 2006) suggest that 

increased basal concavity is related to a technological shift marking the cultural 

transition from the early to middle Paleoindian periods. While this pattern may hold true 

in the Clovis-to-Redstone transition in the Coastal Plain, it does not appear to be the case 

with Clovis-to-Cumberland in the Midsouth. Based on Smallwood’s (2012) 



 

 80 

comprehensive study of regional Clovis morphology, Cumberland bifaces have slightly 

less basal concavity than Clovis bifaces. 

 

Breakage Patterns and Rejuvenation 

 

Whereas other fluted biface types were resharpened along the lateral margins 

resulting in variation in width measurements (Shott and Ballenger 2007), Cumberland 

bifaces appear to have been primarily resharpened from the distal tip. Distal 

resharpening is reflected in the standardization of face-angle and width dimensions, and 

the variability in length dimensions. While biface morphology may be influenced by 

factors related to raw material, this does not appear to be the case in the Midsouth. The 

ubiquity of toolstone throughout much of the Midsouth (Amick 1987; Parish 2011, 

2013), nullifies potentially limiting factors caused by availability, quality, or general 

package size of local toolstone (Kuhn 1995).  

 Patterns of rejuvenation documented in Cumberland bifaces indicate that they 

were designed to be maintainable tools. The relatively constant widths of the bifaces, as 

well as the flutes, indicate that minimal resharpening occurred along the lateral margins 

after the biface was completed. The standardization of basal elements suggests that 

rejuvenating broken or dulled bifaces typically occurred with the biface in the haft. This 

suggests that, unlike other Paleoindian biface types (Andrefsky 2006; Collins 1993; 

Shott and Ballenger 2007; Yerkes and Gaertner 1997; see also Kelly 1988), Cumberland 
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bifaces were not multifunctional tools used for piercing and cutting, but rather were 

designed almost exclusively for piercing. 

The Organization of Technology and Settlement Organization 

The ubiquity of toolstone in the Midsouth neutralizes potential effects of resource 

availability, so that patterns in biface technologies reflect organization strategies rather 

than differential access to raw materials (Kuhn 1995). The patterns evident in overall 

biface morphology, hafting, breakage, rejuvenation, and discard, reflect a logistically 

mobile settlement strategy based around the provisioning of places. As such, 

Cumberland bifaces were likely specialized piercing tools used by task groups on 

hunting forays. Similar to Folsom, Cumberland groups likely made and maintained 

bifaces as part of a gearing-up strategy during periods of downtime (Sellet 2004, 2013). 

The low ratio of complete to broken Cumberland bifaces indicates that transverse breaks 

were catastrophic. However, making minor repairs to impact damaged bifaces could 

extend use-life. It is likely, however, that this is only part of a larger, more complex, 

landuse strategy that incorporated flexible provisioning strategies related to seasonal 

resource structure and demographic fluctuations associated with aggregation events. 
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Conclusion 

Cumberland biface technology is prevalent throughout the Midsouth, specifically 

the Highland Rim of northern Alabama, central Tennessee, and southern Kentucky. 

Unlike other late Pleistocene technologies, Cumberland bifaces have never been 

recovered from intact, single component contexts with datable materials. The co-

occurrence of Cumberland and other Paleoindian biface types in the same layer at sites 

such as Dust Cave is enigmatic. Additional sites with intact stratigraphy must be 

excavated to understand the intricacies of Paleoindian chronology in the Midsouth 

United States. Currently, there is a lack of tools and debitage, subsistence data, and 

radiometrically supported chronologies associated with Cumberland technology. 

While Cumberland data is primarily limited to bifaces lacking context, analyses 

of over 900 bifaces indicate that Cumberland technology was designed to be a 

maintainable technological system used by people provisioning specific places on the 

landscape. The ubiquity of lithic raw materials and largely predictable distributions of 

resources allowed people using Cumberland technology to logistically map onto the 

woodland landscape of the Midsouth. Based on bracketing radiocarbon ages and 

technological similarities to other, well-dated biface technologies, Cumberland appears 

to be a Middle Paleoindian manifestation contemporary to the beginning of the YD (ca. 

12,800-12,100 cal yr BP). However, more research is needed to definitively prove this 

assertion. The hypotheses presented here should be further tested with additional 
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technological studies of Cumberland sites with preservation of more complete toolkits 

and debitage. 
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CHAPTER IV 

THE CLOVIS-CUMBERLAND-DALTON SUCCESSION: EVOLUTION OF 

TECHNOLOGICAL ORGANIZATION, LANDSCAPE USE, AND TOOLSTONE 

SELECTION DURING THE PLEISTOCENE TO HOLOCENE TRANSITION 

Introduction 

The relationships between YD-driven paleoecological changes and changes in 

human adaptations during the Pleistocene to Holocene transition have recently received 

much debate (Anderson et al. 2011; Ellis et al. 2011; Eren 2012; Holliday and Meltzer 

2010; Meeks and Anderson 2011; Meltzer and Holliday 2010; Smallwood et al. 2015; 

Straus and Goebel 2011). While much of North America experienced the reversal of a 

general warming trend and return to tundra-like conditions, regional paleoenvironmental 

data show substantial variation in local conditions (Ellis et al. 1998; Eren 2012; Goebel 

et al. 2011; Meltzer and Holliday 2010). Anderson and colleagues (2011; Meeks and 

Anderson) suggest that the onset of the YD caused a significant decline or reorganization 

to population structure throughout the Southeast. Their hypothesis is based on a 

reduction in the frequency of hafted bifaces, modifications to lithic procurement 

strategies, and analysis of radiocarbon-dated archaeological sites. 

