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ABSTRACT 

 

Severe droughts have plagued the United States over the last few years.  The 2011 

Texas drought, the 2012 U.S. drought, and the current California drought have greatly 

impacted the nation’s economy and agricultural production.  Different crops vary in their 

response to water stress.  Despite this, commonly used drought indices, such as the Palmer 

Drought Severity Index, do not consider crop specific factors.  The goal of this project was to 

create a methodology to produce crop and location specific drought and yield trend forecasts 

to help agricultural producers make more informed water management decisions.  To achieve 

this, a drought index was developed and analyzed, weather forecasts were used in a 

hydrology/crop model to predict hydrologic conditions and crop yields, and an example 

interactive map interface were created to convey this information to water stakeholders.   

The drought index uses five parameters that affect or are affected by drought.  These 

parameters include precipitation, temperature, cumulative biomass, soil moisture, and 

transpiration.  Soil moisture and temperature are ranked against crop-specific threshold values, 

while precipitation and cumulative biomass are ranked against location-specific normal values.  

Transpiration is ranked against the location-specific potential transpiration.  A case study was 

performed in the Upper Colorado River Basin located in West Texas using this drought index.  

Cotton is the primary crop grown in the watershed and was used in this study.   The Soil and 

Water Assessment Tool (SWAT) was used to estimate the cumulative biomass, soil moisture, 

and transpiration.  A multiple linear regression model was developed for each week of the 

growing season based on the significant parameters during that stage of the growing season.  

These models were used to predict yield trends and drought severity.    

Two week forecasts for each drought parameter, yield trends, and the drought index 

were generated for 2010 through 2013 by using forecasted precipitation and temperature data 

as inputs for the hydrologic and crop model.  This provided forecasted soil moisture, 

transpiration, and cumulative biomass production.  Parameter rankings, yield trends, and the 

drought index were compared for those calculated with actual precipitation and temperature 

data as well as forecasted precipitation and temperature data.  The precipitation ranking, 

temperature ranking, cumulative biomass ranking, transpiration ranking, estimated yield 
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trends, and drought index indicated satisfactory forecast results.  The soil moisture forecast did 

not result in satisfactory forecast.  

The final step in the project was to create an example interface for agricultural 

producers and water managers to view drought related stresses.  ArcGIS online was used to 

create maps which show graphs of the weekly drought index and soil moisture ranking.  Maps 

were created at the county scale.  These maps provide agricultural producers readily accessible 

information that can be used for decision making related to water management.  
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CHAPTER I 

 INTRODUCTION 

1.1 Water Scarcity 

Water resources are an essential component to everyday life.  People expect to be able 

to turn on the tap for what seems like an endless supply of water for agricultural, industrial and 

domestic purposes.  There is, however, a limit to the amount of water that can be sustainably 

used.  Many areas of the world are already experiencing water scarcity.  Water scarcity 

generally occurs when the demand for water exceeds the supply.  As of 2006, about 1.4 billion 

people lived in watersheds where water use exceeded supply (UNDP, 2006).  Rijsberman 

(2005) concluded that there is a “physical water scarcity affecting food production and 

productive water use … in North Africa and the Middle East.”  Smakhtin et al. (2004) assessed 

water scarcity using the combined water requirements for environmental and human needs. 

They determined that a wider range of locations are experiencing water scarcity, including 

large areas of North America, North Africa, Asia, and the Middle East. 

Issues with water scarcity are likely to increase due to factors such as climate change, 

increasing populations, and the overuse of water resources.  In fact, the World Economic 

Forum’s 2013 Global Risks report identifies water supply crises as one of the top risks for both 

impact and likelihood to occur at the global scale during the next decade (WEF, 2013).   

The global average temperature has increased by 0.85°C since 1880 (IPCC, 2014).  

Higher temperatures have and will continue to increase evapotranspiration from surface 

waters, soil, and plants, thus affecting water availability.  In addition to increasing 

temperatures, the number of drought occurrences has also increased in recent years.   Stahle 

and Cleaveland (1988), for example, examined the drought record in North Texas from 1698 

to 1980 and determined that five out of the six worst droughts in June have occurred since 

1917.  Trenberth et al. (2014) discuss how climate change will likely affect drought including 

quicker onset, more intense, and longer drought conditions. 

The rapidly increasing global population is expected to place an ever increasing strain 

on water resources and increase water scarcity.  By 2050, the United Nation predicts that the 
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global population will reach nearly 9 billion people (UN, 2004), an increase in about 1.8 billion 

people. One of the major water scarcity concerns from the standpoint of rising populations is 

the need to increase agricultural production.  It is estimated that 70-80% of the water currently 

used is for agricultural production (Premanandh, 2011; UNESCO, 2012).  Rijsberman (2005) 

reviewed several water scarcity measures and concluded that water will be a major constraint 

for agriculture in the future.  The United Nations World Water Development Report 4 states 

that “responsible agricultural water management will make a major contribution to future 

global water security” (UNESCO, 2012). 

Lastly, many areas are withdrawing more water than is sustainable (UNESCO, 2012).  

The flows of several of the world’s major rivers have been greatly reduced because of too 

much water being withdrawn including the Colorado, Indus, Rio Grande, Yellow, Teesta, and 

Murray rivers.  Groundwater is also being rapidly depleted. For example, the High Plains 

Aquifer in the United States was reduced by an average of 14 feet across the aquifer, or 273 

million acre-feet, from pre-development through 2009 (McGuire, 2011).  McGuire found that 

the largest decline was 234 feet in the Texas Southern High Plains. 

1.2 Crop Development and Stressors 

As previously stated, an estimated 70-80% of water resources are currently used for 

agricultural purposes, making it the single largest user of water resources.  Crop yields can be 

severely impacted by the amount and timing of moisture inputs.    Crop development is 

generally divided into three broad phases: (1) germination and emergence, (2) the vegetative 

phase, and (3) the reproductive phase (Milthorpe and Moorby, 1974).   

Two environmental factors, water and temperature, are particularly important for crop 

growth.  They influence essential processes, including photosynthesis, as well as process rates 

(Milthorpe and Moorby, 1974).  Pettigrew (2004) found a 35% reduction in cotton leaf area 

index under moisture stress conditions associated with drought.  High temperatures have been 

associated with root senescence (Sánchez et al., 2014) and yield reductions (Asana and 

Williams, 1965).  Stressors can affect yields more during critical crop growth stages.  For 

example, Snowden et al. (2014) demonstrated that cotton yields were most affected by stress 

during the early flowering stage of growth.  Spring wheat has been shown to have the highest 

drought-associated stress during or after heading (Robins and Domingo, 1962).  Hane and 
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Pumphrey (1984) discuss the critical periods of several crops.  They state that winter wheat 

yields are more strongly impacted by water shortages from emergence to flowering and peas 

are most affected by low moisture conditions during the flowering and pod filling stages. 

1.3 Drought 

The current and future stresses on water resources make many areas increasingly 

vulnerable to drought.   

1.3.1 Drought Definitions 

Drought is difficult to define, let alone measure, model or predict.  There is not a single 

consensus on what defines drought.  In fact, there are two types of drought definitions: 

conceptual and operational (Wilhite and Glantz, 1985).  Operational definitions associate 

numbers with drought, where conceptual drought definitions are descriptive.  Van Huijgevoort, 

et al. (2012) defined drought as being “characterized by a temporal, sustained, and spatially 

extensive occurrence of below average natural water availability.” The American 

Meteorological Society (1997) stated that drought is “a temporary aberration, in contrast to 

aridity, which is a permanent feature of regional climate.”  The World Meteorological 

Organization (1986) described drought as “a sustained, regionally extensive, deficiency in 

precipitation.”  Palmer (1968) defined agricultural drought as “a transpiration deficit.” 

Dracup, et al. (1980) discuss the difficulties with settling on a single definition of 

drought.  The first issue brought forth is the nature or primary interest of the drought changes 

with the interested person or group.  The interest could be in precipitation, streamflow, soil 

moisture, economic value of water, or any combination thereof.  Though the economic value 

of water is not discussed by Dracup, et al. (1980), socioeconomic drought has been identified 

as a drought type of interest by others (Wilhite and Glantz, 1985; American Meteorological 

Society, 1997).  Secondly, Dracup, et al. (1980) discuss the issue of the period of interest.  

Depending on the interest in drought and the use of the drought definition, an individual or 

group may be interested in a monthly, seasonal, annual, or other time period.  Agricultural 

producers, for instance, may be interested in short-term dry conditions to make the best use of 

their water resourced for crop irrigation.  On the other hand, water resource planners may be 

more interested in long-term dry conditions which may affect municipal water supplies.  The 

third issue when defining drought is the problem of truncation, or the value below which 
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moisture conditions are considered lower than normal and thus drought is occurring.  This 

truncation point can be determined by a variety of methods, but generally involves the median 

or mean of the parameter of interest.  The final problem in defining drought posed by Dracup, 

et al. (1980), is that of the regionalization of drought.  Regionalization requires drought to be 

grouped essentially in one of two ways: (1) by similar climate, similar geomorphology, and 

geographic proximity; or (2) by statistically similar hydrological or meteorological records.  

Difficulties such as these led Wilhite and Glantz (1985) to suggest that there should not be a 

single definition of drought. 

1.3.2 Drought Classifications 

The difficulties associated with creating one, universal drought definition has led to 

four commonly used drought categories which include meteorological, agricultural, 

hydrological, and socioeconomic drought (American Meteorological Society, 1997; Wilhite 

and Glantz, 1985).  Meteorological drought is less than normal precipitation.  The onset and 

end of meteorological drought can be rapid (Heim Jr., 2002); however, such drought can be 

persistent, lasting months or years at a time.  Agricultural drought generally corresponds to 

low soil moisture conditions, especially during the growing season.  Crop yields can be 

severely impacted by agricultural drought if these low moisture periods are persistent and/or 

occur during critical growing stages of the crop.  For example, if low moisture conditions occur 

during the corn tasseling pollination stage, yield could be reduced up to 25% (Hane and 

Pumphrey, 1984).    Soil can retain moisture conditions for long time periods, giving soil a 

‘memory’ of recent moisture conditions (Orth and Senevirantne, 2012; Wu and Dickinson, 

2004; Koster et al., 2000). Hydrologic drought is broadly thought of as a deficiency in water 

supply (Keyantash and Dracup, 2002).  This deficiency can be in groundwater, streamflow, 

and/or lake or reservoir levels.  These water supplies can be very dependent on recharge from 

high precipitation events; therefore, hydrological drought can be very persistent, even long 

after the end of meteorological drought (Heim Jr., 2002).  Lastly, socioeconomic drought is 

associated with more demand for water or a product dependent on water sources than supply, 

thus having the potential to increase the monetary value of water or water dependent product 

(Wilhite and Glantz, 1985; American Meteorological Society, 1997).  Drought typically begins 
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with meteorological drought.  Then, as it persists, it moves to agricultural and finally 

hydrological drought. 

1.3.3 Drought Measurements and Indices 

Several drought indices have been developed to quantify low moisture conditions in a 

region.  Some of the most common drought indices are precipitation deciles (Gibbs and Maher, 

1967); the Palmer Drought Severity Index (PDSI) (Palmer, 1965); the Standardized 

Precipitation Index (SPI) (McKee et al., 1993); the Vegetation Condition Index (VCI) (Kogan, 

1990; Kogan, 1995); the Crop Moisture Index (CMI) (Palmer, 1968); and the Surface Water 

Supply Index (SWSI) (Shafer and Dezman., 1982).   

1.3.3.1 Precipitation Deciles 

Precipitation deciles were suggested as a measure of drought by Gibbs and Maher 

(1967) and divide precipitation records into groups based on every tenth percentile (deciles).  

Cumulative precipitation values falling in the 1st or 2nd decile (< 20% of the historical record) 

are considered extreme drought, while cumulative precipitation values falling within the 3rd 

and 4th deciles (20-40% of the historical record) are considered drought conditions (Kallis, 

2008).   

1.3.3.2 PDSI 

Palmer (1965) developed PDSI as a method of evaluating drought severity with the 

goal of being able to compare the index across temporal and spatial distributions.  The PDSI 

estimates the amount of moisture received by a region using precipitation and temperature data 

and compares it to the amount of moisture that ‘normally’ occurs in the region.  Palmer (1968) 

describes the PDSI as an “estimate of the amount by which the actual weekly 

evapotranspiration deficit falls short of the ‘expected’ weekly evapotranspiration.”  A 

calculated PDSI value of -4 would indicate extreme drought conditions while a value of +4 

would indicate very wet conditions.  As one of the most widely used drought indices (Mishra 

and Singh, 2010; Kallis, 2008), the PDSI has been used for a variety of studies.  For example, 

Soulé (1992) examined the spatial pattern of droughts in the United States over 94 years using 

the PDSI.  Liu and Hwang (2015) forecasted drought using the PDSI in Arkansas with the goal 

of improving the management of water resources.  Long-term forecasts have been performed 
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by to evaluate potential changes in drought conditions due to climate change (Cook et al., 2014; 

Rind et al., 1990).   

1.3.3.3 SPI 

McKee et al. (1993) developed the SPI, stating that “standardized precipitation is 

simply the difference of precipitation from the mean for a specified time period divided by the 

standard deviation where the mean and standard deviation are determined from past records.”  

While they focused on using precipitation as the drought indicator, McKee et al. suggest that 

this method could be used with other water sources such as snowpack, streamflow, reservoir 

storage, soil moisture, or groundwater.  An SPI value less than zero indicates drought and a 

value less than -2 indicates extreme drought.  The SPI has been used to evaluate drought 

magnitude (Dashtpagerdi et al., 2015); spatial and temporal drought patterns (e.g. Raziei et al., 

2015; Bonaccorso et al., 2003); climate change impacts on drought (e.g. Jenkins and Warren, 

2015); among other topics. 

1.3.3.4 VCI 

The VCI (Kogan, 1990) is used to estimate drought stress associated with vegetative 

growth and is used for evaluating agricultural drought.  It was developed to take advantage of 

satellite imagery which can be used to estimate vegetation conditions via the calculation of the 

Normalized Difference Vegetation Index (NDVI). At the time of development, the satellite had 

five spectral bands including the visible (Ch1) and near infrared (Ch2) bands which are used 

to calculate the NDVI (Equation 1).   

𝑁𝐷𝑉𝐼 =
𝐶ℎ2−𝐶ℎ1

𝐶ℎ2+𝐶ℎ1
       (1) 

The NDVI essentially measures the amount of reflectance which is much less in healthy 

vegetation (Kogan, 1995).  The VCI uses the weekly, smoothed NDVI and uses a linear ranking 

based on the weekly, long-term minimum (NDVImin) and maximum (NDVImax) (Equation 2). 

𝑉𝐶𝐼 = 100 ×
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
    (2) 

The VCI ranges from zero to 100, with 100 indicating optimal vegetation conditions. 
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1.3.3.5 CMI 

The CMI is used to evaluate agricultural moisture conditions and combines estimated 

evapotranspiration, as calculated by the PDSI, with a wetness index that takes into account 

excess moisture (Palmer, 1968).  Negative CMI values indicate deficient evapotranspiration, 

or dry conditions, while positive values indicate wet conditions occurred through sufficient 

evapotranspiration or adequate rainfall.  Palmer (1968) states that crop growth stages must be 

considered when interpreting moisture effects as calculated by the CMI on crops. 

