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ABSTRACT

Advances in high-throughput techniques have enabled researchers to produce

large-scale data on molecular interactions. Systematic analysis of these large-scale

interactome datasets based on their graph representations has the potential to yield

a better understanding of the functional organization of the corresponding biological

systems. One way to chart out the underlying cellular functional organization is to

identify functional modules in these biological networks. However, there are several

challenges of module identification for biological networks. First, different from social

and computer networks, molecules work together with different interaction patterns;

groups of molecules working together may have different sizes. Second, the degrees

of nodes in biological networks obey the power-law distribution, which indicates that

there exist many nodes with very low degrees and few nodes with high degrees.

Third, molecular interaction data contain a large number of false positives and false

negatives.

In this dissertation, we propose computational algorithms to overcome those chal-

lenges. To identify functional modules based on interaction patterns, we develop

efficient algorithms based on the concept of block modeling. We propose a sub-

gradient Frank-Wolfe algorithm with path generation method to identify functional

modules and recognize the functional organization of biological networks. Addition-

ally, inspired by random walk on networks, we propose a novel two-hop random

walk strategy to detect fine-size functional modules based on interaction patterns.

To overcome the degree heterogeneity problem, we propose an algorithm to identify

functional modules with the topological structure that is well separated from the

rest of the network as well as densely connected. In order to minimize the impact
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of the existence of noisy interactions in biological networks, we propose methods to

detect conserved functional modules for multiple biological networks by integrating

the topological and orthology information across different biological networks. For

every algorithm we developed, we compare each of them with the state-of-the-art

algorithms on several biological networks. The comparison results on the known

gold standard biological function annotations show that our methods can enhance

the accuracy of predicting protein complexes and protein functions.
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1. INTRODUCTION∗

What is the next big wave in technology? Different people may have different

opinions. Let us look at the Internet giant — Google’s next move. Along with

the lines of self-driving cars and smart glasses, Google’s newest venture is called

California Life Company, whose goal is to extend human’s life by 20 to 100 years.

It seems unreal, however, the request to live a little bit longer has been in demand

from the beginning of the human society. Actually, the investigations of one kind of

flatworm have shed light on the possibilities of alleviating aging in human cells since

researchers have demonstrated that the flatworm can overcome the aging process

and could potentially live forever [103]. However, to enforce the mission impossible,

several fundamental questions need to be answered in advance, such as what is the

molecular mechanism of an organism and how the molecular mechanism controls the

activities within the organism.

To unveil the mystery of those basic biological problems through understanding

their underlying cellular mechanism, it is indispensable to look into the Deoxyri-

bonucleic acid (DNA), which is a molecule that stores the genetic instructions used

in all biological processes of all known living organisms. Human Genome Project

(HGP) has achieved tremendous success in determining the DNA sequence and rec-

ognizing and mapping genes of the human genome based on both their physical and

functional responsibilities. However, HGP collaborated all research pioneers around

the world and still costed 13 years and $3 billions, which illustrates how difficult to

sequence a general genome in the last decades. With the help of fast development

∗Fig 1.1 in this chapter is reprinted with permission from “Wisdom of crowds for robust gene
network inference” by Daniel Marbach, James C Costello, Robert Kffner, Nicole M Vega, Robert J
Prill et al, Nature Method, 9(8): 796-804, 2012, Copyright 2012 by Nature Method.
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Figure 1.1: An example for module identification for a gene co-expression network.

of high-throughput technologies, nowadays, obtaining biological data, such as ge-

nomics data, proteomics data and molecular interactions becomes more efficient and

less expensive. Some widely used high-throughput technologies are next-generation

sequencing, mass spectrometry, yeast two-hybrid assays and microarrays. Due to

the availability and diversity of the high-throughput technologies, there are tons of

biological data generated every day, which brings biologists into a brand-new era

with the biological data they have never had in the past.

The dramatically increasing generation of biological data enables us to better un-

derstand biological systems. Identifying functional modules in biological systems is

a fundamental way to comprehend the functional organizations of the corresponding

biological systems and interpret their underlying mechanisms. Biologically, a func-

tional module in a biological system consists of a group of biological units, which

perform similar functions. In this dissertation, we focus on identifying functional

modules in biological systems, which are modeled as biological networks constructed

2



from interactome data. Fig. 1.1 shows an example of module identification in a

gene co-expression network [59]. The modules in the networks are identified barely

based on the topological structures. The functional organization and topological

relationships between modules are clearly illustrated through module identification.

1.1 Biological networks

Complex biological systems can be represented and investigated as networks. In

general, a node of a biological network represents a protein or a gene and an edge

indicates the association between nodes. Based on different purposes and different

biological systems, different types of networks are generated. For example, there

are protein-protein interaction networks, transcript-transcript association networks

(gene co-expression networks) and DNA-protein interaction networks (Gene regula-

tory networks).

For all kinds of theses biological networks, a principle, called guilt-by-association,

is widely used. Guilt-by-association declares that the nodes (biological units) in the

biological networks, which are connected by an edge, are more likely to perform

the same function than nodes (biological units) not linked together. Therefore, it

is possible to predict the function of an unknown node (biological unit) through

the functions of its topological neighborhood, which have been validated either by

chemical experiments or biological experts.

Because complicated biological systems are abstracted into biological networks,

basic biological problems are converted to network related problems. Therefore, the

challenges over the next decades are to make use of the information existing in the

biological networks to answer fundamental biological problems [78], such as func-

tional organization and robustness of biological systems. Here we briefly introduce

two kinds of widely used biological networks, which are protein interaction networks
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and gene co-expression networks.

1.1.1 Protein interaction networks

Proteins are large molecules composed of one or more connected amino acid

residues. They carry out diverse functions within living organisms. Biologically,

proteins rarely act alone. Through protein-protein interactions, groups of proteins

are organized together to facilitate diverse fundamental molecular processes within

a cell.

Protein-protein interactions in a cell construct a protein interaction network,

where nodes represent proteins and edges represent physical protein-protein inter-

actions. Thanks to the high-throughput technologies, all physical protein-protein

interactions in a cell can be screened in one test. There are many ways to detect

the physical binding interactions. The most widely used high-throughput methods

of detecting the physical protein-protein interactions are yeast two-hybrid screening

(Y2H) [38] and affinity purification coupled to mass spectrometry (AP-MS) [114].

Y2H was proposed by Fields and Song in 1989 [88]. Pairwise protein interactions

with binary weights can be inferred by Y2H. In Y2H, the transcription factor is

separated into two fragments, which are called binding domain and activating do-

main. The binding domain is fused onto a protein of interesting (referred as the

bait protein) and the activating domain is fused onto another protein (referred as

the prey protein). If the bait protein and prey protein interacts with each other,

then the activating domain is brought to the transcription start site, which incurs

the occurrence of the transcription of reporter genes. If those two proteins do not

interact, then there is no occurrence of the transcription of reporter genes. Based

on the occurrence of the transcription of reporter genes, the interactions between

proteins can be identified. The limitation of Y2H is that the number of identified
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protein-protein interactions is low due to the loss of transient protein interactions in

purification steps. AP-MS consists two steps. In the AP (affinity purification) step,

a protein of interest, called bait, is affinity caught in a matrix. The bait protein is

passed through the matrix, the protein, interacting with the bait protein, is retained

due to interaction with the bait. After purification, proteins can be analyzed by MS

(mass spectrometry), which is a chemistry technique that helps to determine the

amount and type of chemicals in a sample [114]. There are other profiling techniques

to detect protein-protein interactions, however, the interactions identified by those

methods are noisy [73].

There are many public protein interaction databases available for researchers and

scientists. Some databases such as BioGrid [101], DIP [90] and IntAct [41] contain

protein interaction networks of many different species. Some databases only maintain

protein interaction networks of specific species, such as HPRD [82] (a database for

human protein interaction network) and FlyBase [27] (a database for fruit fly protein

interaction network).

1.1.2 Gene co-expression networks

Similar to protein interaction networks, gene co-expression networks are also net-

work with symmetric interactions, where each node represents a gene and each edge

indicates the similarity of the co-expression patterns of a pair of genes with respect to

samples. Gene co-expression networks are of biological interest because co-expressed

genes may be controlled by the same transcriptional regulatory mechanism, or the

same pathway or protein complex.

The construction of a gene co-expression networks follows a two-step approach. In

the first step, the similarity between every pair of gene expression data is calculated.

Then in the second step, edges with small similarities are filtered out by setting a
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threshold value. The input data for formulating a gene co-expression network is

stored in a matrix format. For example, in a microarray experiment, we can obtain

the gene expression values of m genes and n samples, then the input data is a m×n

matrix, which is called the expression matrix. Each row in the expression matrix

implies the gene expression pattern of that gene. In the first step, we can estimate the

similarity of the gene expression patterns between pairwise genes through computing

the similarity between two row vectors. Pearson’s correlation coefficient, mutual

information, spearman’s rank correlation coefficient and Euclidean distance are the

four mostly used co-expression measures [102]. After the calculation of the similarity

scores, we obtain an m × m similarity matrix, each element of which shows how

similar two genes change together with respect to expression levels. In the second

step, the elements of the m×m similarity matrix are dichotomized based on a certain

threshold. The dichotomized matrix is the adjacency matrix of the gene co-expression

network. “1” in the adjacency matrix denotes two genes are correlated under the

same samples or conditions, and “0” otherwise.

1.2 Challenges

Although there are many algorithms developed to identify functional modules in

different types of biological networks, efficient algorithms still need to be devised to

detect modules with better accuracy and less computational time. Here we summa-

rize the challenges we encountered.

1.2.1 What is the good definition of a functional module?

Intuitively, based on interactome data, if two nodes interact with each other,

they are more likely to share the same cellular functionalities than nodes that do not

interact. Thus, densely connected subnetworks in a given network can be viewed as

potential functional modules. Based on this idea, many algorithms have been suc-
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cessfully applied to identify functional modules in biological networks by detecting

“higher than expected connectivity” subnetworks based on modularity optimiza-

tion [75, 74] or random walk on graphs [105, 91, 93, 68].

However, in addition to densely connected modules in biological networks, such

as protein complexes, there are other topological structures that may possess im-

portant cellular functionalities. Again, based on interactome data, the nodes that

interact with similar sets of other nodes in a given network also intuitively have a

higher probability of sharing the similar functionalities compared to the nodes that

do not share any interacting partners or neighbors [80, 86, 64]. These nodes may

not directly interact with each other but they still work towards similar cellular

functionalities and hence should belong to the same modules. It is well known that

transmembrane proteins, such as receptors in signal transduction cascades, tend to

interact with cytoplasmic proteins as well as with extra-cellular ligands, but rarely

interact with themselves [80]. To identify such types of functional modules, many

state-of-the-art block modeling module identification algorithms have been proposed

recently [67, 66, 86, 35]. But those algorithms suffer from the prohibitive computa-

tional complexity due to the inherent combinatorial complexity of the block modeling

problem. Therefore, more efforts need to be made to develop algorithms that can

efficiently identify functional modules based on nodes interaction patterns.

1.2.2 Degree heterogeneity

The degrees of nodes in a biological network obey the power-law distribution:

therefore, there exist many nodes with low degrees and few nodes with high degrees,

which is called degree heterogeneity. Due to degree heterogeneity, it is hard to design

module identification algorithms with the presence of the nodes of very low degrees.

Several algorithms are developed for power-law networks but most of them have not
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been applied on biological networks [20], and most algorithms designed for biological

networks do not consider the degree heterogeneity problem [80, 86, 64, 75, 74, 91, 93].

1.2.3 Biological experiment noise

Currently, the biological interactions in the biological networks generated by high-

throughput experiments are very noisy. For example, it is well known that there are

lots of false positive and false negative interactions presented in the protein inter-

action networks [21]. Therefore, module identification simply based on individual

biological networks may not be able to yield robust and accurate results. We may

need to appropriately integrate other available information in addition to network

topology, such as sequence and function similarity, to repress the noise. Comparative

analysis of multiple biological networks enable us to borrow topological information

across networks and incorporate the corresponding homological information to re-

duce the influence of noise. Many algorithms [22, 94, 46, 39, 116] have been developed

to find conserved modules in multiple networks.

1.3 Our contributions

We develop efficient computational algorithms to overcome the challenges dis-

cussed in the previous section.

1.3.1 Module identification based on interaction pattern

To discover modules with richer topological structures, we devise a novel sub-

gradient method with heuristic path generation [109] to accelerate the optimization

process for the block modeling formulation [80]. To overcome the resolution prob-

lem [30] of the block modeling formulation [80], we propose an algorithm SLCP2 [110]

based on two-hop random walk strategy to identify fine-size functional modules con-

sidering the interaction patterns. Additionally, we propose an non-negative matrix
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factorization (NMF) based framework for more general module identification prob-

lems by sparse regularized. We discuss these algorithms in more details in Chapter

3.

1.3.2 Overcoming the degree heterogeneity

We devise a new local algorithm that can identify densely connected modules with

the existence of low-degree nodes. This new algorithm consists two local steps guided

by optimization principles. The algorithm first searches for a low-conductance set

near a node, which is well separated from the rest of the network and then identifies

the densest sub-network in the low-conductance set to get rid of the low-degree

nodes. This new algorithm with such a principle-guided seed expansion and shrinking

procedure outperforms state-of-the-art module identification algorithms in biological

networks. We present this new algorithm and experimental results in Chapter 5.

1.3.3 Identifying conserved modules in multiple networks

We incorporate homological information across networks to repress the noise in

each individual networks. We extend the block modeling formulation and two-hop

random walk strategy to search functional modules based on interaction patterns

in pairwise biological networks [112], which are discussed in details in Chapter 4.

Furthermore, in Chapter 5, we develop an novel algorithm to identify conserved

modules in multiple networks, which are topological cohesive and possess many-to-

many homological correspondences.

Before we getting into the details of our developed module identification algo-

rithms, we first introduce the background, basic mathematics notations, and related

work to the module identification problem.
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2. RELATED WORK∗

In this chapter, we review the state-of-the-art module identification algorithms

for both individual networks and multiple networks. For individual networks, we

first go through methods of identifying topological cohesive modules and then re-

view algorithms that search functional modules based on interaction patterns. For

multiple networks, we survey the state-of-the-art methods for pairwise and multiple

networks, respectively, based on how they representing multiple networks [89, 54, 99,

46, 22, 94, 39, 116].

2.1 Module identification for topological cohesive modules

To identify topological cohesive modules, many algorithms have been successfully

applied based on modularity optimization [75, 74]. Additionally, several algorithms

based on Markov random walk on networks also have been proposed recently. For

example, Markov CLustering (MCL) algorithm is one of such module identification

algorithms for biological network analysis by iteratively implementing “Expand” and

“Inflation” operations on the transition matrix of the underlying Markov chain of

random walk [26]. Regularized MCL (RMCL) [91, 93] further extends the original

MCL algorithm to penalize the large cluster size at each iteration to obtain more

balanced modules with a similar number of nodes within them. Other formulations

based on Markov random walk, including finding low conductance sets [105], also can

be applied in module identification, which is in fact similar to normalized cut prob-

lems [115] in graph partitioning to minimize the normalized cut size across modules.

Recently, several overlapping module identification methods have been developed to

∗Fig 2.3 in this chapter is reprinted with permission from “A novel subgradient-based optimiza-
tion algorithm for blockmodel functional module identification” by Yijie Wang and Xiaoning Qian,
BMC Bioinformatics, 14(Suppl 2): S23, 2013, Copyright 2013 by BMC Bioinformatics.
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detect densely connected modules that may overlap with each other in networks. For

example, ClusterOne (CONE) [68] can be viewed as the overlapping version of nor-

malized cut. LinkComm (Link community) [1] formulates the overlapping module

identification in an innovative framework to implement the hierarchical clustering on

edge graph representations, which reveals hierarchical and overlapping organization

of networks.

In this section, we review the representative definitions of a topological cohesive

module, such as modularity and conductance, and the corresponding algorithms.

Assuming we have a biological network in graph representation G(V,E), where V is

the set of |V | = n nodes representing proteins or genes, and E = {eij} is the set of

|E| = m edges, which suggest the physical interactions or correlations. The network

G can be presented by an adjacency matrix A, whose element Aij of which equals 1 if

there is an edge between nodes i and j and 0 otherwise. We only consider unweighted

networks with binary edge weights. D is a diagonal matrix with Dii = deg(i), where

deg(i) =
∑

j Aij is the degree of node i. The goal of module identification is to detect

a group of nodes, which perform similar functions or possess identical properties,

barely based on the network topologies.

2.1.1 Community detection based on modularity

Community detection is one of the major directions of functional modules iden-

tification. Community detection aims to identify groups of nodes that are densely

connected inside and loosely connected outside. Intuitively, a good community in

network G(V,E) should be a group of nodes C such that there are many more edges

between the nodes in C than from the nodes in C to nodes in V − C. One impor-

tant definition that has been intensively studied for community detection is called

modularity [74].
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2.1.1.1 The definition of modularity

Basically, modularity expresses the relationship between the actual connectivity

inside a group of nodes C and the expected connectivity in C. The formal mathe-

matical formulation of the modularity of C is

QC =
∑
ij

[Aij − Pij] δ (gi, gj) , (2.1)

where gi denotes the community that node i belongs to and δ(s, t) = 1 if s = t and

0 otherwise. Pij is the expected number of edges between nodes i and j. Matrix P

can be considered as the weighted adjacency matrix of a null model, which has the

same number of nodes in G. P should satisfy the following constraints. First, P is

symmetric, which implies Pij = Pji. Second, QC = 0 when all nodes are placed in a

single group. Setting all gi ∈ C, we have

∑
ij

[Aij − Pij] = 0⇒
∑
ij

Aij =
∑
ij

Pij = 2m. (2.2)

Physically, the equation means that the expected number of edges in the entire null

model equals the number of actual edges in G. Additionally, we require the degree

distribution of the null model is approximately the same to the original network G.

Hence, we need ∑
j

Pij = di, (2.3)

where di is the degree of node i. One widely used null model, which satisfies the

conditions above is

Pij =
didj
2m

. (2.4)

Based on the definition of modularity, we can identify k non-overlapping commu-
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nities {G1, G2, ..., Gk} in G by maximizing the corresponding modularity. For this

k-way partition, node i can be assigned to gi = {1, 2, ..., k}. Then the maximization

of modularity can be written as

max :
∑
ij

∑
gi,gj

[Aij − Pij] δ (gi, gj) . (2.5)

Obviously, (2.5) is a combinatorial optimization problem, which is computational

intractable by exhaustively searching all possible k partitions in G. However, many

algorithms [74, 13, 2] have been proven effective. Prof. Mark Newman, who origi-

nally proposed the definition of modularity, developed a method to approximate the

solution of (2.5) [74] by using the eigen-system of matrix A − P . Blondel devised

a greedy method to handle large-scale networks with good solution quality [13]. [2]

extended the column generation methods for mixture integer programming to find

the exact solution of (2.5).

2.1.1.2 The algorithm based on eigenvectors

Here, we briefly review the community detection method using eigenvectors by

Newman [74]. Following [74], we define a binary n×k community assignment matrix

X, where the ith row indicates the membership of node i and the jth column presents

the jth community. Formally,

Xij =

1 if node i belongs to community j,

0 otherwise.
(2.6)

Note that every row sum of X is 1 and the columns of X are orthogonal.
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Noticing that the δ function in (2.5) is equivalent to

δ (gi, gj) =
k∑
l=1

XilXjl. (2.7)

Then (2.5) can be written as

Q =
∑
ij

∑
gi,gj

[Aij − Pij] δ (gi, gj)

=
n∑

i,j=1

k∑
l=1

[Aij − Pij]XilXjl

=Tr(XTBX),

(2.8)

where B = A − P . There is an implicit constraint for the above problem, which is

X is a binary assignment matrix with
∑

j Xij = 1 and
∑

lXliXlj = 0,∀i 6= j.

Because B is a symmetric matrix, hence, it can be diagonalized B = UΛUT ,

where U = (u1|u2|...) is the matrix of eigenvectors of B and Λ is a diagonal matrix

of eigenvalues Λii = βi. B may not be positive semi-definite matrix, which means βi

may be negative. To alleviate the influence of the negative eigenvalues, we do the

following transformation

Q = Tr(XTBX)

= Tr(XTUΛUTX)

= αn+ Tr(XTU(Λ− αI)UTX).

(2.9)

Here we make use of the fact that Tr(XTX) = n and α is related to the negative

eigenvalues. We further remove n− p eigenvectors, whose corresponding eigenvalues
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smaller than α, then the above equation becomes

Q = αn+ Tr(XTU(Λ− αI)UTX)

≈ αn+ Tr(XTUp(Λp − αIp)UT
p X)

= αn+
k∑
l=1

p∑
j=1

(
n∑
i

√
βj − αUijXil

)2
(2.10)

We define n p-dimensional vectors ri =
√
βj − αUij to characterize each node i in G.

Then
∑p

j=1

(∑n
i

√
βj − αUijXil

)2
=
∑p

j=1

(∑
i∈Gl [ri]j

)2
= |Rl|2, where Rl is the sum

of all p-dimensional vectors that belongs to community l. Finally, the modularity Q

can be approximated by

Q ≈ αn+
k∑
l=1

|Rl|2. (2.11)

Therefore the maximization of modularity is converted to clustering the nodes in

G into groups so as to maximize the magnitudes of the vectors Rl, which is called

vector partition problems. The k-means algorithm can be easily applied to solve the

vector partition problem.

2.1.1.3 The resolution problem

Identification of communities for biological and social networks using modularity

has been proved effective by many researchers [16, 55]. However, [30] pointed out

that using modularity can not resolve some small-size meaningful modules. There-

fore, identification of modules like protein complexes in protein interaction networks

becomes the bottle-neck for modularity based algorithms.

2.1.2 Community detection based on conductance

Another definition that can help us identify community structures in G is con-

ductance [6]. Conductance measures how fast a random walk on G converges to the
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stationary distribution. For a set of nodes C, its conductance is defined as

φ(C) =
|E(C, C̄)|

min{vol(C), vol(C̄)}
, (2.12)

where vol(C) =
∑

i∈C deg(i) and |E(C, C̄)| denotes the connections between sets C

and C̄ = V − C. Finding S with the minimal conductance is called conductance

minimization. In this section, we will discuss several algorithms [95, 6, 26], which

are closely related to conductance.

2.1.2.1 Normalized cut

For a set C, the normalized cut [95] is defined as

Ncut(C) =
|E(C, C̄)|

vol(C)
. (2.13)

Comparing (2.13) with (2.12), obviously, only the denominator is different. When

dividing G into large enough k parts {V1, V2, ..., Vk}, reasonably assuming at each par-

tition vol(Vi) < vol(V̄i), these two definitions are equivalent. Therefore, normalized

cut can be viewed as a special case of conductance.

X is the module assignment matrix and hi presents the ith column of X. X is

in the following feasible solution space

Fk = {X : X1k = 1n, Xij ∈ {0, 1}}. (2.14)

1k and 1n are all one vectors with dimension k and n respectively.
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Detecting k normalized cuts can be formulated as

∑
i

Ncut(Vi) =
∑
i

|E(Vi, V̄i)|
vol(Vi)

=
∑
i

xTi (D − A)xi
xTi Dxi

= Tr




xT1 (D − A)x1

xT1Dx1

0 0

0
xT2 (D − A)x2

xT2Dx2

0

0 0 ...


k×k


= Tr

[
(XTDX)−1XT (D − A)X

]

(2.15)

Our goal is to find the optimal solution X that can minimize the k-way normalized

cuts. The problem can be casted into the following optimization problem:

min : Tr
[
(XTDX)−1XT (D − A)X

]
s.t. X ∈ Fk.

(2.16)

Furthermore, we find that the above problem can be further simplified to the follow-

ing equivalent problem

max : Tr
[
(XTDX)−1XT (A)X

]
s.t. X ∈ Fk.

(2.17)

Defining S = Diag(s1, s2, ..., sk) = (XTDX)1/2, Y = D1/2XS−1 andW = D−1/2AD−1/2,
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we finally have

max Tr(Y TWY )

s.t. Y TY = Ik,

(D−1/2yj)i ∈ {0, s−1
j },∀i, j,

Y S1k = diag(D−1/2),

S = Diag(s1, s2, ..., sk) ∈ Rn
+.

(2.18)

The above problem is a NP-hard combinatorial optimization problem.

Spectral method

A spectral method can be used to approximate the solution of (2.20). Consider

the following relaxed problem of (2.20)

max Tr(Y TWY )

s.t. Y TY = Ik.

(2.19)

Although Tr(Y TWY ) is not convex because W may not be positive semi-definite

matrix, we can retrieve the optimal solution supported by Kay Fan theorem. Based

on the theorem, the optimal Y ∗ is attained at Y ∗ = Uk, whose columns are the

eigenvectors corresponding to the k largest eigenvalues of W . k-means clustering can

be used to obtain a feasible solution in the original constraint set.

Ky Fan Theorem: Let T be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn

and the corresponding eigenvectors U = (u1, ..., un). Then

k∑
i=1

λi = max
XTX=Ik

Tr(XTTX) (2.20)

Moreover, the optimal X∗ is given by X∗ = [u1, ..., uk]Q with Q being an arbitrary

orthogonal matrix.
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Other methods

The k normalized cut problem (2.13) can also be solved by semi-definite program-

ming [95]. For finding the exact solution, one can reformulate (2.13) into a mixture

integer programming and solve it by using linear programming toolbox [28].

2.1.2.2 Local algorithm based on personalized PageRank vector

Andersen [6] developed a local algorithm, called PageRank-Nibble, to find a low-

conductance set near a specific starting node in the network based on a personalized

PageRank vector. The conductance of the set C identified by the algorithm is at most

f(φ(C)), where f(φ(C)) is Ω(
φ(C)2

logm
) (m: the number of edges in G). Furthermore,

the local algorithm can find C in time O(
mlog4m

φ(C)3
). PageRank-Nibble provides us a

powerful weapon to find a low-conductance set near a specific node with theoretical

guarantee with only linear computational complexity with respect to |C|.

Algorithm: ApproximatePageRank (i, α, ξ)
Let p = 0 and r = ei.

While maxi∈V
r(i)

deg(i)
≥ ξ

Choose a node i with
r(i)

deg(i)
≥ ξ.

Apply push(i, p, r) and update pr, r.
Return p ≈ pr(α, ei).

Figure 2.1: The algorithm to approximate the personalized PageRank vector.

Approximation of a personalized PageRank vector

One fundamental step of PageRank-Nibble is to approximate the personalized

PageRank vector around node i. Following [6], the lazy variation of PageRank vector
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is defined as

pr(α, s) = αs+ (1− α)pr(α, s)P , (2.21)

where α is a constant in (0, 1] called the teleportation constant, s is a distribution

called preference vector and P =
1

2
(I − D−1A) is the transition probability matrix

of the lazy random walk on G. The personalized PageRank vector used in (2.21)

requires s = ei, where ei is an all zeros vector with one on the ith entry, meaning that

the preference vector concentrates on the ith node. The pseudo code of the approxi-

mation is displayed in Fig. 2.1, where the subroutine used is shown in Fig. 2.2. The

technical and theoretical details can be found in [6]. The approximation algorithm

has the proven guarantee: maxi∈V
r(i)

deg(i)
≥ ξ.

Algorithm: push (p, r)
Let p′ = p and r′ = r.
p′(i) = p(i) + αr(i).

r′(i) = (1− α)
r(i)

2
.

For node j (Aij = 1), r′(j) = r(j) + (1− α)
r(i)

2deg(i)
.

Return p′ and r′.

Figure 2.2: The push algorithm.

PageRank-Nibble

Once we obtain the approximation of personalized PageRank vector p near node

i, then we can sort the nodes around i base on
p(j)

deg(j)
. Assuming v1, v2, ..., vNp is

the ordering of the nodes around i such that
p(vi)

deg(vi)
≥ p(vi+1)

deg(vi+1)
, we compute the

conductance of the set Cj = {v1, v2, ..., vj}, j ∈ {0, 1, ..., Np}. The set C∗ with the

smallest conductance C∗ = arg min
Cj

φ(Cj) is the result produced by the PageRank

Nibble algorithm.
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2.1.2.3 Markov clustering algorithm (MCL)

MCL [26] is a graph clustering algorithm based on manipulation of transition

probabilities between nodes of the graph. The underlying principle of MCL is still

unknown, which has not prevented its successes on many real-world applications.

We category MCL as a algorithm related to finding low-conductance sets in network

because its similarity to Nibble [100]. Nibble is a local clustering algorithm to recover

the low-conductance set C around node i, whose running time is almost-linear with

respect to |C|. Actually, the PageRank-Nibble algorithm is a variation of Nibble.

MCL iteratively implements “Expand” and “Inflation” operations on the transi-

tion matrix P of the underlying Markov chain of random walk on the given network

G. In the “Expand” step, we perform Pt = Pt−1Pt−1. “Inflation” operation follows

to compute Pt(i, j) =
Prt (i, j)∑n
i=1Prt (i, j)

. Those two operations iterate until Pt converges.

Each row of Pt contains the membership information corresponding to one cluster.

Generally, most of the rows of Pt converge to all zero vectors. The only parameter

of MCL is r, which controls the size of the modules in average sense. If r is large,

then the module size tends to become small.

In comparison to MCL, Nibble also consists of two major steps, which is the

random walk propagation and the removal of unrelated nodes. Nibble computes

the random walk probability vector within the first several steps. It starts with

vector q0 = ev. In the random walk propagation step, qt = Pqt−1 is performed. In

the removal step, the nodes with probabilities smaller than ε · deg(i), where ε =

φ2/(log3m2b), are zero out.

Comparing MCL with Nibble, intuitively, both of them have two similar steps,

random walk propagation and node deletion. The similarity may explain why MCL

yields reasonable results.
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2.1.3 Community detection based on non-negative matrix factorization

Recently, NMF has been successfully applied to network partition problem [47,

24, 106, 19]. The authors in [24, 47] proposed to decompose the adjacency matrix of

a network with undirected edges into symmetric non-negative components to iden-

tify communities under the assumption that all modules consist of highly connected

nodes. Further investigation has demonstrated its potential for detecting overlapping

modules in networks [24, 76, 120].

The authors in [47, 24] propose to decompose the corresponding adjacency matrix

A for a given network into symmetric components for community detection:

min:
X≥0

Γ(X) =
∥∥A−XXT

∥∥2

F
, (2.22)

where X is a non-negative matrix of size n × k and k is the number of potential

modules. X can be naturally interpreted as the module assignment matrix. A

multiplicative updating algorithm SymNMF MU [24] has been proposed to solve

this problem (2.22).

Xik ← Xik

(
1− γ + γ

(AX)ik
(XXTX)ik

)
, γ ∈ (0, 1] (2.23)

However, SymNMF MU may not converge to a stationary point. SymNMF NT [47]

is a Newton-like algorithm, which solves the problem (3.17) by lining up the columns

of X. SymNMF NT converges to a stationary point. However, it has relatively larger

memory consumption requirement [47].
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2.2 Module identification based on interaction patterns

There are many algorithms developed to identify functional modules with the

consideration of interaction patterns. For example, Power Graph (PG) [86] greed-

ily collects topological similar nodes into the same module based on Jaccard Index

similarity. Graph Summarization (GS) [67, 66] uses the minimum description length

principle to group nodes with similar interaction patterns. However, both PG and

GS are solved by greedy algorithms, which can not guarantee the global optimality.

Additionally, they tend to over-segment the network to get relatively small modules

based on our empirical experience. A Bayesian framework [35] based on a stochas-

tic block modeling formulation has been developed to identify modules as well as

the optimal number of modules. However, the algorithm only guarantees to con-

verge to local optima. Reichardt [84] has proposed to solve block modeling module

identification by optimally mapping the given network to an image graph using sim-

ulated annealing (SA), and several optimization strategies also have been proposed

to accelerate the original SA algorithm [107, 108]. NMF based optimization frame-

works [106, 19] are proposed to find functional modules by explicitly considering the

underlying image graph of a network, however, there is no convergence guarantee for

the developed algorithms. In this section, we review the optimization formulations

of block modeling.

2.2.1 Block modeling based on the image graph

We first review block modeling module identification by functional role decom-

position proposed by [85, 83, 80]. For module identification of network G, we search

for a non-overlaping module mapping τ which assigns n nodes in V to q different

modules: τ : V 7→ U , in which U = {u1, . . . , uq} represent the module space—a

set of virtual module nodes (Fig. 2.3). To obtain the optimal module identification,
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Figure 2.3: Mapping to the module space as an introduced image graph. The shaded nodes de-
note highly connected modules and the hollow nodes are for modules of which nodes have similar
interaction patterns.

[85, 83, 80] introduce the virtual image graph M = {U, I} in the module space to

preserves the original network interactions by the edges I. Note that when q = n,

the obvious optimal image graph is the network itself.

Mathematically, the optimal τ should minimize the mismatch between the given

network G and the introduced image graph M . Suppose we have the adjacency

matrix of the image graph by B, where Brs records the interaction between module

nodes ur and us. In order to make the image graph Bτiτj match the network Aij

as much as possible, we search for the optimal module mapping τ and minimize the

following error function [83, 80]:

E(τ, B) =
1

M

N∑
i 6=j

(Aij −Bτiτj)(wij − pij),
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in which wij denotes the weight given to the edge between node vi and vj (in this

paper wij = 1 when node vi and vj have an interaction, and wij = 0 otherwise);

M =
∑N

i 6=j wij is used to bound the error function between 0 and 1; (wij − pij)

denotes the error made on the edge between vi and vj with pij as the penalty for

the mismatches of the corresponding absent edges. Self-links in the original network

are not considered with both wii = 0 and pii = 0. Typically, pij is chosen to make

the total mismatches error on existing edges (wii > 0) equal that on absent edges

(wii = 0):
∑N

i 6=j Aij(wij−pij) =
∑N

i 6=j(1−Aij)pij. In order to guarantee this equality,

we follow one of possible choices [83] to let pij =
∑
k 6=i wik

∑
l6=j wlj∑

k 6=l wkl
.