Other researchers, however, contend that the YD may have gone unnoticed by 

human populations in the region (Eren 2012; Holliday and Meltzer 2010; Meltzer and 

Holliday 2010; Straus and Goebel 2011). Rather, factors such as sampling biases, 
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typological errors, and a radiocarbon plateau at the onset of the YD may influence 

interpretations of perceived human responses (Eren 2012; Holliday and Meltzer 2010; 

Meltzer and Holliday 2010; Straus and Goebel 2011). Holliday and Meltzer (2010) 

question the interpretation that transitions in fluted biface forms were triggered by major 

environmental changes. If significant modifications were made to late Pleistocene 

population structures, then changes should also be reflected in the organization of 

technologies (Bird and O’Connell 2006) and landuse strategies (e.g., Ellis 2004, 2011).  

This study investigates the evolution of technological organization, landscape 

use, and toolstone selection to assess the potential effects of the YD on human 

behavioral adaptations in the Midsouth during the Pleistocene to Holocene transition. 

Midsouth is used here in reference to the interior Southeast and generally corresponds to 

the Tennessee River Watershed. I use Tennessee Paleoindian biface data compiled in the 

PIDBA to test for changes in behavioral adaptations and consider these changes in 

relation to the regional paleoecological record.  

 

Younger Dryas and Demographic Reorganization in the Midsouth 

 

Regardless of the cause, the YD is widely accepted to have taken place from 

approximately 12,900 to 11,600 cal BP (Broecker et al. 2010; Eren 2012; Fiedel 2011; 

Straus and Goebel 2011). The onset of the YD stands as one of the most dramatic 

climatic events experienced by modern humans (Meeks and Anderson 2012; Lothrop et 

al. 2011). However, the extent to which the YD affected human behavior is unclear. 
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Undoubtedly, modifications to behavioral strategies were directly related to the local 

severity of the YD, with some areas actually becoming more conducive to human 

habitation (Holliday and Meltzer 2010; Meeks and Anderson 2012; Meltzer and 

Holliday 2010; Shuman et al. 2002).  

Anderson and colleagues (2011) have proposed a model of ecologically-driven 

demographic response to the YD in the Midsouth. Citing a correlation between a 

reduction in the frequency of bifaces, changes in lithic procurement strategies, a 

reduction in the number of radiocarbon ages, and the onset of the YD, they contend that 

ecological changes negatively affected late Pleistocene foragers. However, it is unclear if 

ecological changes related to the YD would have been noticed by terminal Pleistocene 

foragers living in the Midsouth (Eren 2012; Holliday and Meltzer 2010; Meltzer and 

Holliday 2010; Straus and Goebel 2011). 

Alternatively, the Clovis-Cumberland-Dalton succession may represent the 

settling-in of local populations as they became increasingly familiar with resource 

distributions. Curran (1999) describes initial human migrations and occupations as a 

continuum with phases of exploration, colonization, and settling-in. These phases 

correlate well with the premise of the staging-area model –  “mobility patterns were 

shifting rapidly from exploring… to more or less predictable patterns of movement or 

range mobility with specific habitual-use areas” (Anderson 1995:5). Early populations 

were relatively low, thus population pressures were likely not causal factors of early 

settlement strategies. Rather, managing resource returns, culturally defined group sizes, 

intergroup contacts (for the exchange of information and maintenance of mating 
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networks), and mobility patterns would have motivated decisions related to settlement 

strategies (Anderson 1995; Meltzer 2004). By using a settlement strategy focused on 

provisioning themselves around locally available toolstone sources, foragers are able to 

balance “moving to learn and explore and staying to observe” (Meltzer 2004:129; 

emphasis in original). 

Archaeological data, at least in the Southeast, supports the hypothesis that 

colonization occurred through a slower “place-oriented” settlement strategy with 

intensive exploitation of local resources (Miller 2011; Smallwood 2012; Thulman 2006). 

Smallwood (2012) identified morphological variation in Clovis biface technology that 

likely represents isolation and divergence of regionally distinct populations from within 

a larger Clovis tradition. Anderson and Sassaman (2012) suggest that such interregional 

variation may represent antecedent populations for later lithic technologies such as 

Cumberland. Mobility generally becomes more logistically oriented as foragers 

continued to settle-in. Therefore, the portability of toolkits became less important (Shott 

1986), and more robust tool forms (e.g., wood-working tools) began to emerge (Ellis et 

al. 1998). 

Paleoecology of the Midsouth 

The fossil pollen record from the Midsouth and surrounding regions, while 

limited, provides some indication of paleoecological conditions at the onset of the 

Pleistocene to Holocene transition. Prior to the YD, a northern expansion of deciduous 
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forests began to replace existing boreal species (Delcourt 1979; Delcourt and Delcourt 

1985; Liu et al. 2013; Watts 1970). Two of the most well-studied pollen cores from the 

Midsouth come from Anderson Pond in Tennessee and Jackson Pond in Kentucky 

(Delcourt 1979; Delcourt and Delcourt 1980; Liu et al. 2013; Wilkins et al. 1991). Liu 

and colleagues’ (2013:196) detailed analyses of those cores reveals that by 15,900-

15,400 cal yr BP the Midsouth had shifted from conifer to Quercus-dominated no-analog 

deciduous pollen assemblage. That transition reflects the onset of increasing regional 

temperatures and precipitation, and possibly the local extinction of megafaunal 

populations. Overall, the climate throughout the Midsouth was marked by warmer and 

moister conditions, and an expansion of mixed deciduous hardwood communities 

(Delcourt et al. 1983; Delcourt and Delcourt 1985; Hollenbach and Walker 2010; 

LaMoreaux et al. 2009). Furthermore, a positive correlation between the influx of oak, 

hickory, and 25 other species, indicates an increasingly diverse forest community as the 

Holocene developed (Delcourt 1979). 

Using Information from PIDBA 

Stratified, radiocarbon-datable sites are notoriously rare in the Southeast, and 

completely absent in the case of Cumberland (Anderson 2005; Anderson et al. 2015; 

Dunnell 1990; Goodyear 1999; Miller and Gingerich 2013). Regional surficial geology 

is primarily composed of residuum with limited, if any, sediment accumulation since 

initial human migration into the region (Dunnel 1990; Goodyear 1999). The warm, 
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humid climate and acidic soils further limit preservation of datable materials (Dunnell 

1990). The few radiocarbon dates that do exist typically come from cave and rockshelter 

sites (e.g., Dust Cave and Stanfield-Worley). 