1.3.3.6 SWSI 

Shafer and Dezman (1982) developed the SWSI for use in mountainous regions by 

accounting for melting snow which can be a major contributor to water supplies in these 

areas.  This index uses both hydrological and climatological parameters including snowpack, 

precipitation, reservoir storage, and streamflow.  Shafer and Dezman emphasize that the SWSI 

was created as a complement to the PDSI.  As such, the scale of the SWSI is similar to that of 

the PDSI with a value of +4 indicating abundant water supplies and a value of -4 indicating 

extreme drought conditions.  

1.3.4 Impact of Drought 

The impact of drought is far reaching.  First, drought has been identified as one of the 

costliest natural disasters.  FEMA (1995) estimated that drought causes on average between $6 

and $8 billion in damages annually in the United States.  In 2000, Wilhite identified the 1988 

drought as the costliest disaster in the history of the United States, with an estimated cost of 

about $39 billion from 1987 to 1989 (Riebsame et al., 1991).  Other droughts have cost millions 

and billions of dollars in the agricultural sector.  The Georgia drought from 1998 to 2000 

resulted in an estimated $689 to $885 million in crop losses (Georgia DNR, 2001); crop losses 

of about $401 million were estimated for the 2002 South Dakota drought (Diersen and Taylor, 

2003); the Texas drought of 2011 resulted in an estimated $7.6 billion in agricultural losses 

(Fannin, 2012); the California drought of 2014 resulted in an estimated $1.5 billion in direct 

agricultural losses.  

Drought has led three Texas communities to run out of water in recent years, including 

Robert Lee, Spicewood Beach, and Barnhart (De Melker, 2012; Galbraith, 2013).  Over 1,000 

Public Water Systems (PWSs) had water restrictions as of December 2014 with 2/3 of the 
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restrictions being mandatory (TCEQ, 2014).  The water shortages in Texas have led to 

restrictions on water resource use for agricultural purposes such as rice farms on the Lower 

Colorado River (State Impact, 2014).   

1.3.5 Forecasting Drought 

Several methods have been used to forecast drought conditions.  Kumar and Panu 

(1997) used a multiple linear regression model to predict agricultural drought.  They used both 

the number of rainy days and the amount of rain in each month of the growing season to predict 

yield with the assumption that yield was a good drought indicator.  Lohani and Loganathan 

(1997) used probabilistic weather data was used to compute a probabilistic range of PDSI 

values for Virginia.  An agricultural drought forecasting method was suggested by Marj and 

Meijerink that uses climate signals in an artificial neural network to predict the NDVI.  The 

NDVI is used as the drought indicator.  Mishra and Desai (2005) used a combination of linear 

stochastic models and multiplicative Seasonal Autoregressive Integrated Moving Average 

(SARIMA) to forecast drought in a watershed located in India. 

1.4 Decision Making 

The decision making process is important when determining how to use limited water 

resources during periods of drought.  The steps in the decision making process have been 

identified by many people in many ways (e.g. Gardiner and Edwards, 1975; Carroll and 

Johnson, 1990; Crozier and Ranyard, 1997; Tsoukias, 2009), but generally include some 

variation of the following eight steps: (1) identify the problem, (2) define the objectives, (3) 

collect data, (4) analyze the data, (5) develop alternatives, (6) select a solution, (7) implement 

a solution, and (8) follow-up (Figure 1).  For example, an agricultural producer may begin by 

identifying crop water stress.  The objective might be to reduce crop yield loss.  Next, 

information or data would be collected and analyzed.  This might include the amount of 

irrigation the crop needs, where the water can be obtained, how much the water costs, and an 

estimate of the potential yield gain from irrigation.  Data collection and analysis may occur 

simultaneously and repeatedly.  This means that data is collected and may immediately be 

analyzed; however, if there is not enough information after the data is analyzed to develop 

alternatives, more data may be collected and analyzed.   
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Several online tools have been developed to aid water resource users and managers 

collect and analyze data for the development of alternative solutions.  For example, Modala 

(2014) developed a web application using a geographic information system (GIS) to convey 

potential impacts of climate change in the Texas Panhandle region. 

1.5 SWAT Model 

1.5.1  SWAT Overview 

One way to aid the decision making process is to estimate system impacts through 

models such as the Soil and Water Assessment Tool (SWAT).  SWAT is a widely used model 

for hydrologic assessments.  It is a basin-scale, continuous time, process-based model that runs 

on a daily time scale (Gassman et al., 2007).  It was developed for rural watersheds to assess 

“the impact of management on water supplies and nonpoint source pollution in watersheds” 

(Arnold et al., 1998).  Components from several models were combined to form SWAT 

including Chemicals, Runoff, and Erosion from Agricultural Management Systems 

(CREAMS) which contributed the daily hydrology  component, Groundwater Loading Effects 

on Agricultural Management Systems (GLEAMS) which contributed the pesticide fate 

component, Environmental Policy Integrated Climate (EPIC) which contributed the crop 

growth component, Routing Outputs To Outlet (ROTO) which contributed the streamflow 

routing component, and Enhanced Stream Water Quality Model (QUAL2E) which contributed 

the in-stream kintects component (Gassman et al., 2007). 

SWAT is a semi-distributed model (Gassman et al., 2007).  The basin is first distributed 

into subbasins.  At the subbasin scale, SWAT uses lumped Hydrologic Response Units (HRUs) 

to calculate hydrology.  HRUs consist of the all the area within a subbasin with the same 

landuse, soil type, and slope. 
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Problem 

Identification 

Define 
Objective 

Data 
Collection 

Data 
Analysis 

Develop 
Alternative 
Solutions 

Select 
Solution 

Solution 
Implementation 

Follow-up 

Was the problem solved? 

Was the objective achieved? 

Figure 1:  The decision making process generally consists of 8 steps including problem identification, objective definition, data collection, 

data analysis, alternative solutions development, solution selection, solution implementation, and finally follow-up.  Decision making is an 

iterative process.  If the problem was not solved, it may be necessary to repeat the process.
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1.5.2 Modeling Hydrology 

The SWAT model has been used by many researchers to evaluate a range of issues 

related to hydrology.  A number of scientists have examined the effect of landuse change on 

various hydrologic processes (Guo et al., 2008; Fohrer et al., 2001; Vache et al., 2002; Li et 

al., 2009a).  The effects of landuse change on hydrology was examined using SWAT by Fohrer 

et al. (2001) while the effects of landuse change on water quality was examined by Vache et 

al. (2002).  Current and future groundwater recharge rates have been estimated using the 

SWAT model (Arnold et al., 2000; Eckhardt and Ulbrich, 2003).  Point and nonpoint source 

pollution is a major problem in many watersheds and several studies have used SWAT to 

model the fate and transport of pollutants such as nutrients and sediments (Santhi et al., 2001; 

Vache et al., 2002).  Seasonal soil moisture trends in Oklahoma were evaluated by Deliberty 

and Legates (2003).  SWAT’s ability to model potential evapotranspiration (PET) was 

evaluated by Earls and Dixon (2008) and they found that there was no significant difference 

between observed and modeled PET. Changes due to climate variability have also been 

examined (Jha et al., 2006; Eckhardt and Ulbrich, 2003; Li et al., 2009b; Bekele and Knapp, 

2010).  Jha et al. (2006) used SWAT to examine the potential changes in hydrology of the 

Upper Mississippi River basin under six climate change scenarios.  The changes in 

groundwater recharge and streamflow due to climate change were assessed by Eckhardt and 

Ulbrich (2003). 

1.5.3 Modeling Crop Yields 

Several studies use SWAT to estimate crop yields in basins with substantial agricultural 

activity.  Nair et al. (2011) demonstrates the importance of calibrating and validating crop 

yields as a part of model set-up.  Srinivasan et al. (2010) modeled corn and soybeans in the 

Upper Mississippi River Basin and found that SWAT satisfactorily predicts yields even 

without calibration.   Corn and soybeans were also modeled by Hu et al. (2007) to accompany 

their study on nitrate export.  While they only evaluated crop model performance with the 

PBIAS, they found SWAT did not have a tendency to over- or under-predict yield values.  In 

addition to typical row crops, SWAT has been used to model bioenergy crops such as 

miscanthus (Ng et al., 2010).  The effects of different crop management practices on crop 

growth and water quality was examined by Bossa et al. (2012).  Palazzoli et al. (2015) 
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examined different the effect of different climate change scenarios on wheat, corn, and rice 

yields. 

1.5.4 Modeling Drought 

SWAT has been used for several studies to evaluate drought.  Trambauer et al. (2013) 

examined the ability of 16 hydrological models to be used for drought forecasting in Africa 

and stated that SWAT was one of five models that showed “higher potential and suitability for 

hydrological drought forecasting in Africa.”  Vu et al. (2015) examined both hydrological and 

meteorological drought by using ensemble climate projections in the SWAT model.  Water 

availability was modeled using SWAT by Gies et al. (2014) for use in evaluating drought in 

East Africa.  

In addition, researchers have used SWAT output as input to drought indices.  SWAT 

output was used to calculate the PDSI in North China (Yan et al., 2013). Narasimhan and 

Srinivasan (2005) developed two drought indices, the Soil Moisture Deficit Index (SMDI) and 

Evapotranspiration Deficit Index (ETDI) to be used with the SWAT model for finer spatial 

resolution of drought conditions than the PDSI and SPI.  Jain et al. (2015) developed the 

Integrated Drought Vulnerability Index (IDVI) and used it along with the SWAT model to 

examine drought vulnerability in the Ken River basin, India.   

1.5.5  Model Evaluation 

1.5.5.1 Overview of Model Evaluation Statistics 

Many efficiency statistics and error indices exist to evaluate model results.  For 

hydrologic models, the most widely used evaluation statistics are the coefficient of 

determination (R2) and the Nash-Sutcliffe coefficient of efficiency (NS) (Arnold et al., 2012).  

However, it is also widely understood that these statistics are overly sensitive to high flows 

(Legates and McCabe, 1999; Krause et al., 2005; Arnold et al., 2012).  Krause et al. (2005) 

also demonstrated that the R2 and NS statistics are not sensitive to model biases, such as 

consistent under-prediction.  For better model evaluation, several studies recommend using 

error indices in addition to typical model evaluation statistics (Legates and McCabe, 1999; 

Krause et al., 2005; Moriasi et al., 2007).  Some suggested error indices include the Root Mean 

Square Error (RMSE), ratio of the RMSE to standard deviation of the observed data (RSR), 
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and percent bias (PBIAS) (Legates and McCabe, 1999; Moriasi et al., 2007; Coffey et al., 

2004). 

1.5.5.2 Coefficient of Determination 

R2 (Equation 3) evaluates the amount of the observed variance that is explained by the 

model.  The R2 statistic ranges from zero to one.  A value of zero indicates none of the observed 

variance is explained by the model while a value of one is optimal and indicates that all the 

observed variance is explained by the model.  R2 has been used to evaluate SWAT streamflow 

simulations in many studies (Arnold et al., 2000; Earls and Dixon, 2008; Vache et al., 2002; 

Vu et al., 2015, Yan et al., 2013; Santhi et al., 2001). 

𝑅2 = {
∑ (𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)𝑁

𝑖=1

[∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1 ]

0.5
[∑ (𝑃𝑖−𝑃̅)2𝑁

𝑖=1 ]
0.5}

2

(3) 

where Oi is the observed streamflow at time i, Pi is the predicted streamflow at time i, 𝑂̅ is the 

average observed streamflow over the modeled period, and 𝑃̅ is the average predicted 

streamflow over the modeled period. 

1.5.5.3 Nash-Sutcliffe Coefficient of Efficiency 

The NS (Equation 4) is an efficiency measure that evaluates how well the modeled data 

matches the observed along a line with a slope of 1 (Arnold et al., 2012).  NS ranges from 

negative infinity to one with an optimal value of one.  Negative values indicate that the model 

performed worse than using the observed mean, while a positive value indicates that the model 

performed better than using the observed mean.  NS has been used to evaluate the calibration 

and validation of hydrologic parameters in many SWAT studies (Fohrer et al., 2001; Li et al., 

2009a; Bekele and Knapp, 2010; Vu et al., 2015; Yan et al., 2013; Santhi et al., 2001). 

𝑁𝑆 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1

(4) 

1.5.5.4 Percent Bias 

The PBIAS (Equation 5) evaluates the model’s tendency to over- or under-predict.  A 

positive PBIAS indicates the model over-predicts, a negative value indicates the model under-

predicts, while zero indicates the model does not have a tendency to over- or under-predict and 
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is, therefore, optimal.  PBIAS is used in a number of SWAT studies to evaluate model 

performance for both streamflow and crop yields (e.g. Li et al., 2009a).  

𝑃𝐵𝐼𝐴𝑆 = (
∑ (𝑃𝑖−𝑂𝑖)𝑁

𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

) × 100%        (5) 

1.5.5.5 Root Mean Square Error and RMSE to Observed Standard Deviation Ratio 

The RMSE (Equation 6) measures the error of the model and weights errors with larger 

absolute values more weight, thus negatively emphasizing variance (Chai and Draxler, 2014).  

The RSR (Equation 7) is presented by Moriasi et al. (2007) as a method to standardize the 

RMSE.  It normalizes the RMSE by dividing it by the standard deviation of the observed data 

(SDO).  The RSR error index is somewhat new, but has been adopted by some to evaluate 

SWAT model results (Li et al., 2009a; Bekele and Knapp, 2010; Earls and Dixon, 2008). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑂𝑖 − 𝑃𝑖)2𝑁

𝑖=1     (6) 

𝑅𝑆𝑅 =  
𝑅𝑀𝑆𝐸

𝑆𝐷𝑂
 =

√∑ (𝑂𝑖−𝑃𝑖)2𝑁
𝑖=1

√∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1

    (7) 

1.5.5.6 Interpretation of Model Statistics 

While there is no consensus about ranges for satisfactory model evaluation statistics, 

Moriasi et al. (2007) and Gassman (2008) provided recommended ranges.  Gassman (2008) 

recommended R2 values above 0.5 for monthly calibrations.  Moriasi et al. (2007) 

recommended monthly calibration values for NS of greater than 0.5 and RSR values to be 

below 0.7.  Three ranges were provided for satisfactory PBIAS of monthly calibrations based 

on typical parameter uncertainty.  -25% to 25% was recommended for streamflow, -55% to 

55% was recommended for sediment, and -70% to 70% for nutrients.  Moriasi et al. (2007) 

state that appropriate relaxing and tightening of these values should be done for daily and 

annual calibrations.  

1.6 Project Objectives 

Drought is a costly hazard that impacts many people.  Agricultural producers are being 

affected by both limited water resources and drought which impacts crop yields.  The objective 
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of this study is to create an early warning system/decision making (EWS/DM) system by 

forecasting meteorological, hydrological, crop yield, and drought trends with a two-week lead 

time to help agricultural producers better prepare for drought conditions and manage water 

resources.  This will be achieved by: 

1. Developing a crop- and location-specific drought index to provide crop specific

information for irrigation water resource management decisions,

2. Verifying the drought index through a case study

3. Integrating two-week weather forecasts with a hydrologic model which will predict soil

moisture, evapotranspiration, biomass production, and crop yield trends,

4. Comparing yield trends and drought conditions calculated with observed and

forecasted weather data to determine forecast accuracy,

5. And generating a sample interactive map that will demonstrate an EWS/DM tool that

could be used to disseminate forecasted hydrologic conditions and yield trends to

agricultural producers.
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CHAPTER II 

CROP AND LOCATION SPECIFIC AGRICULTURAL DROUGHT 

QUANTIFICATION: PART I – METHOD DEVELOPMENT 

2.1 Synopsis 

Drought is generally understood as low moisture conditions over a period of time; 

however, no single definition exists for drought.  The numerous drought definitions and 

classifications have led to many indices that attempt to quantify drought.  Most of these indices 

rely on a single parameter such as precipitation or soil moisture and do not consider crop 

specific information such as threshold values, which cause crop stress when exceeded.   An 

example of a crop threshold is the soil moisture depletion value below which causes moisture 

stress to the crop.  The goal of this study is to provide a new methodology to quantify drought 

for a specific crop at a specific location, allowing for water management decisions on a crop-

specific basis.  This is achieved by ranking and combining five factors, including (1) 

precipitation, (2) temperature, (3) biomass production, (4) soil moisture, and (5) transpiration. 