From the equation of E(τ, B), we find that Bτiτj = Aij, which means the image

graph preserves an edge (either existing edge or absent edge) in the original network,

leads to E(τ, B) = 0. Otherwise, Bτiτj 6= Aij, which means image graph does not

preserve an edge in original network, leads to E(τ, B) = pij when miss-matching the

absent edge or E(τ, B) = wij−pij when miss-matching the existing edge. By further

investigating E(τ, B), we find that minimizing E(τ, B) is equivalent to maximize

1
M

∑N
i 6=j(wij−pij)Bτiτj which can be rewritten as maxτ,B

1
2M

∑N
i 6=j(wij−pij)(2Bτiτj−1)

by using binary trick. Furthermore, we can formulate the objective function as

Q(τ, B) = 1
2M

∑
r,s

∑N
i 6=j(wij − pij)δτirδτjs(2Brs − 1). For the original nodes assigned

to module node ur and us by τ , we have the corresponding term as
∑N

i 6=j(wij −

pij)δτirδτjs(2Brs− 1), in which δτir is the indicator function that takes 1 when τi = r

and 0 otherwise. It is clear that the optimal solution for Brs with a given τ is to

set Brs = 1 when its corresponding term
∑N

i 6=j(wij − pij)δτirδτjs is larger than 0, and

0 otherwise. Hence, the optimal solutions of τ and B are naturally decomposed.

The optimal image graph B can be derived in a straightforward way once we have

the optimal module mapping τ , which maximizes the following equivalent objective
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function:

Q∗(τ) =
1

2M

q∑
r,s

∣∣∣∣∣
N∑
i 6=j

(wij − pij)δτirδτjs

∣∣∣∣∣ . (2.24)

The maximization problem (2.24) is NP hard as it can be polynomially trans-

formed to the classical quadratic assignment problem [61]. In [80], SA has been

applied for the optimization, in which the time complexity increases quadratically

with increasing q. While in practice, the search space for annealing parameters gets

larger with increasing q too, and it can obtain high quality results only for very slow

cooling schedules. For a large q (≥ 100), SA will be a time-consuming procedure.

2.2.2 Block modeling based on NMF

For block modeling module identification, one recent algorithm—BNMF [19]—

has been derived base on the following formulation:

min:
X≥0, 0≤M≤1

∥∥A−XMXT
∥∥2

F
+ λ

∥∥M ideal −M
∥∥2

F
, (2.25)

where M and M ideal represent the adjacency matrices of the introduced image graph

and the “ideal image matrix”, respectively. M ideal is the function of M , which is

defined by M ideal
ij = argmin

u∈{0,1}
|u−Mij| and approximated by a sigmoid function in

the proposed projected descent algorithm. However, there is no convergence proof

provided for BNMF.

2.3 Module identification for multiple networks

It is well known that protein interaction networks are noisy. There exist many

false positive and false negative edges. Therefore, it is very challenging to assign func-

tional roles to proteins and separate true protein-protein interactions from false posi-

tive interactions. Across species comparison may provide us a valuable framework to
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address those challenges. Finding conserved modules in biological networks of multi-

ple species has attracted researchers attention due to its capacity of identifying net-

work regions that conserved in their sequences and interaction patterns across species.

Algorithms of pairwise and multiple networks [89, 54, 99, 46, 22, 94, 39, 116] have

been successfully applied for searching conserved pathways and complexes. Align-

Nemo [22], NetworkBlast [94] and MaWISh [46] can only handle pairwise networks by

constructing pairwise networks into alignment networks. NetworkBlast-M [39] and

OrthoClust [116] can deal with multiple networks but suffer from the low coverage

and the resolution problems [30], respectively.

The most challenging part of finding conserved modules across networks, again an

NP hard problem, is how to compromise between the time and space complexities of

the algorithms and the accuracy of the alignment results. One fundamental problem

is the data representation of multiple networks. Based on different data represen-

tations, different algorithms are designed to solve the difficult tasks. Therefore, we

go through the state-of-the-art algorithms by the ways they integrate the multiple

networks.

In this section, a set of K networks G = {G1(V1, E1), G2(V2, E2), ..., GK(VK , EK)}

is presented by a set of adjacency matrices A = {A1, A2, ..., AK}, and the orthology

relationships between them are kept in S, where S(i, j), ∀i ∈ Gs, j ∈ Gt is the

orthology correspondence between node i in network Gs and node j in network Gt.

For algorithms using pairwise networks, a pair of networks {G1, G2} and their

orthology relationship S12 are represented by a product graph, which is the Carte-

sian product of the two networks containing every possible combinations between

nodes across species. [54, 99] are developed based on the product graphs. An

alignment network consists of nodes across networks with orthology correspondence

and edges, which are the conserved interactions. The alignment network is the ba-
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sic data representation for many state-of-the-art pairwise networks alignment algo-

rithms [99, 46, 22, 94]. Researchers extend pairwise networks alignment to multiple

networks alignment by representing the integration of G and S using a K layer

graph [39, 116], which is also called layered alignment graph GH(∪iVi, E) where E

is the union of ∪iEi and EH denoting inter-layer edges corresponding to S. The

existing multiple networks alignment algorithms [39, 116] are based on K layered

alignment graphs due to computational considerations.

2.3.1 Algorithms based on the product graph

Let Ga and Gb be two biological networks to align. Two networks has Na and Nb

nodes respectively. We define B ∈ R(Na×Nb)×(Na×Nb) as the Cartesian product graph

GB from Ga and Gb: B = Ga ⊗Gb. Denote the all one vector 1 ∈ RNa×Nb and

B̄ = B ×Diag(B1)−1, (2.26)

where Diag(B1) can be considered as a degree matrix with B1 on its diagonal and

all the other entries equal zero. B̄ is the transition probabilities for the underly-

ing Markov random walk in IsoRank [99]. It is well known that if Ga and Gb are

connected networks and neither of them is bipartite graph, then the corresponding

Markov chain represented by B̄ is irreducible and ergodic, and there exists a unique

stationary distribution for the underlying state transition probability matrix B̄.

2.3.1.1 IsoRank

[99] IsoRank is a pairwise network alignment algorithm based on random walk

on the product network GB. IsoRank is derived based on the intuition that a pair

of nodes is aligned together if their neighborhood nodes aligned together. Instead

of finding the alignment directly, IsoRank first computes the similarities between all
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node pairs in two networks based on their neighborhood topologies and sequence in-

formation. The all-to-all similarity scores can be obtained by finding a right maximal

eigenvector of the matrix B̄: B̄x = x and 1Tx = 1, x ≥ 0. When two networks are

of reasonable size, spectral methods as well as power methods can be implemented

to solve the eigen-system. When we obtain r, a bipartite network on networks Ga

and Gb can be constructed, edges of which are the similarities scores stored in r. The

alignment result of IsoRank then can be attained by solving the maximal matching

problem in the bipartite network.

2.3.1.2 IsoRankN

[54] IsoRankN is the extension of IsoRank. Computationally, it is very hard to

store the product network of three or more networks. For example, for three 100-node

networks, the size of the product network of them is 1000,000× 1000,000. The size

of real-world networks are much larger than 100, therefore it is memory prohibitive

to use the product network for multiple networks alignment problem. Instead, Iso-

RankN computes the pairwise alignment similarity scores and then constructs a k-

partite network. Then the local algorithm based on the personalize PageRank vector

introduced in section 2.1.2 is applied to the k-partite network to find the alignment

results.

2.3.2 Algorithms based on the alignment network

Another widely used data representation is the alignment network. For two net-

works Ga(Va, Ea) and Gb(Vb, Eb) and their across-network correspondence S, the

alignment network Ḡ can be constructed as following. For nodes u in Ga and v

in Gb, if S(u, v) > 0, then the node pair (u, v) is considered as a node in Ḡ. If

(u, u′) ∈ Ea, (v, v′) ∈ Eb and S(u, v) > 0, S(u′, v′) > 0, then there is an edge

between node (u, v) and (u′, v′) in Ḡ.
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2.3.2.1 AlignNemo

[22] AlignNemo propose a heuristic way to build a union network, which is

a variant alignment network. A seed-expansion algorithm is then implemented to

identify the conserved complexes in two protein interaction networks.

2.3.2.2 MaWISh

[46] MaWISh, which is short for Maximum Weight Induced Subgraph, is a frame-

work for alignment of pairwise protein interaction networks with the consideration

of the influence of evolution. Based on the duplication/divergence models, a classic

evolution model, MaWISh converts the match, mismatch and duplication of both

sequence and network structure into mathematical formulation. Then a heuristic

algorithm is developed to find the alignment on the alignment network.

2.3.2.3 NetworkBlast

[94] NetworkBlast is also developed based on the alignment network. After the

construction of a alignment network, d-subnetworks are identified if the densities

of them are statistically significant. NetworkBlast then follows the seed-expansion

algorithm.

2.3.3 Algorithms based on the layered alignment network

2.3.3.1 NetworkBlastM

[39] NetworkBlastM is multiple networks version of NetworkBlast. Because con-

struction of the alignment networks of multiple networks is limited by the memory

capacity, NetworkBlastM finds d-subnetworks on the layered alignment network in-

stead. NetworkBlastM and NetworkBlast are almost the same except their data

representation of the multiple networks.
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2.3.3.2 OrthoClust

[116] OrthoClust is a computational framework to identify conserved cross-

species modules by integrating the co-association networks of individual species with

the orthology relationships between species. Recently, it has been successfully ap-

plied to the comparative analysis of the transcriptome across distant species (human,

fly and worm) [32].

For K networks of different species with orthology relationship, the objective

function of OrthoClust for identifying k conserved modules across species is as fol-

lowing

H =
∑
i

XT
i (Ai − Pi)Xi + κX̂TSX̂, (2.27)

where Xi is the module assignment matrix of size |Vi| × k for network Gi and X̂ is

the stack of all module assignment matrix

X̂T =
[
XT

1 , X
T
2 , ..., X

T
k

]
. (2.28)

The first term of (2.27) is the sum of the modularities of every networks, which

aims to make sure modules in each network are as cohesive as possible. The sec-

ond term of (2.27) computes the conserved orthology information for the current

module assignment results. Therefore, maximization of (2.27) leads us to find con-

served modules, which have densely connected structures as well as close orthology

correspondence.

In [116], the authors propose a simulated annealing algorithm to solve the combi-

natorial optimization. To obtain a stable solution, the simulated annealing algorithm

is implemented many times to yield many solutions and the overlapped parts of those

solutions are considered to be the final output of OrthoClust. The procedure of Or-
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thoClust implies that OrthoClust may be very time consuming and the quality of the

solution is hard to guarantee. Actually, in their open source codes, published online,

we find they use a greedy algorithm based on the framework of [116]. Because the

framework of OrthoClust is based on network modularity [116], it inevitably suffers

from the resolution problem, which force it to ignore functional modules with small

sizes.
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3. BLOCK MODELING FOR INDIVIDUAL PROTEIN INTERACTION

NETWORKS∗

In this chapter, we introduce three algorithms we developed based on the concept

of block modeling and verify their performance on synthetic and real-world networks.

First, in section 3.1, we present an efficient algorithm to solve the classic block mod-

eling formulation [80], which is originally solved by simulated annealing algorithm.

Then, to overcome the resolution problem of the block modeling formulation [80],

we propose a novel formulation based on two-hop random walk on networks and

develop algorithms to identify non-overlapping and overlapping functional modules

in section 3.2. At last, in section 3.3, we introduce an algorithm for a flexible NMF

based formulation with sparse regularization to detect functional modules based on

interaction patterns with convergence guarantee.

3.1 Sub-gradient Frank-Wolfe method with path generation

Functional module identification based on block modeling is NP hard. The op-

timization formulation in [80] has an objective function that is highly nonlinear and

non-convex with many local optima. It is computationally prohibitive to obtain the

optimal modules in large-scale networks. Simulated Annealing (SA) has been pro-

posed to obtain the global optimum in [80]. However, it requires a very slow cooling

down procedure to guarantee the solution quality. In addition, its computational

time increases quadratically with the number of modules to identify. In order to

∗Part of the content of the first section in this chapter is reprinted with permission from “A
novel subgradient-based optimization algorithm for blockmodel functional module identification”
by Yijie Wang and Xiaoning Qian, BMC Bioinformatics, 14(Suppl 2): S23, 2013, Copyright 2013
by BMC Bioinformatics. Part of the content of the second section in this chapter is reprinted with
permission from “Functional module identification in protein interaction networks by interaction
patterns” by Yijie Wang and Xiaoning Qian, Bioinformatics, 30(1): 81-93, 2014, Copyright 2014
by Bioinformatics.
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identify fine-grained functional modules in genome-scale biological networks, more

efficient algorithms are needed.

In this section, we propose an efficient optimization method—subgradient with

path generation(SGPG) method to solve the difficult non-convex combinatorial op-

timization problem by combining the subgradient(SG) convex programming with

heuristic path generation (PG) method. PG is proposed to make use of obtained

local optima to search for better solutions. We evaluate the performances of our

functional module identification algorithms with SA in two biological networks: Sac-

charomyces cerevisia (Sce) PPI network from the Database of Interacting Proteins

(DIP) [90] and Homo sapien (Hsa) PPI network collected from the Human Protein

Reference Database (HPRD version 9) [82]. The results show that our new SGPG

method achieves high quality solutions with significantly reduced computation time

compared to SA. Furthermore, we have implemented SGPG and the Markov Clus-

tering (MCL) algorithm [26] to these two PPI networks. The results demonstrate

that SGPG can identify additional biologically meaningful modules that MCL may

miss, which may lead to a better understanding of functional organization of these

biological networks.

3.1.1 Methodology

3.1.1.1 Block modeling framework

We first review block module identification by functional role decomposition pro-

posed by [85, 83, 80]. Given a biological network, we can mathematically represent

it as a graph G = {V,E}, where V = {v1, v2, . . . , vn} are network nodes representing

biomolecules, n is the number of nodes in G, and E are edges representing interac-

tions among molecules. The network topology can be completely determined by its

corresponding adjacency matrix A, where matrix entries Aij record the interactions
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between the pairs of nodes: vi and vj in G. For module identification, we search for

a non-overlap module mapping τ which assigns n nodes in V to q different modules:

τ : V 7→ U , in which U = {u1, . . . , uq} represent the module space—a set of virtual

module nodes (Fig. 2.3). To obtain the optimal module identification, [85, 83, 80]

introduced the virtual image graph M = {U, I} in the module space to preserves

the original network interactions by the edges I. Note that when q = n, the obvious

optimal image graph is the network itself.

Mathematically, the optimal τ should minimize the mismatch between the given

network G and the introduced image graph M. Suppose we have the adjacency

matrix of the image graph by B, where Brs records the interaction between module

nodes ur and us. In order to make the image graph Bτiτj match the network Aij

as much as possible, we search for the optimal module mapping τ and minimize the

following error function [83, 80]:

E(τ, B) =
1

M

n∑
i 6=j

(Aij −Bτiτj)(wij − pij),

in which wij denotes the weight given to the edge between node vi and vj (in this

section wij = 1 when node vi and vj have an interaction, and wij = 0 otherwise);

M =
∑n

i 6=j wij is used to bound the error function between 0 and 1; (wij − pij)

denotes the error made on the edge between vi and vj with pij as the penalty for

the mismatch of the corresponding absent edges. Self-links in the original network

are not considered with both wii = 0 and pii = 0. Typically, pij is chosen to make

the total mismatch error on existing edges (wii > 0) equal to that on absent edges

(wii = 0):
∑n

i 6=j Aij(wij−pij) =
∑n

i 6=j(1−Aij)pij. In order to guarantee this equality,
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we follow one of possible choices [83] to let pij =
∑
k 6=i wik

∑
l 6=j wlj∑

k 6=l wkl
.

From equation of E(τ, B), we find that Bτiτj = Aij, which means image graph

preserves an edge (either existing edge or absent edge) in the original network, leads

to E(τ, B) = 0. Otherwise, Bτiτj 6= Aij, which means image graph does not preserve

an edge in original network, leads to E(τ, B) = pij when miss-matching the absent

edge or E(τ, B) = wij − pij when miss-matching the existing edge. By further

investigating E(τ, B), we find that minimizing E(τ, B) is equivalent to maximize

1
M

∑n
i 6=j(wij−pij)Bτiτj which can be rewritten as maxτ,B

1
2M

∑n
i 6=j(wij−pij)(2Bτiτj−1)

by using binary trick. Furthermore, we can formulate the objective function as

Q(τ, B) = 1
2M

∑
r,s

∑n
i 6=j(wij − pij)δτirδτjs(2Brs − 1). For the original nodes assigned

to module node ur and us by τ , we have the corresponding term as
∑n

i 6=j(wij −

pij)δτirδτjs(2Brs− 1), in which δτir is the indicator function that takes 1 when τi = r

and 0 otherwise. It is clear that the optimal solution for Brs with a given τ is to

set Brs = 1 when its corresponding term
∑n

i 6=j(wij − pij)δτirδτjs is larger than 0, and

0 otherwise. Hence, the optimal solutions of τ and B are naturally decomposed.

The optimal image graph B can be derived in a straightforward way once we have

the optimal module mapping τ , which maximizes the following equivalent objective

function:

Q∗(τ) =
1

2M

q∑
r,s

∣∣∣∣∣
n∑
i 6=j

(wij − pij)δτirδτjs

∣∣∣∣∣ . (3.1)

The maximization problem (3.1) is NP hard as it can be polynomially trans-

formed to the classical quadratic assignment problem [61]. In [80], SA has been

applied for the optimization, in which the time complexity increases quadratically

with increasing q. While in practice, the search space for annealing parameters gets

larger with increasing q too, and it can obtain high quality results only for very slow

cooling schedules. For a large q (≥ 100), SA will be a time-consuming procedure.
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Figure 3.1: An example of path generation: A. Network structure. B. Path generation procedure.

3.1.1.2 Subgradient with path generation method (SGPG)

We propose to speed up the block module identification problem by convex pro-

gramming and heuristic path generation method. PG is originally proposed in this

section as a new useful heuristic to combine with subgradient algorithms to efficiently

solve the hard combinatorial optimization problem. The combination of SG and PG

can dramatically reduce the computational time with competitive numerically and

biological performance comparing to SA method for the block module identification

problem. The basic idea is first using the fast sungradient convex programming

method to obtain the local optima, then using path generation method to search for

better solutions. SG and PG are described in the following sections.

3.1.1.3 Subgradient convex programming method (SG)

Module identification problem in matrix form

We now reformulate the module identification problem in (3.1) in matrix form

by introducing an assignment matrix X corresponding to the module mapping τ .

To identify q non-overlapping functional modules in G, the assignment matrix X

is defined as an n × q matrix with each entry Xir = 1 when vi is assigned to the

module ur or equivalently, τi = r; and Xir = 0 otherwise. In other words, Xir = δτir.
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Each column in X corresponds to an image module node in which all the assigned

network nodes take the value “1”. We further use W to denote the weight matrix

with each entry as the corresponding edge weight wij, and P as the penalty matrix

with each entry as the corresponding penalty pij. The objective function in (3.1) can

be rewritten in the following equivalent matrix form:

Q∗(τ) = f(X) =
∥∥XT (W − P )X

∥∥
L1

(3.2)

The sum of each row in X has to be the unity and the columns of X are orthogonal

to each other. In addition, if we assume that each node has to be assigned to

one module, the assignment matrix X has to satisfy the normalization condition

X1q = 1n, in which 1q and 1N denote the q-dimensional and n-dimensional vectors

of all ones. Hence, the optimal solution for the assignment matrix X lie in the space

φ = {X ∈ {0, 1}n×q , X1q = 1n}, we have the convex programming formulation

based on image graph:

minX : F (X) := −
∥∥XT (W − P )X

∥∥
L1

s.t. X ∈ φ.
(3.3)

Note that we have converted our maximization problem into a minimization problem

for the convenience of introducing subgradient methods in convex programming [11].

We denote Q = XT (W − P )X with its entries Qrs = XT
r (W − P )Xs, where Xr is

the rth column of X. Again, with the optimal assignment matrix X, we can derive

the topology of the image graph B: Brs = 1 if Qrs > 0, and 0 otherwise.

Subgradient

We note that the optimization problem (3.3) is a non-smooth combinatorial op-

timization problem as the objective function involves the L1 norm of the matrix
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Q. To solve this hard optimization problem, we first relax the binary constraints

X ∈ {0, 1}n×q in (3.3) by continuous relaxation X ∈ [0, 1]n×q and use γ to represent

the relaxed constraint set, which is a convex hull after relaxation. To address the

nonlinearity of the matrix L1 norm objective function F (X) = −‖Q‖L1
with the re-

laxed linear constraints, we propose to use Frank-Wolfe algorithm [11] to iteratively

solve the following optimization problem with a linear objective function from the

approximation by the first-order Taylor expansion:

minX : F (X t)+ < ∇F (X t), (X −X t) >

s.t. X ∈ γ,
(3.4)

where X t is the current solution, < , > is the inner product operator, and the new

objective function is from the first-order Taylor expansion. The problem (3.4) at each

iteration is a linear programming problem to search for the local extreme point along

the gradient ∇F (X t) as in steepest descent. However, as previously stated, F (X t)

takes the matrix L1 norm, which is non-smooth, and therefore non-differentiable. To

address this last complexity, we apply subgradient methods [11] to replace ∇F (X t)

by a subgradient ∂F (X t) instead [8]:

Definition (Subgradient): A matrix ∂F ∈ Rm×n is a subgradient of a function F :

Rm×n → R at the matrix X̄ ∈ Rm×n if F (Z) ≥ F (X̄)+ < ∂F, (Z − X̄) >,∀Z ∈

Rm×n.

In our case, the subgradient of the matrix L1 norm can be presented by its dual

norm—matrix L∞ norm, which is used to derive the subgradient ∂F (X t). Similar

to the derivation for the subgradient of the L1 norm of vectors in L1 regularization
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in [8], we show that the subgradient of the L1 norm of any matrix X̄ is

∂
∥∥X̄∥∥

L1
=


{
Y ∈ Rm×n; ‖Y ‖L∞ ≤ 1)

}
, if X̄ = 0;{

Y ∈ Rm×n; ‖Y ‖L∞ ≤ 1 and < Y, X̄ >=
∥∥X̄∥∥

L1

}
, otherwise,

(3.5)

where 0 is a m × n matrix of all zeros. For our module identification problem, we

have the following proposition derived from (3.5):

Proposition 1. The subgradient of the objective function of our relaxed optimiza-

tion problem F (X) at the assignment X t can be defined as: ∂F (X t) = 2(P−W )X tQ.

In our implementation, we choose

Qrs =


α Qrs = 0;

1 Qrs > 0;

−1 Qrs < 0,

(3.6)

where α is a number between [−1, 1].

Proof: From (3.5), there always exists a Q satisfying
∥∥Q∥∥

L∞
≤ 1 and ‖Q‖L1

=<

Q,Q >. As ∂ ‖Q‖L1 = ∂ < Q,Q > and the subgradient of differentiable func-

tions is equal to its gradient [8], we have ∂F (X t) = −∂ [‖Q‖L1] = −∂ < Q,Q >=

−∂tr(Q
T
X tT (W −P )X t) = 2(P −W )X tQ when X t is close to local minima. QED.

Convex programming method

Using Frank-Wolfe algorithm with the derived subgradient, we now have a condi-

tional subgradient method [8] to iteratively solve the relaxed optimization problem

as shown in the pseudo-code given in the following Algorithm.
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Algorithm: Conditional Subgradient
Input: initial value Xt, t = 0.

Do:

(i) Compute the subgradient ∂F (Xt).

(ii) Solve the minimization problem:

X∗ = arg minX : < ∂F (Xt), X > s.t. X ∈ γ

(iii) Linear search for the step in the direction X∗−Xt found in (ii), update Xt, t = t+1.

Until: |4F |+ ‖4Xt‖ < ξ

Output: Xt.

In this algorithm, step (ii) at each iteration can be solved using a generic linear

programming solver in O((qN)3.5). However, due to the special structure of the op-

timization problem, we instead solve it as a semi-linear assignment problem(because

assignment matrix [∂F (X t)]n×q is not a square matrix), which can be efficiently

solved by assigning node i to module r, which is the index of the largest entry in row

i of subgrident ∂F (X t) with the time complexity O (n× q).

To get the solution to the original problem (3.3) from the results of the relaxed

problem by the conditional subgradient algorithm, we recover from the relaxed so-

lution to a closest feasible solution by a simple rounding up strategy. Finally, we

note that the presented conditional subgradient algorithm converges to a stationary

point of the combinatorial optimization problem (3.3) [11] due to the non-convex

nature of the objective function (3.2) with the worst case complexity O (n3). Hence,

good initialization is critical to get high quality results. In our current implemention,

we initialize X t by a modified Expectation-Maximization (EM) algorithm presented

in [71].
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3.1.1.4 Path generation method(PG)

In order to make use of the local optima found by the fast subgradient method,

we proposed a novel path generation method for our combinatorial optimization

problem. The path generation method aims to conserve the overlaps between two

local optima results, and get improvement based on the overlaps which make great

contribution to the objective value. Our path generation is inspired by path relinking

method which connects two combinatorial local optima and try to find better result

along the connection [61]. However, our method is not to relink two local results but

to create new paths by extracting useful overlaps between them.

The essential idea of the path generation method is to construct new results

by preserving useful overlaps between modules from two local optima. Given two

solutions xA and xB as the new path generators, PG generates new results and

explores the search space on basis of maintaining the current productive overlaps

between xA and xB. Let Nr(xA) denote the module ur of xA and Ns(xB) the module

us of xB. The contribution X(r, s) by maintaing the overlap Over(rA, sB) between

Nr(xA) and Ns(xB) is defined as:

X(r, s) = ‖sTAB(W − P )XA‖L1 + ‖sTAB(W − P )XB‖L1 (3.7)

in which sAB is a binary vector, of which each element is equal to 1 when the

corresponding node is in both Nr(xA) and Ns(xB), and 0 otherwise. The value of

X(r, s) is the shared contribution to the objective function Q∗ in (3.1) between

Nr(xA) and Ns(xB) in two feasible solutions. XA and XB are assignment matrix of

the two solutions. Then the most promising overlap between modules rA and sB are

determined by

(rA, sB) = argmax{X(r, s) : r, s ∈ {1, ..., q}}. (3.8)
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The path generation based on (3.8) proceeds in the following manner: First, the

most promising overlap Over(rA, sB) between modules rA and sB of the initiating

solution xA and the guiding solution xB are identified by (3.8), then rA is locally

adjusted to become Over(rA, sB) by removing nodes. After the adjustment, a new

solution x1 is generated and CA = {rA} and CB = {sB}, where CA and CB denote

the sets of used modules in both solutions. Local search is then applied to find the

improved x∗1. Then we preserve x∗1 and let xA = x∗1 and repeats the above procedure

until no overlap exists or other termination condition (for example, Nstop = 5 means

that there are no larger than 5 nodes overlap modules exist in both solutions). In the

end, we obtain the best solution along the generated results. The whole procedure

is illustrated as following:

Algorithm: Path Generation (PG) Method
Input: xA, xB , x, xbest, Nstop, CA = Ø, CB = Ø, Over = +∞, Qbest = −∞

While(Over > Nstop)

(1) (rA, sB) = argmax{S(r, s) : r, s ∈ {1, ..., q}} and find Over(rA, sB);

(2) modify nodes from rA in x to make Nr(x) = Over(rA, sB) and CA = {rA}, CB = {sB};

(3) (Q∗x, x
∗) = LocalSearch(x);

(4) If (Q∗x > Qbest)

(5) Qbest = Q∗x and xbest = x∗;

(6) EndIf

(7) xA = x∗ and find the next Over set using (3.8);

EndWhile

Output: xbest and Qbest.

To illustrate how PG works, an example of the path generation procedure is

shown in Fig. 3.1. The modules organization of the given network is shown in

Fig. 3.1A. Assume xA = {{1, 2, 4}, {5, 6}, {3, 7}} with Q∗xA = 0.201 and xB =

{{1, 2}, {3, 4}, {5, 6, 7}} with Q∗xB = 0.238. Starting with CA = CB = Ø, a path is

generated. At the first step, the most productive overlap between module rA = uA1 in
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xA and sB = uB1 in xB is identified, and a new solution x1 is obtained by modifying

rA = uA1 to be the same as Over(uA1 , u
B
2 ) with Q1 = 0.201. Update CA = {uA1 }

and CB = {uB1 }. Local search further improves the solution to obtain x∗1 with

Q∗1 = 0.374 and let then xA = x∗1. Next, module rA = uA2 and sB = uB2 have

the largest contribution overlap. By similarly modifying N2(xA) = Over(uA2 , u
B
2 ),

we then generate a path x∗2 with Q∗2 = 0.374. In the end, we make N3(xA) =

Over(uA3 , u
B
3 ) and get the finally path x∗3 with Q∗3 = 0.374. The PG algorithm is

executed with the time complexity O(n3).

3.1.2 Experimental results

We have implemented our SGPG method to identify functional modules in two

biological networks: Sce PPI network from DIP [90] and Hsa PPI network from

HPRD [82]. We first show the efficiency of SGPG comparing to these of SA for

functional module identification in two networks with q = 10, 50 and 100. We

further evaluate the potential of SGPG to identify biologically meaningful modules by

contrasting the differences of the fine-grained modules (q = 500 for Hsa network and

q = 300 for Sce network) detected by MCL algorithm [26], we show that SGPG can

unearth certain kinds of biologically meaningful modules that may not be detected

by MCL.

3.1.2.1 Comparison between SA and SGPG for coarse-grained modules

We first compare SA and SGPG for the analysis of two PPI networks for small

number of modules (q = 10, 50, 100) due to the large computation time of SA when

q > 100. The Hsa PPI network has a largest component of 9,270 nodes and 36,917

edges. The upper bound of the objective function value in (3.1) Q∗max = 0.98 when we

consider the original network itself as the image graph with q = 9,270. We also have

implemented our algorithm to the Sce PPI network, which has a largest component
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of 4990 nodes and 21,911 edges with the upper bound Q∗max = 0.97 when q = 4990.

The parameters used by SA and SGPG are listed in Table 3.1. The starting

temperature has been set sufficiently high for SA algorithms. The cooling down

procedure in SA is slow enough to avoid freezing in metastable states (local optima).

For SGPG, we set the local results number Nset to 10 (the number of local optima)

and the terminal condition Nstop = 5 (when largest overlap set Over less than 5,

then stop) and use path generation method to improve the solution quality.

Table 3.1: Parameter settings in SA and SGPG

Para. Cβ Tstart Tend Tsweep Tswitch Nset Nstop.
SA 0.99 40 0.001 100 20 - -
SGPG - - - - - 10 5

Table 3.2 gives the comparison of the fitting score Q∗ given in (3.1) and the run-

ning time between SA and SGPG. The fitting score Q∗ obtained by two algorithms

with different q serve as the criterion of the solution quality or accuracy that reflects

the mathematical optimality by (3.1) as we do not have the ground truth of actual

functional modules in two networks. All the experiments are based on a C++ imple-

mentation on a MacPro Station with a 2.4GHz CPU and 6Gb RAM. From Table 3.2,

the quality of the final solutions by SGPG is competitive to the results of SA with the

largest gap 3.9% in Q∗ with q = 100 for Hsa. At the same time, SGPG is consistently

faster than SA. As shown in Table 3.2, computation time for both SA and SGPG

grows quadratically with q but SGPG is significantly faster than SA especially when

q become large. This makes a big difference when we need to identify a large number

of modules with q increases over 200. For example, to identify q = 300 modules in

the Hsa network, SA needs more than two months to finish one round computation
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using the same settings in Table 3.1, while SGPG only needs around three days to

obtain the results.

Table 3.2: Comparison of SA and SGPG on Hsa and Sce

PPI Method Q∗(q=10) Time(h) Q∗(q=50) Time(h) Q∗(q=100) Time(h)
Hsa SA 0.5393 1.73 0.6530 45.07 0.7180 180.26

SGPR 0.5346 0.5 0.6452 1.95 0.6898 6.35
Sce SA 0.5692 1.35 0.6834 25.02 0.7544 102.65

SGPR 0.5690 0.3 0.6752 1.15 0.7292 3.34

To further investigate whether these two different block modeling based methods

have the potential of identifying biologically meaningful modules, we perform Gene

Onotolgy (GO) enrichment analysis for the identified modules using GoTermFinder [15].

Fig. 3.2 shows the comparison of the number of significantly enriched modules with

different q using SA and SGPG. From both figures, SA has identified many GO

enriched modules for all cases and SGPG achieves competitive performances.

3.1.2.2 Comparison between SGPG and MCL

In order to demonstrate the biological significance of module identification by

block modeling, we have implemented both SGPG and MCL to detect fine-grained

modules for Hsa and Sce networks. As SA will take months to obtain results with

q >= 200, we only have implemented SGPG in this set of experiments. By analyzing

the identified modules using two methods, we have found that SGPG not only can

identify a competitive number of GO enriched modules as MCL does; but also can

discover a number of biologically meaningful modules that MCL may fail to detect.
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Figure 3.2: Comparison between SA and SGPG for the number of identified modules of Hsa PPI
network(A) and Sce PPI network(B) that have significantly enriched GO terms below 1%.

3.1.2.3 Sce PPI network

We have identified fine-grained modules for the Sce network using SGPG and

MCL. We set q = 300 for SGPG and the inflation parameter I = 1.5 for MCL, which

identified 370 modules in total. Within 296 modules by SGPG and 307 modules

by MCL that have more than two nodes, we have found 150 and 153 modules re-

spectively with significantly enriched GO terms below 1% after Bonferroni-correction

by GoTermFinder. SGPG performs competitive to MCL. But more important, we

find that SGPG could detect sparsely connected modules with certain interaction

patterns that MCL fails to detect.