While the precise dating and cultural associations of Paleoindian biface types are 

incomplete, the general chronological sequence encompassing Clovis, post-Clovis 

fluted, and unfluted lanceolate forms is generally accepted in eastern North America 

(Anderson and Sassaman 1996; Anderson et al. 2010, 2015; Bradley et al. 2008; Ellis 

and Deller 1997; Fiedel 1999; Goodyear 1999; Meltzer 2009; Tankersley 1990, 1996; 

see Gramly 2013 for alternative). 

However, exceptional fluted point survey data has been collected by statewide 

surveys and compiled in PIDBA (Anderson 2004; Anderson et al. 2010; Goodyear 1999; 

Miller and Gingerich 2013). Potential biases and limitations are well known for PIDBA 

datasets and include incomplete data, sample inconsistency, site formation processes, 

ground cover (Anderson et al. 2010; Ballenger et al. 2011; Prasciunas 2011). However, 

such data are commonly accepted for modeling human behaviors (Anderson and Gillam 

2000; Meeks and Anderson 2012; Anderson et al. 2011; Lanata et al. 2008; Miller 2011; 

Shott 2013; Smallwood 2012; Smallwood et al. 2015). As such, analyzing biface data, 

and assessing patterns in the selection and movement of lithic materials throughout the 

Midsouth, facilitates the comparison technological organization, landscape use, and 

toolstone selection throughout the Clovis-Cumberland-Dalton succession. 
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Methods 

This study analyzes Clovis, Cumberland, and Dalton hafted bifaces documented 

in PIDBA (Anderson et al. 2010) from Tennessee based on the 2013 statewide update. 

The Tennessee state Paleoindian survey was restarted and maintained by John B. Broster 

and Mark Norton, of the Tennessee Division of Archaeology in the late 1980s (Broster 

1989). All biface identifications in the database were made by them; thus, limiting inter-

observer errors in typological identifications. Only data from complete bifaces and basal 

fragments are used to minimize typological errors caused by more fragmentary 

specimens. Only fluted Clovis and Cumberland bifaces are included in this study. While 

exceptional variation in the Dalton type has been documented and expressed as 

numerous sub-types (Cambron and Hulse 1964; Justice 1987), bifaces identified only as 

“Dalton” are included here to further eliminate additional typological errors. 

To assess changes in the relative intensity of biface use during the Pleistocene to 

Holocene transition, I compared length to body width ratios as a relative measure of 

reduction. Binford (1973, 1979) first recognized the significance of assessing tools in 

terms of how they change over time as a way to study the organization of technology. 

This is most apparent on the portion of the biface outside of the haft. While Clovis and 

Dalton were used as multifunctional tools (Ahler 1971; Ballenger 2001; Galm and 

Hofman 1984; Morse 1971; Smallwood 2015), Cumberland appears to be specialized 

tools designed for piercing. Though each technology was used and rejuvenated in 

slightly different ways, the end result is always a reduction in mass from the overall 
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form. Numerous methods have been developed to assess use and rework of bifaces (e.g., 

Andrefsky 2006; Buchanan 2006); however, many are specific to certain types of bifaces 

(e.g., Shott and Ballenger 2007). The simple, but effective, use of length-to-width 

correlation (Kuhn and Miller 2015) overcomes typologically-specific technological 

elements (e.g., fluting) that prevent the application of certain reduction measures. 

Assuming that hafted bifaces of individual types originate as fairly standardized shapes, 

“there should be a high correlation between lengths and widths of new points” (Kuhn 

and Miller 2015:186). Throughout the life history of each biface the ratio of length to 

width will change as mass is reduced, regardless if the biface is reduced distally or 

laterally. Therefore, there should be a lower correlation between length and width of 

bifaces that have been more intensively reduced (Kuhn and Miller 2015). Only bifaces 

classified as complete were used for technological analyses.  

The evolution of land-use strategies during the Pleistocene to Holocene transition 

was assessed based on county-level biface density data. County densities were analyzed 

based on all complete bifaces and basal fragments documented in PIDBA. Physiographic 

comparisons were made by grouping counties into eight physiographic regions: the 

Alluvial Plain, Coastal Plain, Highland Rim, Central Basin, Cumberland Plateau, 

Cumberland Mountains, Ridge and Valley, and Blue Ridge Mountains (Fenneman 

1917).   

I compared relative frequencies of lithic material types used to make bifaces to 

document changes in toolstone selection over time. The regional lithic landscape was 

determined from surficial geologic formations that contain toolstone-quality 
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cryptocrystalline silicates. While numerous region-specific chert subtypes have 

frequently been used in previous studies (e.g., Dover, Waverly, and Buffalo River), 

recent material source studies have shown that macroscopic typological identifications 

frequently produce inaccurate results due to extreme variability within individual 

geologic formations (Parish 2011, 2013; Parish and Durham 2015). As such, all chert 

subtypes that occur within the Fort Payne formation are treated as a single type, and 

classified here as Fort Payne. Likewise, all subtypes within the St. Louis formation are 

classified as St. Louis. All other materials (including Camden and Burlington cherts, 

agate, and quartzite) are classified as other. Material type densities and distributions 

were analyzed from complete bifaces and basal fragments with unequivocal material 

identifications. 

Results 

A total of 2,634 Clovis, Cumberland, and Dalton bifaces are reported from 

Tennessee, including unspecified fragments and preforms. However, only finished 

complete bifaces and basal fragments unequivocally identified to a single type are used 

in this study, which leaves 1,307 bifaces in the revised dataset. This includes 670 Clovis, 

384 Cumberland, and 255 Dalton bifaces (Table 13). 
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Table 13. Frequencies of bifaces used in this study by type and condition. 