The temperature and soil moisture rankings are calculated using crop specific stress thresholds, 

whereas precipitation and biomass production rankings are calculated by using location 

specific normal values.  Transpiration stress is a crop and location specific value that is 

calculated by comparing the actual transpiration to the daily maximum transpiration.  The 

parameters are combined via multiple linear regression models which estimate crop yields.  A 

single model is created for each week of the growing season using the parameter or parameters 

that are significant for that week.  The predicted yield deciles indicate the yield trend based on 

crop water stress and is therefore used as the crop specific drought index. 

2.2 Introduction 

Drought is a costly and wide spread natural disaster.  It has been estimated that drought 

causes between $6 and $8 billion in damages per year on average in the United States (FEMA, 

1995).  As of 2000, the 1988 drought was identified as the costliest disaster in the United States 

(Wilhite, 2000).  Recently, the Texas drought of 2011 cost the agricultural sector alone an 
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estimated $7.6 billion in damages (Fannin, 2012).  Drought also affects a large number of 

people worldwide.  Wilhite (2000) stated that more droughts affected 1% or more of the world 

population from 1963 to 1992 than any other natural hazard.   

Despite the widespread and costly impact of drought, drought has been difficult to 

define, measure, model, and predict.  The World Meteorological Organization (WMO, 1986) 

stated that “drought means a sustained, extended deficiency in precipitation” while Palmer 

(1965) provides a broader definition by defining drought as a “prolonged and abnormal 

moisture deficiency”.  Kallis (2008) provides yet another definition by stating that drought is 

a “temporary lack of water, which is, necessarily but not exclusively, caused by abnormal 

climate and which is damaging to an activity, group, or the environment”.   

Though there are numerous definitions, drought has been generally grouped into four 

categories which include meteorological drought, hydrological drought, agricultural drought, 

and socioeconomic drought (Mishra and Singh, 2010).  Meteorological drought occurs when 

there is a precipitation deficit over time; this can have far reaching impacts on everything from 

agricultural production to municipal water supplies.  Hydrological drought occurs when there 

are reduced surface and subsurface flows; this impacts ecosystem dynamics and may affect 

downstream water supplies.  Agricultural drought occurs when there is low soil moisture; this 

can cause crop stress and reduced yields.  Lastly, socioeconomic drought occurs when there is 

more demand for water resources than the supply, which can lead to water restrictions.  Each 

drought category is affected by differently by hydrologic and climatologic parameters, so they 

do not always begin, end, or even occur at the same time.  Drought generally begins with 

meteorological drought or a lack of precipitation and, as it persists, leads to agricultural and 

hydrological drought.  Socioeconomic drought can occur with or without other droughts 

because it refers to the supply to demand ratio of water which may or may not be affected by 

the current moisture conditions.   For example, an area with a small supply of water may 

experience socioeconomic drought if there is not enough to go around, even when moisture 

conditions in the region are normal.  Therefore, measuring, modeling, and predicting each 

drought type requires a unique approach for optimal results. 

The variety in drought definitions and classifications has led to the creation of many 

different drought indices that attempt to quantify drought.  Therefore, each classification of 
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drought has several commonly used methods for quantifying drought.  For instance, some of 

the commonly used meteorological drought indices include rainfall deciles, the Palmer 

Drought Severity Index (PDSI), and the Standardized Precipitation Index (SPI).  Some of the 

commonly used hydrological drought indices include total water deficit, cumulative 

streamflow anomaly, and the Surface Water Supply Index (SWSI).  Lastly, agricultural drought 

indices include the Crop Moisture Index (CMI), computed soil moisture, and the soil moisture 

anomaly index. Keyantash and Dracup (2002) provide a summary and evaluation of these and 

other commonly used drought indices.  Socioeconomic drought is based on supply and demand 

and is therefore generally measured by the cost of water. 

The focus of this study is on agricultural drought.  Commonly used agricultural drought 

indices are limited because they are not crop specific and tend to solely rely on soil moisture.  

A crop specific index is important because crops respond to variations in moisture conditions 

differently.  For example, cotton can withstand a 65% depletion in soil moisture before the 

onset of crop stress, but strawberries can only withstand an estimated 20% soil moisture 

depletion before causing crop stress (Allen et al., 1998).  In addition, though soil moisture is 

an important indicator for drought, there are additional parameters that indicate crop stress or 

the potential for crop stress due to drought conditions.  For instance, high temperatures can 

exacerbate drought conditions (e.g. Nicolas et al., 1984) and limited rainfall over time will lead 

to low soil moisture conditions, which will, in turn, limit crop transpiration. 

Creating a crop specific drought index will help agricultural producers make improved 

water management decisions.  Providing information about when crops are stressed will allow 

for irrigation scheduling based on this crop specific moisture stress information.  This could 

reduce the amount of water used for irrigation over the growing season by optimizing the 

timing of irrigation applications.  

The purpose of this study is to develop a drought quantification method that can be 

used to help agricultural producers better manage water resources by identifying the critical 

conditions for their crop.  The objectives were to, (1) identify parameters important to drought 

and crop production to be used in quantifying drought, and (2) create a crop specific drought 

index that was adaptive to various crops grown in various locations.  To accomplish this, a 

review of literature was performed to identify parameters that affect or can be affected by 
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drought and are associated with crop yields.  These parameters were then ranked against 

threshold and normal values to provide crop and location specific rankings.  Finally, crop 

specific linear regression models were created for each week of the growing season to estimate 

yields and calculate the drought index. 

2.3 Parameter Identification 

Agricultural drought is largely dependent on conditions that occur within the growing 

season; therefore, this study focuses on short-term drought.  Five parameters were chosen for 

use in quantifying crop and location specific drought, (1) precipitation, (2) temperature, (3) 

cumulative biomass production, (4) soil moisture stress, and (5) crop transpiration stress. These 

parameters are affected during different phases of drought.  Drought generally begins with low 

precipitation and high temperatures followed by reduced soil moisture and transpiration.  This 

ultimately results in lower biomass production. 

2.3.1 Precipitation 

Reduction of precipitation is generally the starting point for drought conditions.  Low 

precipitation amounts can result in a number of surface and subsurface moisture problems 

including reduction of soil moisture, groundwater levels, streamflows, and reservoir levels.  

Though total amount of precipitation is possibly the most recognized precipitation variable 

associated with drought, it is not the only precipitation variable drought depends on.  

Precipitation intensity, frequency, timing, and distribution are also important (Kallis, 2008).  

A high intensity precipitation event will result in an increase in runoff volume and a decrease 

in the volume infiltrated into the soil when the soil infiltration rate is lower than the 

precipitation rate. Frequency is also important because smaller, more frequent precipitation 

events can help regulate soil moisture.  On the other hand, larger, infrequent precipitation 

events will allow more time for the soil to dry out between events. In addition, the timing of 

precipitation events is very important for crop production because crops often have critical 

periods where low moisture conditions can be particularly damaging to yields.  For example, 

the greatest drought stress in spring wheat occurs during or after heading (Robins and 

Domingo, 1962).  Stegman and Lemert (1981) divided the sunflower growing season into three 

stages and determined that the crop exhibited the most stress during the middle stage.  Cotton 

yields were most significantly affected by drought stress during the early flowering growth 
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stage (Snowden et al., 2014).  Lastly, the distribution of a precipitation event is important for 

moisture conditions because a localized storm with sufficient amounts of precipitation will 

only benefit a limited area, and the surrounding area will continue to dry. 

2.3.2 Temperature 

Temperature directly affects both surface and atmospheric water conditions, making it 

an important parameter in determining drought severity.  Higher temperatures allow for more 

evaporation and transpiration, thus causing surface water to enter the atmosphere more rapidly.  

It also increases the atmosphere’s water holding capacity, meaning a greater volume of water 

can be held in the atmosphere prior to atmospheric saturation. 

Crop water stress can be exacerbated by high temperature conditions.  High 

temperatures can result in higher transpiration rates from crops and higher evaporation rates 

from the soil surface, thus depleting the crop’s water “reserves” more quickly.  In addition, 

plants attempt to regulate canopy temperatures to maintain favorable growing conditions; 

however, there is a limit on their ability to regulate the canopy temperature.  When this 

temperature limit is reached, the crop is stressed and its growth and development is altered.  

For example, high temperatures have been shown to cause accelerated root senescence and 

stop root elongation (Sánchez et al., 2014), thus limiting their ability to obtain water and 

nutrients.  Asana and Williams (1965) exposed different wheat varieties to daily temperatures 

ranging from 25 to 31°C and found yields decreased with increasing temperatures.  

2.3.3 Biomass Production 

Low moisture conditions typically associated with drought often have negative impacts 

on biomass production.  The relationship between soil moisture and biomass production has 

been extensively studied.  Researchers have examined various plants grown in a variety of 

locations.  Most have demonstrated a similar trend: reduced water availability caused a 

reduction in biomass production.  For example, Delfine, et al. (2001) compared rainfed and 

irrigated conditions on the Leaf Area Index (LAI) of bell pepper plants in the Mediterranean 

and found a reduced LAI under the dryer, rainfed condition.  Jamieson, et al. (1995) induced 

low soil moisture conditions on barley by withholding irrigation during the beginning, middle, 

and end of the growing season.  They determined that all treatments reduced biomass 

production from the control plots, with the greatest reduction occurring when the low moisture 
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conditions occurred during the beginning of the growing season.  Pettigrew (2004) and Howell, 

et al. (2004) both demonstrated a reduction in LAI for cotton grown under dryland conditions 

compared to cotton grown under irrigated conditions. 

This reduction in biomass production under low moisture or drought conditions is 

important in determining the effect of drought on crop yield.  Biomass production has been 

associated with yield via the Harvest Index (HI), which is the fraction of crop yield to above-

ground biomass (Hay, 1995).  Several models estimate crop yield by multiplying the simulated 

biomass production by a pre-defined HI (e.g. Neitsch et al., 2011).   

2.3.4 Soil Moisture 

Soil moisture has been often been used to try to quantify agricultural drought.  Many 

have referred to soil as having a “memory” because of its ability to retain moisture conditions 

for relatively long time periods (e.g. Orth and Senevirantne, 2012; Wu and Dickinson, 2004; 

Koster et al., 2000).  This means that soil exposed to a soaking precipitation event followed by 

a long period of no precipitation will remain wet for some time.  Conversely, it may take the 

soil profile a substantial amount of precipitation to become saturated after a long dry spell.  

Soil’s persistent nature makes it a good indicator for short-term or seasonal moisture 

conditions. 

Soil moisture is critical for crop biomass production and development.  As previously 

mentioned, low soil moisture can result in limited root development, thus further impacting 

the plant’s ability to obtain water and nutrients.  Soil moisture can also cause reproductive 

stress; for example, soil moisture stress during cotton boll formation can cause boll abscission, 

thus reducing yields.  Different crops are affected by soil moisture conditions differently.  

Allen et al. (1998) state that crops can withstand a soil moisture depletion fraction (p) ranging 

from roughly 0.2 to 0.8 before causing stress to a particular species.   Therefore, though all 

crops are susceptible to low moisture conditions, their soil moisture threshold tolerances may 

vary significantly by crop. 

2.3.5.   Crop Transpiration 

Below normal transpiration rates indicate that the plant is not receiving adequate 

moisture and may be experiencing moisture stress.  Low transpiration rates not only affect the 

water content of the plant, but also reduce the amount of nutrients moving through the plant.  
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It can also limit the plant’s ability to regulate its temperature, thus increasing the likelihood of 

temperature stress.  Both moisture stress and temperature stress can reduce plant productivity. 

2.4 Parameter Calculations and Rankings 

To understand a particular drought parameter value, it needs to be compared against a 

value with meaning.  This allows the parameter to be ranked with respect to effect on the crop 

or normal growing conditions in the area.  Precipitation and biomass production are compared 

with historic normal conditions.  The historic minimums and maximums are also found to 

provide limits to the rankings.  The precipitation normals are calculated on a five week (35 

day) basis, while the biomass production normals are calculated on a weekly basis. 

Precipitation normals are calculated for a longer time period because a week of no precipitation 

is not an uncommon occurrence and will not by itself cause water stress to a crop, whereas a 

month without precipitation can be detrimental to a crop.  Cumulative biomass production 

normals were calculated on a weekly basis because the drought index is on a weekly basis. 

High temperature values are compared against a given temperature stress value for a 

particular crop.  Above this temperature value, the crop’s growth begins to decline.  The soil 

moisture stress is compared against the estimated root zone soil moisture depletion fraction (p) 

that a crop can withstand before becoming stressed.  Lastly, the actual crop transpiration is 

compared against the potential transpiration.  Table 1 summarizes the aforementioned 

parameters and how they were ranked.   The five parameter rankings are then used to calculate 

the crop-specific drought index. 

Table 1: Summary of parameter ranking method used in the crop-specific drought index. 

Parameter Ranked Against 
Ranking 

Range 

Precipitation 35 day normal -10 to 10 

Temperature 
Number of days above threshold value over 

35 day period 
-10 to 0 

Cumulative Biomass Weekly normal biomass production -10 to 10 

Soil Moisture Crop specific stress threshold -10 to 10 

Transpiration Potential transpiration -10 to 0 
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All five rankings used a basic linear ranking system.  Two to three bounds were used, 

depending on the parameter.  In the simple case of temperature and transpiration, the location-

specific 30-year normal was used as the lower bound of the system, while zero was used as the 

upper bound.  The ranking is linear from 0, indicating no crop stress, to -10, indicating the 

values are at or exceed the 30-year extreme for drought conditions.  Precipitation, cumulative 

biomass production, and soil moisture have two linear ranking equations, depending on if it is 

above or below the threshold value. In the case of biomass production and precipitation this 

threshold value is the 30-year median whereas the soil moisture the middle value is the crop-

specific soil moisture depletion stress threshold. Values above the threshold value are ranked 

linearly between the middle value and 30-year maximum.  Values below the middle are ranked 

linearly between the threshold value and the 30-year minimum.  Linear rankings were used 

because as moisture conditions increase, crop production generally improves, while decreasing 

moisture conditions generally cause reduced crop production.  Two linear ranking equations 

were used because each ranking will then have the same meaning: above zero indicates a moist 

condition while below zero indicates dry conditions.  The minimum and maximum 30-year 

normal were used as lower and upper bounds to provide location-specific ranks.  For example, 

5 inches of precipitation over a 35 day period may be extremely dry conditions in regions with 

high precipitation, but may be only moderately dry in regions with lower precipitation. 

2.4.1 Precipitation Ranking (-10 to 10) 

Ultimately drought is a lack of water; therefore lack of precipitation is the primary 

driving force behind drought.  The precipitation amount is summed over a five week period 

including the current week of interest and the four previous weeks for a total of 35 days.  

Precipitation was ranked against the historic median value for the location of interest 

(Equations 8 – 11).   