In order to investigate the difference between the modules detected by SGPG

and MCL. We have annotated them using KOG categories [104]. For each mod-

ule, the KOG category is determined as the category assigned to the most proteins

in it. Fig. 3.3A shows the percentage of the modules annotated to different KOG

categories. The number of modules annotated to KOG categories U, K, J and T

are clearly different (difference is larger than 2.5%) for both methods. Specifically,

SGPG discovers more modules annotated to KOG U, K and T. To further investi-

gate the cellular functionalities of different KOG categories, we find that proteins in
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Figure 3.3: Percentage of different categories of modules by SGPG and MCL (annotated by KOG).
A. KOG percentage of Sce. B. KOG percentage of Hsa.

KOG U play roles in intracellular trafficking, secretion, and vesicular transport, pro-

teins in KOG K have functionalities in transcription and proteins in KOG T behave

signal transduction. Proteins in KOG T and K have been shown to have sparsely

connected functional modules structures [80]. Block modeling based SGPG has suc-

cessfully detected more such modules with nodes sparsely connected but sharing

similar interaction patterns comparing to MCL. For proteins in KOG J (functions

in translation, ribosomal structure and biogenesis), they are supposed to have more

cohesive modular structures with highly self-connected modules, which MCL tends

to detect.

Table 3.3: Topological analysis of different KOG categories in Sce network

KOG ID Method proteins sparse modules/modules Avg. density Avg. clustering coef.

U SGPG 353 15/26 2.98% 0.0814
MCL 256 0/21 27.38% 0.2402

K SGPG 359 6/24 6.68% 0.1352
MCL 361 0/19 26.35%0 0.1834

J SGPG 579 9/24 9.16% 0.0678
MCL 358 0/25 37.90% 0.1429

T SGPG 169 13/21 3.47% 0.0755
MCL 94 0/12 31.31% 0.0912

To validate that SGPG does discover sparsely connected functional modules, we
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examine the network topology of proteins in the modules annotated to KOG U, K,

J and T. We have studied all the identified modules in these categories to count

the number of sparsely connected modules, which the connection density within

the module less than 3%. The detailed comparison is in Table 3.5. Table 3.5 lists

the difference of network topology quantified by the average module density and

the average clustering coefficient among proteins detected by SGPG and MCL. The

average clustering coefficients of the subnetworks, which are induced from the original

Sce network based on proteins of certain KOG categories in identified modules, are

computed by the definition in [56]. Larger average clustering coefficients indicate

that modules have modular structures with densely connected nodes [56]. From the

table, the average clustering coefficients for modules detected by MCL are larger than

those identified by SGPG. There is a similar trend for the average module density

and modules discovered by MCL are more densely connected.
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Figure 3.4: A subnetwork with sparsely connected modules detected by SGPG. Module A is enriched
in hexokinase activity. Module B is enriched in response to endogenous stimulus. Module C is
enriched in nucleoside phosphate metabolism.

Fig. 3.4 illustrates an induced subnetwork of sparsely connected modules discov-

ered by SGPG from the Sce network. Only the interactions among the proteins
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in Fig. 3.4 are exhibited. As shown in Fig. 3.4, Module A, B are both sparsely

connected modules, which have no interactions inside the modules. Module C is a

cohesively connected module. Modules A, B and C are all significantly enriched in

GO terms related to KOG G(carbohydrate transport and metabolism), T (signal

transduction mechanisms) and C(energy production and conversion) respectively.

From the structure of the Fig. 3.4, we find that proteins in module B play the role

in passing signal between proteins of hexokinase activity and nucleoside phosphate

metabolism. Furthermore, we notice that marked patterns I and II are two types of

interaction patterns across these modules, which tend to be grouped into the same

module when using MCL. Fig. 3.4 clearly displays the advantage of SGPG, which

is to identify modules by their interaction patterns and functional roles rather than

their interaction density.

In addition, Table 3.4 lists three module examples, including module B in Fig. 3.4,

detected by SGPG but missed by MCL. These three modules are annotated to KOG

U and T respectively. The common property of these three modules is that they

are all sparsely connected, which is the reason that MCL fails to detect this type

of modules as MCL tends to identify highly self-connected modules [51]. In order

to thoroughly check whether MCL is capable of detecting these three modules, we

have tuned the inflation parameter I from 1.4 to 5.0 to run MCL several times.

However, no matter which inflation parameter we choose, MCL cannot detect these

three sparsely connected modules.

3.1.2.4 Hsa PPI network

For the Hsa network, we set SGPG to identify q = 500 modules with the same

settings in Table 3.1. For MCL, we set its inflation parameter I = 1.5 and have found

450 modules. Because most of these identified modules have more than two nodes
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Table 3.4: Sparse modules in O, U and T KOG categories for Sce network
KOG ID Sparse module example Enriched GO Term GO Level p-value

U YDR179C, YNL287W, YDL216C protein [+8, 0] 2.01e-5
YCR099C, YIL004C,YAL026C deneddylation
YLR268W, YLR093C, YPR163C
YPR148C, YOL064C, YOL117W
YGL084C, YLR031W, YIL076W
YPL179W, YKL191W, YPL010W

T YJL092W, YDR490C, YOR231W signal transduction [+3, -1] 6.09e-5
YJL005W, YPL074W, YPL083C
YNL323W,YOL100W

T
YDR076W, YDL059C, YJL173C response to endogenous [+2, -1] 4.77e-5
YPL164C, YER171W, YPL026C stimulus
YCR079W, YPL150W, YHR169W
YJR062C

(478 from SGPG and 380 from MCL), we have performed GO enrichment analysis for

only modules with more than two nodes by both SGPG and MCL. By GoTermFinder,

269 modules from SGPG and 265 modules from MCL are significantly enriched below

1% after Bonferroni-correction. SGPG has discovered a competitive number of GO

enriched modules compared to MCL. We also note that the modules identified by

SGPG are relatively smaller than those from MCL and these modules have more

specific enriched functionalities and may provide more detailed information for future

catalog of functional modules. More importantly, SGPG detects several modules with

interesting functionalities that MCL has missed.

Following the same analysis method used in section (3.2.1), we first annotated

all identified modules by KOG category to scrutinize the difference between modules

detected by SGPG and MCL. Fig. 3.3B shows the percentage of the modules anno-

tated to different KOG categories by both methods. Obviously, SGPG detects more

modules annotated in KOG T and K, within which functional modules tend to have

sparsely connected structure. However, MCL discovers more modules annotated in

KOG U, within which functional modules tend to have densely connected structure.

Table. 3.5 further consolidates that the modules detected by SGPG have more

sparsely connected patterns than MCL. The average density and average clustering

coefficient both indicate that modules discovered by MCL have cohesive modular
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Table 3.5: Topological analysis of different KOG categories in Hsa network

KOG ID Method proteins sparse modules/modules Avg. density Avg. clustering coef.

T SGPG 1970 59/126 4.91% 0.0822
MCL 2481 0/66 26.32% 0.1696

K SGPG 878 27/59 3.15% 0.0779
MCL 916 0/37 30.41%0 0.1928

U SGPG 592 3/24 4.95% 0.0448
MCL 517 0/33 31.42% 0.1359

structure, while modules discovered by SGPG are more sparsely connected.
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Figure 3.5: A subnetwork with sparsely connected modules detected by SGPG. Module A is enriched
in sequence-specific DNA binding with. Module B is enriched in cellular response to calcium ion.
Module D is enriched in MAP kinase activity.

Fig. 3.5 illustrates an induced subnetwork discovered by SGPG from the Hsa

network. Only the interactions among the proteins in Fig. 3.5 are exhibited. As

shown in Fig. 3.5, Module A, B and C are all sparsely connected modules, which

have no interaction inside the modules. Proteins in module D only have a few con-

nections. Module A and B are annotated to KOG K(transcription). While module

D is annotated to KOG T(signal transduction mechanisms). Module C is annotated

to both KOG T and K. Module C contains proteins SMAD2 and SMAD3 which play

the important role in tumor formulation [57]. From the module structure in Fig. 3.5,
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we find that SMAD2 and SMAD3 have intimate relationship to proteins of DNA

binding, cellular response and kinase activity, which is useful to help us to have a

better understanding of their functionality and influence on other proteins.

Table 3.6: Sparse modules in O, U and T KOG categories for Sce network
KOG ID Sparse module example Enriched GO Term GO Level p-value

T NTRK1, NTRK3, NTRK2 neurotrophin receptor [+3, -1] 2.95e-9
VAV1, VAV3 activity

T PIK3R3, PIK3R2, PIK3R1 phosphatidylinositol 3-kinase [+5, -1] 4.77e-9
complex

K
JUN, JUNB, JUND cellular response to [+6, -1] 4.04e-7
SPIB calcium ion

Table 3.6 lists three sparsely connected module examples detected by SGPG but

missed by MCL. These three modules are annotated to KOG T and K respectively,

which cannot be detected by MCL no matter what inflation parameter we choose.

3.1.3 Conclusions

We have proposed a novel efficient method SGPG that combines SG and PG to

solve block modeling module identification problem. Our experimental results have

demonstrated that block modeling based methods are superior to other state-of-the-

art algorithms. Furthermore, our SGPG method can achieve competitive clustering

performance as the original SA method efficiently. We also have shown that SGPG

can detect functional modules with biological significance, especially sparsely con-

nected modules, which carry important cellular functionalities.

3.2 Two hop random walk

In this section, we propose a novel formulation to solve the functional module

identification problem, which simultaneously identifies the previously described dense

and sparse modules with similar interaction patterns. The section is organized as

follows: In section 3.2.1, we first introduce the new optimization formulation by
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searching for the low two-hop conductance sets (LCP2) based on the two-hop transi-

tion matrix of the underlying Markov chain of the random walk on a given network.

Then, we derive the corresponding mathematical programming problem and propose

an algorithm SLCP2, which solves LCP2 to search for non-overlapping modules by

a spectral approximate method with a close-to-optimal solution. We also present an

extended algorithm GLCP2, which solves LCP2 to search for overlapping modules by

a bottom-up greedy strategy. In section 3.2.2, we evaluate and compare our meth-

ods with other state-of-the-art algorithms for functional module identification on four

large-scale PPI networks: the Saccharomyces cerevisia PPI network extracted from

the Database of Interacting Proteins (DIP) [90] (SceDIP); the corresponding network

from the BioGRID database [101, 17] (SceBioGRID); the Homo sapiens (HsaHPRD)

PPI network collected from the Human Protein Reference Database (HPRD version

9) [82]; and the human PPI network HsaBioGRID obtained from BioGRID [101, 17].

The experimental results of protein complex prediction show that non-overlapping

SLCP2 outperforms most of the non-overlapping state-of-the-art algorithms and per-

forms competitively with the more recent RMCL algorithm [91, 93]. When we com-

pare GLCP2 with the other algorithms for overlapping modules, our experiments

show that GLCP2 outperforms ClusterOne [68] and LinkComm [1]. High level GO

(Gene Ontology) term [7] prediction results further demonstrate that SLCP2 is su-

perior to other non-overlapping algorithms while GLCP2 and LinkComm perform

equally well. Furthermore, we present a few identified functional sparse modules to

illustrate that SLCP2 and GLCP2 have the advantage in detecting functional sparse

modules compared to the other state-of-the-art algorithms in the last part of section

3.2.2. In section 3.2.3, we draw our conclusions by briefly summarizing the differ-

ences between our new SLCP2 and GLCP2 algorithms and other existing module

identification algorithms.
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3.2.1 Methodology

For random walk on G, its underlying Markov chain can be characterized by a

transition matrix P = D−1A, where D = Diag(d1, d2, ..., dn) is an n × n diagonal

matrix with the corresponding node degrees (di =
∑

j Aij, i = 1, ..., n) on its diagonal.

As G is connected, the underlying Markov chain of the random walk is irreducible

and ergodic and therefore there exists a stationary distribution satisfying P Tπ = π,

where πi = di/M,M =
∑n

i=1 di. The conductance of a subset of nodes C in G has

been defined as [43]

ΦP (C, C̄) =

∑
i∈C,j∈C̄ πiPij∑

i∈C πi
, C ∪ C̄ = V, (3.9)

Finding k low conductance (LC) sets in the network G based on this conductance

definition involves partitioning the node set V into k subsets (C1, C2, ..., Ck), which

can be formulated as the following optimization problem:

min
k∑

h=1

ΦP (Ch, C̄h) s.t.
k⋃

h=1

Ch = V ;Ch ∩ Cl = �, h 6= l. (3.10)

We call this method LCP for simplicity and LCP is equivalent to the formulation of

normalized k-cut in [115].

3.2.1.1 Interaction patterns and transition matrix P 2

Considering Markov random walk on the given network G, its corresponding

transition matrix P describes the transition probability that the random walker

walks from one node to another in one step. With two directly interacting nodes

(Aij = 1), the corresponding transition probability is uniformly random among all

the direct neighbors: Pij =
Aij
di

, denoting the probability of walking from node i to j
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Figure 3.6: Different module identification results obtained by using P and P 2. The 1st column
displays three basic motifs (star motif, clique motif and bi-clique motif) (used by [86]) and the
black dashed lines show the natural partitions. The 2nd column gives the P of three basic motifs
and the black dashed lines denote the module dividing lines obtained by LCP. The 3rd column
gives the minimum objective function values by (4.26). The 4th column gives the P 2 of three basic
motifs and the black dashed lines indicate the identified modules by LCP2. The 5th column shows
the minimum objective function values based on (3.11). The last column illustrates the 2nd largest
eigenvector of W ∗ used in Algorithm 1.

in one step. Clearly, nodes without connections have no chance to reach each other in

one step. The conductance definition in (4.27) extends to the transition probabilities

between two complement partitions C and C̄ in the given network. Hence, finding

low conductance sets defined by P (LCP) tends to find densely connected modules

as it aims to minimize the transition probabilities between potential modules to the

rest of the network, which are dependent on the corresponding cut size or the number

of edges across potential modules.

However, in addition to densely connected modules, functional module identifica-

tion in PPI networks desires to detect other meaningful modules with nodes having

similar interaction patterns in networks. The star and bi-clique motifs in Fig. 3.6

show that nodes with similar interaction patterns may be sparsely connected or even

have no interactions among them. For example, nodes marked by “S” and “T”, which

should be grouped into two respective modules, all have the same interaction pat-
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terns based on the network structure. But because there are no interactions among

them, existing algorithms for densely connected modules, including LCP, rarely clus-

ter them into the corresponding modules correctly. The second column in Fig. 3.6

lists the random walk transition matrix P of each motif and the module dividing

lines by LCP derived based on P . The third column in Fig. 3.6 gives the objective

function values computed by LCP (4.26). Based on the analysis of the three basic

motifs, we confirm that LCP only focuses on detecting dense modules, which may

not be adequate for functional module identification in PPI networks.

In order to identify modules of more diverse topology based on interaction pat-

terns, we propose to search for low conductance sets defined by a two-hop transition

matrix P 2 = P × P (LCP2). Intuitively, nodes with similar interaction patterns (no

matter whether densely connected or sparsely connected) are more likely to transit

back to the nodes in the same module after two steps of random walk. Therefore,

we redefine the conductance by replacing P with P 2, which captures more meaning-

ful modular structures in PPI networks. The fourth and fifth columns in Fig. 3.6

show P 2 transition matrices and module dividing lines for three basic motifs and low

conductance values computed by P 2, respectively. From P 2 in Fig. 3.6, we find that

the nodes with the same interaction patterns have higher probabilities to walk to

each other in two random walk steps. Therefore, the correct module identification

of star and bi-clique motifs can be achieved by finding low conductance sets defined

by the two-hop transition matrix P 2. For the clique motif, the nodes in cliques still

have the same interaction patterns though the low conductance value computed by

P 2 increases. Therefore, the corresponding cliques can still be correctly identified by

LCP2 as potential modules. The example of these three motifs demonstrates that

dense modules like cliques and sparse modules such as stars and bi-cliques can be

identified simultaneously through searching for low conductance sets based on P 2.
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Based on these motivating examples, finding low conductance sets using P 2 has

the promising potential to discover biologically meaningful modules consisting of the

nodes with similar interaction patterns. We now provide the mathematical formula-

tion and the optimization algorithm to solve LCP2.

Similar to LCP, we aim to solve the following minimization problem LCP2 by

using the two-hop transition matrix P 2:

min
k∑

h=1

ΦP 2(Ch, C̄h) s.t.

k⋃
h=1

Ch = V ;Ch ∩ Cl = �, h 6= l. (3.11)

in which ΦP 2(Ch, C̄h) is the new conductance based on P 2. Note that P 2 is still a

stochastic matrix and its stationary distribution is also π (P TP Tπ = P Tπ = π). We

can derive that ΦP 2 (C,C) + ΦP 2

(
C, C̄

)
= 1. With these, the above problem (3.11)

can be transformed to an equivalent formulation:

max
k∑

h=1

ΦP 2(Ch, Ch) s.t.
k⋃

h=1

Ch = V ;Ch ∩ Cl = �, h 6= l. (3.12)

As the underlying Markov chain is ergodic given a connected network, we have

πiPij = πjPji = Ai,j/M and πi = di/M . By expanding the objective function

in (3.12), we can further derive

k∑
h=1

ΦP 2 (Ch, Ch)

=
k∑

h=1

∑
i,j∈Ch πiP

2
ij∑

i∈Ch πi
=

k∑
i=1

∑
i,j∈Ch πi

∑n
l=1 PilPlj∑

i∈Ch πi

=
k∑

h=1

∑
i,j∈Ch

∑n
l=1AilPlj∑

i∈Ch di
=

k∑
h=1

xThAPxh
xThDxh

=
k∑

h=1

xThAD
−1Axh

xThDxh
= trace

(
XTAD−1AX

XTDX

)
.
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where xh denotes the hth column of the n× k module assignment matrix X, which

lies in the space:

Fk = {X : X1k = 1n, xij ∈ {0, 1}} , (3.13)

in which 1k and 1n are vectors with all of their elements equal to 1.

Combining the transformed objective function and the constraint set (3.13), we

can express LCP2 as the following optimization problem:

(F )

max: trace
(
XTAD−1AX

XTDX

)
s.t. X ∈ Fk

(3.14)

3.2.1.2 Module identification by interaction patterns

Non-overlapping Algorithm

We can further transform the problem (F ) to the following relaxed optimization

problem:

(F1)

max trace
(
Y TWY

)
s.t. Y TY = Ik,

(3.15)

where W = D−1/2AD−1AD−1/2; and Y = D1/2X
(
XTDX

)−1/2
denotes the relaxed

assignment matrix, which is orthonormal. Let H = D−1/2AD−1/2. We can rewrite

W = HHT as the inner-product of H. Taking each column of H as the normalized

interaction pattern of the corresponding node, this Gram matrix W measures the

interaction similarity among different nodes (we note that the inner-product can be

replaced by a general Mercer kernel if needed). According to this inner-product

form of W , nodes in dense modules have high similarities as they share the same

interaction pattern, which is to interact with each other within modules. At the same

time, similarities among nodes in sparse modules are high because they interact with
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similar neighbors in the rest of the network. Consequently, similarities among nodes

with similar interaction patterns (no matter whether in dense or sparse modules)

are higher. Therefore, nodes that play identical roles in the network can be grouped

together.

We note that a formulation similar to ours has also been independently presented

in [92]. The authors in [92] have proposed to use a symmetrization strategy AAT to

detect interaction patterns of nodes. In our new LCP2 formulation, module identifi-

cation depends on the different form HHT , which can be viewed as the normalized

version of AAT . As shown in previous results obtained by normalized cuts, we ex-

pect that this new formulation depending on the normalized version HHT may yield

more balanced modules that may lead to biologically meaningful functional module

identification results.

In order to derive the solution strategy for LCP2, we relax Y to be an orthonormal

matrix and it turns out that (F1) has a closed-form solution based on Ky Fan

Theorem. (Ky Fan Theorem) Let T be a symmetric matrix with eigenvalues λ1 ≥

λ2 ≥ ... ≥ λn and the corresponding eigenvectors U = [u1, ..., un]. Then
∑k

i=1 λi =

max
XTX=Ik

trace(XTTX). Moreover, the optimal X∗ is given by X∗ = [u1, ..., uk]Q with

Q being an arbitrary orthogonal matrix.

Following this theorem, we can use the largest k eigenvectors of the Gram matrix

W to approximate the module assignment matrix Y . Therefore, we propose our

module identification algorithm SLCP2 in Algorithm 1.

The 1st step in the algorithm aims to compute the interaction similarity more

accurately by considering the self connection. Adding self loop can make dense

modules more distinguishable and avoid impairing the dense modular structure by

considering interaction patterns. The 2nd step computes W . The 3rd step removes

the diagonal part of the Gram matrix W in order to get rid of the influence of
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Algorithm 1 (Non-overlapping): Spectral Algorithm for LCP2 (SLCP2)
Input: Adjacency matrix A and the number of modules k
Output: Module assignment matrix Xn

1. Add self loop to A = A+ In
2. Compute W = D−1/2AD−1AD−1/2

3. W ∗ = W −Diag(diag(W ))
4. Find the largest k eigenvalues and their corresponding eigenvectors [E, Vk] = eig(W ∗, k)
5. Obtain the approximated module assignment R by pivoted QR decomposition: V Tk P =
Q[R11, R12], then R = [Ik R

−1
11 R12]PT

6. The module membership of each node is determined by the row index of the largest element in
the absolute values of the corresponding column of R

self similarity because proteins tend to be clustered into single node modules when

they have large self similarities. In order to obtain modules of appropriate size,

removing self similarity is necessary. The 4th step obtains the k largest eigenvectors

of W ∗. Steps 5 and 6 use the pivoted QR decomposition to approximate the module

assignment matrix X [118]. The pivoted QR decomposition is a better option than

the classic k-means method. It is well known that the performance of k-means heavily

depends on its initialization. However, when dealing with a large-scale network that

may have thousands of potential modules, it is difficult for k-means to find good

initializations. Using the pivoted QR decomposition avoids the initialization step,

therefore better performance can be achieved. As illustrated, the last column of

Fig. 3.6 exhibits the second largest eigenvector of W ∗, from which we can easily

distinguish the two different modules in the three motifs in Fig. 3.6.

Overlapping Algorithm

Based on the previously derived Gram matrix W which contains the information

of interaction similarity among all the nodes in the given network, we can further

derive a bottom-up greedy algorithm to identify overlapping functional modules. The

procedure of the greedy algorithm is illustrated in Algorithm 2. The idea of adopting

the greedy strategy is similar to the one used in ClusterOne [68] to grow each module
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from each single protein as a seed. For each iteration, we add proteins to modules to

acquire the most gain in the weight density of a module h, which can be computed

as

Wd (Ch) =

∑
i,j∈ChWi,j

|Ch|2
(3.16)

where Wi,j measures the interaction similarity between protein i and j. We keep

adding proteins to potential modules until there is no increase of the weight density.

Algorithm 2 (Overlapping): Greedy algorithm for LCP2 (GLCP2)
Input: Gram matrix W
Output: Module assignment matrix Xo

1. Assign each protein in its own module

2. Compute the average weight density Q =
∑
Wd(Ch)
n

3. while(Q > ξ)
4. Chuffle protein list V
5. for i = 1 : |V |
6. Add the protein Vi to existing module h to achieve the largest
7. positive weight density gain.
8. endfor
9. Re-compute the average weight density Q.
10. endwhile
11. Post-processing the obtained modules.

The post-processing step in Line 11 of Algorithm 2 aims to remove low qual-

ity modules and merge highly overlapped modules. Because our LCP2 formulation

can detect both densely connected modules and sparsely connected modules (the

sparsely connected modules contain proteins with similar interaction to the rest

of the network), we use two quality functions to evaluate the obtained modules.

One quality function is qfd = edge density × sqrt(size), which has been similarly

adopted in [96] to identify high quality dense modules. The other quality function

is qfs = #.shared proteins/size for sparse modules. We remove the modules when
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qfd < α and qfs < β, where α and β are two user-specified thresholds. With larger

α and β, we may remove a larger number of low quality modules by qfd and qfs.

After removing low quality modules, we merge highly overlapped modules based on

NA(a, b) = |Va∩Vb|2
|Va|×|Vb|

, where a, b are two modules. If NA(Si, Sj) > p, we merge mod-

ules Si and Sj together. Here, p is another tuning parameter and we typically set it

over 0.9 to guarantee that only highly overlapped modules are merged.

3.2.2 Experimental results

We first introduce how we implement the algorithms that we take for performance

comparison; where we obtain the PPI networks and protein complex golden standard

sets; and what criteria we use to evaluate the performance of the selected algorithms.

After that, we compare all algorithms on synthetic networks with both dense and

sparse module structures and show that both the non-overlapping and overlapping

algorithms (SLCP2 and GLCP2 respectively) based on the two-hop transition matrix

outperform all other state-of-the-art methods. Then, we analyze the performance of

protein complex and high level GO term predictions to demonstrate the potential of

predicting biologically meaningful modules by all compared algorithms. In the end,

we illustrate that the algorithms based on our LCP2 formulation are superior to the

state-of-the-art algorithms in identifying sparse functional modules by displaying the

module detection results for several specific biological functional sparse modules.

3.2.2.1 Algorithms, data and metric

Algorithms

For algorithms that identify non-overlapping modules, we compare SLCP2 with

five state-of-the-art algorithms, which are LCP [115], MCL (Markov Clustering al-

gorithm) [26], RMCL (regularized MCL) [91, 93], GS (Graph Summarization) [67]

and PG (Power Graph) [86]. Comparing with LCP aims to show that finding low
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conductance sets through P 2 is superior to LCP based on the conductance definition

by P as LCP only focuses on detecting dense modules. We also compare SLCP2

with MCL and RMCL because they are widely used network clustering algorithms

in biological network analysis and have been shown to give biologically meaningful

results. Additionally, two other algorithms, GS and PG, are chosen as they search

for modules based on interaction patterns and hence are also able to detect both

dense and sparse modules as SLCP2 does.

For overlapping module identification algorithms, we compare our GLCP2 with

two other recently proposed algorithms: ClusterOne [68] and LinkComm (Link Com-

munity) [1]. In order to distinguish non-overlapping and overlapping algorithms, we

mark all the overlapping algorithms with a star (*) in all the figures in our experi-

mental results.

As discussed earlier, LCP is equivalent to the normalized k-cut problem [115].

Therefore, we adopt the spectral method proposed in [115] to solve LCP. The imple-

mentation of the k-means clustering algorithm used by LCP is based on the procedure

proposed in [12]. We have obtained the source code for MCL †, RMCL ‡, GS §, PG ¶,

ClusterOne ‖, and LinkComm ∗∗ from the Web pages provided in the corresponding

papers.

For non-overlapping module identification algorithms, SLCP2 and LCP have one

parameter k (the number of modules) and MCL also has one tuning parameter

called “Inflation” IF . RMCL has two tuning parameters, which are “balance” b and

“Inflation” IF . For the number of modules k in SLCP2 and LCP, we implement

†http://www.micans.org/mcl
‡http://www.cse.ohio-state.edu/ satuluri/research.html
§https://open-innovation.alcatel-lucent.com/projects/gscode/
¶http://www.biotec.tu-dresden.de/re-search/schroeder/powergraphs/
‖http://www.paccanarolab.org/cluster-one/index.html
∗∗https://github.com/bagrow/linkcomm
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the grid search from k = 500 to 3000 with an interval of 100. For IF in MCL, we

similarly search from 1.2 to 5.0 with an interval of 0.1. For RMCL, we set b and IF

to 0.5 and 2.0 respectively based on the suggestions in the papers [93, 96]. Because

both PG and GS are hierarchical bottom-up algorithms, they do not have any tuning

parameter.

For overlapping module identification algorithms, LinkComm has one parameter

t and GLCP2 has three parameters α, β and p. For LinkComm, we set the threshold

t = 0.2 as it yields the best results in our experiments. For GLCP2, the parameters

set (α, β, p) determines the quality of the results. From our experience, (β, p) =

(0.8, 0.9) gives good performance. As to α, it depends on the density of the original

network. In the following experiments, we set α = 0.76 for the Sce PPI networks and

α = 0.7 for the Hsa PPI networks, because the Hsa PPI networks are more sparse

than the Sce PPI networks.

Table 3.7: Information of the four real-world PPI networks.

Network #. nodes #. edges MIPS SGD PCDq CORUM |GO|
SceDIP 4980 22076 203 305 — — 1166
SceBioGRID 5640 59748 203 305 — — 1172
HsaHPRD 9269 36917 — — 1204 1294 4452
HsaBioGRID 14283 87397 — — 1204 1294 4457

The networks are the largest components of the original datasets. |GO| is the number
of GO terms whose information content is larger than 2.

Data

We have run all these selected algorithms on four PPI networks. Two of them

are Saccharomyces cerevisia (Sce) PPI networks obtained from the DIP (Database of

Interacting Proteins) [90] (SceDIP) and BioGRID database [17, 101] (SceBioGRID),

respectively. The other two are the Homo sapiens (Hsa) PPI networks extracted

65



from HPRD (Human Protein Reference Database) [82] (HsaHPRD) and BioGRID

database [17, 101] (HsaBioGRID), respectively. We use the largest components of

these four networks as the input of the algorithms.

We evaluate the complex prediction performance of the algorithms based on four

protein complex golden standards. For Sce PPI networks, we use MIPS [63] and

SGD [37] golden standards. For Hsa PPI networks, we adopt the PCDq [42] as

well as CORUM (Comprehensive Resource of Mammalian protein complexes) golden

standards [87] for our performance evaluation. We use all golden standard protein

complexes with two or more proteins in all our experiments.

For examining whether the detected modules capture protein functional relation-

ships other than just protein complexes, we use the high-level GO terms in all three

domains (molecular function (F), biological process (P) and cellular component (C))

as the golden standard for GO term prediction. Any GO term, whose information

content (IC) [96] is higher than two, is considered as a high-level GO term. The

definition of the information content of a GO term g is IC = −log (|g|/|root|) as

given in [96], where “root” is the corresponding root GO term (either F, P or C) of

g. In addition, we remove GO terms which contain fewer than two proteins. The

detailed information of the networks, complex golden standards and GO terms are

listed in Table 3.7.

Metric

To evaluate the performance for complex prediction, we use two independent

quality measures (used by [69]) to assess the similarity between the predicted com-

plexes and the golden standard reference complexes. In our experiments, we set the

minimum size of detected modules to three for fair comparison between all compet-

ing algorithms. The first measure counts the number of predicted modules matched

to the golden standard reference modules. A predicted module a with Va proteins is
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considered a match to a reference module b with Vb proteins when the neighborhood

affinity NA(a, b) = |Va∩Vb|2
|Va|×|Vb|

≥ 0.25 [53, 69]. The threshold of 0.25 is chosen because

it represents the case when at least half of the complexes overlap if the two compared

complexes are equally large. The second measure is the geometric mean of two other

measures, which are the cluster-wise sensitivity (Sn) and the cluster-wise positive

predictive value (PPV ) [53]. Given r predicted and s reference complexes, let tij

denote the number of proteins that exist in both predicted complex i and reference

complex j, and wj represent the number of proteins in reference complex j. Then

Sn and PPV can be defined as

Sn =

∑s
j=1 maxi=1,...,r

tij∑s
j=1wj

, PPV =

∑r
i=1 max

j=1,...,s
tij∑r

i=1

∑s
j=1 tij

Since Sn can reach its maximum by grouping all proteins in one module, while PPV

can be maximized by putting each protein in its own module, we use their geometric

mean as “accuracy” to balance these two measures (Acc =
√
Sn× PPV ) [69, 53].

To investigate the functional significance of identified modules, we follow the same

strategy in [96] to compute F measure based on high-level GO term prediction.

Let C = {c1, c2, ..., ck} denote the identified modules and G = {g1, g2, ..., gl} de-

note the selected GO terms. We can calculate the number of identified modules that

match at least one GO term, denoted byNcp: Ncp = | {ci ∈ C|NA(ci, gj) > 0.25,∃gj ∈ G} |.

The number of GO terms that match at least one identified module can be computed:

Ncg = | {gi ∈ G|NA(ci, gj) > 0.25,∃ci ∈ C} |. Based on these numbers, we can fur-

ther compute precision and recall: precision = Ncp
|C| , recall = Ncg

|G| . The final F -measure

is the harmonic mean of precision and recall: F = 2×precision× recall/(precision +

recall).

Finally, all experiments illustrated in this section can be accomplished within one

67



A B 

!"# $%"! %"!
&

'&

(&&

('&

)&&

)'&

*+
,
-.

/
0
*1
2
3

4!"#)5/675+892:50*,+:;89<6

"*1682:=>2? !;>@"+<<?
&

)&

A&

B&

C&

(&&

()&

(A&

*+
,
-.