Complete 

Basal 

Fragment Total Ratio 

Clovis 347 323 670 1.07 

Cumberland 204 180 384 1.13 

Dalton 226 29 255 7.79 

Technological Organization 

Table 14 shows the results of Pearson’s correlations between length and width 

for complete specimens of all three biface types, and Figures 20-22 present the 

corresponding scatter plots. Clovis (r = 0.609 p = <0.001) and Cumberland (r = 0.570 p 

= <0.001) have similar positive correlations between length and width. This pattern 

suggests that Clovis and Cumberland had similar life histories and may have been 

discarded near the same point in their reduction trajectories. The length and width of 

Dalton, however, has no correlation (r = -0.089, p = 0.185). This lack of correlation 

suggests that Dalton bifaces were heavily reworked and discarded at, or near, the point 

of exhaustion. 

Table 14. Results of Pearson’s correlations between length and body width. 

N r r
2
 p 

Clovis 347 0.609 0.371 <0.001 

Cumberland 204 0.570 0.325 <0.001 

Dalton 226 -0.089 0.008 0.185 
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Figure 20. Plot of Clovis length versus body width for complete bifaces from Tennessee 

(n = 347). 

 

 

Figure 21. Plot of Cumberland length versus body width for complete bifaces from 

Tennessee (n = 204). 
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Figure 22. Plot of Dalton length versus body width for complete bifaces from Tennessee 

(n = 226). 

Summary statistics for morphological attributes are presented in Table 15. 

Whether hafted bifaces are used strictly for piercing, cutting, or are multifunctional, 

hafted basal elements should remain more constant (Shott 1997; Shott and Ballenger 

2007). While thickness varies between biface types, CVs are similar, and may also 

reflect basic hafting requirements of all lanceolate hafted bifaces. As expected, the most 

standardized attributes are associated with the basal element, and presumably relate to 

hafting requirements. 
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Table 15. Descriptive statistics for morphological measurements of Paleoindian bifaces. 

Max. 

Length 

Basal 

Width 

Body 

Width 

Basal 

Concavity:Basal 

Width 

Max. 

Thickness 

Clovis Mean 69.50 24.76 27.79 0.15 6.63 

Std. dev. 22.62 3.77 4.96 0.07 1.42 

CV 0.33 0.15 0.18 0.46 0.21 

Cumberland Mean 72.29 20.41 23.03 0.16 7.06 

Std. dev. 23.85 3.25 3.47 0.06 1.35 

CV 0.33 0.16 0.15 0.39 0.19 

Dalton Mean 49.93 26.66 25.31 0.14 6.93 

Std. dev. 13.55 4.05 4.30 0.06 1.04 

CV 0.27 0.15 0.17 0.42 0.15 

Comparing the overall structures of Clovis, Cumberland, and Dalton biface 

assemblages reveals significant differences. The ratios of complete-to-broken Clovis and 

Cumberland bifaces are just over one-to-one, indicating that almost equal numbers of 

exhausted and broken bifaces were discarded. Complete Dalton bifaces, however, were 

discarded nearly eight times more frequently than broken bifaces. This pattern suggests 

that either Dalton bifaces broke at a much lower frequency, or that broken bifaces were 

typically refurbished back into functional tools. 

Landuse 

Plotting the distribution of biface frequencies by county reveals clear patterns in 

statewide densities (Figure 23). All three biface types are recorded throughout the state. 
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Higher densities of bifaces of all types are generally located towards the center of the 

state, with two counties exhibiting markedly denser concentrations than the rest of the 

Figure 23. Density maps for each biface type showing frequencies by county and 

physiographic region. 
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state. Benton and Humphreys counties border the confluence of the Lower Tennessee 

and Duck Rivers. Notably, this portion of the Tennessee River Valley has been 

significantly impacted by the impoundment of Kentucky Lake. As a result, the majority 

of bifaces recovered from this area are from deflated shorelines. The exceptionally high 

biface densities warrant consideration of potential sampling biases (see Anderson et al. 

2010; Lepper 1983, 1985; Prasciunas 2011; Seeman and Prufer 1982; Shott 2002). 

However, Miller (2011) has demonstrated that selective recovery biases are likely not a 

significant factor in county-level data in the Midsouth. Rather, higher concentrations of 

Paleoindian bifaces are documented at the intersections of rivers, ecotones, and lithic 

sources, and may reflect land-use strategies (Miller 2011). 

Assessing biface distribution by physiographic region provides additional 

explanation. The Cumberland Mountains are the only physiographic region where 

Paleoindian bifaces have not been documented. As such, this region is omitted in 

additional analyses. The distributions of Clovis, Cumberland, and Dalton differ 

significantly by physiographic region (Table 16) (x
2
 = 34.87, df = 14, p = <0.01). While

all biface types occur at expected frequencies in the Alluvial Plain, Ridge and Valley, 

and Blue Ridge Mountains, these regions have extremely small sample sizes. Clovis 

occurs at an expected frequency in the Cumberland Plateau, but at lower than expected 

frequencies in the Highland Rim and Central Basin. The frequency of Clovis bifaces in 

the Coastal Plain is higher than expected. Cumberland occur at expected frequencies in 

the Highland Rim, but higher than expected in the Central Basin and Cumberland 
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Table 16. Counts and percentages of bifaces found in each physiographic region. 