𝑃𝑅𝑎𝑛𝑘 = −10  𝑓𝑜𝑟 (𝑃35 < 𝑃35𝑚𝑖𝑛) (8) 

 𝑃𝑅𝑎𝑛𝑘 =
𝑃35𝑚𝑒𝑑−𝑃35

𝑃35𝑚𝑒𝑑−𝑃35𝑚𝑖𝑛
× (−10)  𝑓𝑜𝑟 (𝑃35𝑚𝑖𝑛 < 𝑃35 ≤ 𝑃35𝑚𝑒𝑑)      (9) 

 𝑃𝑅𝑎𝑛𝑘 =
𝑃35−𝑃35𝑚𝑒𝑑

𝑃35𝑚𝑎𝑥−𝑃35𝑚𝑒𝑑
× 10  𝑓𝑜𝑟 (𝑃35𝑚𝑒𝑑 < 𝑃35 < 𝑃35𝑚𝑎𝑥)    (10) 
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𝑃𝑅𝑎𝑛𝑘 = 10  𝑓𝑜𝑟 (𝑃35 > 𝑃35𝑚𝑎𝑥)   (11) 

where PRank is the 35 day precipitation ranking, P35 is the amount of precipitation for the area 

of interest over the 35 day period, P35med is the historic median precipitation amount over the 

35 day period, P35min is the historic absolute minimum precipitation amount over the 35 day 

period, and P35max is the historic absolute maximum precipitation amount for the 35 day period.  

A value of ten indicates the precipitation amount over the 35 day period is at or more than the 

historic maximum precipitation amount for the same period.  A value of zero indicates that the 

precipitation amount is equal to the historic median precipitation amount for the 35 day period.  

A value of negative ten indicates that the precipitation amount is at or less than the historic 

minimum precipitation amount for the 35 day period. 

2.4.2 Temperature Ranking (-10 to 0) 

Temperature was chosen as a parameter in this drought quantification method because 

of the aforementioned ancillary effects on drought and crop production.  The temperature 

parameter is calculated by determining the number of days the crop is above a given 

temperature threshold value for a five week (35 day) period.  The temperature threshold is the 

temperature above which causes heat stress to the crop of interest.  This threshold is crop 

specific, resulting in a temperature ranking that better reflects temperature stress for each crop 

simulated.  Historic data is used to calculate the typical and extreme temperature conditions 

for each simulated crop in the area of interest.  The historic extreme maximum temperature 

parameter value is used to calculate the temperature stress ranking which is a ratio of the 

current temperature parameter and the long-term maximum (Equation 12). 

𝑇𝑅𝑎𝑛𝑘 =
𝑇𝑃

𝑇𝑚𝑎𝑥
∗ (−10) 𝑓𝑜𝑟 (𝑇𝑃 < 𝑇𝑚𝑎𝑥) (12) 

𝑇𝑅𝑎𝑛𝑘 = −10  𝑓𝑜𝑟 (𝑇𝑃 > 𝑇𝑚𝑎𝑥) (13) 

where TRank is the temperature ranking, TP is the temperature parameter (number of days the 

crop is above the temperature threshold for a given length of time), and Tmax is the historic 

maximum temperature parameter.  A value of zero indicates there is no temperature stress 
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during the specified time period, a value of -10 indicates the number of stress days over the 

specified time period is equal to or greater than the extreme historic maximum. The 

temperature ranking is only calculated for zero to -10 because lower temperatures than the 

stress threshold does not necessarily result in increased biomass production.  Cotton, for 

instance, has a lower temperature threshold of 60ᵒC, below which there is little cotton growth 

(National Cotton Council, accessed 2015). 

2.4.3 Cumulative Biomass Ranking (-10 to 10) 

Cumulative biomass production was chosen for this drought method because of its 

association with crop yield since a reduction in biomass production caused by drought 

conditions will likely also result in a reduction in the crop yield.  The biomass parameter can 

be estimated by an appropriate model such as the Environmental Policy Integrated Climate 

(EPIC) used in the Soil and Water Assessment Tool (SWAT).  It is ranked by calculating the 

fraction of cumulative biomass production for the week of interest to the historic median value 

(Equations 14 – 17).  Both current and historic cumulative biomass production can be estimated 

by using a crop model such as SWAT.  

𝐵𝑅𝑎𝑛𝑘 = −10  𝑓𝑜𝑟 (𝐵𝑃 < 𝐵𝑚𝑖𝑛)          (14) 

𝐵𝑅𝑎𝑛𝑘 =
𝐵𝑚𝑒𝑑−𝐵𝑃

𝐵𝑚𝑒𝑑−𝐵𝑚𝑖𝑛
∗ (−10)  𝑓𝑜𝑟 (𝐵𝑚𝑖𝑛 < 𝐵𝑃 ≤ 𝐵𝑚𝑒𝑑)          (15) 

𝐵𝑅𝑎𝑛𝑘 =
𝐵𝑃−𝐵𝑚𝑒𝑑

𝐵𝑚𝑎𝑥−𝐵𝑚𝑒𝑑
∗ 10  𝑓𝑜𝑟 (𝐵𝑚𝑒𝑑 < 𝐵𝑃 < 𝐵𝑚𝑎𝑥)          (16) 

𝐵𝑅𝑎𝑛𝑘 = 10  𝑓𝑜𝑟 (𝐵𝑃 > 𝐵𝑚𝑎𝑥)  (17) 

where BRank is the cumulative biomass production ranking for the week of interest, BP is the 

estimated cumulative biomass production for the week of interest, Bmed is the historic median 

cumulative biomass production during the week of interest, Bmin is the historic absolute 

minimum cumulative biomass production for the week of interest, and Bmax is the historic 

absolute cumulative maximum biomass production for the week of interest.  A value of ten 

indicates the biomass production is at or greater than the historic maximum biomass production 

for the week of interest.  A value of zero indicates that the biomass production is equal to the 
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historic median biomass production for the week of interest.  A value of negative ten indicates 

that the biomass production is at or less than the historic minimum biomass production for the 

week of interest. 

2.4.4 Soil Moisture Stress Ranking (-10 to 10) 

Soil moisture has a significant effect on crop growth and development.  The soil 

moisture stress is calculated based on the methodology discussed in the FAO Drainage and 

Irrigation Paper No. 56 (Allen et al., 1998).  Soil water stress (Ks) begins when the soil moisture 

deficit is below the Readily Available Water (RAW) in the root zone.  To calculate both the 

Ks parameter and the RAW, the Total Available Water (TAW) must be determined first.  Allen 

et al. (1998) defines TAW as “the amount of water that a crop can extract from its root zone.”  

TAW is calculated using Equation 18. 

𝑇𝐴𝑊 = 1000(𝜃𝐹𝐶 − 𝜃𝑊𝑃)𝑍𝑟 (18) 

where TAW is the total available soil water in the root zone in mm, ϴFC is the water content at 

field capacity in m3m-3, ϴWP is the water content at the wilting point in m3m-3, and Zr is the 

rooting depth. 

RAW can be calculated from the TAW using Equation 19. 

𝑅𝐴𝑊 = 𝑝 ∗ 𝑇𝐴𝑊     (19) 

where RAW is the readily available water in the root zone in mm and p is the average fraction 

of TAW that can be depleted from the root zone before moisture stress.  Table 22 in Allen et 

al. (1998) provides p values for a variety of crops.  The values range from 0.2 for crops such 

as spinach and celery to 0.8 for sisal or Mexican agave. 

The Ks parameter is calculated using the calculated RAW and TAW values in 

conjunction with the soil water depletion as in Equation 20 below. 

𝐾𝑠 =
𝑇𝐴𝑊−𝐷𝑟

𝑇𝐴𝑊−𝑅𝐴𝑊
   (20) 

where Dr is the soil water depletion in the root zone in mm.  Allen et al. (1998) only use this 

equation for Dr values less than the RAW; for Dr values greater than RAW, Ks is set equal one.  
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However, this method uses Equation 20 for all values of Dr.  Therefore, Ks values above one 

indicate moisture conditions above the stress threshold, while Ks values below one indicate 

soil moisture conditions below the plant’s soil moisture stress threshold. 

The historic minimum and maximum at the location of interest for the week of interest 

are used to provide extreme upper and lower limits on the Ks parameter ranking which is 

calculated using Equations 21 – 24.  

𝐾𝑅𝑎𝑛𝑘 = −10  𝑓𝑜𝑟 (𝐾𝑠 ≤ 𝐾min ) (21) 

𝐾𝑅𝑎𝑛𝑘 =
1−𝐾𝑠

1−𝐾𝑚𝑖𝑛
∗ (−10)  𝑓𝑜𝑟 (𝐾𝑚𝑖𝑛 < 𝐾𝑠 ≤ 1) (22) 

𝐾𝑅𝑎𝑛𝑘 =
𝐾𝑠−1

𝐾𝑚𝑎𝑥−1
∗ 10  𝑓𝑜𝑟 (1 < 𝐾𝑠 < 𝐾𝑚𝑎𝑥) (23) 

𝐾𝑅𝑎𝑛𝑘 = 10  𝑓𝑜𝑟 (𝐾𝑠 ≥ 𝐾max ) (24) 

where KRank is the crop soil moisture stress ranking for the week of interest, Ks is the estimated 

soil moisture ranking for the week of interest, Kmin is the historic minimum soil moisture 

ranking for the week of interest, and Kmax is the historic maximum soil moisture ranking for 

the week of interest.  A value of ten indicates the soil moisture stress is at or greater than the 

historic maximum soil moisture stress for the week of interest.  A value of zero indicates that 

the soil moisture stress is equal to the historic median soil moisture stress for the week of 

interest.  A value of negative ten indicates that the soil moisture stress is at or less than the 

historic minimum soil moisture stress for the week of interest. 

2.4.5 Transpiration Stress Ranking (-10 to 0) 

The estimated transpiration is used as another means to determine the stress to the crop 

from the low moisture and high temperature conditions typically associated with drought.  This 

is accomplished by estimating the actual transpiration and the potential crop transpiration and 

using these values to determine the crop water stress (Equation 25).   

𝑊 = 1 −
𝐸𝑡,𝑎𝑐𝑡

𝐸𝑡
(25) 
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where W is the daily crop water stress due to transpiration, Et,act the estimated transpiration for 

a given day, and Et is the estimated maximum plant transpiration for a given day.  This 

information can be obtained from modeling daily conditions through a model such as SWAT.  

The crop transpiration stress ranking is calculated using Equations 26 and 27. 

𝑊𝑅𝑎𝑛𝑘 =
𝑊

𝑊𝑚𝑎𝑥
× (−10)  𝑓𝑜𝑟(𝑊 ≤ 𝑊𝑚𝑎𝑥) (26) 

𝑊𝑅𝑎𝑛𝑘 = −10  𝑓𝑜𝑟(𝑊 > 𝑊𝑚𝑎𝑥) (27) 

where WRank is the ranking of transpirational water stress ranging from 0 to -10 and Wmax  is 

the historic maximum transpirational water stress.  A value of zero indicates that the actual 

transpiration is equal to the maximum plant transpiration for the given day.  In other words, 

there is no water stress limiting the amount of water passing through the plant.  A value of 

negative ten indicates that the transpirational water stress value is at or greater than the historic 

maximum transpirational water stress. 

2.5 Drought Index Calculation 

Plant stress caused by drought ultimately results in reduced crop yields.  Therefore, it 

is important to determine what the trend in the crop yield is for the growing season.  The 

estimated crop yields are then used to provide the drought index.  Crop specific yields were 

forecasted by performing a multiple linear regression with the five ranked parameters and 

historic observed yields.  A linear regression model was created for each week of the growing 

season using the significant parameters for that week.  Significant parameters were determined 

by performing a t-test (α = 0.1) with the R statistical package.  Predicted yields were then 

converted to yield deciles to indicate yield trends or, in other words, whether yields will be less 

than normal, normal, or greater than normal.  Yield deciles were directly used as the drought 

index (Equation 28), but were converted from a range of 0 to 10 to a range of -10 to 10 with 

the following relationship: 

𝐷𝑐𝑟𝑜𝑝 = (2 ×  𝑌𝑐𝑟𝑜𝑝) − 10      (28) 

where Dcrop is the crop specific drought index and Ycrop is the predicted yield decile. The 

method of using yield directly as an agricultural drought indicator has been used in previous 
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studies (e.g. Kumar and Panu, 1997).  In this study, a value of ten is obtained when yields are 

high and thus there is no drought occurring.  Zero indicates that the current week’s conditions 

forecast a normal yield. A value of negative ten indicates the moisture conditions for the week 

are very low, resulting in a low predicted yield and a low drought index value.  A schematic 

of the overall drought index calculation process is provided in Figure 2.   

2.5.1 Linear Regression Model 

This drought index method uses linear models, which assume yields will increase 

with increasing moisture conditions.  In an area experiencing drought conditions or has semi-

arid or arid climates, this assumption holds.  However, for areas not experiencing drought 

conditions, there may be reduced yields from an overabundance of water (flooding). In this 

case, other regression models, such as a polynomial regression, should be considered.  This 

Figure 2: Schematic of drought index calculation. 
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would allow the models to account for both high and low moisture conditions when 

forecasting yield trends, but it should be noted that this would require an alteration in the 

drought index as well.  This is due to the fact that low yields resulting from the polynomial 

model may not indicate low moisture conditions associated with drought. 

Linear regression models were created using the R statistical package.  Significant 

parameters were used to generate linear equations for yield during each week of the growing 

season.  The parameters were tested for significance via the t-test. Parameters with an alpha 

value above 0.1 was determined to be significant and included in the multiple linear regression 

model. 

2.6 Summary and Conclusions 

A crop-specific and location-specific drought index was created to communicate crop 

specific moisture conditions and forecasted yield trends to agricultural producers.  Five 

parameters were ranked against crop- and location-specific values.  Precipitation was ranked 

using the location-specific median value.  Temperature was ranked using a crop-specific high 

temperature stress threshold value.  Cumulative biomass production was ranked using the crop- 

and location-specific median cumulative biomass production of the crop for the week of 

interest.  Soil moisture is ranked using a crop-specific soil moisture depletion stress threshold.  

Lastly, transpiration values are ranked using the crop- and location-specific estimated 

maximum transpiration.  These five parameters along with observed yields were used to 

generate a linear model to predict yield trends for each week of the growing season.  The 

forecasted yield trends were then converted to the crop- and location-specific drought index. 

By utilizing this drought index, producers will be able to evaluate how their specific 

crop will respond to current meteorological/hydrologic conditions.  This allows producers the 

ability to adjust irrigation timing and amounts for their crop to reflect the current hydrologic 

conditions.  Therefore, producers will be able to manage limited water resources more 

efficiently and reduce the amount of water used for their crop.   

Forecasted meteorological conditions could be used to estimate future hydrologic 

conditions, thus providing producers with advanced warning of low moisture conditions. 

Coupling this drought index with meteorological forecasts would provide producers the 

opportunity to preserve limited water resources for critical crop growth phases if below average 
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moisture conditions are predicted.  An online drought tool would provide producers with 

readily accessible information about moisture conditions for their crop and location.  

Information about yield trends and soil moisture conditions would provide producers with 

advanced warning of low moisture conditions and allow them to optimize their water 

resources. 
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CHAPTER III 

CROP AND LOCATION SPECIFIC AGRICULTURAL DROUGHT 

QUANTIFICATION: PART II – CASE STUDY 

3.1 Synopsis 

An estimated 70 to 80 percent of water resources are used for agricultural production 

(UNESCO, 2012).  The added moisture helps maintain adequate soil moisture for crops; 

however, drought can impact both the amount of water required for production and crop yields.   