/
0
*1
2
3

D!"#)5/675+892:50*+,:;89<6

D 

D1 

D2 

S1 

S2 

D3 

LCP SLCP2 RMCL MCL GS PG ClusterOne* LinkComm* GLCP2

0.4

0.5

0.6

0.7

0.8

0.9

1

G
N

M
I 

C ClusterOne* LinkComm* 

D3 

Figure 3.7: Performance comparison on synthetic networks: A. the adjacency matrix of the original
network; B. one example of the randomly shuffled network (obtained by shuffling half of the original
edges); C. GNMI comparison among all algorithms; D. t-test results.
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Table 3.8: Performance comparison for complex prediction on Sce PPI networks.
Network Dataset Method Coverage #. clusters #. matched Sn PPV Acc

SceDIP

MIPS

LCP(k=1000) 2572 525 62 0.2346 0.3825 0.2995
RMCL 3725 814 79 0.2834 0.3977 0.3357

MCL (IF = 2.2) 3846 675 68 0.2821 0.3787 0.3269
GS 2391 550 65 0.185 0.4067 0.2743
PG 2717 364 14 0.1153 0.2978 0.1853

SLCP2(k=1000) 4564 783 84 0.3050 0.3732 0.3378
ClusterOne* 1461 358 81 0.2641 0.3605 0.3085
LinkComm* 2344 1725 102 0.3093 0.3575 0.3326

GLCP2* 3447 1517 104 0.3066 0.3928 0.3470

SGD

LCP(k=1000) 2572 525 75 0.3484 0.6058 0.4594
RMCL 3725 814 125 0.4572 0.6039 0.5254

MCL (IF =2.3) 3630 659 115 0.4468 0.5735 0.5102
GS 2391 550 88 0.2915 0.6689 0.4416
PG 2717 364 11 0.1714 0.4102 2615

SLCP2(k=1000) 4564 783 125 0.4917 0.5621 0.5257
ClusterOne* 1461 358 113 0.4037 0.5775 0.4828
LinkComm* 2344 1725 136 0.4567 0.4895 0.4727

GLCP2* 3447 1517 155 0.4894 0.5850 0.5350

SceBG

MIPS

LCP(k=1000) 3503 557 77 0.2978 0.4252 0.3558
RMCL 5210 772 81 0.4908 0.3921 0.4346

MCL (IF = 3.3) 3544 338 45 .3495 0.3270 0.3380
GS 3315 609 83 0.2420 0.4296 0.3224
PG 2601 356 2 0.0740 0.3128 0.1521

SLCP2(k=1000) 5209 782 84 0.3723 0.3906 0.3810
ClusterOne* 2580 473 101 0.4797 0.3938 0.4346
LinkComm* 4633 4108 143 0.5891 0.3526 0.4557

GLCP2* 4440 2183 136 0.5006 0.4204 0.4587

SGD

LCP(k=1000) 3503 556 98 0.4672 0.6236 0.5398
RMCL 5210 772 137 0.6628 0.5915 0.6262

MCL (IF = 3.2) 3652 335 80 0.4291 0.4752 0.4516
GS 3315 609 130 0.3774 0.6544 0.4969
PG 2601 356 3 0.135 0.4517 0.2469

SLCP2(k=1000) 5209 782 151 0.5847 0.5926 0.5886
ClusterOne* 2580 473 158 0.6703 0.5621 0.6138
LinkComm* 4633 4108 207 0.7955 0.4637 0.6037

GLCP2* 4440 2183 204 0.7341 0.5887 0.6574

Overlapping module identification algorithms are marked with a star *. SceBG is short for SceBioGrid.

Table 3.9: Performance comparison for complex prediction on Hsa PPI networks.
Network Dataset Method Coverage #. clusters #. matched Sn PPV Acc

HsaHD

PCDq

LCP(k=1000) 8561 979 205 0.3986 0.4206 0.4095
RMCL 6879 1508 290 0.3538 0.5990 0.4604

MCL (IF = 3.3) 6534 1279 237 0.3255 0.5633 0.4282
GS 4719 1167 167 0.2169 0.6785 0.3836
PG 5172 805 22 0.2016 0.3453 0.2639

SLCP2(k=1000) 8657 1494 303 0.3916 0.4774 0.4324
ClusterOne* 2915 771 199 0.2379 0.6478 0.3925
LinkComm* 7183 4107 418 0.4314 0.3029 0.3652

GLCP2* 8181 4257 450 0.4145 0.5377 0.4721

CORUM

LCP(k=1000) 8561 979 172 0.3729 0.2049 0.2764
RMCL 6879 1508 247 0.3291 0.2777 0.3023

MCL (IF = 3.3) 6534 1279 215 0.3192 0.2567 0.2862
GS 4719 1167 195 0.2123 0.3084 0.2559
PG 5172 805 2 0.1609 0.2084 0.1831

SLCP2(k=1000) 8657 1494 257 0.3748 0.2227 0.2889
ClusterOne* 2915 771 233 0.2623 0.2624 0.2623
LinkComm* 7183 4107 614 0.4676 0.1349 0.2510

GLCP2* 8181 4257 418 0.3859 0.2413 0.3051

HsaBG

PCDq

LCP(k=1000) 7042 958 111 0.2798 0.4945 0.3720
RMCL 10698 1536 223 0.3777 0.5054 0.4369

MCL (IF = 3.3) 5345 917 59 0.1668 0.5563 0.3046
GS
PG

SLCP2(k=1800) 12889 1622 205 0.3523 0.4281 0.3884
ClusterOne* 10543 1753 162 0.4098 0.3869 0.3982
LinkComm* 10322 6954 372 0.4467 0.2784 0.3526

GLCP2* 10948 5607 360 0.4190 0.4943 0.4545

CORUM

LCP(k=1000) 958 7042 166 0.3558 0.2611 0.3047
RMCL 10698 1536 190 0.4286 0.2689 0.3395

MCL (IF = 3.3) 5345 917 82 0.2094 0.2535 0.2304
GS
PG

SLCP2(k=1800) 12889 1622 221 0.4235 0.2331 0.3142
ClusterOne* 10543 1753 197 0.5797 0.2548 0.3445
LinkComm* 10322 6954 724 0.6856 0.1193 0.286

GLCP2* 10948 5607 615 0.5047 0.2313 0.3476

Overlapping module identification algorithms are marked with a star *. HsaHD and HsaBG are short for HsaHPRD HsaBioGrid,
respectively. For HsaBioGRID PPI network, GS and PG do not have results due to the memory limitation.
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hour on a 2.4GHz quad-core CPU and 6GB RAM computer. Except when identifying

modules in the HsaBioGRID PPI network, PG and SG fail to execute due to the

large memory requirement from two algorithms for this large PPI network. Based

on the simulation results, the run time of SLCP2 and GLCP2 are very competitive

with the other algorithms. For example, SLCP2 only takes around two minutes for

clustering the SceDIP PPI network into k = 1000 modules and GLCP2 needs less

than one minute for analyzing the SceDIP PPI network.

3.2.2.2 Synthetic networks

To illustrate the performance difference of different algorithms, we first evaluate

all the selected algorithms on synthetic networks with the known ground truth. The

modular structure of synthetic networks is shown in Fig. 3.7A. There are three dense

modules of different sizes together with two sparse modules of the same size. In

order to test statistical significance, we generate the null model by shuffling edges

from an original synthetic network based on the Maslov-Sneppen procedure [60].

Fig. 3.7B is one example of the random network after half of the original edges are

permuted. The performance is evaluated by Generalized Normalized Mutual Infor-

mation (GNMI) [50] for both non-overlapping and overlapping module identification

algorithms. GNMI ranges from 0 to 1 and it equals to 1 when the module identifi-

cation result is the same as the ground truth.

Fig. 3.7C shows the mean values and the standard deviations of GNMI obtained

by all the algorithms on 100 random null networks. For non-overlapping algorithms,

SLCP2 is superior to LCP, MCL and RMCL. For PG and GS, although the obtained

GNMI values are better than LCP and MCL, they may not provide useful biological

information as their identified modules are very fine grained (one or two nodes in

each module). For overlapping module identification algorithms, GLCP2 outperforms
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ClusterOne and LinkComm. Fig. 3.7D plots the −log(p− value) of the t-test scores

of SLCP2 compared to other non-overlapping algorithms as well as the comparison of

GLCP2 to ClusterOne and LinkComm. From Fig. 3.7D, we find that both SLCP2 and

GLCP2 are significantly better than other state-of-the-art algorithms on synthetic

networks with the ground truth modular structure.

In addition, we estimate the statistical significance for each identified module in

synthetic random networks for all nine algorithms. We annotate the dense modules in

Fig. 3.7A as D1, D2 and D3 and sparse modules as S1 and S2. Based on 100 random

null networks, for each module, we can obtain the distribution of corresponding Acc

scores based on the known ground truth. Fig. 3.8A displays the mean values and the

standard deviations of Acc scores produced by all the algorithms on every module

in Fig. 3.7A. For example, the first nine bars indicate the mean values and the

standard deviations of Acc scores from all nine competing algorithms in detecting

dense module D1 in Fig. 3.7A. Based on the distributions of Acc scores, we can

further compute the p-values of our proposed algorithms compared to other state-

of-the-art algorithms. Fig. 3.8B plots the −log(p − value) of the t-test scores of

SLCP2 compared to other non-overlapping algorithms and the comparison of GLCP2

to ClusterOne and LinkComm on all five modules, respectively. We consider our

algorithms are significantly better when −log(p − value) ≥ 3 (p − value ≤ 1.0e −

3). From Fig. 3.8B, we find that LCP and SLCP2 are competitive in identifying

dense module D1. For the rest of the modules and algorithms, the −log(p− value)

values shown in Fig. 3.8B imply that our SLCP2 and GLCP2 achieve significantly

better performance in detecting both dense and sparse modules. Furthermore, from

Fig. 3.8B, we find the bars for sparse modules (S1 and S2) are typically higher than

those corresponding to dense modules, which further validates that the competing

algorithms focus more on detecting dense modules while our proposed algorithms can
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simultaneously detect both dense and sparse modules based on interaction patterns.

3.2.2.3 Complex prediction

We test the quality of a module identification algorithm by how well it can be

applied to make predictions for protein complexes. We compare SLCP2 with other

state-of-the-art non-overlapping module identification algorithms, including LCP,

RMCL, MCL, GS and PG, on four PPI networks. Also, to detect overlapping mod-

ules, we compare GLCP2 with ClusterOne and LinkComm. The information of the

module identification results and the optimal parameters used by each algorithm are

reported in Table 3.8 and Table 3.9.

For non-overlapping module identification algorithms, as shown in Table 3.8 and

Table 3.9, SLCP2 and RMCL are competitive and outperform all the other non-

overlapping algorithms. For the SceDIP PPI network, SLCP2 achieves better per-

formance than RMCL because it predicts more matched protein complexes and has

a higher Acc score. For other PPI networks, SLCP2 and RMCL obtain competitive

results as SLCP2 consistently predicts more matched protein complexes while RMCL

gets higher Acc scores. In addition, SLCP2 has the best coverage with more proteins

clustered into corresponding modules on all four PPI networks except the SceBioGrid

PPI network. In fact, for the SceBioGrid PPI network, RMCL only covers one more

protein than SLCP2.

For overlapping module identification algorithms, based on Tables 3.8 and 3.9, we

find that GLCP2 outperforms LinkComm and ClusterOne. Although both GLCP2

and LinkComm identify competitive numbers of protein complexes in different golden

standards, GLCP2 consistently achieves higher Acc scores for all four PPI networks.

Finally, GLCP2 also has the best coverage on all four PPI networks except the

SceBioGrid PPI network, on which LinkComm has a higher coverage than GLCP2.
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If we consider that LinkComm identifies larger numbers of smaller overlapping mod-

ules as shown in both tables, we expect that GLCP2 may provide more biologically

meaningful results.

Furthermore, we have tested the statistical significance of our algorithms in terms

of predicting the SGD golden standard on the SceDIP PPI network. We first generate

100 random networks from the original SceDIP PPI network by randomly shuffling

the original edges based on the Maslov-Sneppen procedure [60]. Then, we obtain the

distributions of Acc scores with respect to the prediction of SGD golden standard on

these 100 randomized networks for the competing algorithms. Based on the results

provided in Table 3.8, we compare SLCP2 with RMCL for non-overlapping algorithms

and GLCP2 with LinkComm for overlapping algorithms, because they are the two

best-performing algorithms in predicting the SGD complexes among non-overlapping

algorithms and overlapping algorithms, respectively. For non-overlapping algorithms,

the average and the standard deviation of Acc scores obtained by SLCP2 are 0.518

and 0.0064, respectively. While for RMCL, the average and the standard deviation

of the Acc scores are 0.5137 and 0.0044, respectively. For overlapping algorithms, the

average and the standard deviation of Acc scores of GLCP2 are 0.5018 and 0.0054,

respectively. For LinkComm, the average and the standard deviation of the Acc

scores are 0.4983 and 0.0047, respectively. We calculate t-test scores based on these

statistics and find that SLCP2 is significantly better than RMCL with the p-value

2.59e-6 and GLCP2 is significantly better than LinkComm with the p-value 1.05e-7.

In summary, both SLCP2 and GLCP2 based on our new optimization formulation

LCP2 using the concept of random walk on graphs are among the best performing

algorithms for protein complex prediction. However, protein complexes have typical

dense modular structure within which proteins are highly connected. As our SLCP2

and GLCP2 aim to detect both dense and sparse modules, these protein complex
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prediction results only exhibit one aspect of our algorithms’ performance. In the

following sections, we further compare the performance of different algorithms on

functional module identification, especially for sparse module identification.
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Figure 3.9: The top bar figure shows the comparison results based on the F measure on four PPI
networks. The bottom figure displays the comparison of the percentages of matched GO terms in
the complete set of selected high-level GO terms. For the HsaBioGRID PPI network, GS and PG
fail to execute due to the memory limitation.

3.2.2.4 GO term prediction

In this section, we follow the same strategy in [96] to compare the biological

significance of identified modules by all nine algorithms with respect to GO term

prediction. Instead of using all GO terms, we only consider high level GO terms

with information content larger than two so that we can better understand the

functional specificity of identified modules. The comparison for GO term prediction

is illustrated in Fig. 3.9. Figure 3.9A illustrates the F-measure comparison among all

the algorithms. Figure 3.9B shows the percentage of GO terms that are considered to

be correctly matched to at least one of the identified modules by different algorithms.
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Figure 3.10: The pro-survival and cytochrome c release modules in HsaBioGRID PPI network
detected by all the algorithms (GS and PG fail to execute because of running out of memory).
The pro-survial proteins are in rectangle shapes and the cytochrome c release proteins are in circle
shapes. Diamond shapes denotes the proteins which belongs to neither the pro-survial proteins nor
the cytochrome c release proteins. Shaded areas represent the modules detected by the algorithms.
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Among non-overlapping algorithms, Fig. 3.9 clearly illustrates that SLCP2 not only

detects the largest number of matched high-level GO terms for each PPI network,

but also obtains the best F-measure score. Therefore, for non-overlapping module

identification, SLCP2 outperforms other state-of-the-art non-overlapping algorithms

on high level GO term prediction. For overlapping algorithms, based on Fig. 3.9,

GLCP2 identifies more matched GO terms and achieves higher F-measure scores

than ClusterOne and LinkComm on two Sce PPI networks, which indicate that

GLCP2 outperforms ClusterOne and LinkComm for two yeast networks. For both

Hsa PPI networks, GLCP2 and LinkComm uncover competitive numbers of matched

GO terms; however, LinkComm obtains better F-measure scores because it gets

higher recall scores due to the fact that LinkComm detects a larger number of small

overlapping modules since it does not have a post-processing procedure to deal with

highly overlapping modules. These small overlapping modules can be matched to

the same GO terms and hence the recall scores can get higher. Among all nine

algorithms, for GO term prediction, GLCP2 and LinkComm perform competitively

with each other and outperform the other compared algorithms.

3.2.2.5 Sparse module identification

In order to further illustrate the advantage of our LCP2 formulation in detecting

functional modules with similar interaction patterns, we compare the performances

of different algorithms with respect to identifying functional sparse modules in this

section. However, in general, as we do not have sparse module golden standards,

it is hard to provide quantitative measures for detecting sparse modules. In this

section, we provide the examples of well understood biologically meaningful sparse

modules to evaluate the capability of different algorithms in identifying functional

sparse modules. Through the comparison of identified corresponding modules, we
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Figure 3.11: The FGF/FGFR signaling modules in HsaHPRD PPI network detected by all algo-
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Diamond shapes indicate proteins of neither FGF proteins nor FGFR proteins. Shaded areas rep-
resent the modules detected by the algorithms.
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demonstrate that our SLCP2 and GLCP2 are superior in detecting functional sparse

modules.

3.2.2.6 Pro-survival proteins and cytochrome c release

The pro-survival proteins (BCL2, MCL1 and BCL2A1), which constitute the

Bcl-2 subfamily, directly or indirectly prevent the release of cytochrome c from mi-

tochondria [117]. Therefore, the pro-survival proteins module should interact with

the module which has the release of cytochrome c from mitochondria functionality.

In Fig. 3.10, we provide the comparison of the module identification results for de-

tecting these two modules in the HsaBioGRID PPI network. For the pro-survival

proteins module, we mark the three members in circle shapes. For functional module

with the release of cytochrome c from mitochondria functionality (HRK, BCL2L11,

BID, BNIP3, BIK, PMAIP1, BAK1, BMF and BBC3), we mark the members in

rectangle shapes. Shaded areas represent the modules detected by the corresponding

algorithms. Based on the interactions in the HsaBioGRID PPI network, we find these

two modules are two sparse modules within which proteins have similar interaction

patterns. As shown in Fig. 3.10, LCP detects part of the cytochrome c release mod-

ule but fails to identify the pro-survival module. RMCL splits pro-survival proteins

into two modules. MCL fails to detect both the cytochrome c release module and

the pro-survival module. ClusterOne groups those two modules into one. LinkComm

fails to detect the pro-survival modules. Only our algorithms SLCP2 and GLCP2,

which take the interaction patterns into account, achieve the most promising results.

For two algorithms PG and GS, which also consider the interaction patterns, we do

not have their module detection results because both algorithms run out of memory

on this relatively large network.
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3.2.2.7 FGF/FGFR signaling

FGF/FGFR signaling has been associated with a diverse and broad range of bio-

logical functions, including cell growth, cell differentiation, and the promotion of an-

giogenesis [81]. FGFR stands for the fibroblast growth factor receptors, which bind to

the members of the family of FGF (fibroblast growth factor) proteins. Based on their

functionality, FGFR proteins should interact with FGF proteins. Fig. 3.11 illustrates

the module identification results for FGFR and FGF modules in the HsaHPRD PPI

network. Based on the network structure, FGFR and FGF modules are two sparse

modules. We mark the FGFR proteins in rectangle shapes and FGF proteins in

circle shapes. Shaded areas represent the modules detected by the corresponding

algorithms. As shown in Fig. 3.11, LCP, RMCL, MCL, ClusterOne and LinkComm

again can not identify these two modules correctly. PG, GS and our algorithms have

the ability to correctly detect them. However, PG and GS over-segment the FGFR

module while our algorithms can provide better module identification results.

3.2.3 Discussion and conclusions

The compared module identification algorithms in this section use different mod-

ule definitions and methods. LCP, ClusterOne, SLCP2, and GLCP2 are all based

on finding low conductance sets defined by the Markov chain of random walk on

networks. LCP and ClusterOne are the non-overlapping and overlapping algorithms

of searching for low conductance sets defined by the transition matrix P (LCP)

of the underlying Markov chain. Therefore, they tend to find densely connected

modules. However, SLCP2 and GLCP2 are respective algorithms for searching for

non-overlapping and overlapping modules by finding low conductance sets based on

the two-hop transition matrix P 2 (LCP2) of the random walk Markov chain. By

taking the advantage of finding two-hop low conductance sets, our new algorithms
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detect modules based on the nodes interaction patterns, which reflect functional sim-

ilarity between proteins. In [92], the authors present a similar formulation to search

for modules based on the interaction similarity. However, our formulation depending

on the Gram matrix W derived by LCP2 can be viewed as the normalized version

of the symmetrization matrix proposed in [92]. Generally, as in normalized cuts, the

normalized version often gives balanced modules that may lead to more promising

functional module identification results. Both MCL and RMCL are network clus-

tering algorithms based on (stochastic) flow simulation which extends the similar

random walk Markov chain idea by two operations for better performance: “Infla-

tion” and “Expand”. However, both operators are heuristic strategies. Theoretically,

why they give good results is still a mystery. PG and SG are two non-overlapping

algorithms that identify functional modules in terms of interaction patterns. Be-

cause they apply greedy algorithms to solve the module identification problem, the

optimal quality of the results is not guaranteed. Last but not least, LinkComm is

a novel overlapping algorithm based on an edge graph representation that tends to

detect a large number of overlapping modules whose biological meaning may not be

immediately clear due to the fine grained modular structure.

In our experiments, we have applied our algorithms to analyze four unweighted

PPI networks, which can be viewed as binary ({0, 1}) edge-weighted networks. How-

ever, both SLCP2 and GLCP2 can be extended in a straightforward manner for the

analysis of general edge-weighted networks by modifying corresponding terms in Al-

gorithms 1 and 2 proposed in this section. We will evaluate the performances of

algorithms in module identification by introducing reliable edge weights when they

are available in our future work. Another limitation for SLCP2 is how to decide

the desirable number of modules k in advance. One possible way is to search k

values within a certain range and choose k with the best average weight density
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computed by (3.16). In our future research, we will also explore the ideas adopted

in [1] and [18] to determine k based on the partition density and/or module en-

tropy score, respectively. Finally, GLCP2 is our preliminary solution strategy for

identifying overlapping modules based on the LCP2 formulation. We plan to further

investigate the properties of the Gram matrix W and we expect that we may achieve

better performance with a better understanding of the problem structure.

In conclusion, we propose a novel formulation to achieve functional module iden-

tification based on protein interaction patterns in PPI networks. An efficient spectral

algorithm, which can obtain a close-to-optimal solution based on Ky Fan theorem,

is designed to solve the new optimization problem for non-overlapping module iden-

tification. We also develop a greedy algorithm to solve the same problem but ob-

tain overlapping results. Our algorithms not only can overcome the limitation of

traditional module identification algorithms, which only focus on identifying dense

modules, but they also have a better scalability for large-scale PPI networks to ef-

ficiently solve module identification problem. Experimental results show that our

SLCP2 and GLCP2 have achieved promising results on both protein complex and

GO term predictions on four large-scale PPI networks. Most importantly, our new

algorithms can detect functional sparse modules, which are often ignored by many

other existing algorithms.

3.3 Non-negative matrix factorization framework

In this section, we propose a flexible NMF based formulation to identify functional

modules based on block modeling. We briefly review the related work in section 3.3.1,

followed by the derivation of our novel formulation in section 3.3.2 and the alternating

proximal method (APANMF) in Section 3.3.3. The convergence-related propositions

of our APANMF (Propositions 1, 2 and 3) are also provided in section 3.3.3. In sec-
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(a) (b) 

(c) (d) 

A = H ×B×HT A = H ×B×HT

A = H ×B×HT A ≈ H ×B×HT

Figure 3.12: Graph clustering under different settings: (a) Toy example for community detection
for undirected graph. (b) Toy example for directed graph clustering. (c) Toy example for block
modeling clustering. (d) Toy example for overlapping graph clustering.

tion 3.3.4, we demonstrate the superiority of our APANMF by comparing with other

state-of-the-art methods (SymNMF MU [24], SymNMF NT [47], ASymNMF [106],

BNMF [19]) on synthetic networks (LFR benchmarks [49] and block modeling bench-

marks [109]) as well as real-world large-scale network datasets (Facebook ego network

from http://snap.stanford.edu/data/ and PIPs human protein-protein interaction

(PPI) network [62]). We draw the conclusion in section 3.3.5.

3.3.1 Related work

The authors in [47, 24] propose to decompose the adjacency matrix A of network

G into symmetric components for community detection:

min:
X≥0

Γ(X) =
∥∥A−XXT

∥∥2

F
, (3.17)

where X is a non-negative matrix of size n × K and K is the number of potential

modules. X can be naturally interpreted as the module assignment matrix. A

multiplicative updating algorithm SymNMF MU [24] has been proposed to solve

this problem (3.17). However, SymNMF MU may not converge to a stationary point,
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which will be further discussed in Section 3.3.3.3. SymNMF NT [47] is a Newton-

like algorithm, which solves the problem (3.17) by lining up the columns of X.

SymNMF NT converges to a stationary point. However, it has relatively larger

memory consumption requirement [47].

In order to handle directed graphs, the authors in [106] have presented an asym-

metric NMF decomposition formulation:

min:
X≥0, S≥0

Π(X,S) =
∥∥A−XSXT

∥∥2

F
, (3.18)

where SK×K is a K ×K asymmetric matrix for handling the asymmetric adjacency

matrix A of a network with directed edges. A multiplicative updating algorithm

ASymNMF [106] has been developed to solve this problem (3.18). The objective

function values generated by ASymNMF monotonically decrease but the solution

may not converge to a stationary point, which is discussed in section 3.3.3.3.

For block modeling graph clustering, one recent algorithm—BNMF [19]—has

been derived base on the following formulation:

min:
X≥0, 0≤M≤1

∥∥A−XMXT
∥∥2

F
+ λ

∥∥M ideal −M
∥∥2

F
, (3.19)

where M and M ideal represent the adjacency matrices of the introduced image graph

and the “ideal image matrix”, respectively. M ideal is the function of M , which is

defined by M ideal
ij = argmin

u∈{0,1}
|u−Mij| and approximated by a sigmoid function in

the proposed projected descent algorithm. However, there is no convergence proof

provided for BNMF.
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3.3.2 Flexible graph clustering with L1-norm regularization

Adopting different NMF-based formulations can address different network par-

tition problems, such as aforementioned community detection and block model-

ing for networks with either undirected or directed edges, by different formula-

tions (3.17), (3.18), and (3.19). In this section, we propose a mathematical for-

mulation, which can deal with all the above tasks in just one flexible framework.

Furthermore, we explicitly control the sparsity of factorized components by adding

L1-norm penalty terms to yield sparse and robust solutions for noisy networks.

3.3.2.1 A flexible graph clustering formulation

Our formulation is based on the similar assumption that the given adjacency

matrix can be factorized by the multiplications of a module assignment matrix and

an adjacency matrix of the image graph capturing the underlying topology of the

given graph A ≈ XBXT [36]:

min:
∥∥A−XBXT

∥∥2

F
,

s.t. Xij ∈ {0, 1} ,∀i, j;

Brs ∈ {0, 1} ,∀r, s,

(3.20)

where X is the n × K dimensional assignment matrix with Xir = 1 revealing that

vertex i belongs to cluster r and Xir = 0 otherwise. The introduced image graph

is presented by the adjacency matrix B, in which Brs indicates the connectivity

between the cluster r and the cluster s with Brs = 1 meaning that cluster r densely

interacts with the cluster s and Brs = 0 otherwise. We note that our formulation

is similar to (3.18), but with the binary constraints on both X and B. Detecting

modules by our formulation may provide better physical interpretations for both the
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assignment matrix X and the image graph B.

By solving the optimization problem (3.20), we can obtain the promising graph

clustering results. However, it is challenging to find integer solutions for this nonlin-

ear optimization problem (3.20) due to the inherent NP hardness of general network

clustering as a quadratic assignment problem [109, 111], especially with large-scale

networks. Relaxing the constraints from integer to continuous variables is one typ-

ical way to achieve high quality solutions [29]. In this section, we relax our binary

constraints as follows:

ϕ = {(X,B)|0 ≤ Xij ≤ 1, 0 ≤ Brs ≤ 1, ∀i, j, r, s} . (3.21)

The relaxed search space ϕ allows the elements in X and B range from 0 to 1. After

relaxation (3.21), our problem becomes:

min
(X,B)∈ϕ

: Ψ(X,B) =
∥∥A−XBXT

∥∥2

F
. (3.22)

3.3.2.2 L1-norm regularization

For noise free networks, such as toy examples given in Fig. 3.12, or networks with

reasonably low noise, our proposed formulation (3.22) can naturally produce sparse

results with original clustering structures because the assumption A ≈ XBXT holds.

However, for real-world networks, which often contain significant amount of noise due

to limitations of interaction profiling methods, the underlying clustering structures

may be destroyed and the assumption A ≈ XBXT may not be satisfied. Hence,

we may not be able to have meaningful sparse results by directly solving (3.22). In

order to address this problem, we add L1-norm regularization terms for both X and
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B to (3.22) to explicitly enforce sparse structures for X and B:

min
(X,B)∈ϕ

: Ω(X,B) =
∥∥A−XBXT

∥∥2

F
+ α ‖X‖L1 + β ‖B‖L1 , (3.23)

in which ‖X‖L1 =
∑

i,j |Xij|. With the newly added regularization terms, we hope for

the guarantee of physically meaningful sparse results, especially for noisy networks.

3.3.3 Alternating proximal algorithm

To solve this sparse NMF-based graph clustering problem, we now derive a new

set of optimization algorithms, which are different from the existing algorithms,

mostly based on multiplicative updating algorithms for the original NMF algo-

rithm [52]. Mathematically, our optimization problem (3.23) is more challenging

to solve with two non-differentiable terms in Ω(X,B), compared to the optimiza-

tion problems (3.17), (3.18) and (3.19). In order to efficiently solve this optimization

problem (3.23), we need to make use of the structure of the objective function, which

takes the sum of a differentiable component and other non-differentiable components.

Based on this observation, we develop an alternating proximal method that optimizes

the cluster assignment matrix X and the image matrix B in an alternating way. This

alternating proximal algorithm is guaranteed to converge to a stationary point of the

optimization problem (3.23).

3.3.3.1 Updating X

Let us first consider the optimization step with respect to the assignment matrix

X by fixing the image matrix at B̂. The decomposed optimization problem aims to

solve the following problem:

min :
0≤X≤1

F (X) =
∥∥∥A−XB̂XT

∥∥∥2

F
+ α ‖X‖L1 , (3.24)
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where we define P (X) =
∥∥∥A−XB̂XT

∥∥∥2

F
and P (X) is differentiable.

Because of the structure of the problem, we apply a proximal method to iteratively

solve the optimization problem. As similarly done in [58], we propose to compute

Gk(X) for the approximation of F (X) at the kth iteration around Xk−1:

Gk(X) = P (Xk−1)+ < ∇P (Xk−1), (X −Xk−1) >

+
Lk
2

∥∥X −Xk−1
∥∥2

F
+ α ‖X‖L1 ,

(3.25)

where Lk is a Lipschitz constant, which can be chosen to satisfy the following in-

equality:

Gk(X
k) ≥ F (Xk). (3.26)

Hence, instead of finding Xk based on F (Xk−1), our proximal method solves the

following problem at the kth iteration:

Xk = arg min
0≤X≤1

: Gk(X). (3.27)

After some algebraic manipulations by completing the square and removing the con-

stant terms, the problem (3.27) is in fact equivalent to the following problem:

Xk = arg min
0≤X≤1{

α ‖X‖L1 +
Lk
2

∥∥∥∥X − (Xk−1 − 1

Lk
∇P (Xk−1)

)∥∥∥∥2

F

}
.

(3.28)

Furthermore, we notice that this equivalent problem (3.28) has a closed-form so-

lution, which is a promising property of our proximal method. With the closed-form

solution, we can efficiently solve (3.28) without intensive computation. The closed-

from solution is provided in Proposition 1, whose proof is given in the appendix.
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Algorithm 1 Proximal Method for updating X (PMH(X, B̂))

1. Input: X0, B̂, k = 1, L0 > 1, η > 0 and ξ > 0;
2. Output: X∗;
3. do
4. Find the smallest non-negative integer ik such that
inequality (3.26) is satisfied with Lk = ηikLk−1 ;
5. Obtain Xk from (3.30);
6. k = k + 1;
7. while

(
F (Xk−1)− F (Xk) > ξ

)
8. X∗ = Xk.

Proposition 1. For the following optimization problem:

Xk = arg min
0≤X≤1

{
φ(X) = α ‖X‖L1 +

Lk
2

∥∥X − X̄∥∥2

F

}
, (3.29)

where X̄ = Xk−1 − 1
Lk
∇P (Xk−1), the element-wise closed-form solution is

Xk
ij = P(proxX(X̄)ij), (3.30)

where P(·) is the projection operator and it is defined by

P(x) =


1 x > 1

x 0 ≤ x ≤ 1

0 x < 0

, (3.31)

and

proxX(X̄)

= arg min
X

{
φ(X) = α ‖X‖L1 +

Lk
2

∥∥X − X̄∥∥2

F

}
,

(3.32)

whose result is the solution of ∂φ(X)
∂X
3 0 and can be computed in the following equa-
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tion:

proxX(X̄)ij =

 0 |X̄ij| ≤ α
Lk

X̄ij − α
Lk

sign(X̄ij) |X̄ij| > α
Lk

(3.33)

The proximal method for updating X (PMH) is described in Algorithm 1. The

convergence of PMH is guaranteed by Proposition 2 with the proof given in the

appendix.

Proposition 2. The sequence
{
F (Xk)

}
k≥0

generated by the algorithm in Algo-

rithm 1 monotonically decreases and the sequence
{
Sk(X

k) = Gk(X
k)− F (Xk)

}
k≥0

converges to zero. Furthermore, when k 7→ +∞, Xk satisfies an asymptotic station-

ary point condition.

Proof. We can prove the fact that
{
F (Xk)

}
k≥0

is non-increasing and convergent due

to the following inequalities:

F (Xk) ≤ Gk(X
k) ≤ Gk(X

k−1) = F (Xk−1). (3.34)

The first inequality comes from the fact thatGk(X) is the upper bound of F (X) (3.26).

We have the second inequality as the proximal method solves (3.27). The last equal-

ity can be obtained by substituting X with Xk−1 in (3.25). Because
{
F (Xk)

}
k≥0

is

bounded, we define F ∗ as its limit. Based on (3.34) and Sk(X
k) = Gk(X

k)−F (Xk),

we have:

Sk(X
k) ≤ F (Xk−1)− F (Xk). (3.35)

By adding all the terms over k, we have

∑
k

Sk(X
k) ≤ F (X0)− F ∗, (3.36)
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which is also bounded. Therefore,
{
Sk(X

k)
}
k≥0

necessarily converges to zero.

Furthermore, we notice that Sk(X) is differentiable and Lipschitz continuous

because

Sk(X) =Gk(X)− F (X)

=P (Xk−1)− P (X) +
Lk
2

∥∥X −Xk−1
∥∥2

F

+ < ∇P (Xk−1), (X −Xk−1) > .

(3.37)

Therefore, for any Xk and X ′, Sk(X) satisfies the classical lemma (lemma 1.2.3

in [70]), which yields

Sk(X
′) ≤ Sk(X

k)− 1

2Lk

∥∥∇Sk(Xk)
∥∥2

F
, (3.38)

where we define X ′ = Xk− 1
Lk
∇Sk(Xk). Here we make a mild assumption that both

X ′ and Xk are in the constraint set. A similar assumption has been made for proving

the convergence of a constrained optimization problem [58]. From (3.38), we derive

∥∥∇Sk(Xk)
∥∥2

F
≤ 2Lk(Sk(X

k)− Sk(X ′))

≤ 2LkSk(X
k)

k 7→+∞7→ 0,

(3.39)

where we take the fact that Sk(X
′) ≥ 0 because (3.34) and

{
Sk(X

k)
}
k≥0

converges

to zero.