Alluvial 

Plain 

Coastal 

Plain 

Highland 

Rim 

Central 

Basin 

Cumberland 

Plateau 

Cumberland 

Mountains 

Ridge 

and 

Valley 

Blue 

Ridge 

Mountains Total 

Clovis Count 1 153 394 73 15 0 28 6 670 

Expected 1.2 120.4 421.1 79.0 18.3 0.0 26.0 4.2 670 

% of 

biface 

type 0.15 22.84 58.81 10.90 2.24 0.00 4.18 0.90 100 

Cumberland Count 0 42 239 69 16 0 16 2 384 

Expected 0.7 69.0 241.2 42.3 10.5 0.0 14.9 2.4 381 

% of 

biface 

type 0.0 10.9 62.2 18.0 4.2 0.0 4.2 0.5 100 

Dalton Count 1 40 190 12 5 0 6 1 255 

Expected 0.4 46.0 160.8 30.2 7.0 0.0 9.9 1.6 256 

% of 

biface 

type 0.4 15.7 74.5 4.7 2.0 0.0 2.4 0.4 100 

Total Count 2 235 823 154 36 0 50 9 1309 

Expected 2.3 235.4 823.1 151.4 35.7 0.1 50.8 8.3 1307 

% of all 

bifaces 0.2 18.0 62.9 11.8 2.8 0.0 3.8 0.7 100 
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Plateau. The Coastal Plain, however, has lower than expected frequencies for 

Cumberland. The frequency of Dalton is as expected in the Cumberland Plateau, but 

lower than expected in the Coastal Plain and Central Basin. The Highland Rim has a 

higher than expected frequency for Dalton. 

The frequencies of bifaces by physiographic region further illustrate distribution 

patterns (Figure 24). The vast majority of bifaces across all types occur in the Highland 

Rim (62.9%). The Coastal Plain (18%) has the next highest frequency, closely followed 

by the Central Basin (11.8%). The Ridge and Valley, Cumberland Plateau, Blue Ridge 

Mountains, and Alluvial Plain have much smaller frequencies, cumulatively totaling 7.5 

percent of all bifaces. 

To further interpret Paleoindian landscape use, the densities of bifaces were 

scaled to account for differing sizes of physiographic regions (Figure 17). The overall 

pattern corresponds well to the gross regional densities, although the relative biface 

densities are slightly different. The highest density of bifaces occurs with Clovis in the 

Highland Rim at 11.92 bifaces per 1,000 km
2
, followed by the Central Basin (7.49 per

1,000 km
2
), and Coastal Plain (6.62 per 1,000 km

2
) (Table 5). A similar pattern is

evident in Cumberland and Dalton. Cumberland bifaces occur essentially in equal 

densities in the Highland Rim (7.23 per 1,000 km
2
) and Central Basin (7.08 per 1,000

km
2
), followed by the Coastal Plain (1.82 per 1,000 km

2
) and Cumberland Plateau (1.32

per 1,000 km
2
). Dalton occurs in the highest density in the Highland Rim (5.75 per 1,000

km
2
), followed by the Coastal Plain (1.73 per 1,000 km

2
) and the Central Basin (1.23 per



 101 

Table 17. Biface densities per 1,000 km
2
 for each physiographic region of Tennessee.

Area (km
2
) 

Clovis 

(per 1,000 km
2
) 

Cumberland 

(per 1,000 km
2
) 

Dalton 

(per 1,000 km
2
) 

Total 

(per 1,000 km
2
) 

Alluvial Plain 2,787 0.36 0.00 0.36 0.72 

Coastal Plain 23,102 6.62 1.82 1.73 10.17 

Highland Rim 33,040 11.92 7.23 5.75 24.91 

Central Basin 9,740 7.49 7.08 1.23 15.81 

Cumberland Plateau 12,120 1.24 1.32 0.41 2.97 

Cumberland 

Mountains 1,920 0.00 0.00 0.00 0.00 

Ridge and Valley 20,066 1.40 0.80 0.30 2.49 

Blue Ridge 

Mountains 6,372 0.94 0.16 0.16 1.26 

Total 109,147 29.98 18.41 9.94 58.33 
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Figure 24. Line graph of biface densities in each physiographic region by biface type, per 1,000 km
2
.
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1,000 km
2
). All biface types occur in very low densities (less than 1.00 per 1,000 km

2
) in

the Alluvial Plain and Blue Ridge Mountains. 

Toolstone Selection 

The lithic landscape of the Midsouth is characterized by an abundance of high-

quality cherts that are readily available in tabular and cobble forms (Amick 1987; Parish 

2011, 2013). The underlying bedrock is comprised of the chert-bearing Fort Payne and 

St. Louis limestone formations. Cherts from these two formations frequently occur in 

primary contexts in cliffline outcroppings and secondary contexts in alluvial deposits 

(Amick 1987). The distribution of these formations directly correlates to the Highland 

Rim, essentially creating a chert-rich ring encircling the Central Basin (Figure 25). 

Cherts from both formations occur throughout the Highland Rim. However, Fort Payne 

is dominant to the southwest between the Duck and Elk Rivers, while St. Louis is 

dominant in the northwest. 

Fort Payne (45%) and St. Louis (50%) cherts are by far the dominant materials 

throughout all three biface types (Figure 26).  Clovis bifaces made from both chert types 

occur at expected frequencies, as Clovis knappers used both materials evenly (Figure 27, 

Table 18). The Cumberland and Dalton assemblages, however, demonstrate significantly 

different patterns (x
2
 = 81.65, df = 1, p = <0.001). Cumberland knappers preferentially
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Figure 25. Physiographic regions and major chert-bearing geologic formations in Tennessee. 
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other hand, appear to have favored St. Louis chert, which occurs at a higher than 

expected frequency, while Fort Payne is lower than expected. Dalton knappers’ apparent 

preference for St. Louis, however, is skewed by two sites, which account for 61% (n = 

103) of the material (Figure 29). When those two sites are removed Dalton toolstone use 

is more evenly distributed between Fort Payne (43%) and St. Louis (50%). 

While materials other than Fort Payne and St. Louis only comprise a small 

portion of the overall dataset (5%), a notable pattern exists. Other materials occur at, or 

below, expected frequencies and account for small amounts of Cumberland (2%) and 

Dalton (4%) materials. For the Clovis dataset, however, other materials occur at a higher 

than expected frequency and account for eight percent of Clovis material. This pattern 

may reflect larger territorial ranges, and be related to landscape learning by initial 

colonizers. 

selected Fort Payne chert, which occurs at a higher than expected frequency, while St. 