Different crops are affected by moisture conditions in different ways; some crops can handle 

lower moisture conditions better than others. There are many drought indices that quantify low 

moisture conditions; however, they are not crop-specific and therefore, do not quantify 

moisture stress for a given crop.  The goal of this study was to evaluate a crop-specific drought 

index by determining the index’s ability to reflect yield trends due to moisture conditions.  The 

drought index is a weekly index that uses five parameters, (1) precipitation, (2) temperature, 

(3) biomass production, (4) soil moisture, and (5) transpiration.  This paper presents a case 

study which examines the effectiveness of the crop-specific drought index in determining 

moisture stress to crops by comparing the drought index with annual yield values.  The site 

chosen for this study was the Upper Colorado River Basin (UCRB) located in West Texas 

because it is prone to drought.  Cotton is one of the most widely grown row crops in this region 

and was, therefore, used in this study.  A hydrologic and crop model, Soil Water Assessment 

Tool (SWAT), was set up to determine the biomass production, soil moisture, and 

transpiration.  Observed precipitation and temperature data was also used.  A multiple linear 

regression model was created for each week of the growing season because each parameter is 

important during different weeks of the growing season.  For example, in the UCRB, soil 

moisture was found to be more important during the beginning of the growing season while 

biomass production was found to be more important during the end of the growing season.  

Ultimately the drought index was found to be a good indicator of moisture related yield 

conditions with an R2 of 0.67, meaning that 67 percent of variation in yield is explained by the 
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drought index.  This index can be used to help make agricultural management decisions such 

as irrigation management. 

3.2 Introduction 

Droughts are costly natural disasters and have the potential to impact a large areal 

extent and number of people.  FEMA (1995) estimated that drought causes an average of $6 to 

$8 billion in damages per year in the United States.  Droughts can affect a large areal extent as 

indicated by the U.S. drought of 2012 which covered over 60% of the land area in the 

contiguous United States (NOAA, 2012).  In terms of natural disasters, droughts also affect a 

large portion of the global population annually.  From 1963 through 1992, there were more 

droughts that affected at least 1% of the global population than any other hazard (Wilhite, 

2000). 

In addition to drought, global climate change and population increases will place more 

strain on water resources in years to come.  Climate change is expected to exacerbate the 

problem of water availability.  Changes in both precipitation patterns (Li et al., 2009; Strzepek 

et al., 2010) and temperatures (IPCC, 2007) are likely to cause increased severity and extent 

of droughts (Burke et al., 2006; Li et al., 2009; Strzepek et al., 2010).  Not only is the climate 

changing, but the global population is increasing.  Therefore, water resource management and 

drought preparedness will become even more important. 

Drought is a common occurrence in Texas and has placed a strain on water availability. 

Recent drought has led to three Texas communities; Robert Lee, Spicewood Beach, and 

Barnhart; to run out of water completely (De Melker, 2012; Galbraith, 2013).  Robert Lee was 

forced to construct a 12-mile emergency pipeline while Spicewood Beach trucked in their 

water supply during the drought.  As of December 2014, there were 1,175 Public Water 

Systems (PWSs) listed by the Texas Commission on Environmental Quality (TCEQ) as having 

water restrictions to avoid water uses (TCEQ, 2014) and 67 percent of those restrictions were 

mandatory.  Due to these limitations on water resources, some areas in Texas have begun to 

restrict water resource use for irrigation purposes.  In 2012, 2013, and 2014, rice farmers along 

the Lower Colorado River in Texas were prevented from withdrawing surface water for 

irrigation (State Impact, 2014).  
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There are many methods to evaluate drought.  The Standard Precipitation Index, Palmer 

Drought Severity Index, and Vegetation Condition Index are three commonly used drought 

indices (Kallis, 2008; Mishra and Singh, 2010).  While these are commonly used indices, they 

do not consider crop-specific drought impacts.  Various crops are affected by weather and 

moisture conditions differently.  For example, optimal growing temperatures and crop failure 

temperatures vary by crop.  Luo (2011) summarized several studies and reported optimal crop 

yield temperatures of 23°C and 25°C for soybeans and cotton, respectively.  Crop failure 

temperatures were reported as 32°C, 35°C, and 40°C for dry beans, cotton, and peanuts, 

respectively.   Not only do crops respond to temperature conditions differently, they also can 

withstand differing amounts of soil moisture depletion.  The FAO provide soil water depletion 

fractions for no stress by crop (Allen et al., 1998).  For instance, strawberries can only 

withstand a 45% depletion, field corn can withstand soil moisture depletion of 55%, and cotton 

can withstand soil moisture depletion of 65%. 

Regression analysis, time series analysis, probability models, and artificial neural 

networks are all used to model droughts (Mishra and Singh, 2011).  Hydrologic models, such 

as the Soil and Water Assessment Tool (SWAT), have also been used to model drought and 

drought vulnerability (e.g. Jain et al., 2015; Vu et al., 2015).  Kumar and Panu (1997) suggest 

using a linear regression drought model for a reference crop to estimate the effect on all 

regional crops; however, they do not consider a drought index specific to each crop.   

The objective of this study was to examine a case study of the crop and location drought 

index developed by McDaniel et al. (2015a).  This study uses the Soil and Water Assessment 

Tool (SWAT) to predict hydrologic conditions and crop growth in the Upper Colorado River 

Basin (UCRB) located in West Texas.  

3.3 Methodology 

3.3.1 Study Area 

This study was done on the Upper Colorado River (UCR) watershed located in West 

Texas (Figure 3).  Measured streamflow data was taken from a United States Geological 

Survey (USGS) gauge (8123850) located just above Silver, TX.  The UCR is a low flowing 

river with an average streamflow at the Silver gauge of 1.2 cms (43 cfs) between 1990 and 

mid-2013.  During this time period, the river had no flow nearly 10 percent of the time.  This 
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watershed has a semi-arid climate with annual precipitation typically ranges from 36 cm to 53 

cm (14 to 21 inches) (LCRA et al., 2012).    Four major reservoirs are located in the UCR 

watershed and include: (1) Natural Dam Lake, (2) Champion Creek Reservoir, (3) Lake 

Colorado City, and (4) Lake J.B. Thomas.  The reservoirs do not release water into the UCR 

or its tributaries.  In addition to the reservoirs, two dams are located in this watershed.  The 

first is located on the main stem of the Colorado River near Colorado City.  The second is on 

Beals Creek, downstream from Big Spring. 

The UCR watershed is a rural watershed with the major landuses being rangeland and 

agricultural row crops.  The dominate crop grown in the area is cotton.  Observed county cotton 

yields were obtained from the National Agricultural Statistics Service (NASS).  Both dryland 

and irrigated cotton are grown with groundwater being the primary source for irrigation.  The 

Figure 3:  The Upper Colorado River Basin, located in West Texas, 

is highly managed with dams and reservoirs.  The two diversion 

dams are shown as black diamonds and the four major reservoirs 

are shown as yellow circles.
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amount of cotton that is irrigated ranges from 2% to 60% depending on the county with the 

average amount of irrigated cotton land being 24%.  Average county cotton yields between 

1990 and 2010 range from about 390 to 730 kg ha-1 (350 to 650 lb ac-1) (National Agricultural 

Statistics Service, 2014).   

3.3.2 SWAT Model 

3.3.2.1 Overview 

SWAT is a basin-scale, physically based hydrologic model developed for use in rural 

watersheds.  It is a continuous model that runs on a daily time step.  The SWAT model divides 

the watershed into distributed subbasins.  Each subbasin has a set of hydrologic response units 

(HRUs) which contain a unique combination of landuse, soil type, and slope.  The SWAT 

model uses weather conditions, landuse, soil type, and topographic inputs to simulate 

hydrologic conditions including soil moisture, stream flow, and evapotranspiration as well as 

crop yields. 

3.3.2.2 Model Setup 

The SWAT model requires elevation, landuse, and soil Geographical Information 

System (GIS) data for model setup.  The elevation dataset was obtained from the National 

Elevation Data (NED) provided by the USGS and has a 30 meter resolution.  The National 

Land Cover Dataset (NLCD) 2006 was used to determine the landuse of the UCR basin.  The 

NLCD has a 30 meter resolution and 16 different land cover types.  Cotton is the most widely 

grown crop in the UCR, so landuse defined as agricultural crop land was simulated as cotton.  

The State Soil Geographic Database (STATSGO) soil data is provided with the SWAT model.  

This dataset has a 1 km resolution. 

Weather data is also needed to for model simulations.  Temperature data was obtained 

from the NOAA’s National Climatic Data Center (NCDC) from 13 gauge stations throughout 

the watershed.   The gauge precipitation data was from 16 gauge stations in the NCDC network.  

The radar precipitation data used in this study is from the National Weather Service.   

3.3.2.3 Calibration and Validation 

The SWAT model was calibrated and validated using gauge precipitation data and 

county cotton yields.  The model was calibrated from 2005 to 2008 and validated from 2009 

to 2012 on a weekly (7-day) average basis.  The parameters used in hydrologic calibration can 
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be found in Table 2 and included the routing method (IRTE), curve number calculation method 

(ICN) the surface runoff lag coefficient (SURLAG), curve number (CN2), maximum canopy 

storage (CANMX), soil available water content (Sol_AWC), groundwater delay time 

(GW_DELAY), baseflow alpha factor (ALPHA_BF), and deep aquifer percolation 

(RCHRG_DP).  Parameters associated with stormwater, including the surface runoff lag, curve 

number, and canopy storage, needed to be changed to reduce streamflow as the original SWAT 

model set-up had a tendency to over-estimate the amount of runoff to the Upper Colorado 

River.  The groundwater delay time and baseflow alpha factor were determined using the 

Baseflow Filter Program (Arnold et al., 1995; Arnold and Allen, 1999).   

Table 2:  Seven parameters were changed for the calibration of the SWAT model.  The highly managed 

nature of watershed required use of the Muskingum method for water routing.  Parameters associated 

with stormwater runoff (SURLAG, CN2, and CANMX) all needed to be changed to reduce streamflow 

as the model over-predicted.  Both GW_DELAY and ALPHA_BF were calculated using the Baseflow 

Filter Program. 

Calibration 

Parameter 
Description 

Original 

Value 

Calibrated 

Value 

IRTE Routing method 
Variable 

Storage 
Muskingum 

ICN Curve number calculation method 
Function of 

Soil Moisture 

Function of 

ET 

SURLAG Surface runoff lag coefficient 4 1 

CN2 Curve number − 13% 

CANMX Canopy and surface storage (mm) 0 15 

SOL_AWC Available water capacity +5% 

GW_DELAY Groundwater delay time (days) 31 20 

ALPHA_BF Baseflow alpha factor (1/days) 0.048 0.1148 
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Cotton yields were calibrated and validated over the same time period.  A literature 

review was conducted to determine acceptable ranges for the parameters used to estimate 

cotton growth including the harvest index, radiation-use efficiency, and leaf area index among 

others (Table 3). 

3.3.2.4 Model Evaluation 

Three evaluation statistics were performed on the modeled streamflow and cotton 

yields including the Nash-Sutcliffe coefficient of efficiency (NS), the coefficient of 

determination (R2), and the percent bias (PBIAS).  NS was used to evaluate modeled 

streamflow conditions while R2 and PBIAS were used to evaluate cotton yields.  

Table 3: Eight crop growth parameters were changed during the calibration of cotton yields in the 

SWAT model.  Literature was used to guide the changes made.  Overall, the original SWAT set-up had 

a tendency to over-predict cotton yields. 

Calibration 

Parameter 
Description 

Original 

Value 

Calibrated 

Value 
Source 

BIO_E Radiation-use efficiency 15 13 
Rosenthal and 

Gerik (1991) 

HVSTI 
Harvest index 

((kg/ha)/(kg/ha)) 
0.5 0.3 Pettigrew (2004) 

BLAI Maximum leaf area index 4 2 
Howell et al. 

(2004) 

FRGRW1 

Fraction of the plant 

growing season to the 1st 

point on the leaf area curve 

0.15 0.38 
Howell et al. 

(2004) 

LAIMX1 

Fraction of the maximum 

leaf area index 

corresponding to the 1st 

point on the leaf area curve 

0.01 0.25 
Howell et al. 

(2004) 

FRGRW2 

Fraction of the plant 

growing season to the 2nd 

point on the leaf area curve 

0.5 0.6 
Howell et al. 

(2004) 

WSYF 
Lower limit of harvest 

index ((kg/ha)/(kg/ha)) 
0.4 0.29 Pettigrew (2004) 

GSI Stomatal conductance (m/s) 0.009 0.031 Rahman (2005) 
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The NS compares how the modeled streamflow compares to using the average 

streamflow (Equation 29).  The NS ranges from negative infinity to one.  A value of zero 

indicates that the model performs as well as using the average streamflow, a negative value 

indicates the model performs worse than using the average streamflow, and a positive value 

indicates that the model performs better than using the average streamflow.  Typically, an 

acceptable value is greater than 0.5 (Moriasi et al., 2007). 

𝑁𝑆 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1

(29)

where Oi is the observed streamflow at time i, Pi is the predicted streamflow at time i, and 𝑂̅ is 

the average observed streaflow over the modeled period. 

The R2 statistic ranges from zero to one and indicates how much of the variance in the 

observed data is explained by the model (Equation 30).  A value of zero indicates that none 

of the variance is explained by the model, and a value of one indicates all variance in the data 

is explained by the model. 

𝑅2 = {
∑ (𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)𝑁

𝑖=1

[∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1 ]

0.5
[∑ (𝑃𝑖−𝑃̅)2𝑁

𝑖=1 ]
0.5}

2

(30)

where 𝑃̅ is the average predicted streamflow over the modeled period. 

The PBIAS statistic reveals if the model has a tendency to over- or under-predict 

values (Equation 31).  Acceptable values are typically +/- 25%.  A negative value indicates 

that the model typically under-predicts the parameter value while a positive value indicates 

that the model typically over-predicts the parameter value. 

𝑃𝐵𝐼𝐴𝑆 = (
∑ (𝑃𝑖−𝑂𝑖)𝑁

𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

) × 100% (31)
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3.3.3 Drought Index Overview 

This study uses a crop and location specific drought methodology developed by 

McDaniel et al. (2015a). The drought index calculation is discussed here, but for a complete 

description see McDaniel et al. (2015a).   

The drought index uses five parameters to determine drought for a specific crop, (1) 

precipitation, (2) temperature, (3) cumulative biomass production, (4) soil moisture, and (5) 

transpiration.  Each parameter was ranked using and crop and/or a location specific value.  

Precipitation was summed over a five week period and compared against the 30 year normal.  

Temperature was compared against a high temperature stress threshold.  The number of days 

that exceeded the stress threshold were summed over a five week period and compared against 

the 30 year normal.  The average weekly cumulative biomass production was compared against 

the 30 year normal for cotton in West Texas.  Soil moisture was compared against a threshold 

value which was the fraction of soil moisture depletion beyond which causes stress to the crop.  

Cotton can withstand a depletion fraction of 0.65 prior to experiencing stress (Allen et al., 

1998).  Lastly, the weekly average cotton transpiration was compared against the average 

weekly potential transpiration.  Cotton biomass production, soil moisture, transpiration, and 

potential transpiration were estimated using the SWAT model. 

Cotton yields were estimated from multiple linear regression models for the first 20 

weeks of the growing season.  A different equation was used for each week due to varying 

parameter importance throughout the growing season.  For example, cumulative biomass 

production is highly correlated (> 0.6) after week 10 of the growing season, whereas soil 

moisture has a high correlation during the middle of the growing season, around weeks 4 

through 11.  Model equations were determined using the R statistical package.  The models 

were created using observed cotton yields and parameter rankings from ten counties over a ten 

year period (2000 to 2009).  There are a total of 90 yield observation points which were used 

in generating each model.  These models took the general form found in Equation 32. 