Now, we compute the directional derivative ∇X−XkF (Xk) of F (·) at Xk in the

direction X −Xk,

∇X−XkF (Xk) =∇X−XkGk(X
k)

− < ∇Sk(Xk), X −Xk > .

(3.40)
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Note that Xk minimizes Gk on {X|0 ≤ X ≤ 1} and therefore ∇X−XkGk(X
k) ≥

0 [14]. With these,

∇X−XkF (Xk) ≥ −
∥∥∇Sk(Xk)

∥∥
F

∥∥X −Xk
∥∥
F
, (3.41)

based on Cauchy-Schwarz inequality. Then,

lim
k 7→+∞

∇X−XkF (Xk)

‖X −Xk‖F
≥ lim

k 7→+∞
−
∥∥∇Sk(Xk)

∥∥
F

= 0, (3.42)

which further indicates that Xk is the stationary point of F (X) when k approaches

+∞ based on the definition of an asymptotic stationary point proposed in [58].

Algorithm 2 Proximal Method for updating B (PMB(X̂, B))

1. Input: X̂, B0, k = 1 and ξ > 0;
2. Output: B∗;
3. do
4. Compute Uk(B) based on (3.47);
5. Compute Bk based on (3.49);
6. k = k + 1
7. while(E(Bk−1)− E(Bk) > ξ)
8. B∗ = Bk.

3.3.3.2 Updating B

Updating B is similar as updating X because the optimization with B has the

same structure as (3.24). Given an assignment matrix X̂, the optimization problem
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we want to solve is:

min
0≤B≤1

: E(B) =
∥∥∥A− X̂B(X̂)T

∥∥∥2

F
+ β ‖B‖L1 , (3.43)

where ‖B‖L1 is the non-smooth term while Φ(B) =
∥∥∥A− X̂B(X̂)T

∥∥∥2

F
is differentiable

with the gradient ∇Φ(B) = 2((X̂)T X̂B(X̂)T X̂ − (X̂)TAX̂). Here, the square of the

largest eigenvalue of (X̂)T X̂ is Φ(B)’s Lipschitz constant LB, which can be proven

with Lemma 1.

Lemma 1. Φ(B) =
∥∥A−XBXT

∥∥2

F
is Lipschitz continuous and its Lipschitz con-

stant Π is equal to the square of the largest eigenvalue of XTX (LB = δ2
max(X

TX)).

Proof. Given two matrices X and Y , we have

‖∇Φ(X)−∇Φ(Y )‖2
F

=
∥∥XTX(X − Y )XTX

∥∥2

F2

= trace(XTX(X − Y )TXTXXTX(X − Y )XTX),

(3.44)

where XTX is a positive semi-definite symmetric matrix. Hence, we can write

XTX = UΣUT by SVD (singular value decomposition) with UUT = In and UTU =

Ik. By straightforward algebraic manipulations, (3.44) is equivalent to

‖∇Φ(X)−∇Φ(Y )‖2
F

= trace(UΣUT (X − Y )TUΣUTUΣUT (X − Y )UΣUT )

= trace(UT (X − Y )TUΣ2UT (X − Y )UΣ2)

≤ δ4
maxtrace(U

T (X − Y )TUUT (X − Y )U)

= δ4
max ‖X − Y ‖

2
F ,

(3.45)
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where δmax is the largest eigenvalue of XTX. From (3.45), we have the following

inequality:

‖∇Φ(X)−∇Φ(Y )‖F ≤ δ2
max ‖X − Y ‖F . (3.46)

Therefore, Φ(B) is Lipschitz continuous and the Lipschitz constant LB is equal to

the square of the largest eigenvalue of XTX.

We adopt a similar proximal method by approximating E(B) in (3.43) at Bk−1

by an upper-bound function:

Uk(B) = Φ(Bk−1)+ < ∇Φ(Bk−1), (B −Bk−1) >

+
LB
2

∥∥B −Bk−1
∥∥2

F
+ β ‖B‖L1

= β ‖B‖L1 +
LB
2

∥∥B − B̄∥∥2

F
,

(3.47)

where B̄ = Bk−1 − 1
LB
∇Φ(Bk−1). At the kth iteration, we solve the optimization

problem:

Bk = arg min
0≤B≤1

: Uk(B). (3.48)

The corresponding closed-form optimal solution is derived similarly as Proposi-

tion 1

Bk
ij = P(proxB(B̄)ij), (3.49)

where

proxB(B̄)ij =

 0 |B̄ij| ≤ β
LB

B̄ij − β
LB

sign(B̄ij) |B̄ij| > β
LB

, (3.50)

Algorithm 4.2 details the procedure of the proximal method for updating B (PMB).

We note that E(B) is convex with respect to B and the constraint set 0 ≤ B ≤ 1 is

also convex. Therefore, the algorithm (PMB) converges to an optimal solution for a
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fixed X̂ [10].

3.3.3.3 Alternating proximal algorithm for NMF (APANMF)

With both the algorithms PMH and PMB in hands, we summarize the alternating

proximal algorithm (APANMF) in Algorithm 3. The convergence of APANMF is

guaranteed by Proposition 3, whose proof is provided in the appendix.

Proposition 3. The sequence of {Ω(X t, Bt)}t≥0 monotonically decreases

Ω(X t+1, Bt+1) ≤ Ω(X t, Bt). (3.51)

Furthermore, the sequence {(X t, Bt)}t≥0 converges to an asymptotic stationary point.

Proof. At the tth iteration, we have Ω(X t, Bt). Based on Proposition 2 (3.34) for a

fixed Bt, we get

Ω(X t+1, Bt) ≤ Ω(X t, Bt). (3.52)

Furthermore, based on (3.42), we have

∇X−Xt+1F (X t+1)

‖X −X t+1‖F
≥ 0⇔

∇Q−Qt+1,tΩ(Qt+1,t)

‖Q−Qt+1,t‖F
≥ 0, (3.53)

where X t+1 is an asymptotic stationary point and we define Qt+1,t = [X t+1;Bt].

Similarly, the proof in [8] demonstrates that for a fixed X t+1 we can obtain Bt+1

satisfying

Ω(X t+1, Bt+1) ≤ Ω(X t+1, Bt) (3.54)

as Ω(X t+1, Bt) is convex with respect to Bt for the given X t+1. Similar to (3.53), for

the asymptotic stationary point Bt+1, we have

∇B−Bt+1E(Bt+1)

‖B −Bt+1‖F
≥ 0⇔

∇Q−Qt+1,t+1Ω(Qt+1,t+1)

‖Q−Qt+1,t+1‖F
≥ 0. (3.55)
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From (3.52) and (3.54), we know

Ω(X t+1, Bt+1) ≤ Ω(X t+1, Bt) ≤ Ω(X t, Bt) (3.56)

Obviously, the sequence {(X t, Bt)} is non-increasing and bounded. We further as-

sume that Q̃ = [X̃; B̃] is a limit point of the sequence. Based on (3.53) and (3.55),

for any Q in the constraint set, we obtain

∇Q−Q̃Ω(Q̃)∥∥∥Q− Q̃∥∥∥
F

= lim
t7→+∞

∇Q−Qt,tΩ(Qt,t)

‖Q−Qt,t‖F
≥ 0, (3.57)

which means that Q̃ is an asymptotic stationary point of Ω(Q) [58].

Algorithm 3 Alternating Proximal Algorithm

1. Input: An×n and K;
2. Output: X and B;
3. Initialization: X0

n×K > 0, B0
K×K > 0 and t = 1;

4. do
5. X t+1 =PMH(X t, Bt);
6. Bt+1 =PMB(X t+1, Bt);
7. t = t+ 1;
8. while(Ω(X t−1, Bt−1)− Ω(X t, Bt) > ξ)
9. Compute X by normalizing each row of X t to have the unit length.

One profound contribution of our APANMF is that APANMF has the theoret-

ical guarantee to converge to a stationary point, which neither SymNMF MU nor

ASymNMF has provided. Additionally, to the best of our knowledge, this is the first

convergence proof of a coordinate descent method for solving the NMF problem, one

of whose decomposed optimization problems is non-convex and non-smooth. There-

fore, our proof could provide insightful guidance for the convergence proof of the
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NMF problems with similar structures. For SymNMF in general settings, the sta-

tionary points of the optimization problem in (1) necessarily contain zero elements:

∃i, j, X∗ij = 0 (Proposition 4 in the appendix). Meanwhile, the proposed multi-

plicative algorithm SymNMF [47] always generates iterative updates in the positive

orthant (Proposition 6): Xk
ij > 0,∀i, j. Therefore, SymNMF may not converge in

general when ∃i, j, X∗ij = 0. Similarly for ASymNMF [106], although the authors

have shown that the sequence of objective function values during the iterative proce-

dure of ASymNMF monotonically decreases, it is not enough to say that ASymNMF

converges to a stationary point. Specifically, Proposition 7 shows that the algorithm

updates in the positive orthants for both X and C (Xk
ij > 0, Ck

rs > 0, ∀i, j, r, s) while

Proposition 5 indicates that the stationary points contain zero elements in general

(∃i, j, r, s, X∗ij = 0 or C∗rs = 0 in the stationary point). HXence, no convergence

properties of the sequences
{
Xk
ij

}
and

{
Ck
rs

}
can be established. Additionally, the

denominators of the multiplicative updating equations of both SymNMF and ASym-

NMF are not well-defined when they approach zeros, which may cause numerical

problems.

Proposition 4. If A 6= XXT , then any stationary point of the optimization prob-

lem (3.17) is on the boundary of its constraint set {X|X ≥ 0}.

Proof. By definition, a stationary point of the optimization problem (3.17) should

satisfy the Karush-Kuhn-Tucker (KKT) optimality condition [47]:

(
(A−XXT )X

)
ij
Xij = 0. (3.58)

With the assumption A 6= XXT in general, we find that the stationary points

of (3.17) necessarily contain zero elements (∃i, j,Xij = 0) in X. This implies that

the stationary points of (3.17) are on the boundary of {X|X ≥ 0}.
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Proposition 5. If A 6= XCXT , then a stationary point of the optimization (3.18)

is on the boundary of its constraint set {(X,C)|X ≥ 0, C ≥ 0}.

Proof. Based on [106], a stationary point of the optimization problem (3.18) should

satisfy the following Karush-Kuhn-Tucker (KKT) optimality condition:


(
(XCXT − A)XCT + (XCTXT − AT )XC

)
ij
Xij = 0;(

XT (XCXT − A)X
)
rs
Crs = 0.

(3.59)

Because in general, A 6= XCXT and AT 6= XCTXT , it requires that there exists

Xij = 0 or Crs = 0 in the stationary point to satisfy the KKT condition, which implies

that the stationary points of (3.18) are on the boundary of {(X,C)|X ≥ 0, C ≥ 0}.

Proposition 6. If A has neither zero column nor zero row, and the initialization

point of SymNMF X0
ij > 0,∀i, j, then

Xk
ij > 0, ∀i, j,∀k ≥ 0. (3.60)

Proof. From [47], we know the updating rule of SymNMF is

Xk+1
ij ← Xk

ij(
1

2
+

(AXk)ij
2(Xk(Xk)TXk)ij

). (3.61)

When k = 0, the equation (3.60) holds by the assumption. By induction, if (3.60) is

correct at k, then it is correct at k+1 too. The nominator and denominator in (3.61)

are both strictly positive under the assumption that A has neither zero column nor

zero row. Therefore, Xk+1
ij > 0.

Proposition 7. If A has neither zero column nor zero row, and the initialization
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Figure 3.13: Performance comparison for undirected graph clustering: (a) NMI comparison (non-
overlapping) with increasing mixing parameter µ. (b) GNMI comparison (overlapping) with in-
creasing overlapping fraction values θ when µ = 0.1. (c) GNMI comparison (overlapping) with
increasing overlapping fraction values θ when µ = 0.3.

point of ASymNMF X0
ij > 0 and C0

rs > 0, ∀i, j, r, s, then

Xk
ij > 0, Ck

rs > 0, ∀i, j, r, s, ∀k ≥ 0. (3.62)

Proof. From [106], we know the updating rule of ASymNMF is

Xk+1
ij ← Xk

ij·( (ATXkCk + AXk(Ck)T )ij(
Xk(Ck(Xk)TXk(Ck)T + (Ck)T (Xk)TXkCk)

)
ij

) 1
4
;

Ck+1
rs ← Ck

rs

((Xk)TAXk)rs
((Xk)TXkCk(Xk)TXk)rs

.

(3.63)

When k = 0, the equation (3.62) holds by the assumption. By induction, if (3.62)

is correct at k, then it is correct at k + 1. Both the nominator and denominator

in (3.63) are strictly positive under the assumption that A has neither zero column

nor zero row. Therefore, (3.62) holds at k + 1, and the proof is complete.

Through the procedure of APANMF, the dominant computational cost is a rel-

atively cheap matrix multiplication involving the adjacency matrix A. Assuming
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that PMH and PMB respectively take k and l iterations in average to converge,

the time complexity for updating X t and Bt are O(kN2K) and O(lN2K). Further-

more, if APANMF takes t iterations of PMH and PMB steps, then the overall time

complexity of APANMF is O(t(k + l)n2K).

3.3.3.4 Initialization

Our flexible graph clustering formulation is not jointly convex with respect to X

and B. Therefore, a good initial point is important to achieve high quality solutions.

In this section, we select the initialization points (X0, B0) as follows: First, we

consider Ψ(X,B) as an unconstrained optimization problem for B with randomly

generated X. Setting ∇BΨ(X,B) = 0 to obtain

B̂0 = (XTX)−1XTAX(XTX)−1. (3.64)

Then for Ψ(X,B0) we set ∇XΨ(X,B0) = 0 and get

X̂0 = AXB̂0(B̂0XTXB̂0)−1. (3.65)

We project (X̂0, B̂0) to the non-negative orthant and choose the best (X0, B0) that

gives the minimum objective function value as our initialization point.

3.3.3.5 Selection of α and β

We explore the stochastic nature of the proposed algorithm to determine α and β.

A similar strategy has been adopted in [119]. We propose to estimate the robustness

of a specific combination of α and β by measuring the differences and similarities

of multiple realizations. For each realization, we compute a connectivity matrix
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C = XIBI(XI)T , where XI and BI are binary matrices recovered from X and B

obtained from the algorithm 3. XI
ij = 1 when Xij ≥ ε and XI

ij = 0 when Xij < ε,

where ε is a user-defined threshold controlling the number of memberships of the

overlapping vertices [76]. Similarly, BI
rs = 1 if Brs ≥ 0.5 (meaning the probability of

cluster r interacting with cluster s is larger than 0.5), otherwise BI
rs = 0. Then we

can compute the consensus matrix C̄ defined as the average connectivity matrix over

many realizations. The entry C̄ij of C̄ ranges from 0 to 1 and reveals the probability

that vertex i connects to vertex j.

After we obtain C̄, we can estimate the entropy, which measures the stability

of the common network structure. Assuming C̄ij is independent of each other, we

define the entropy score as

En =
1

n2

∑
i,j

[
C̄ijlog(C̄ij) + (1− C̄ij)log(1− C̄ij)

]
. (3.66)

For certain α and β, En = 1 means the network structure is totally unstable (C̄ij =

0.5), while En = 0 indicates that the edges in C̄ are perfectly stable (C̄ij = 1

or C̄ij = 0). We demonstrate that the En score can help to select α and β in

Section 3.3.4.4.

3.3.4 Experimental results

In this section, in order to show the improved noise tolerance of our new graph

clustering formulation and the effectiveness of our novel proximal algorithm APANMF

for solving noisy graph clustering, we compare our APANMF with SymNMF MU [24],

SymNMF NT [47], ASymNMF [106] and BNMF [19] on both synthetic benchmarks

under different noise levels as well as real-world large-scale networks.

To demonstrate the robustness of our APANMF with respect to the noise, we
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explicitly tune the noise level of synthetic networks. Benchmarks for undirected and

directed graphs are simulated by the LFR algorithm [49] with different mixing pa-

rameters µ to control the noise level. For block modeling benchmarks [111, 109], the

Maslov-Sneppen procedure [60] is applied to shuffle different fractions of edges to add

in noise. Both the mixing parameter µ and the Maslov-Sneppen procedure have the

same effect, which is to perturb the fraction of edges within the correct communities.

For simplicity, we use µ to present the noise level for all synthetic networks (undi-

rected and directed benchmarks [49] and block modeling benchmarks [111, 109]). For

example, µ = 0.1 means that 10% of correct edges are perturbed to connect to the

wrong vertices that do not follow the underlying interaction patterns. Because the

perturbation of correct edges simulates the false positive and false negative edges in

real-world networks, the robustness of our formulation with respect to potential noise

in real-world networks can be verified by testing our APANMF on noisy benchmarks

with different µ.

For the same noise level µ, we randomly generate 20 networks. For each random

network, we implement each algorithm 10 times and choose the one with the best ob-

jective function value as the solution for this network. For all competing algorithms,

we stop the algorithms when the objective function value does not decrease more

than 0.1. The regularization parameters α and β of APANMF are determined by

brute-force search in S = {(α, β)|α ∈ {0, 1, 2, 3, 4, 5} and β ∈ {0, 1, 2, 3, 4, 5}}. For

every network, we compute the entropy score based on (3.66) for every combination

of α and β in S from 10 different realizations (initializations), and we choose the best

α and β that yield the minimum entropy score. For λ of BNMF, we use the same

procedure and set λ from 0 to 5 with an interval of 1. To quantitatively evaluate the

performance of each algorithm for synthetic networks, we use the Normalized Mu-

tual Information (NMI) [5] as the performance index for non-overlapping clustering
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Figure 3.14: Performance comparison for directed graph clustering: (a) NMI comparison (non-
overlapping) with increasing mixing parameter µ. (b) GNMI comparison (overlapping) with in-
creasing overlapping fraction values θ when µ = 0.1. (c) GNMI comparison (overlapping) with
increasing overlapping fraction values θ when µ = 0.3.

comparison and the Generalized Normalized Mutual Information (GNMI) [50] for

overlapping clustering comparison. The evaluation criteria for real-world datasets

are introduced in the corresponding sections. All experiments are implemented on a

MacBookPro laptop with an Intel i5 dual core processor and 8 GB memory.

3.3.4.1 Undirected graph clustering

To generate undirected graph benchmarks, we adopt the well-known LFR algo-

rithm [49], in which the distributions of vertex degree and cluster size are both based

on power laws with tunable exponents. In this section, the benchmark networks are

randomly generated based on the similar parameters adopted in [76]: The number

of vertices n = 400; the average vertex degree is 20 and the cluster size ranges from

cmin = 40 to cmax = 80. To validate the performance with different parameters,

we further tune the mixing parameter (noise level) µ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6},

which can be understood as the noise level indicating the portion of a given vertex’s

edges that connect to the vertices outside the community. This simulates poten-

tial noise at different levels in these randomly generated networks. When evalu-

ating the performance for overlapping clustering, we set the overlapping fraction

θ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, which measures the fraction of vertices belonging to
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more than one clusters.

The comparison among all competing algorithms is shown in Fig. 3.13. The

mean values and standard deviations achieved by all competing algorithms for each

parameter setting are obtained from 20 randomly generated benchmarks. Fig. 3.13(a)

illustrates the performance comparison on non-overlapping benchmarks with various

mixing parameters µ. From the figure, we observe that the NMI bar from our

APANMF is consistently higher than bars of all the other state-of-the-art algorithms,

which indicates that APANMF identifies clusters that are closest to the ground truth.

We also notice that our APANMF behaves marginally better than SymNMF MU

and SymNMF NT, especially for large mixing parameters, which demonstrates that

APANMF is more robust to noise than SymNMF MU and SymNMF NT since it

explicitly enforces the sparsity of B and X.

Fig. 3.13(b) and (c) illustrate the performance for overlapping community de-

tection under µ = 0.1 and µ = 0.3, respectively. With the increasing overlapping

fraction values, the difficulty for graph clustering increases. We still find that the

GNMI bar of our APANMF is consistently higher than bars of the other competing

algorithms with respect to different overlapping fraction values.

Furthermore, we test the statistical significance of our APANMF by compar-

ing APANMF with SymNMF MU and SymNMF NT respectively as SymNMF MU

and SymNMF NT are empirically the best-preforming algorithms in addition to our

APNNMF. By two-sample t-test with unequal variances, we find that APANMF per-

forms significantly better than SymNMF MU and SymNMF NT at the noise level

µ = 0.6 in the experiments illustrated in Fig. 3.13 (a) and (c) at the significant level

of 0.05.
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3.3.4.2 Directed graph clustering

We further generate directed graph benchmarks by LFR [49]. Similarly, to test

the behavior of the competing algorithms, we simulate non-overlapping and over-

lapping directed benchmarks with different mixing parameters µ (noise levels). We

set the number of vertices n = 400, the average vertex degree to 20 and the clus-

ter size from cmin = 40 to cmax = 80. For non-overlapping directed graph bench-

marks, we randomly generate benchmarks with the increasing mixing parameters

(noise level): µ = {0.1, 0.2, 0.3, 0.4, 0.5}. While for overlapping directed graph

benchmarks, we simulate benchmarks with the increasing overlapping fraction values

θ = {0.1, 0.2, 0.3, 0.4, 0.5}. We compare our APANMF with all the other methods

except SymNMF MU and SymNMF NT as SymNMF MU and SymNMF NT can

not handle directed graphs.

Fig. 3.14 shows the comparison results for non-overlapping and overlapping clus-

tering for directed graphs. For non-overlapping clustering comparison shown in

Fig. 3.14(a), APANMF and ASymNMF are competitive when the mixing parameter

µ is small. However, when it reaches µ = 0.5, APANMF performs significantly bet-

ter than ASymNMF, which further validates that with high noise level, the sparsity

regularization in APANMF can help obtain better results. For overlapping clustering

comparison shown in Fig. 3.14(b) and (c), with the increasing overlapping fraction

values at fixed µ = 0.1 and µ = 0.3 respectively, the bars of GNMI values obtained

by APANMF are consistently higher than other two competing algorithms. Addi-

tionally, the GNMI values of APANMF are the most stable one with the smallest

standard deviation. Therefore, Figs. 3.14(b) and (c) demonstrate that APANMF is

also robust to the overlapping fraction. In summary, obviously our APANMF outper-

forms ASymNMF and BNMF for both non-overlapping and overlapping clustering
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Figure 3.15: (a) Underlying blockmodel structure of synthetic blockmodel benchmarks. (b) Exam-
ple of a random network with µ = 0.4. (c) NMI comparison with the increasing noise level for all
the competing algorithms.

of directed graphs.

3.3.4.3 Block modeling

Our APANMF can also solve block modeling clustering problems. We gener-

ate synthetic networks as similarly done in [111, 109] with known ground truth

block structures. The generated benchmark networks have block structures with

two densely connected clusters and two clusters with only edges across each other

as shown in Fig. 3.15(a). We first simulate the noise-free networks with the size of

each block clusters set at 100. To vary the difficulty of the block modeling clus-

tering problem, we instill the noise to the network topology with different levels,

which can be controlled by permuting the percentage of correct edges based on the

Maslov-Sneppen algorithm [60]. In the Maslov-Sneppen algorithm, two unconnected

edges are randomly drawn and then mutually rewired. The noise level µ controls the

percentage of correct edges to be permuted. Fig. 3.15(b) provides an example with

40% edges being permuted (µ = 0.4).

Fig. 3.15(c) illustrates the comparison in terms of NMI. From the figure, we ob-

serve that the NMI curve of our APANMF is consistently on top of all the other
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competing algorithms at all noise levels. In addition, we discover that when the

noise level is low, both APANMF and ASymNMF have competitive performance,

better than the other two algorithms, since the introduction of the image graph B

in both methods. However, with the increasing noise level, ASymNMF fails to de-

tect the block structures, which consolidates that our APANMF is more robust to

noise with additional sparsity regularization. For SymNMF MU and SymNMF NT,

as they are designed to identify densely connected clusters, the bipartite-like clus-

ters in Fig. 3.15(a) can not be detected even when there is no noise. Additionally,

SymNMF NT performs marginally better than SymNMF MU because SymNMF NT

converges to a stationary point. For BNMF, the approximation of M ideal may not

capture the latent structure of the graph, which influences its performance.

3.3.4.4 Effect and determination of α and β

The regularization coefficients α and β control the sparsity of X and B in

APANMF. The larger α and β are, the sparser X and B become. To discover

the relationships among the selection of α and β, clustering accuracy and entropy

scores under a high noise level, we implement the following experiment. We ran-

domly generate a synthetic network with the noise level of µ = 0.4. The underlying

block structure is the same as illustrated in Fig. 3.15(a). We select the (α, β) pair

from S = {(α, β)|α ∈ {0, 1, 2, 3, 4, 5} and β ∈ {0, 1, 2, 3, 4, 5}}. To demonstrate the

effectiveness of the regularization terms, for each initialization we implement our

algorithm through all (α, β) pairs in set S. We apply 10 different initializations and

compute the average NMI value and entropy score of each (α, β) pair. Fig. 3.16(a)

displays the surface of NMI values for every (α, β) pair and Fig. 3.16(b) illustrates

the surface of entropy scores for every (α, β) pair. Fig. 3.16(a) shows that better NMI

values can be achieved by appropriately selecting (α, β), which further indicates the
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necessity of using regularization terms to obtain robust results for noisy networks.

Additionally, we discover that the best average NMI values and the minimum en-

tropy scores are attained at the same point (α, β) = (5, 3), which demonstrates that

using entropy scores can help us choose appropriate α and β.
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Figure 3.16: (a) Surface of average NMI values for every (α, β) pair. (b) Surface of entropy scores
for every (α, β) pair.

3.3.4.5 Facebook ego network

The Facebook ego network is obtained from the SNAP library (http://snap.stanf

-ord.edu/data/). The Facebook ego network combines 10 ego networks with 4,039

vertices as Facebook users and 88,234 edges denoting virtual friendship. This com-

bined ego network has manually labeled ground truth from Facebook circles. Our

task is to detect the overlapping communities within the ego network. Because

we have the ground truth, we can evaluate the performance of all competing algo-

rithms. The measure we applied is the geometric mean of two other measures, which

are the cluster-wise sensitivity (Sn) and the cluster-wise positive predictive value

(PPV ) [53]. Given r predicted and s reference communities, let tij denote the num-

ber of vertices that exist in both predicted community i and reference community
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j, and wj represent the number of vertices in reference community j. Then Sn and

PPV can be defined as

Sn =

∑s
j=1 maxi=1,...,r

tij∑s
j=1wj

, PPV =

∑r
i=1 max

j=1,...,s
tij∑r

i=1

∑s
j=1 tij

. (3.67)

We use their geometric mean as our “accuracy” index to balance these two measures

(Acc =
√
Sn× PPV ) [53].

We set the number of potential communities K = 200 for all the algorithms and

choose α = 5 and β = 2 for APANMF and λ = 1 for BNMF based on the entropy

score (3.66). The performance comparison for this Facebook ego network is provided

in Table 3.10, from which it is clear that our APANMF obtains the best Sn, PPV ,

and Acc scores. The results further demonstrate that APANMF is the best graph

clustering method for this application. SymNMF NT fails to implement due to the

memory limitation. Hence, SymNMF NT is not included in Table 3.10.

Table 3.10: Comparison on Facebook ego network.

APANMF SymNMF MU ASymNMF BNMF

Sn 0.4243 0.3905 0.3978 0.2078

PPV 0.5731 0.5614 0.5070 0.2843

Acc 0.4931 0.4682 0.4491 0.2431

3.3.4.6 Human protein-protein interaction netwrok

To further illustrate the practical usage of our flexible method in computational

biology, we apply all the competing algorithms and compare their performances on

a human protein-protein interaction (PPI) network extracted from the PIPs dataset

(HsaPIPs) [62]. This HsaPIPs network has 5,445 proteins and 74,686 edges denoting
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whether two corresponding proteins bind with each other. For this biological network,

we do not have the clustering ground truth, which is often the case for most of the

real-world network datasets. As typically done in computational biology, we evaluate

the performance based on manual curations of genes and/or proteins in this network,

for example, based on Gene Ontology (GO) terms [7]. GO terms annotate groups

of genes representing certain gene product properties in cells. GO term enrichment

analysis [112] can help interpret the corresponding cellular functions for the proteins

in detected clusters by statistically detecting whether they correspond to a specific

GO term. Assuming a detected cluster has n proteins with m proteins annotated to

a GO term and the whole network has n proteins with M proteins annotated with

the same GO term. Then the p-value of the identified cluster with respect to the

enrichment of proteins within that GO term can be calculated as [112]

p-value =
n∑

i=m

(
m
i

)(
n−M
n−i

)(
n
n

) . (3.68)

In this implementation, we set K = 600 for all the competing algorithms and choose

α = 4 and β = 2 for APANMF and λ = 1 for BNMF based on the entropy score

computation (3.66). SymNMF NT again fails to run due to its memory issue. For

performance comparison, a GO term is considered enriched when there is a detected

cluster significantly enriched with this GO term with the corresponding p-value less

than 1e−3. For each cluster, we choose the lowest p-value of all its enriched GO

terms as the corresponding p-value of this cluster. Fig. 3.17 illustrates the per-

formance comparison in terms of the negative logarithms of the p-values for every

identified clusters in the descending order. We find that the curve of APANMF

is the longest one, which indicates that APANMF detects the largest number of

biologically meaningful clusters (420) with the corresponding p-values lower than
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Figure 3.17: GO enrichment comparison for all the competing algorithms.

1e−3. Additionally, we notice that the curve of APANMF is on top of all the other

curves, which implies that the significant level of the clusters identified by APANMF

is higher than the others. Furthermore, we count the total number of the enriched

GO terms obtained by each competing algorithm. We find that 1637 GO terms are

enriched by the clusters detected by APANMF. For SymNMF MU, ASymNMF, and

BNMF, 1390, 809, and 283 GO terms are significantly enriched, respectively. Ob-

viously, APANMF covers the largest number of enriched GO terms which indicates

that APANMF unearths richer biological information. It is not surprising because

many researchers [109, 111] have discovered that PPI networks have block modeling

structures and our APANMF is more powerful for discovering the block modeling

structures of noisy graphs.

3.3.5 Conclusions

In this section, for clustering noisy networks, we propose a flexible NMF-based for-

mulation with the explicit sparsity regularization of all factorized components. Our

new framework is noise tolerant and can solve graph clustering with different settings

such as both undirected graph community detection and directed graph clustering
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with either overlapping or non-overlapping clustering structures, and more general

block modeling clustering problems as well. Furthermore, we propose an alternating

proximal method APANMF to solve our new optimization problem with the con-

vergence guarantee. The results on synthetic benchmarks and real-world networks

demonstrate that our method outperforms other NMF-based state-of-the-art graph

clustering algorithms. The proposed APANMF has the potential to derive useful

knowledge in diverse applications including social and biological network analysis.
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4. BLOCK MODELING FOR MULTIPLE PROTEIN INTERACTION

NETWORKS∗

In this chapter, we introduce two algorithms for searching for functional modules

in pairwise networks. These two algorithms are extend based on the formulations

proposed in sections 3.1 and 3.2, respectively.

4.1 Simulated annealing

We formulate network clustering as a block modeling problem by mapping the

original networks to an image graph in which nodes represent potential functional

modules with specific functionalities. The image graph optimally preserves the in-

teraction patterns among nodes of the original networks across corresponding mod-

ules (Figure 4.1A), and enables to capture the functional interdependences between

biomolecules based on the ways they interact with each other. We adopt a simulated

annealing (SA) algorithm for the corresponding Potts-model [80] to solve the non-

convex problem of simultaneous module identification across two networks, which

has been shown to yield high quality results. Our experimental results with both

synthetic and real-world PPI networks demonstrate that our new joint clustering

algorithm solved by SA (JointSA) outperforms separate block modeling clustering

algorithm (SingleSA).

∗Part of the content of the first section in this chapter is reprinted with permission from “Joint
clustering of protein interaction networks by block modeling” by Yijie Wang and Xiaoning Qian,
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 1616-
1620, 2014, Copyright 2014 by IEEE. Part of the content of the second section in this chapter is
reprinted with permission from “Joint clustering of protein interaction networks through Markov
random walk” by Yijie Wang and Xiaoning Qian, BMC Systems Biology, 8(Suppl 1): S9, 2014,
Copyright 2014 by Bioinformatics.
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is proportional to the number of aggregated edges in original networks. c©2014 IEEE

4.1.1 Methodology

We first develop an integrated mathematical model for joint clustering of two PPI

networks [113]. The motivation is to obtain biologically meaningful results by inte-

grating useful information and accrued knowledge from two networks across species.

The essence of the integrated model is to introduce a common virtual network as

the image graph for both networks as different species may evolve form the same

ancestor and share the same functional modular structure from the perspective of

evolution. The virtual network, where each node represents a potential module (ei-

ther densely connected or sparsely connected) with groups of proteins with similar

cellular functions, provides insights into the cellular functional organization by the

derived modular structure as shown in Figure 4.1C. We solve the module identifica-

tion for two networks at the same time by mapping each network into this virtual

network. By this integrated model, evolutionarily conserved molecules are more

likely to possess independent but coherent functions.

4.1.1.1 Joint network clustering

Let two given PPI networks from two species be Gk = {Vk, Ek}(k = 1, 2), where

Vk = {uk1, uk2, ..., ukNk} are sets of nodes that represent proteins in Gk and Ek are
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sets of edges representing interactions among proteins in Gk. The network topology

of Gk can be represented by adjacency matrix Ak, where Akij ∈ {0, 1} denotes the

interactions between nodes uki and ukj in Gk. Let S12(u1
i , u

2
j) represent the sequence

similarity between node u1
i ∈ V1 and node u2

j ∈ V2. We aim to find mappings from

the given networks to the introduced virtual network M = {VM , EM} as illustrated

in Figure 4.1C, where Vm = {vm1 , vm2 , ..., vmNm} denotes the virtual nodes in M and

Nm is the total number of virtual nodes in M (Nm ≤ mink≤2{Nk}). The adjacency

matrix of M is AM . For each given network Gk, we define a many-to-one mapping

Ψk : Vk 7→ VM to the virtual network M . For a node uki in Gk, Ψk(i) assigns it to a

virtual node vmi , 1 ≤ i ≤ Nm.