Louis occurs at a lower than expected frequency (Figure 28). Dalton knappers, on the 
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Figure 26. Relative frequencies of lithic materials by biface type. 

Table 18. Counts and percentages of bifaces by type and raw material. 

Fort Payne St. Louis Other Total 

Clovis Count 137 133 22 292 

Expected 131.4 146.8 13.8 292 

% of biface type 0.47 0.46 0.08 1.00 

Cumberland Count 143 70 4 217 

Expected 97.7 109.1 10.2 217 

% of biface type 0.66 0.32 0.02 1.00 

Dalton Count 54 170 9 233 

Expected 104.9 117.1 11 233 

% of biface type 0.23 0.73 0.04 1.00 

Total Count 334 373 35 742 

Expected 334 373 35 742 

% of all bifaces 0.45 0.50 0.05 1.00 
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Figure 27. Distribution of Clovis bifaces by raw material type. A, Fort Payne; B, St. 

Louis; C, Other. 
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Figure 28. Distribution of Cumberland bifaces by raw material type. A, Fort Payne; B, 

St. Louis; C, Other. 
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Figure 29. Distribution of Dalton bifaces by raw material type. A, Fort Payne; B, St. 

Louis; C, Other. 
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Discussion 

The onset of the YD has been suggested as causing a significant decline or 

substantial reorganization of population structure throughout the Southeast (Anderson et 

al 2011; Meeks and Anderson 2012). However, other researchers contend that the YD 

may have gone unnoticed by human populations in the region (Eren 2012; Holliday and 

Meltzer 2010; Meltzer and Holliday 2010; Straus and Goebel 2011). Recent research has 

demonstrated relationships exist between changes in landscape use and environmental 

changes associated with the YD in some areas of the coastal Southeast due to 

fluctuations in sea level (Smallwood et al. 2015). Datasets related to technological 

organization, landscape use, and toolstone selection in Tennessee provide insights into 

the possible effects of the YD on populations living in the Midsouth, and suggest an 

alternative scenario occurred in the interior Southeast. 

Anderson and colleagues (2011; Meeks and Anderson 2012) contend that a 

reduction in the frequency of post-Clovis fluted bifaces reflects adverse ecological 

conditions at the beginning of the YD; whereas, an increase in later bifaces, especially 

Dalton, corresponds to improved ecological conditions. Essentially this corresponds to a 

Clovis-to-Cumberland collapse followed by a Cumberland-to-Dalton rebound. While 

data from the coastal Southeast supports this hypothesis, such a pattern is not reflected in 

the data from Tennessee. Rather, there is a continual decline in relative biface 

frequencies throughout the Pleistocene to Holocene transition. The apparent 

contradiction in these two datasets reflects the complexities of regional population 
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models and behavioral adaptations related to changing paleoecological conditions in 

North America before, during, and after the YD. While people living in some areas (e.g., 

coastal Georgia) were adversely affected by environmental conditions during the 

beginning of the YD (Smallwood et al. 2015), populations in the Midsouth do not appear 

to have reorganized their population structure or technologies in response to YD-related 

conditions. Behavioral adaptations in the Midsouth are characterized by increasing 

regionalization and a great emphasis on local resources. Aspects of early regionalization 

have been previously documented in Clovis technology (Smallwood 2012). Increasingly 

smaller and more rigidly bounded territories continued to drive diversification of 

technologies resulting in greater regional complexity in biface types.  

Clovis and Cumberland have strong statistical correlations between length and 

width, complete-to-broken discard ratios of approximately one-to-one. This pattern 

suggests similar life histories between Clovis and Cumberland, and indicates that when 

bifaces were broken, they were typically discarded. Conversely, there is no correlation 

between the length and width of Dalton bifaces, which have a complete-to-broken 

discard rate of nearly eight-to-one. The lack of correlation indicates that Dalton bifaces 

were heavily reworked. This is not unexpected given the results of previous studies 

modeling expended utility in Dalton assemblages (e.g., Goodyear 1974; Shott and 

Ballenger 2007). Because of intensive biface conservation in the Dalton technological 

system, broken bifaces would have likely been reworked back into a functional state 

rather than being discarded. 
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Morphologically, however, Dalton is slightly more standardized than Clovis and 

Cumberland based on the CVs for length and thickness. Kuhn and Miller (2015) 

identified a similar pattern from a different dataset. Their interpretation, which I support 

here, is that Clovis and Cumberland bifaces were made in a range of sizes and because 

they were less intensively used, discarded bifaces retain morphological ratios similar to 

their initial form. Whereas Dalton bifaces were more intensively used and discarded at a 

more uniform point (Kuhn and Miller 2015). The extended use lives of Dalton bifaces 

obscures any effect of original size. 

Considering potential relationships between changes in landscape use and 

paleoecological changes may further explain the evolution of biface life histories during 

the Pleistocene to Holocene transition. Based on a modified Marginal Value Theorem, 

Kuhn and Miller (2015) suggest that increased population densities affecting access to 

raw materials, and changes in local faunal resources may lead to bifaces being more 

intensively used for longer periods of time. Increased populations would have led to 

more restricted and rigid territorial boundaries, and increased competition and demand 

of raw materials. 

A second, and complimentary, explanation for changes in biface life histories 

relates to changing biological resource structures throughout the Pleistocene to Holocene 

transition (Kuhn and Miller 2015). Coinciding with increasingly restricted territories, 

paleoecological changes were rapidly occurring throughout the Midsouth. Pollen core 

data reflects a transition from conifer to Quercus had already begun by ca. 15,000 cal yr 

BP and possibly corresponded with the extinction of large herbivores (Liu et al. 2013). 
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Subsequently, pollen assemblages became increasingly diverse as the Pleistocene ended 

(Delcourt 1979). As people began to target smaller species, average returns of successful 

hunts decreased as search and handling costs rose (Kuhn and Miller 2015). While 

preservation issues limits faunal data from the region, sites such as Dust Cave in 

northern Alabama demonstrate that people were targeting a high diversity of small 

faunal species during the Late Paleoindian period (Walker 2007).  