𝑌𝑀 = 𝐶1 + 𝐶2𝑃𝑅𝑎𝑛𝑘 + 𝐶3𝑇𝑅𝑎𝑛𝑘 + 𝐶4𝐵𝑅𝑎𝑛𝑘 + 𝐶5𝐾𝑅𝑎𝑛𝑘 + 𝐶6𝑊𝑅𝑎𝑛𝑘 (32)

YM is the modeled cotton yield.  C1, C2, C3, C4, C5, and C6 are all constants generated by the 

multiple linear regression analysis.  
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Parameters that were not significant (α > 0.1) were not used in the linear models.  

Therefore, between one and five parameters were used to estimate yields for each of the first 

20 weeks of the growing season. 

3.4 Results and Discussion 

3.4.1 SWAT Calibration and Validation 

The SWAT model was calibrated and validated for streamflow and crop yields on a 

weekly basis.    The streamflow calibration and validation used USGS streamflow 

measurements from the Colorado River gauge just above Silver, TX (08123850).  The 

streamflow calibration resulted in a NS of 0.58 and a PBIAS of -0.18 while the validation 

resulted in a NS of 0.90 and a PBIAS of -0.14 (Figure 4).  All values were within acceptable 

ranges, greater than 0.5 for NS and between -25 and 25 for PBIAS.   

Figure 4:  The streamflow calibration and validation of the SWAT model were acceptable with

NS values of 0.58 and 0.9, respectively.  The solid blue line is observed streamflow while the 

dashed red line is modeled streamflow.  The calibration and validation was done at the location 

of the USGS stream gauge above Silver, TX (08123850). 
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Cotton yields were calibrated and validated using adjusted observed yields from the 

NASS (QuickStats 2.0, Retrieved 2012).  Yields were adjusted because net yields were not 

available after 1990.  Therefore, adjustments were made to take into account yield losses which 

can be substantial (> 25%) in the UCRB.  Yields were adjusted by multiplying the observed 

yields by the fraction of harvested area compared to the planted area as shown in Equation 

33, 

𝑌𝐴 = 𝑌𝑂 ×
𝐴𝐻

𝐴𝑃
(33)

where, YA is the adjusted observed yield, YO is the gross observed yield, AH is the harvested 

area, and AP is the planted area.  Using the adjusted observed yields, the calibration resulted in 

an R2 of 0.59 and a PBIAS of 14.7 while the validation resulted in an R2 of 0.64 and PBIAS of 

-6.7 (Figure 5).  All statistical values were within acceptable limits. 

Figure 5:  Cotton yield calibration and validation in the SWAT model were found to be acceptable 

with R2 values of 0.59 and 0.64, respectively. Crop yields were calibrated and validated for 10 

counties for 2005 to 2008 and 2009 to 2012, respectively. 
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3.4.2 Multiple Linear Regression Models 

Twenty linear regression models were created to predict yield trends, one for each of 

the first twenty weeks of the growing season.  Different models were generated for each week 

of the growing season because each parameter is important at different times in the growing 

season.  Figure 6 shows the Pearson’s Correlation Coefficient (R) between each parameter and 

the observed yield.  Pearson’s R indicates the amount of linear dependence between two 

variables. A positive R value means there is a direct relationship between the variables while 

a negative R value means there is an inverse relationship between the variables.  For cotton in 

the UCRB, the time when the precipitation and temperature rankings are correlated most 

strongly with yield is during the beginning (weeks 1 to 4) and middle (weeks 10 to 15) of the 

growing season.  The time when the biomass ranking is most strongly correlated to yield is 

during the last half of the growing season (weeks 10 to 20).  The time when the soil moisture 

ranking is most strongly correlated with yield is during the first half of the growing season 

(weeks 1 to 11).  Lastly, the time when the transpiration ranking is most strongly correlated 

with yield is during the middle of the growing season (weeks 9 to 12).  Therefore, only the 

significant parameters during each week were used to generate the linear regression models.  

Anywhere from one parameter to all five parameters were used depending on how many of the 

parameters were significant (α < 0.1) to the multiple linear regression models when predicting 

cotton yields.   
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Yield trends were predicted from the multiple linear regression models which were 

used to generate the crop specific drought index.  The predicted yield for each individual week 

reflects the conditions of the week and not the entire growing season.  For example, a low 

moisture week will result in a low predicted yield whereas a high moisture week will results 

in a high predicted yield.  Therefore, to determine the effectiveness of the methodology, the 

median yield for the first 20 weeks of the growing season was compared with observed cotton 

yields (Figure 7).  The R2 was 0.73, indicating a strong relationship between the median 

predicted yield and the observed yield.  Additionally, the PBIAS was 0.7, indicating that the 

predicted cotton yields do not tend to over- or under-predict. There was one major outlier in 

the data which occurred in Mitchell County in 2000.  The median predicted yield for the 

growing season suggests a relatively bountiful year, but the observed yield was very low.  

Other weather-related disasters such as hail or high winds may have contributed to the lower 

yields that year in Mitchell County. 

Figure 6:  The correlation between parameters and observed yields show that the parameters are 

most strongly correlated with yield at different times in the growing season.
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The predicted yields were converted into yield percentiles ranging from zero to ten 

which were adjusted to the crop specific drought index range of negative ten to ten (Figure 8).  

Drought index values below zero indicate low moisture conditions which are predicted to result 

in below typical crop yields.  Alternatively, drought index values above zero are high moisture 

conditions which are predicted to result in above typical crop yields.  Not surprisingly, the 

drought index resulted in a similar relationship with the observed yields as the predicted crop 

yields; however, the linear R2 was slightly lower (0.67 compared to the 0.73 discussed above) 

likely due to the discretization of the predicted cotton yields when converting to the drought 

index.  Interestingly, the drought index demonstrated a stronger polynomial trend with the 

observed yield than linear trend and resulted in a polynomial regression R2 of 0.71.   

Figure 7:  A comparison of observed and predicted cotton yields showed a strong relationship 

with an R2 of 0.73.   The red dashed line is the linear regression between the median predicted 

cotton yield for the growing season and the observed cotton yields.  Predicted yields were 

determined by using the median value from a series a unique linear regression models for each 

week of the growing season.
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Minimal data was available for an independent validation period (2010 to 2013) due to 

limited yield data between 2011 and 2013 which were very dry years.  During the period from 

2010 through 2013, only 15 observed data points were available.  Therefore, there is not 

enough data for adequate validation, but the preliminary data suggests the trend is maintained.  

The drought index was higher for all counties in 2010 than 2012 (Figures 9.a and 9.b).  This 

indicates that 2010 had higher moisture conditions in the UCRB region than in 2012.  Observed 

data supported this; of the ten counties, four had data for both 2010 and 2012 and these counties 

showed higher yields in 2010 than in 2012 (Figure 9.c).   In 2010, Dawson and Martin counties 

had the highest of the four yields, followed by Terry county, and finally Yoakum county.  The 

drought index also reflected this trend and 2012 was a universally low yield year which was 

also reflected in the drought index. 

Figure 8: The drought index has a strong linear relationship with yield, but a stronger polynomial 

relationship. The yellow line is the linear regression for the predicted drought index and cotton 

yield, while the red line shows the polynomial regression.
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a 

Figure 9:  The county maps show the drought index for 2010 (a) and 2012 (b).  They indicate 

that 2010 was a relatively moist year while 2012 was relatively dry.  The graph (c) shows the 

adjusted observed cotton yields from four counties for the same time period.  The observed yield 

supports the drought index results with high yields observed in 2010 and low yields in 2012. 

b 

c 



48 

majority of the 2012 growing season.  This indicates that there were greater water needs 

throughout the growing season in 2012 than in 2010.   

The soil moisture ranking provides information about irrigation timing.  A soil moisture 

ranking above zero indicates that the soil moisture is above the stress threshold for the crop.  

Alternatively, a soil moisture ranking below zero indicates that the soil moisture is below the 

stress threshold for the crop and will thus adversely affect growth.  Consequently, the soil 

moisture ranking for each week provides information about when best to irrigate.   In the 

UCRB it is typical for the soil moisture to go below the cotton stress threshold during the 

critical period due to high evapotranspiration rates.  Based on the soil moisture ranking, in 

2010 Mitchell County did not fall below the stress threshold prior to the critical period.  It only 

fell below the stress threshold starting at week 11, during the critical period, indicating this 

may be the optimal time to irrigate.  During 2012, on the other hand, the soil moisture ranking 

was below the stress threshold for the majority of the growing season indicating that irrigation 

was required throughout the growing season, even prior to the critical growth period. 

Examples of the crop specific drought index and soil moisture ranking are provided 

for Mitchell County, TX, in Figure 10 and Figure 11.  The critical period for cotton growth in 

the UCRB is shaded in red.  Critical periods are those that are strongly affected by moisture 

and/or temperature conditions.  Yields are particularly susceptible to stress conditions during 

this time. A drought index value of zero indicates that with the given moisture conditions, 

crop yields are predicted to be normal, or at the 50th percentile.  Above zero indicates the 

crop yields are predicted to be above normal while below zero indicates the crop yields are 

predicted to be below normal.  This crop specific drought index can be used as an aid for 

agricultural management decisions.  For example, in Mitchell County, the drought index was 

predicted to be above normal throughout the 2010 growing season and below normal for the 
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Figure 11: The soil moisture index for Mitchell County, TX, provides information about crop stress 

and can be used for irrigation timing.  The blue line is the drought index for 2010 while the red line 

is the drought index for 2012.  The critical period is more susceptible to low moisture conditions 

and can greatly affect yields. 

Figure 10:  The drought index for Mitchell County, TX, indicates above typical yield conditions 

in 2010 and below typical yield conditions for 2012.  The blue line is the drought index for 2010 

while the red line is the drought index for 2012.  The critical period is more susceptible to low 

moisture conditions and can greatly affect yields.  
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3.5 Conclusion 

The crop-specific drought index uses parameters that are linked to the crop itself 

(transpiration), location (precipitation), or both (biomass production).  By doing this, the 

drought index is an indicator of moisture driven yield trends (low, normal, high yields).  The 

case study demonstrates that different parameters are important during different times in the 

growing season.  Therefore, different linear regression models were required for each week of 

the growing season.  This case study in the UCRB demonstrated that this drought index can 

provide reasonable information for moisture conditions that can be used for agricultural 

management decisions.  The weekly drought index provides information about the moisture 

driven yield trends and the weekly soil moisture ranking provides information that can be used 

for irrigation timing. 

This crop-specific method could be used for decision making and advanced warning of 

low moisture conditions.  Forecasting moisture conditions can be done by coupling weather 

forecasts with the SWAT hydrologic model.  These forecasts could be used to make 

agricultural water management decisions including drought preparation decisions, irrigation 

timing, and irrigation amounts.  An interactive tool could provide agricultural producers ready 

access to information about the moisture conditions and how it relates to their crop. 
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CHAPTER IV 

CROP AND LOCATION SPECIFIC AGRICULTURAL DROUGHT 

QUANTIFICATION: FORECASTING WATER STRESS AND YIELD TRENDS 

4.1 Synopsis 

Agriculture is the largest water consumer, with 70% of global water withdrawals being 

used for irrigation. Water scarcity issues are being exacerbated by drought and population 

increases.  Efficient water resource management in agricultural production will become more 

important as these issues increase.  The objective of this paper is to evaluate the use of short-

term weather forecasts for agricultural drought prediction.  A crop-specific, linear regression 

drought analysis technique was used in this study.  This study takes place in the Upper 

Colorado River Basin (UCRB) located in West Texas.  Five parameters associated with 

agricultural drought (precipitation, temperature, biomass production, soil moisture depletion, 

and transpiration) were ranked and used to estimate cotton yields.  The yield percentiles were 

used as a drought index.  Precipitation and temperature were forecasted with a two-week lead 

time using probable scenarios based on historical data.  The other three parameters were 

estimated using the SWAT model.  Forecasts were generated for each week of the growing 

season from 2010 through 2013.  Comparing the parameters using the forecasted weather data 

to those using the observed weather data revealed that four out of the five performed 

satisfactorily (R2 > 0.5, NS > 0.5, -55% < PBIAS < 55%, RSR < 0.7).  However, the soil 

moisture depletion forecasts were unsatisfactory.  The forecasted cotton yields and drought 

index both performed satisfactorily, indicating this forecasting method may be used for 

decision making related to agricultural water management including irrigation timings.     

4.2 Introduction 

Water is a finite resource.  Many areas in the world are already experiencing physical 

water scarcity, affecting 1.2 billion people.  Physical water scarcity does not just occur in arid 

regions, but also where water sources are overcommitted (IWMI, 2007).  In addition, the 

number of people living in water stressed regions is expected to increase, largely due to 
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population growth and socio-economic development (Shen et. al, 2014).  Agriculture plays a 

large role in global water resource use.  70% of global water withdrawals are used for irrigation.  

The rising demand for food and feed crops is projected to increase this amount by 70 to 90 

percent by 2050 (IWMI, 2007).   

Efficient management of water resources will become increasingly important as water 

stress grows and the amount of water available for irrigation is limited, especially in times of 

drought. Drought compounds water stress in existing regions with water scarcity.  Drought can 

occur in several forms: (1) meteorological, (2) agricultural, (3) hydrological, and (4) 

socioeconomic (Wilhite and Glantz, 1985).  Agricultural drought is caused by reduced 

precipitation, reduced soil moisture, increased temperature, and increased evapotranspiration, 

resulting in reduced biomass production.  The economic impacts of agricultural drought can 

be substantial.  The Georgia DNR (2001) reported estimated crop losses between $689 and 

$885 million in crop losses in the Georgia drought from 1998-2000; a 2002 drought in South 

Dakota resulted in $401 million in crop losses (Diersen and Taylor, 2003); the 2005 Illinois 

drought caused $1.3 billion in agricultural losses; an estimated $7.6 billion was lost in the 

agricultural sector during the 2011 Texas drought (Fannin, 2012); Howitt, et. al (2014) 

estimated the direct agricultural losses of the 2014 California drought at $1.5 billion.

Crop responses to drought vary and thus the effect of drought on yield can vary by 

crop.  The FAO Drainage and Irrigation Paper No. 56 (Allen et al., 1998) provides information 

on the percent moisture depletion that crops can withstand before experiencing water stress. 

Total available water depletion can range from 20% to 80% before water stress occurs, 

depending on the crop.  Therefore, agricultural water management should be crop specific. 

To help agricultural producers make the most efficient use of their water resources, 

researchers have tried to predict and, therefore, provide early warnings of agricultural drought 

conditions.  Shukla et al. (2014) discuss a method to generate seasonal soil moisture outlooks 

through a case study in East Africa.  Marj and Meijerink (2011) used climatic data and an 

artificial neural network to predict the normalized difference vegetation index which served as 

the basis for predicting annual agricultural drought.  Liu and Juárez (2001) also predicted 

NDVI using forecasted climatic data to assess agricultural drought onset.  Kumar and Panu 

(1997) suggest using a multiple linear regression model and a reference crop to predict drought 
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conditions for other crops in the area. These agricultural drought forecasting methods have 

limited utility for making crop water management decisions on a sub-seasonal time scale as 

they are either annual or are not crop-specific. 

The objective of this study was to evaluate short-term weather forecast use in a crop-

specific drought tool to identify the utility of this method for use in sub-seasonal water 

management decisions.  A linear regression based crop-specific drought index developed by 

McDaniel et al. (2015a) was used in conjunction with two-week precipitation and temperature 

forecasts.  The SWAT model was used to estimate additional parameters required for the 

drought index. 