In order to consider the sequence similarities between the nodes across networks

and the interaction similarities shared by proteins in two networks, we formulate our

joint clustering objective function as follows:

max
Ψ1,Ψ2,AM

λU(S12,Ψ1,Ψ2) + (1− λ)Q(A1, A2, AM ,Ψ1,Ψ2), (4.1)

in which λ is a weighting coefficient. Function U(S12,Ψ1,Ψ2) computes the total

similarity score based on the sequence similarity between corresponding proteins

assigned to the same virtual node according to Ψ1 and Ψ2 in two networks.

U(S12,Ψ1,Ψ2) =

1≤j≤N2∑
1≤i≤N1

S12(u1
i , u

2
j)δΨ1(i),Ψ2(j), (4.2)

where δv,v′ is the indicator function, which equals to 1 when v = v′ and 0 otherwise.

Function Q(A1, A2, AM ,Ψ1,Ψ2) measures the conservation of interaction patterns

shared by corresponding proteins assigned to the same module, for which we develop a

pairwise block modeling formulation to jointly consider the mapping quality between
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two networks as well as the interaction patterns within both networks.

Mathematically, for each network Gk, Ψk should minimize the mismatch between

the given network Gk and the introduced virtual network M [80]:

min
Ψk,AM

Nk∑
i 6=j

[
Akij − AMΨk(i)Ψk(j)

]
(Akij − pkij), (4.3)

in which
[
Akij − AMΨk(i)Ψk(j)

]
calculates the number of mismatched edges between Gk

and M and (Akij − pkij) denotes the penalty for the corresponding mismatch. We set

pkij =
∑
i′ 6=i A

k
ii′

∑
j′ 6=j A

k
j′j∑

i′ 6=j′ A
k
i′j′

to make the total mismatch error on existing edges equal to

the error on absent edges (
∑N

i 6=j A
k
ij(A

k
ij − pkij) =

∑N
i 6=j(1− Akij)pkij).

Although AM is unknown before clustering, algebraic manipulations can lead to

the absorption of optimizing AM in the following optimization problem [80]:

max
Ψk

Nm∑
m,n

∣∣∣∣∣
Nk∑
i 6=j

(Akij − pkij)δΨk(i),mδΨk(j),n

∣∣∣∣∣ . (4.4)

Once we derive Ψk [80], AM can be estimated based on the interaction preser-

vation in (4.3) in a straightforward manner. Therefore, for G1 and G2, we have

Q(A1, A2, AM ,Ψ1,Ψ2) equal to

Nm∑
m,n

∣∣∣∣∣∑
k=1,2

Nk∑
i 6=j

(Akij − pkij)δΨk(i),mδΨk(j),n

∣∣∣∣∣ . (4.5)

To summarize, the final formulation for joint blockmodel clustering can be written
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as:

max
Ψ1,Ψ2

λ

1≤j≤N2∑
1≤i≤N1

S12(u1
i , u

2
j)δΨ1(i),Ψ2(j)

+(1− λ)
Nm∑
m,n

∣∣∣∣∣∑
k=1,2

Nk∑
i 6=j

(Akij − pkij)δΨk(i),mδΨk(j),n

∣∣∣∣∣ .
(4.6)

4.1.1.2 Optimization for joint network clustering

With the new mathematical model for joint network clustering, we now turn

to the problem of solving the optimization problem (4.6). To obtain high quality

solutions for this highly non-convex problem, we implement a simulated annealing

(SA) algorithm based on the heat-bath algorithm for Potts-Models [80].

To derive the SA algorithm, we assume that each potential virtual node vmi in M

represents a spin state and Ψk assigns each original network node to an arbitrary spin

state. We use Hvmφ
to denote the energy of the system represented in the objective

function (4.6) with Ψk(i) = vmφ at temperature T . We apply the single spin heat-

bath update rule, which updates the system energy when making a state change

for a given node uki from a state vmφ to vmα : Hvmα = Hvmφ
+ ∆HΨk(i):vmφ →vmα . The

probability of making state assignment change is proportional to the exponential of

the corresponding energy change of the entire system with all other nodes’ states

fixed.

p(Ψk(i) = vmα ) =
exp

{
−β∆HΨk(i):vmφ →vmα

}
∑Nm

n=1 exp
{
−β∆HΨk(i):vmφ →vmn

} , (4.7)

in which β = 1/T . In order to compute the energy change ∆HΨk(i):vmφ →vmα at T , we

first decompose the energy change into two terms based on (4.1):

∆HΨk(i):vφ→vα = λ∆UΨk(i):vφ→vα + (1− λ)∆QΨk(i):vφ→vα , (4.8)
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where ∆UΨk(i):vmφ →vmα computes the energy change with respect to node similarities

caused by switching uki from the state vmφ to vmα . We can write ∆UΨk(i):vmφ →vmα as:

∆UΨk(i):vmφ →vmα =

Nl∑
j

Skl(u
k
i , u

l
j)
[
δΨl(j),vmα − δΨl(j),v

m
φ

]
, (4.9)

Each potential state change based on (4.9) takes O(N vmφ + N vmα ) operations where

N vmφ and N vmα denote the number of nodes assigned to states vmφ and vmα . Thus, each

local update takes O((N1 +N2)(N vmφ +N vmα )) operations.

The energy change with respect to network structure ∆QΨk(i):vφ→vα can be cal-

culated similarly as in [80] by the following equation

∆QΨk(i)=vmφ →vmα =(∣∣∣akvmφ −i,vmφ −i + alvmφ ,vmφ

∣∣∣− ∣∣∣akvmφ ,vmφ + alvmφ ,vmφ

∣∣∣)
+
(∣∣akvmα +i,vmα +i + alvmα ,vmα

∣∣− ∣∣akvmα ,vmα + alvmα ,vmα

∣∣)
+2
(∣∣∣akvmφ −i,vmα +i + alvmφ ,vmα

∣∣∣− ∣∣∣akvmφ ,vmα + alvmφ ,vmα

∣∣∣)
+2
∑NM

s 6=vmφ ,vmα

(∣∣∣akvmφ −i,s + alvmφ ,s

∣∣∣− ∣∣∣akvmφ ,s + alvmφ ,s

∣∣∣)
+2
∑NM

s 6=vmφ ,vmα

(∣∣akvmα +i,s + alvmα ,s
∣∣− ∣∣akvmα ,s + alvmα ,s

∣∣)
, (4.10)

where akr,s is the overall mismatch penalty between modules r and s in Gk. mk
r,s

represents the total interactions between modules r and s in Gk and Dk
r is the

summation of the degrees of all the nodes in module r in Gk. The subscript vmφ − i

in (4.10) stands for the operation of removing the corresponding node uki from the

set of nodes assigned to vmφ while vmα + i denotes adding the node to vmα . These values

in (4.10) can be efficiently computed by the following equations:

akr,s = mk
r,s −

Dk
rD

k
s

2Mk
; (4.11)
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mk
r,s =

∑
ij

AkijδΨk(i),rδΨk(j),s; (4.12)

Dk
r =

∑
ij

AkijδΨk(i),r; Mk =
∑
ij

Akij; (4.13)

akvmφ −i,vmφ −i = mk
vmφ v

m
φ

+ 2dki→vmφ −
(Dk

vmφ
− dki )2

2Mk
; (4.14)

akvmα +i,vmα +i = mk
vmα v

m
α

+ 2dki→vmα −
(Dk

vmα
+ dki )

2

2Mk
; (4.15)

akvmφ −i,vmα +i = mk
vmφ v

m
α
− dki→vmα + dki→vmφ −

((Dk
vmφ

)2 − (dki )
2)

Mk
; (4.16)

akvmφ −i,s = mk
vmφ s
− dki→vmα −

(Dk
vmφ
− dki )Dk

s

2Mk
. (4.17)

where dki→vmφ =
∑

j A
k
ijδj,vmφ denotes the number of interactions between node uki

and nodes in state vmφ and dki denotes the degree of the node uki . Based on the

equations (4.10) to (4.17), the local update for ∆Q takes O((N1 +N2)N2
m) operations

at each temperature.

4.1.2 Experimental results

To demonstrate that our joint network clustering algorithm (JointSA) is superior

to separate network clustering algorithms, we compare our algorithm with the block

modeling clustering algorithm of single networks solved by simulated annealing (Sin-

gleSA) [80] on synthetic networks and two PPI networks collected from the Database

of Interacting Proteins (DIP) [90].
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4.1.2.1 Synthetic networks

We test JointSA and SingleSA on a set of synthetic networks. We first generate

noise-free networks based on the virtual network shown in Figure 4.2A. In the virtual

network, virtual nodes “a”, “b” and “e” represent densely connected modules and

virtual nodes “c” and “d” represent the modules having the bi-partite structure

with interactions running mainly between nodes assigned to them. We set the sizes

of the modules corresponding to the virtual nodes “a”, “b”, “c”, “d” and “e” to

16, 48, 32, 32 and 80 respectively. Additionally, we can add noise to networks

with the noise level as the percentage of interactions that do not adhere to the

topology of these virtual nodes. A similar setting has been used for benchmarking

in [72, 80]. For separate network clustering, we apply SingleSA to these randomly

generated synthetic networks with different noise levels. For joint network clustering,

we simply use two same synthetic networks and further introduce a node similarity

S12 between them, in which we randomly assign 8 similar pairs in average for each

node. We change the difficulty of the joint clustering task by using different noise

levels for both network interactions and the nodes similarities. As our JointSA also

uses simulated annealing for optimization, we use the same parameters for both

SingleSA and JointSA. Both SingleSA and JointSA converge to the final solutions

within a few minutes.

As we know the ground truth of the structure in synthetic networks, we use nor-

malized mutual information (NMI) [23] between the ground truth and the clustering

results obtained by both algorithms to evaluate the clustering accuracy. Figure 4.2D

shows the performance comparison between JointSA and SingleSA. At each noise

level, we randomly generate 50 networks. And for each network, we take the best

out of 10 runs with different random initializations. The average and the standard
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Figure 4.2: Results for synthetic networks with a known underlying structure: A. The structure of
the virtual network. B. One example of the adjacency matrix for a generated network at the noise
level 0.5; C. One example of the similarity matrix at he noise level 0.5; D. Performance comparison.
c©2014 IEEE

deviation of the NMI obtained from 50 randomly generated networks are plotted in

Figure 4.2D. Clearly, our JointSA significantly outperforms SingleSA, which implies

that the integration of the information across two network including node similarities

with reasonable accuracy may significantly improve joint clustering results.

4.1.2.2 Protein interaction networks

In order to validate that joint network clustering can detect more biologically

meaningful modules than the separate clustering, we further compare JointSA and

SingleSA on real-world PPI networks. We use the PPI networks of S. cerevisiae

(Sce) and D. melanogaster (Dme) extracted from DIP [90]. These two networks

have 4,990 nodes with 21,911 edges (Sce) and 7,390 nodes with 22,695 edges (Dme)
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respectively. The similarities among proteins across two networks are computed by

SSEARCH routine in the FASTA package [77]. The final protein similarity is binary

by setting to 1 when the e-value between two protein sequences is lower than 10−5,

and 0 otherwise. With such large PPI networks, JointSA and SingleSA converge in

a few hours.

We annotate each node in PPI networks by its corresponding gene name and

use Ontologizer [9] to perform Gene Ontology (GO) enrichment analysis for the re-

sults obtained by JointSA and SingleSA. GO enrichment analysis helps interpret the

corresponding cellular functions for the proteins in derived modules by statistically

detecting whether they correspond to a specific gene ontology category (GO term).

Figure 4.3A shows the number of significantly enriched modules detected by both

JointSA and SingleSA. From Figure 4.3A, we find that JointSA identifies more GO

enriched modules than SingleSA for both S. cerevisiae and D. melanogaster PPI

networks for different number of modules (Nm). Figure 4.3B illustrates the number

of enriched GO terms that cover fewer than 100 proteins for the identified modules

by both JointSA and SingleSA. We observe that the modules detected by JointSA

have more annotated GO terms with smaller sizes (< 100), which implies that the

identified modules by JointSA are enriched with more specific cellular functionalities.

Hence, JointSA can identify biologically more significant modules with known cell

functions.

4.1.3 Discussion

In this section, we propose a novel mathematical framework for joint clustering

two PPI networks simultaneously. Furthermore, our mathematical framework (4.1)

can be extended to multiple networks in a straightforward manner with the following
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Figure 4.3: A. Number of modules with statistically significantly enriched GO terms below 1% after
Bonferroni correction for different Nm. B. Number of statistically significantly enriched GO terms
that cover fewer than 100 proteins. c©2014 IEEE

objective function:

max
Ψ1,...,Ψk,AM

λ
∑
i<j

U(Sij,Ψi,Ψj)

+ (1− λ)Q(A1, ..., Ak, AM ,Ψ1, ...,Ψk).

(4.18)

We note that the corresponding local update for the SA optimization hasO(
∑k

i NiN
2
m)

computational complexity, which scales linearly with respect to the number of net-

works k. The convergence of the corresponding simulated annealing solution can be

guaranteed by setting the initial temperature high and the cooling down procedure

slow [44].

We propose a novel joint clustering formulation which integrates conserved sim-

ilarity across networks into a flexible clustering model based on block modeling.

Our preliminary experimental results have shown that joint clustering outperforms

clustering of individual networks separately with respect to obtaining biologically
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meaningful modules.

4.2 ASModel

There are many existing algorithms for clustering single PPI networks. Normal-

ized cut (NCut) method [95] aims to partition the network based on a novel global

criterion, which focuses on the contrast between the total dissimilarity across differ-

ent clusters and the total similarity within clusters based on network topology. The

formulation of NCut is equivalent to finding low conductance sets on the transition

matrix of the Markov random walk on the network to analyze [111, 115]. Markov

CLustering algorithm (MCL) [26] detects clusters based on stochastic flow simula-

tion, which has been proven to be effective at clustering biological networks. Re-

cently, an enhanced version of MCL—Regularized MCL (RMCL) [91, 93]—has been

proposed to penalize large clusters at each iteration of MCL to obtain more balanced

clusters and it has been shown to have better performance to identify clusters with

potential functional specificity.

However, it is well known that the current public PPI datasets are quite noisy and

there exist both false positive and false negative interactions due to different technical

reasons [25]. Therefore, clustering simply based on one network constructed from a

single data source may not be able to yield robust and accurate results. We may need

to appropriately integrate multiple information sources to repress the noise in existing

PPI datasets by borrowing strengths from each other. AlignNemo [22] is one of such

recent efforts, which detects network clusters on an alignment network of two given

PPI networks. AlignNemo takes into account not only the network topology from

two PPI networks but also the homology information between proteins across two

networks. However, based on the reported experiments and our empirical findings,

AlignNemo has low clustering coverage because the alignment network is constructed
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based on only similar proteins by their sequence similarity and those proteins that

do not appear in the alignment network are never considered for clustering.

In this section, we propose a novel joint clustering algorithm based on a new

Markov random walk on an integrated network, which is constructed by integrating

protein-protein interactions in given PPI networks as well as homological interactions

introduced by sequence similarity between proteins across networks. A novel alterna-

tive random walk strategy is proposed on the integrated network with the transition

matrix integrating both topology and homology information. We formulate the joint

clustering problem as searching for low conductance sets defined by this transition

matrix. We then derive an approximate spectral solution algorithm for joint network

clustering.

4.2.1 Methodology

4.2.1.1 Terminology

Let G = (U,D) and H = (V,E) be two PPI networks, where U and V are

node sets representing N1 and N2 proteins in two networks, respectively; and D

and E denote edges corresponding to respective protein-protein interactions. We

assume that G and H are connected networks, whose topology structures can be

mathematically captured by their corresponding adjacency matrices A1 and A2:

A1(i, j) =

1 (ui, uj) ∈ D, i 6= j;

0 otherwise.
A2(i, j) =

1 (vi, vj) ∈ E, i 6= j;

0 otherwise.
(4.19)

where ui, uj ∈ U and vi, vj ∈ V and we first ignore self-loops in PPI networks.

Suppose some of the proteins in U and V are known a priori to be similar to each

other by some criteria, such as their constituent or functional similarity. For example,

we compute protein sequence similarity based on the normalized BLAST bit score [3]
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in this section so that the latter performance evaluation in our experiments based on

curated functional annotations is as unbiased as possible. In a similarity matrix S12,

each element S12(ui, vj) records the similarity between proteins ui ∈ U and vj ∈ V :

S12(ui, vj) =
BLAST(ui, vj)√

BLAST(ui, uj)×
√

BLAST(vj, vj)
(4.20)

where BLAST(ui, vj) stands for the bit score of sequence similarity between proteins

ui and vj by BLAST [3]. Based on (4.20), we note that S12(ui, vj) is in the range

[0, 1].
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Figure 4.4: Illustration of our proposed joint clustering algorithm. A. Construction of the integrated
network. B. Random walk strategy. C. Equivalence between a directed network (transition matrix
P ) and a symmetric undirected network (transition matrix P̄ ).

4.2.1.2 Integrated network

In order to jointly cluster two PPI networks, we first define a new integrated

network M = (W , ET , EH). The set of nodes W in this integrated network is the

union of proteins in two PPI networks (W = U ∪V ). The integrated networkM has

two types of interactions, where ET represents the union of the sets of protein-protein

interactions within the PPI networks (ET = D ∪ E) and EH are new “interactions”

across two PPI networks introduced by the homological similarity S12. One example
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of an integrated network is illustrated in Fig 4.4A. In this example, W contains

all the nodes in blue and red colors from two respective networks. The solid edges

indicate the interactions in ET and the dashed edges represent the interactions in

EH .

The integrated network combines both the topology information within two PPI

networks and the homology information across two PPI networks. Therefore, M

can be considered as the integration of two networks MT = (W , ET ) and MH =

(W , EH), which share the same set of nodes W . MT is the network carrying the

topology information within two PPI networks, whose adjacency matrix can be rep-

resented as follows:

A =

A1 0

0 A2


N×N

(4.21)

where N = N1 +N2. MH is the network containing the homology information across

two networks, whose adjacency matrix can be represented as

S =

 0 S12

ST12 0


N×N

. (4.22)

The examples of MT and MH are also illustrated in Fig. 4.4A.

4.2.1.3 Random walk strategy on the integrated network

As shown in the previous section, the integrated network contains both topol-

ogy and homology information represented in two sets of edges. In order to bring

strengths from each other to improve the clustering performance in individual net-

works, we propose a random walk strategy on the integrated networkM to integrate

all information sources. To make use of both topology and homology information,

we require the random walker must walk through topological and homological inter-
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actions (ET and EH) in an alternative order. However, as shown in Fig. 4.4B, the

random walker can either first walk by MT then on the network MH or first walk

on MH then on MT . For the first type of random walk illustrated in Fig.4.4B, the

transition matrix PAS̄ can be calculated as

PAS̄ = PA × PS̄ (4.23)

where PA = D−1
A A and PS̄ = D−1

S̄
S̄. The matrix DA is a diagonal matrix with the

degree of each node on its diagonal elements. S̄ = S + IN×N is the adjacency ma-

trix of network MH with self-loops indicating self similarity of proteins. DS̄ is the

corresponding diagonal matrix with DS̄(i, i) =
∑

j S̄(i, j), where i, j ∈ {1, 2, ..., N}

are new node indices in the integrated network and S̄(i, j) > 0 when i, j indicate

proteins from different PPI networks. Again, S̄(i, i) = 1 for self similarity. Further-

more, we find that PA is the transition matrix of the random walk onMT and PS̄ is

the transition matrix of the random walk on MH including self-loops.

For the second type of random walk illustrated in Fig. 4.4B, we can similarly

compute the transition matrix

PSĀ = PS × PĀ (4.24)

where PS = D−1
S S and PĀ = D−1

Ā
Ā. Here, DS is a diagonal matrix with DS(i, i) =∑

j S(i, j). Here, Ā is the adjacency matrix of MT with self-loops to allow for the

possibility of random walker staying at the current node. DĀ is the corresponding

diagonal matrix with the node degree in Ā on its diagonal. PS is the transition

matrix of the random walk on MH and PĀ is the transition matrix of the random

walk on MT including self-loops.
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We further assume that the probability of taking the first type of random walk

should be the same as going with the second type of random walk. Therefore, our

final transition matrix for the new random walk strategy can be represented by

P =
1

2
PAS̄ +

1

2
PSĀ (4.25)

4.2.1.4 Searching for low conductance sets based on P

In MT , proteins with topological interactions ET are likely to participate in

similar cellular functions. Also, proteins with larger homological interactions EH in

MH are more probable to be functionally similar. Because the random walk on the

integrated network considers both types of interactions, each element P (i, j) of the

corresponding transition matrix can be understood as the probability that proteins i

and j have similar functions as these proteins are more likely to reach each other with

a larger P (i, j). Based on this, we can make use of the concept of the conductance

defined on the Markov chain to identify clusters based on P [95, 92] by searching for

low conductance sets.

Similarly as done in [95, 92], we can formulate the optimization problem for joint

network clustering:

min
k∑

h=1

ΦP (Ch, C̄h) s.t.
k⋃

h=1

Ch =W ;Ch ∩ Cl = ∅,∀h 6= l. (4.26)

where ΦP (Ch, C̄h) is the defined conductance of node subset Ch to the rest of the

network C̄h; and k is the number of desired subsets as final network clusters. The

conductance ΦP (Ch, C̄h) can be computed as

ΦP (Ch, C̄h) =

∑
i∈Ch,j∈C̄h πiP (i, j)∑

i∈Ch πi
, Ch ∪ C̄h =W , (4.27)
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where π is the stationary distribution of the corresponding Markov random walk on

the integrated network and P Tπ = π.

The goal now is to find k low conductance sets defined by P . As in [92], we

find that if we consider P as the transition matrix for a directed graph and try to

find k low conductance sets based on (4.26), it is in fact equivalent to find k low

conductance sets on an undirected graph with another transition matrix P̄ :

P̄ =
πP + P Tπ

2
. (4.28)

Due to the equivalence, our optimization formulation for finding k low conductance

sets can be formulated finally as

max trace
(

XT P̄X
XTDP̄X

)
s.t. X1k = 1N , xi` ∈ {0, 1} ,

(4.29)

where DP̄ is a diagonal matrix with DP̄ (i, i) =
∑

j P̄ (i, j); X is a N × k assignment

matrix whose element xi` denotes whether node i belongs to cluster `; 1k and 1N

are all one vectors with k and N elements, respectively. Here, equations (4.26)

and (4.29) have been proven to be equivalent previously in [92]. We can derive a

spectral method to solve the above problem based on [111]. The directed network

with P and its equivalent undirected network with P̄ are illustrated in Fig. 4.4C.

4.2.2 Joint clustering algorithm (ASModel)

Our joint clustering algorithm can be summarized into three steps which are

illustrated in Fig. 4.4. The first step is to construct the integrated network M.

The second step is to compute the transition matrix P based on the alternative

random walk strategy in (4.25). The final step is to find low conductance sets on the
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equivalent network and apply the spectral method to solve the optimization problem.

Algorithm 1 provides the pseudo code for ASModel.

Algorithm 1. ASModel for Joint Network Clustering

Input: Adjacency matrices A1 and A2, Sequence similarity matrix S12, and the number of desired
clusters k
Output: Cluster assignment matrix X
1. Construct the integrated network M and compute A and S;
2. Compute the transition matrix P based on the random walk strategy using (4.25);
3. Obtain the equivalent adjacency matrix P̄ which has the same low conductance sets as P ;
4. Using the spectral algorithm to find k low conductance sets by P̄ from (4.29) [111].

4.2.3 Experiments

4.2.3.1 Algorithms, data, and metrics

We compare our joint clustering algorithm ASModel to NCut [95], MCL [26],

RMCL [91, 93], and AlignNemo [22]. Among the selected algorithms for perfor-

mance comparison, AlignNemo [22] is a recently proposed protein complex detection

algorithm, which also takes into account the homology and topology information

from two PPI networks. NCut is equivalent to searching for low conductance sets

by the transition matrix defined directly based on the given single network. There-

fore, comparing with NCut aims to show that finding low conductance sets on the

integrated network by our new ASModel is superior to separately finding similar

low conductance sets on individual networks. MCL and RMCL are two state-of-the-

art algorithms which have been proven effective on analyzing biological networks.

Comparing with them can further demonstrate that our joint clustering algorithm

ASModel can achieve better performances than clustering single networks separately.

Both NCut and ASModel have one input parameter, which is the number of clusters

k. We sample k in [100, 3000] with an interval of 100 and report the best results.
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MCL also has one parameter, the inflation number. We similarly search for the best

performing value from 1.2 to 5.0 with an interval of 0.1. For RMCL, we adopt the

parameters suggested in [91, 93].

We evaluate the performances of ASModel, NCut, MCL, RMCL, and AlignNemo

on public PPI datasets for S. cerevisiae (budding yeast) and H. sapiens (human).

For S. cerevisiae, SceDIP and SceBGS are two extracted PPI networks from the

Database of Interacting Proteins (DIP) [90] and BioGRID [17], respectively. For

H. sapiens, HsaHPRD and HsaPIPs are corresponding PPI networks derived from

Human Protein Reference Database (HPRD) [82] and the PIPs dataset [62]. The

details of each PPI network are given in Table 4.1.

In order to access the performance of the competing algorithms, we first imple-

ment complex prediction to assess the quality of clustering results by evaluating the

agreement of the clusters found by each method with curated protein complex stan-

dards. SGD [37] and CORUM [87] complexes are considered as the golden standards

for complex prediction for yeast and human PPI networks, respectively. We then

implement the GO enrichment analysis for further validation on function predicting

performance from clustering results. In order to focus on more specific cellular func-

tions, we only take specific GO terms whose information content (IC) is larger or

equal to 2. The information content of a GO term g is defined as:

IC(g) = −log(|g|/|root|), (4.30)

where |g| and |root| are the number of proteins in GO term g and the number of

proteins in its corresponding GO category (biological process, molecular function or

cellular component). The information of reference complex datasets and GO terms

is also provided in Table 4.1.
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We adopt the widely used F-measure [96] to evaluate the performance for complex

prediction. F-measure is the harmonic mean of precision and recall: F = 2 ×

precision × recall/(precision + recall), where precision and recall are defined as

follows:

precision =
| {Ci ∈ C|NA(Ci, Rj) > 0.25,∃Rj ∈ R} |

|C|
; (4.31)

recall =
| {Ri ∈ R|NA(Ci, Rj) > 0.25,∃Ci ∈ C} |

|R|
, (4.32)

where C = {C1, C2, ..., Ck} are the identified clusters by different algorithms and

R = {R1, R2, ..., Rl} denote the corresponding reference complex sets. The neighbor

affinity NA(Ci, Rj) =
|Ci∩Rj |2
|Ci|×|Rj | measures the overlap between the predicted complex

Ci and the reference complex Rj.

To evaluate the performance of GO enrichment analysis, we compute the p-value

and the number of enriched GO terms from clustering results. Suppose that the

whole network has N proteins with M proteins annotated with one GO term and

the detected cluster has n proteins with m proteins annotated with the same GO

term. The p-value of the cluster with respect to that GO term can be calculated

as [97]

p-value =
n∑

i=m

(
m
i

)(
N−M
N−i

)(
N
n

) . (4.33)

We choose the lowest p-value of all enriched GO terms in the derived cluster as its

final p-value. A GO term is enriched when the p-value of any cluster corresponding

to this GO term is less than 1e−3.
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Table 4.1: Information of four real-world PPI networks.

Network #. nodes #. edges SGD CORUM |GO|
SceDIP 4980 22076 305 — 956
SceBGS 5640 59748 306 — 1005
HsaHPRD 9269 36917 — 1294 4755
HsaPIPs 5226 37024 — 1193 4560

Table 4.2: The information of the derived clusters by all competing algorithms

PPI Method NCut MCL RMCL ASModel(DB) ASModel(HP) ASModel(DH)
SceDIP #. clusters 525 659 814 737 — 702

coverage 2572 3630 3725 4537 — 4425
SceBGS #. clusters 414 338 772 704 — —

coverage 4879 3544 5210 5169 — —
HsaHPRD #. clusters 981 1239 1508 — 1113 1231

coverage 6534 7800 6879 — 8631 8729
HsaPIPs #. clusters 491 576 581 — 560 —

coverage 4542 4134 3966 — 4358 —
DB is short for DIP+BGS. HP is short for HPRD+PIPs. DH is short for DIP+HPRD.

4.2.3.2 Joint clustering of PPI networks within the same species

In this section, we first jointly cluster two PPI networks from the same species

to demonstrate the effectiveness of our ASModel. Through applying ASModel, we

expect that each PPI network can borrow strengths from the other PPI network to

enhance the clustering performance.

4.2.3.3 Joint clustering of the SceDIP and SceBGS PPI networks

Complex Prediction

For the SceDIP and SceBGS networks, we report the performance of ASModel,

NCut, MCL, RMCL, and AlignNemo on complex prediction in terms of the number

of matched reference complexes and F-measure. The detailed information such as the

number of clusters (cluster size ≥ 2) and the coverage is listed in Table 4.2. Figs. 4.5A

and 4.5B show the comparison results for the number of matched reference complexes
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Figure 4.5: Performance comparison of competing algorithms for complex prediction in both yeast
PPI networks. A. Comparison on the number of matched reference complexes. B. Comparison on
the F-measure.

and F-measure, respectively. As illustrated in Fig. 4.5, ASModel detects the largest

number of matched reference complexes and achieves the highest F-measure for both

networks, which is substantially better than the results obtained by individual clus-

tering using all the other single network clustering algorithms. Although AlignNemo

also uses both topology and homology information, it is interesting to observe that

it does not detect any matched reference complexes in this set of experiments, which

in fact is different from the reported results in [22] though different networks were

analyzed. This may indicate that the random walk strategy in our ASModel better

integrates available information across networks than the heuristic strategy adopted

in AlignNemo. Another important reason could be that the authors of AlignNemo

in [22] adopted different criteria to consider matched complexes while we here adopt

more strict evaluation metrics.

GO Enrichment Analysis

GO enrichment analysis has been done based on the detected clusters by AS-

Model, NCut, MCL, RMCL, and AlignNemo. For each cluster, it may be enriched
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Figure 4.6: Performance comparison of competing algorithms for GO enrichment analysis. A. GO
enrichment comparison on the SceDIP network. B. GO enrichment comparison on the SceBGS
network.

in multiple GO terms and we choose the lowest p-value as the p-value for the cluster

as explained earlier. We first sort the p-values of all clusters in an ascending order

and then draw the corresponding monotonically decreasing −log(p-value) curves for

all the algorithms in Fig. 4.6. As shown in Fig. 4.6A, for the SceDIP PPI network,

the curve of ASModel is on top of all the other competing algorithms, which indi-

cates that the clusters detected by joint clustering ASModel are more consistent to

the curated GO terms and hence capture the cellular functionalities better. For the

SceBGS PPI network from Fig. 4.6B, we find that the curve of RMCL is on top of

other algorithms for around the top 80 most significantly enriched clusters. However,

when we check more derived clusters, the curve of ASModel is again on top of the

other algorithms. Hence, overall, especially when we consider the total number of

enriched GO terms shown in Fig. 4.7, functional consistency of the detected clus-

ters is improved by our joint clustering algorithm ASModel as ASModel can identify

more enriched GO terms to unearth more biologically meaningful clusters with more

significant p-values overall.
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Figure 4.7: Comparison on the number of enriched GO terms for all the competing algorithms in
two yeast networks.

In summary, from both complex prediction and GO enrichment analysis, AS-

Model can achieve more biologically meaningful results. These promising results

imply that joint clustering can improve the clustering performance for every individ-

ual PPI network when we integrate information from them appropriately.
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Figure 4.8: Performance comparison of competing algorithms for complex prediction in both human
PPI networks. A. Comparison on the number of matched reference complexes. B. Comparison on
the F-measure.
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4.2.3.4 Joint clustering of the HsaHPRD and HsaPIP networks

Complex Prediction

Similarly, the results of complex prediction from all the competing algorithms on

two human PPI networks are shown in Fig. 4.8. For the HsaHPRD network, we

find that RMCL and ASModel detect competitive numbers of reference complexes

and achieve competitive F-measures. When we check the HsaPIPs network, Fig. 4.8

shows that ASModel identifies much more matched reference complexes and obtain

substantially better F-measure than all the other algorithms. AlignNemo again does

not detect any matched reference complexes based on the neighbor affinity metric.

The performance of ASModel demonstrates that the clustering of HsaPIPs network

does benefit from the information in the HsaHPRD network to achieve the better

complex prediction performance. However, the performance on the HsaHPRD net-

work is not influenced much, probably due to the incompleteness of the HsaPIPs

dataset.
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Figure 4.9: Performance comparison of competing algorithms for GO enrichment analysis. A. GO
enrichment comparison on the HsaHPRD network. B. GO enrichment comparison on the HsaPIPs
network.
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GO Enrichment Analysis

We compare ASModel to NCut, MCL, RMCL, and AlignNemo on GO enrichment

analysis by drawing similar −log(p-value) curves of the top ranked clusters based

on their enrichment significance. From Fig. 4.9, we observe that for both human

PPI networks, the curves of ASModel are on top of all the competing algorithms.

Furthermore, as shown in Fig. 4.10, we find that ASModel also detects the largest

number of enriched GO terms on both networks. The overall performance of GO

enrichment analysis further validates that joint clustering significantly enhances the

clustering performance for each PPI network.
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Figure 4.10: Comparison on the number of enriched GO terms for all the competing algorithms in
two yeast networks.