Based on spatiotemporal distributions of bifaces in Tennessee, increasingly 

smaller bounded territories developed throughout the Pleistocene to Holocene transition. 

While the Highland Rim and Central Basin have the highest densities, regardless of 

biface type, there is a generally greater geographic distribution of Clovis in comparison 

to Cumberland and Dalton. In all physiographic regions Clovis bifaces occur at the same 

or higher density per 1,000 km
2
 than later biface types. With the exception of the 

Alluvial Plain, boarding the Mississippi River in west Tennessee, Cumberland bifaces 

occur in greater densities than Dalton.  

This overall pattern suggests that landscape learning was occurring throughout 

the Pleistocene to Holocene transition as people were continuing to settle-in to the 

region. Increased familiarity with local resource distribution likely led to more localized 

resource acquisition. Early indications of regionalization have been identified in Clovis 

assemblages throughout the Southeast (Smallwood 2012; Thulman 2006). Landscape 

use throughout the Pleistocene to Holocene transition in the Midsouth seems to reflect a 

pattern of increasing regionalization as distributions of biface types become more 

restricted.  
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The temporal trend of increasingly localized technologies is also reflected in 

toolstone selection. As Clovis is assumed to be the first distinctly recognizable 

technology in the region (Anderson et al. 2015), it follows that there should be greater 

variety of material types in the overall Clovis dataset. That assumption is supported by 

data from Tennessee, where Clovis bifaces were made on materials other than Fort 

Payne and St. Louis cherts at twice the frequency seen in Cumberland and Dalton 

datasets. People using Cumberland technology were preferentially selecting Fort Payne 

chert over twice as frequently as St. Louis chert, in spite of both material types occurring 

throughout the Highland Rim. While Dalton knappers appear to have used St. Louis 

slightly more than Fort Payne, the distribution of Dalton bifaces closely corresponds to 

the distribution of the St. Louis formation (Figure 11). This pattern suggests that people 

using Dalton bifaces in the Midsouth may not have been necessarily preferentially 

selecting one material type over the others, but were simply making use of the local 

resources because of constrained territorial boundaries. 

The relationship between mobility and curation is related to resource availability 

(Bamforth 1986; Shott 1986). Mobile foragers that are unfamiliar with the local lithic 

landscape are unable to predict the distribution of toolstone sources. Thus, those 

individuals are expected to transport non-local materials with them as they venture into 

unfamiliar territories (Kelly 1988; Kuhn 1995; Odell 1996; Parry and Kelly 1987). Less 

mobile foragers are typically familiar with the local lithic landscape and know where 

toolstone sources are located. As a result, they can strategically provision themselves 

around toolstone sources (Kelly 1988; Kuhn 1995; Odell 1996; Parry and Kelly 1987). 
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As foragers continued to settle-in throughout the Clovis-Cumberland-Dalton succession, 

they increasingly relied on local lithic materials over time.  

 

Conclusion 

 

 To assess the effects YD-related paleoecological conditions had on human 

behavioral adaptations in the Midsouth, I investigated the evolution of technological 

organization, landscape use, and toolstone selection throughout the Clovis-Cumberland-

Dalton succession. This study takes a localized perspective to understand sub-regional 

relationships between behavioral strategies and paleoecological conditions in the interior 

Southeast. Considering the Paleoindian archaeological record in relation to regional 

paleoecological data provides an opportunity to evaluate relationships between 

potentially YD-driven ecological changes and human behavioral adaptations.  

 Changes in paleoecological conditions at the onset of the YD do not appear to 

have lead to human population decline or reorganization in the Midsouth. While the 

overall frequency of Cumberland bifaces dramatically declines immediately following 

Clovis at the beginning of the YD, there is not a corresponding rebound in Dalton 

bifaces at the end of the YD. Rather, there is a continual decline in relative frequencies 

of individual biface types going into the Holocene. Biface technologies throughout the 

Pleistocene to Holocene transition trend toward longer use lives with increasingly 

intensive reduction. Bounded territories appear to become more rigid and increasingly 
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restricted from Clovis to Cumberland to Dalton, while toolstone selection becomes more 

focused on locally available sources. 

An alternative interpretation based on regionalization associated with settling in 

processes may explain long-term changes in human behavioral adaptations in the 

Midsouth. Kuhn and Miller’s (2015) modified Marginal Value Theorem predicts that as 

regional populations increase and territories become more constricted, competition for 

resources increases. While the lithic landscape of the Midsouth is characterized by an 

abundance of high-quality toolstone, there is a visible shift to increasing local sources 

throughout the Clovis-Cumberland-Dalton succession. Increasingly localized 

dependence for lithic raw material combined with increasing populations drives 

competition. Additionally, as megafaunal species became extinct and people focused on 

a diverse suite of small faunal species, average return rates are reduced due to increasing 

search and handling costs. As return rates decrease, there are longer intervals between 

replacing tools, resulting in longer biface life histories as people extend biface utility 

through increased reduction (Kuhn and Miller 2015). The overall patterns in 

technological organization, landscape use, and toolstone selection reflect a trend of 

increasing regionalization that began to develop with Clovis (e.g., Smallwood 2012) and 

was well-established by Dalton. 
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CHAPTER V 

CONCLUSION 

While there is still some debate as to when people first arrived in North America, 

we know that by ca. 13,000 cal yr BP Clovis technology had been dispersed throughout 

most of the continent. People utilizing this technology adapted to a diversity of 

environments with different resource structures. Throughout the Pleistocene to Holocene 

transition populations presumably expanded and foraging groups began to develop more 

constricted territorial ranges. In turn, increased divergence and isolation of populations 

resulted in diversity in biface technologies by the end of the Pleistocene. This 

dissertation characterizes the evolution of Paleoindian adaptations in the Midsouth 

United States, and considers the effects of YD-driven environmental changes on those 

adaptations. 