4.3 Methods 

Forecasted weather conditions are used to forecast agricultural drought conditions for 

two weeks in advance.  A crop specific method for determining agricultural drought developed 

by McDaniel et al. (2015a) was used in this study.  This method also provides information 

about weekly moisture stress and seasonal yield trends.  A brief overview of this method is 

provided in this section.  For more information, see McDaniel et al. (2015b).   

4.3.1 Study Area 

A case study was completed on the Upper Colorado River Basin (UCRB) located in 

West Texas and into New Mexico.  Ten counties in Texas are evaluated for drought conditions 

over the four year time period and include Andrews, Borden, Dawson, Gaines, Howard, 

Martin, Midland, Mitchell, Terry, and Yoakum counties.  The landuse in this area is dominated 

by row crops and rangeland.  Cotton is one of the dominant row crops in the area and thus was 

chosen as the crop examined in this study for crop-specific drought forecasting.  Yields 

typically range from 390 to 730 kg ha-1 (350 to 650 lb ac-1).  Streamflows on the Upper 

Colorado River are very low with an average flow of 1.25 cms (44 cfs) from 1990 to 2010 

calculated at the USGS gauge located just above Silver, TX (Site Number: 08156675).  The 

UCRB was hard hit by the recent drought that has plagued Texas.  The USDA designated all 

ten counties examined in this study as drought disaster areas from 2011 to 2014 (USDA, 2015).  

4.3.2 Parameter Forecasting 

Precipitation and temperature were forecasted using an ensemble forecasting method 

(Demargne, et al., 2013; Brown et al., 2014).  In this method, probabilistic weather forecasts 
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are produced and converted to a series of deterministic forecasts (ensembles) for use in a 

hydrologic model.  For this study, two week forecast probabilities were created for each week 

of the growing season from 2010 through 2013.  These forecasts were used to generate a set 

of 21 deterministic precipitation and temperature data sets that were input into the SWAT 

hydrologic model to estimate other moisture-related conditions including soil moisture, 

cumulative biomass production and transpiration.  These forecasted values were ranked using 

the crop- and location-specific indicators prior to being used in the drought index calculation.  

This ultimately resulted in 21 scenarios for the drought conditions during the two week 

forecasted time period. A total of 1,680 scenarios were generated and analyzed for each of the 

ten counties (21 scenarios over the first 20 weeks of the growing season throughout four years). 

4.3.3 Drought Index 

Drought, moisture stress, and yield trends were determined using a crop- and location-

specific drought methodology.  Five parameters are used to calculate yield trends and drought: 

(1) precipitation, (2) temperature, (3) cumulative biomass production, (4) soil moisture, and 

(5) transpiration.  Each parameter is ranked with regards to crop specific and/or location 

specific values.  The accumulated 5-week precipitation is ranked against the 30-year normal 

precipitation.  The number of days above a temperature stress threshold over a 5-week period 

is ranked against the 30-year normal.  Cumulative biomass production is ranked against the 

30-year normal.  Soil moisture is ranked against the soil moisture stress threshold of the crop; 

in other words, the amount of soil moisture below which causes moisture stress to the crop.  

Lastly, transpiration is ranked against the potential transpiration.  Precipitation, biomass 

production, and soil moisture depletion have rankings ranging from -10 to 10, where -10 is low 

moisture/biomass production conditions and 10 is high moisture/biomass production 

conditions.  Temperature and transpiration have rankings ranging from -10 to 0, where -10 is 

a high number of days above the temperature stress threshold and low transpiration to potential 

transpiration ratio, respectively. 

Soil moisture, cumulative biomass production, and transpiration are estimated by 

modeling the hydrologic conditions using the Soil and Water Assessment Tool (SWAT).  

SWAT is a basin scale hydrologic model that operates on a daily time step.  It is a semi-

distributed model (Gassman et al., 2007) that is distributed at the subbasin scale.  Each subbasin 
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is further divided into a series of Hydrologic Response Units (HRUs) made up of a unique 

landuse, soil type, and slope.  The Environmental Policy Integrated Climate (EPIC) model was 

used as the basis for the crop growth portion of the SWAT model. 

The SWAT model was calibrated and validated for weekly streamflow using the Nash-

Sutcliffe coefficient of efficiency (NS) and the Percent Bias (PBIAS) as well as cotton yields 

using the Coefficient of Determination (R2) and the PBIAS.  All values were within acceptable 

ranges.  The NS values were above 0.5, the R2 values were above 0.5, and the PBIAS values 

were within 25%. Calibration was performed from 2005 through 2008 while validation was 

completed for 2009 through 2012.  For more detail on the calibration and validation of the 

SWAT model, refer to McDaniel et al. (2015b).   

SWAT outputs all parameters at the HRU level, including the precipitation and 

temperature.  Parameter values are first ranked at the HRU level, and then an area weighted 

average is used to aggregate the rankings to the subbasin level and then ultimately to the county 

level.   

These five, county-level parameter rankings are used to create a linear regression model 

for each week of the growing season to predict yield trends.  A different linear regression 

model was used for each week because the parameters are important during different times in 

the growing season.  For example, in the Upper Colorado River Basin (UCRB), the soil 

moisture ranking is strongly correlated with cotton yields during the first half of the growing 

season, whereas the cumulative biomass production ranking is strongly correlated with cotton 

yields during the second half of the growing season.  Once yields are estimated using the linear 

regression model, they are converted into yield percentiles using historical data.  The drought 

index is directly derived from the yield percentiles (Equation 34). This results in a drought 

index on the same terms as the parameter rankings, where below zero indicates dry conditions 

and above zero indicates moist conditions.  In this work, the yield trends and drought indices 

were calculated for cotton as it is one of the most plentiful row crops in the study area. 

𝐷 = 2 × 𝑌𝑃 − 10                                                (34)

where D is the drought index and Yp is the yield percentile. 
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4.3.4 Forecast Evaluations 

The cumulative distribution function (CDF) for precipitation, temperature, yield, and 

the drought index was calculated to determine if the forecasted distribution was significantly 

different than the observed data distribution.  The difference between the forecasted and 

observed probability distribution function (PDF) was plotted to evaluate which areas of the 

distribution were over- and under-represented by the forecasts. The CDFs and PDFs were used 

as a visual comparison of the distributions between the forecasted and observed data.  It 

provides insight into how the forecasted data distributions compare with the observed data 

distributions and where the data are concentrated at. 

In addition to the overall distribution of the data, four model statistics were used to 

evaluate how the forecasts performed on a weekly basis at the county level.  The forecasts were 

evaluated using several commonly used statistics for modeling studies; the R2, NS, PBIAS, 

and the root mean square error to observed standard deviation ratio (RSR).  These four statistics 

cover three groups of model evaluation statistics.  R2 is a regression statistic, the NS is a 

dimensionless statistic, and both PBIAS and RSR are error indices. The weekly values for the 

21 forecast ensembles were averaged, resulting in a single value for each week of the forecast.  

These averages were used to calculate the R2, NS, PBIAS, and RSR for the drought index input 

parameters (precipitation ranking, temperature ranking, biomass production ranking, soil 

moisture depletion ranking, and transpiration ranking) as well as the resulting yield trends and 

drought index.   

4.3.4.1 Regression Model Evaluation 

R2 describes the amount of variance in the observed data that is explained by the model.  

The R2 statistic is calculated using Equation 35, 

𝑅2 = {
∑ (𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)𝑁

𝑖=1

[∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1 ]

0.5
[∑ (𝑃𝑖−𝑃̅)2𝑁

𝑖=1 ]
0.5}

2

(35)

where, 𝑃̅ is the average predicted streamflow over the modeled period.  The R2 statistic ranges 

from 0 to 1.  A value of 1 indicates that all the observed variance is explained by the model, or 

the model perfectly fits the observed data.  On the other hand, a value of 0 indicates that none 

of the observed variance is explained by the model.  Gassman (2008) compiled a number of 
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SWAT studies and reported that most had R2 values above 0.5.  Motovilov et al. (1999) 

suggested the common threshold R2 values of greater than 0.75 for good model performance 

and between 0.36 and 0.75 for satisfactory model performance. 

4.3.4.2 Dimensionless Model Evaluation 

The NS statistic is used to evaluate how the model performance compares to using the 

average parameter value.  The NS statistic is calculated using Equation 36. 

𝑁𝑆 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1

(36)

where, Oi is the observed value at time i, Pi is the predicted value at time i, and 𝑂̅ is the average 

of the observed values over the modeled period. NS ranges from negative infinity to 1.  A value 

less than zero indicates that the average observed value is a better predictor than the modeled 

value; a value of zero indicates that the model is performing as well as the average; a value 

above zero indicates that the model is a better predictor than the average.  Moriasi et al. (2007) 

summarized statistical performances and provided recommended values for NS, PBIAS, and 

RSR. Their recommended minimum value for NS is reported to be 0.5 for monthly values.  

Based on the monthly recommendations by Moriasi et al. (2007), Nair et al. (2011) proposed 

minimum NS threshold values of 0.4 for daily, 0.5 for monthly, and 0.7 for annual time periods.  

4.3.4.3 Error Indices 

Both the R2 and NS are sensitive to extreme values (Legates and McCabe, 1999) which 

can disproportionately affect the resulting statistical value.  This sensitivity led Legates and 

McCabe (1999) to recommend using error indices when evaluating hydrologic and 

hydroclimatic models.  Therefore, two additional model evaluation statistics were examined, 

the PBIAS and RSR, two error indices recommended by Moriasi et al. (2007).   

The PBIAS describes whether the model has a tendency to over- or under- predict 

parameter values compared to the observed value.  It also indicates how much the parameter 

is over- or under- predicted.  The PBIAS is calculated using Equation 37. 

𝑃𝐵𝐼𝐴𝑆 = (
∑ (𝑃𝑖−𝑂𝑖)𝑁

𝑖=1

∑ |𝑂𝑖|𝑁
𝑖=1

) × 100% (37)
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The PBIAS can range from negative infinity to infinity.  When the PBIAS is negative, 

it indicates that the model has a tendency to under-predict the parameter.  When the PBIAS is 

positive, it indicates that model has a tendency to over-predict the parameter.  Moriasi et al. 

(2008) recommends two ranges for PBIAS.   The PBIAS for streamflow was recommended to 

be between -25% and 25% for satisfactory model performance; the PBIAS for sediment yield 

was recommended to be between -55% and 55% for satisfactory model; the PBIAS for 

modelling nitrogen and phosphorus loading rates had a recommended range of -70% to 70% 

for satisfactory model performance.  The differences in recommended PBIAS ranges were 

based on typical uncertainty.  Due to the increased uncertainty of using forecasted weather 

conditions instead of observed weather for the hydrological model, this study uses a moderate 

recommended range of -55% to 55%. 

The root mean square error (RMSE) is often used as an error statistic; however, Singh 

et al. (2004) recommended considering the standard deviation when evaluating the RMSE.  

Based on this recommendation, Moriasi et al. (2007) suggested a normalized RMSE by 

dividing it by the standard deviation, resulting in the RMSE-observations standard deviation 

ratio, or RSR.  The RSR is calculated using Equation 38. 

𝑅𝑆𝑅 =
√∑ (𝑂𝑖−𝑃𝑖)2𝑁

𝑖=1

√∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1

(38)

The RSR statistic ranges from 0 to infinity.  A value of 0 indicates that the model 

perfectly simulates observed conditions.  Moriasi et al. (2007) recommended a range of 0 to 

0.7 for a satisfactory model based on “typical uncertainty.” 

4.4 Results and Discussion 

4.4.1 Drought Index Input Parameter Forecasts 

Observed parameter rankings (hereafter referred to as ‘observed’) were calculated 

using observed precipitation and temperature data.  Forecasted parameter rankings (hereafter 

referred to as ‘forecasted’) were calculated from two-week weather forecasts.  Each ensemble 

was used in the SWAT model and rankings were calculated from each ensemble as well.  These 

forecasted rankings were evaluated to determine their individual accuracy.   
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4.4.1.1 Precipitation Ranking (-10 to 10) 

A visual comparison between the forecasted and observed precipitation ranking CDFs 

(Figure 12.a) and PDFs (Figure 12.b) show a tendency for the forecasted rankings to be below 

the observed rankings.  While there is an 8% larger proportion of observed rankings are 

concentrated at the extremely low end, a much higher proportion of the forecasted rankings 

(74%) are between -9 and 1 than the observed proportion (47%).  Very little of the forecasted 

precipitation ranking distribution occurred at the high end of the rankings.  Rankings from 7 

to 10 only consisted of 2 % of the forecasted distribution, whereas this range made up 17% of 

the observed precipitation distribution. 

The average weekly precipitation ranking was compared against the weekly observed 

precipitation.  All four statistical tests performed were within range for satisfactory model 

performance (Table 4).  Though within the acceptable range, the negative PBIAS (-34.2%) 

indicates that the forecasted rankings are much lower than the observed rankings.  This is 

supports the visual comparison of the CDFs and PDFs that the forecasts have a tendency to 

under-predict precipitation.  Though the forecasts generally under-predict precipitation, the NS 

(0.51) and R2 (0.61) indicate that the forecasted rankings are following a similar trend as the 

observed rankings.  The standard deviation of the forecasted rankings is 33% smaller than that 

of the observed rankings, which demonstrates that the forecasted rankings are not only under-

predicted, but are also less dispersed. 

4.4.1.2 Temperature Ranking (-10 to 0) 

The temperature CDFs (Figure 12.c) and PDFs (Figure 12.d) show a similar trend 

between the distributions of the forecasted and observed temperature rankings.  This is 

supported by the relatively low maximum difference between the CDFs (0.06).  These graphs 

indicate there is a tendency for the distribution of the forecasted temperature rankings to be 

slightly higher than the observed temperature rankings.  The forecasts had a lower proportion 

of values at the extreme low end of the distribution and a higher proportion of values at the 

extreme high end of the distribution.   

The temperature ranking forecasts produced the best statistical results.  The PBIAS 

supported the slight over-prediction of the forecasted temperature rankings with a value of 

9.39%.  However, this is well within the acceptable range.  Both the NS (0.85) and R2 (0.86) 
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show a strong relationship between the forecasted and observed temperature rankings.  The 

standard deviations of the forecasted and observed ranking have similar standard deviations as 

well at 3.24 and 3.02, respectively, indicating that the datasets have a similar dispersion. 

4.4.1.3 Cumulative Biomass Ranking (-10 to 10) 

Figures 13.e and 13.f depict the biomass production ranking CDFs and PDFs, 

respectively.  These graphs show that the forecasted biomass production rankings have a higher 

proportion of lower values than the observed biomass production rankings.  Nearly 75% of the 

forecasted biomass production rankings fall within the range of -10 to 1 whereas only about 

54% of the observed biomass production rankings fall within the same range.  The biomass 

production CDFs are very similar to the precipitation CDFs, likely because biomass production 

is strongly dependent upon precipitation.  In fact, the observed biomass production ranking 

and precipitation ranking have a Pearson’s correlation of 0.62. 

The four model evaluation statistics for biomass production rankings all fell within the 

range for satisfactory model performance (Table 4).  The moderately high NS (0.69), high R2 

(0.81), and low RSR (0.56) are promising. Though the PBIAS is within the satisfactory range 

for model performance, the forecasted biomass production ranking has a tendency to under-

predict by a relatively large amount.  The forecasted standard deviation is 22% lower than the 

standard deviation for the observed biomass production rankings.  As with the precipitation 

rankings, this shows that the forecasted biomass production rankings are less dispersed in 

addition to being under-predicted. 