From these two experiments of joint clustering PPI networks from the same

species, we note that ASModel can make full use of topology and homology in-

formation to improve the clustering performance for each PPI network.
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4.2.3.5 Joint clustering of PPI networks from different species

Joint clustering of PPI networks within the same species has been proven to yield

promising results. In order to show that ASModel can also improve the clustering

performance for PPI networks from different species, we have done the following

experiment.
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Figure 4.11: Performance comparison of competing algorithms for complex prediction in the SceDIP
and HsaHPRD network. A. Comparison on the number of matched reference complexes. B. Com-
parison on the F-measure. ASModel (Different Species) indicates the results obtained by joint
clustering of the SceDIP and HsaHPRD PPI networks. ASModel (Same Species) indicates the
results obtained from joint clustering of the SceDIP and SceBGS networks for yeast and joint
clustering of the HsaHPRD and HsaPIPs PPI networks for human, respectively.

4.2.3.6 Joint clustering with SceDIP and HsaHPRD PPI networks

Complex Prediction

We first report the performance for protein complex prediction. For the SceDIP

network, we compare the results of joint clustering of the SceDIP and HsaHPRD

networks by ASModel, joint clustering of the SceDIP and SceBGS networks by AS-

Model, as well as results obtained from AignNemo and other single network clustering
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algorithms. We observe in Fig. 4.11 that joint clustering of the SceDIP and SceBGS

networks yields the best F-measure and the largest number of matched reference com-

plexes. However, joint clustering of the SceDIP and HsaHPRD networks achieves

the second best F-measure and detects competitive numbers of matched reference

complexes as RMCL.

For the HsaHPRD network, we compare the results of ASModel obtained from

joint clustering of the HsaHPRD and HsaPIPs networks as well as joint clustering

of the HsaHPRD and SceDIP PPI networks, AlignNemo, NCut, MCL, and RMCL.

The comparison for the number of matched reference complexes and F-measure is

given in Fig. 4.11. From the figure, we find that RMCL gets the best performance

in terms of these two metrics. ASModel achieves the competitive performance when

joint clustering two human networks as shown before. ASModel for two human

networks provides better results than jointly analyzing two networks for yeast and

human. From this set of experiments, we find that joint clustering two networks

within the same species works better than analyzing networks for different species.

We in fact expect this because networks within the same species have more shared

information, which can be utilized to supplement each other to improve clustering

performance. Otherwise, for two networks for different species, joint clustering may

not help as much since they may have different cellular constitution and organization

due to evolutionary differences.

GO Enrichment Analysis

We further illustrate the performance comparison for clustering the SceDIP net-

work in Fig. 4.12A. We note that the curve of ASModel for the SceDIP and SceBGS

networks is on top of the curve of ASModel for the SceDIP and HsaHPRD PPI

networks. Furthermore, both curves from ASModel are on top of all the other algo-

rithms. With respect to the HsaHPRD PPI networks, we have the same observation
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Figure 4.12: Performance comparison of competing algorithms for GO enrichment analysis on the
SceDIP and HsaHPRD networks. A. GO enrichment comparison on the SceDIP network. B. GO
enrichment comparison on the HsaHPRD network.

that ASModel analyzing PPI networks within the same species is on top of ASModel

analyzing networks from different species. Both of them are on top of the others.

This further convinces us that joint clustering does improve the clustering perfor-

mance. In addition, the more information that two PPI networks share, the more

enhancement can be achieved by joint clustering. From the comparison of the number

of enriched GO terms as shown in Fig. 4.13, we have the same conclusion. ASModel

analyzing networks within the same species detects the largest number of enriched

GO terms. For analyzing networks from different species, ASModel identifies the

second largest number of enriched GO terms among all competing algorithms.

From these experiments, no matter analyzing two PPI networks from the same

species or from two different species, our joint clustering algorithm ASModel can

achieve better results than analyzing these networks separately using single network

clustering algorithms.
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Figure 4.13: Comparison on the number of enriched GO terms for all the competing algorithms in
the Sce DIP and HsaHPRD networks.

4.2.4 Conclusions

In this section, we have proposed a joint network clustering algorithm ASModel

based on a new alternative random walk strategy. The experimental results based on

both complex prediction and GO enrichment analysis demonstrate that using AS-

Model to joint clustering two PPI networks can achieve better clustering results than

single network clustering algorithms and AlignNemo. Furthermore, from comparing

with the performances of joint clustering PPI networks within the same species and

those from different species, we find that more information the PPI networks in the

integrated network share, the better the clustering results can be achieved.

142



5. OVERCOMING THE DEGREE HETEROGENEITY

5.1 Protein complex identification for individual networks

It is well known that protein complexes are densely connected inside and loosely

connected outside [69]. Modularity based algorithms have been demonstrated to be

effective on identification of protein complexes in yeast and human protein interaction

networks [31, 65]. Conductance of a set S of nodes is another widely used definition

for protein complex prediction [69], which is defined as the ratio of the number of

edges pointing outside the set to the number of edges in the smaller of S and its

complementary Sc [6].

However, these methods have their own limitations. Modularity based methods

have the resolution problem, which is they can not detect small-size modules [30],

therefore protein complexes of small size may be ignored by those methods. Algo-

rithms based on finding low-conductance sets focus on the separability of a subnet-

work, which indicates whether the subnetwork is well separated from the rest of the

network. However, the internal connections of the subnetwork are not taken into

account, which leads to that the densely connected part of the subnetwork can not

be distinguished with the presence of the nodes of small degrees.

Degree heterogeneity is a common phenomenon presented in protein interaction

networks [4]. Fig. 5.1 shows the degree distribution of the yeast protein interaction

network obtained from Database of Interacting Proteins (DIP), which has 5,138

proteins and 22,491 protein-protein interactions. We notice that around half of the

proteins in this network have degrees lower than three. Therefore, efforts need to be

made to deal with the problem brought by degree heterogeneity of protein interaction

networks to discover potential protein complexes.
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Figure 5.1: Degree distribution of the yeast protein interaction network extracted from DIP
database.

In this section, we propose a local protein complex prediction algorithm, which

can resolve degree heterogeneity in protein interaction networks. Our FLCD al-

gorithm first identifies a low-conductance set around a node, which is locally well

separated from the rest of the network. Then the densely connected part in the

set is detected through identifying the densest subgraph within the set, which au-

tomatically get rid of the nodes with small degrees. We compare our FLCD with

three state-of-the-art overlapping module identification algorithms, which are Clus-

terONE [69], LinkComm [1] and SR-MCL [98], respectively. Experimental results

demonstrate that our FLCD outperforms all competing algorithms on protein com-

plex prediction.

5.1.1 FLCD algorithm

let G = (V,E) represent a protein interaction network, where V denotes the set

of nodes and E is the edge set. A is the adjacency matrix of G, of which the element

Aij = 1 denotes node i interacts with node j and Aij = 0 otherwise. The degree
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matrix D of G is a diagonal matrix with Dii = di, where di is the degree of node i.

For a set S of nodes, the conductance of S is defined as

φ(S) =
|E(S, S̄)|

min
{
vol(S), vol(S̄)

} , S ∪ S̄ = V, (5.1)

where E(S, S̄) denotes the edges between set S and S̄ and vol(T ) =
∑

i∈T di is the

number of edges of set T . Here we make a mild assumption that vol(S) << vol(V ) for

large scale protein interaction networkG, which means vol(S) = min
{
vol(S), vol(S̄)

}
.

Hence, we have

φ(S) =
|E(S, S̄)|
vol(S)

=

∑
ij D

S
ij − ASij∑
iD

S
ii

, (5.2)

where AS is the adjacency matrix of the induced subnetwork with respect to node

set S and DS is the degree matrix corresponding to AS, where DS
ii = di, i ∈ S. For

the same set S, the density of S is defined as

D(S) =
|E(S, S)|
|S|

=
1

2

∑
ij A

S
ij∑

i∈S 1
. (5.3)

5.1.1.1 Searching for a low-conductance set H∗v near v

Given a starting node v, our goal is to find a node set H∗v with low conductance

including v. We first use the algorithm proposed in [6] to find a set H with potential

low conductance, then the exact minimal conductance set H∗v in H is identified

through solving a mixture integer programming problem.

Following [6], a low-conductance set including v can be efficiently obtained via

the personalized PageRank vector of v. The personalized PageRank vector p(α, v) of

v on G is the stationary distribution of the random walk on G, in which at every step,

the random walker has α probability to restart the random walk at v and otherwise
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performs a lazy random walk. Mathematically, p(α, v) is the unique solution to

p(α, v) = αev + (1− α)p(α, v)W, (5.4)

where α ∈ (0, 1] is the “teleports” constant, ev is the indicator vector of v and

W = 1
2
(I + D−1A) is the transition matrix of the lazy random walk. We apply the

local algorithm in [6] to efficiently approximate p̂ ≈ p(α, v). Then we sort the nodes

based on p̂ and attain a ordering set H = {v1, v2, ..., vn}, elements of which satisfy

p̂(vi) > p̂(vi+1). We take the top k elements out of H, which are more likely to

comprise a low-conductance set with v, and put them in H. The lowest-conductance

set H∗v in H can be computed by solving the following optimization problem based

on (5.2).

min:
xT (DH − AH)x

xTdH

s.t. xi ∈ {0, 1},
(5.5)

where x is a binary vector with xi = 1 indicating that node i is assigned into H∗v

and xi = 0 otherwise and dH is a vector containing the degrees of every node in

H. After some manipulations, (5.5) can be transformed into the following equivalent

formulation.

min: z

s.t. z
∑
i

xid
H
i −

∑
i

∑
j

(DH
ij − AHij )xixj ≥ 0,

xi ∈ {0, 1}.

(5.6)

After using common techniques [29] to linearize zxi and xixj, the optimization prob-

lem can be solved by any mixture integer programming solver. Because the size of

|H| = k is much smaller than |V | = n and we only focus on identifying one low-

conductance set, we can efficiently obtain the lowest-conductance set H∗v in H based
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on (5.6).

5.1.1.2 Conservation of the densest subgraph C∗v in H∗v

The induced subnetwork Gv with respect to node set H∗v is well separated from

the rest of the network, however, there may exist nodes with low degrees in H∗v .

To remove low-degree nodes as well as reserve densely connected subnetwork, we

apply the definition of density (5.3) to find the densest subgraph in H∗v . Because

the problem size is small, we can also make use of the power of mixture integer

programming. The node set C∗v ∈ H∗v corresponding to the densest subnetwork can

be identified based on (5.3) by

max:
rTA

H∗v
ij r

rT1

s.t. ri ∈ {0, 1},
(5.7)

where 1 is an all one vector and r is the binary matrix indicating the memberships

of the nodes in the densest subnetwork. (5.7) can be transformed into

max: w

s.t. w
∑
i

ri −
∑
i

∑
j

A
H∗v
ij rirj ≤ 0,

ri ∈ {0, 1},

(5.8)

which can be casted into mixture integer programming solver after linearization [29].

5.1.1.3 The FLCD algorithm

The step-by-step procedure of FLCD algorithm is shown in Table 5.1. The FLCD

algorithm screens every node with degree larger than two. For each selected node, the

FLCD algorithm first searches for a low-conductance set around it and then find the
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densest subnetwork in the low-conductance set, which is considered as a predicted

module. After screening every possible node, we remove the duplicated modules and

modules with sizes less than three.

Table 5.1: The FLCD algorithm

Algorithm: The FLCD Algorithm
Input: S = V and k = 30.
Output: A set of predicted modules R.
1 While (∃v ∈ S and dv ≥ 3)
2 Estimate p̂ ≈ p(α, v).
3 Sort nodes in V based on p̂ and collect the top k nodes in Hv.
4 Finding the lowest-conductance set H∗v ∈ Hv based on (5.6).
5 Identifying the node set C∗v of the densest subnetwork in H∗v based on (5.8).
6 Considering C∗v as one predicted module, let R = {R,C∗v} and S = S − v.
7 EndWhile
8 Remove duplicated modules in R.

5.1.2 Experimental results

In this section, we compare our FLCD algorithm with other three state-of-the-art

overlapping module identification algorithms on protein complex prediction.

5.1.2.1 Data and metric

We use four yeast protein interaction networks SceDIP, SceBG, SceIntAct and

SceMINT extracted from DIP [90], BioGrid [101], IntAct [41] and MINT [48], re-

spectively. We remove all genetic interactions for SceBG. We use protein complexes

obtained from SGD [37] and MIPS [63] as the golden standard protein complexes.

For each protein interaction network, we remove reference protein complexes if their

size less than 3 or half of the proteins of them are not in the network. The detailed
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information of four protein interaction networks and the protein complex golden

standards are shown in Table. 5.2.

Table 5.2: The detailed information of four yeast protein interaction networks

Network #. proteins #. interactions SGD MIPS
SceDIP 5136 22491 224 184
SceBG 6438 80577 234 189
SceIntAct 5453 54134 231 187
SceMINT 5414 27316 230 188

For protein complex prediction, we assess the performance of all competing al-

gorithms by a composite score consisting of three quality scores: F-measure [98];

the geometric accuracy (Acc) score; and the maximum matching ratio (MMR) [69].

For fair comparison, we remove modules of two or less proteins for all competing

algorithms.

For a golden standard protein complex set C = {c1, c2, ..., cn} and a set of pre-

dicted modules S = {s1, s2, ..., sm}, the F-measure is defined as the harmonic mean

of precision and recall.

precision =
|Ncp|
|C|

, recall =
|Ncs|
|S|

. (5.9)

Ncp = {ci ∈ C|NA(ci, sj) ≥ 0.25,∃sj ∈ S} is a set of reference protein complexes

that are matched by a predicted modules. We consider a reference protein complex

cj is matched by a predicted module sj if NA(ci, sj) ≥ 0.25 [98], where NA(ci, sj) =

|ci ∩ sj|2

|ci| × |sj|
is called neighborhood affinity. Ncs = {si ∈ S|NA(cj, si) ≥ 0.25,∃cj ∈ C}

is the set of the modules that match to one or more reference protein complexes.
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Finally, the F-measure is

F-meature = 2× precision ∗ recall

precision× recall
. (5.10)

The geometric accuracy (Acc) score is the geometric mean of two other measures,

which are the cluster-wise sensitivity (Sn) and the cluster-wise positive predictive

value (PPV ) [69]. Given m predicted and n reference complexes, let tij denote the

number of proteins that exist in both predicted module si and reference complex cj,

and wj represent the number of proteins in reference complex cj. Then Sn and PPV

can be defined as

Sn =

∑n
j=1 max

i=1,...,m
tij∑n

j=1 wj
; PPV =

∑m
i=1 max

j=1,...,n
tij∑m

i=1

∑n
j=1 tij

. (5.11)

The Acc score is the balance of Sn and PPV: Acc =
√

Sn× PPV.

The maximum matching ratio [69] is the ratio of the maximum sum of weights

of edges in a bipartite graph, where the two sets of nodes are reference complexes C

and predicted complexes S, to the number of reference protein complexes |C|. The

bipartite graph is represented by a weighted matrix Bn×m, where the edge weight

Bij between nodes ci and sj is the neighborhood affinity score NA(ci, sj). The MMR

is the solution of the following maximal matching problem.

max:
1

|C|

n∑
i=1

m∑
j=1

Bijσci,sj

s.t.

m∑
j=1

σci,sj ≤ 1

n∑
i=1

σci,sj ≤ 1,

(5.12)
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where σ is an indicator function. σci,sj = 1 when the edge between nodes ci and sj

is selected and σci,sj = 0 otherwise.

5.1.2.2 Protein complex prediction

We compare all competing algorithms in terms of the composite score, consisting

of F-measure, Acc score and MMR. For SGD protein complex dataset, the detailed

comparison results are shown in Table. 5.3. As shown in the table, our FLCD consis-

tently achieve the best F-measure and MMR score and the Acc score is competitive

to LinkCommunity, which achieves the best Acc score for all four yeast protein in-

teraction networks. But for the composite score, as shown in Fig. 5.2 our FLCD

outperforms all other state-of-the-art algorithms, which indicates that FLCD has

the best performance for predicting protein complexes in SGD dataset.

Additionally, we make comparison on prediction for MIPS protein complex golden

standard set. Table. 5.4 displays the detailed scores. We find the same trend for

the F-measure and MMR scores, which is our FLCD attains the best F-measure

and MMR scores for all four yeast protein interaction networks. For Acc score,

FLCD has the best Acc scores for SceBG and SceIntAct, but LinkComm obtain

the best Acc scores for SceDIP and SceMINT. However, the overall performance,

which is represented by the composite score, of FLCD is superior to other competing

algorithms as shown in Fig. 5.3.

5.2 Discover conserved protein complexes in multiple networks

In this section, we extend the idea of FLCD to multiple networks, which we called

ClusterM.

151



SceDIP SceBG SceIntAct SceMINT 

FLCD SR-MCL ClusterONE LinkCommunity 
F-measure Accuracy score Maximum matching ratio 

C
om

po
si

te
 s

co
re

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
1.5

Figure 5.2: Comparison among all competing algorithms on SGD dataset in terms of the composite
scores. CONE and LinkC are short for ClusterONE and LinkComm

Table 5.3: Comparison of protein complex prediction on SGD dataset.

Network method # modules #. matched F-measure Sn PPV Acc MMR
SceDIP FLCD 2134 152 0.3113 0.5964 0.5003 0.5462 0.3685

CONE 380 86 0.3085 0.4082 0.6203 0.5032 0.1950
LinkC 1839 137 0.2130 0.6290 0.4820 0.5506 0.3276

SR-MCL 2851 44 0.0412 0.5120 0.2893 0.3489 0.0708
SceBG FLCD 4027 183 0.3181 0.7363 0.5621 0.6433 0.4920

CONE 522 122 0.3318 0.6488 0.6035 0.6257 0.2542
LinkC 5382 164 0.2072 0.8880 0.4373 0.6231 0.4100

SR-MCL 1862 108 0.1961 0.8999 0.3034 0.5225 0.2151
SceIntAct FLCD 3394 172 0.3069 0.6699 0.5391 0.6009 0.4661

CONE 496 117 0.3275 0.5742 0.5944 0.5842 0.2742
LinkC 1297 93 0.1525 0.9223 0.2393 0.4698 0.2285

SR-MCL 1079 68 0.1517 0.7784 0.2402 0.4341 0.1213
SceMINT FLCD 2483 157 0.3418 0.6524 0.5284 0.5871 0.4163

CONE 513 110 0.2848 0.5370 0.5954 0.5654 0.2442
LinkC 3698 144 0.2542 0.6757 0.5540 0.6119 0.3743

SR-MCL 2201 33 0.0302 0.5013 0.2597 0.3608 0.0609
CONE and LinkC are short for ClusterONE and LinkComm.
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Figure 5.3: Comparison among all competing algorithms on MIPS dataset in terms of the composite
scores. CONE and LinkC are short for ClusterONE and LinkComm.

Table 5.4: Comparison of protein complex prediction on MIPS dataset.

Network method # modules #. matched F-measure Sn PPV Acc MMR
SceDIP FLCD 2134 120 0.2573 0.4001 0.3901 0.3951 0.3206

CONE 380 74 0.2551 0.2749 0.4015 0.3322 0.1533
LinkC 1839 109 0.1862 0.4775 0.3646 0.4173 0.2993

SR-MCL 2851 41 0.0402 0.4592 0.2104 0.3108 0.0726
SceBG FLCD 4027 124 0.2298 0.4643 0.4315 0.4476 0.3611

CONE 522 86 0.2293 0.4537 0.4452 0.4494 0.1795
LinkC 5382 109 0.1604 0.8179 0.3504 0.5354 0.3285

SR-MCL 1862 65 0.1126 0.7360 0.2436 0.4234 0.1384
SceIntAct FLCD 3394 120 0.2368 0.4183 0.4034 0.4108 0.3482

CONE 496 79 0.2356 0.3587 0.4296 0.3925 0.1927
LinkC 1297 80 0.1251 0.9028 0.1986 0.4234 0.1886

SR-MCL 1079 45 0.0941 0.6246 0.1850 0.3399 0.0960
SceMINT FLCD 2483 111 0.2759 0.4147 0.4086 0.4116 0.3231

CONE 513 67 0.1869 0.3274 0.4017 0.3626 0.1519
LinkC 3698 100 0.1740 0.4744 0.4038 0.4377 0.2744

SR-MCL 2201 24 0.0205 0.4192 0.1999 0.2894 0.0481
CONE and LinkC are short for ClusterONE and LinkComm.
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5.2.1 ClusterM

Our ClusterM algorithm builds on the intuition that functional conserved modules

should possess the following topological and homologicial properties simultaneously.

Topologically, the conserved module in each protein interaction network is well sep-

arated from the rest of the network in order to give rise to a unique and specific

biological form and function. Additionally, the network structure of the conserved

module is dense clusters of interactions, which models protein complexes. Homolo-

gicially, there should exist a many-to-many correspondence between the proteins of

the modules conserved in different protein interaction networks, so the number of the

sequence-similar protein pairs between modules across networks has to be as many

as possible.

To identify conserved modules with the above properties, briefly, our ClusterM al-

gorithm has three steps. In the first step, potential orthologous proteins are identified

by a network alignment method, which takes into account both protein interaction

and sequence information. A group of orthologous proteins, which consists exact one

protein from one network, is defined as a spine.

Given k protein interaction networks G = {G1, G2, ...Gk}, where Gi(Vi, Ei) is

the ith network with Vi and Ei representing the corresponding nodes and edges

respectively, the orthologous protein spines can be identified by any multiple network

alignment methods, which extract proteins from different networks based on their

sequences and neighborhood topologies. Here we use SMETANA [89] to attain h

potential protein spines U = {u1, u2, ..., uh}, where ui = {(vi1, vi2, ..., vik)|vi1 ∈ V1, v
i
2 ∈

V2, ..., v
i
k ∈ Vk} is the ith protein spine.

In the second step, the local network structure of each protein in every spine is

investigated to obtain a subnetwork, which is well separated from the rest of the
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network. The separability of an induced subnetwork Gb in G is characterized by

conductance, the definition of which is the ratio of the number of edges connecting

from Gb to the nodes in Ḡb, which is the remaining part of the network after removing

Gb, to the total number of edges in the smaller of these Gb and Ḡb subnetworks.

For protein vji in protein spine uj, a local search starting from vji is performed

in Gi to identify an induced subnetwork including vji with low conductance. The

initial search is guided by a reliable estimate of the personalized PageRank vector

of vji [6]. We then take out m proteins with the top-ranking scores in the person-

alized PageRank vector and further refine the result by solving a mixture integer

programming problem [29], which yields a subnetwork Gj
i (V

j
i , E

j
i ) with the lowest

conductance. The same procedure is repeated until we obtain the set of subnetworks

Gj = {Gj
1, G

j
2, ..., G

j
k} around every protein in the protein spine uj.

In the final step, we screen every protein spines to find functional conserved mod-

ules. For protein spine uj, we integrate all the subnetworks Gj corresponding to it

and the sequence information of the proteins within those subnetworks to identify

the conserved modules with respect to uj. In order to detect functional conserved

modules with sufficient topological connections as well as strong homological corre-

spondence, we define the following cost function for the protein spine uj

F j =
k∑
i=1

∑
s,t∈V ji

Aji (s, t)σsσt∑
s∈V ji

σs
+ λ

∑
k,l

∑
(p,q)∈O(V jk ,V

j
l ) s(p, q)σpσq∑k

i=1

∑
s∈V ji

σs
. (5.13)

Here, {V j
1 , V

j
2 , ..., V

j
k } are the set of proteins for Gj = {Gj

1, G
j
2, ..., G

j
k} correspond-

ing to spine uj, respectively. Aji is the unweighted adjacency matrix of subnetwork

Gj
i with Aji (s, t) = 1 denoting the interaction between proteins s and t in Gj

i and

Aji (s, t) = 0, otherwise. The value of σs equals one if protein s is identified to be in

the conserved modules and zero otherwise. The first term of the cost function F j is
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essentially the summation of the density functions of k individual subnetworks. The

density function can not only help us to remove proteins with few interactions in the

subnetwork, but also enable us to preserve the functional modules after evolution

(examples are in section 5.2.1.2). The last term computes the density of similarity,

which is the ratio of the summation of sequence similarities between proteins across

the subnetworks to the total number of proteins selected in the final conserved mod-

ules over all subnetworks. O(V j
k , V

j
l ) denotes all the sequence-similar protein pairs

between V j
k and V j

l , which is weighted by the normalized bit score

s(p, q) =
blast(p, q)√

blast(p, p)× blast(q, q)
, (5.14)

where blast(p, q) is the bit score of the sequence similarity between proteins p ∈ V j
k

and q ∈ V j
l calculated by the local sequence alignment tool BLAST [121]. The

relative contributions between the local topological structures and the homological

correspondences are controlled by a coupling constant λ.

We optimize the cost function (5.13) in a greedy manner. Initially, we recruit all

the proteins V j =
⋃
i V

j
i in subnetwork set Gj, and remove a protein with the most

impairment to the cost function at each iteration until further deletion would not

benefit the cost function.

5.2.1.1 A local algorithm for searching a cohesive subnetwork

We propose a local algorithm for searching a cohesive subnetwork staring from a

specific node v in G(V,E), which is based on finding a low-conductance set containing

v. The conductance Φ(S) of a set S in G is defined as the ratio of the number of

edges between S and its complementary set S̄ (S ∪ S̄ = V ) to the number of edges

in the larger of those two sets. Obviously, based on the definition, the nodes in the
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lowest-conductance set highly interact with the nodes inside rather than the nodes

outside, which provides us a natural measure of separability of a subset of the nodes

in G. Formally,

Φ(S, S̄) =
|∂S|

min
(
d(S), d(S̄)

) , (5.15)

where ∂S = {(vi, vj)|vi ∈ S, vj ∈ S̄} and d(S) is the sum of the degrees of nodes in

S.

There are two sub-tasks of our local algorithm: (i) estimating a low-conductance

set Sv containing v of size |Sv| = m (ii) searching the lowest conductance set S∗v ⊆ Sv

by the mixture integer programming.

Estimation of a low-conductance set Sv

[6] shows that a low-conductance set containing v can be efficiently estimated via

the personalized PageRank vector of v. The personalized PageRank vector of v is

an invariant distribution of a lazy random walk on G with restart. The transition

probability matrix of the lazy random walk is W = 1
2
(I + D−1A), where D is a

diagonal matrix with the degrees of nodes on its diagonal. At each step of the

random walk, the random walker has α probability to restart to walk on node v and

1 − α probability to do the lazy random walk. Thus, the personalized PageRank

vector of v is the unique solution of

p(v) = αei + (1− α)p(v)W, (5.16)

where α ∈ (0, 1] is the teleportation constant and ei is an all zeros vector except

the ith entry is 1. We use an efficient algorithm proposed in [6] to approximate

p̂ :≈ p(v). Given p̂, the estimation of p(v), let v1, v2, ..., v|V | be an ordering of nodes

such that p̂(vi) ≤ p̂(vi+1). We take the first m nodes as a low-conductance set
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Sv = {v1, v2, ..., vm}. From [6], we know the starting node v ∈ Sv and the lowest

conductance in Sv has a upper bound guarantee.

Searching the lowest-conductance set in Sv

We use mixture integer programming to assist us to find the minimal conductance

set S∗v ⊆ Sv. Biologically, the size of a functional module is much smaller than the

size of a protein interaction network, therefore, we make a reasonable assumption

that is d(Sv) << d(S̄v). The definition of conductance becomes

Φ(S, S̄) =
|∂S|
d(S)

. (5.17)

We know that Φ(S, S̄)+Φ(S, S) = 1 from the lemma in the supplementary materials

of [110]. Thus, finding the lowest-conductance set in Sv is equivalent to

S∗v := arg min:
v∈Stv⊆Sv

Φ(Stv, S̄
t
v)⇔ S∗v := arg max:

v∈Stv⊆Sv
Φ(Stv, S

t
v). (5.18)

Furthermore, the above problem can be written in a closed form.

max:
x

xTASvx

xTdSv

s.t. x(v) = 1,

x(vi) ∈ {0, 1},∀vi 6= v

(5.19)

where ASv is the adjacency matrix of the induce subnetwork of Sv and dSv is the

vector of the degrees of nodes Sv in the G. x is a binary vector, the ith entry of

which indicates node vi is in the lowest-conductance set if x(vi) = 1. The constraint

x(v) = 1 ensures that node v is included in the lowest-conductance set. (5.19) can
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be transformed in to a mixture integer programming problem [29] as following.

max: z

s.t. z

(∑
i∈Sv

x(i)dSvi

)
−
∑
i∈Sv

∑
j∈Sv

ASvij x(i)x(j) ≤ 0,

x(v) = 1,

x(i) ∈ {0, 1}, ∀i 6= v,

(5.20)

where we assume z =
xTASvx

xTdSv
and use the fact that xTASvx =

∑
i∈Sv

∑
j∈Sv A

Sv
ij x(i)x(j)

and xTdSv =
∑

i∈Sv x(i)dSvi . The product of zx(i) and x(i)x(j) can be linearized [29].

Therefore, (5.20) is transformed into a mixture integer programming problem, which

is solved by Gurobi [34].

5.2.1.2 The density function

The conductance only measures the relationship between external connections

and internal connections, therefore the connectivity inside the low-conductance set

may not be dense. For example, as shown in Fig. 5.4, the conductance of the subnet-

work G is
2

11
, which is the lowest, however, obviously the nodes inside G are not well

connected. Therefore, we need another criterion to determine the internal structure

of the subnetwork.

Here we use the density function. Given an undirected network G(V,E), which

is carved out from the original network, then the density function of a subnetwork

Gb(Vb, Eb) in G is defined as

Ds(Gb) =
|Es|
|Vs|

(5.21)

If we use the adjacency matrix A to represent the networkG and an indicator function
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Figure 5.4: An example of a subnetwork with low conductance. The red dash line indicates the
network is separated into G and H two parts.

σbi

σbi =

1 i ∈ Vb

0 o.w.
(5.22)

to suggest whether the node i is in Vb, then the density function of Gb can be written

as

Ds(Gb) =

∑
i,j∈V Aijσ

b
iσ

b
j∑

i∈V σ
b
i

. (5.23)

Furthermore, we use D∗s(G) to present the highest density function value of network

G. Hence, D∗s(G) = Ds(Gb) means that Gb is the densest subnetwork in G. In

the following part of this section, we assume all the networks in the examples have

already been extracted from the original network based on conductance.

First of all, the density function can enable us to remove proteins with less inci-

dent edges. As illustrated in Fig. 5.5, the densest subnetwork of G is the subnetwork

G′ in the shade with D∗s(G) = Ds(G
′) =

7

5
, which demonstrates that using density

function we can get rid of nodes with small degrees.

Furthermore, the network structures, such as linear paths and densely connected

networks, can be characterized by the density function. Fig. 5.6 illustrates two

examples. Fig. 5.6(a) is a linear path Gl, the densest subgraph of which is itself with
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Figure 5.5: A induced subnetwork G. The shade part of G is the subnetwork G′.

D∗s(Gl) = Ds(Gl) =
3

4
. Similarly, the densest subgraph of Gs shown in Fig. 5.6(b) is

also itself with D∗s(Gs) = Ds(Gs) =
7

5
. The linear path and dense graph can be used

to model signal transaction pathways and protein complexes, therefore, it is obvious

that the density function (5.23) provides us a powerful tool to distinguish those two

kinds of structures, which are of biological significance.
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Figure 5.6: Densest subgraph examples. (a) a linear path Gl; (b) a dense graph Gs.

Last but not least, the density function can help us to identify functional modules

even after evolution. For example, in Fig. 5.7, we notice that the protein complex

G1 with three proteins can evolve to G′1 and G′′1 based on the duplication/divergence

model [46]. Obviously, G1 itself is a densest network based on (5.23). Also, G′1

and G′′1 can be detected by using the density function (5.23), because the densest

subnetwork are themselves (D∗s(G
′
1) = Ds(G

′
1) =

5

4
and D∗s(G

′′
1) = Ds(G

′′
1) =

5

4
).
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Therefore, we find that the protein complexes before and after evolution can all be

identified by searching the densest the subnetwork.
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Figure 5.7: Duplication/divergence model for evolution of protein interaction networks. Starting
from a protein complex G1 with three proteins, after the duplication, elimination and emergence
process, G1 evolves to G′1 and G′′1 . “NC” denotes the elimination or emergence of edges is uncor-
related to the duplicated node u∗1. “C” denotes the elimination or emergence of edges is correlated
to the duplicated node u∗1. The dash lines represent the duplicated edges. The dot lines represent
the eliminated edges. And the dot dash lines represent the emerged edges.

5.2.2 Experimental results

5.2.2.1 Test data

We apply our algorithm ClusterM to identify conserved modules to two sets of

protein interaction networks. In the first set of protein interaction networks, there are

four yeast protein interaction networks collected from four public database, which

are Database of Interaction (downloaded on January 2015) [90], Biological Gen-

eral Repository for Interaction Datasets (version 3.2.120 downloaded on December

2014) [17], IntAct Molecular Interaction Database (downloaded on January 2015) [41]
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and Molecular INTeraction database (extracted from IntAct) [48], respectively. We

use SceDIP, SceBG, SceIntAct and SceMINT to present the yeast protein interaction

networks extracted from Database of Interaction (DIP), Biological General Reposi-

tory for Interaction Datasets (BioGrid), IntAct Molecular Interaction Database (In-

tAct) and Molecular INTeraction database (MINT), respectively. The detailed in-

formation about this set of protein interaction networks are display in Table. 5.5.

The second set of protein interact networks are yeast (Saccharonyces cerevisiae),

human (Homo sapiens), fly(Drosophila melanogaster) and worm (Caenorhabditis el-

egans) protein interaction networks obtained from DIP [90] (downloaded on January

2015). The information of the second set of protein interaction networks is shown

in Table. 5.6. The protein sequence similarities among proteins are computed by

BLAST [121].

Table 5.5: The detailed information for four yeast protein interaction networks.

Network #. proteins #. interactions
SceDIP 5136 22491
SceBG 6438 80577
SceIntAct 5453 54134
SceMINT 5414 27316

Table 5.6: The detailed information for four protein interaction networks in DIP database.