There is increasingly greater evidence and support for pre-Clovis occupations in 

North America (e.g., Jenkins et al. 2012; Johnson 2006; Joyce 2006; Overstreet 2005; 

Waters et al. 2011a, 2011b). One of the most compelling potentially pre-Clovis sites in 

the Midsouth is the Coats-Hines-Litchy site, in middle Tennessee (Haynes 2015; 

Grayson and Meltzer 2015). While previous research at the site indicates that humans 

may have butchered at least one mastodon, questions persist as the to age of the deposits, 

context of the artifacts and bones, and site formation processes. 

I conducted a multidisciplinary investigation of new and exists data to address 

those questions. During a large-scale excavation of the site, I collected new material for 
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radiocarbon dating, and led geoarchaeological, faunal, and lithic analyses. I also re-

analyzed all lithic artifacts previously recovered from the site. A suite of 14 radiocarbon 

ages obtained on charcoal, demonstrate that the late Pleistocene sediments containing the 

bone-bearing deposits are at least 22,000 
14

C yr BP (26,000 cal yr BP). The highly

fragmentary and battered nature of the faunal assemblage, in addition to the 

geoarchaeological study of the sediments, indicate that the materials were redeposited in 

an erosional channel composed of course-grained colluvial and alluvial sediments. The 

high-energy geomorphic environment, in conjunction with the natural sediment matrix, 

further fragmented the faunal remains, while also producing linear groves on the bones 

reminiscent of butchering marks. Culturally-produced lithic artifacts from nearby 

Holocene-aged archaeological sites were redepositeded in the erosional channel and 

where subsequently recovered in close proximity to late Pleistocene bonebed. Physical 

weathering of nearby bedrock outcroppings combined with high-energy colluvial and 

alluvial processes appear to have naturally fractured local cherts, resulting in flakes and 

angular shatter with artifact-like attributes. 

Cumberland biface technology presumably follows Clovis in the Midsouth and is 

likely contemporaneous with the beginning of the YD. However, unlike other late 

Pleistocene technologies, Cumberland bifaces have never been recovered from intact, 

single component contexts with datable materials. The co-occurrence of Cumberland and 

other Paleoindian biface types in the same layer at sites such as Dust Cave, in northern 

Alabama, is enigmatic. Additional sites with intact, datable components are needed to 

confirm the regional Paleoindian biface sequence. The lack of unequivocal single-
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component Cumberland sites has significantly limited the amount of research focused on 

Cumberland technology. 

I studied over 900 Cumberland fluted bifaces from the Midsouth region to 

document quantitative and qualitative attributes. This enabled me to characterize the 

range of variation within the Cumberland type and to document the reduction sequence. 

Basal elements are the most standardized attributes of Cumberland bifaces, and likely 

reflect basic requirements of hafting strategies. Biface width is significantly more 

standardized that length. Considered with patterns of breakage and resharpening, this 

suggests that Cumberland bifaces were designed to be specialized weapons for piercing 

rather than multifunctional tools. Based on bracketing radiocarbon ages and 

technological similarities to other, well-dated biface technologies, Cumberland appears 

to be a Middle Paleoindian technology contemporary to the beginning of the YD (ca. 

12,800-12,100 cal yr BP). However, more research is needed to definitively prove this 

assertion. 

Anderson and colleagues (2011; Meeks and Anderson 2012) suggest that the 

onset of the YD caused a significant decline or reorganization to population structure in 

the Southeast. They cite a reduction in the frequency of hafted bifaces, modifications to 

lithic procurement strategies, and an analysis of radiocarbon-dated archaeological sites 

as support of their hypothesis. However, regional YD-age Paleoindian adaptations are 

relatively poorly understood in the region. Furthermore, other researchers contend that 

the YD may have gone unnoticed by people living in the region (Eren 2012; Holliday 

and Meltzer 2010; Meltzer and Holliday 2010; Straus and Goebel 2011).  
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I investigated the evolution of technological organization, landscape use, and 

toolstone selection to assess potential YD-related effects on human adaptations in the 

Midsouth. I compare Clovis, Cumberland, and Dalton bifaces in Tennessee to 

understand the evolution of Paleoindian adaptations during the Pleistocene to Holocene 

transition. Changes in paleoenvironmental conditions at the onset of the YD do not 

appear to have caused noticeable changes in Paleoindian adaptations in the Midsouth. 

Clovis and Cumberland bifaces had similar life histories, while Dalton bifaces were 

resharpened much more intensively resulting in extended use lives. Bounded territories 

appear to become increasingly constricted, and toolstone selection becomes more 

focused on locally available sources throughout the Pleistocene to Holocene transition. 

Patterns in technological organization, landscape use, and toolstone selection reflect an 

overall trend of increasing regionalization that began to develop with Clovis and was 

well-established by Dalton. I suggest that regionalization of populations associated with 

settling in processes may explain long-term changes in Paleoindian adaptations in the 

Midsouth. 

How foraging groups adapted to new environments and changing ecological 

conditions is integral to Paleoindian archaeology. While late Pleistocene technologies 

are similar throughout the continent, Paleoindian foragers modified their adaptations to 

cope with local environmental requirements. This dissertation presents new data related 

to the evolution of Paleoindian adaptations throughout the Pleistocene to Holocene 

transition in the Midsouth United States. By recognizing temporal and spatial changes in 

late Pleistocene technologies, and considering those changes in relation to 
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paleoenvironmental records, we are better suited to understand Paleoindian adaptations. 

In turn, we are able to construct more robust and accurate settlement models to explain 

the peopling of the Americas. 
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