4.4.1.4 Soil Moisture Stress Ranking (-10 to 10) 

The soil moisture depletion ranking behaves differently than all other parameters.  

Comparing the CDFs (Figure 12.g) and PDFs (Figure 12.h) for the forecasted and observed 

soil moisture depletion rankings show that the forecast has a larger proportion in the mid-range 

and a smaller proportion at the extreme values.  The forecasted soil moisture depletion rankings 

have 15% more values than the observed rankings between 0 to 2.   
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Figure 12:  The CDFs and PDFs are provided for precipitation (a, b), temperature (c, d), biomass 

production (e, f), soil moisture depletion (g, h), and transpiration (i, j).  Data in black represents the

rankings calculated with forecasted weather data while gray represents rankings calculated with 

observed weather data. (Continued on next page)
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Figure 12 (continued) 

Model evaluation statistics comparing the forecasted and observed soil moisture 

depletion rankings indicate that the forecasts poorly predict soil moisture trends. The NS 

(0.28), R2 (0.33), and RSR (0.85) all need to be improved.  Only the PBIAS (11.0%) falls 

within the range for satisfactory model performance.  The PBIAS indicates that the forecasted 

soil moisture depletion rankings are generally higher than the observed rankings, suggesting 

that the soil moisture is slightly higher in the forecasts.  Less dispersion of the forecasted soil 

moisture depletion rankings compared to the observed rankings as evidenced by the lower 

forecasted standard deviation. 

Both the graphical comparison and model evaluation statistics provide unexpected 

results.  The soil moisture depletion ranking is strongly correlated with precipitation (R = 0.61); 
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however, the CDFs and PDFs do not follow a similar pattern and the PBIAS for the soil 

moisture depletion ranking indicates that the forecasted values typically over-predict slightly 

whereas the forecasted precipitation rankings have a tendency to under-predict.  This 

inconsistency is likely due to the fact that though, there are a higher proportion of forecasted 

precipitation rankings that are in the lower half of the range, there are also a much smaller 

proportion of forecasted precipitation events that result in no precipitation.  Therefore, there is 

at least some precipitation more often in the forecasts than the observed precipitation data set.  

Even if the precipitation is minimal, it maintains the soil moisture, reduces soil moisture 

depletion, and thus, increases the ranking. 

4.4.1.5 Transpiration Stress Ranking (-10 to 0) 

The forecasted and observed transpiration ranking CDFs (Figure 12.i) and PDFs 

(Figure 12.j) show similar distributions.  The largest difference between the two distributions 

occurred at the low and high end of the range.  At -10, the proportion of forecasted transpiration 

rankings is 5% lower than the observed.  At 10, the proportion of forecasted transpiration 

rankings is 4% higher.  This indicates that the forecasted transpiration rankings have a tendency 

to be slightly higher than the observed transpiration rankings. 

All four model evaluation statistics were within the range indicating satisfactory model 

performance.  The PBIAS shows the forecasted transpiration ranks slightly over-predict as 

compared to the observed rankings, supporting the conclusions drawn from the CDFs and 

PDFs.  This over-prediction is minimal and the standard deviation between the forecasted and 

observed transpiration are similar, suggesting the data have similar dispersion. 

4.4.1.6 Summary 

Overall, the forecasted soil moisture depletion rankings performed poorest out of the 

five parameters with only one model evaluation statistic in the satisfactory range (Table 4).  

The forecasted temperature ranking performed the best with all four model evaluation statistics 

out-performing all other parameters. Both the forecasted precipitation and cumulative biomass 

rankings tended to under-predict, though the PBIAS indicated they were within the acceptable 

range.   
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Table 4:  The model evaluation statistics are provided in this table.  Values with an asterisk indicate that the value falls within the satisfactory 

range for model performance.  The model evaluation statistics for precipitation, temperature, biomass production, and transpiration are within 

the range for satisfactory model performance.  The soil moisture depletion model statistics show the forecasted soil moisture depletion is 

unsatisfactory.  ‘Observed’ indicates values calculated with observed weather data whereas ‘forecasted’ indicates values calculated with 

forecasted weather data.  

Ranked 

Parameter 

Observed 

Average 

Forecasted 

Average 

Observed 

Standard 

Deviation 

Forecasted 

Standard 

Deviation 

Dimensionless 

Evaluation 

Regression 

Evaluation 
Error Indices 

NS R² PBIAS RSR 

Satisfactory 

Range 
0.5 to 1.0 0.5 to 1.0 

-55% to 

55% 
0 to 0.70 

Precipitation -1.32 -3.32 6.69 4.50 0.51* 0.61* -34.2%* 0.70* 

Temperature -3.76 -3.40 3.24 3.02 0.85* 0.86* 9.39%* 0.39* 

Cumulative 

Biomass 
0.07 -2.38 7.42 5.77 0.69* 0.81* 

-37.9%* 
0.56* 

Soil 

Moisture 

Depletion 

-5.02 -4.21 6.33 4.84 0.28 0.33 11.0%* 0.85 

Transpiration -5.98 -5.35 3.98 3.69 0.53* 0.58* 10.6%* 0.69* 
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4.4.2 Yield Trend and Drought Forecasts 

Cotton yields estimated with the forecasted weather data via the linear regression 

models resulted in a distribution similar to that calculated with the observed weather data.  The 

largest difference between the forecasted and observed yield CDFs (Figure 13.c) was about 

9.6%.   The PDFs (Figure 13.d) show that a higher proportion of the forecasted yields occur 

below 500 kg ha-1 (450 lbs. ac-1) and that a lower proportion between 530 to 730 kg ha-1 (475 

to 650 lbs. ac-1). 

Table 5 provides the statistics for the forecasted average yield trends compared to 

observed yield trends.  All the model evaluation statistics are within the range for satisfactory 

model performance.  The NS (0.72) and R2 (0.74) indicate that the estimated yields resulting 

from the forecasted weather data follow the same trend as those resulting from the observed 

weather data (Table 5).  The data error is also within the appropriate range, though the PBIAS 

shows a slight tendency to under-predict. 

The major difference between the drought index distribution calculated with the 

forecasted weather data and that calculated with the observed data occurs at the high end of 

the range, or a drought index greater than 6 (Figures 13.a and 13.b).  The CDFs and PDFs for 

the drought index demonstrate that the forecasted drought index has a tendency to under-

predict slightly as compared to the observed drought index. 

The model evaluation statistics for the forecasted drought index are similar, but slightly 

better than the estimated forecasted yields.  Like the forecasted yield, the drought index NS 

(0.76) and R2 (0.79) demonstrated a strong relationship between the forecasted and observed 

values.  The error indices were within the appropriate range and the PBIAS (-12.7%) indicated 

a slight tendency to under-predict. 
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Figure 13:  The CDFs and PDFs for the drought index (a, b) and cotton yields (c, d) are provided. Data 

in black represents the rankings calculated with forecasted weather data while gray represents rankings 

calculated with observed weather data. 

The ability of the forecasted yields to match those calculated by observed weather 

conditions varies by week (Figure 14).  Forecast rankings for one week and two weeks in 

advance were compared against observed rankings.  In general, forecast rankings one week in 

advance were more closely matched to the observed rankings than forecast rankings two weeks 

in advance.  All weeks had R2 values greater than 0.5 for forecasts one week in advance or are 

within an acceptable range; however, forecasts two weeks in advance had R2 values that fell 

below 0.5 four out of 20 weeks. 

a b 

c d
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performance.  The model evaluation statistics for both cotton yields and the drought index are within 

the range for satisfactory model performance. 

Statistic 
Satisfactory 

Range 
Yield Trends 

Drought 

Index 

Observed Average 235 -1.91 

Forecasted Average 206 -1.03 

Observed Standard 

Deviation 
210 6.84 

Forecasted Standard 

Deviation 
181 7.53 

Dimensionless 

Evaluation 
NS 0.5 to 1.0 0.72* 0.76* 

Regression 

Evaluation 
R² 0.5 to 1.0 0.74* 0.79* 

Error Indices 

PBIAS -55% to 55% -12.3%* -12.7%* 

RSR 0 to 0.70 0.53* 0.49* 

4.4.3 Decision Making Tool 

Data obtained using this forecasting method can be used in association with a tool to 

aid water resource management decisions by agricultural producers.  With forecasted yield 

trends and the drought index, agricultural producers would have an early warning of low 

moisture conditions that may lead to a reduction in yields and could adjust their water 

management practices accordingly.  Figure 15 provides an example of information that can be 

conveyed to the tool user.  The observed data is depicted as a line, while the two-week forecast 

is depicted as a shaded area.  This figure shows the drought index for Borden County, TX, in 

2013 for the first 12 weeks of the growing season.  The forecasted drought index reveals that 

it is likely there will be moderately wet conditions in week 11 and typical moisture conditions 

Table 5:  The model evaluation statistics for forecasted cotton yields and drought index are provided 

in this table. Values with an asterisk indicate that the value falls within the satisfactory range for model 
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in week 12 of the cotton growing season in Borden County.  Therefore, producers could plan 

to save water in week 11 for later in the growing season when moisture conditions may become 

less favorable. 

Though the current analysis has been performed on the county scale, by using the 

SWAT model, the forecasts can be achieved on a smaller, subbasin scale.  This would provide 

agricultural producers with conditions at a more local scale. 

Figure 14:  Comparison of yields calculated with the regression equation using observed weather data 

with week 1 of the forecast (solid bar) and week 2 of the forecast (striped bar) by week of the growing 

season.  In general, week 1 forecast yields better match the observed yields than forecasts that are two 

weeks out. 
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The majority of the forecasts fall within the satisfactory range of the model evaluation 

statistics, indicating this forecasting method is satisfactory overall.  It is important to note, 

however, that the forecasted precipitation and biomass rankings have a moderate tendency to 

under-predict.  This should be taken into consideration when using the forecasts for decision 

making purposes.  In addition, the model evaluation statistics for the soil moisture depletion 

ranking do not fall within the range associated with satisfactory model performance.  

Therefore, it is not recommended to use the forecasted soil moisture conditions as a basis for 

decision making.  Rather, the soil moisture depletion ranking calculated with the observed 

weather conditions should be used. 

All four model evaluation statistics support that both the estimated yield and drought 

index can be predicted using forecasted weather data.  These forecasts can be used to provide 

Figure 15:  Example forecasted drought index for Borden County, TX in 2013.  The first 10 weeks 

use the observed weather conditions to calculate the drought index while the last two weeks use 

weather forecasts.  These forecasts provide a probable range of drought indices indicated by the gray 

area. The dashed black line is the drought index calculated using the observed weather data. 

4.5 Conclusions 
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agricultural producers with information about near future moisture conditions, allowing them 

to make more informed decisions about water resource management.  Creating an interactive 

tool on a county or subbasin scale would aid in the dissemination of the moisture trend 

information and help increase the efficiency of water resource use for agricultural purposes. 
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CHAPTER V 

SUMMARY AND CONCLUSION 

A weekly crop and location drought index was developed to help agricultural producers 

make informed water management decisions based on their crop’s response to stress conditions 

associated with drought.  To accomplish this, five parameters were identified as indicators of 

drought including precipitation, temperature, cumulative biomass, soil moisture depletion, and 

transpiration.  Each parameter had a crop- or location- specific threshold value which was used 

to differentiate between wet and dry conditions and calculate parameter rankings.  The amount 

of precipitation was summed over a five week period to provide a cumulative, five week 

precipitation value and with the 30-year normal indicating the threshold.  The temperature 

parameter was defined as the number of days over the temperature stress threshold for the crop 

of interest during a five week period.  Any period above the temperature stress threshold was 

considered to contribute to dry conditions.  Cumulative biomass was calculated for the week 

of interest and used the 30-year normal for threshold value.  Soil moisture depletion was 

evaluated against a crop-specific threshold value below which causes stress to the crop.  

Transpiration was evaluated against potential transpiration and the threshold value was 

transpiration less than the potential transpiration.  A linear ranking system was used to 

standardize each parameter with bounds provided by the 30-year minimum and maximum 

value.  A positive value indicates moist conditions while negative values indicate dry 

conditions that may lead to a reduction in yield. 

Observed data was used to determine the precipitation and temperature rankings; 

however, limited information on weekly cumulative biomass, soil moisture, and transpiration 

made observed values impossible.  Therefore, the Soil and Water Assessment Tool (SWAT) 

was used to estimate these parameters and calculate the 30-year normal values.   

A multiple linear regression model was created for each week of the growing season to 

predict yields using the five parameter rankings.  Observed county-level yields were used to 

develop the models, so all parameters were aggregated from the HRU level to the subbasin and 

finally, county levels using an area weighted average.  Yields from the multiple linear 
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regression models were used to calculate yield percentiles according to each model.  These 

percentiles were used as the basis for the drought index.  Yields at or below the 5th percentile 

correspond to very dry conditions and was given a drought index ranking of -10.  Yields in the 

50th percentile indicate typical conditions and were given a drought index ranking of zero.  

Lastly, yields at or above the 95th percentile were very wet and corresponded to a drought index 

ranking of 10. 

The effectiveness of this drought index was evaluated through a case study in the Upper 

Colorado River Basin (UCRB) located in West Texas.  The primary landuses of this region are 

rangeland and agricultural row crops.  One of the most dominant crops in this area is cotton 

and was used in this study to evaluate the drought index.   

Multiple linear regression models were created for the first 20 weeks of the growing 

season.  Different parameters were found to be important during different times in the growing 

season.  Soil moisture was most important in the beginning, transpiration in the middle, and 

cumulative biomass production at the end of the growing season.  County level observed cotton 

yields were compared against the median predicted cotton yields from the 20 multiple linear 

regression models for 2000 through 2009.  The two demonstrated a strong relationship with an 

R2 of 0.73 and a PBIAS of 0.7.  Additionally, the drought index demonstrated a strong linear 

relationship with the observed yields (R2 = 0.67) and a slightly stronger polynomial 

relationship (R2 = 0.71).   

A secondary time period was examined to determine if the relationships hold.  While 

there was limited observed data to make the comparison, 2010, a wet year, did predict higher 

yields (and thus drought index values) than 2012 which was a relatively dry year.  Therefore, 

the drought index is a promising method for evaluating moisture related yield trends. 

Once the drought index was evaluated for observed weather conditions, ensemble 

forecasted weather data was used to forecast yield trends and drought conditions.  21, 2-week 

forecasts were created for each week of the growing season.  Rankings calculated using the 

observed precipitation and temperature data were compared against rankings calculated using 

the forecasted precipitation and temperature data.  The average of the 21 forecasts was used to 

evaluate the forecast performance using typical statistical methods including R2, NS, PBIAS, 

and RSR.  The temperature rankings forecast performed the best, while the soil moisture 
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depletion ranking performed the worst.  Precipitation, temperature, cumulative biomass, and 

transpiration all demonstrated satisfactory performances. However, the soil moisture ranking 

did result in satisfactory performance.  Overall, the drought index calculated using the 

forecasted parameter rankings compared well with the drought index calculated using the 

observed parameter rankings with all statistical tests well within the acceptable ranges. 

This drought index has the potential to be used by agricultural producers to make crop-

specific water management decisions.  However, to do this, this information needs to be 

conveyed to producers in an accessible, understandable format.  Generating an interactive 

mapping tool via GIS would be one method to accomplish this.  With that in mind, a sample 

map (Figure 16) was created to demonstrate the functionality of this dissemination method. 

Figure 16:  An interactive mapping tool created using ArcGIS online.  Red indicates dry conditions 

while blue indicates wet conditions.  When a county is selected, a graph depicting the seasonal drought 

ranking is provided.
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