Network #. proteins #. interactions
SceDIP 5136 22491
HsaDIP 4278 6446
DmeDIP 7679 23182
CelDIP 2712 4117
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To validate the capacity of protein complex prediction of our algorithm Clus-

terM and other state-of-the-art algorithms, we compare the modules yielded by all

competing algorithms with the protein complex golden standards. For yeast pro-

tein interaction networks, we use MIPS [63] and SGD [37] golden standards. For

human protein interaction network, we use CORUM (Comprehensive Resource of

Mammalian protein complexes) [87] golden standard. We use all golden standard

protein complexes with two or more proteins in all our experiments.

We evaluate whether the proteins in the conserved modules, which span every

involved protein interaction network, share similar functions based on Gene Ontol-

ogy (GO) terms [7] in all three domains (molecular function (F), biological process

(P) and cellular component (C)). We only consider the high-level GO terms, which

suggest more specific biological meanings than, for example, root GO terms, with

information content larger than two. The definition of the information content of

a GO term g is IC = −log(|g|/|root|) [98], where “root” is the corresponding root

GO term (either F, P or C) of g and the operation || counts the number of proteins

annotated to a specified GO terms.

5.2.2.2 Competing algorithms

We implement ClusterM in Matlab, which supports the multicore parallelism.

ClusterM only has one tuning parameter λ that controls the contributions between

network structures and sequence similarities in the cost function that serves as the

guide for the many-to-many alignments. We compared ClusterM with Network-

Blast(NB) [94], MaWISh [46], NetworkBlast(NB-M)-M [39] and OrthoClust(OC) [116]

on every pairwise alignment of the two sets of multiple protein interaction networks

and compared with NetworkBlast-M [39] and OrthoClust [116] on alignments with

more than two networks. We set the parameters of NetworkBlast [94], MaWISH [46],
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NetworkBlast-M [39] to their default values. For the parameter κ of OrthoClust,

which is also a tradeoff between topology and homology, we applied grid search from

κ = 0 to 50 with interval of 5 and use the results with the maximal objective function

value.

We also compare the performance of ClusterM with overlapping module identi-

fication algorithms for single networks. ClusterONE [69] and LinkComm [1] were

implemented on both yeast and human protein interaction networks. The parameter

of LinkComm, which is the threshold for cutting the dendrogram of the hierarchical

clustering, was set to 0.2 based on our empirical experiences.

5.2.2.3 Evaluation metrics

We compare ClusterM with all competing algorithms on three aspects. For con-

served modules in individual networks, we examine whether the identified modules

match to known protein complexes. For aligned conserved modules, proteins of which

span every involved protein interaction network, we investigate whether the proteins

in the aligned conserved modules perform similar functions. Additionally, the ability

of predicting functions of unknown proteins of each algorithm is studied.

Metrics for protein complex prediction

For protein complex prediction, we assess the performance of all competing al-

gorithms by a composite score consisting of three quality scores: F-measure [98];

the geometric accuracy (Acc) score; and the maximum matching ratio (MMR) [69].

For fair comparison, we remove modules of two or less proteins for all competing

algorithms.

For a golden standard protein complex set C = {c1, c2, ..., cn} and a set of pre-

dicted modules S = {s1, s2, ..., sm}, the F-measure is defined as the harmonic mean
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of precision and recall.

precision =
|Ncp|
|C|

, recall =
|Ncs|
|S|

. (5.24)

Ncp = {ci ∈ C|NA(ci, sj) ≥ 0.25,∃sj ∈ S} is a set of reference protein complexes

that are matched by a predicted modules. We consider that a reference protein

complex cj is matched by a predicted modules sj if NA(ci, sj) ≥ 0.25 [69, 98], where

NA(ci, sj) =
|ci ∩ sj|2

|ci| × |sj|
is called neighborhood affinity. Ncs = {si ∈ S|NA(cj, si) ≥

0.25,∃cj ∈ C} is the set of the modules that match to one or more reference protein

complexes. Finally, the F-measure is

F-meature = 2× precision ∗ recall

precision× recall
. (5.25)

The geometric accuracy (Acc) score is the geometric mean of two other measures,

which are the cluster-wise sensitivity (Sn) and the cluster-wise positive predictive

value (PPV ) [69]. Given m predicted and n reference complexes, let tij denote the

number of proteins that exist in both predicted module i and reference complex j,

and wj represent the number of proteins in reference complex j. Then Sn and PPV

can be defined as

Sn =

∑n
j=1 max

i=1,...,m
tij∑n

j=1 wj
; PPV =

∑m
i=1 max

j=1,...,n
tij∑m

i=1

∑n
j=1 tij

. (5.26)

The Acc score is the balance of Sn and PPV: Acc =
√

Sn× PPV.

The maximum matching ratio [69] is the maximum sum of weights of edges in

a bipartite graph, where the two set of nodes are reference complexes C and pre-

dicted complexes S. The bipartite graph is represented by a weighted matrix Bn×m,

where the edge weight Bij between nodes ci and sj is the neighborhood affinity score
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NA(ci, sj). The MMR is the solution of the following maximal matching problem.

max:
1

|C|

n∑
i=1

m∑
j=1

Bijσci,sj

s.t.

m∑
j=1

σci,sj ≤ 1

n∑
i=1

σci,sj ≤ 1,

(5.27)

where σ is an indicator function. σci,sj = 1 when the edge between nodes ci and sj

is selected and σci,sj = 0 otherwise.

Metrics for consistency and coverage

We measure the functional consistency for the proteins in the aligned conserved

modules by computing the normalized mean entropy (MNE) [54, 99]. We use the

GO terms set F to annotate each protein in an aligned conserved module Ri. The

union of GO terms used for Ri is Fi = {f1, f2, ..., fd}. The normalized entropy (NE)

of Ri is computed as

NE(Ri) = NE(p1, p2, ..., pd) = − 1

logd

∑
j

pjlogpj, (5.28)

where pi is the fraction of Ri with respect to GO term fi. The MNE is the mean over

all NE(Ri). For the coverage, we simply count the number of proteins in all aligned

conserved modules, each of which consists of at least one protein from each network.

Metrics for protein function prediction

Furthermore, we investigate the performance of protein function prediction based

on the aligned conversed modules. For protein ri in the aligned conserved module

R = {r1, r2, ..., rl}, assuming we do not know its functions, if half of the remained

proteins in R except ri share the same functions, we predict that ri carries out the
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same functions. Because the aligned conserved modules may overlap and one aligned

conserved module may perform multiple functions, ri may be predicted to have a few

functions annotated by a set of high-level GO terms Fri . We compare Fri with its

true high-level GO term annotations F ∗ri . If the intersection of Fri and F ∗ri is not

empty, we consider the function of protein ri is correctly predicted. The prediction

accuracy is the ratio of the number of proteins that are correctly predicted to the

total number of proteins, whose functions are predicted.

5.2.2.4 Protein complex prediction

We assess the quality of the conserved modules identified in individual networks

through comparisons with the golden standard protein complexes. We collect two

sets of referenced protein complexes of yeast from MIPS [63] and SGD [37] and one

set of protein-complex golden standard of human from CORUM [87].

Conserved module identification of four yeast protein interaction networks

We applied ClusterM, OrthoClust and NetworkBlast-M to identify conserved

modules of protein interaction networks of SceDIP (yeast PIN obtained from DIP

database), SceBioGrid (yeast PIN obtained from BioGrid database), SceIntAct (yeast

PIN obtained from IntAct database) and SceMINT (yeast PIN obtained from MINT

database). Because all these four networks are yeast protein interaction networks

and we have the MIPS and SGD protein complex golden standard, the performance

of each algorithm on protein complex prediction in each network can be easily ver-

ified. Furthermore, we add two state-of-the-art algorithms ClusterONE [69] and

LinkComm [1], which can detect overlapping functional modules for individual net-

works, into the comparison.

Fig. 5.8 shows the comparison of all competing algorithms on SGD golden stan-

dard in terms of the composite score. We observe that our algorithm ClusterM
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with three different selections of λ outperforms all the competing algorithms in-

cluding two state-out-the-art single network module identification algorithms, which

demonstrates that our ClusterM is superior to other algorithms in recovering protein

complexes. Furthermore, we find that with the increasing λ, the performance of

ClusterM get improved, which makes sense because sequence information between

yeast protein interaction networks allows us to find the true correspondences across

networks. Therefore, larger λ, indicating to rely more on sequence information than

network structures, leads us to achieve better results.

Table 5.7 illustrates the detailed results of various algorithms corresponding to

SGD data set for all protein interaction networks. ClusterM consistently achieves

the best accuracy score (Acc score) and the maximal matching ratio (MMR), which

demonstrates that the predicted modules identified by ClusterM are more similar

to the SGD reference protein complexes than modules detected by other methods.

In comparison with different selections of λ, we find that ClusterM with larger λ

tends to attain higher F-measure score. The reason is that large λ forces ClusterM

to neglect sequence-similar proteins across networks if they are not locally densely

connected within their networks and, in contrast, only proteins of sequence similarity

as well as topological cohesiveness are conserved. λ only has slight influence on the

Acc score and MMR.

Fig. 5.9 displays the comparison results between all competing algorithms on

MIPS protein complex set. We notice that, similar to the results on SGD date set,

three implementations of ClusterM with different λ attain better results than other

algorithms. We can obtain better results by using larger λ for ClusterM.

Table 5.8 exhibits the detailed results of various algorithms corresponding to

MIPS data set for all protein interaction networks. The Acc scores and MMRs of

ClusterM are consistently higher than other methods. For the impact of the choice
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Figure 5.8: Results using SGD golden standard. Shades of the same color indicates quality scores of
the same algorithm. The height of each bar is the value of the composite score. SceDIP, SceBioGrid,
SceIntAct and SceMINT are four yeast protein interaction networks obtained from four different
databases. Asterisks mark algorithms that use all four yeast protein interaction networks. CONE
and LinkC are short for ClusterONE and LinkComm.
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Table 5.7: Detailed benchmark results of various algorithms on four yeast protein interaction net-
works using the SGD complex set.

Dataset Method #. cluster #. matched F-m Sn PPV Acc MMR
SceDIP OC 10 2 0.0164 0.8703 0.1184 0.3209 0.0013

NB-M 486 91 0.3864 0.6416 0.4521 0.5386 0.1516
CM(λ = 1) 2885 164 0.2973 0.6596 0.5199 0.5856 0.4324
CM(λ = 10) 2660 160 0.3455 0.6762 0.6538 0.6008 0.4357
CM(λ = 100) 2510 157 0.3565 0.6715 0.5495 0.6074 0.4365

CONE 380 86 0.3085 0.4082 0.6203 0.5032 0.1950
LinkC 1838 137 0.2130 0.6290 0.4820 0.5506 0.3276

SceBioGrid OC 10 0 0 0.8710 0.1133 0.3141 0
NB-M 486 94 0.3887 0.6331 0.4464 0.5316 0.1479

CM(λ = 1) 3203 180 0.3219 0.7325 0.5723 0.6475 0.4752
CM(λ = 10) 2790 175 0.3516 0.7155 0.5918 0.6507 0.4931
CM(λ = 100) 2422 172 0.3765 0.6853 0.6129 0.6481 o.4881

CONE 522 122 0.3318 0.6488 0.6035 0.6257 0.2642
LinkC 5382 164 0.2074 0.8880 0.4373 0.6231 0.4100

SceIntAct OC 10 2 0.0159 0.8773 0.1150 0.3176 0.0014
NB-M 486 96 0.3974 0.6333 0.4244 0.5184 0.1569

CM(λ = 1) 2376 175 0.3406 0.6654 0.5485 0.6041 0.4909
CM(λ = 10) 1779 173 0.4286 0.6769 0.5730 0.6228 0.5096
CM(λ = 100) 1422 167 0.4794 0.6519 0.5987 0.6247 0.4841

CONE 496 117 0.3275 0.5742 0.5944 0.5842 0.2742
LinkC 1297 93 0.1525 0.9223 0.2393 0.4698 0.2285

SceMINT OC 10 2 0.0160 0.8709 0.1148 0.3162 0.0013
NB-M 486 89 0.3806 0.6427 0.4478 0.5365 0.1452

CM(λ = 1) 3045 169 0.3000 0.6939 0.5310 0.6070 0.4660
CM(λ = 10) 2895 166 0.3540 0.7062 0.5499 0.6232 0.4737
CM(λ = 100) 2756 163 0.3670 0.6939 0.5573 0.6219 0.4692

CONE 513 110 0.2848 0.5370 0.5954 0.5654 0.2442
LinkC 2201 144 0.2542 0.6757 0.5540 0.6119 0.3743

Abbreviations: OC = OrthoClust, CM = ClusterM, F-m = F-measure, CONE = ClusterONE, LinkC = LinkComm.
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of λ, we observe similar patterns to its influence on SGD data set, which is larger λ

makes F-measure higher and Acc score and MMR are not very sensitive to λ.
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Figure 5.9: Results using MIPS golden standard. Shades of the same color indicates quality scores of
the same algorithm. The height of each bar is the value of the composite score. SceDIP, SceBioGrid,
SceIntAct and SceMINT are four yeast protein interaction networks obtained from four different
databases. Asterisks mark algorithms that use all four yeast protein interaction networks. CONE
and LinkC are short for ClusterONE and LinkComm.

Conserved module identification of yeast and human protein interaction

networks

We further test the performance of various algorithms on identifying conserved

modules across species. We detect conserved modules for pairwise networks, which

are yeast protein interaction network SceDIP and human protein interaction network
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Table 5.8: Detailed benchmark results of various algorithms on four yeast protein interaction net-
works using the MIPS complex set.

Dataset Method #. cluster #. matched F-m Sn PPV Acc MMR
SceDIP OC 10 3 0.0309 0.7444 0.1440 0.3274 0.0051

NB-M 486 74 0.3753 0.4587 0.3605 0.4067 0.1495
CM(λ = 1) 2885 130 0.2352 0.4479 0.4019 0.4243 0.3648
CM(λ = 10) 2660 127 0.2870 0.4653 0.4204 0.4423 0.3725
CM(λ = 100) 2510 120 0.2940 0.4611 0.4291 0.4448 0.3621

CONE 380 74 0.2551 0.2749 0.4015 0.3322 0.1533
LinkC 1838 109 0.1862 0.4775 0.3646 0.4173 0.2993

SceBioGrid OC 10 2 0.0201 0.7589 0.1558 0.3438 0.0045
NB-M 486 75 0.3446 0.4215 0.3577 0.3883 0.0045

CM(λ = 1) 3203 131 0.2332 0.4694 0.4255 0.4470 0.3658
CM(λ = 10) 2790 131 0.2692 0.4503 0.4401 0.4452 0.3788
CM(λ = 100) 2422 126 0.2941 0.4312 0.4480 0.4395 o.3678

CONE 522 86 0.2293 0.4537 0.4452 0.4494 0.1795
LinkC 5382 120 0.1604 0.8179 0.3504 0.5354 0.3285

SceIntAct OC 10 4 0.0399 0.7549 0.1497 0.3362 0.0074
NB-M 486 79 0.3802 0.4311 0.3514 0.3892 0.1540

CM(λ = 1) 2376 125 0.2636 0.4231 0.4245 0.4238 0.3612
CM(λ = 10) 1779 124 0.3414 0.4337 0.4423 0.4380 0.3833
CM(λ = 100) 1422 122 0.3862 0.4117 0.4611 0.4357 0.3772

CONE 496 79 0.3256 0.3587 0.4296 0.3925 0.1927
LinkC 1297 80 0.1251 0.9028 0.1986 0.4234 0.1880

SceMINT OC 10 4 0.0397 0.7541 0.1519 0.3384 0.0068
NB-M 486 79 0.3866 0.4330 0.3610 0.3954 0.1493

CM(λ = 1) 3045 122 0.2280 0.4334 0.4083 0.4207 0.3364
CM(λ = 10) 2895 119 0.2819 0.4468 0.4186 0.4315 0.3441
CM(λ = 100) 2756 115 0.2976 0.4343 0.4366 0.4354 0.3402

CONE 513 67 0.1869 0.3274 0.4017 0.3626 0.1519
LinkC 2201 100 0.1740 0.4744 0.4038 0.4377 0.2744

Abbreviations: OC = OrthoClust, CM = ClusterM, F-m = F-measure, CONE = ClusterONE, LinkC = LinkComm.
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HsaDIP both obtained from DIP database. We compare our ClusterM with Net-

workBlast (NB), MaWISh, NetworkBlast-M (NB-M) and OrthoClust (OC) on pro-

tein complex prediction based on reference protein complexes extracted from SGD,

MIPS for yeast and CORUM for human. Additionally, ClusterM is also compared

with ClusterONE (CONE) and LinkCommunity (LinkC).

Fig. 5.10 shows the comparison between the competing algorithm in terms of the

composite score. Proteins between yeast and human protein interaction networks

may not have many orthology relationships as two yeast protein interaction networks,

therefore only part of the proteins are assigned to the conserved module, which makes

the coverage of ClusterM, the number of proteins in the results yielded by ClusterM,

smaller than CONE and LinkC, both of which take the whole network into account.

For fair comparison, we only consider the modules generated by CONE and LinkC,

where proteins are also covered by ClusterM. As shown in Fig. 5.10, comparing

with other conserved module identification algorithms, ClusterM clearly has the best

performance in each quality score on both SceDIP and HsaDIP networks over all these

protein complex datasets, which reveals that ClusterM can recover more good-quality

protein complexes of biological correspondence conserved in both yeast and human

protein interaction networks. On the other hand, in comparison with CONE and

LinkC, single network module identification algorithms, ClusterM also outperforms

them over every protein complex dataset. The details of the quality scores, which

are used in Fig.5.10, for all these protein complex datasets are listed in Table. 5.9,

Table. 5.10 and Table. 5.11, respectively.

5.2.2.5 GO term consistency and coverage

We identify conserved modules for every combination (2-way, 3-way and 4-way)

from protein interaction networks of four different species, which are SceDIP, HsaDIP,
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Figure 5.10: Comparison of composite scores for three protein complex dataset. Diamonds mark
algorithms that use SceDIP and HsaDIP protein interaction networks. CONE and LinkC are short
for ClusterONE and LinkComm.

Table 5.9: Detailed benchmark results of various algorithms on SceDIP and HsaDIP using the SGD
complex set.

SGD OrthoClust NB MaWISh NB-M CM(λ = 10) CONE LinkC
Coverage 5081 336 427 656 2284 669 1088
#. modules 20 384 259 131 1018 128 535
#. matched 2 2 27 29 110 21 76
F-measure 0.0152 0.0040 0.1257 0.1784 0.3513 0.1524 0.2741
Sn 0.7227 0.0751 0.1636 0.3065 0.4960 0.1270 0.3145
PPV 0.1647 0.2404 0.4645 0.3527 0.4766 0.6047 0.5611
Acc 0.3450 0.1344 0.2756 0.3288 0.4862 0.2771 0.4201
MMR 0.0016 0.0025 0.0592 0.0438 0.2506 0.0552 0.1842

Abbreviations: CM = ClusterM, F-m = F-measure, CONE = ClusterONE, LinkC = LinkComm.

Table 5.10: Detailed benchmark results of various algorithms on SceDIP and HsaDIP using the
MIPS complex set.

MIPS OrthoClust NB MaWISh NB-M CM(λ = 1) CONE LinkC
Coverage 5081 336 427 656 2284 669 1088
#. modules 20 384 259 131 1018 128 535
#. matched 5 2 28 32 91 19 64
F-measure 0.0478 0.0042 0.1453 0.2228 0.3180 0.1469 0.2657
Sn 0.6743 0.0638 0.1313 0.2439 0.3396 0.1046 0.2317
PPV 0.1720 0.1946 0.3790 0.2901 0.4100 0.4006 0.3939
Acc 0.3337 0.1114 0.2231 0.2660 0.3731 0.2047 0.3021
MMR 0.0076 0.0031 0.0542 0.0511 0.2402 0.0356 0.1749

Abbreviations: CM = ClusterM, F-m = F-measure, CONE = ClusterONE, LinkC = LinkComm.
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Table 5.11: Detailed benchmark results of various algorithms on SceDIP and HsaDIP using the
CORUM complex set.

CORUM OrthoClust NB MaWISh NB-M CM(λ = 1) CONE LinkC
Coverage 3827 416 522 639 1159 497 531
#. modules 20 382 182 131 699 121 449
#. matched 3 3 69 39 233 55 187
F-measure 0.0105 0.0036 0.1685 0.1089 0.3472 0.1382 0.1701
Sn 0.6667 0.0949 0.2219 0.3344 0.4651 0.1988 0.2112
PPV 0.0494 0.0883 0.1504 0.1018 0.1645 0.1991 0.1618
Acc 0.1815 0.0916 0.1827 0.1845 0.2766 0.1990 0.1849
MMR 0.0011 0.0008 0.0282 0.0171 0.1373 0.0212 0.0296

Abbreviations: CM = ClusterM, F-m = F-measure, CONE = ClusterONE, LinkC = LinkComm.

DmeDIP (fly protein interaction network obtained from DIP database) and CelDIP

(worm protein interaction network obtained from DIP database). We annotate every

protein in the aligned conserved modules, which contain proteins from every involved

species, with their corresponding high-level GO terms and then compute the mean

normalized entropy (MNE) over all aligned conserved module as our evaluation cri-

terion for GO term consistency. Lower MNE value indicates more consistency of the

GO terms shared by proteins in the aligned conserved module. From Table. 5.12, we

observe that the aligned conserved modules detected by ClusterM have lower MNE

values for most cases and ClusterM and OrthoClust achieve similar MNE scores.

We then measure the coverage by the number of proteins in the aligned conserved

modules and show the results in Table. 5.12. As shown in Table. 5.12, ClusterM

has much better coverage than NB, MaWISh and NB-M. OrthoClust covers more

proteins than ClusterM.

From Table. 5.12, we notice that aligned conserved modules identified by Or-

thoClust have low MNE values, which are competitive to ClusterM. Additionally,

OrthoClust has better coverage than ClusterM. Therefore, we compare these two

algorithms in more details in Table. 5.13. We define a aligned conserved module to

be pure if at least half of the proteins in it annotated to one GO term. The purity
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of an aligned conserve module provides us another point of view to investigate the

consistency of the GO terms. We also define a GO term is recovered if there exists

an aligned conserved module, at least half of whose members are annotated by the

GO term. The more recovered GO term we find, the more biological correspondence

we can discover among different species. Table. 5.13 shows the comparison results on

the basis of the average size of the aligned conserved modules, the number of pure

aligned conserved modules and the number of recovered GO terms. From Table. 5.13,

we observe that our ClusterM find more pure modules and more recovered GO terms,

which means ClusterM can make more biological inference. OrthoClust although has

the best coverage, the module sizes found by OrthoClust are too large to provide

any specific biological insights. Therefore, ClusterM is better than OrthoClust in

GO term consistency and biological inference.

5.2.2.6 Protein function prediction

In this section, we examine the capacity of protein function prediction based on

guilt-by-association. Table. 5.14 illustrates the number of predictions each algorithm

makes and the prediction precisions. We find that our ClusterM make the most

number of predictions for all the selections of λ and achieve the best prediction

precision except for pairwise alignment of HsaDIP and HasCel. MaWISh and NB-M

attain the better precisions than ClusterM, however, MaWISh and NB-M only make

330 and 88 predictions, which means only the functions of 63 and 25 proteins are

correctly predict. The precisions of ClusterM with different selections of λ are 20.5%,

20.2% and 22.5%, but functions of 258, 259 and 225 proteins are correctly predicted,

which is much larger than MaWISh and NB-M.
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Table 5.12: GO consistency and coverage comparison of all competing algorithms on DIP dataset.

Dataset measure NB MaWISh OC NB-M CM1 CM10 CM100
SH MNE 6.186 5.471 4.898 5.997 4.131 4.145 3.807

Coverage 744 986 8779 1349 5524 5224 3347
SD MNE 3.809 2.772 2.380 3.486 2.162 2.142 2.033

Coverage 747 1363 12701 2087 9167 8651 4358
SC MNE 3.098 2.167 2.088 3.629 2.129 2.109 1.948

Coverage 116 486 7690 651 4092 3782 1969
HD MNE 7.639 6.009 4.226 7.030 4.146 4.171 4.034

Coverage 735 1191 11660 1941 9123 8055 4190
HC MNE 6.957 5.392 4.841 6.900 4.130 4.173 3.919

Co. 49 561 6580 491 4256 3833 2051
DC MNE 3.393 2.695 2.035 3.279 1.942 1.885 1.919

Coverage 10 640 10280 1460 7006 6050 2104
SHD MNE — — 3.768 6.095 4.130 4.144 3.455

Coverage — — 16717 783 9247 8143 4999
SHC MNE — — 3.894 6.324 4.022 3.975 3.455

Coverage — — 11660 1004 5219 4704 2817
SDC MNE — — 2.152 3.826 2.268 2.211 1.858

Coverage — — 15400 1212 7759 6666 3748
HDC MNE — — 3.682 5.753 3.962 3.951 3.214

Coverage — — 14406 895 7784 6424 3629
SHDC MNE — — 3.182 6.150 3.762 3.846 3.332

Coverage — — 19197 1841 8255 6551 3378
Abbreviations: CM1 = ClusterM(λ = 1), CM10 = ClusterM(λ = 10), CM100 = ClusterM(λ = 100) SH=SceDIP +
HsaDIP, SD = SceDIP + DmeDIP, SC = SceDIP + CelDIP, HD=HsaDIP + DmeDIP, HC = HsaDIP + CelDIP,

DC = DmeDIP + CelDIP, SHD = SceDIP + HsaDIP+DmeDIP, SHC = SceDIP + HsaDIP +CleDIP, SDC =
SceDIP + DmeDIP + CelDIP, HDC = HsaDIP+DmeDIP+CelDIP, SHDC = SceDIP+HsaDIP+DmeDIP+CelDIP.
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Table 5.13: GO consistency comparison between ClusterM and OrthoClust.

Dataset method Avg. size #. pure #. recovered GO
SH OrthoClust 404.59 0 0

ClusterM(λ = 1) 9.06 664 447
ClusterM(λ = 10) 8.63 681 478
ClusterM(λ = 100) 6.45 685 687

SD OrthoClust 706.33 0 0
ClusterM(λ = 1) 8.73 513 274
ClusterM(λ = 10) 8.08 568 325
ClusterM(λ = 100) 6.62 536 450

SC OrthoClust 404.74 0 0
ClusterM(λ = 1) 8.36 198 158
ClusterM(λ = 10) 7.87 208 177
ClusterM(λ = 100) 6.34 208 279

HD OrthoClust 532 1 2
ClusterM(λ = 1) 7.58 771 584
ClusterM(λ = 10) 6.69 863 713
ClusterM(λ = 100) 4.93 765 1023

HC OrthoClust 235.29 2 8
ClusterM(λ = 1) 7.17 306 335
ClusterM(λ = 10) 6.68 339 400
ClusterM(λ = 100) 5.06 323 606

DC OrthoClust 411.32 2 4
ClusterM(λ = 1) 7.23 96 87
ClusterM(λ = 10) 6.37 123 139
ClusterM(λ = 100) 4.83 128 162

SHD OrthoClust 937.72 0 0
ClusterM(λ = 1) 14.09 474 192
ClusterM(λ = 10) 12.26 707 286
ClusterM(λ = 100) 8.15 1072 488

SHC OrthoClust 588.9 0 0
ClusterM(λ = 1) 13.45 257 149
ClusterM(λ = 10) 11.93 355 189
ClusterM(λ = 100) 7.71 475 280

SDC OrthoClust 811.68 0 0
ClusterM(λ = 1) 13.06 176 71
ClusterM(λ = 10) 11.39 243 135
ClusterM(λ = 100) 7.58 426 172

HDC OrthoClust 688.71 0 0
ClusterM(λ = 1) 11.99 190 126
ClusterM(λ = 10) 9.89 306 210
ClusterM(λ = 100) 6.85 495 324

SHDC OrthoClust 1076.89 0 0
ClusterM(λ = 1) 18.56 359 67
ClusterM(λ = 10) 14.89 593 142
ClusterM(λ = 100) 8.82 946 257

Abbreviations: SH=SceDIP + HsaDIP, SD = SceDIP + DmeDIP, SC = SceDIP + CelDIP, HD=HsaDIP +
DmeDIP, HC = HsaDIP + CelDIP, DC = DmeDIP + CelDIP, SHD = SceDIP + HsaDIP+DmeDIP, SHC =

SceDIP + HsaDIP +CleDIP, SDC = SceDIP + DmeDIP + CelDIP, HDC = HsaDIP+DmeDIP+CelDIP, SHDC =
SceDIP+HsaDIP+DmeDIP+CelDIP.
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Table 5.14: Comparison of protein function prediction for all competing algorithms.

Dataset measure NB MaWISh OC NB-M CM1 CM10 CM100
SH #. predictions 221 831 0 530 2457 2443 1944

precisions(%) 0 12.2 0 13.6 19.5 18.3 19.5
SD #. predictions 99 886 0 605 2084 2179 1588

precisions(%) 0 2 0 5.3 4.7 6.3 6.0
SC #. predictions 44 309 0 181 938 937 756

precisions(%) 0 1.3 0 0 6.6 7.2 7.5
HD #. predictions 336 796 0 248 2714 2885 2088

precisions(%) 0 11.9 0 4.8 14.9 14.8 17.5
HC #. predictions 0 330 0 88 1260 1281 999

precisions(%) 0 19 0 28.4 20.5 20.2 22.5
DC #. predictions 0 209 0 49 386 436 371

precisions(%) 0 0 0 0 2.1 1.6 3.5
SHD #. predictions — — 0 783 2313 2808 2355

precisions(%) — — 0 6.8 10.3 9.9 14.1
SHC #. predictions — — 0 331 1435 1567 1257

precisions(%) — — 0 0 15.5 14.6 14.7
SDC #. predictions — — 0 230 916 1082 968

precisions(%) — — 0 0 4.4 3.6 5.8
HDC #. predictions — — 0 108 1031 1264 1203

precisions(%) — — 0 0 10.1 7.4 11.6
SHDC #. predictions — — 0 564 1369 1836 1538

precisions(%) — — 0 0 13.44 11.0 12.2
Abbreviations: CM1 = ClusterM(λ = 1), CM10 = ClusterM(λ = 10), CM100 = ClusterM(λ = 100) SH=SceDIP +
HsaDIP, SD = SceDIP + DmeDIP, SC = SceDIP + CelDIP, HD=HsaDIP + DmeDIP, HC = HsaDIP + CelDIP,

DC = DmeDIP + CelDIP, SHD = SceDIP + HsaDIP+DmeDIP, SHC = SceDIP + HsaDIP +CleDIP, SDC =
SceDIP + DmeDIP + CelDIP, HDC = HsaDIP+DmeDIP+CelDIP, SHDC = SceDIP+HsaDIP+DmeDIP+CelDIP.
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6. CONCLUSION

In this dissertation, we propose several algorithms for identifying functional mod-

ules for biological networks. We have developed algorithms in Chapters 3 and 4 to

detect functional modules for individual and multiple networks based on the interac-

tion patterns of the nodes. In Chapter 5, we propose an algorithm to deal with the

degree heterogeneity for individual and multiple networks to find cohesive functional

modules in biological networks. The mathematical framework and the developed

algorithms used in this dissertation can be applied to any kind of networks not only

biological networks. We summarize the important innovations from each of our con-

tributions as follows:

6.1 Contributions for individual networks module identification

In the dissertation, we propose several module identification methods to detect

functional modules with different topological structures. In chapter 3, we develope

methods based on the concept of block modeling, which identifies modules based

on the role that each node plays in the network. In chapter 5, we focus on finding

cohesive modules, which are densely connected inside and loosely connected outside.

For module identification based on block modeling, we fist develop a sub-gradient

algorithm with path generation heuristic to efficiently solve a classic block modeling

framework using convex programming strategies. The algorithm provides biologists

a useful tool to bird view the whole biological networks and have a better understand

of the organization of the networks topologically. In order to look for small size func-

tional modules, we develop SLCP2 based on tow-hop random walk on the networks.

A spectral method is then used to find the low-conductance set in the transition ma-

trix of the two hop random walk. Based on the framework of SLCP2, we propose an
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overlapping module identification algorithm, called GLCP2. We show that SLCP2

and GLCP2 can identify functional modules that other state-of-the-art algorithms

can not find. Based on the non-negative matrix factorization framework, we propose

a general framework which can handle both directed and indirected networks. Our

APNMF algorithm has the convergence guarantee and can be efficiently solved by

the proximal method. We showe that APNMF is the best NMF based algorithm for

network clustering problem.

For protein complex prediction, we concentrate on the cohesive subnetworks in

the networks. We devise an algorithm that can deal with the degree heterogeneity

problem. Our FLCD can find cohesive modules with the present of nodes with low

degrees. Protein complex prediction results show that FLCD is the best algorithm

in detecting the protein complexes in protein interaction networks.

6.2 Contributions for multiple networks module identification

We propose algorithms that are the extension of the algorithms for individual

networks. The algorithms we developed are scalable and easy to be parallelized.

The superior performance has been illustrated by experiments.

The multiple network module identification algorithms based on block model-

ing introduced in section 4.1 can help us comprehensively detect the similar regions

between two or more biological networks together. The algorithm also sets a good

example to integrate different data sources (biological network and sequence). AS-

Model is the extension of SLCP2 for pairwise networks, which can find fine-size

functional modules to relieve the resolution problems. ASModel is based on the

two-hop random walk on the integration networks, which combines biological inter-

actions and orthology relationships, and then uses the conductance concept to find

meaningful modules exist in both networks.
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We also propose a framework ClusterM to find conserved modules in multiple

protein interaction networks based on FLCD. Our ClusterM is a local algorithm

which is computational light and can easily handle multiple networks. Through

experimental comparison, we conclude that ClusterM outperforms other developed

algorithm on protein complex prediction and GO term consistency.
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